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Abstract 

Adolescence is a sensitive period of neurodevelopment during which life experiences and the 

surrounding environment can have profound effects on the brain. Neurogenesis is a 

neurodevelopmental process of generating functional neurons from neural stem cells. 

Hippocampal neurogenesis occurs throughout the lifespan and has been shown to play a role 

in learning, memory and in mood regulation. In adulthood it is influenced by extrinsic 

environmental factors such as exercise and stress. Intrinsic factors that regulate hippocampal 

neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed 

in the neurogenic niches of the brain. While mechanisms regulating adult hippocampal 

neurogenesis have been widely studied, less is known on how hippocampal neurogenesis is 

affected during adolescence. Thus, the aim of this study was to investigate the influence of 

both TLX and isolation stress on exercise-induced increases in neurogenesis in running and 

sedentary conditions during adolescence. Single- (i.e. isolation stress) wild type and Nr2e1
-/-
 

or pair-housed wild type mice were housed in sedentary conditions or allowed free access to 

running wheels for 3 weeks during the adolescent period. A reduction of neuronal survival 

was evident in mice lacking TLX, and exercise did not increase hippocampal neurogenesis in 

these Nr2e1
-/-
 mice. This suggests that TLX is necessary for the pro-neurogenic effects of 

exercise during adolescence. Interestingly, although social isolation during adolescence did 

not affect hippocampal neurogenesis, it prevented an exercise-induced increase in 

neurogenesis in the ventral hippocampus. Together these data demonstrate the importance of 

intrinsic and extrinsic factors in promoting an exercise-induced increase in neurogenesis at 

this key point in life.  

 

Key words: adult neurogenesis, adolescence, stress, exercise, TLX 
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Adolescence is a critical phase of development associated with plasticity-driven organization 

of neural circuits in the hippocampus, prefrontal cortex and amygdala (Pattwell et al., 2011; 

Selemon, 2013). It is also a key period for susceptibility to stress and the emergence of 

neurobiological disorders such as schizophrenia, depression and anxiety (Green and Nolan, 

2014; Hueston et al., 2017; O'Connor and Cryan, 2014; Paus et al., 2008). By approximately 

postnatal day (P) 30 in rodents, dentate gyrus (DG) formation, cerebellar neurogenesis and 

myelogenesis are completed, and neurogenesis (the birth of new neurons) is restricted to the 

niches of the brain where the process persists through adulthood – the subgranular zone 

(SGZ) of the DG of the hippocampus and the subventricular zone (Lemasson et al., 2005; Li 

et al., 2009).  

  

Hippocampal neurogenesis has been widely studied in the adult brain and is known to be 

regulated by several extrinsic and intrinsic factors (Aimone et al., 2014; Gregoire et al., 

2014). For example, extrinsic factors such as stress and exercise have been shown to decrease 

or increase adult hippocampal neurogenesis, respectively (Levone et al., 2015; van Praag et 

al., 1999a). However, comparatively fewer studies have investigated the impact of these 

extrinsic factors on hippocampal neurogenesis in the adolescent brain (Abel and Rissman, 

2013; Kirshenbaum et al., 2014; Wei et al., 2011). In adult rodents, exercise has been shown 

to enhance learning and memory (Creer et al., 2010; Marlatt et al., 2012; van Praag et al., 

1999a), protect against stress-induced depression and anxiety-like behaviours (Duman et al., 

2008; Grippo et al., 2014) and protect against cognitive deficits in neurodegenerative 

disorders (Barbour et al., 2007; Cotman et al., 2007; Ryan and Nolan, 2016). How exercise 

can facilitate processes as diverse as spatial learning and memory, anxiety and responses to 

stress is not yet clear. However, accumulating evidence suggests that the hippocampus is 

functionally segregated along its dorsoventral axis in rodents such that the dorsal 
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hippocampus (dHi) plays a predominant role in spatial learning and memory while the ventral 

hippocampus (vHi) plays a predominant role in anxiety and the stress response (Bannerman 

et al., 2004; Fanselow and Dong, 2010). Similarly, there is an emerging view that 

neurogenesis might also be similarly functionally segregated along this axis (O'Leary and 

Cryan, 2014; Tanti and Belzung, 2013). Intrinsic factors that control hippocampal 

neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed 

in the neurogenic niches of the postnatal brain and has been implicated as an important 

regulator of neural stem cells by maintaining them in their proliferative and non-

differentiated state (Roy et al., 2004; Shi et al., 2004). In a spontaneous deletion mouse 

model, adult TLX knock out (Nr2e1
-/-
) mice display altered neurogenesis and synaptic 

plasticity, as well as an impairment of dendritic structures in the DG. These mice also present 

with an aggressive phenotype and display cognitive impairments in hippocampal-dependent 

tasks (Christie et al., 2006; Young et al., 2002). Interestingly, some of these effects are 

apparent in adolescence (O'Leary et al., 2016a; O'Leary et al., 2016b). 

