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Analytic methods show stability of the stationary accretion of test fluids but they are inconclusive in the

case of self-gravitating stationary flows. We investigate numerically stability of those stationary flows

onto compact objects that are trans-sonic and rich in gas. In all studied examples solutions appear stable.

Numerical investigation suggests also that the analogy between sonic and event horizons holds for small

perturbations of compact support but fails in the case of finite perturbations.

DOI: 10.1103/PhysRevD.78.124016 PACS numbers: 04.40.Nr, 95.30.Lz, 95.30.Sf

I. INTRODUCTION

Investigation of the spherical accretion onto compact
objects starts with seminal works of Hoyle, Lyttleton,
and Bondi [1–3] describing the infall of dust matter onto
a surface of a star moving through the interstellar medium.
The first hydrodynamical analysis of spherical accretion
was presented in 1952 by Bondi [4] who considered a
spherically symmetric flow of a polytropic perfect fluid
in a Keplerian gravitational potential. A general-relativistic
model of accretion in the Schwarzschild space-time has
been developed by Michel [5]. In all these works the test
fluid approximation has been adopted.

The first general-relativistic model with self-gravitating
steady fluids has been analyzed by Malec [6]. This work
has been later continued by Karkowski, Kinasiewicz,
Mach, Malec, and Świerczyński [7], and resulted in finding
a whole family of steady trans-sonic solutions of Einstein
equations describing a self-gravitating cloud of gas accret-
ing onto a central compact object (a black hole in this
particular case). The most striking fact about these solu-
tions is that, given fixed asymptotic parameters of the
model (such as the size of the cloud, speed of sound at
the outer boundary, and the total asymptotic mass of the
system), there exist two different trans-sonic solutions
corresponding to the same accretion rate—one, for which
most of the mass is contained in the central object, and the
other, where the amount of mass contained in the accreting
fluid constitutes almost all the mass of the entire configu-
ration. The first class of the solutions contains a subset of
the test fluid flows found by Michel. Other solutions are
new. Let us stress that, although these solutions are not
available in a closed form, many of their parameters and
properties can be inferred by analytical means. Such flows
might be associated with the Thorne-Żytkow stars [8,9] or
quasistars [10].

We should also mention here the work of Papadopoulos
and Font [11], who constructed a general-relativistic hy-
drodynamical code capable of simulating self-gravitating
flows and applied it to the strongly perturbed Michel’s
solution. The fluid perturbation was treated as self-
gravitating but the background solution corresponded to

the test fluid regime. A similar investigation, but in the
context of radiation hydrodynamics, has been done by
Zampieri et al. [12]. They investigated the stability of
solutions in Schwarzschild space-time found by Nobili
et al. [13].
The first proof of the stability of the trans-sonic accre-

tion in the Newtonian and relativistic, spherically symmet-
ric cases, given by Moncrief [14], was restricted to the test
fluid approximation. Analytic methods are inconclusive in
the case of self-gravitating accretion flows [15]. Below we
report the results of a numerical analysis of the stability of
both branches of solutions found in [7]. An interesting by-
product of this investigation is that in the nonlinear regime
sonic horizons are movable and the signal can get out from
within the sonic horizon in the original steady flow. That
hints to the limited validity of the formal analogy between
sonic and event horizons.
A stability analysis of Newtonian accretion solutions

with self-gravitating flows has been done for axially sym-
metric perturbations. In all examined cases we have ob-
served the stable behavior of both aforementioned
branches of solutions: those corresponding to the test fluid
as well as those where the mass of the fluid dominates over
the mass of a central object.
The order of the forthcoming sections is as follows.

Section II gives a short description of the two branches
of accreting flows in spherically symmetric space-times.
Section III introduces the dynamical equations of motion
in the form adopted in the numerical code. Section VI
reports results concerning stability of accreting flows.
The next section shows that sonic horizons can be pene-
trated from within by large perturbations. This suggests the
limited validity of the analogy between sonic and event
horizons. The stability of Newtonian accretion under axi-
symmetric perturbations is shown in Sec. VIII. Obtained
results are briefly reviewed in Sec. VIII.

II. STEADY SOLUTIONS

A general spherically symmetric space-time can be de-
scribed by the line element,
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ds2 ¼ �N2d~t2 þ �dr2 þ R2ðd�2 þ sin2�d�2Þ; (1)

where N, �, and R are functions of the coordinate radius r
and the asymptotic time variable ~t.

The extrinsic curvature of a slice of constant time ~t of the
space-time with the metric given by (1) has the following

nonzero elements: Kr
r ¼ @~t�=ð2�NÞ, K�

� ¼ K�
� ¼

@~tR=ðRNÞ. Accordingly the trace of the extrinsic curvature
can be written as trK ¼ N�1@~t lnð

ffiffiffiffi
�

p
R2Þ.

