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a b s t r a c t 

A well-known control policy in stochastic inventory control is the (R, s, S) policy, in which inventory is 

raised to an order-up-to-level S at a review instant R whenever it falls below reorder-level s . To date, little 

or no work has been devoted to developing approaches for computing (R, s, S) policy parameters. In this 

work, we introduce a hybrid approach that exploits tree search to compute optimal replenishment cycles, 

and stochastic dynamic programming to compute (s, S) levels for a given cycle. Up to 99.8% of the search 

tree is pruned by a branch-and-bound technique with bounds generated by dynamic programming. A 

numerical study shows that the method can solve instances of realistic size in a reasonable time. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Single-item, single-stocking location, stochastic inventory sys- 

ems have long been investigated under various operational as- 

umptions, and the associated literature is large. Scarf’s seminal 

aper, Scarf (1959) , addressed this problem over a finite planning 

orizon comprising discrete time periods, non-stationary stochas- 

ic demands, a fixed ordering cost, and linear holding and shortage 

osts. Scarf proved that the (s, S) policy (more precisely the (s t , S t )

olicy) is cost-optimal. In this policy the decision-maker checks the 

urrent inventory position at review epochs (the start of each time 

eriod) and if the inventory position is at or below s t an order is

laced to raise it to S t . For a planning horizon of T periods the op-

imal (s t , S t ) policy requires 2 T policy parameters, computed in a 

ere-and-now fashion at the start of the planning horizon. Actual 

eplenishment timings and associated order quantities are instead 

etermined in a wait-and-see manner. 

In this paper, we address a more general form of the inventory 

ontrol problem described by Scarf. According to Silver (1981) the 
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R, s, S) policy is one of the most commonly adopted inventory 

ontrol strategies (also called (T , s, S) or (s, S, T ) in the literature,

abai, Syntetos, and Teunter (2010) ; Lagodimos, Christou, and Sk- 

uri (2012a) ). In an (R t , s t , S t ) system the inventory level is checked

nly at review epochs R t , which are policy parameters that are 

xed at the start of the planning horizon. After a review, an or- 

er may be placed to raise the inventory level up to S t if it is at or

elow s t . 

Two special cases of the (R, s, S) policy naturally arise. Firstly, 

t reduces to the (s, S) case if there is no explicit cost involved in

arrying out inventory reviews. Inventory review (also known as 

tock-taking) is costly in practice, so we consider the case in which 

 fixed system control cost Silver (1981) is incurred when the in- 

entory is reviewed, e.g. Christou, Skouri, and Lagodimos (2020) ; 

athoni, Ridwan, and Santosa (2019) . The (R, s, S) policy relaxes the 

ost accounting assumption that the fixed cost of replenishment 

overs both review and delivery costs, and separates the fixed cost 

f conducting a review from the fixed ordering cost. One practical 

mplication of this relaxation is that the order cancellation and rel- 

vant costs can be explicitly incorporated into inventory planning. 

Secondly, the (R, s, S) reduces to the (R, S) policy (the replen- 

shment cycle policy ) if reorder levels s t are equal to the order-up- 

o-levels S t . In a replenishment cycle policy, the replenishment pe- 

iods are fixed at the beginning of the planning horizon and the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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eplenishment orders are placed only in these periods after period 

emands so far have been observed. 

Although (R, s, S) is one of the most general and frequently 

sed inventory policies, as pointed out by Silver (1981) the deter- 

ination of the exact best values of the three parameters is extremely 

ifficult . To the best of our knowledge no approach to computing 

hem has been presented in the literature. We fill this important 

ap in the literature by making the following contributions: 

• we introduce an efficient hybrid of branch-and-bound and 

stochastic dynamic program (SDP) to compute optimal policy 

parameters; 
• we improve the branch-and-bound by using tighter bounds 

computed through a separate dynamic programming (DP) 

method; 
• we show empirically that the new algorithm performs signifi- 

cantly better than a baseline method and that it is able to solve 

problems of realistic size in a reasonable time. 

The paper is structured as follows. Section 2 surveys related 

iterature. Section 3 provides a problem description. Section 4 in- 

roduces a simple SDP formulation. Section 5 introduces a branch- 

nd-bound strategy. Section 6 carries out a comprehensive numer- 

cal study. Finally, Section 7 concludes the paper. 

. Literature review 

The problem of computing policy parameters for an inventory 

ontrol system under stochastic demand has received a great deal 

f attention. In this section, we survey the relevant literature on 

he classic stochastic inventory control problem. We then survey 

ifferent versions of the problem. Finally, we survey (R, s, S) real- 

orld applications. 

