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Abstract 25 

Male middle age is a transitional period where many physiological and psychological changes occur 26 

leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the 27 

mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a 28 

key mediator in the communication between the gut and the brain, and in the regulation of brain 29 

homeostasis including brain immune cell function. Thus, we tested whether targeting the gut 30 

microbiome by prebiotic supplementation may alter microglia activation and brain function in 31 

ageing. Male young adult (eight weeks) and middle-aged (ten months) C57BL/6J mice received diet 32 

enriched with a prebiotic (10% oligofructose-enriched inulin (FOS-Inulin)) or control chow for 14 33 

weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and 34 

middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into 35 

a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-36 

induced infiltration of Ly-6Chi-monocytes into the brain coupled with a reversal in ageing-related 37 

increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data 38 

highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate 39 

the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a 40 

novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.41 
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1. Introduction 42 

We have trillions of microbes in our gastrointestinal tract, and a growing body of evidence supports a 43 

role for them in maintaining health across the lifespan (1-3). Indeed, microbiota has been implicated 44 

as a key mediator in the communication between the gut and the brain and regulating brain 45 

homeostasis. Diet has been shown to be one of the most important factors in modifying the gut 46 

microbiota composition (4, 5). However, the ability of nutritional interventions that target the 47 

microbiome to alter brain function has not received much attention (3, 4, 6). 48 

 49 

Ageing is defined as a process involving slow deterioration of various homeostatic functions 50 

throughout the lifespan. Middle age in particular is a life period where many physiological and 51 

psychological changes occur, leading to first cognitive impairments and behavioural alterations, and a 52 

deterioration of brain function (7-11). In rodents, increased anxiety-like behaviour occurs in middle-53 

age (7, 11). A few studies reported cognitive decline in middle-aged rodents (8, 11), with variable 54 

definitions of “middle-age“ highlighting the need for greater specification (12). Moreover, the levels 55 

of neurotransmitters (9) and neurotrophins (10) were shown to decline with age, which may possibly 56 

contribute to altered behaviour and brain homeostasis.  57 

 58 

Increased age is associated with a shift towards a pro-inflammatory state and inflammageing (13, 59 

14). This, in turn, can make the age  brain more vulnerable to various intrinsic and extrinsic disruptive 60 

effects including stress, disease and infection (12, 15). Moreover, this vulnerability may result in 61 

cognitive alterations (3). However, it remains unclear to what extent an altered brain immune system 62 

can contribute to alterations in cognitive functions in middle-aged subjects.  63 

 64 

Microglia are the major immune cells in the brain and have been shown to be a key player in 65 

neuropsychological and neurodegenerative conditions (16, 17). Increased activation of microglia in 66 

the aged brain has been suggested to be indicative of enhanced inflammation and heightened 67 

reactivity in the rodent and the human brain (13, 18, 19). Following an immune stimulus, which is 68 

exaggerated in ageing, microglia are referred to as “primed“ due to their rapid induction and 69 

increased cytokine release upon activation (13, 18). Microglia are specialised cells continuously 70 

monitoring their environment (20) and can sense changes in the brain’s milieu (21). In addition, 71 

microglia play a crucial role in synaptic plasticity, brain function and cognition across the lifespan 72 

(17).  73 

 74 

Numerous studies have shown shifts in the composition of the intestinal microbiota with age in 75 

rodent models (22, 23) and in humans, including extreme ageing (24, 25). Previous research utilizing 76 
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pre-clinical models implicated a role of microbiota from aged mice in driving systemic immunity (26, 77 

27). However, the effect on neuroimmunity and subsequent brain function and behaviour remains 78 

unaddressed. Interestingly, the transfer of gut microbiota from young-to-aged subjects might 79 

influence healthy ageing as shown in the short-lived killifish model, which exhibited an increase in 80 

lifespan and motor behaviour (28). It has been shown that the administration of prebiotics (a 81 

substrate that is selectively utilized by host microorganisms conferring a health benefit (29)) results 82 

in an increase in the number of beneficial intestinal bacterial species with a reduction in systemic 83 

inflammation in humans (30, 31), and both, peripheral and neuroinflammation in rodents (32, 33) 84 

which would have important implications for the healthcare system. It however remains unclear 85 

what is driving these changes and what is the impact on brain function and behaviour. Therapeutic 86 

interventions are thus sought in order to delay ageing, decrease pro-ageing factors, reduce microglia 87 

activation and ultimately improve cognition during ageing. 88 

 89 

We hypothesise that there is a dysregulation in the communication between the gut microbiota and 90 

the brain during middle age, which is critical in mediating age-related functional decline. Thus, 91 

targeting the gut microbiota with prebiotics may alter microglia activation state and brain function in 92 

ageing. To this end, we hypothesised that targeting the gut microbiome by dietary intervention with 93 

a complex short- and long-chain prebiotic, oligofructose-enriched inulin (FOS-Inulin), would have 94 

selective effects on (neuro-) immune profile and behaviour in middle-aged male compared to young 95 

adult C57BL/6J mice.  96 
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2. Methods 97 

2.1 Animals 98 

Male young adult C57BL/6J mice (n = 50; Harlan, Cambridgeshire, UK; 2 months) and middle-aged 99 

C57BL/6J mice (n = 38; 10 months) were used in this study. All experiments were conducted in 100 

accordance with European Directive 86/609/EEC, Recommendation 2007/526/65/EC, and approved 101 

by the Animal Experimentation Ethics Committee of University College Cork (B100/3774). Animals 102 

were habituated to the animal facility for two weeks before experiments started and kept under a 103 

12-hour light/dark cycle, with a temperature of 21 ± 1 °C and humidity of 55 ± 10%. Food and water 104 

were given ad libitum. 105 

Power analysis was performed beforehand using the Software G*Power 3.1 to ensure adequate 106 

sample size number to detect changes in behaviour and neuroimmunity (34). Mice were equally 107 

assigned to experimental groups based on bodyweight to ensure equally distribution among the 108 

groups. 109 

 110 

2.2 Prebiotic administration 111 

Mice received chow (ssniff-Spezialdiäten GmbH, Soest, Germany) enriched with 10% Oligofructose-112 

enriched inulin (FOS-Inulin: mixture of 92±2% Inulin and 8±2% Fructooligosaccharide, 113 

Orafti®Synergy1; BENEO-Orafti N.V., Tienen, Belgium) or control chow for 3.5 weeks (microglia 114 

cohort) and 14 weeks (behavioural cohort). The dosage of FOS-Inulin supplementation was chosen 115 

based on previous studies in rodents (35-37). Duration of prebiotic intervention was chosen 116 

according to previous studies in rodents showing effects on brain and behaviour (32, 38).  117 