Similar calculations can be performed for the two-
spheres of constant radius r embedded in a given temporal
slice. The result for the trace of the extrinsic curvature
(twice the mean curvature of the surface) is k ¼
2@rR=ðR

ffiffiffiffi
�

p Þ.
In what follows we will consider the evolution of a

spherical cloud of perfect fluid accreting onto a central
object and described by the energy-momentum tensor

T�� ¼ ðpþ �Þu�u� þ pg��; (2)

where p is the pressure, � the energy density, and u� the
four-velocity of the fluid.

We start working with the comoving gauge, so that ur ¼
u� ¼ u� ¼ 0 (there exists a suitable geometric condition

imposed on extrinsic curvatures Kj
i for such a choice of

coordinates [6]), and introduce a function U � RK�
� ¼

@~tR=N. It has the meaning of the spatial part of the fluid
four-velocity computed in the reference frame ðt0; r0Þ that
has been obtained by the transformation ð~t; rÞ � ðt0 ¼
~t; r0 ¼ Rð~t; rÞÞ. We also introduce the quasilocal mass,
which can be easily expressed as

mðRÞ ¼ mtot � 4�
Z 1

R
R02�dR0:

Here mtot is the total asymptotic mass of the configuration,
and R1 denotes the size of the accretion cloud. Another
important quantity, the local speed of sound a is defined by

a2 ¼ 1

h

�
�þ p	

n2

�
:

Symbols � and 	 are used here to denote derivatives

� ¼
�
@p

@n

�


; 	 ¼

�
@p

@


�
n
;

which have to be computed according to the assumed
equation of state; the quantity h ¼ ð�þ pÞ=n is the spe-
cific enthalpy. For a barotropic equation of state the above
definition reduces to a2 ¼ dp=d�.
Wewill search for the solutions of the Einstein equations

according to the following notion of stationarity. The ac-
cretion rate _m ¼ @t0m, computed at a given areal radius R
should be constant in time. Similarly, other hydrodynam-
ical quantities like the fluid velocity U, pressure p, energy
density �, etc. should satisfy @t0X ¼ 0, where X ¼
U;p; �; . . . . These assumptions can be satisfied only ap-
proximately as the accreting fluid contributes to the grow-
ing mass of the central object and the whole configuration
must change in time. We will, however, see that they lead
to solutions characterized by very small accretion rates
both in the test and in the heavy fluid regime. Thus, for a
very long time (much larger than a characteristic dynami-
cal time understood as a time required by a sound wave to
travel across the cloud), the motion of the accreting gas
remains almost unchanged, and the above assumptions are
justified a posteriori.
Under these assumptions the set of Einstein partial

differential equations and the equations expressing the
conservation of the energy-momentum tensor reduces to
a set of ordinary ones, namely,

d

dR
ln

�
N

kR

�
¼ 16�

k2R
ð�þ pÞ; U ¼ A

R2n
;

N ¼ Bn

�þ p
; kR ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R
þU2

s
:

(3)

Here A and B are integration constants. The baryonic
density n is defined as a function assuring that r�ðnu�Þ ¼
0. When deriving these equations we have tacitly assumed
that the equation of state is of a barotropic form p ¼ pð�Þ
or, equivalently, p ¼ pðnÞ. In the following we will spe-
cialize to the polytropic equation of state p ¼ Kn�.
In addition to these equations a suitable set of boundary

conditions has to be specified. As such we usually choose
the size of the accretion cloud R1, its total mass mtot, the
asymptotic value of the baryonic density n1 (alternatively
�1 can be also used), and the asymptotic value of the speed
of sound a1.
Such boundary conditions still provide a family of the

solutions parametrized by the value of U1, or the constant
A. In this work we are only interested in the so-called trans-
sonic solutions—those for which far away from the central
object the fluid is subsonic while in the central parts of the
cloud it falls supersonically. Such a solution passes through

mfluid/ mtot

ṁ

10.90.80.70.60.50.40.30.20.10

1.6 ⋅ 10−17

1.4 ⋅ 10−17

1.2 ⋅ 10−17

1.0 ⋅ 10−17

8.0 ⋅ 10−18

6.0 ⋅ 10−18

4.0 ⋅ 10−18

2.0 ⋅ 10−18

0.0 ⋅ 100

FIG. 1. The dependence of the accretion rate _m on the mfluid.
Here mtot ¼ 1.
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the so-called sonic point, defined as a location where
2U=ðkRÞ ¼ a.

The analysis presented in [7] is concerned with accretion
flows onto a central black hole which will naturally appear
in the model if we continue to integrate the equations from
the outer boundary inwards until the apparent horizon is
passed by. In the terms of this paper the apparent horizon is
defined as a surface on which the optical scalar �þ ¼
kR=2þU vanishes. According to this definition, the ra-
dius of the apparent horizon RBH and the mass mBH ¼
mðRBHÞ (the mass of the black hole) satisfy the standard
relation RBH ¼ 2mBH. Apart from the mass of the black
hole we also define the fluid mass as mfluid ¼ mtot �mBH.

