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The purpose of this study is to examine the effect of the body’s mass distribution to segments and the
filtering of kinematic data on the estimation of vertical ground reaction forces from positional data. A
public dataset of raw running biomechanics was used for the purposes of the analysis, containing record-
ings of twenty-eight competitive or elite athletes running on an instrumented treadmill at three different
speeds. A grid-search on half of the trials was employed to seek the values of the parameters that opti-
mise the approximation of biomechanical loads. Two-way ANOVAs were then conducted to examine the
significance of the parameterised factors in the modelled waveforms. The reserved recordings were used
to validate the predictive accuracy of the model. The cut-off filtering frequencies of the pelvis and thigh
markers were correlated to running speed and heel-strike patterns, respectively. Optimal segment
masses were in agreement with standardised literature reported values. Root mean square errors for slow
running (2.5 m/s) were on average equal to 0.1 (body weight normalized). Errors increased with running
speeds to 0.13 and 0.18 for 3.5 m/s and 4.5 m/s, respectively. This study accurately estimated vertical
ground reaction forces for slow-paced running by only considering the kinematics of the pelvis and
thighs. Future studies should consider configuring the filtering of kinematic inputs based on the location
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of markers and type of running.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of ground reaction forces (GRFs) in running is
commonly employed to enhance athletes’ performance (e.g.
Kawamori et al., 2013), determine injury-related factors (e.g.
Bates et al., 2013), and evaluate the outcome of rehabilitation pro-
grams (e.g. Chmielewski et al., 2006). Accurate measurements are
currently limited to laboratory settings, where trials are captured
by optoelectronic systems, and embedded force platforms or
instrumented treadmills. Yet, such methods require highly trained
operators, are costly and demand dedicated spaces. Additionally,
with respect to the utility of force plates, the analysis is commonly
narrowed to a single gait cycle.

In an effort to accurately gauge biomechanical loads on open
field, techniques have been developed to either directly measure
or estimate running GRFs by means of wearable sensors. Overall,

* Corresponding author at: Tyndall National Institute, University College Cork,
Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland.
E-mail address: sokratis.komaris@tyndall.ie (D.-S. Komaris).
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0021-9290/© 2019 The Author(s). Published by Elsevier Ltd.

such approaches may be classified into three categories (Ancillao
et al., 2018): direct force measurements with wearable load-cells
(e.g. Liedtke et al., 2007; Tao et al., 2012), indirect methods with
wearable pressure insoles (e.g. Shu et al., 2010; Crea et al., 2014),
and techniques that approximate forces from body kinematics
(e.g. Bobbert et al., 1991; Ohtaki et al., 2001; Clark et al., 2017;
Verheul et al., 2018). Even though direct approaches with force
sensors are the most accurate, they are generally bulky, costly,
high-energy consuming, and impractical due to their altered con-
tact interface between the feet and the ground (Liedtke et al.,
2007; Jacobs & Ferris, 2015). Pressure insoles have also been shown
to estimate anterior-posterior and vertical GRFs with very good
accuracy (Forner Cordero et al., 2004; Fong et al., 2008); nonethe-
less, they are still accompanied with practical long-term consider-
ations due to their short lifespan (Shahabpoor & Pavic, 2017), rapid
degradation, and feebleness (El Kati et al., 2010). Contrarily, GRF
estimation based on kinematics is currently the least accurate
but has the highest potential for applicability. The capacity of a
model relying on a kinematics to predict GRFs depends on whether
the data were obtained by optoelectronics (e.g. Bobbert et al.,

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1991; Ren et al., 2008; Fluit et al., 2014; Clark et al., 2017) or iner-
tial measurement units (IMUs) (e.g. Raper et al., 2018; Shahabpoor
& Pavic, 2018), the number of sensors being used (Verheul et al.,
2018), and its computational approach; for example, authors previ-
ously employed biomechanical models (e.g. Bobbert et al., 1991;
Clark et al., 2017; Gurchiek et al., 2017; Verheul et al., 2018), neural
networks (e.g. Kohle et al., 1997; Oh et al., 2013; Ngoh et al., 2018;
Komaris et al, 2019), or mass-spring-damper systems (e.g.
Nikooyan & Zadpoor, 2011; Nedergaard et al., 2018).

