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ABSTRACT This study explored the use of artificial neural networks in the estimation of runners’ kinetics
from lower body kinematics. Three supervised feed-forward artificial neural networks with one hidden layer
each were modelled and assigned individually with the mapping of a single force component. Number of
training epochs, batch size and dropout rate were treated asmodelling hyper-parameters and their values were
optimised with a grid search. A public data set of twenty-eight professional athletes containing running trails
of different speeds (2.5 m/sec, 3.5 m/sec and 4.5 m/sec) was employed to train and validate the networks.
Movements of the lower limbs were captured with twelve motion capture cameras and an instrumented
dual-belt treadmill. The acceleration of the shanks was fed to the artificial neural networks and the estimated
forces were compared to the kinetic recordings of the instrumented treadmill. Root mean square error was
used to evaluate the performance of the models. Predictions were accompanied with low errors: 0.134 BW
for the vertical, 0.041 BW for the anteroposterior and 0.042 BW for the mediolateral component of the
force. Vertical and anteroposterior estimates were independent of running speed (p=0.233 and p=.058,
respectively), while mediolateral results were significantly more accurate for low running speeds (p=0.010).
The maximum force mean error between measured and estimated values was found during the vertical active
peak (0.114± 0.088 BW). Findings indicate that artificial neural networks in conjunctionwith accelerometry
may be used to compute three-dimensional ground reaction forces in running.

INDEX TERMS Accelerometry, artificial neural networks, human biomechanics, motion analysis, kinemat-
ics, sports performance.

I. INTRODUCTION
Three-dimensional ground reaction forces (GRFs) are funda-
mental to our understanding of human locomotion, and the
preventions of injuries from high impacts and over-usage [1].
However, their direct measurement in running is constrained
to the use of instrumented treadmills in laboratory grounds.
Such systems permit assessments under controlled conditions
with comparable findings to over-ground running [2]. Alter-
natives, such as force plates, are restricted by the collection
of a finite number of consecutive steps per running trial.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Wearable solutions, such as triaxial force sensors, also enable
three-dimensional recordings with high precision [e.g. 3], but
with limited utility due to their size and altered interface
between the foot and the ground.

Indirect measurement of biomechanical loads with in-
sole pressure sensors [e.g. 4, 5, 6] has also been proposed
paving the way for the monitoring of GRFs in the open
field. Nonetheless, such commercial sensors show a number
of performance limitations [7]–[9], while they still require
advanced algorithms for the deduction of three-dimensional
GRFs from pressure data [e.g. 10, 11, 12].

With the development of low-cost, accurate and light-
weight inertial motion capture units (IMUs), it has become
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feasible to record kinematics in any environment for pro-
longed time periods. Numerous studies have examined the
validity of estimating GRFs from accelerometry in conjunc-
tion with biomechanical models [e.g. 13, 14, 15], artificial
neural networks (ANNs) [e.g. 16, 17, 18], or mass-spring-
damper systems [e.g. 19].

In view of the abovementionedmethodological approaches,
ANNsmay return the most accurate approximations [e.g. 18].
These computational models are based on the structure
and function of the human brain [20] and they have being
extensively studied for the past 30 years in a number of
contexts; yet, their application in biomechanics have attracted
researchers only in the last years [e.g. 21, 22, 23], with
only a few studies investigating ANNs for kinetic analyses
[e.g. 24, 25]. The effectiveness of such models, derives
from the interconnection of simple processing elements (i.e.
artificial neurons or units) capable of carrying out parallel
computations and transferring information between each
other [26]. Yet, the architecture of such models contributes
greatly to their deployment for engineering applications.