Figure 1 shows the dependence of the accretion rate on
the ratio ofmfluid=mtot for the specific case of a sequence of
polytropic models with R1 ¼ 106,mtot ¼ 1 and a1 ¼ 0:1.
(The ratio of mfluid=mtot scales linearly with n1.) Clearly,
the slowly accreting regime corresponds either to a situ-
ation with a very small mass of the fluid as compared to the
mass of the central black hole or to the converse case where
almost the entire mass is in the form of fluid. This can
actually be proved analytically [7]. Moreover, it can be
shown that the maximum of _m corresponds to
mfluid=mtot ¼ 1=3.

The attempts to investigate the stability of the new
branch of massive solutions analytically have failed to
give any conclusive results (see, e.g., [15]). Because of
this fact we devote this paper to study this numerically.

III. DESCRIPTION OF THE NUMERICAL CODE

The dynamical code used to investigate the stability of
steady solutions was constructed in a similar fashion to the
one described in [16]. It is a modern version of a high
resolution shock-capturing (HRSC) scheme based on the
Godunov-type methods developed for solving the equa-
tions of hydrodynamics.

For the construction of the code the polar gauge has been
used. The metric is assumed to be of the form

ds2 ¼ ��2dt2 þ X2dR2 þ R2ðd�2 þ sin2�d�2Þ; (4)

where the lapse � and X are functions of the areal radius R
and time t. Following [17] we introduce the Lorentz factor
W ¼ �ut and the three-velocity vi ¼ ui=W. The equations
of conservation of the energy-momentum tensorr�T

�� ¼
0 and the baryonic density r�ðnu�Þ ¼ 0 can be now

written as

@tqþ 1

XR2
@Rð�XR2FÞ ¼ ��� ð@t lnXÞq:

Here q denotes a vector of conserved quantities

q ¼ ðD; S; �ÞT ¼ ðnW; nhW2vR; nWðhW � 1Þ � pÞT;
F stands for the flux vector

F ¼ ðnWvR; nhW2vRv
R þ p; nWðhW � 1ÞvRÞT;

and � denotes the source terms

� ¼
0

ðnhW2vRv
R þ pÞ @RXX � ðnhW2 � pÞ @R�� þ 2p

R

�nhW2vR @R�
� � ðnhW2vRv

R þ pÞ @tX�X

0
B@

1
CA:

Time derivatives of conserved quantities q are computed
according to the following version of the method of lines:

�
dq

dt

�
i
¼ �ð�XR2F̂Þiþ1=2 � ð�XR2F̂Þi�1=2

XiR
2
i�Ri

þ
�
��� @tX

X
q

�
i
; (5)

where lower indices refer to spatial cells (shells of constant
radius). Values of q corresponding to the subsequent time
step are obtained using standard Runge-Kutta methods.
The numerical scheme is stabilized by a suitable choice

of the numerical fluxes F̂iþ1=2. In most of the modern

HRSC schemes numerical fluxes at the cells interfaces
are computed based on the solutions to the local
Riemann problems that arise naturally between each of
the cells’ interfaces. In the following qL;iþ1=2 and qR;iþ1=2

will denote left and right Riemann states at the iþ 1=2
interface. In order to provide higher order of the spatial
accuracy, the states qL;iþ1=2 and qR;iþ1=2 are computed as

follows:

q L
iþ1=2 ¼ qi þ SiðRiþ1=2 � RiÞ;

qR
iþ1=2 ¼ qiþ1 þ Siþ1ðRiþ1=2 � Riþ1Þ:

Here Ri and Riþ1=2 are the positions of the cells’ centers

and interfaces, respectively. The slope limiters Si are de-
fined by

S i ¼ minmod

�
qiþ1 � qi

Riþ1 � Ri

;
qi � qi�1

Ri � Ri�1

�
;

where the ‘‘minmod’’ function has been introduced as in
[18]:

minmod ða; bÞ ¼
8<
:
a if jaj< jbj; ab > 0;
b if jaj> jbj; ab > 0;
0 if ab � 0:

As a method to compute numerical fluxes F̂iþ1=2, we

have used two versions of a scheme proposed originally by
Donat and Maraquina in [19], both of them being based on
the spectral decomposition of the Jacobian @F=@q consist-
ing of three eigenvalues �p, left eigenvectors lp and right

ones rp. In the original version of the algorithm, one starts

by computing the following variables:

!p
L ¼ lpL � qL; !p

R ¼ lpR � qR

and

�p
L ¼ lpL � FðqLÞ; �p

R ¼ lpR � FðqRÞ;
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where p numbers the eigenvectors of @F=@q. Now, for
each p, the signs of �p

