
Title Heterogeneous resource management and orchestration in cloud
environments

Authors Dong, Dapeng;Xiong, Huanhuan;González-Castañé, Gabriel;Stack,
Paul;Morrison, John P.

Publication date 2018-07-14

Original Citation Dong, D., Xiong, H., Castañé, G. G., Stack, P. and Morrison, J. P.
(2018) 'Heterogeneous resource management and orchestration
in cloud environments', in Ferguson D., Muñoz V., Cardoso J.,
Helfert M., Pahl C. (eds.) Cloud Computing and Service Science:
7th International Conference, CLOSER 2017, Porto, Portugal,
April 24–26, 2017. Communications in Computer and Information
Science, vol 864. Cham: Springer International Publishing, pp.
61-80. doi:10.1007/978-3-319-94959-8_4

Type of publication Conference item

Link to publisher's
version

10.1007/978-3-319-94959-8_4

Rights © 2018, Springer International Publishing AG, part of Springer
Nature. The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-94959-8_4

Download date 2024-04-25 12:55:20

Item downloaded
from

https://hdl.handle.net/10468/6621

https://hdl.handle.net/10468/6621

Heterogeneous Resource Management and
Orchestration in Cloud Environments

Dapeng Dong, Huanhuan Xiong, Gabriel G. Castañé, Paul Stack, and John P.
Morrison

Department of Computer Science, University College Cork
T12 YN60, Cork, Ireland,

{d.dong, h.xiong, g.castane, p.stack, j.morrison}@cs.ucc.ie

Abstract. The addition of heterogeneous resources to conventional ho-
mogeneous cloud environments has enabled clouds to embrace a wide
variety of new applications that heretofore were traditionally confined
to specialized computing environments. The enhanced and extended fea-
tures offered by heterogeneous resources enable service offerings that pose
challenges to traditional cloud management throughout the entire service
delivery stack. The accelerated uptake of heterogeneous resources is exac-
erbating these challenges, which no longer can be efficiently addressed in
an ad-hoc manner. Therefore, an integrated approach to heterogeneous
resource management that is cognizant of the unique advantages of dif-
ferent hardware types is needed. In this paper, two candidate approaches,
a platform-integration scheme and a server-integration scheme, are intro-
duced to address this management challenge. The platform-integration
scheme integrates and coordinates the management of various coexisting
resource managers and associated environments each of which may be
managing resources of different types using the most appropriate resource
abstraction method. In contrast, the server-integration scheme provides
a single, lower level, fine-grained management mechanism across all hard-
ware resource types. Ultimately, the goal of each schemes is to provide a
unified view of resources from a capability perspective to consumers.

Keywords: architecture, heterogeneous resource, platform integration,
cloud, HPC

1 Introduction

The employment of various advanced technologies, such as virtualization and
more recently, containerization, for managing and organizing resources in cloud
environments has yielded several distinct system features, such as resource elas-
ticity, system scalability, application load-balancing, configuration flexibility,
cost-effective usage models and rapid deployment. Moreover, recent evidence
shows an increased demand for support for High Performance Computing (HPC)
applications in the cloud. For example, weather forecasting, medical imaging and
computational fluid dynamics, that have traditionally been confined to cluster

2

environments are now being migrated to the cloud. To effectively support ap-
plications of this type and to demonstrate that comparable performance can
be achieved in the cloud, specialized hardware, such as, Graphical Processing
Units (GPUs), Many-Integrated-Core processors (MICs) and Data-Flow Engines
(DFEs), and dedicated networking configurations, including 40 Gb/s Ethernet
and InfiniBand, are being incorporated into the cloud infrastructure. Conse-
quently, cloud service providers have begun to offer specialized services, for
example, Amazon EC2 Cluster Compute, EC2 F1 Instances [1] and Microsoft
FPGA-based cloud [27] are all designed to support these high-end applications.
The introduction of a wide range of hardware and associated configurations
to conventional homogeneous cloud environments is introducing heterogeneity
and associated challenges for effectively integrating and efficiently managing
heterogeneous resources and the heterogeneity arising from new hardware ar-
chitectures, diverse computational abilities, diverse power usage patterns, mixed
operating system architectures and specialized software libraries. This evolution
is having a significant impact on the transitional cloud architectures, and a re-
consideration of the organization of the physical hardware resources in the cloud
infrastructure layer, the resource management and scheduling approaches in the
cloud management layer, and the service orchestration and resource representa-
tion in service delivery layer is becoming necessary.

Several cloud management platforms exist for managing virtualized envi-
ronments (e.g., OpenStack Nova [20]), container environments (e.g., Kuber-
netes [11], Mesos [8] and Docker Swarm [15] [31]), containers in virtualized
environments (e.g., Magnum [22]), bare metal servers (e.g., Ironic [21]). These
platforms have sufficiently matured and have begun to find practical applica-
tions in many public and private clouds. Traditional clouds typically support
only one of these platforms and this limits the structure of the cloud environ-
ment in terms of hardware diversity. For instance, in a virtualized environment,
only certain models and types of computation accelerators (e.g., GPUs) can be
accessed by virtual machines with additional configurations on both the un-
derlying hardware (e.g., CPU and motherboard) and software (e.g., Hypervisor
and host operating system). In contrast, containers can directly use many of
the existing computation accelerators, but have limited features, especially for
networking where advanced firewall and load-balancing are noticeably absent.
Thus, having multiple abstraction methods simultaneously available in a single
cloud deployment [4] is desirable. If a cloud provider supports more than one
of these platforms simultaneously, each is provided in isolation from the rest
in a manner that effectively partitions the cloud resources among them, thus,
creating a situation where those resources can not be shared across platforms.

Without doubt, heterogeneity complicates resource management and resource
allocation. In current homogeneous environments, resource allocation is typi-
cally formulated using multi-objective optimization equations involving resource
availability (e.g., CPU cores, system memory and storage space) and system
requirements (e.g., host-affinity and load-balancing). To make decisions in a
timely fashion, relaxed algorithms (meta-heuristics or greedy algorithms) are

3

often used. Since heterogeneity offers considerably more features, these calcula-
tions become consequently more complex. Improved organization at the system
level offers a potential pathway for efficient resource allocation. However, this
approach assumes the existence of a unified platform for managing heteroge-
neous resources. In this paper, two implementation schemes for such a unified
platform are introduced. They are referred to as a platform-integration scheme
and a server-integration scheme.