The models used in the present study were feed-
forward supervised ANNs with backpropagation. Feed-
forward implies that the input signal is fed to the network’s
neurons, which in their turn modify and forward the infor-
mation through the model, until eventually a prediction is
generated [20]. Neurons in an ANNs are organised into a
series of interconnected layers: an input, one or more hid-
den, and an output layer [20]. For the ANN to generate
an initial prediction, every connection between two neurons
is given a random weight factor, usually not bigger than
1. Additionally, every neuron that does not belong to the
input layer is assigned with a random bias term and an
activation function; these parameters determine the output of
each neuron. Activation functions are commonly employed
to transform a linear input signal, enabling the network to
model complex non-linear patterns [27]. In more detail, every
neuron in the input layer receives the signal and transfers it
to all units of the first hidden layer; subsequently, receiving
units of this layer sum the weighted information, add a bias
term, and apply the activation function [28]. Eventually, their
output in transmitted in a similar fashion to the next layer(s),
enabling the model to deliver a prediction about the data or
use this information to take a decision. In supervised learning,
to obtain the desired result, the known true output is also
presented to the system. Whenever the ANN generates a
prediction, the algorithm uses a loss function to compare it
with the actual recordings, and calls upon a backpropagation
algorithm [29] to improve the results by tuning the weight
factors and bias terms associated with each neuron. This
repetitive process of generating predictions and minimizing
the loss function is usually terminated when a pre-determined
set of training iterations or a predefined error is reached [29].
Apart from the weights and biases, the network’s perfor-
mance may be additionally optimised by adjusting values of
hyper-parameters: such variables include the type of activa-
tion function (e.g. sigmoid), number of epochs (i.e. one full

cycle of iterations of the training set), batch size (i.e. the
number of inputs towork through before updating themodel’s
parameters), and dropout rate (i.e. to periodically exclude a
random number of neurons to improve the performance of the
remaining units) [30]. Building a model able to generalise to
unpresented input samples requires the dataset in hand to be
split into training, validation and test sets. The objective of
the training set is to allow the model to train by adjusting its
parameters. Then, the validation set is called to provide an
unbiased evaluation of the training process. Finally, the test
set verifies the working accuracy and generalizability of the
ANN.

To the extent of the authors’ knowledge, the capacity of
an ANN to predict all three GRF components in running
conditions from kinematic input is not yet explored. Thereby,
the objective of this research was to extend the work of
previous authors who estimated vertical biomechanical loads
in running [16], [18], to a three-dimensional analysis. Anal-
yses were carried out on a public dataset of running trials as
captured by motion cameras and an instrumented treadmill.
Successful predictions of the employed ANNs may allow the
presented methodological approach to be extended to open
field applications with wearable IMUs.

II. METHODOLOGY
A. PARTICIPANTS AND DATA COLLECTION
The analyses in this study were carried out on a public
dataset of running biomechanics from twenty-eight regu-
lar professional runners with a training running volume
greater than 20 km per week (age: 34.8 ± 6.6 years; height:
176 ± 6.7 cm; mass: 69.6 ± 7.6 kg; gender: 27 males),
as recorded and presented by Fukuchi, et al. [31]. Recruits
did not report any neurological or musculoskeletal disorders
that may affect their performance.

A combination of reflective markers and clusters were
attached on the lower limbs and pelvis of each subject
[as described in detail in 31]. Three 30 sec running trials
per participant, at increasing speeds (2.5 m/sec, 3.5 m/sec
and 4.5 m/sec) were recorded. Kinematics and kinetics
were logged with twelve motion capture cameras (Raptor-4,
Motion Analysis, Santa Rosa, CA, USA) and an instrumented
dual-belt treadmill (FIT, Bertec, Columbus, OH, USA), oper-
ating at 150 Hz and 300 Hz, respectively.

B. DATA PROCESSING
For the demands of this study, only the kinematics of the two
shank clusters, each consisting of four markers placed on a
rigid shell, were considered. Gaps in the trajectories of the
markers were handled with rigid body fills in Vicon Nexus
(Oxford, UK). Marker trajectories and force data were then
filtered with a low-pass, second order, zero-phase shift But-
terworth filter with cut-off frequencies of 20 Hz and 50 Hz,
respectively [similarly to 32]. Next, the markers’ position of
each cluster were averaged separately, and double differenti-
ated with respect to time, resulting in the computation of the
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FIGURE 1. The three layers (Input, hidden and output) and their respective activation functions (Tanh and Linear) of the
ANN that was used to predict GRFs (f̂1, f̂2 . . . f̂n . . . f̂100) from acceleration inputs (α1, α2 . . . αn . . . α100).

shanks’ acceleration in three dimensions with respect to the
laboratory-coordinate system. A threshold of 20 N [similar
to 32] in the vertical component of the recorded GRFs was
employed for the identification of gait events (foot-strikes
and toe-offs). Accelerations and GRFs were both scaled to
100 samples from heel-strike to toe-off (100% of stance
phase); GRFs were additionally normalised to body weight
(BW). All data processing was done in MATLAB R2017b
(Mathworks, Inc., Natick, MA, USA).