 

Taken together, while mechanisms regulating adult hippocampal neurogenesis have been 

thoroughly investigated, less is known about how neurogenesis is affected during the 

adolescent period. Moreover, the impact of facilitators and impeders of neurogenesis, such as 

exercise and stress, on the adolescent brain has yet to be established. This is surprising given 

that adolescence is a critical period for the maturation of neurons as well as a time during 

which profound social and physiological change occurs.  Thus, the aim of this study was to 

investigate (1) the impact of exercise during adolescence on hippocampal neurogenesis; (2) 

the role of the intrinsic factor TLX on exercise-induced changes in hippocampal neurogenesis 

and (3) whether social isolation stress influences exercise-induced changes in hippocampal 

neurogenesis.  Given the growing evidence of segregated effects on neurogenesis along the 
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dorsoventral axis of the hippocampus, we examined the impact of exercise, TLX, and social 

isolation on neurogenesis in the dorsal versus ventral hippocampus.   

 

This animal study was conducted in strict compliance with the European Directive 

2010/63/EU, and under an authorization issued by the Health Products Regulatory Authority 

Ireland and approved by the Animal Ethics Committee of University College Cork (UCC). 

Breeding pairs of Nr2e1
-/-
 mice exhibiting a spontaneous deletion of TLX were kindly 

provided by Prof. Elizabeth Simpson (University of British Colombia) and were generated as 

previously described (Wong et al., 2010). Male Nr2e1
-/-
 mice and wild type (WT) littermate 

controls on a BL6129 background were singly-housed upon weaning and given ad libitum 

access to food and water under a 12-12 h light/dark cycle. At 4 weeks of age (P28), mice 

received 4 x bromodeoxyuridine (BrdU; 75mg/kg, i.p., Sigma Cat# B5002) injections at 2-

hour intervals to label newly-born cells. Half of the animals from each genotype were then 

housed with free access to a running wheel for 3 weeks (Med Associates Inc Cat# ENV-044), 

thus there were 4 experimental groups (WT sedentary, WT running, Nr2e1
-/- 
sedentary; 

Nr2e1
-/-
 running; n = 5-6 per group; Fig. 1). Male mice were collected from 11 litters in total. 

For welfare reasons Nr2e1
-/-
 mice have to be singly housed due to their aggressive phenotype 

(Young et al., 2002). Thus, their corresponding wild type littermates were also singly housed. 

Since single housing is a social isolation stressor, we sought to examine whether this chronic 

stress influenced the effect of exercise on hippocampal neurogenesis in WT mice (Fig. 1).  

 

Three weeks following BrdU administration and initiation of exercise, mice (P49) were 

anesthetized with Euthasol (1.0 mL/kg, i.p.) and transcardially perfused with phosphate 

buffered saline (PBS) solution followed by 4.0% paraformaldehyde (PFA). Brains were 

postfixed overnight, cryoprotected in 30% sucrose and subsequently flash frozen. Coronal 
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sections (40 µm) through the entire hippocampus were collected onto slides in a 1:6 series  

and surviving cells and surviving newly born neurons were identified using  

immunohistochemistry for BrdU alone, and colocalization of BrdU and the neuronal marker  

NeuN, respectively. Briefly, sections were incubated in HCl (2M; 37ᵒC, 45 mins), renatured  

in 0.1M sodium tetraborate (pH 8.5) and then blocked in 3% normal donkey serum (NDS;  

Sigma Cat# D9663). Sections were incubated with rat anti-BrdU antibody (Abcam Cat#  

AB6326; 1:250; overnight at 4ᵒC), followed by AlexaFluor594 donkey anti-rat (Abcam Cat#  

ab150156; 1:500; 2 hours at room temperature) and mouse anti-NeuN (Millipore Cat#  