This paper is organized as follows. A brief introduction to the background
of this work and a consideration of related work are presented in Section 2.
The proposed unified platform schemes are outlined in Section 3, and a use case
application demonstrating the platform-integration scheme is given in Section 4.
Section 5 concludes the paper by highlighting the main ideas of this research
and by indicating some potentially fruitful future directions.

2 Background and Related Work

The cloud computing paradigm has shifted the focus of data center manage-
ment from providing bare-metal resources to providing virtual resources to the
end user. These advantages have long been demonstrated in production cloud
environments, such as the Amazon EC2, the Microsoft Azure, and the Google
Cloud Platforms. Virtualization enhances cloud management by enabling flex-
ible resource configuration and deployment, efficient use of resources, and by
offering opportunities for reducing power consumption.

Virtualization and containerization are the two dominant technologies used
for managing and abstracting computational resources. Virtualization is gener-
ally achieved through abstracting hardware components into logical objects. This
abstraction can be realized by hardware emulation and/or by time sharing of
a hardware component between multiple processes. A software component that
provides virtualization functions is commonly referred to as a hypervisor, histor-
ically named as a Virtual Machine Manager (VMM). A hypervisor is responsible
for providing instances of virtual environments identical to the underlying phys-
ical server with minimum performance cost, while retaining full control of the
physical resources [24]. It allows for architecturally diverse operating systems
to coexist and to simultaneously run on the same physical server. A complete
operating system can be installed and run in a virtual environment exactly the
same way that it runs on a physical server. This instance of the operating sys-
tem is often known as a guest Virtual Machine (VM) [29]. All hardware resource
related operations, which are initiated from guest VMs, are under the control
of the hypervisor, and the hypervisor executes these operations on the actual
hardware on behalf of each guest VM.

Containerization is another type of virtualization. Technically, containeriza-
tion technology provides isolated application execution environments at the op-
erating system level. It uses Linux native functions, mainly the control groups
(cgroups) and the namespace, to isolate applications/processes. Because contain-
ers do not use hypervisor-like middleware, multiple container applications can

4

share common libraries and hardware drivers installed on the host operating
system. This also makes a container application lightweight and easier for it to
access specialized hardware, such as GPUs and MICs. On the other hand, a con-
tainer application is less secure because of its shared environment and offers less
functionality; it is essentially an application wrapping mechanism. In practical
deployments, selecting either virtualization or containerization technologies for
managing a cloud environment depends on the business goals set out by Cloud
Service Provider (CSP). From an architecture design perspective, containers are
suitable for running applications, whereas VMs are suitable for building virtual
Information Technology (IT) infrastructures.

In a cloud environment, each virtualization or containerization technology
provides desired features such as elasticity, scalability and high-availability. This
requires a hyper-level management framework that can coordinate virtual re-
sources across physical servers at large scale. The following sections review the
architectural design of several widely adopted Infrastructure-as-a-Service (IaaS)
management frameworks focusing on computational resource management.

2.1 Virtualization Management Frameworks

OpenStack [20] is an open-source cloud platform focusing on the management of
virtualized environments. In particular, for managing computational resources,
OpenStack uses a front-end API server for receiving and responding to requests
for resources. Allocating a computational resource will require various other com-
ponents be associated with it, such as, networking, storage and security groups.
This can be a very complex process when multiple simultaneous requests, with
different configurations trying to acquire globally available resources are made.
In order to reduce this complexity of this process, requests are forwarded to me-
diator service, known as the nova-conductor. The nova-conductor coordinates
various components (e.g., networking, image, storage, and compute) for each
request, and multiple instances of the nova-conductor can be created to deal
with a high-volume of requests. The nova-conductor first uses a scheduler ser-
vice (the nova-scheduler) to locate a group of potential physical server(s) that
meet specified requirements, specified requirements, such as, the number of CPU
cores, the size of memory, and the required storage space. Subsequently, those
candidate physical servers are further filtered, in a iterative manner, based on
the preferences and criteria (also know as weights) specified by the user and/or
the CSP. The requested resources will subsequently be deployed by the nova-
compute service (by calling Hypervisor specific APIs) on the most appropriate
physical servers [19].

OpenNebula [6] provisions VMs in a similar manner to OpenStack. It uses
a front-end service to deal with requests and resource management. A request
for VMs is first formulated into a VM template, this template is forwarded to
a scheduler service [17], which selects available resources based on the system
requirements and/or user preferences, such as, Packing, Striping and Load-aware
polices [18]. The front-end service coordinates VM deployment on the selected
server(s) by calling Hypervisor specific APIs.

5

Nimbus [16] is another IaaS management framework for scientific users. It
takes a simpler approach for managing resources than those mentioned above.
Architecturally, Nimbus consists of three main core components including a Nim-
bus IaaS central service, a storage service (Cumulus) and VMM control services,
running on each server basis. The Nimbus IaaS central service acts as a middle-
ware between cloud end-users and cloud resources. From an end-user perspective,
the central service is the server that deals with requests for resources; from a CSP
point of view, the central service is a client that initiates requests for resource de-
ployment to the VMM control service(s) on the selected server(s). Thus, Nimbus
implements a client-server model. The client-server model greatly simplifies the
Nimbus architecture and provides a robust platform. On the other hand, this
model may limit scalability. Nevertheless, Nimbus supports cloud federations
that can be formed by different cloud platforms and this is achieved through a
centralized account management service [10].