C. ARTIFICIAL NEURAL NETWORK
Three supervised feed-forward ANNs were developed in
Python 3 (Python Software Foundation, Delaware, US) using
the Tensorflow source-platform. Each one of these three
networks was fed with a single component of the three-
dimensional acceleration signal and was dedicated to the
prediction of the corresponding vertical, anteroposterior and
mediolateral GRF components.

Each ANN consisted of three layers (Fig. 1). The input lay-
ers were composed of 100 neurons (nI1−100), and each input
feature (α1, α2 . . . αn . . . α100) was fed into one of these units.

The hidden layer consisted of 10 neurons (nH1−10), and utilised
dropout as a regularization method and TanH as an activation
function. Finally, the output layer had 100 linear neurons
(nO1−100) that generate GRF predictions scaled to 100 data
points (f̂1, f̂2 . . . f̂n . . . f̂100). Root mean square error (RMSE)
was used as loss function to compare predicted and measured
GRF force-time waveforms (f1, f2 . . . fn . . . f100). Mean error
of the estimation of the peak force was also computed.

To update the weights and biases of the neural networks,
the ANNs made use of a backpropagation algorithm and the
Adam (Adaptive Moment Estimation) optimizer [33] with an
initial learning rate of 10−3, and β1 and β2 (i.e. the expo-
nential decay rate for the first and second moments) equal to
0.9 and 0.999, respectively.

In view of the neural network modeling, the dataset
was randomly split into training (16 subjects; approxi-
mately 4,300 stances), validation (6 subjects; approximately
1,430 stances) and test sets (6 subjects; approximately
1,430 stances), accounting for roughly 60%, 20% and 20%
of the total sample size, respectively. To guarantee that this
partitioning does not affect the predictive capacity of the
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FIGURE 2. Predicted (dashed orange line) and measured (blue solid line) body-weight normalised GRFs (Vertical, Anteroposterior and Mediolateral) of
the running trials of 6 subjects (approximately 1,430 stances) at three different speeds (all trials, 2.5 m/sec , 3.5 m/sec and 4.5 m/sec), and the mean
of all running speeds.

ANNs, the dataset was randomly split and fed to the network
thrice in total, and all the generated predictions are presented
in this study (Supplementary Material). In order to ensure
that the predictive ability of the model is subject- and speed-
independent, all recorded stances of each training set were
shuffled before being introduced to the ANNs.

A grid search was employed on the training set (16 sub-
jects) to attain optimal values (from preset ranges) for the fol-
lowing hyper-parameters: number of training epochs (500 or
1000), batch size (64, 128 or 256) and dropout rate (0.2 or
0.5). For each combination of hyper-parameters’ values, a
leave-one-subject-out cross-validation (LOSO-CV) was car-
ried out [34]: with a 16 subject training dataset, models
were constructed on the stances of 15 subjects, and evaluated
on the one subject that was left out of the sample. Subse-
quently, the mean and standard deviation of the RMSE was
calculated from the 16 folds. Each feature was standardized
with the population mean and standard deviation before the
LOSO-CV process. The combination of hyper-parameters
that returned estimates with the lower mean RMSEs was
considered as the optimum. To demonstrate that the networks

were able to generalize their predictions with the selected
set of hyper-parameters’ values, the generated models were
evaluated using the validation set (6 subjects).

Consecutively, training and validation sets were merged
into a single new training set (22 subjects; approximately
5,730 stances), and the acceleration inputs were again stan-
dardised and shuffled. A LOSO-CV on this data set was then
performed to re-train the ANN model, and the validation
errors were calculated.

The RMSE was used as a performance function to evaluate
the predictions of the test set (6 subjects); in order to standard-
ise the acceleration input signal (α1, α2 . . . αn . . . α100) of the
test set stances, the mean values and standard deviations from
the newly created training set (22 subjects) were used. Lastly,
RMSEs were additionally grouped based on running speed,
and one-way ANOVAs and a Welch test were contacted
to examine the effect of running speed to the accuracy of
the predictions; Shapiro-Wilk and Levene’s tests were also
carried out to test if the assumptions of the ANOVAs were
met. Prediction errors (± S.D.) were finally computed at
different peak locations (graphically displayed on Fig. 2) for
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TABLE 1. Validation error (± S.D.) and the test set RMSE (± S.D.) between measured and predicted GRFs.