 118 

2.3 Study design and experimental timeline 119 

Two separate cohorts of animals were used (see Supplementary Figure S1).  120 

Cohort one investigated the effects of FOS-Inulin on behaviour including cognitive (spontaneous 121 

alternation behaviour, Morris water maze, fear conditioning), anxiety-like (open field, elevated-plus 122 

maze, marble burying), social (three-chamber social interaction test) and depressive-like behaviour 123 

(forced swim test). Following a three-week lead-in of diet, mice (n=9-10 per group) underwent 124 

behavioural assessment while continuing dietary supplementation for a total of 14 weeks. In 125 

addition, peripheral immune cell activation (pre-/post stress) was assessed in blood using flow 126 

cytometry. To correlate the changes in behaviour with specific neuroimmune targets, we 127 

subsequently analysed targets in the brain at the end of the study.   128 

To characterize the neuroimmune status in the brain at a time point before animals were tested 129 

behaviourally, cohort two (young adult: n=14-16, middle-aged: n=8-10) investigated if a dietary lead-130 
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in phase of 3.5 weeks with FOS-Inulin can alter monocyte infiltration and subsequent microglia 131 

activation in the brain, key mediators influencing cognition and anxiety-like behaviour.  132 

 133 

See Supplemental Methods for detailed information on procedures (2.4 to 2.9). 134 

 135 

2.4 Behaviour 136 

2.4.1 Spontaneous alternation in the Y-Maze 137 

Spontaneous alternation behaviour in the Y-maze tests hippocampal-dependent spatial memory and 138 

exploration exploratory activity and was carried out as previously described (22). Behaviour was 139 

assessed for five minutes. 140 

 141 

2.4.2 Morris water maze 142 

The Morris water maze represents a robust and reliable test for spatial learning that strongly 143 

correlates with hippocampal synaptic plasticity (39). Briefly, mice were trained over five days (four 144 

trials per day, two minutes each) to spatially locate the submerged platform. On day six, the platform 145 

was removed and a probe trial lasting 30s was conducted.  146 

 147 

2.4.3 Fear conditioning 148 

Fear conditioning was conducted as previously described (40), over three consecutive days (day 1: 149 

conditioning by three pairings with variable inter-pairing interval; day 2: conditioned stimulus recall 150 

and extinction in a novel context; day 3: context recall).  151 

 152 

2.4.4 Open field 153 

The open field is a widely used test to assess approach-avoidance behaviour, locomotor activity, and 154 

the behavioural response to a novel context; and was conducted as previously described (32). Briefly, 155 

a test mouse was placed into an open arena with 60 lux lighting and allowed to explore the context 156 

for ten minutes.  157 

 158 

2.4.5 Marble burying test 159 

The marble burying test assesses compulsive, repetitive and anxiety-like behaviour, and was 160 

conducted as previously described (32). Briefly, mice were tested for 30 min and the number of 161 

buried marbles was recorded.  162 
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2.4.6 Elevated-plus maze 163 

The Elevated-plus Maze test was used to assess anxiety-like behaviour and was conducted as 164 

previously described (32). Mice were allowed to explore the maze for five minutes; the time spent in 165 

the open arms, as well as number of entries into the open arms was analysed.  166 

 167 

2.4.7 Three-chamber social interaction test 168 

Sociability and social novelty were assessed in a three-chamber apparatus as previously described 169 

(41). The test consists of three sequential ten-minute trials: (1) habituation; (2) sociability (the 170 

analysis of time a test mouse spends in the chamber with the conspecific mouse or with the object); 171 

and (3) social novelty preference (the analysis of time a test mouse spends in the chamber with the 172 

novel or in the chamber with the familiar mouse).   173 

 174 

2.4.8 Forced swim test 175 

The forced swim test (FST) was used to assess depressive-like or despair-like behaviour (42, 43). Mice 176 

were individually placed in a transparent glass cylinder for six minutes. Time spent immobile was 177 

defined as no movements apart from breathing and considered as depressive-like behaviour. 178 

Behaviour was analysed during the last 4 minutes of the test which represents the most common 179 

protocol to use in analysing FST in the mouse and accounts for the fact that most mice struggle 180 

heavily during the first two minutes as they habituate to the water situation (42, 43).  181 

 182 

2.5 Plasma collection and corticosterone analysis 183 

To investigate the endocrine and immune response to stress, we collected blood samples prior to 184 

and following the forced swim test session. Approximately 60 μl of blood per mouse were collected 185 

by tail tipping using Lithium-Heparin-coated capillaries (Sigma-Aldrich, St. Louis, Missouri, United 186 

States). Blood was centrifuged at 3500 g at 4 °C for 15 min. Plasma was aspirated and stored at 187 

−80°C. Blood was taken immediately before the forced swim test (baseline), as well as 15 min, 45 min 188 

and 120 min after the baseline. Baseline samples and samples at 120 min post-stress time point were 189 

used for flow cytometry (see 2.7). 190 

Plasma corticosterone levels were measured in duplicates by ELISA (ENZO Corticosterone ELISA, Enzo 191 

Life Sciences, Exeter, UK) as previously described (22). Data were expressed in ng/ml. Only data 192 

derived from duplicates with < 15% coefficient of variation (CV) were included in the analysis. 193 

 194 
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2.6 Blood stimulation cytokine assay 195 

To assess if a prebiotic-enriched diet alters systemic immunity, 100 μl of trunk blood was obtained at 196 

the end of the study using Lithium-Heparin-coated tubes (Greiner Bio-One, Kremsmünster, Austria). 197 

Blood cells from each mouse were stimulated with lipopolysaccharide (LPS-2 μg/ml) or Concanavalin 198 

A (ConA-2.5 μg/ml) for 24 h or left unstimulated as control. Following 24 h-incubation, samples were 199 

taken and stored at -80°C. The levels of secreted IL-1β, IL-4, IL-6, IL-10, TNFα and CXCL1 were 200 

analysed with the Proinflammatory Panel 1 (mouse) V-PLEX Kit and the MESO QuickPlex SQ 120, 201 

SECTOR Imager 2400 (Meso Scale Discovery, Maryland, USA). Only data derived from duplicates with 202 

< 15% CV were included in the analysis. Concentrations of cytokines were expressed in pg/ml. 203 