2.2 Containerization Management Frameworks

Borg [32] is a former proprietary Google platform used for managing large-scale
container environments. Borg manages tens of thousands of servers simultane-
ously. The Borg architecture consists of three main components including Borg
masters, job schedulers, and Borglet agents. A typical Borg instance consists of
a single Borg master, a single job scheduler and multiple Borglet agents. The
Borg master is the central point for managing and scheduling jobs and requests.
A Borg master and job scheduler are replicated in several copies for purposes of
high-availability, however, only a single Borg master and a single job scheduler
are active in the system at any one time. The Borg master is responsible for deal-
ing with requests for deploying jobs and the job scheduler searches for suitable
servers to host tasks. The actual deployment of the job is carried out by a Borglet
agent on the selected server (multiple tasks on the same server are separated and
distinguished by the Linux kernel functions cgroups and namespace).

Borg presents a centralized management approach. This also requires Borg
masters and job schedulers (the original and all replicas used for high-availability)
to be large enough to scale out as required. The Borg job scheduler may poten-
tially manage a very high volume of jobs simultaneously, this has made Borg
more suitable for long-running services and batch jobs, since those job profiles
reduce the load on the job scheduler.

Omega [28] is an enhancement of Borg system’s scheduler architecture. It
employs multiple schedulers working in parallel to speed up resource allocation
and job scheduling. Each scheduler maintains the complete state of all available
resources and decisions are made by each scheduler, independently. Conflicting
resource allocations will be determined in resource deployment phase, and one
or both of the conflicting requests will be returned to their originating scheduler
for rescheduling. Kubernetes [26] [3] is the most recent evolution of Google’s
data center management technology. Architecturally, Kubernetes implements a
master-worker model. The master runs an API service for dealing with requests,

6

a cluster state maintenance service (Etcd) for tracking data center resource in-
formation, and a scheduler for locating resources. On each computational node,
a local container management service (kubelet) is used for managing container
life-cycles and a network proxy service (Proxy) is used for establishing inter- and
intra-communications between containers and the Internet. Notably, containers
are not managed individually. A collection of containers is organized together
and managed as a single entity. This is commonly referred to as a Pod. The con-
cepts of the Pod reflects the service management philosophy that a large cloud
application should be decomposed into a set of self-contained services; each ser-
vice carries a single function per container basis; and all services belonging to
an application should be managed together. Additionally, the use of Pods also
makes Kubernetes more scalable.

Docker Swarm [15] [31] mimics Pod concept. It provides a flexible and easy
way for building virtual clusters on demand in which cluster members can be
distributed across physical servers. Members of a swarm cluster are connected
through a designated overlay network. A swarm is conceptually a virtual cluster.
Common services or services belong to the same application, can be managed
and grouped into the same swarm. Architecturally, a swarm consists of a swarm
master and swarm workers. Any available computational nodes in a data center
can freely join and leave a swarm, and provides the basis for application/service
elasticity.

Mesos [8] is another management platform that is based on a master/worker
architecture. Mesos enables multiple different scheduling frameworks to manage
the same environment. This is achieved by employing a coordinator service that
assigns controls on resources to a single scheduler during its decision making
processes. This can potentially lead to an inefficient use of resources when the
request is lightweight and available resources are significantly large.

Alibaba Inc. has created the Fuxi [35] platform for supporting its large scale
world-wide e-commerce business. The Fuxi architecture design focuses on scala-
bility and fault tolerance. It consists of three main components including a Fux-
iMaster, a FuxiAgent and an ApplicationMaster on each physical server. The
FuxiMaster is responsible for receiving and responding to job requests and for
locating a FuxiAgent suitable for each individual job. The designated FuxiAgent
spawns an ApplicationMaster to handle the job and potentially split the job into
smaller tasks depending on the job type. The ApplicationMaster then initiates
requests to the FuxiMaster for resources. When the FuxiMaster returns a list of
FuxiAgents that contain sufficient resources for the job, the ApplicationMaster
starts issuing commands directly to the selected FuxiAgents to start the job.
In comparison with common container technologies that use cgroups to control
resource assignment and kernel namespace for isolating task execution environ-
ments, Fuxi continuous to use cgroups to control resource assignment, but makes
use of independent sandboxes for isolating task execution environments.

7

2.3 Bare-Metal Management Frameworks

Although virtualization and containerization are the main technologies used for
managing resources, in many situations, managing bare-metal resources are still
important. For example, provisioning data center infrastructure and providing
high-performance servers for heavily loaded database systems and specialized
computation accelerators remain an important activity.

Bare-metal server management is technically different from managing con-
tainerized and virtualized environments. Since bare-metal servers do not have
pre-installed operating systems, vendor-specific chip-level management modules
such as, Intelligent Platform Management Interface (IPMI) and Preboot Exe-
cution Environment (PXE) must be used. In general, provisioning a new server
requires the sending of a request to an API server, a controller service is then
invoked to identify a target physical server by matching user specified criteria,
such as, CPU architecture and system memory size. The controller service then
prepares for the operating system images or ramdisk to be installed on the se-
lected server and issues IPMI commands to the server for network booting and
operating system image or ramdisk installation via PXE. After the image loading
and installation processes, the status and access methods are handed to the end-
user. Ironic [21], Razor [25], and Foreman [7] are several typical implementations
of such a scheme.

In summary, modern data center management platforms still operate a client-
server model and this model continuous to scales. Architecturally, those man-
agement platforms consist of three common components including a front-end
facing API server, a coordinator service (e.g., schedulers and resource manage-
ment), and back-end agents (e.g., Hypervisors, Borglet and Kubelet). To further
improve on scalability, cloud federation can be used and is commonly imple-
mented through centralized account management mechanisms incorporated with
networking inter-routing schemes.

3 Heterogeneous Resource Integration

Existing data center management platforms typically employ a single resource
abstraction method (such as, vitalization or containerization). These are effi-
cient and effective for managing homogeneous resources. The increasing demand
for supporting versatile high-performance accelerators and high-throughput net-
work connections are changing the nature of a data center from a homogeneous
environment to one that is more heterogeneous. This poses challenges to ex-
isting data center management platforms and how they accommodate various
types of computational hardware resources. Orchestrating services and resources
with complex configurations to meet user- and/or system-specific requirements
is thus becoming increasingly more difficult. As system functions become more
versatile, the complexity of the system is also increased. However, this com-
plexity must be made transparent to end-users. Consequently this requires an
adjustment the paradigms used for delivering services. In the following sec-
tions, a blueprint-oriented service delivery model and two integration schemes

8

(a platform-integration scheme and a server-integration scheme) for managing
and unifying heterogeneous resources in cloud environments are introduced.