TABLE 2. Mean error (BW) of the force peaks between measured and estimated GRF components. Force peak locations are graphically displayed on Fig. 2.

the different components of the estimated GRFs. Statistical
significance was set at p < 0.05 for all calculations.

III. RESULTS
The optimal hyper-parameters’ values were different for each
one of the three ANNs that were built to model the GRF com-
ponents, as well as for the three distinct random dataset splits
that were carried out (data not shown). The validation errors
that were computed on the dataset of 22 subjects to quantify
the models’ performance, indicated that the networks’ struc-
tural parameters were fine-tuned: the RMSE for the vertical
component was on average equal to 0.146 (± 0.030) BW,
while the calculations for the remaining two components
returned even lower mean error values (TABLE 1, Validation
error: 0.048 ± 0.009 BW and 0.047 ± 0.009 BW).
The average RMSEs of the GRF estimates of the test

set (6 subjects) were comparable when compared to the
validation error, demonstrating the networks’ good gener-
alizability (Table 1, Test Set: 0.134 ± 0.027 BW for the
vertical, 0.041 ± 0.007 BW for the anteroposterior and
0.042 ± 0.006 BW for the mediolateral component). Group-
ing the predictions by running speed showed that mean
RMSE and speed were positively correlated (TABLE 1).
To determine if the differences in the predictions between
the three speed conditions are statistically significant, three
one-way ANOVAs were conducted (one for each force com-
ponent); there were no significant outliers in the data set,
whereas Shapiro-Wilk test of normality was used to affirm
that the dependent variable (RMSEs) was approximately
normally distributed for each speed condition. Levene’s test
confirmed homogeneity of variances for the vertical and
mediolateral components of the force. There was no statis-
tically significant difference among running speeds for the
predictions of the vertical force component (p = 0.233).

Yet, findings for the mediolateral aspect of the GRFs
were statistically significant between running speeds (p =
0.010); a Tukey HSD test showed that the difference exists
between the 2.5 m/sec and 3.5m/sec (p = 0.043), and
the 2.5 m/sec and 4.5 m/sec (p = 0.011) conditions
(TABLE 1, in bold). Additionally, a Welch test demon-
strated that there was no significant effect of running speed
to the estimation of the anteroposterior element of the
force (p = .058).
Predicted and measured GRFBW waveforms were aver-

aged and plotted for all the stances of the test set (Fig. 2:
all trials), and then again for each separate running condi-
tion (Fig. 2: 2.5 m/sec, 3.5 m/sec and 4.5 m/sec). As con-
firmed from RMSE (TABLE 1) and visual representation
(Fig. 2) alike, predictions (dashed orange line) on the ver-
tical and anteroposterior aspect of the reaction forces were
highly precise for all running speeds. The mean difference
of the force peaks between measured and predicted GRF
components are presented in TABLE 2; generally, the ANNs
were overestimating the peak of the vertical component
(0.114 ± 0.088 BW), while underestimating the propulsive
peak (Fig. 2, positive force) of the anteroposterior element
(0.028 ± 0.022 BW). In regards to the mediolateral force,
the estimates also bear a low mean RMSE error (TABLE 2:
0.042 ± 0.006 BW), while their graphical display shows
a general overestimation of the first medial peak (Fig. 2,
positive force; TABLE 2: 0.047 ± 0.034 BW).

IV. DISCUSSION
The present study aimed to compute the three-dimensional
GRFs in running with the use of accelerometry and ANNs.
An openly available motion capture running dataset of pro-
fessional athletes performing on either competitive or elite
level was used [31]. The kinematics of the calves were used
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as an input in our models, while the generated predictions
were compared to the recordings of an instrumented tread-
mill. Estimated waveforms (Fig. 2) and force peak errors
(TABLE 2) were accompanied with low errors for all GRF
components.