An important class of these problems is the single-item single- 

ocation non-stationary stochastic lot-sizing under linear holding 

osts, penalty costs and both linear and fixed ordering costs. Dif- 

erent policies can be used to determine the size and timing of 

he orders on such setting. In his seminal work, Scarf charac- 

erises the structure of the optimal policy for such a problem. 

he framework proposed by Bookbinder and Tan (1988) divides 

he policies into three classes: static uncertainty, dynamic uncer- 

ainty and static-dynamic uncertainty. These classes differ in the 

oment at which the decisions are taken. Since then, numerous 

esearch works tackled the computation of policy parameters un- 

er demand uncertainty, mainly focusing on the (s, S) and the 

R, S) policies that have a flexible order quantity. According to the 

trategies categorisation presented in Powell (2019) , these works 

an be divided into two types: deterministic/special structure solu- 

ions or sample models . The first category, that comprises this study, 

ncludes a wide variety of approaches based on: dynamic pro- 

ramming Özen, Do ̆gru, and Tarim (2012) ; Rossi, Tarim, Hnich, and 

restwich (2011) ; Scarf (1959) , mixed-integer linear programming 

arim and Kingsman (2004) ; Tunc, Kilic, Tarim, and Rossi (2018) ; 

iang, Rossi, Martin-Barragan, and Tarim (2018) , approximations 

utierrez-Alcoba, Rossi, Martin-Barragan, and Hendrix (2017) , and 

onstraint programming Rossi, Tarim, Hnich, and Prestwich (2012) . 

he sample models category includes two-stage stochastic pro- 

ramming, that has been applied to inventory policy computation 

n Cunha, Raupp, and Oliveira (2017) ; Fattahi, Mahootchi, Moat- 

ar Husseini, Keyvanshokooh, and Alborzi (2015) ; dos Santos and 

liveira (2019) . Different comparison studies have been conducted 

ecently to benchmark different aspects of these policies: Kilic and 

arim (2011) extends a measure of planning instability for the non- 

tationary stochastic lot-sizing; Dural-Selcuk, Rossi, Kilic, and Tarim 

2019a) compares different policies performances in the receding 

orizon, Sani and Kingsman (1997) and Babai et al. (2010) are com- 

arative studies on the performances of (s, S) heuristics. 
2 
Modifications on the original inventory model have been pro- 

osed to allow a closer representation of real-world problems. 

illon, Oliveira, and Abbasi (2017) proposes an (R, S) policy so- 

ution to manage the blood supply chain, that includes perish- 

ble products. Alvarez, Buijs, Kilic, and Vis (2020) ’s model con- 

iders both quantity and quality decay of the inventory product; 

he quality can be improved by mixing it with a higher quality 

roduct. A set of heuristics for the lot-sizing problem with re- 

anufacturing of returned products is presented in Kilic and Tunc 

2019) . All-units discount (s, S) policy has been analysed in Wang, 

u, Zhang, and Hua (2019) . Uncertainty can involve other aspects 

f the inventory system; for example, Bashyam and Fu (1998) ; 

ossi, Tarim, Hnich, and Prestwich (2010) considers a stochas- 

ic lead time. Different supply chain configuration can be consid- 

red; for example, a two-echelon inventory system Schneider and 

inks (1991) ; Schneider, RNKS, and Kelle (1995) . Ma, Rossi, and 

rchibald (2019) provides an updated review on stochastic inven- 

ory control algorithms, while Bushuev, Guiffrida, Jaber, and Khan 

2015) presents a broader picture of the state-of-the-art in lot siz- 

ng. 

The (R, s, S) policy parameters computation has been tackled in 

he literature under the stationary, continuous time setting. With 

his configuration, only three parameters have to be optimised 

ince the demand does not change over time. This problem has 

een solved to optimality by Lagodimos et al. (2012a) . In Christou 

t al. (2020) ; Lagodimos, Christou, and Skouri (2012b) a batch ver- 

ion of the policy is considered. 

None of the surveyed methods can be easily adapted to com- 

ute the (R, s, S) policy parameters under the finite horizon and 

iscrete time setting, since it has three sets of decision variables 

aking the previous models not applicable. While other policies 

an be used for the same problem, the (R, s, S) is a more generic

odel and has better cost performances, being the (s, S) and the 

R, S) specific case of an (R, s, S) policy. The introduction of the re-

iew cost makes no difference in the (s, S) and (R, S) policy com- 

utation; in the (s, S) the cost is charged in every period, while 

n the (R, S) every review coincides with an order. A static policy 

ould also have poor performance because it can not react to the 

emand realisations Dural-Selcuk et al. (2019a) . 