3.1 Service Delivery Model

To fully exploit versatile service and resource options offered by heterogeneous
resource, a careful and a considered approach to manage these resources is nec-
essary. This can be challenging for both the service provider and for the service
consumer, especially, when the components of a cloud application may require
the deployment on different types of resources. Moreover, leaving aside the diffi-
culties of working with heterogeneous hardware environment, expert knowledge
related to the deployment of cloud application components is usually required to
fully exploit these hardware resources and accelerators. Configuration complexity
and deep domain-specific knowledge should be made transparent to end-users.
Thus, an approach is taken that allows end-users to compose their tasks into a
workflow of constituent service(s). Workflows of this kind are often referred to
as blueprints.

An application blueprint can be visualized as a graph that expresses the
business logic and intra-relationships of application components. Deploying an
application blueprint effectively deploys the set of services that comprise the
application. In an homogeneous cloud, deploying a set of services results in each
being hosted by resources of a single type. This represented the state of the in-
dustry. However, in making the transition to an heterogeneous cloud a blueprint
involves assigning services to the most appropriate heterogeneous resources. De-
pending on the nature of the application and/or user preferences, a service or
a group of services can thus be assigned to the same resource or indeed to dif-
ferent resources of different types, when necessary. This advancement requires
adjusting the resource provisioning models appropriately and is addressed in
Section 3.3 and 3.4.

3.2 System Workflow

Given the blueprint-oriented service delivery model, the system workflow is
shown in Fig. 1. An application blueprint is composed by end-users and first
submitted to an API Server. The API Server is responsible for receiving and
responding to end-user requests and forward the a blueprint to an instance of
a Resource Coordinator. Many Resource Coordinators may potentially work in
parallel to load-balance large volume of requests. Each application blueprint is
processed by a single Resource Coordinator. The Resource Coordinator decom-
poses the blueprint into sub-groups of resource requests according to the resource
abstraction types. For example, a complex blueprint may consists of many ser-
vices and each of the service may require to be deployed on different types of
hardware resources. For instance, a blueprint may be described as an applica-
tion that requires front-end web servers to collect data which is subsequently
processed using accelerators, thus, the resources required for this blueprint de-
ployment may be a set of VMs running on CPUs, and a set of containers running

9

Blueprint

API Server

Resource Coordinator Resource CatalogueInformation

Locate Resources

Management Platforms

Submit

Compose

ReportResource Deploy

Return

Dispatch

Fig. 1. System workflow.

on servers having Xeon Phi co-processors. After the blueprint decomposition pro-
cess, the Resource Coordinator analyses the relationships between sub-groups
of the resource requests and makes further amendments to the blueprint. The
amendments are mainly made for realizing communications between sub-groups.
The Resource Coordinator then forwards each sub-group of resource requests to
designated Virtual Resource Partitions (VRPs) that are managed by correspond-
ing management platforms. Details about VRPs and management platforms are
given in Section 3.3, and 3.4.

3.3 The Platform-Integration Scheme

Different types of hardware resources require appropriate resource management
techniques. The mechanisms for integration heterogeneous resources and their
respective management techniques in a single unified scheme. An overview of the
proposed platform-integration scheme is shown in Fig. 2. In this scheme, hard-
ware resources are virtually partitioned based on the resource abstraction/access
methods (virtualization, containerization and bare metal) most appropriate for
the respective hardware type. A corresponding management framework is then
adopted to manage groups of hardware of the same type. A central Resource
Coordinator component is provided as an interface to be used by end-users to
deploy applications on the underlining resources. More importantly, the Re-
source Coordinator component coordinates the deployment for the application
blueprint components on, potentially, various types of resources across those
virtual partitions.

Heterogeneous hardware resources are managed through the designated plat-
forms. This may raise interoperability issues, however, as each platform manages
a virtual resource partition, in the same management domain, the resulting in-
teroperability issues reduced to a technical integration action and are not exac-
erbated by having to consider the interests of multiple entities. Figure 2 shows
how the integration scheme may use OpenStack to manage virtual environment,

10

General Purpose Computation
Resources in Virtualized Environment
(E.g., OpenStack Managed Domain)

Computation Accelerators in
Containerized Environment

(E.g., Mesos Managed Domain)

Specialized Computational Resources
in Bare-metal Environment

(E.g., Specially Managed Domain)

Host

Hypervisor

VMVM VM

Host

Hypervisor

VMVM VM

Host Host

C

C C

CC

C

C

C C

CC

C

Host Host Host

Host Host Host

Host Host HostVMVM VM VMVM VM

Virtual Resource Partition Virtual Resource Partition Virtual Resource Partition

Container Engine C. Engine

Application Blueprint
Application Blueprint

Application Blueprint
Application Blueprint

Resource Coordinator Resource Catalogue

Storage

API Server

Fig. 2. Managing and accommodating heterogeneous hardware resources through mul-
tiple integrated platforms.

Mesos to manage container environment, and Ironic [21] to manage bare-metal
servers. Each platform offers a different set of Application Programming Inter-
faces (APIs) and utilities for similar resource management operations, such as,
creating virtual machines and/or containers. The Resource Coordinator uses a
Plug & Play Interface that defines a set of common operations for managing un-
derlying resources, and these operations are then translated to platform-specific
API calls or commands using the Plug & Play implementation modules to carry
out service deployment processes. Additionally, storage systems are organized
and managed independently. Processing units can be easily configured to use
volume-based and/or network attached storage systems.