 204 

2.7 Flow cytometry 205 

To assess stress-induced immune priming, blood was collected from young adult and middle-aged 206 

mice by tail tipping (60 μl) at baseline and 120 min after acute stress (cohort one). Staining was 207 

performed using CD11b-VioBright FITC, Ly-6C-PE, LY-6G-PerCP-Vio700 and MHC-II-PE (all Miltenyi 208 

Biotec, Bergisch Gladbach, Germany) to assess inflammatory monocytes (CD11b+, SSClow, LY-6Chi) and 209 

MHC-II+-neutrophils (CD11b+, LY-6G+, MHC-II+). Inflammatory monocyte and MHC-II+-neutrophil 210 

counts were normalized to the amount of peripheral blood mononuclear cell (PBMC). Gating strategy 211 

is depicted in Supplementary Figure S2a. 212 

Cohort two investigated if the diet lead-in phase with FOS-Inulin modulates monocyte infiltration and 213 

subsequent microglia activation in the brain. Following perfusion with ice-cold PBS for five min, 214 

brains were carefully dissected, enzymatically digested using the neural dissociation kit (P), followed 215 

by incubation in myelin-removal beads and magnetic separation using LS columns (Miltenyi Biotec). 216 

Cells were stained using CD11b-Viobright FITC, CD45-APC and Ly-6C-PE (all Miltenyi Biotec). Gating 217 

strategy is depicted in Supplementary Figure S2b. Monocyte counts were normalized to CD11b+ cells, 218 

microglia to CD11b+, CD45low.  219 

 220 

2.8 Analysis of gene expression levels in the brain tissues (RT-qPCR) 221 

To assess gene expression brain areas associated with cognition, the right hemisphere of both, the 222 

hippocampus and the prefrontal cortex were used (44). Total RNA was extracted using the mirVana™ 223 

miRNA Isolation Kit (Ambion, Life technologies, Waltham, MA, US), followed by DNase treatment 224 

using the TURBO DNA-free™ Kit (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) 225 

according to the manufacturer’s instructions. RNA was quantified using the NanoDrop™ 226 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA).  227 
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RNA was reverse transcribed to cDNA using the Applied Biosystems High Capacity cDNA kit (Applied 228 

Biosystems, Warrington, UK). Ccl2 and Tnf genes were amplified with probes designed by Integrated 229 

DNA Technologies (Coralville, IA, US) (Table S1). PCR was run in triplicates on a LightCycler®480 230 

(Roche). Data were analysed with the comparative cycle threshold (Ct) method. Data were 231 

normalized using Actb as endogenous control and transformed using the 2−ΔΔCT method (45). We 232 

confirmed beforehand that the housekeeper Actb is neither changed by age nor by prebiotic 233 

treatment. 234 

 235 

2.9 Caecal microbiota composition (16S rRNA gene sequencing) and short-chain fatty acid analysis 236 

Caecum was harvested, snap frozen and stored at -80°C prior to the analysis. DNA from caecal 237 

content was extracted using the Qiagen QIAmp Fast DNA Stool Mini Kit coupled with an initial bead-238 

beating step, as previously described (46). The V3-V4 hypervariable region of the 16S rRNA gene was 239 

amplified and prepared for sequencing as outlined in the Illumina 16S Metagenomic Sequencing 240 

Library Protocol. Samples were sequenced at Teagasc Sequencing Facility on the Illumina MiSeq 241 

platform using a 2 × 250 bp kit.  242 

FLASH was used to assemble paired-end reads. Further processing of paired-end reads including 243 

quality filtering based on a quality score of > 25 and removal of mismatched barcodes and sequences 244 

below length thresholds was completed using QIIME (version 1.9.0). Denoising, chimera detection 245 

and clustering into operational taxonomic unit (OTU) grouping were performed using USEARCH v7 246 

(64-bit) (47). OTUs were aligned using PyNAST (and taxonomy was assigned using BLAST against the 247 

SILVA SSURef database release 123. Alpha and beta diversities were generated in QIIME (48). 248 

Short chain fatty acids (SCFAs) were measured by gas chromatography, using a Varian 3500 GC 249 

flame-ionization system fitted with a ZB-FFAP column as previously described (46).  250 

 251 

2.10 Metabolomics from faecal water 252 

Faecal pellets were collected at the end of cohort one. Faecal material was freshly collected using 253 

sterilized tools to ensure no cross contamination within a time-window of 10 minutes’ maximum to 254 

ensure least oxygen exposure of the faeces as possible. Subsequently, pellets were directly snap 255 

freeze to ensure optimal DNA integrity. Faecal water was prepared by homogenising faecal samples 256 

(20-50 mg) with 4x wt/volume sterile PBS followed by vortexing for 20 minutes. Samples were 257 

centrifuged at 16000 g for 30 minutes; the supernatant was transferred in a new 2 mL micro 258 

centrifuge tube and centrifuged for further 30 minutes. This step was repeated one more time 259 
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before filtering the supernatant through Costar Spin-X centrifuge filters 0.2 µM at 10000 g. Faecal 260 

water samples were stored at -20°C. 261 

Subsequently, samples were derivatized with methyl chloroformate as previously described (49) and 262 

processed by MS-Omics (Copenhagen, Denmark) using Gas Chromatography – Mass Spectometry 263 

(GC-MS). Raw data was converted to netCDF format using ChemStation (Agilent technologies) and 264 

processed in Matlab R2014b (Mathworks, Inc., Natick, MA, USA) using the PARADISe software 265 

described by (50). 266 

 267 

2.11 Statistical analysis 268 

Statistical analyses were conducted using SPSS 24 (IBM Corp., Armonk, NY, USA) and Graphpad Prism 269 

7 (GraphPad Software, Inc., La Jolla, CA, USA). Data were analysed for normality using the Shapiro-270 

Wilk test and for equality of variances using the Levene's test. Non-parametric data were analysed 271 

with Kruskal-Wallis test followed by post hoc Dunn‘s, and are depicted as median with inter-quartile 272 

ranges (IQR) and min/max values as error bars. Parametric data were analysed using two-way 273 

analysis of variance (ANOVA) post hoc Holm-Sidak, and are shown as mean ± SEM. Changes in 274 

corticosterone response, Morris Water Maze learning and fear conditioning were analysed using 275 

two-way-repeated measurement (RM)-ANOVA post hoc Sidak. Correlation analyses were performed 276 

using Spearman correlations for non-parametric data. Outliers were excluded using the Grubbs test 277 

(51). Statistical significance was set at p ≤ 0.05.  278 

Statistical analysis of microbiota data was performed in an R software environment. For Principal 279 