The (R, s, S) policy is widely used by practitioners, usually not 

ndependently but as a component of complex supply chains, and 

ere we survey some recent models. Due to the complexity of the 

etermination of its parameters, in the surveyed papers, the value 

f R is considered to be constant across the time horizon. Bijvank 

nd Vis (2012a) describe an inventory control system for point- 

f-use location. They compare the performance of (R, s, Q ) poli- 

ies (with fixed order quantities) against (R, s, S) under stationary 

tochastic demand. Because of stationarity, the policy parameters 

ere constant throughout the horizon. Ahmadi, Mahootchi, and 

onnambalam (2018) ; Monthatipkul and Yenradee (2008) tackle 

 capacitated two-echelon inventory system with one warehouse 

nd multiple retailers. They use a heuristic based on Schneider 

t al. (1995) for the (R, s t , S t ) policy. Cabrera et al. (2013) consider

 similar two-level supply chain in which a single plant serves a 

et of warehouses, which in turn serve a set of end customers or 

etailers. The warehouses model is based on (R, s, S) and they de- 

elop a heuristic to solve an inventory location model with this 

onfiguration. The same problem has been tackled by Araya-Sassi, 

iranda, and Paredes-Belmar (2018) using Lagrangian relaxation 

nd the subgradient method. Bijvank and Vis (2012b) analysed 

ost-sales inventory control policies with service level. They define 

n optimal policy starting from the (s, S) SDP introduced by Scarf 

1959) . They present a value-iteration algorithm to find the (R, s, S) 

arameters that minimise the inventory cost subjected to service 

onstraints. As the parameters are fixed, their solution is unsuit- 

ble for a non-stationary setting. 
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The state-of-the-art analysis confirms the novelty of our solu- 

ion and the practitioners’ interest in the (R, s, S) policy usage in a 

tochastic environment. 

. Problem description 

We consider the single-item, single-stocking location, stochastic 

nventory control problem over a T -period planning horizon. With- 

ut loss of generality, we assume that orders are placed at the start 

f each period and that the lead time is zero, as is common in the

iterature Bollapragada and Morton (1999) ; Scarf (1959) ; Tarim and 

ingsman (2004) . An inventory control policy defines the timing 

nd quantities of orders over the planning horizon. We define a 

eview moment, or review period, as a period in which the level 

f the inventory is assessed and an order can be placed. A replen- 

shment cycle is represented by the interval between two review 

oments. We denote by Q t the quantity of the order placed in pe- 

iod t, and an inventory review cost by W . Ordering costs are rep-

esented by a fixed value K and a linear cost, but we shall assume 

ithout loss of generality that the linear cost is zero. The extension 

f our solution to the case of a non-zero production/purchasing 

ost is straightforward, as this cost can be reduced to a function of 

he expected closing inventory level at the final period Tarim and 

ingsman (2004) . At the end of each period, a linear holding cost 

 is charged for every unit carried from one period to the next. 

Demands d t in each period t are independent random vari- 

bles with known probability distributions. Backlogging of excess 

emand is assumed, so if the demand in a period exceeds on-hand 

nventory the rest of the demand is carried to the next period; a 

inear penalty cost b is incurred on any unit of back-ordered de- 

and at the end of a period. 

Under the non-stationarity assumption the (R, s, S) policy takes 

he form (R t , s t , S t ) where R t denotes the length of the t th replen-

shment cycle, while parameters s t and S t denote the reorder-level 

nd order-up-to-level associated with the t th inventory review. We 

onsider the problem of computing the (R, s, S) policy parameters 

hat minimize the expected total cost over the planning horizon. 

. Stochastic dynamic programming formulation 

In this section, we provide a simple technique to compute 

he optimal (R, s, S) policy parameters. It can be considered the 

tate-of-the-art in computing such parameters in the presence of 

tochastic non-stationary demand. Moreover, it constitutes the ba- 

is of the branch-and-bound technique introduced later. 

We represent the replenishment moments by binary variables 

t ( t = 1 , . . . , T ) which take value 1 if a review is placed in period 

and 0 otherwise. We assume Q t = 0 if γt = 0 so no order will be

laced outside a review moment. The optimal (R, s, S) policy for 

ur problem is represented by the parameters γt , s t , S t that mini- 

ize the expected total cost. 

Consider an arbitrary review cycle plan with γt as a parameter, 

ot a decision variable. We denote the closing inventory level for 

ach period by I t , and the given initial inventory level by I 0 . We as-

ume that the orders are placed at the beginning of each time pe- 

iod and delivered instantaneously. The problem can be formulated 

nd solved to optimality as an SDP ( Bellman, 1966 ). The expected 

mmediate cost combining ordering, review, holding and penalty 

osts, given action Q t : 

f t (I t−1 , Q t ) = γt W + K1 { Q t > 0 } + E[ h max (I t−1 + Q t − d t , 0) 

+ b max (d t − I t−1 − Q t , 0)] (1) 

Let C t (I t−1 ) represent the expected total cost of an optimal pol- 

cy over periods t, . . . , n and 1 is the indicator function. These 
3 
ariables are the states of the DP formulation. We model the prob- 

em with the functional equation: 

 t (I t−1 ) = min 

0 ≤Q t ≤Mγt 

( f t (I t−1 , Q t ) + E[ C t+1 (I t−1 + Q t − d t )]) (2)

here M is a sufficiently large number. The boundary condition is: 

 T +1 (I T ) = 0 (3) 

C 1 (I 0 ) , where I 0 is the initial inventory level, contains the ex- 

ected cost for the optimal (s, S) policy associated with the γ as- 

ignment. To reduce the computational time we can exploit the 

roperty of K-convexity ( Scarf, 1959 ) when solving the SDP. 