L and �p
R are inspected. If both

eigenvalues �p
L and �p

R are positive, we define

�p
þ ¼ �p

L; �p� ¼ 0;

while for both �p
L and �p

R having negative values, we set

�p
þ ¼ 0; �p� ¼ �p

R:

If the signs of the two eigenvalues �p
L and �p

R differ, one
defines j�pjmaxðL;PÞ ¼ maxðj�p

Lj; j�p
RjÞ and

�p
þ ¼ 1

2ð�p
L þ j�pjmaxðL;PÞ!

p
LÞ;

�p� ¼ 1
2ð�p

R þ j�pjmaxðL;PÞ!
p
RÞ:

The total numerical flux is now computed according to the
formula

F̂ iþ1=2 ¼
X
p

ð�p
þr

p
L þ�p�r

p
RÞ:

Apart from this algorithm, known in the literature as the
Maraquina’s flux formula, we have also implemented its
slight modification described in [20]. Here the numerical
fluxes are computed as

F̂iþ1=2 ¼ 1

2

�
FðqLÞ þ FðqRÞ �

X
p

j�pjmaxðL;RÞ

� ððlp;R � qRÞrp;R � ðlp;L � qLÞrp;LÞ
�
:

We have not observed any significant difference in the code
performance between these two schemes.

A spectral decomposition of the Jacobian @F=@q can be
easily obtained analytically. Its eigenvalues read

�0 ¼ vR; �þ ¼ XvR þ a

X þ avR

; �� ¼ XvR � a

X � avR

:

Let us introduce the following quantities:

K ¼ 	

	� na2
; A� ¼ 1� vRv

R

1� vR��
;

and

� ¼ ðAþ�þ �A���ÞX2h3WðK� 1Þð1� vRv
RÞ:

With their help the right eigenvectors of @F=@q can be
written as

r 0 ¼
�
K
hW

; vR; 1� K
hW

�
T
;

r� ¼ ð1; hWX2��A�; hWA� � 1ÞT:
For the left eigenvectors we have

l 0 ¼ W

K� 1
ðh�W;WvR;�WÞT;

l� ¼ �h2

�

�
hWA�ðvR � X2��Þ � vR þKX2A���

1�KA�;
�vR þKA�X2��

0
B@

1
CA:

In the spherically symmetric case and the polar gauge
the Einstein equations can be reduced to just two ordinary
differential equations in R, that can be subsequently solved
by quadratures provided that the hydrodynamical equa-
tions are known (see e.g. [21]). The first of these equations

@Rm ¼ 4�R2ðnhW2 � pÞ ¼ 4�R2ðDþ �Þ
gives the radial derivative of the quasilocal mass, related to
the metric function X by

X ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

q : (6)

The second one provides the radial derivative of the loga-
rithm of the lapse

@R ln� ¼ X2

�
m

R2
þ 4�RðnhW2vRv

R þ pÞ
�

¼ X2

�
m

R2
þ 4�RðSvR þ pÞ

�
: (10)

These equations are integrated (numerically) at each time
step, that is after new values of the hydrodynamic quanti-
ties have been obtained. Notice that the equation for mass
m has to be solved before we attempt to integrate the
equation for ln�. For a closed system, one can fix the total
mass of the system and integrate the first equation starting
from the outer boundary R1. Then the second equation can
be integrated in the same way assuming, for instance, that
the lapse at the outer boundary is given by the standard
expression known from the Schwarzschild solution in the
polar gauge:

�ðR1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðR1Þ

R1

s
:

Let us remark, however, that such an assumption for the
lapse is not necessary for the proper behavior of the hydro-
dynamic part of the code.
The Einstein equations yield also the following expres-

sion:

@tX ¼ �4�nh�W2XvRR;

which is required in order to establish the source terms
needed by the evolution scheme (5).
Recovery of the primitive quantities ðn; vR; pÞ from the

conserved ones ðD; S; �Þ is performed every time step by
means of the Newton-Raphson technique (we solve an
equation for the pressure p).
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IV. CODE TESTS

Our numerical code has been tested on the spherical
shock reflection problem [22], the Michel solution for
spherical accretion in the Schwarzschild space-time [5],
and models of spherical polytropic stars [23].

The first test checks the validity of the hydrodynamical
part of the code in spherical symmetry. Initial data for this
problem consist of a spherically symmetric flow of perfect
fluid with a constant, negative radial velocity v0. The
initial baryonic density distribution is also constant and
the internal energy density is set to a negligibly small
value. Such initial data evolve by producing a strong shock
wave appearing at r ¼ 0 and propagating outward with
velocity equal to

vs ¼ ð�� 1ÞW0jv0j
W0 þ 1

;

where W0 is the Lorentz factor corresponding to v0.
The second test checks the validity of the implementa-

tion in a case of the test fluid accretion occurring in the
fixed Schwarzschild background. The initial data for this
test can be easily obtained by solving an algebraic equation
for each value of the areal radius.