Component Analysis (PCA), Permutational multivariate analysis of variance (PERMANOVA) was used 280 

to identify relationships of significance between variables the Adonis function from the vegan 281 

package on Aitchison distance matrices calculated with the ALDEx2 package. ALDEx2 was also used to 282 

calculate pairwise differential abundance. Hierarchical All-against-All significance (HAllA) was used to 283 

investigate between-dataset covariance. For all tests, a Benjamini-Hochberg post hoc test was 284 

performed to correct for multiple comparisons with a conservative q-value of 0.2 as critical value.285 
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3. Results 286 

3.1 Prebiotic supplementation reversed stress-induced immune priming in ageing 287 

To assess if ageing triggers stress-induced immune priming in middle-aged mice, and whether age-288 

associated changes are alleviated following prebiotic supplementation, mice were exposed to an 289 

acute stress (forced swim test), and blood samples were taken at baseline and 2 hours after stress 290 

exposure. We focused on neutrophils, which act as the first responders to any immune challenge and 291 

can trigger adaptive immunity, including T-cell priming via expression of major histocompatibility 292 

complexes (MHC), a classical activation marker. 293 

In middle-aged mice, acute stress caused a long-lasting increase of the MHC-II+ neutrophil 294 

population (p=0.0280, Kruskal-Wallis post hoc Dunn’s; Figure 1a); the response being absent in young 295 

adult animals. Strikingly, prebiotic supplementation prevented the development of the age-296 

associated phenotype and restored the levels of MHC-II+ neutrophils in stressed aged animals to 297 

young levels (p=0.011).  298 

Since acute stress is known to affect peripheral innate immunity through corticosterone (52), we 299 

investigated whether these changes in neutrophil activation status were associated with altered 300 

stress axis activity. For this, we measured plasma release of corticosterone (as an indicator of 301 

endocrine reactivity to stress) in the same animals, prior to and at different time points following the 302 

forced swim stress exposure.  Two-way RM-ANOVA revealed an overall effect of age on the 303 

corticosterone response (F (1, 28) = 10.825, p=0.003; Figure 1b). In particular, middle-aged mice 304 

exhibited lower plasma corticosterone levels at baseline (F (1, 29) = 16.68, p<0.001, Figure 1c) and at 305 

T15 (F (1, 34) = 24.65, p<0.001). Two samples in the middle-aged control group did not reached the 306 

detection limit and were therefore not included into the analysis. Calculation of area-under-the-307 

curve (AUC) for corticosterone response confirmed that middle-aged mice exhibited a blunted stress 308 

axis reactivity (F (1, 28) = 5.207, p=0.03, Figure 1d). However, we did not observe any modulation on 309 

corticosterone response either at baseline or following stress in either young adult or middle-aged 310 

mice by prebiotic supplementation suggesting that the changes in peripheral innate immunity are 311 

not mediated by corticosterone. 312 

 313 

3.2 Effect of prebiotic supplementation on systemic inflammation and immune cell priming 314 

To investigate if systemic inflammation and immune cell priming is altered in middle-aged mice and 315 

counteracted by prebiotic supplementation, whole blood was taken after 14 weeks of prebiotic 316 

intervention and stimulated with LPS or ConA. Following ConA-stimulation, middle-aged control mice 317 

exhibited a trend towards increased IL-1β and IL-10 cytokine release (p=0.089 and p=0.069, 318 

respectively, Supplementary Figure S3b+e), while prebiotic-treated middle-aged mice showed similar 319 
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levels as in young controls. Moreover, prebiotic supplementation decreased TNFα in middle-aged 320 

mice following ConA-stimulation (p=0.014, Kruskal-Wallis post hoc Dunn‘s; S3a). No changes were 321 

observed at baseline or in response to LPS stimulation. 322 

 323 

3.3 Pervasive neuroimmune alterations in middle-aged mice were alleviated by prebiotic 324 

supplementation 325 

Given the decline of cognitive function in middle-aged mice (11, 12), we investigated whether the 326 

middle-aged brain is more vulnerable to peripheral immune cell trafficking and subsequent microglial 327 

activation, and whether this status can be targeted by prebiotic supplementation, utilizing flow 328 

cytometry to investigate brain immunity. Two-way ANOVA revealed an effect of age (F (1, 41) = 11.94, 329 

p=0.001; Figure 2a) and prebiotic treatment (F (1, 41) = 7.88, p=0.008) as well as an interaction of both 330 

(F (1, 41) = 6.01, p=0.019) on trafficking of inflammatory monocytes (Ly-6Chi) into the brain. Specifically, 331 

middle-aged control mice showed an increase in Ly-6Chi monocytes compared to young controls 332 

(p<0.001), which was alleviated by prebiotic supplementation (p=0.007). We in addition investigated 333 

if these changes in infiltrating monocytes are also systemically reflected in the blood. No differences 334 

were observed (see Supplementary Figure S7), suggesting that the brain becomes particularly 335 

vulnerable in middle-aged mice as inflammatory monocytes traffic to inflamed tissue. Furthermore, 336 

we investigated whether the observed increase in monocyte trafficking was associated with microglia 337 

activation in the brain. Two-way ANOVA revealed an effect not only of age (F (1, 43) = 10.75, p=0.002; 338 

Figure 2b), but also prebiotic treatment (F (1, 43) = 10.95, p=0.002) and an interaction of both (F (1, 43) = 339 

13.81, p<0.001) on Ly-6C+ microglia. Middle-aged controls showed a higher percentage of Ly-6C+ 340 

microglia compared to young controls (p<0.001), which was reversed to young control levels 341 

following prebiotic supplementation (p<0.001).  342 

In agreement with these findings, the gene expression of Ccl2 and Tnf were up-regulated in the 343 

hippocampus of middle-aged mice (F (1, 35) = 13.60, F (1, 35) = 15.79, p<0.001; Figure 2c-d). Ccl2 and Tnf 344 

encode for pro-inflammatory cytokines which are secreted from activated microglia and associated 345 

with monocyte infiltration. This supports the observation of microglia activation in the middle-aged 346 

brain, including the hippocampus, a key region controlling learning and memory. In contrast, both, 347 

Ccl2 and Tnf, were not found to be upregulated in middle-aged mice following prebiotic 348 

supplementation. Furthermore, we investigated this phenomenon in another cognition-related brain 349 

region, the prefrontal cortex. In contrast to the hippocampus, no effect of age or prebiotic 350 

supplementation on Ccl2 and Tnf gene expression was found (Supplementary Figure S4), suggesting a 351 

non-universal effect of prebiotic supplementation on cytokine expression across brain regions. 352 