MAB377; 1:100; overnight at 4ᵒC).  Sections were then incubated in AlexaFluor488 donkey  

anti-mouse (Abcam Cat# ab150105 1:500; 2 hours at room temperature). To assess cell  

death, immunohistochemistry for the apoptosis marker caspase-3 was performed. Briefly,  

sections were incubated in H2O2 (in 1% methanol, 40 mins at room temperature) and then  

blocked in 10% normal goat serum (NGS; Sigma Cat# G9023). Sections were incubated with  

rabbit anti-active caspase-3 antibody (Promega Cat# G7481; 1:250; overnight at 4ᵒC),  

followed by sequential incubations with the streptavidin-biotin immunoenzymatic antigen  

detection system (Abcam, Cat# ab64261). Images were obtained using an Olympus BX533  

upright microscope coupled to an Olympus DP72 camera and Olympus FV1000 scanning  

laser confocal system (BioSciences Imaging Centre, UCC). Immunofluorescent Z-stack  

images with a 4.4 µm step size were collected using a 10x objective, while DAB staining was  

analysed at 20x magnification with bright field. Systematic random sampling was employed  

through the whole DG by counting the cells on both hemispheres of each section in 1:6 series  

(240 µm apart). Cell quantification was performed using the image processing software  

package, ImageJ v 1.43m. All cell numbers are expressed as an average per section. The  

dorsal DG was defined as AP: - 0.94 to AP: - 2.30 and the ventral DG as AP: - 2.46 to AP: -  

3.80 as described previously (O'Leary et al., 2012; Paizanis et al., 2010).   
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Exercise significantly increased the number of surviving new cells in the whole DG of WT  

mice (exercise effect: F1, 19 = 7.915, p = 0.011), but not in Nr2e1
-/-
 mice (exercise x genotype  

interaction: F1, 19 = 6.747, p = 0.018; Fig. 2A). Furthermore, both sedentary and running  

Nr2e1
-/-
 mice exhibited a reduction in the number of surviving new cells compared to their  

WT littermates (genotype effect: F1, 19 = 244.002, p < 0.001; Fig. 2A). These changes in cell  

survival were driven by an exercise-induced increase in the number of surviving new neurons  

(neurogenesis) in the DG of WT mice (exercise effect: F1,19 = 6.024, p = 0.024), but not  in  

Nr2e1
-/-
 mice (exercise x genotype interaction: F1,19 = 5.704, p = 0.027; Fig. 2B).  

Additionally, sedentary Nr2e1
-/-
 mice also exhibited reduced hippocampal neurogenesis  

compared to their WT littermates (genotype effect: F1,19 = 130.096, p < 0.001; Fig. 2B).  

Upon subdivision of the DG into dorsal (dDG) and ventral (vDG) regions, this genotype  

effect was apparent in both subregions for both new cell (BrdU+) and new neuron  

(BrdU+NeuN+) survival (BrdU+: dDG: F1,19 = 98.723, p < 0.001; vDG: F1,19 = 92.748, p <  

0.001; Fig 2A; BrdU+NeuN+: dDG: F1,19 = 69.635, p < 0.001; vDG: F1,19 = 88.056, p <  

0.001; Fig. 2B) . However, the exercise-induced increase in new cell survival and  

neurogenesis was only apparent in the dDG (exercise x genotype interaction: BrdU+: F1,19 =  

4.078, p = 0.058; BrdU+NeuN+: F1,19 = 4.502; p = 0.047) but not in the vDG of WT mice  

(Fig. 2). No difference was observed in the percentage of surviving new cells that adopted a  

neuronal fate in the DG of WT animals; almost all BrdU+ cells were immunopositive for  

NeuN and there was no effect of exercise on cells adopting a neuronal fate. In the DG of  

Nr2e1-/- mice, however, a significantly smaller percentage of surviving cells matured into  

neurons in both sedentary and exercise conditions (genotype effect: F1,19 = 31.530, p <  

0.001; % BrdU+NeuN+ cells/BrdU+ cells: WT sedentary: M = 70.156, SD = 4.065; WT  
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running: M = 74.398, SD = 9.338; Nr2e1-/- sedentary: M = 53.839, SD = 9.130; Nr2e1-/- 

running: M = 51.151, SD = 9.257).  