Let ˆ C 1 (I 0 ) represent the expected total cost of the optimal 

R, s, S) policy, given the initial inventory level I 0 at period 1. We 

an define it as: 

ˆ 
 1 (I 0 ) = min 

γ1 , ... ,γT 

(C 1 (I 0 )) (4) 

valuating the optimal (s, S) policy for all possible assignments of 

1 , . . . , γT yields the optimal (R, s, S) policy. The model works with 

very possible demand distribution, as long as it is finite and dis- 

retisable. This is our baseline method on which we aim to im- 

rove. 

.1. Unit cost 

The algorithm can be extended to model the per unit order- 

ng cost. There are two options: reducing it to a function of the 

xpected closing inventory, e.g. Tarim and Kingsman (2004) ; or in- 

luding it in the immediate cost function. 

Let v be the per unit ordering/production cost, Eq. (1) is re- 

laced by: 

f t (I t−1 , Q t ) = γt W + K1 { Q t > 0 } + v Q t + E[ h max (I t−1 + Q t − d t , 0) 

+ b max (d t − I t−1 − Q t , 0)] (5) 

.2. Lost sales 

Complete backlogging of the demand is a limiting assump- 

ion in many real-world settings. Studies analysing customer be- 

aviour show that in case of a stock out, only a minority delay 

he purchase ( Verhoef & Sloot, 2006 ). According to Bijvank and Vis 

2012a) , the lost sales configuration is underrepresented in the lot- 

izing literature, even if it is more appropriate to model customers’ 

ehaviour. Approximating a lost sales model with a backlog model 

esults in a non-negligible increase in costs ( Zipkin, 2008 ). 

The SDP formulation can be extended to model lost sales us- 

ng the partial backorder configuration presented in dos Santos and 

liveira (2019) . They define as β ( β ∈ [0 , 1] ) the fraction of the un-

et demand that is carried on to the next period and the reminder 

s lost. This parameter gives the flexibility to model both backlog 

 β = 1 ), lost sales ( β = 0 ) or a combination of the two. The func-

ional Eq. (2) becomes: 

 t (I t−1 ) = min 

0 ≤Q t ≤Mγt 

( f t (I t−1 , Q t ) + E[ C t+1 ( max (I t−1 

+ Q t − d t , β(I t−1 + Q t − d t ))]) (6) 

.3. Example 

We use a simple example to illustrate the application of our 

ethod, with a 3-period planning horizon. We assume an initial 

nventory level of zero and a Poisson distributed demand for each 

eriod with averages d = [20 , 30 , 40] . We consider an ordering cost

alue K = 30 , a review cost W = 10 , and holding and penalty costs

f h = 1 and b = 10 per unit per period respectively. 

The algorithm must choose replenishment moments γ = 

 γ , γ , γ 〉 that minimize the expected cost of the policy. Table 1
1 2 3 
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Fig. 1. Search tree for a 3-period instance: nodes contains level numbers. 

Table 1 

Optimal expected cost for the 3-period example. 

γ1 γ2 γ3 Expected cost 

0 0 0 1600.0 

0 0 1 751.8 

0 1 0 304.7 

0 1 1 302.0 

1 0 0 185.0 

1 0 1 142.7 

1 1 0 153.1 

1 1 1 150.4 
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hows the expected cost of each (s, S) policy computed with differ- 

nt review periods. The optimal solution is γ = 〈 1 , 0 , 1 〉 with ex-

ected cost 142.7. However, exhaustive search becomes impractical 

s the planning horizon grows so in Section 5 we develop a more 

fficient method. 

. A hybrid of branch-and-bound and SDP 

In this section, we present a hybrid technique that combines 

DP and branch-and-bound. The algorithm obtains optimal (R, s, S) 

olicies associated with specific review plans at leaf nodes. The 

earch tree (defined in Section 5.1 ) is explored by depth-first 

earch (DFS). The subproblems associated with the nodes are de- 

ned in Section 5.2 . Section 5.3 introduces the pruning condition 

nd lower bound computed with DP. Finally, Section 5.4 presents 

he node resolution process. 

.1. Search tree 

The branch-and-bound goal is to find the review plan with the 

inimum expected cost. During branching of γt , the value is fixed 

o 1 or 0. The search tree has T + 1 levels, and the branching at its

oot fixes the value of γT . At level � branching involves the vari- 

ble γT −� +1 . The path from the root to a node at level � represents

 fixed assignment of the suffix 〈 γT −� +2 , . . . , γT 〉 . A leaf node rep-

esents a complete assignment of the γ values. Fig. 1 shows the 

earch tree of a 3-period problem, as in the example presented in 

he previous section. 

.2. Subproblems 

Given the period t and the partial assignment of a suffix of the 

eview moments 〈 γt , . . . , γ 〉 , the problem at a node is to find the
T 

4 
 γ1 , . . . γt−1 〉 that minimizes the expected cost of the optimal pol- 

cy. We denote this problem as BnB-SDP( t, 〈 γt , . . . , γT 〉 ). For each

ubproblem using Eq. (2) we can compute the expected cost of the 

ptimal policy starting at period t with inventory level i . This is 

ossible because all review moments after period t are fixed, and 

ecause of the SDP stage structure presented in Section 4 . 