 353 
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3.4 Prebiotic intervention improved learning and reduced anxiety-like behaviour in young adult 354 

mice 355 

To assess whether prebiotic intervention improves spatial learning and memory, mice were trained 356 

over five consecutive days to find a hidden platform in the Morris water maze (MWM). Middle-aged 357 

mice displayed an impairment in learning (F (1, 35) = 8.653, p=0.006; Figure 3a). However, prebiotic 358 

supplementation modulated learning (F (1, 35) = 10.252, p=0.003), albeit, the improvement was only 359 

evident in young adult mice (F (1, 18) = 10.897, p=0.004). We did not identify an interaction between 360 

age and prebiotic supplementation (F (1, 35) = 2.073, p=0.159) suggesting that the prebiotic effects 361 

were specific to young adult mice. Although, the average between day four to five is visually 362 

different, both days are not statistically different from each other (p=0.19) and mostly explained by a 363 

much greater variation compared to day four. Similarly, area-under-the-curve (AUC) analysis 364 

confirmed the improved learning in prebiotic-treated young mice (p=0.005). Both, age (F (1, 34) = 365 

13.10, p=0.001) and prebiotic supplementation (F (1, 34) = 12.89, p=0.001) had a modulatory impact on 366 

spatial learning. To assess spatial long-term memory, a probe trial was performed on day six. A trend 367 

towards decreased time spent in the target quadrant with age (F (1, 35) = 3.442, p=0.072) was 368 

observed, however, no improvement by prebiotic supplementation was found (Figure 3a). Neither 369 

age or prebiotic exposure affected swim speed, or total distance respectively (data not shown). 370 

We further tested the effect on short-term memory by assessing spontaneous alternation behaviour 371 

in the Y-maze. Middle-aged mice showed a decrease in spontaneous alternations (F (1, 35) = 10.66, 372 

p=0.003) and total number of alternations (F (1, 35) = 7.986, p=0.008; Figure 3b) suggesting 373 

impairments in short-term memory. 374 

Next, we tested if prebiotic supplementation can modulate fear-dependent learning and memory. 375 

For this, mice were tested in a fear conditioning task (Figure 3c). On day one, mice were conditioned 376 

to three cued-shock pairings with a variable inter-pairing interval. Middle-aged mice displayed an 377 

impaired acquisition (F (1, 36) = 4.842, p=0.034, Figure 3c). 24h later, CS recall and extinction learning 378 

were assessed. Middle-aged mice showed increased freezing during habituation to the new context 379 

(F (1, 35) = 6.702, p=0.014) suggesting increased anxiety-like behaviour. Although statistically not 380 

significant, the changes in extinction in the prebiotic-treated young adult mice compared to the 381 

other groups are explained by the reduced freezing across the cue-shock pairings during acquisition. 382 

Similarly, to deficiencies in acquisition, middle-aged mice showed impairments in extinction learning 383 

(F (1, 36) = 4.898, p=0.034). In contrast, no impact of age nor of prebiotic supplementation on context 384 

recall was found (Figure 3c). 385 

Next, we analysed anxiety-like behaviour in the elevated plus maze and the open field, as changes in 386 

anxiety levels are known to affect cognitive performance. Overall, middle-aged mice displayed 387 
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increased anxiety-like behaviour, as shown by less time spent in the aversive open arms of the 388 

elevated plus maze (F (1,33) = 18.31 p<0.001; Figure 3d), the central zone of the open field arena (F (1, 389 

34) = 7.337, p=0.011; Figure 3e) as well as decreased number of centre visits (F (1, 34) = 14.69, p<0.001). 390 

The locomotor activity was also marginally reduced in middle-aged mice (F (1,33) = 4.538, p=0.041; 391 

Figure 3c). Prebiotic supplementation did not affect anxiety levels in middle-aged mice. However, a 392 

significant increase in the time spent in the open arms of the elevated plus maze was observed in 393 

young adult prebiotic-treated mice (p=0.027). This suggests that prebiotic supplementation did have 394 

an anxiolytic-like effect, but in young animals only. The observed changes in anxiety-like behaviour, 395 

i.e. increased anxiety levels in aged mice and selective anxiolytic effect in prebiotic-treated young 396 

mice, had a similar pattern seen in the spatial recognition in the MWM. This suggests that impaired 397 

cognitive performance in middle-aged mice, as well as improved learning of prebiotic-treated young 398 

adults could may be partially mediated by changes in anxiety levels. 399 

Interestingly, learning performance in the Morris water maze correlated with the relative abundance 400 

of the Verrucomicrobiaceae family (r (38) = -0.369, p=0.023; Figure 3f); wherein the association is 401 

mainly driven by Akkermansia, the predominant genus within the Verrucomicrobiaceae (r (38) = -402 

0.323, p=0.048; Figure 3f). Moreover, we identified a significant correlation between hippocampal 403 

Ccl2 expression (as a readout of microglia activation linked to monocyte trafficking) and learning 404 

performance (AUC) in the MWM task (r (39) = 0.349, p=0.03; Figure 3g). To emphasize these 405 

correlations further, we displayed which data points relates to which group indicating that prebiotics 406 

drive these associations. 407 

 408 

3.5 Effect of age and prebiotic supplementation on gut microbiota composition and short-chain 409 

fatty acid profile in the gut 410 

Principal Component Analysis (PCA) analysis identified structural differences in microbiota across all 411 

four groups (PERMANOVA, p<0.001; Figure 4a). The composition of caecal microbiota was 412 

significantly affected by age and by prebiotic supplementation (all p<0.05, pairwise PERMANOVA). 413 

Interestingly, no interaction between age and prebiotic was observed, i.e. marked differences 414 

between middle-aged and young mice were evident in both control and prebiotic-treated groups, 415 

and prebiotic supplementation effectively shifted microbiota composition in both young adult and 416 

middle-aged animals.  417 

When we looked at structural properties of microbial communities at the genus level, we observed 418 

multiple changes in the relative abundance of individual bacterial taxa (Figure 4b). In particular, 419 

middle-aged mice displayed an increase in Clostridum sensu stricto 1, Delftia, Salmonella, 420 

Enterococcus, Turibacter (q < 0.1).  In contrast, Parabacteroides (q < 0.01) was decreased in middle-421 
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aged control mice. Interestingly, prebiotic supplementation not only increased the abundance of 422 