The development of low-cost and accessible wearable IMUs
(Tedesco et al., 2016) led to the extensive validation of approaches
drawing on kinematics with increasingly accurate results; for
example, Karatsidis et al. (2016) demonstrated that the estimation
of GRFs in walking using IMUs was comparable to studies using
similar inputs from optoelectronic motion capture systems. As a
general rule, biomechanical models commence by measuring
segmental centre of mass (COM) accelerations, and subsequently
estimate GRFs as the sum of products of segmental masses and
accelerations. To the best of the authors’ knowledge, the entirety
of these works cope with the body’s mass distribution in segments
by adhering to literature data on average magnitudes of segment
masses (e.g. Clauser et al., 1969; Dainis, 1980; De Leva, 1996;
Winter, 2009). Yet, such approximations overlook the potential
effect of the inherent variability in such measurements associated
with each individual’s mass distribution. Furthermore, low-pass
filters are customarily used on kinematic data to prevent excessive
noise; yet, authors rarely consider the effect of cut-off frequencies
(f.) on the high-frequency components of the recorded signal,
particularly in high impact movements (e.g. Bobbert et al., 1991;
Verheul et al., 2018).

Even though it is still arguable if segmental kinematics can be
successfully used to predict GRFs during high impact activities
(Verheul et al., 2018), the suggested approach may potential lead
to improved modeling accuracy. Along these lines, the purpose of
this work was to determine the optimal f, and mass distribution
on the approximation of GRFs in running. It was hypothesised that
the f. of the employed filter would increase with running speed
since the acquired signal has higher frequency content; addition-
ally, it was hypothesized that the optimised masses of the consid-
ered segments would be unrelated to running speed.

2. Methodology
2.1. Participants and data collection

A public dataset of raw running biomechanics, available at
Figshare (DOI: https://doi.org/10.6084/m9.figshare.4543435), was
used for this analysis (Fukuchi et al., 2017). The dataset contains
trials of 28 regular runners (age: 34.8 + 6.6 years; height:
176 + 6.7 cm; mass: 69.6 + 7.6 kg; gender: 27 males), with a train-
ing running volume greater than 20 km per week. Inclusion criteria
included a minimum average running pace of 12 km/h during 10
km races and familiarity with treadmill running; participants with
neurological or musculoskeletal disorders were excluded from the
study. All participants were self-assessed to perform on either
competitive or elite level.

Forty-eight technical and anatomical reflective markers were
attached to the lower extremities and pelvis of each participant.
Running trials were captured by 12 Raptor-4 motion cameras
(Motion Analysis, Santa Rosa, CA, USA) and a Bertec dual-belt
instrumented treadmill (Columbus, OH, USA) with sampling
frequencies of 150 and 300 Hz, respectively. Three trials per partic-
ipant of 30 s each, at 2.5, 3.5, and 4.5 m/s were logged. Addition-
ally, the authors of the study used the centre of pressure and

heel positions at heel-strike to identify foot-strike patterns. All
recorded stances were considered in this analysis.

3. Data processing

Thigh and pelvis markers were singled from the dataset and
further post-processed in Vicon Nexus (Oxford, UK). Gaps in the
trajectories of four-marker cluster sets were treated with rigid
body fills; gaps of 7 frames or smaller were filled with cubic spline
interpolations; larger gaps were handled with either pattern or
cyclic fills. Only the trajectories of the pelvis markers (left and right
bony projections of the anterior and posterior superior iliac spine)
and thigh markers (four-marker cluster sets, lateral mid-thighs)
were further used.