.3. Bounds and pruning 

If all the solutions in the subtree rooted in a node are subopti- 

al then we can prune that node without compromising optimal- 

ty. 

roposition 1. Given a fixed assignment of γ : 

in 

I 
(C t (I)) ≥ min 

I 
(C t−1 (I)) (7) 

From the functional Eq. (2) it is clear that C t is equal to the 

xpected value of C t+1 plus some non-negative costs, so the mini- 

um cost in each stage increases monotonically with tree depth. 

During tree search C̄ records the expected cost of the best plan 

omputed so far, that is the minimum C 1 (I 0 ) among all leaves al- 

eady computed. This is used as an upper bound for the expected 

ost of the optimal plan as follows. Considering the subproblem 

nB-SDP( t, [ γt , . . . , γT ] ) with the associated C t (i ) expected costs: 

roposition 2. If 

in 

i 
(C t (i )) ≥ C̄ (8) 

hen because of the monotonicity of the cost function: (7) : 

in 

i 
(C 1 (i )) ≥ C̄ (9) 

inally, since the expected cost associated with a plan ( C 1 (I 0 ) ) is part

f C 1 : 

 1 (I 0 ) ≥ C̄ (10) 

Hence if (8) is true the subproblem BnB-SDP( t, [ γt , . . . , γT ] ) is

ot part of an optimal solution and the search tree can be pruned. 

However, this pruning condition makes no assumption on the 

osts faced on periods 1 , . . . , t − 1 , and a lower bound on the costs

n those periods leads to more effective pruning. Let MC t (I t ) rep- 

esent a lower bound on the cost faced in periods 1 , . . . , t with a

losing inventory of I t in period t . The pruning condition (8) can 

e refined to: 

in 

I t 
(C t (I t−1 ) + MC t−1 (I t−1 )) ≥ C̄ (11) 
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1 https://github.com/andvise/RsS-EJOR 
aving a bound independent from the review periods allows us to 

ompute it only once before the branch-and-bound algorithm. 

The bounds can be computed by a DP with stages and states 

quivalent to the SDP presented in Section 4 and functional equa- 

ion: 

C t (I t ) = min 

{ 

f t (I t , 1) + min 

j<I t 
(MC t−1 ( j)) 

f t (I t , 0) + min 

j≥I t 
(MC t−1 ( j)) 

(12) 

here, as defined in Section 4 , I t is the current inventory level, and

f t (I t , Q t ) is the ordering-holding-penalty cost. In the first case, an

rder has been placed in period t so the inventory level in the pre- 

ious period was less than or equal to the current level. In the sec- 

nd case, an order has not been placed so the previous inventory 

evel was greater than or equal to the current level. The boundary 

ondition is: 

C 1 (I 1 ) = 

{
W + K + f 1 (I 1 ) if I 1 > I 0 

f 1 (I 1 ) if I 1 ≤ I 0 
(13) 

here I 0 is the initial inventory. Considering finite demand, the DP 

as an amount of states equal to the number of periods multiplied 

y the maximum inventory level. Each state requires a single com- 

utation of Eq. (12) , that is pseudo-polynomial in relation to the 

aximum inventory. The overall complexity of a DP is the num- 

er of states multiplied by the complexity required to solve one of 

hem, so the overall complexity is pseudo-polynomial. 

.4. Node computation 

Algorithm 1 summarises the branch-and-bound procedure. In 

ine 1, the SDP stage t is solved. In line 7, the pruning condition 

s evaluated: if a pruning occurs the branching phase is skipped. 

n lines 8 and 9 DFS recursively continues. Lines 3–6 relate to leaf 

odes: if the policy represented by the leaf is better than the best 

ound so far, the value of C̄ is updated. The algorithm starts by in- 

oking BnB-SDP( T + 1 , ∅ ), and at the end, the expected cost of the

ptimal policy is given by C̄ . 

lgorithm 1 BnB-SDP( t, [ γt , . . . , γT ] ). 

ata : the current upper bound C̄ , the C t+1 (i ) computed at the par-

nt node, and the bounds MC(i ) . 

1: Compute C t using Equation 2 

2: if t = 1 then 

3: if C 1 (I 0 ) < C̄ then 

4: C̄ ← C 1 (I 0 ) 

5: Save [ γ1 , . . . , γT ] as incumbent review plan 

6: else 

7: if min (C t (i ) + MC t−1 (i )) ≥ C̄ thenreturn 

8: BnB-SDP( t − 1 , [0 , γt , . . . , γT ] ) 

9: BnB-SDP( t − 1 , [1 , γt , . . . , γT ] ) 

The algorithm always branches by assigning first γt = 0 , but its 

erformance can be improved by randomisation. If, during each 

ranching phase, we randomly order lines 8–9 we obtain a better 

olution earlier, leading to a stronger pruning of the search tree. 

e evaluate the effect of this randomisation in Section 6 . 