Networking Integration Strategy Two schemes are available for networking
integration. The first scheme is to treat networking in each VRP, independently,
as shown in Fig. 3. Application components are deployed independently in their
corresponding VRP and virtual networks are created accordingly within each
VRP. At the same time, network bridges are created in order to establish com-
munication channels across VRPs. The scheme does not require any modification
to the respective resource management platforms. This gives the flexibility for
integrating other resource management platforms, for example, Kubernetes and
Docker Swarms, with existing environment. The concerns about this scheme arise
from the differences associated with each of the networking approaches taken by
each of the the respective resource management platforms. Considering that dif-

11

Application
Blueprint

SVM SC

SH

SC

Application
Blueprint

SVM SC

SH

SC

Hosts

Hypervisor

Hosts

VM

VM

C

C

V
ir

tu
al

 N
et

w
o

rk

V
ir

tu
al

 N
et

w
o

rk

H

H

V
ir

tu
al

 N
et

w
o

rk

Hosts

Hosts

Virtual Resource
Partition 1

Virtual Resource
Partition 2

Virtual Resource
Partition 3

Bridge
Network

Bridge
Network

C. Engine

P
h

ys
ic

al
 N

e
tw

o
rk

 I
n

fr
a

st
ru

ct
u

re

Deploy Deploy Deploy Deploy

Fig. 3. Networking integration scheme using bringing network

Application
Blueprint

SVM SC

SH

SC

Application
Blueprint

SVM SC

SH

SC

Hosts

Hypervisor

Hosts

VM

VM

C

C

V
ir

tu
al

 N
et

w
o

rk

V
ir

tu
al

 N
et

w
o

rk

H

H

V
ir

tu
al

 N
et

w
o

rk

Hosts

Hosts

Virtual Resource
Partition 1

Virtual Resource
Partition 2

Virtual Resource
Partition 3

C. Engine

P
h

ys
ic

al
 N

e
tw

o
rk

 I
n

fr
a

st
ru

ct
u

re

Deploy Deploy Deploy Deploy

V
ir

tu
al

 N
et

w
o

rk
 I

n
fr

a
st

ru
ct

u
re

Fig. 4. Networking integration scheme using unified network framework across multiple
platforms

ferent platforms offer different types of networking services at various level, for
example, an OpenStack managed network uses the Neutron framework, which
offers rich functionalities including firewalls, load-balancers, and security groups,
etc., these may not be available in the container environment if it is managed
by Mesos. As the available functional components are different from platform to
platform, this will affect how an application blueprint can be created.

The second scheme employs the Neutron framework [23] for building and
managing virtual network infrastructure. Fig. 4 shows the simplified network-

12

ing plan. All hardware resources are connected to the same physical network-
ing infrastructure, but logically, they are managed by corresponding platforms,
independently. From an end-user point of view, all resources are in a single
resource pool. In the case that multiple components of a single application-
blueprint need to be deployed on both VMs and containers, which are man-
aged by different platforms, this requires a dedicated virtual network for the
entire application-blueprint over the end-user (tenant) network. Thus, there is
a need for a unified virtual network infrastructure management framework to
be installed across all platforms, horizontally. In addition, the tenant networks
must be managed in a seamless fashion. The second networking planning scheme
adopts OpenStack Neutron for this purpose. In general, frameworks and services
developed under the OpenStack Big Tent Governance natively support Neutron
services. In contrast, container technologies such as Kubernetes, Mesos, and
Docker Swarm employ different networking models. For example, Kubernetes
can use Flannel [5], Weave Net [34] frameworks operating in various modes;
Docker uses libnetwork [13] by default. In the context of this work, the Kuryr
network driver [12] is employed to link Neutron and container networks. Thus,
end-users will experience seamless connections between all types of heteroge-
neous hardware resources.

3.4 The Server-Integration Scheme

Host OS

G
PU

CP
U

VMContainer VMContainer VMContainer VMContainer
VMContainer VMContainer

VMContainer VMContainer

Host OS

CP
U

VMContainer VMContainer VMContainer VMContainer
VMContainer VMContainer

VMContainer VMContainer

Host OS

Xe
o

n
Ph

i

CP
U

VMContainer VMContainer VMContainer VMContainer
VMContainer VMContainer

VMContainer VMContainer

Host OS

FP
G

A

CP
U

VMContainer VMContainer VMContainer VMContainer
VMContainer VMContainer

VMContainer VMContainer

High-speed Standard

Server Server Server Server

Hypervisor Hypervisor Hypervisor HypervisorContainer
Engine

Container
Engine

Container
Engine

Container
Engine

Application Blueprint
Application Blueprint

Application Blueprint
Application Blueprint

Resource Coordinator Resource CatalogueAPI Server

Fig. 5. Managing and accommodating heterogeneous hardware resources through hard-
ware integration on a per server basis

In the second integration scheme, heterogeneous hardware is organized on
a per server basis, as shown in Fig. 5. Each physical server is equipped with

13

both general purpose processors and computation accelerators where they are
applicable. Two types of networking interfaces, including high-speed interface(s)
(e.g., InfiniBand or 40 Gb/s Ethernet) and standard-speed interface(s) (e.g.,
1/10 Gb/s Ethernet) are also installed on a per server basis. Different types of
networks are connected to their corresponding dedicated networking switches. In
this configuration, a physical server is capable of offering high-performance com-
putational resources for HPC applications as well as economical computational
resources for general applications such as Web services.

The mixed hardware configuration also requires both container engine and
hypervisor to coexist on the same physical server. This is because, in a virtual-
ized environment, access to specialized computational accelerators (e.g., MICs,
GPUs and DFEs), especially when dealing with various types and models of those
accelerators, from a VM can be very problematic. It is generally requires both
software (including operating system and hypervisor) and hardware (including
CPU and motherboard) to support for passing through specialized accelerators
to VMs. In contrast, a container application can directly use accelerators that
have been already recognized by the underly host operating systems. Never-
theless, trade offs need to be taken into account when using different resource
abstraction/access methods. For examples, VMs, as a complete operating sys-
tem, can provide all features that a standard operating system offers; a container
provides a light-weight application execution environment which may result in
better performance, but may be less flexible and secure. For applications to ex-
perience native performances or strict secure environment, for example heavily
loaded database systems and banking transaction processing systems, the option
for access to bare-metal servers is often needed. Thus, the coexistence of various
resource abstraction methods on each individual server is desirable. Note that
the coexistence of both container engine and hypervisor may affect the choices
for selecting the types of hypervisor (Classic System VMs or Hosted VMs) [30].