The initial data for the third test, namely, a static solution
describing a polytropic star, have to be computed by solv-
ing the Tolman-Oppenheimer-Volkov equations for a poly-
tropic equation of state [23]. In this case satisfactory results
have been obtained using a Runge-Kutta scheme of 8th
order by Hairer and Wanner [24].

All these tests have been passed as desired, convincing
us that all parts of the code work properly.

V. INITIAL CONDITIONS

In order to construct the initial data for the main study of
this paper, we have taken numerical, trans-sonic solutions
to the equations (3) and added a perturbation in velocity.
The way of obtaining such solutions is simple but not
entirely obvious; we will describe it briefly here.

Instead of solving the equations in R we introduce a new
independent variable 
 ¼ 1=R, which results in a grid that
becomes naturally dense in the inner regions of the cloud
and relatively coarse outside. Next we introduce the fol-
lowing set of dependent variables:

y1¼
Z R1

R
dR0R02�; y2¼16�

Z R1

R

�þp

k2R0 dR
0; y3¼a2;

and express the equations (3) in terms of y1, y2, y3, and 
 .
This yields a set of three differential-algebraic equations
that can be integrated starting from 
1 ¼ 1=R1 towards
increasing values of 
 (that is from the outer boundary to
the center of the cloud) provided that the values ofmtot, n1,
a1, and A are specified.

We solved these equations using DASPK—a solver for a
system of differential and algebraic equations developed
by Petzold, Brown, Hindermarsh, and Li [25,26].

Usually, the solution found in this way will not pass
through the sonic point. We can, however, search for the
trans-sonic solution by exploiting the fact that it can be
integrated to values of 
 corresponding to the region inside
the apparent horizon. (This is not true for other solutions
which break down outside the horizon.) Thus, in order to
find a trans-sonic flow, we have implemented a bisection
method, which looks for a value of A giving the maximal 

at which the corresponding solution crashes. After the
proper value of A had been obtained, we could confirm
that the appropriate solution indeed passes through the
sonic point.
Such a solution is expressed in the coordinate system

where the time coordinate is the comoving time. Before
treating it as a possible initial data, one has to express the
fluid velocity in the polar gauge. By adopting the areal
radius as the radial coordinate we have changed from the
comoving gauge metric given by the line element (1) to the
coordinates t0ð~t; rÞ ¼ ~t, r0ð~t; rÞ ¼ Rð~t; rÞ. This leads to the
line element

ds2 ¼ �
�
N2 �

�
2

kR
UN

�
2
�
dt02 � 2UN

�
2

kR

�
2
dt0dR

þ
�
2

kR

�
2
dR2 þ R2ðd�2 þ sin2�d�2Þ: (13)

Here the four-velocity of the fluid reads

ut
0 ¼ 1

N
; uR ¼ U; u� ¼ u� ¼ 0:

The transition to the polar coordinates with the metric of
the form (4) can also be easily done. The function X is
given by (6) and the velocity vR ¼ uR=W—which is one of
the dynamical variables in our code—can be written as

vR ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2U2

p :

In this way we have obtained four functions mðRÞ, vRðRÞ,
nðRÞ, and 
ðRÞ that correspond to stationary flow.

VI. STABILITY OFACCRETING SELF-
GRAVITATING FLOWS

The code described in the preceding section has been
used in order to evolve perturbed steady accretion flows.
In addition to the initial data, one has to specify suitable

boundary conditions. At the inner boundary outflow con-
ditions have been assumed (the fluid was allowed to fall
inward). This boundary was positioned outside the appar-
ent horizon but always in the supersonic zone of the
accretion cloud, so that the outflow conditions could be
easily implemented. Thus, our numerical models resemble
also a situation in which the accreting fluid is glued to the
solid surface of the central body. Such an approach has
been adopted for instance in [27], where the processes of
the radiation transport through the accreting medium are
also taken into account.
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The outer boundary was kept fixed using the values
obtained from the initial solution (the ghost zones were
filled with the appropriate initial values). This last condi-
tion cannot be easily relaxed. After setting the outer bound-
ary condition to an outflowing one, even the test fluid
solution can be unstable.