.5. Guided tree search 

The random descent can become trapped in inferior branches 

f the search tree. It takes a considerable time to obtain a rea- 

onable review plan, and a good cost upper bound in these cases. 

omputing a near-optimal review plan and using it to guide the 

earch leads to the immediate computation of a policy with a low 
5 
xpected cost. This tighter bound increases the number of nodes 

roved sub-optimal by the pruning condition. 

A reasonable review plan can be computed using the (R t , S t ) 

olicy. As mentioned in the introduction, this policy places an or- 

er at each review moment. The replenishment cycles ( R t ) can be 

sed as a review plan, while the order-up-to-levels S t can be ig- 

ored. During the first descent of the branch-and-bound search 

ree, the gamma values are selected following this review plan; 

hus, the first leaf to be computed is the one that has R t as re-

iew moments. This leaf represents the optimal (R t , s t , S t ) policy

or that review plan, and it should have a low expected cost. Af- 

er computing the first leaf of the tree, the search proceeds in the 

eplenishment plan’s neighbourhood using a randomised approach. 

The experimental section shows the improvement in pruning 

fficacy and computational time. Good computational performance 

nd implementation simplicity make the MILP formulation pre- 

ented in Rossi, Kilic, and Tarim (2015) a practical solution to com- 

ute the (R t , S t ) policy; this formulation is used in the experimen-

al section. 

.6. Example 

The search tree with the DP bounds for the example of 

ection 4.3 is represented in Fig. 2 . Each internal node contains the 

alue of the pruning condition with the DP bounds (11) . An inter- 

al node is underlined if the pruning occurs in that node. Each leaf 

s in bold if it contains an improvement compared to the previous 

est solution C̄ . Pruned nodes are indicated by an asterisk ( ∗). 

We define pruning percentage as the percentage of nodes that 

re proved to be suboptimal by the pruning condition during tree 

earch. In this example, the number of computed nodes is 10 and 

 nodes have been pruned, so the pruning percentage is 4 / 14 = 

8 . 57% . 

. Computational study 

In this section, we evaluate the new methods, including an 

ssessment of the effects of branching randomisation and prob- 

em parameters (costs) empirically. We conduct two sets of ex- 

eriments as follows. In Section 6.1 , we analyse the scalability of 

he new approaches by increasing the number of periods until no 

ethod is able to solve the problem within a 1-hour time limit 

onsistently. In Section 6.2 we fix the planning horizon to 10 and 

0 periods and vary the cost parameters. For the experiments, we 

se three (R, s, S) policy solvers: 

• SDP , the SDP technique described in Section 4 which we con- 

sider the current state-of-the-art. 
• BnB , the branch-and-bound solution introduced in Section 5 . 
• BnB-Rand , branch-and-bound with randomised branching. 
• BnB-Guided , branch-and-bound with a guided tree search, 

Section 5.5 . 

We compare these in terms of computational time, pruning per- 

entage and average number of review periods (but not expected 

osts because the solutions are optimal in each case). All experi- 

ents are executed on an Intel(R) Xeon E5620 Processor (2.40GHz) 

ith 32 Gb RAM. For the sake of reproducibility, we made the code 

vailable 1 . 

We base our numerical studies on the set of instances origi- 

ally proposed by Berry (1972) and widely used in the literature 

ural-Selcuk, Rossi, Kilic, and Tarim (2019b) ; Rossi, Tarim, Hnich, 

nd Prestwich (2008) ; Xiang et al. (2018) . A Poisson variable rep- 

esents the demand in each period. 

https://github.com/andvise/RsS-EJOR
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Fig. 2. Branch-and-bound technique applied to the toy problem. 

Fig. 3. Average computational time of the 100 instances over the number of periods. Time limit 1 hour. 
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.1. Scalability 

This experiment aims to assess the improvement provided by 

he branch-and-bound approach compared to what we can con- 

ider as the state-of-the-art. Furthermore, we aim to assess how 

he randomisation and the guided search affect the computational 

erformances and the pruning percentage. For the scalability anal- 

sis, we use randomly generated parameter values and progres- 

ively increase the number of periods. We fix the holding cost per 

nit at h = 1 , but the other cost parameters are uniform random

ariables: ordering cost is in the range K ∈ [80 , 320] , review cost

s in the range W ∈ [80 , 320] and penalty cost per unit is in the

ange b ∈ [4 , 16] . Demands per period are uniform random vari-

bles in the range [30,70]. We generate 100 different instances and 

or planning horizons in the range 4–20 periods. 

Fig. 3 shows the average computational time over the 100 in- 

tances. The y-axis is logarithmic to show the exponential be- 

aviour of the solutions. The new method is able to solve instances 

lmost twice as large in a reasonable time. Though it still has ex- 
6 
onential behaviour, its slope is considerably less than that of the 

DP. The randomisation reduces the computational effort needed. 

he guided search requires the computation of an (R, S) policy be- 

ore the BnB approach. For small instances, the added computa- 

ional effort is higher than the improvement provided by a higher 

runing percentage. However, for medium/big instances, the im- 

rovement is considerable. 