 

Since exercise increased neurogenesis in the dorsal but not ventral DG of WT mice, we 

decided to investigate whether the stress of this social isolation during adolescence could 

explain the lack of effect of exercise-induced increases in neurogenesis in the vDG. Thus we 

compared the effect of running on cell survival and hippocampal neurogenesis in single-

housed compared to pair-housed WT mice (Fig. 3).   Two way ANOVA revealed that 

exercise significantly increased cell survival in paired- but not single-housed mice in the 

whole DG, and this effect persisted in both dDG and vDG (exercise x stress interaction: total 

DG: F1,17 = 7.420, p = 0.014; dDG: F1,17 = 5.911, p = 0.026; vDG: F1,17 = 5.825, p = 0.027; 

Fig. 3A). Interestingly, exercise significantly increased neurogenesis of both paired and 

single-housed mice who had access to a running wheel for three weeks compared to their 

sedentary counterparts (exercise effect: DG: F1,17 = 34.054; p < 0.001). However, the 

exercise-induced increase in neurogenesis was significantly lower in single-housed animals 

than in pair-housed animals (exercise x stress interaction: DG: F1,17 = 6.866; p = 0.018). 

Moreover, upon analysis of the dorsal and ventral regions of the DG, we found that although 

exercise increased neurogenesis in the dDG in both pair-housed and single-housed mice 

(dDG: F1,17 = 29.350; p < 0.001; Fig. 3B), this effect was attenuated by the stress of single 

housing (exercise x stress interaction dDG: F1,17 = 5.239, p = 0.035).  Additionally, the 

exercise-induced increases in neurogenesis observed in the vDG of pair-housed mice 

(exercise effect: vDG: F1,17 = 15.421; p = 0.001) was prevented in singly housed mice 

(exercise x stress interaction: vDG: F1,17 = 6.933, p = 0.017; Fig. 3B).  
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There was a trend towards a reduction of caspase-3+ cells in the vDG of Nr2e1
-/-
 mice with 

access to a running wheel, compared to their sedentary and WT running counterparts 

(exercise x genotype interaction: F1,12 = 3.8, p = 0.077; Fig. 4A). There was a significant 

reduction in the number of apoptotic cells in the vDG but not dDG or whole DG in pair-

housed mice with access to a running wheel compared to their single-housed or pair-housed 

sedentary littermates (exercise x stress interaction: vDG: F1,12 = 5.770, p < 0.05; Fig. 4B).  

 

Our results indicate that the well-known pro-neurogenic effect of exercise observed during 

adulthood (van Praag et al., 1999a; van Praag et al., 1999b) also occurs in adolescent male 

mice. This finding corroborates the effects of exercise on cognitive function observed in 

adolescent rats (Hopkins et al., 2011). Mice exposed to exercise during adolescence have 

increased hippocampal levels of pro-neurogenic brain-derived neurotrophic factor (BDNF) 

(Gallego et al., 2015) and enhanced expression of synaptic plasticity genes (Abel and 

Rissman, 2013). Exercise has also been shown to rescue alcohol-induced deficits in cell 

proliferation in adolescent rats (Helfer et al., 2009). Interestingly, a physical skills training 

task has recently been reported to increase cell survival in the DG of adolescent rats (DiFeo 

and Shors, 2017). However, training on this type of tasks involves physical exercise and 

learning, both of which increase neurogenesis and so a definitive conclusion on the effects of 

exercise alone during adolescence on hippocampal neurogenesis cannot be determined from 

this study. The present report is the first to demonstrate that voluntary running increases the 

survival of newly born cells and neurons in the DG of adolescent mice.  

 

In the absence of TLX, a key regulator of adult neurogenesis, we found no pro-neurogenic 

effect of exercise. It has been previously shown that deletion of TLX leads to significant 

reduction in adult neurogenesis, synaptic plasticity and impaired dendritic structure in the DG 
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of adult mice (Christie et al., 2006). Similarly, we show reduced survival of newborn cells 

and neurons in the DG of sedentary Nr2e1
-/-
 adolescent mice, an effect which was not 

mitigated by exercise. This positions TLX as a regulator of exercise-induced increases in 

neurogenesis during adolescence. Further studies will determine whether TLX mitigates the 

pro-neurogenic effects of exercise in adulthood and indeed throughout the lifespan. We have 

previously shown that a lack of TLX is associated with impairments in hippocampal-related 

cognitive and anxiety behaviours during adolescence. Specifically, adolescent but not adult 