As the first step in the stability analysis we performed a
consistency check, by assuming initial data for the dynami-
cal equations to be equal to mðRÞ, vRðRÞ, nðRÞ, and 
ðRÞ
inherited from the steady flow solution. It appeared that the
evolution did not produce any noticeable changes; this
confirms the validity of the assumption of stationarity.
Next, we introduce an additional perturbation. In our
case it was applied to the velocity vR [the other three initial
data mðRÞ, nðRÞ, and 
ðRÞ are the same as in the steady
flow]; vR was perturbed by a bell-shape profile of a sine
wave restricted to one-half of its period. Such perturbation,
initially located outside the sonic radius, produces two
signals: one traveling outwards and one towards the center.
If the initial amplitude of the perturbation is very small and
its support is relatively narrow, the signal propagating
inwards passes through the sonic point and eventually
disappears through the inner boundary (it falls onto the
central body).

Figure 2 shows the evolution of tiny perturbations of
compact support. Here, in order to visualize any changes,
we were forced to plot the contrast of density, i.e., ðn�
n0Þ=n0, where n0 refers to the unperturbed flow. In our case
this value is of order 10�6, demonstrating the quality of the
method by being able to handle solutions up to such
precision. This, however, requires some fine-tuning in the
postprocessing of the data. It is, for instance, well known
that the very process of interpolating the initial solution
onto a new grid introduces small numerical errors, which
can easily be observed at high precision. Thus, in order to
eliminate such effects, we have evolved the unperturbed
flow to get the values of n0 used to calculate the density
contrast at different times.

The background solution used in this example corre-
sponded to the following parameters: The exponent in the
polytropic equation of state was set to � ¼ 1:4, the asymp-
totic mass of the whole configuration has been normalized
to unity, the outer boundary of the cloud was placed at
R1 ¼ 106, the asymptotic baryonic density was equal
n1 ¼ 1:6� 10�19, and the asymptotic sound velocity
was set to a21 ¼ 0:1 (here and in all other results we
have adopted the gravitational units with c ¼ G ¼ 1).
For such a solution the sonic point and the apparent horizon
were located at R� ¼ 0:82 and RBH ¼ 0:34 respectively,
and the mass contained in the fluid constituted the bulk of
the entire mass, namely mfluid ¼ 0:83. The accretion rate
for this solution reaches a very small value of _m ¼ 2:6�
10�18, thus the growth of the central object can be ne-
glected during the entire simulation (this fact has been
confirmed independently by allowing the central mass to
grow according to the actual value of _m).

VII. SONIC HORIZONS VERSUS APPARENT
HORIZONS

For large initial perturbations the situation can be more
complex, as will be discussed below. A discontinuous
solution with shocks can develop, and we can observe
some reflection of the signal that was initially propagating
inwards.
Figure 3 shows snapshots from the evolution of the

perturbations applied to the same background solution as
before. In each of the graphs on Fig. 3 the perturbed density
profile has been plotted over the profile corresponding to
the steady solution. One can clearly see the stable behavior
on these plots even though they are limited to the small
radius range of R< 0:5� 103 and relatively short evolu-
tion times. The original simulations have been performed
during much longer times confirming the stability of the
flow. At late stages of the evolution the initial perturbation
was indistinguishable from the numerical noise.
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FIG. 2. Evolution of small perturbations. Here n0 denotes the
density in the unperturbed flow. The snapshots show the density
contrast ðn� n0Þ=n0 in chronological order.
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All these numerical results suggest the stability of the
accretion flow also in the regime where the mass of the
fluid is large. Naturally, numerical simulations of this kind
can never replace a strict mathematical proof, because we
cannot investigate the whole family of possible initial data
(meaning both steady solutions and perturbation profiles).

The reflection of the strong incoming signal from the
inner parts of the accreting cloud is somewhat surprising.
For a small and compact perturbation entering the super-
sonic region in the center of the cloud, it should not be
possible to be reflected and reach the subsonic region
again—this would require the perturbation to travel with
a velocity which, relative to the unperturbed flow, should
be greater than the speed of sound. Because of that fact, in
analogy with the black hole horizon, the term ‘‘sonic
horizon’’ has been coined to name the surface bounding
the supersonic region.

A careful inspection reveals that, contrary to the event
horizons surrounding black holes, this notion can only be

approximate. For strong nonlinear perturbations the con-
cept of an unperturbed background solution loses meaning.
The values of the local sound speed a change due to the
perturbation and new sonic points can appear. In addition,
the speed of a strong shock wave is no longer limited to the
local speed of sound.
Such behavior has been illustrated on Fig. 4. Here we are

still dealing with the same initial solution, perturbed
slightly more to show the whole phenomenon in a clearer
way. The quantity XvR is plotted with the solid line, while
for the graph of �a a dotted line has been used. A part of
the initial perturbation develops into the shock propagating
inwards which, after some time of evolution, creates addi-
tional sonic points (i.e., intersections of graphs of XvR and
�a) lying outside the original ‘‘sonic horizon.’’ When the
perturbation reaches the inner parts of the cloud it even
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FIG. 3. Evolution of the perturbed density. The snapshots are
placed in chronological order. The profile corresponding to the
unperturbed flow is depicted with a dotted line.
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FIG. 4. Reflection of the incoming signal from the inner parts
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in text).
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destroys the ‘‘original’’ sonic point, which is being re-
placed by the newly created one. The reflected signal really
becomes visible in the broad structure outside the new
sonic point, or to say this differently, the outermost sonic
point moves toward the center releasing the outgoing per-
turbation, which then propagates freely outwards.