To date, several authors reported methods to approximate
biomechanical loads in running [reviewd in 8, 9]; for exam-
ple, Wouda et al. [16] used inertial sensors at the lower legs
and pelvis along with an ANN to estimate vertical GRFs with
an RMSE less than 0.27 of BW. Billing et al. [10] used insoles
with mounted hydrocell sensors and ANNs to predict all three
components of GRFs in running with excellent results: mean
absolute percentage errors (MAPEs) equal to 1.4%, 6.6% and
39.8% for the vertical, anteroposterior and mediolateral com-
ponents, respectively. On the other hand, Clark et al. [14] pre-
sented a two-mass springmodel that predicted vertical ground
reaction forces in steady-speed level running with very low
RMS errors (0.17 ± 0.07 BW) for different speed conditions
(3 to 6 m/sec). Komaris et al. [15] considered the kinematics
of the pelvis and thighs and estimated the vertical GRF in
slow speeds, spanning from 2.5 to 4.5m/sec, with an overall
RMSE equal to 0.14 ± 0.04 BW. Finally, Jie-Han et al. [18]
used a single IMU attached on the shoe to estimate the vertical
GRF at 2.2 m/sec, 2.5 m/sec and 2.8 m/sec with reported
mean RMSEs between 0.015 and 0.017 BW; however, such
low errors may be due to the adopted splitting procedure,
which led to incorporating stances from the same subject in
both the training and evaluation sets, and thus biasing the
performance of the model. Besides, it is well-reported in
the literature [e.g. 35, 36] that the LOSO is the most fitting
cross-validation method to assess the efficacy and general-
izability of a model to users not included in the dataset,
especially for datasets composed by a limited number of
subjects.

In the present study, the predictions of each force compo-
nent (TABLE 1) were generally accompanied with lower or
similar RMSEs than those presently reported in the literature.
Furthermore, comparable differences between measured and
estimated peak forces were in good agreement with values
reported by other authors: mean error for the peak verti-
cal force at 2.5 m/sec was equal to 0.096 ± 0.076 BW
(TABLE 2), compared to 0.10 ± 0.155 BW reported by Jie-
Han et al. [18]. Yet, it should be stressed that these metrics are
very dependent on the dataset being examined and no direct
comparison should bemade between dissimilar techniques on
different samples.

Even though the collective use of accelerometry and
machine learning in the prediction of vertical GRFs in run-
ning has been previously demonstrated [16], [18], ANNs
in the present study were successfully used to approximate
all three loading components at different running speeds.
Additionally, the dataset employed for this analysis is con-
siderably larger (28 subjects) and arguably more informative,
when compared to the number of recruits from recent similar
studies in the literature (e.g. eight subjects byNgoh et al. [18];
seven subjects by Wouda et al. [16]).

The excellent predictive capacity of the learning models
to measure all GRF components is demonstrated by both the
low mean RMSEs (TABLE 1, 0.134 BW, 0.041 BW and
0.042 BW) and the graphical representation of the predictions
(Fig. 2). Even though the approximation of the anteroposte-
rior and mediolateral aspects of the force returned rather low
average errors (TABLE 1, 0.041 BW and 0.042 BW) when
compared to the vertical one (0.134 BW), it should be noted
that this is also due to the lowmagnitude of those components
when compared to the body weight of the running subject.
Yet, both estimates of shear forces exhibit typical patterns
in running conditions: for example, the anteroposterior force
showed a characteristic biphasic behaviour with a double
peaked braking phase [37], [38] and a transition from braking
to propulsion occurring at approximately 50% of the total
support time (Fig. 2: anteroposterior force, zero crossing).
Even though the mediolateral force is characterised by a large
intrinsic variability which hinders its standardised graphical
display, the estimated waveforms (Fig. 2) exhibit typical
double medial and double lateral peaks [37], [38] and a peak-
to-peak amplitude of approximately 0.13 BW.

Finally, predictions made by the ANNs were gener-
ally independent of running speed, with the sole exception
of the estimation of the mediolateral force component at
2.5 m/sec (TABLE 1, 0.030 ± 0.003 BW) being signifi-
cantly more accurate than the corresponding estimations at
3.5 m/sec (0.043 ± 0.009 BW,p = 0.043) and 4.5 m/sec
(0.047 ± 0.010 BW,p = .011).

V. CONCLUSION
This is the first study that reports on the potential application
of ANN modeling along with lower body kinematics for
the estimation of all three GRF components in running. The
predictions generated by the ANNs were accompanied with
notably low errors, and were generally unrelated to running
speed. With the development and application of wearable
IMUs being on the rise, the developed model, in conjunc-
tion with body-worn sensors, may potentially lead to the
widespread measurement of biomechanical loads in open
field conditions and sport activities.
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