Nr2e1
-/-
 mice showed deficits in spatial working memory, contextual fear conditioning and 

cued fear conditioning (O'Leary et al., 2016a). The fact that a lack of TLX expression from 

birth through adulthood did not persistently induce the same impairments during adolescence 

and adulthood may point towards compensatory mechanisms occurring past the adolescent 

period, which ameliorate to some degree the deficits caused by deletion of TLX, independent 

of neurogenesis. It is worth noting that in contrast to our data with TLX deficiency, ablation 

of neurogenesis through irradiation, another model of reduced hippocampal neurogenesis, has 

been shown to be sensitive to the rescue effects of exercise (Clark et al., 2008; Naylor et al., 

2008). However, the effects of adolescent hippocampal irradiation on neuronal survival 

remain unknown.  

 

We observed an exercise-induced increase in neurogenesis, but not cell survival, in the DG of 

singly-housed adolescent mice which is consistent with previous reports using adult mice 

(Dostes et al., 2016; Gregoire et al., 2014; Kannangara et al., 2009). It is worth noting 

however that single housing has been shown to blunt cell proliferation in running rats 

(Leasure and Decker, 2009; Stranahan et al., 2006) but these differences have not been 

reconciled in adolescent rodents. To date, the effect of exercise and housing conditions on 

neurogenesis across the septo-temporal axis of the hippocampus has not been examined. This 
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is interesting in light of the emerging view that the ventral hippocampus may be the  

predominant sub-region involved in stress responses (Bannerman et al., 2004; O'Leary and  

Cryan, 2014; Tanti and Belzung, 2013). Hence, the conflict in findings on hippocampal  

neurogenesis from group-housed and single-housed rodents may be a function of the  

differential effects of exercise on the dorsal and ventral hippocampus. Our results  

demonstrate that social isolation prevents the pro-neurogenic effects of exercise in the vDG  

but not the dDG. Specifically, exercise increased the survival of new neurons in the dDG of  

both single- and pair-housed mice, but only in the vDG of pair-housed mice. In addition, the  

exercise-induced increase in neurogenesis in the dDG of both single and pair-housed mice  

was significantly attenuated by single housing.  Importantly, the studies to date report on  

exercise-induced increases in neurogenesis in the whole DG, which may explain why studies  

employing single-housed mice consistently replicate the pro-neurogenic effects of exercise  

(Mustroph et al., 2012) observed in group-housed mice (van Praag et al., 1999a). Here we  

show that social isolation during adolescence acts as differential regulator of exercise across  

the distinct anatomical regions of the DG and propose that neurogenesis in both the dDG and  

vDG should be taken into consideration when investigating the role of hippocampal  

neurogenesis in exercise and stress-induced changes in behaviour. Nonetheless, the effects  

reported here may be specific to the adolescent period. Thus an examination of the effect of  

social isolation stress during other time periods of the lifespan on any potential exercise- 

induced changes in neurogenesis in the subregions of the DG is warranted in future studies.   

  

The mechanisms underlying the differential effect of social isolation stress on exercise- 

induced changes in neurogenesis in the dDG and vDG during adolescence remain unclear. It  

has been reported that unpredictable chronic mild stress in adult mice preferentially decreased  

the survival of new neurons in the vDG (Elizalde et al., 2010; Tanti et al., 2012), supporting  
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the view that neurogenesis in the ventral pole of the DG may be more susceptible to the  

effects of stress. Interestingly, environmental enrichment, which includes exercise, promoted  

neurogenesis only in the dorsal hippocampus (Tanti et al., 2012). The effects of stress on  

neurogenesis are thought to be mediated by the glucocorticoid (GR) and mineralocorticoid  

(MR) receptors (Saaltink and Vreugdenhil, 2014), which are highly expressed in the  

hippocampus of rodents (Montaron et al., 2003). However, there are some preliminary and  

inconclusive findings regarding the difference in expression levels of the GR receptor in the  

dDG and vDG (Lin et al., 2012; Robertson et al., 2005), while MR receptor expression has  

been shown to be more concentrated in the vDG, at least in the rat brain (Robertson et al.,  

2005). Notwithstanding, both receptors have been shown to have a distinct activation pattern  

across the septo-temporal axis of the DG in response to acute stress (Caudal et al., 2014;  