The behavior of small perturbations of compact support
confirms the standard interpretation of sonic horizons as
analogs of event horizons in the linear regime. However,
results concerning strong perturbations suggest that one
should be careful in formulating the analogy (quite com-
mon in the so-called analogous gravity models) between
the sonic horizon and the event horizon [28,29].

In summary, our numerical results reported in the last
two sections suggest that in both cases—of small and large
perturbations—steady accretion is stable. The amplitudes
of the perturbations decrease, and after sufficient time we
are left with the background solution. This can be demon-
strated for both accretion regimes: solutions with a large
mass in the center and having little fluid and systems with
large amount of gas but possessing light compact cores.

VIII. STABILITY OF THE NEWTONIAN
ACCRETION

In this section we shall report results obtained with the
use of a version of the PROMETHEUS code by Fryxell,
Müller, and Arnett [30], adapted to our purposes.
PROMETHEUS is a Newtonian HRSC hydrodynamical

code implementing the original piecewise parabolic recon-
struction scheme developed by Colella and Woodward
[31]. It has been extensively used for simulating such
astrophysical phenomena as supernova explosions and it
is capable of simulating self-gravitating flows both in
spherically and axially symmetric cases. As the initial
data we have used solutions to the Newtonian equations
for the steady flow that include self-gravitation of the
accreting fluid. An equation of state was polytropic, p ¼
K��. A point mass mP was assumed to exist at R ¼ 0.

Results concerning spherically symmetric perturbations
have been already presented in [32]. They are qualitatively
similar to the relativistic results reported in the preceding
sections. The accreting flow was stable both in the test and
fluid-rich regimes. Large incoming perturbations were
being reflected from the inner parts of the accretion cloud.
We have also observed effects analogous to those described
in the previous chapter concerning the creation and de-
struction of the sonic horizons. Moreover, for sufficiently
small perturbations of compact support no reflection has
been noticed.

Below we shall report studies of axially symmetric
perturbations. In PROMETHEUS simulations of two- or
three-dimensional flows are being performed using the
so-called dimensional splitting. The local Riemann prob-
lems appearing in the Godunov-type method are being
solved separately in each of the dimensions, but, in order

to preserve consistency of the method, every time step the
transversal components of velocity are also being evolved,
using the effective advection equations. The subtle point
about this procedure is that the order of the subsequent one
dimensional sweeps is important to provide the desired
accuracy of the whole scheme. This issue has been dis-
cussed in detail by Strang in [33].
The gravitational potential has to be found at each time

step by solving the gravitational Poisson equation. The
PROMETHEUS code implements a method, based on the

expansion of the gravitational potential in terms of the
spherical harmonics, that has been developed by Müller
and Steinmetz [34].
In our case the Euler equations of hydrodynamics and

the Poisson equation for the gravitational field were solved
on a spherical grid consisting of 600 zones in the radial and
180 zones in the angular direction.
The results presented on Fig. 5 have been obtained for

the following parameters of the flow. The outer boundary
of the cloud was assumed to be located at R1 ¼ 2� 106,
the central mass was set to mP ¼ 3� 103 (in the
Newtonian limit gravitational units that we use here cor-
respond to setting G ¼ 1). As before, we have chosen a

FIG. 5. Evolution of axially symmetric density perturbations
of the steady accretion cloud. The plots show the spatial distri-
bution of the density at times 5� 103, 5� 104, and 2:5� 105,
respectively.
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solution where most of the mass is contained in the fluid,
i.e., mP=mtot ¼ 3%. The asymptotic parameters of the
unperturbed flow were as follows: �1 ¼ 3� 10�15,U1 ¼
�4� 10�5, and for the parameters of the polytropic equa-
tion of state we have taken � ¼ 1:4, K ¼ 5� 104.

Initial data coincide with the relevant characteristics of
the stationary flow, with the exception of the velocity. The
velocity perturbations are of the form

�UðR;�Þ¼
�
Asinð R�Ra

Rb�Ra
�Þsinð6�Þ forRa<R<Rb;

0 forR<Ra or Rb<R;

where A is the initial amplitude of the perturbations while
Ra and Rb describe their support. This is obviously a
completely arbitrary choice. The only important feature
of these perturbations is their nonsphericality.

The boundary conditions have been chosen in the same
way as in the relativistic case. At the inner boundary the
outflow conditions were assumed, while at the outer
boundary we have implemented ‘‘external’’ inflow condi-
tions based on the background steady flow. Figures 5 and 6
show snapshots from the evolution of the density, which
has been color coded using a logarithmic scale.