Fig. 4 shows the range of the minimum and maximum com- 

utational times for increasing planning horizon lengths; we omit- 

ed BnB-Rand to improve the readability of the plot. The SDP so- 

ution has a low variability in the required computational time. 

nB-Guided presents the highest variability among the different 

olutions. This is due to the fact that in some instances, the pre- 

omputed replenishment plan is the optimal one and leads to a 

trong pruning of the tree that reduces the computational time 

onsiderably. 

Fig. 5 shows the pruning percentage ( Section 5.6 ) of the branch- 

nd-bound approaches. The pruning becomes more effective for 

onger planning horizons. A high value means that the approach 
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Fig. 4. Range of computational time over the number of periods. Time limit 1 h. 

Fig. 5. Average percentage of nodes pruned over the 100 instances in relation to the number of periods. 
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nds a good policy earlier in the search process; the cost of this 

olicy provides a tighter bound for the pruning condition ( Eq. (11) ).

e can see that BnB-Guided provides considerable improvement. 

.2. Instance type analysis 

In the parameter value analysis, we aim to understand how the 

ost parameters affect the computational effort required to find the 

olicy and the pruning percentage. We use a testbed of 324 in- 

tances. To generate the average demand values we use seasonal 

ata with different trends: 

• (STA) stationary case: ˜ d t = 50 
• (INC) positive trend case: ˜ d t = 
 100 t/ (n − 1) � 
• (DEC) negative trend case: ˜ d t = 
 100 − 100 t/ (n − 1) � 
• (LCY1) life-cycle trend 1 case: this pattern is a combination of 

the first 3 trends. The first third of positive trend up to an av- 
7 
erage demand of 75, a central stationary one and the last neg- 

ative third. If the number of periods is not a multiple of 3, the 

central period is extended. 
• (LCY2) life-cycle trend 2 case: this pattern is a combination of 

INC and DEC trends. Positive trend for the first half of the plan- 

ning horizon and negative trend for the second half. 
• (RAND) erratic: ˜ d t = 
 U(1 , 100) � 

All the patterns have an average demand of 50 per period. For 

he cost parameters we use all possible combinations of ordering 

ost values K ∈ { 80 , 160 , 320 } , review costs W ∈ { 80 , 160 , 320 } and

enalty costs b ∈ { 4 , 8 , 16 } , with holding cost fixed at h = 1 . We

se all combinations of cost parameters and the six demand pat- 

erns presented above for a full factorial experiment. We analyze 

he results for the 10-periods and 20-periods instances. 

Since the baseline ( Eq. (4) in Section 4 ) is too computationally 

xpensive (it takes approximately 45 days to solve a 20 periods in- 
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Table 2 

Computational times (in minutes), pruning percentage and number of reviews for 10 periods instances. Between brackets is the standard deviation of the pruning percentage. 

Computational time Pruning % 

Base BnB BnB-Guided BnB BnB-Guided Nr. reviews 

K values 80 14.62 0.55 0.3 82.15(3.37) 91.51(3.94) 3.0 

160 14.83 0.56 0.28 81.79(3.38) 92.06(4.07) 2.56 

320 14.97 0.61 0.32 80.31(4.74) 91.06(5.37) 2.06 

W values 80 14.83 0.68 0.46 78.36(4.37) 86.94(4.08) 3.0 

160 14.79 0.56 0.27 81.94(2.84) 92.48(2.48) 2.56 

320 14.8 0.48 0.17 83.96(1.99) 95.2(1.76) 2.06 

b values 4 14.89 0.57 0.28 81.48(3.32) 92.06(4.21) 2.39 

8 14.81 0.57 0.29 81.69(3.72) 91.89(4.27) 2.56 

16 14.71 0.58 0.33 81.09(4.7) 90.68(4.93) 2.67 

Pattern STA 10.76 0.37 0.21 82.87(2.87) 91.58(4.21) 2.63 

INC 17.3 0.69 0.46 81.27(3.27) 88.67(3.96) 2.7 

DEC 17.39 0.66 0.27 81.5(2.63) 93.7(3.6) 2.33 

LCY1 15.03 0.65 0.32 78.61(3.49) 90.72(4.52) 2.59 

LCY2 16.56 0.71 0.36 78.99(3.25) 90.57(5.01) 2.48 

RAND 11.79 0.35 0.17 85.27(3.86) 94.01(3.19) 2.48 

Average 14.81 0.57 0.3 81.42(3.96) 91.54(4.52) 2.54 

Table 3 

Computational times (in minutes), pruning percentage and number of reviews for 20 periods instances. Between brackets the standard deviation of the pruning percentage. 