Bifidobacterium in young adult but also middle-aged mice (q < 0.1 and q < 0.01, respectively). In 423 

contrast, Akkermansia was only increased in middle-aged prebiotic-treated mice (q < 0.1). Moreover, 424 

prebiotic supplementation increased the abundance of Prevotellaceae UCG-001 and Bacteroides not 425 

only in young adult mice but even more pronounced in middle-aged mice (q < 0.01, respectively), 426 

while Lactobacillus and Roseburia were decreased in prebiotic-treated middle-aged mice (q < 0.1). 427 

The Chao1 index was increased in middle-aged compared to young adult control mice, indicating an 428 

increase in overall richness of bacterial species associated with age (p=0.028; Kruskal-Wallis post hoc 429 

Dunn’s; Figure 4c). However, the Shannon and the Simpson indices, which take into account the 430 

evenness of species abundance, were not affected by age but were reduced following prebiotic 431 

supplementation in young adult mice (p=0.010 and p=0.016, respectively). This suggest that prebiotic 432 

supplementation favoured the selective expansion of certain bacterial taxa in young adult animals 433 

only. 434 

To identify if changes in gut microbiota composition correlated with faecal metabolomics, we utilized 435 

Hierarchical All-against-All significance testing (HAllA). Among others, HAllA identified a negative 436 

association between the relative abundance of Akkermansia, which was significantly over-437 

represented in prebiotic-treated middle-aged mice, and several amino acids including leucine (ρ=-438 

0.63, p<0.001, FDR corrected, Figure 4d), valine and isoleucine (ρ=-0.60, p<0.001, respectively). 439 

Similarly, between Bifidobacterium, which was significantly over-represented in prebiotic-treated 440 

young and middle-aged mice, and the respective amino acids (ρ=-0.55, p=0.001). Prebiotic 441 

supplementation increased caecum weight (F (1, 35) = 88.95, p<0.001; Supplementary Figure S6b) in 442 

both young adult and middle-aged mice. Among short-chain fatty acids (SCFAs), caecal butyrate, 443 

propionate and valerate levels were affected by either age or prebiotic supplementation. No effect 444 

was found on acetate and total-SCFA levels (data not shown). Middle-aged mice exhibited higher 445 

butyrate levels than young mice (F (1, 35) = 16.74, p<0.001; Figure S6c). Prebiotic supplementation 446 

increased propionate independent of age (F (1, 35) = 8.75, p<0.001), with a more pronounced increase 447 

seen in middle-aged mice (p=0.035). While valerate was increased in middle-aged compared to 448 

young controls (p<0.001), prebiotic supplementation reduced valerate in both, young adult (p=0.021) 449 

and middle-aged mice (p<0.001).  450 
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4. Discussion 451 

There is a growing appreciation of the role of the gut microbiota in regulating neuroinflammatory 452 

responses. The middle-aged brain remains completely understudied regarding this interrelationship. 453 

Our data show that middle age is already associated with pervasive alterations in systemic and brain 454 

immunity. Targeting the gut microbiome by prebiotic intervention (FOS-Inulin) reversed many of 455 

these age-associated neuroinflammatory impairments.  456 

 457 

To our knowledge, this is the first study demonstrating the presence of a strong basal and stress-458 

induced (neuro-) inflammatory profile in middle-aged mice (11 months old), although an exaggerated 459 

inflammatory response has been previously reported in middle-aged rodents following immune 460 

stimulation (53-55). Moreover, our study implicates the gut microbiome in such processes as dietary 461 

targeting with prebiotic supplementation counteracted stress-induced peripheral immune cell 462 

activation. Following acute stress, we investigated a subtype of neutrophils that express MHC-II, 463 

which plays a role in priming of T-cells and therefore provides a link between the innate and the 464 

adaptive immune system (56, 57). Further research is warranted on the functional characterization of 465 

these neutrophils and their impact on the brain in ageing particularly following acute stress. 466 

 467 

The gut microbiome has emerged as being essential for brain health in ageing and as a key player in 468 

the bidirectional communication across the gut–brain axis (58, 59). Previous research points out a 469 

role of aged microbiota in driving systemic immunity (26, 27). In addition, key metabolites which are 470 

produced by the gut microbiota following i.e. a prebiotic-enriched diet such as short-chain fatty acids 471 

(SCFAs) has been implicated in alleviating stress-induced alteration (46). We show that prebiotic 472 

supplementation is capable of dampening age-associated systemic inflammation, particularly TNFα, 473 

following stimulation with Concanavalin A. As ConA stimulates both, T- and NK-cells, it seems that 474 

both cell types are in particular sensitive to prebiotic treatment in middle-aged mice compared to 475 

LPS stimulation which stimulates a broad range of immune cells. We previously showed that 476 

prebiotic treatment rescues immune alteration induced by chronic psychosocial stress following 477 

ConA stimulation exclusively (32) suggesting that prebiotics might have specific effects on immune 478 

priming on T- and NK-cells systemically, and may influence brain function and behaviour which 479 

warrants further research. Recent research showed a role of T-cell activation in regulating behaviour, 480 

anxiety-like and fear-related behaviour (60), cognition (61) and sociability (62), which may possibly 481 

be influenced by the gut microbiota. A critical factor for T-cell activation is the availability of specific 482 

amino acids such as leucine (63). By using HAIIA, we identified strong correlations between prebiotic-483 

driven changes in gut microbiota, Bifidobacterium and Akkermansia with several amino acids in 484 

faecal water, including valine, leucine and isoleucine amongst others. In fact the gut microbiome has 485 
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been implicated in regulating amino acid availability (64). Interestingly, a recent study in a Chinese 486 

cohort of middle-aged to elderly individuals found a correlation between Akkermansia and CD8+ as 487 

well as CD4+ T cells (65).  488 

 489 

A bidirectional relationship between the brain and the peripheral immune system exists (66), which 490 

can promote neuroinflammation and exacerbate neuronal damage in the hippocampus. Recent 491 

studies suggest a constant influx of immune cells, inflammatory monocytes (Ly-6Chi-monocytes), into 492 

the brain even under steady-state conditions (67-69). Previously these cells were thought to only 493 

play a role in inflammatory conditions such as following viral infection and associated encephalitis 494 

(70) or after social defeat stress (71, 72). However, recent research suggests that trafficking of Ly-495 

6Chi-monocytes into the brain is crucial for brain plasticity and influence cognitive behaviour (67). 496 

This was mediated by the gut microbiome as antibiotic depletion and subsequent reconstitution of 497 

the gut microbiome restored the antibiotic-induced deficits in brain plasticity and cognitive 498 

behaviour (67). To characterize if these Ly-6Chi-monocytes also affect the brain in middle-aged mice 499 

before animals were tested behaviourally, we assessed their neuroimmune status in cohort two. 500 