At the management layer, all resources are registered with a Resource Cat-
alogue and compatible computational resources are logically grouped together
from an application perspective. Depending on the characteristics of an appli-
cation blueprint to be deployed, the Resource Coordinator uses the information
from the Resource Catalogue to make decisions on how and where to provision re-
sources. One of the key features of the Server-Integration scheme is that it allows
for various software and hardware components, including types of operating sys-
tem, hypervisors, container engines, general purpose processors, computational
accelerators, and different types of networking connections to be dynamically
and flexibly combined together to meet application and system requirements.

3.5 Summary

The platform-integration scheme can provision heterogeneous resources through
the integration of various existing platforms in which each platform manages
a set of homogeneous hardware resources, independently. Globally, all types of
resources are virtually presented in a unified resource pool to end-users. The
use of existing management platforms provides a solution for rapid construction

14

O
p

en
S

ta
ck

 M
an

ag
ed

 V
ir

tu
al

 E
n

vi
ro

n
m

e
n

t

M
e

so
s

M
an

a
ge

d

C
o

n
ta

in
e

r
E

n
vi

ro
n

m
e

n
t

Internet Domain Bridge PrivatePrivate

Bridge NetPrivate NetPublic Net Public NetPrivate NetBridge Net

Internet

Fig. 6. Testbed layout and network configuration

of a heterogeneous cloud. Most of the architectural components such as teleme-
try, fine-grained resource scheduling, and resource management, are reused. It is
must be noted that, in some circumstances, for example, an orchestrated service
that are deployed on various types of resources across different platforms, may
encounter network congestion issues, especially for those high-throughput HPC
alike applications. Additionally, as each management platforms (e.g., OpenStack
and Mesos) have their built-in resource schedulers, the platform-integration
scheme is limited on how they control and optimize resources at a coarse-grained
level. In contrast, the server-integration scheme is more flexible. Multiple man-
agement platforms can be configured to simultaneously manage their correspond-
ing resource types on the same server across the data center, provided no conflicts
between them; or a customized platform to manage the system in a more ded-
icated manner, providing all necessary auxiliary services such as telemetry and
resource manager. Additionally, as the coexistence of various types of resources
on each server, more diverse applications and system requirements can be more
easily met by wiring appropriate components.

4 Experiment

The initial implementation and the deployment of the proposed schemes have
been realized in the context of CloudLightning project [14]. In this paper, a
use case based on the Intel’s Ray-Tracing application [9] is used to demonstrate

15

the need for a unified platform to manage a cloud environment composed of
heterogeneous resources.

4.1 Testbed Configuration

The experimental environment consists of an OpenStack managed virtualiza-
tion environment (Newton release) which consists of eight Dell C6145 compute
servers in total having 384 cores, 1.4 TB RAM, 12 TB storage and a Mesos
managed Docker container environment (v17.04.0-ce) which consists of five IBM
326e servers in total having 10 cores, 40 GB RAM, 200 GB storage. In this
deployment configuration, all physical servers have multiple dedicated network
connections to three different networks including a public, a private and a bridge
network. The public network connects to the Internet, the private networks are
private to OpenStack or Mesos, respectively, the bridge network provides inter-
connections between virtual machines (managed by OpenStack) and containers
(managed by Mesos). In the context of OpenStack, the private network is equiv-
alent to the Neutron Tenant network, the public and bridge networks are the
Neutron Provider networks. In the Mesos managed Docker environment, three
Docker Bridge networks are created with each connecting to the public, private
and bridge network, respectively. This deployment configuration is flexible to
allow for future platforms, if needed, to be integrated with the existing envi-
ronments. The detailed testbed layout and network configuration are shown in
Fig. 6.

4.2 Use Case Blueprint

The Intel’s Ray-Tracing application use case is composed of two parts, the first
part is the Ray-Tracing engine and the second part is a Web interface. Both
the engine and the Web interfaces should be respectively deployed on the most
appropriate back-end resources. For example, it has been demonstrated that the
Ray-Tracing application can gain much better performance with MICs [2] [33]
comparing to general purpose CPUs. In order to use MICs, applications are gen-
erally required to be deployed in containers or directly on bare metal servers.
And it is economically reasonable for deploying a Web server on a VM (pro-
viding more secured environment) that is configured with general purpose CPU
processors. Thus, in the experiment, a blueprint is constructed which specifies
that the Web interface should be deployed on VMs and the Ray-Tracing engine
should be deployed in a container.

The graphical representation of the use case blueprint is shown in Fig. 7. The
blueprint is also expressed in EXtensible Markup Language (XML) for machine
interpretation. A blueprint consists of four main components:

1. Execution Environments, specifying the resource types such as virtual ma-
chines, containers, bare metal and so on,

2. Service Element, detailing the software component(s) to be deployed in an
Execution Environment,

16

<<Execution Environment>>
Virtual Machine

<<Service Element>>
Web Front-end

<<Execution Environment>>
Container

<<Artifact>>
Virtual Machine Configuration

<<Service Element>>
Ray-Tracer

Type: OS::Nova::Server
Properties:
 Key_Name: project-cl-key
 image: ubuntu-trusty-x86_64
 flavor: m1.small

<<Artifact>>
Container Configuration
 vCores
 Memory
 Image mic_app_embree:1
 Network BRIDGE
 ContainerPort

<<Artifact>>
Service Element Configuration
 SEName Embree Web Front
 ServiceContainer Tomcat
 Port
 User CloudLightning
 Password CloudLightning

<<Artifact>>
Service Element Configuration

 Device singleray_xeonphi
 SampleRate
 NetworkMode True,
 ServerIP

Fig. 7. Ray-Tracing application blueprint

3. Artifacts, containing configurations for each Execution Environment or Ser-
vice Element,

4. Connections, specifying the connectivity between Execution Environments
and Service Elements.

The Resource Coordinator is responsible for parsing, decomposing and trans-
forming blueprint components to a format, that can be understood by the un-
derlying cloud management platforms, to facilitate application deployment.