Eighty-four trials in total (28 participants, 3 running speeds)
containing spatial and force data were processed in MATLAB
(MathWorks, MA, USA). Forces were filtered using a low-pass,
second-order, zero-phase shift Butterworth filter with an f. of
25 Hz. Positional data were up-sampled to 300 FPS to reach the
sampling frequency of the instrumented treadmill. Subsequently,
the dataset was divided into two equal parts; the first batch of
trials (subjects 1 — 14) was used for a grid-search to identify the
combination of segment masses and f. for the filtering of positional
data that optimises the calculation of GRFs. The identified opti-
mum parameters were then used in the latter part of the dataset
(subjects 15 — 28).

During the grid-search, positional time series were treated with
the same filter that was used for the force data but with a broad
range off.: 4 — 15 Hz for the pelvis and 10 — 30 Hz for the thigh
markers, with 1Hz intervals. The thigh mass was also parame-
terised (my,,,) with values extending from 8 — 28% of the partici-
pant’s total body mass (BM), with 1% increments (approximately
equal to +10% of the total mass of the entire lower-limb). As a
result, a total of 5292 unique combinations per trial were analysed
at this stage. Following the filtering process, and for each record-
ing, the vertical positions of the pelvis and thigh marker subsets
were averaged separately and double differentiated, resulting in
an approximation of the segments’ COM vertical acceleration
(Qpeivis and agign). The vertical components of the GRFs were then
estimated as the summation of two products of masses and
accelerations:

GRFyertical,estimated = Minign (athigh +g) + Mgy - (apelvis +g) (1)

Mgy = BM — Mipign 2)

where g equals the gravitational acceleration, while the remaining
body masses (mggy) are given by the difference between body
and thigh masses (Eq. (2)). The combination of the three parameters
that minimises the root mean square error (RMSEgw, body weight
normalised) between the actual force waveforms and those
returned by the grid-search were then used to estimate GRFs
(Eq. (1)) for the second portion of the dataset (subjects 15 — 28).

3.1. Statistics

Two-way ANOVAs were conducted to examine the effect of run-
ning speed and foot-strike pattern on the f. and thigh masses that
minimised the RMSE statistic. In regards to the type of foot-strike,
the performance of the dominant leg (subjects’ self-reported) was
used to dichotomise the dataset into forefoot and rearfoot groups.
To validate the accuracy of our model, RMSE and goodness-of-fit
(R?) agreements, along with the difference in normalised absolute
peak forces, were measured for the second half of the dataset and
compared to the corresponding values from the grid-search. Statis-
tical significance was set at p < 0.05 for all calculations.
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Table 1
Grid-search parameters and errors (SD).
Pelvis f, Thigh f, Mypigh RMSE Absolute peak error R?
Hz Hz %BM BW BW
2.5 m/s 5.7 (1.2) 22.6 (5.3) 15 0.09 (0.02) 0.05 (0.04) 0.99
3.5 m/s 6.4 (1.6) 24.5 (5.5) 13 0.13 (0.03) 0.06 (0.04) 0.99
45m/s 7.4 (1.8) 23.7 (5.3) 13 0.17 (0.03) 0.09 (0.05) 0.99
All speeds, m/s 6.5 (1.7) 23.6 (5.3) 14 0.13 (0.04) 0.07 (0.04) 0.99
In bold: statistically significant values (p < 0.05).
4. Results Table 2
Errors (SD) for the validation set.
The capacity of the grid-search to adequately approximate the RMSE Absolute peak error R2
sought waveforms diminishes linearly at higher running speeds BW BW
(RMSE, Table 1). Goodness-of-fit statistic was identical across all 2.5 m/s 0.10 (0.02) 0.06 (0.04) 0.99
running conditions (R? = 0.99). Similarly to the RMSE measure- 3.5 m/s 0.13 (0.03) 0.08 (0.06) 099
ment, absolute peak error values (BW normalised) deteriorate with 4.5 m/s 0.18 (0.03) 0.12 (0.08) 0-99
’ p All speeds, m/s 0.14 (0.04) 0.09 (0.07) 0.99

increasing speeds. Across all recordings, the highest peak error
between modeled and observed forces for a single trial (mean for
approximately 90 strides) was 115 N (data not shown).