Here we show that middle-aged mice exhibited an increased influx of inflammatory monocytes into 501 

the brain. Following the determination of their neuroimmunity baseline response, we then subjected 502 

the mice to the behavioural assessment. To correlate the changes in behaviour with specific 503 

neuroimmune markers which link monocyte trafficking to microglia activation, we subsequently 504 

analysed targets in the brain at the end of the study. Ly-6Chi-monocytes are recruited to the brain in a 505 

CCL2-dependent manner (70, 72, 73). We show that Ccl2 is specifically upregulated in the 506 

hippocampus of middle-aged mice, but not present following prebiotic supplementation suggesting 507 

that this is may be a potential pathway in which gut-microbiota-immune-brain communication can 508 

affect brain function and behavioural traits in this key region for learning and memory. However, 509 

despite these changes in neuro-immunity, we have not identified any overt cognitive impairments in 510 

middle-aged control mice. Although it is worth noting that the dynamics of hippocampal Ccl2 511 

expression correlated with cognitive behaviour assessed in the Morris water maze paradigm. 512 

Interestingly, prebiotic-driven changes in the neuroinflammatory profile are not universal across 513 

brain regions as there were no changes in the prefrontal cortex. This is in line with previous findings 514 

that there are marked regional differences in microglia activation across brain regions (74). 515 

Interestingly, we found that middle-aged mice exhibited increased microglia activation under basal 516 

conditions before animals were behaviourally assessed. This subset of inflammatory activated 517 

microglia expressed Ly-6C (73, 75, 76) and have been suggested to arise from Ly-6Chi-monocytes (70). 518 

Recent work has demonstrated a modulatory effect of the gut microbiota on microglia function (77-519 

79). Of note, germ-free mice exhibited deficits in microglia maturation and function while addition of 520 
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SCFAs rescued these deficits. However, the short-chain fatty acid receptor FFAR2 is actually not 521 

present on microglia (77), but on monocytes (80). Future studies are needed to investigate the 522 

mechanistic relationship between these receptors and prebiotic-induced effects on microglia 523 

activation across the lifespan.  524 

 525 

Microglia activation has been shown to alter cognitive and anxiety-like behaviour (17, 81). Here, we 526 

show that prebiotic supplementation improves anxiety-like behaviour and cognition in young adult 527 

mice. This is in accordance with previous studies which targeted the gut microbiome by dietary 528 

interventions in rodents (32, 38, 82-84). Interestingly, studies using a probiotic mix (VSL#3) failed to 529 

show improvements in anxiety-related behaviour (85) suggesting that strain selection is very 530 

important and that prebiotics might be a better approach to improve behaviour. Moreover, we show 531 

that middle-aged control mice showed a decreased number of centre visits in the open field 532 

suggesting increased anxiety-like behaviour (7), which may have influenced cognitive performance 533 

(11). Middle-aged mice displayed mild cognitive impairments, which were not present following 534 

prebiotic supplementation. It is worth noting that neuroinflammation at this stage was not significant 535 

enough to manifest in major cognitive impairments. However, our data imply that prebiotic 536 

intervention may have some potential to counteract cognitive decline. As the impact of prebiotic 537 

supplementation on behaviour, particularly the cognitive tests, is clearly stronger in adult subjects, 538 

the data suggests that prebiotics may be less effective as we age. On the other side, a much longer 539 

exposure to prebiotics might be needed to achieve significant effects suggesting that 540 

supplementation may have to start earlier to be effectively preventative before alterations in the 541 

brain occur. This is particularly evident for the behaviour. On the other side, particularly in light of 542 

the stress-induced peripheral immune data, the system may need to be challenged to potentially 543 

exert negative behavioural effects (86) before prebiotic supplementation can act beneficially (32). 544 

Future studies focused on long-term effects of this mid-life microbiota manipulation are now 545 

warranted.  546 

 547 

We hypothesized that the dysregulated gut-microbiome-brain axis in middle-aged mice can be 548 

ameliorated by targeting the gut microbiome with prebiotics known to promote beneficial bacteria, 549 

like Bifidobacteria. It was previously shown that the prebiotic, inulin, can alter the microbiome 550 

composition under pathophysiological conditions such as following high-fat diet (87) or in extreme 551 

ageing (33); however, its effects remained unexplored in healthy ageing/middle age. In fact, by 552 

utilizing FOS-Inulin, we show a profound yet differential alteration of the gut microbiota composition 553 

in both young adult but also in middle-aged mice. This was concomitant with a change in short-chain 554 
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fatty acids with propionate increased in prebiotic-treated middle-aged mice while prebiotic 555 

supplementation decreased valerate in both, young adult and middle-aged mice.  556 

 557 

Previous research has shown that diet-driven modulation of the gut microbiota by administration of 558 

prebiotics can modulate peripheral immune response in the serum of naïve mice (32) and we 559 

recently showed that SCFAs attenuate the effect of chronic stress (46). It was shown previously that 560 

propionate can inhibit the production of pro-inflammatory cytokines (88). Moreover, in-vitro 561 

experiments suggests pro-inflammatory capabilities of valerate while it enhanced LPS-induced 562 

inflammatory response in a murine N9 microglial cell line (89). Although the effects on SCFA levels is 563 

relatively modest it is possible that some of the anti-inflammatory effects of prebiotic 564 

supplementation might have been mediated by the changes observed in SCFA concentrations. 565 

 566 

We have previously reported a shift in microbial composition by prebiotics in adult mice (32) but the 567 

impact on middle-aged remained unexplored. Interestingly, we found an increase in species richness 568 

in middle-aged mice, which is in line with previous findings in rodents (22) and humans (90). In fact, it 569 

has been shown in humans that the gut microbiota remarkably changes with ageing not only in 570 

diversity but also representation of specific taxa (91-93). 571 

 572 

Prebiotic supplementation increased the relative abundance of Bifidobacterium, which is in 573 

accordance with previous studies in humans (94). Interestingly, Bifidobacteria has been reported to 574 

be reduced in the elderly (95). In addition, supplementation increased the relative abundance of 575 

Akkermansia in middle-aged mice suggesting that prebiotics might promote a young microbiota 576 

phenotype, compared to a previous study where Akkermansia abundance strongly declined in 12- vs. 577 

4-months-old control mice (23). When transferring faecal matter from old mice to young germ-free 578 