The Resource Coordinator categorizes Execution Environments of the blueprint
in to groups based on resource types (EE-Group), such as virtual machines,
containers, or bare-metal. Within each EE-Group, Execution Environments are
further partitioned into sub-groups based on the connectivities (C-Group), for
example, if another given blueprint consists of three virtual machines without
specifying connections between them, then this blueprint will be partitioned into
one EE-Group and three C-Group within that EE-Group. In the use case sce-
nario described there, there are two EE-groups, and one C-Group within each
EE-Group. This grouping can be determined by formulating the blueprint topol-
ogy into a graph G(V,E), then connectivities between Execution Environments
can be identified using the Union-Find algorithm, as illustrated in Algorithm 1.
Where V indicates the vertices in the graph corresponding to the Execution En-
vironments in the blueprint, and E denotes the edges in the graph corresponding
to the connections between Execution Environments.

The algorithm assumes the connections are symmetric (if Execution Envi-
ronment A is connected to Execution Environment B, then B is connected to A)
and transitive (if Execution Environment A is connected to B, B is connected
to C, then A is connected to C). Additional constraints can be added to make
blueprint connections asymmetric and/or non-transitive.

When the grouping process is completed, the Resource Coordinator seeks for
connections between C-Groups within each EE-Group. A connection between a
pair of Execution Environments in different C-Groups indicates that the both

17

Algorithm 1: Identifying Connectivity Groups (C-Groups) in each Exe-
cution Environment (EE-Group) using Union-Find Algorithm

/* Identify C-Groups in a EE-Group */

Data: EE-Group
Result: List{C-Group{v.idx}}
GEE−Group(V, E); size ← V.size(); topology = new int[size];
for i ← 0 to size-1 do

topology[i] = i;
end
foreach Edge e(vi, vj) : E do

if connected(vi, vj) then
continue;

end
else

idxi = find(vi); idxj = find(vj);
if idxi == idxj then

return
end
else

for q ← 0 to size-1 do
if topology[i] == idxi then

topology[i] = idxj

end

end

end

end

end
/* Store topology to C-Groups */

cgroupSize ← number of unique values in topology;
for i ← 0 to cgroupSize-1 do

new cGroupi()
end
for i ← 0 to topology.lenght-2; i++ do

if topology[i] == -1 then
continue

end
cGroupk.add(i);
for j ← i+1 to topology.length-1; j++ do

if topology[j] == topology[i] then
cGroupk.add(j); topology[j] == -1

end

end
topology[i] == -1; k++;

end
/* Determine which connection group an Execution Environment belongs

to */

Function find(v)
return topology[v.index]

/* Detect whether two Execution Environments are connected */

Function connected(v1, v2)
return find(v1) == find(v2)

18

Execution Environments should be placed in a bridge network or need to be
attached to a bridge network, to establish cross platform communications. Ex-
ecution Environments in a completely isolated C-Group should be placed in a
private network, if Internet access is desired, then each Execution Environment
must be attached to the public network, independently. Once the networks are
identified, Execution Environments with their corresponding configurations in
each EE-Group are transformed into deployment templates that are compati-
ble with the corresponding management platforms. The Resource Coordinator
initiates the deployment process and subsequently manages the life-cycle of the
application blueprint. Listing 1.1 shows the deployment template for the Intel
Ray-tracing Web front-end, in YAML format. This template is converted from
the use case blueprint (as shown in Fig. 7) to make it compatible with corre-
sponding platforms. In this use case, the Ray-tracing Web front-end is config-
ured to be deployed on a VM, and VMs are managed by OpenStack. Listing 1.2
shows the deployment template for the Intel Ray-tracing back-end application,
in JSON format. This templates is also converted from the use case blueprint,
but the template is made compatible with Mesos/Marathon for the application
deployment in containers.

Listing 1.1. Intel Ray-tracing Web front-end deployment template in YALM format

b luepr int−id : c97e718674c34adf815316ad4cec93c f
h e a t t e m p l a t e v e r s i o n : 2016−10−14
r e s o u r c e s :

embree web frontend :
type : OS : : Nova : : Server
p r o p e r t i e s :

image : Ubuntu14 .04 LTS svr x86 64
f l a v o r : m1. smal l
key name : c l−p r o j e c t
networks :
− network : br idge−prov ide r

use r data :
template : |

#!/ bin /bash −v
apt −y i n s t a l l httpd

.

Listing 1.2. Ray-Tracer in Mesos managed Docker containers using Marathon.

{
” b luepr int−id ” : ” c97e718674c34adf815316ad4cec93c f ” ,
c u r l −X POST −H ”Content−type : a p p l i c a t i o n / j son ”
marathon :8080/ v2/apps −d
{

” id ” : ”embree” ,
” cpus ” : 2 ,
”mem” : 10240 .0 ,
” conta ine r ” :
{

19

” type ” : ”DOCKER” ,
” docker ” :
{

” image” : ”mic−app−embree : 1 ” ,
”network” : ”BRIDGE” ,
”portMappings” :
[
{

” conta inerPort ” : 2 2 ,
” hostPort ” : 0

}
]

}
}

}
}

5 Conclusions

Conventional cloud environments typically consist of homogeneous resources.
Driven by consumer needs and technological advances, this situation is gradu-
ally changing. Heterogeneity in resource types is being introduced, and this poses
challenges to traditional resource management mechanisms which aspire to seam-
lessly deliver the advantages associated with novel heterogeneous architectures to
the end user. In response to this transition, a platform-integration scheme and a
server-integration scheme have been presented. The platform-integration scheme
describes a hyper-level management approach by integrating, and coordinating
various coexisting cloud management platforms. Each of these platforms man-
ages hardware resources of a particular type, characteristics, and an abstraction
method most appropriate for its management. A use case experiment was pre-
sented to demonstrate how an application blueprint can be deployed and man-
aged in an heterogeneous environment implementing the platform-integration
scheme. The experiment also illustrates the benefit of having a management
framework providing a unified view of heterogeneous resources. In contrast, the
server-integration scheme is employed at the lowest level in the service delivery
stack and performs fine-grained resource optimization and flexible service or-
chestration. This is achieved by reorganizing the hardware components on each
physical server and by resource grouping at data center infrastructure level. The
development of a use case to illustrate the server-integration scheme requires
specialized hardware capabilities including I/O virtualization. Moreover, spe-
cialized configurations and software libraries are required to support hardware
accelerator pass-through technologies. This use case will be developed in future
work.