Dorey et al., 2012). Moreover, a recent report has demonstrated that exercise increased GR  

expression in the hippocampus in single-housed but not pair-housed adult mice (Pan-Vazquez  

et al., 2015). Whether adolescent social isolation stress can affect the pro-neurogenic effect of  

exercise through the differential expression and activation of GR and MR in the vDG remains  

to be investigated. Another potential vDG-mediated mechanism underlying the attenuation of  

exercise-induced increase in neurogenesis by stress is through changes in the pro-neurogenic  

plasticity molecule BDNF (Berchtold et al., 2005; Chen and Russo-Neustadt, 2009;  

Ploughman et al., 2007; Tang et al., 2008). This is due to the fact that a stressful spatial  

navigation task has previously been shown to differentially affect the expression of BDNF in  

the dorsal (increased expression) and ventral (decreased expression) subregions of the DG  

(Hawley et al., 2012). The N-methyl-D-aspartate (NMDA) receptor activation pathway has  

also been implicated in both stress- and exercise-related changes in hippocampal  

neurogenesis. Specifically, exercise induced a robust increase in the activation of NMDA  

receptor albeit in cortical mouse tissue (Dietrich et al., 2005) and NMDA receptors have been  
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reported to operate downstream of the stress hormone, corticosterone to regulate hippocampal  

neurogenesis (Cameron et al., 1998). Given that there is a lower density of binding sites for  

NMDA receptors in the vDG compared to dDG (Pandis et al., 2006), it could be speculated  

that the two stimuli (isolation stress and exercise) compete for activation of the same  

pathway. Finally, isolation stress and exercise may also differentially impact upon cell death  

in the dorsal and ventral DG. In the current study, we show a significant decrease in the  

number of apoptotic cells in the vDG of pair housed mice with access to a running wheel.  

This may reflect a protective mechanism of exercise against cell death, which is attenuated by  

isolation-induced stress. However, it is important to note that the apoptosis measured here  

accounted for all cells in the vDG, hence we cannot conclude that the effects of isolation  

stress and exercise on apoptosis are specific to newly generated neurons.  

  

It is surprising that we found no differences in the survival of newborn neurons of either area  

of the DG in single- and pair- housed sedentary adolescent mice. Studies conducted during  

adulthood have reported that social isolation results in anxiety- and depression-like  

behaviours in mice along with a reduction in levels of neuroplasticity genes (Berry et al.,  

2012; Ieraci et al., 2016). Social isolation during adolescence in non-human primates  

(marmosets) also impaired hippocampal neurogenesis in time-dependent manner (Cinini et  

al., 2014). Moreover, social isolation during adulthood  has been shown to delay the pro- 

neurogenic effects of exercise in rats (Stranahan et al., 2006). Interestingly, evidence from the  

Pereira lab suggests that an enriched environment is necessary to promote neurogenesis in  

single- housed adult mice (Monteiro et al., 2014). It is possible that in the absence of other  

external stimuli, social condition does not affect neurogenesis during the adolescent period,  

possibly due to the high basal rate of neurogenesis that occurs during adolescence compared  

to adulthood (He and Crews, 2007). Alternatively, the mouse strain used in the current study  
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(generated on a BL6129 background) may have been a confounding factor by potentially 

limiting our ability to detect any downregulation of new neurons. In several independent 

studies examining the role of genetic influence on the baseline level of hippocampal 

neurogenesis, the B6129SF1 and 129Sv were among the strains showing the lowest levels of 

newborn neurons (Clark et al., 2011; Kempermann et al., 1997; Merritt and Rhodes, 2015).  

 

In conclusion, our results demonstrate that social isolation stress during adolescence 

attenuates an exercise-induced increase in neurogenesis. We show that this effect is most 

pronounced in the ventral hippocampus, a brain sub-region which plays a predominant role in 

anxiety and in regulating the stress response. Adolescence is a critical period for 

susceptibility to stress-related disorders as well as a time during which remodeling of 

hippocampal connectivity, including neurogenesis occurs. Thus the impact of stress during 

adolescence on hippocampal neurogenesis and associated behaviours may be particularly 

potent. We also show that TLX is necessary for the pro-neurogenic effects of exercise during 

adolescence and have previously shown that the role of TLX in anxiety-related behaviours is 

most apparent during adolescence. TLX is thus an important intrinsic regulator of exercise-

induced changes in neurogenesis and may be a key target in understanding the interaction 

between positive and negative modifiable lifestyle factors such as stress and exercise on 

hippocampal neurogenesis and associated behaviours during adolescence.   
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Figure Captions 

Figure 1: Experimental design. 