Computational time Pruning % 

Base BnB BnB-Guided BnB BnB-Guided Nr. reviews 

K values 80 65366.67 105.12 47.57 98.56(0.76) 99.34(0.52) 6.04 

160 65470.02 109.35 49.78 98.53(0.92) 99.33(0.59) 5.17 

320 66070.17 115.98 51.9 98.47(1.04) 99.32(0.68) 4.13 

W values 80 66737.03 181.66 100.37 97.61(0.9) 98.67(0.56) 6.04 

160 64772.93 96.12 36.09 98.68(0.45) 99.5(0.23) 5.17 

320 65396.9 52.67 12.8 99.27(0.23) 99.83(0.1) 4.13 

b values 4 65851.88 96.59 41.92 98.7(0.76) 99.45(0.53) 4.78 

8 65847.45 108.37 48.75 98.56(0.83) 99.35(0.55) 5.2 

16 65207.52 125.49 58.59 98.3(1.07) 99.21(0.69) 5.35 

Pattern STA 43447.11 73.24 38.54 98.51(0.84) 99.23(0.66) 5.3 

INC 72449.66 110.73 69.98 98.69(0.62) 99.18(0.53) 5.41 

DEC 72706.98 141.49 48.06 98.29(1.05) 99.43(0.57) 4.7 

LCY1 62607.87 139.2 62.58 98.05(0.96) 99.13(0.72) 5.19 

LCY2 69243.25 141.35 56.22 98.22(0.82) 99.3(0.57) 5.04 

RAND 73358.85 54.88 23.13 99.36(0.31) 99.74(0.23) 5.04 

Average 65635.62 110.15 49.75 98.52(0.91) 99.33(0.6) 5.11 
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tance) we replace it with an estimate in the 20-periods instances. 

he estimate is computed by solving 100 times the SDP for differ- 

nt γ assignments and averaging it over all the possible assign- 

ents. 

Tables 2 and 3 give an overview of the computational time, 

he pruning percentage and the average number of reviews of the 

ethods for the 10- and 20-period experiments. They show that 

DP is not strongly affected by the cost parameters and that the 

ain difference is caused by the demand patterns. This is due to 

he maximum average demand per period being lower for STA, 

CY1 and RAND. The stationary case is faster to compute as its 

aximum is 50, the second-fastest is the first life cycle with a 

aximum of 75, and the erratic pattern is slowest. All the other 

atterns have a maximum of 100. 

The pruning percentage gives an indication of the efficacy of 

he branch-and-bound. Our algorithms perform particularly well 

n high review costs. For instance, with 20 periods and W = 320 

he pruning percentage reached a high average of 99 . 83% for BnB- 

uided, solving one instance in less than 13 minutes on average, 

hile the baseline is expected to take more than six weeks. For 

he BnB, the percentage is 98 . 52% , so it visits more than twice the

odes compared to the guided version. The randomised search (not 

hown in the table for the sake of readability) reaches an average 

f 98 . 92% . We note that the penalty cost also affects performance:

 higher penalty cost reduces pruning. 

The average number of review moments of the optimal policies 

ecreases as the ordering and the review increase. Also, a higher 
8 
enalty cost leads to more frequent reviews, which reduces the 

robability of demand excess and mitigates the uncertainty of the 

nventory level. We observe that the decreasing pattern requires 

ewer review periods than the others, due to its decreasing tail that 

educes the number of orders needed. 

Our best-proposed method outperforms the baseline by factors 

f 50 and 1300 on 10- and 20-period instances, respectively. 

. Conclusion and future work 

In this paper, we considered the single-item single-stocking lo- 

ation inventory lot-sizing problem with non-stationary stochastic 

emand, fixed and linear ordering cost, review cost, holding cost 

nd penalty cost. We present the first algorithm to compute op- 

imal (R, s, S) policy parameters. This policy has a high practical 

alue, but the computation of optimal or near-optimal parame- 

ers has been considered extremely difficult. Our proposed tech- 

ique is a hybrid of branch-and-bound and stochastic dynamic pro- 

ramming, enhanced by ad hoc bounds computed with dynamic 

rogramming, and by a randomised depth-first exploration of the 

earch tree. 

In an extensive numerical study, we first investigated the scal- 

bility of the technique under increasing time horizon, analysing 

oth computational time and the efficacy of the bounding tech- 

ique. We then tested the performance of the method for different 

ost parameters. Our technique performs best on low penalty costs 
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nd high review costs. On 20-period instances, it outperforms a 

aseline method by three orders of magnitude. 

This technique opens up multiple research directions on the de- 

ermination of (R, s, S) policy parameters. It can lead to new opti- 

al solutions for the same problem, and it can be improved with 

ighter bounds. It is also useful for computing optimality gaps of 

ew heuristics. 

In future studies, the approach presented herein can be ex- 

ended to overcome some of the limitations of the problem set- 

ing. Considering multiple items with joint shipping or modelling 

 more complex supply chain with multiple echelons are general- 

sations of this problem, and they would increase the applicability 

f the (R, s, S) policy. 
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