The candidate heterogeneous cloud management solutions proposed here,
while still in the early stage of the development, provide realistic solutions to

20

the complex problem of heterogeneous resource management. The platform-
integration scheme can more readily be exploited, since it integrates and man-
ages a multiplicity of extant technologies. The server-integration scheme, being a
lower-level solution, is more specialized in its requirements from both the hard-
ware and software environments. Hence, it can be seen as more of a longer-term
solution.

To efficiently and effectively manage an heterogeneous cloud as an holistic
entity, re-consideration of physical server design (incl. on-board computation
accelerator integration, a good balance between computation accelerator and
general purpose processing capacity, and a redesign of the cooling system), het-
erogeneous environment management (incl. neural network based resource man-
agement and collective intelligence based autonomic computing), service delivery
model and cloud application development methodology (incl. a unified view of
heterogeneous resources and a script-less application development) should all be
addressed in a coherent and integrated manner. This is the challenge for the
designers of the emerging heterogeneous cloud.

6 Acknowledgment

This work is funded by the European Unions Horizon 2020 Research and Inno-
vation Programme through the CloudLightning project under Grant Agreement
Number 643946.

References

1. Barr, J.: Developer Preview–EC2 Instances (F1) with Programmable Hardware.
Amazon Web Services (2016)

2. Benthin, C., Wald, I., Woop, S., Ernst, M., Mark, W.R.: Combining single and
packet-ray tracing for arbitrary ray distributions on the intel mic architecture.
IEEE Transactions on Visualization and Computer Graphics 18(9), 1438–1448
(2012)

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Commun. ACM 59(5), 50–57 (2016)

4. Dong, D., Stack, P., Xiong, H., Morrison, J.P.: Managing and unifying heteroge-
neous resources in cloud environments. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science - Volume 1: CLOSER,, pp.
143–150. INSTICC, ScitePress (2017)

5. Flannel: https://github.com/coreos/flannel (2017)
6. Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.: Opennebula:

The open source virtual machine manager for cluster computing. In: Open Source
Grid and Cluster Software Conference, vol. 86 (2008)

7. Foreman: https://theforeman.org (2017)
8. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,

Shenker, S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’11, pp. 295–308. USENIX Association,
Berkeley, CA, USA (2011)

21

9. Intel Embree: https://embree.github.io (2017)
10. Keahey, K., Armstrong, P., Bresnahan, J., LaBissoniere, D., Riteau, P.: Infrastruc-

ture outsourcing in multi-cloud environment. In: Proceedings of the 2012 Workshop
on Cloud Services, Federation, and the 8th Open Cirrus Summit, FederatedClouds
’12, pp. 33–38. ACM, New York, NY, USA (2012)

11. Kubernetes: http://kubernetes.io/ (2017)
12. Kuryr: http://docs.openstack.org/developer/kuryr/ (2017)
13. Libnetwork: https://github.com/docker/libnetwork (2017)
14. Lynn, T., Xiong, H., Dong, D., Momani, B., Gravvanis, G., Filelis-Papadopoulos,

C., Elster, A., Khan, M.M.Z.M., Tzovaras, D., Giannoutakis, K., Petcu, D., Neagul,
M., Dragon, I., Kuppudayar, P., Natarajan, S., McGrath, M., Gaydadjiev, G.,
Becker, T., Gourinovitch, A., Kenny, D., Morrison, J.: Cloudlightning: A framework
for a self-organising and self-managing heterogeneous cloud. In: Proceedings of the
6th International Conference on Cloud Computing and Services Science, pp. 333–
338 (2016)

15. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014(239), 2 (2014)

16. Nimbus: http://www.nimbusproject.org (2017)
17. OpenNebula: Opennebula 5.2 deployment guide. Tech. Rep. 5.2.1, OpenNebula

Systems (2017)
18. OpenNebula: Opennebula 5.2 operation guide. Tech. Rep. 5.2.1, OpenNebula Sys-

tems (2017)
19. OpenStack: Architecture design guide. Tech. Rep. 15.0.0 (2017)
20. OpenStack, L.: The openstack project (2011)
21. OpenStack Ironic: https://docs.openstack.org/ironic/latest/ (2016)
22. OpenStack Magnum: http://git.openstack.org/cgit/openstack/magnum (2017)
23. OpenStack Neutron: https://github.com/openstack/neutron (2017)
24. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation

architectures. Commun. ACM 17(7), 412–421 (1974)
25. Razor Server: https://github.com/puppetlabs/razor-server (2017)
26. Rensin, D.K.: Kubernetes - Scheduling the Future at Cloud Scale. 1005 Gravenstein

Highway North Sebastopol, CA 95472 (2015)
27. Russinovich, M.: Inside the Microsoft FPGA-based configurable cloud. Microsoft

Developer Network (MSDN) (2017)
28. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: Flexible,

scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pp. 351–364. ACM,
New York, NY, USA (2013)

29. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38
(2005)

30. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38
(2005)

31. Turnbull, J.: The docker book. Lulu. com (2014)
32. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:

Large-scale cluster management at google with borg. In: Proceedings of the Tenth
European Conference on Computer Systems, EuroSys ’15, pp. 18:1–18:17. ACM,
New York, NY, USA (2015)

33. Wald, I.: Fast construction of sah bvhs on the intel many integrated core (mic)
architecture. IEEE Transactions on Visualization and Computer Graphics 18(1),
47–57 (2012)

22

34. Weaveworks WeaveNet: https://www.weave.works/docs/net/latest/introducing-
weave/ (2017)

35. Zhang, Z., Li, C., Tao, Y., Yang, R., Tang, H., Xu, J.: Fuxi: A fault-tolerant
resource management and job scheduling system at internet scale. Proc. VLDB
Endow. 7(13), 1393–1404 (2014)