Outline of the experimental groups and timeline illustrating the duration of the experiment. 

 

Figure 2: Nr2e1 is necessary for the pro-neurogenic effect of exercise to occur. 

Mean number of BrdU+ (A) and BrdU+NeuN+ (B) cells per section in the whole, dorsal and 

ventral hippocampus of singly-housed wild type or Nr2e1
-/-
 adolescent mice with or without 

access to running wheels. Data are expressed as mean ± SEM. *** p < 0.001 compared to 

WT counterparts; ++ p < 0.01, + p < 0.05 compared to WT sedentary mice; (Two-way 

ANOVA, Fisher’s LSD), n = 5-6. Representative confocal images through the DG from WT 

sedentary (C) and running (D) and Nr2e1
-/-
 sedentary (E) and running (F) mice. 

Immunohistochemical staining shows BrdU+ (red), NeuN+ (green) and BrdU+NeuN+ 

(orange) cells at 10X magnification. Scale bar = 100 µm. Higher magnification images depict 

immunopositive cells in the DG for BrdU (C’ – F’), NeuN (C’’ – F’’) and merged channels 

(C’’’ – F’’’). Scale bar = 25 µm.  

 

Figure 3: Differential modulation of neurogenesis by isolation stress and exercise across 

the septo-temporal axis of the DG in adolescent mice. 

Mean number of BrdU+ (A) and BrdU+NeuN+ (B) cells per section in the whole, dorsal and 

ventral hippocampus of singly- or pair- housed adolescent mice with or without access to 

running wheels. Data are expressed as mean ± SEM. * p < 0.05, *** p < 0.001 compared to 

single- or pair- housed sedentary counterparts; + p < 0.05, ++ p < 0.01 compared to pair-

housed running mice; (Two-way ANOVA, Fisher’s LSD), n = 4-6. Representative confocal 

images of coronal sections through the dDG and vDG immunohistochemically stained with 

BrdU (red) and NeuN (green) from pair-housed sedentary (dDG: C, vDG: G), pair-housed 
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running (dDG: D, vDG: H), single-housed sedentary (dDG: E, vDG: I) and single-housed 

running (dDG: F, vDG: J) mice. Images were taken at 10X magnification. Scale bar = 100 

µm. Higher magnification images depict immunopositive cells in the DG for BrdU (dDG: C’ 

– F’, vDG: G’ – J’), NeuN (dDG: C’’ – F’’, vDG: G’’ – J’’) and merged channels (dDG: 

C’’’ – F’’’, vDG: G’’’ – J’’’). Scale bar = 25 µm.  

 

 Figure 4: Differential modulation of apoptosis by isolation stress and exercise across 

the septotemporal axis of the DG in WT but not Nr2e1
-/-
 adolescent mice. 

Mean number of active caspase-3+ cells per section in whole, dorsal and ventral 

hippocampus of singly-housed wild type or Nr2e1
-/-
 adolescent mice (A) and singly- or pair-

housed wild type adolescent mice with or without access to running wheels (B). Data are 

expressed as mean ± SEM. * p < 0.05, compared to single- or pair- housed sedentary 

counterparts; + p < 0.05, compared to single-housed running mice; (Two-way ANOVA, 

Fisher’s LSD), n = 4. Representative bright field images of coronal sections through the 

hippocampus immunocytochemically stained with active caspase-3 (dark brown; black 

arrows) from a wild type control (C) and Nr2e1
-/-
 (D) mouse. Images were taken at 20X 

magnification. Scale bar = 100 µm. 
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Figure 1: Experimental design.  

 

321x184mm (300 x 300 DPI)  

 

 

Page 24 of 27

John Wiley & Sons

Hippocampus

This article is protected by copyright. All rights reserved.



  

 

 

Figure 2: Nr2e1 is necessary for the pro-neurogenic effect of exercise to occur.  
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Figure 3: Differential modulation of neurogenesis by isolation stress and exercise across the septo-temporal 
axis of the DG in adolescent mice.  
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Figure 4: Differential modulation of apoptosis by isolation stress and exercise across the septotemporal axis 
of the DG in WT but not Nr2e1-/- adolescent mice.  
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