

Title	Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C
Authors	Ansari, Lida;Monaghan, Scott;McEvoy, Niall;Ó Coileáin, Cormac;Cullen, Conor P.;Lin, Jun;Siris, Rita;Stimpel-Lindner, Tanja;Burke, Kevin F.;Mirabelli, Gioele;Duffy, Ray;Caruso, Enrico;Nagle, Roger E.;Duesberg, Georg S.;Hurley, Paul K.;Gity, Farzan
Publication date	2019-09-09
Original Citation	Ansari, L., Monaghan, S., McEvoy, N., Ó Coileáin, C., Cullen, C. P., Lin, J., Siris, R., Stimpel-Lindner, T., Burke, K. F., Mirabelli, G., Duffy, R., Caruso, E., Nagle, R. E., Duesberg, G. S., Hurley, P. K. and Gity, F. (2019) 'Quantum confinement-induced semimetal- to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400°C', npj 2D Materials and Applications, 3(1), 33 (8pp.). DOI: 10.1038/s41699-019-0116-4
Type of publication	Article (peer-reviewed)
Link to publisher's version	https://www.nature.com/articles/s41699-019-0116-4#Abs1 - 10.1038/s41699-019-0116-4
Rights	© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ http:// creativecommons.org/licenses/by/4.0/
Download date	2025-07-07 17:16:51

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Supplementary Information

Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin $PtSe_2$ films grown at 400 °C

Lida Ansari¹, Scott Monaghan¹, Niall McEvoy², Cormac Ó Coileáin², Conor P. Cullen², Jun Lin¹, Rita Siris³, Tanja Stimpel-Lindner³, Kevin Finbarr Burke¹, Gioele Mirabelli¹, Ray Duffy¹, Enrico Caruso¹, Roger E. Nagle¹, Georg S. Duesberg³, Paul K. Hurley¹, and Farzan Gity^{1,*}

 Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork, Ireland
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Ireland
Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Germany

* Corresponding author: <u>Farzan.Gity@Tyndall.ie</u>

Supplementary Figure 1. Band structure and DoS of "bulk" PtSe₂ illustrating the overlap of valence and conduction bands.

Supplementary Figure 2. Top view (up panel) and side view (down panel) of geometric structures of pristine (left) and defective with Pt vacancy (right) PtSe₂ monolayer. Dark blue and orange atoms are Pt and Se atoms, respectively. b, d and \odot represent bond length, distance and Pt vacancy, respectively.

Supplementary Figure 3. Band structure of monolayer PtSe₂ supercell with Pt vacancy before unfolding.

Supplementary Figure 4. Partial density of states (PDoS) of nearest Se and nearest Pt atoms to Pt vacancy compared to PDoS of next nearest Pt atom, showing strong localized nature of the Pt vacancy in PtSe₂.

Supplementary Figure 5. Cross-sectional TEM image of transferred (a) 2.5-3 nm, and (b) 5-6.5 nm PtSe₂ samples.

Scale bar is 5nm.

Supplementary Figure 6. Raman spectra of $PtSe_2$ films made from different starting Pt film thickness showing the characteristic E_g and A_{1g} Raman-active modes for $PtSe_2$. The A_{1g}/E_g intensity ratio increases with increasing layer thickness consistent with previous reports [S1].

Supplementary Figure 7. Typical two-point IV characteristic of a 5-6.5 nm PtSe₂ film indicating good Ohmic contacts. Linear behaviour was found for all samples.

Supplementary Table 1. Hall-effect results of two different batches of PtSe₂ samples grown separately with 3month interval by e-beam evaporation of Pt film on Si/SiO₂, followed by TAC process at 400 °C, confirming the reproducibility of the process.

Starting Pt film nominal thickness	1 nm Pt	1 nm Pt	
Carrier Type	Р	Р	
Hall mobility (cm ² /V.s)	5.6	5.3	
Sheet resistivity (Ω /sq)	2.1×10^4	2.7x10 ⁴	
Sheet carrier concentration (cm ⁻²)	5.4x10 ¹³	4.3x10 ¹³	

Supplementary Table 2. Hall-effect results of three batches of PtSe₂ samples grown by e-beam evaporation of Pt

film on sapphire, followed by TAC process 400 °C showing very consistent results compared to Si/SiO₂ substrate.

Starting Pt film nominal thickness	0.5 nm Pt	0.7 nm Pt	1 nm Pt	2 nm Pt
Carrier Type	Р	Р	Р	Р
Hall mobility (cm ² /V.s)	1.0	4.2	5.0	7.2
Sheet resistivity (Ω /sq)	4.2x10 ⁵	5.6×10^4	2.6×10^4	6.1x10 ¹³
Sheet carrier concentration (cm^{-2})	1.5x10 ¹³	2.7x10 ¹³	4.8×10^{13}	1.4×10^{14}

(b)

(c)

Supplementary Figure 8. (a) Transfer characteristic of the same device as shown in Fig. 4(b), in semi-log scale. Transfer characteristic of the back-gated FET devices with PtSe₂ channel thickness of (b) 2.5-3 nm, and (c) 5-6.5 nm, in semi-log scale.

Supplementary Figure 9. Activation energy (E_A) extracted from temperature-dependent measurements for (a) 2.5-3 nm PtSe₂ sample transferred onto unprocessed Si/SiO₂ substrate, (b) 2.5-3 nm PtSe₂ sample on as-grown substrate, and (c) 5-6.5 nm PtSe₂ sample on as-grown substrate.

Supplementary Figure 10. Variation of (left) I_{ON} and I_{OFF} , and (right) I_{ON}/I_{OFF} ratio with temperature for a typical device (W_{ch} = 40 µm and L_{ch} = 15 µm) with 2.5-3 nm PtSe₂ channel thickness. E_A is activation energy.

References

[S1] O'Brien, M. et al. Raman characterization of platinum diselenide thin films. 2D Mater. 3, 021004

(2016).