Evidently, the optimum f, of the pelvis markers increases with
running speed (Table 1); yet, thigh f. and mass appear to be unaf-
fected by the same factor. Two-way ANOVAs were conducted to
examine the effect of running speed and foot-strike pattern on f,
and mass allocation. There were no significant outliers within the
data, while Shapiro-Wilk and Levene’s test for homogeneity con-
firmed that the variables were generally normally distributed with
homogeneous variances. The main effect of running speed on the
optimum pelvis f, was statistically significant (p = 0.03); as was
the effect of foot-strike type on the f, of the thighs (p = 0.04).
There was no statistically significant interaction between the effect
of speed and foot-strike on the aforementioned frequencies. Pair-
wise post-hoc comparisons using the Tukey HSD test, indicated
that significant difference on the pelvis f, exists solely between
the 2.5 and 4.5 m/s conditions (Table 1: in bold; p = 0.03). Lastly,
there were no significant main effects nor an interaction of either
factor on the thigh masses.

Vertical GRFs were then estimated for the validation dataset
with the following parameters: 6 Hz for the pelvis f. of the 2.5
and 3.5 m/s running trials, and 7 Hz for the 4.5 m/s recordings;
20 and 24 Hz for the thigh f. for the forefoot and rearfoot strikers,
respectively (data not shown); thigh masses equal to 14% of each
participant’s BM. Similarly to the grid-search analysis, RMSE and
absolute peak error values decline while speed increases (Table 2).
Errors for the second part of our analysis, when averaged for the
three speed conditions (0.14 4 0.04), did not change notably com-
pared to the analogous values from the grid-search (0.13 4 0.04).
One-way ANOVAs were conducted to compare the performance
of the validation to the grid-search results. Shapiro-Wilk tests of
residuals and Levene’s test for homogeneity were carried out and
the assumptions were met. There was no statistically significant
difference between the two approaches on the quality of the GRF
estimation for both RMSE (p =0.39) and absolute peak error
values (p = 0.11).

Measured and predicted waveforms of the validation set, were
divided into six groups as per the trials’ running speed and heel-
strike pattern. Subsequently, the measured (Fig. 1, solid line) and
the predicted (dashed line) vertical GRFs were standardised to
BW and normalised to 100% of stance phase (foot-strike to toe-
off). Stance phases for each group were then averaged, along with
their RMSEs (BW normalised). Reaction forces depicted in cases C
and E (forefoot strikers at 3.5 and 4.5 m/s, respectively) bear high
RMSEs, however, they incorporate readings from only a single
recording each. It is worth noting that every recorded trial con-
tains a number of stances ranging approximately from 75 to 95,

depending on subject and running speed. Finally, since the dis-
played GRFs are an overlay of hundreds of stance phases (Fig. 1,
legend), the impact peak appears rather flattened. To better
demonstrate the accurate graphical estimation of the double-
peak force curves of our model, Fig. 2 shows the average predic-
tions (similarly standardised and normalised as above) for only
the first subject of the validation set (i.e. subject 15) in all three
speed conditions.

5. Discussion

A straightforward computational Newtonian approach was
formulated, with the kinematics of the pelvis and thighs being
incorporated into the model. The grid-search led to the identifica-
tion of factors that reduced the overall errors in the prediction of
running GRFs (Table 2). In view of the positive outcomes of our
analysis, this class of methods may potentially be used in diverse
highly dynamic scenarios, or eventually, in outdoor settings with
the use of wearable IMUs.