(GF) mice, Akkermansia was lower abundant in those recipients than in GF mice that received young 579 

microbiota (26). Interestingly, Akkermansia has been associated with immune modulation (26), has 580 

shown to protect against inflammation and promote gut health in diet-induced obesity (96), and 581 

restored intestinal permeability and subsequent immunomodulation in aged mice (97). Moreover, 582 

Akkermansia has been found to be enriched in super-centenarians (24). Together with 583 

Bifidobacterium, Akkermansia are claimed as longevity-adapted and possibly health-promoting taxa 584 

and therefore might be involved in healthy ageing (24). It is worth noting that learning performance 585 

strongly correlated with the abundance of Akkermansia suggesting a link between microbiota and 586 

cognitive performance. Future studies are warranted to investigate the potential beneficial impact of 587 

Akkermansia on cognitive performance and healthy ageing. 588 

 589 
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It is now clear that the microbiota-gut-brain axis communicates through multiple channels (98). Thus 590 

targeting the gut microbiota as we have done with a prebiotic, can affect the brain and subsequent 591 

behaviour through a variety of potential pathways including SCFAs, amino acids and immune 592 

pathways. All of these are interconnected and future studies are needed to better deconvolve the 593 

primacy of such pathways in eliciting the beneficial effects of inulin. 594 

 595 

In conclusion, the present study identified a strong neuroimmune phenotype in middle-aged mice. 596 

Moreover, prebiotic-driven changes in gut microbiota composition are beneficial for host health and 597 

associated well-being in middle-aged mice. Prebiotic supplementation is capable of altering age-598 

induced changes in brain homeostasis, particularly alleviation of microglia activation, suggesting a 599 

preventative strategy towards preservation of cognitive health in ageing. Taken together, the 600 

modulatory effects of prebiotic supplementation on monocyte infiltration into the brain and 601 

accompanied regulation of age-related microglia activation highlight a potential pathway by which 602 

prebiotics can modulate peripheral immune response and alter neuroinflammation in ageing. Our 603 

data thus suggest a novel strategy for the amelioration of age-related neuroinflammatory 604 

pathologies and brain function.  605 
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Figure Legends 627 

Figure 1. Prebiotic supplementation reversed stress-induced immune priming in middle-aged mice. 628 

(a) MHC-II+ neutrophils at baseline and 2h after acute stress. (b) Plasma Corticosterone (Cort) 629 

response curve at baseline, immediately before exposure to acute stress, and 15, 45 and 120 min 630 

after exposure to acute stress. (c) Plasma corticosterone at baseline. (d) Area-under-the-curve (AUC) 631 

of corticosterone response. Mean ± SEM. (a) n = 9-10, (b-d) n = 7-10. (a) Kruskal-Wallis post hoc 632 

Dunn’s, (b) two-way-repeated measurement (RM)-ANOVA post hoc Sidak, (c-d) two-way ANOVA post 633 

hoc Holm-Sidak (Cort T0, Cort Area-under-the-curve). vs. control young adult * p < 0.05, ** p < 0.01, 634 

*** p < 0.001, vs. control middle-aged # p < 0.05, ## p < 0.01, vs. prebiotic middle-aged vs prebiotic 635 

adult $ < 0.05. 636 

 637 

Figure 2. Middle-aged mice exhibited elevated infiltration of Ly-6Chi monocytes into the brain and 638 

increased microglia activation; the phenotype was reversed by prebiotic supplementation. (a) 639 

Monocyte infiltration in the brain. (b) Microglia expression pattern in the brain. (c-d) Pro-640 

inflammatory cytokine expression in the hippocampus. Mean ± SEM. (a-b) n = 14-16 (young adult), n 641 

= 8-10 (middle-aged), (c-d) n = 10 (young adult), n = 9-10 (middle-aged). (a-d) two-way ANOVA post 642 

hoc Holm-Sidak.  vs. control young adult * p < 0.05, *** p < 0.001, vs. control middle-aged ## p < 643 

0.01, ### p < 0.001. 644 

 645 

Figure 3. Prebiotic supplementation improved learning and reduced anxiety-like behaviour in 646 

young adult mice. (a) Learning and memory in Morris water maze (MWM). Latency-to-find platform 647 

over five training days. Summarized as area-under-the-curve (AUC), as well as the probe trial 24h 648 

after the last training day is depicted. (b) Short-term memory assessed by Spontaneous Alternation 649 

Behaviour (Y-Maze). (c) Fear Conditioning: Conditioning (Acquisition, day one) including AUC. 650 

Extinction (day two) – two consecutive cue presentations were depicted as one trial block. AUC for 651 

trial block 1-20 is depicted. Context recall (day three). (d) Time spent in open arms in elevated-plus 652 

maze. (e) Behaviour in open field. (f) Spearman correlation analysis of learning efficacy in Morris 653 

water maze (AUC) vs. relative abundance of bacteria from the Verrucomicrobiaceae family and 654 

Akkermansia genus (g) Spearman correlation learning in Morris water maze vs. hippocampal Ccl2 655 

expression. Mean ± SEM. n = 9-10. (a – MWM – latency-to-find-platform, c – acquisition day one) 656 

two-way RM ANOVA post hoc Sidak, (a-e) two-way ANOVA post hoc Holm-Sidak. vs. control young 657 

adult * p < 0.05, ** p < 0.01, *** p < 0.001, vs. control middle-aged # p < 0.05, prebiotic middle-aged 658 

vs prebiotic adult: $ < 0.05, $$ < 0.01, $$$ p < 0.001.  659 

 660 
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Figure 4. Middle age and prebiotic treatment have distinct effects on the gut microbiota 661 

composition accompanied with changes in faecal metabolomic profile. (a) PCA plot (b) Heat map 662 

representing differentially abundant taxa (genus with higher hierarchy family name), which reach a 663 

Benjamini-Hochberg FDR q value < 0.2 at least once. Asterisks in the heat map represent the 664 

following q values: * <0.1, ** < 0.01, *** < 0.001. (c) Alpha-diversity Indices (Chao1, Simpson, 665 

Shannon). (d) Hierarchical All-against-All significance testing (HAllA) representing the 100 strongest 666 

significant correlations (q<0.2) between gut microbiota composition and faecal metabolomics. 667 

Numbers (1-100) indicate the strongest correlations in a descendant order. n = 9-10. (a) 668 

PERMANOVA, followed by pairwise PERMANOVA post hoc Benjamini-Hochberg, (b) Mann-Whitney U 669 

test post hoc Benjamini-Hochberg (c) Kruskal-Wallis post hoc Dunn's, (d) Spearman post hoc 670 

Benjamini-Hochberg.   671 
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