As expected, after a sufficient time all perturbations
either disappear through the inner boundary or disperse
outwards. This again suggests that the accretion flow is
stable, even in the regime where the mass of the fluid
dominates over that of the central object. In particular,
we do not observe any fragmentation of the cloud, which
might be expected in the case of nonspherical, self-
gravitating accretion flows. A simple theoretical argument,
basing on the unproven [35] but unreasonably effective
Jeans criterion, goes as follows. The Jeans length can be
estimated as RJ ¼ a1=

ffiffiffiffiffiffiffi
%1

p 	 6� 106. This gives a value
3 times larger than the size of the entire accreting cloud,
i.e., R1 ¼ 2� 106. That hints at the absence of a frag-
mentation due to self-gravity, which agrees with our nu-
merical results. On the other hand, it is not clear whether
the Jeans criterion can be applied to general nonspherical
perturbations and the instability in the general case cannot
be excluded.

IX. CONCLUSIONS

This paper is dedicated to the discussion of the stability
of steady accretion of perfect fluids onto compact objects,
with an emphasis on the self-gravitation of the accreting
gas. The recently discovered steady accretion flows are rich
in the fluid and the backreaction effects are important.
Known analytic results do not apply to such systems. The
stability investigation requires a proper handling of a set of
nonlinear partial differential equations and it is accessible
only by means of numerical computations. Such a numeri-
cal analysis has been performed in preceding sections
using modern, high resolution and shock-capturing
schemes, both in the general-relativistic case as well as
in Newtonian hydrodynamics. In all examined cases the
flows have been stable, even for large nonlinear perturba-
tions. Simulations of the evolution of large, sometimes
even discontinuous, perturbations have led to a remarkable
observation on the so-called ‘‘sonic horizons.’’ In the linear
regime, with very small perturbations, the sonic horizon
can be viewed as a surface bounding a region from which
no perturbation can escape; it is impenetrable from inside,
analogous to the event horizons in general relativity. We
show that for strong perturbations this is no longer true.
Perturbations can change positions of the sonic points and
easily escape from a region initially bounded by the sonic
horizon. Thus, the analogy between the ‘‘sonic horizon’’
and the event horizon of a black hole is rather limited.
Our analysis of the stability is restricted to the accretion

cloud only. In all numerical simulations, we had to ensure
that the gas is being delivered to the system with a small,
constant rate. To relax this assumption one would have to
take into account a physical process that could be respon-
sible for the feeding of the accretion cloud. One of the
possibilities is to consider the so-called ‘‘quasistars’’ [10].
They consist of the spherical accretion cloud surrounded
by a large, highly massive stellar envelope, being a reser-

FIG. 6. Continuation of the previous figure. The subsequent
snapshots correspond to evolution times of 4:5� 105, 6:5� 105,
and 8:5� 105, respectively.
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voir of gas necessary to support the accretion. The other
class of objects might constitute Thorne-Żytkow stars
[8,9].

In Sec. IV we described a number of classical tests for
numerical codes. Stationary accretion flows possess all
essential elements—velocity field, self-gravitation, and
pressure. These solutions are stable. We think that they
should be included into the standard test suite for general-
relativistic hydrodynamical codes.

Spherically symmetric models of accretion must be
understood as a highly idealized version of physical reality.
In most astrophysical scenarios, the inflowing gas is ob-
served in the form of accretion disks deviating strongly
from spherical symmetry. Nevertheless, models of spheri-
cal accretion occupy an important place in the theoretical
astrophysics as elements of a more complex description of
astrophysical phenomena (see, e.g., the aforementioned
works on quasistars by Begelman, Rossi, and Armitage
[10]). They allow for the inspection of the effects caused by
self-gravity in general-relativistic hydrodynamics in a sim-
ple, but nontrivial, case.

More realistic models should take into account the ra-
diation originated and transported through the accretion
cloud. Recently, a Newtonian analysis of such processes
has been published by Karkowski, Malec, and Roszkowski
[27]. These works are being continued in the general-
relativistic context, the results revealing the importance
of self-gravity and its connection to the observational
characteristics of the model such as the total luminosity
of the accretion cloud or the redshift of the emitted
radiation.

ACKNOWLEDGMENTS

This paper has been partially supported by the MNII
Grant No. 1PO3B 01229. Numerical computations have
been made at the Academic Computer Center Cyfronet,
Grant No. MNiSW/SGI3700/UJ/116/2007. P.M. thanks
Ewald Müller for kind agreement to use the PROMETHEUS

code and for the possibility to visit the Institute of
Astrophysics at Garching. The authors thank Niall Ó
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Świerczyński, Phys. Rev. D 73, 021503(R) (2006).
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