Alternative methods, including neural networks (e.g. Ngoh
et al., 2018; Komaris et al., 2019) and mass-spring-damper models
(e.g. Nikooyan & Zadpoor, 2011; Nedergaard et al., 2018) have also
adequately predicted the GRFs’ vertical projection. Machine learn-
ing models may offer a very potent alternative, but they fail to
explain the underlying relationship between kinematics and
kinetics. Furthermore, they demand large sample sizes to train
and provide reliable results. Conversely, mass-spring-damper
models were able to justify the behavior of GRF waveforms retro-
spectively. Besides, those models tend to be accompanied by high
complexity when they attempt to incorporate variables, such as
running speed, footwear type, or ground stiffness (Nikooyan &
Zadpoor, 2011).

Approximated GRF waveforms in this study are rather accurate
when compared to other literature reported estimations. The RMS
error for low speeds (Table 2, 2.5 m/s) was on average equal to
0.10, and 0.13 to 0.18 for fast-paced running (3.5 and 4.5 m/s,
respectively). Previous authors attained RMSEs varying from 0.23
to 0.31 for different running conditions (Ohtaki et al., 2001).
Verheul et al. (2018) also reported normalised RMSEs from 0.16
(2-3 m/s) to 0.25 (4-5 m/s); yet, the authors in this study aimed
to estimate the resultant reaction force which is accompanied by
larger errors due to the inclusion of shearing forces. Lastly, Clark
et al. (2017) reported RMSE equal to 0.17 + 0.07 for all speed
conditions (3-6 m/s); despite the fact that the two-mass model
presented in the study always assumes a steady-speed level
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Fig. 1. Measured and estimated vertical ground reaction forces of the validation set. Trials are divided based on running speed and heel strike pattern. Forces are standardised
to body weight (BW) and normalised to 100 points. Measured (solid line) and model-predicted (dashed line) waveforms are the average of all stance phases for each
speed/foot strike case. The waveform portrayed on panel A (forefoot, 2.5 m/s) is the sum of 3 trials and 235 stance phases. Similarly, panel B (rearfoot, 2.5 m/s): 11 trials and

885 stances; C (forefoot, 3.5 m/s): 1 trial and 82 stances; D (rearfoot, 3.5 m/s): 13 trials and 1111 stances; E (forefoot, 4.5 m/s): 1 trial and 87 stances; F (rearfoot, 4.5 m/s): 13
trials and 1208 stances.
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Fig. 2. Measured (solid line) and estimated (dashed line) vertical ground reaction
forces of the first subject of the validation set, along with the RMSEs of the
predictions. Forces are standardised to body weight (BW) and normalised to
100 points.

running (thus being impractical for other than treadmill applica-
tions), it has the added merit of only employing two markers.

In general, a number of factors may account for errors in esti-
mating GRFs from kinematic data. These include the body’s mass
allocation, filtering of kinematic data, number and combination
of sensors and/or segments, and no less importantly, soft tissue
artefacts and sensor positioning. The purpose of this work was to
investigate the first two: the impact of segmental mass distribu-
tion and the filter’s f. in the approximation of running loads. We
performed a grid-search where thigh masses from 8% to 28% of
total body mass were considered. As hypothesised, this procedure
found a consistent mass of 14% BW across all conditions and
running speeds (Table 1). Interestingly, this percentage does not
always agree with literature reported values: Damavandi et al.
(2009) defined the greater trochanter and the femoral epicondyle
as the thigh boundaries, and the reported mass (normal morpho-
logical group, BMI 23.9 kg/m?) was on average equal to 11.22%
(£1.23%) of BW. Drillis et al. (1964) and Winter (2009) also report
comparable anthropometrics. However, our findings are in better
agreement with the corresponding values reported by De Leva
(1996): in this study, thigh length was defined as the distance
between iliospinale and tibiale, and the thigh mass was on average
equal to 14.16% BW (males, BMI 24.1 kg/m?). Therefore, taking into
account standardised segment masses as reported in literature
should be dealt with caution.

As regards the filtering, authors select various f, for the process-
ing of kinematic data: Clark et al. (2017) and Udofa et al. (2016)
applied a low-pass, 4th order, zero-phase-shift Butterworth filter
with an f. of 25 Hz. Yet, as previously reported (Bobbert et al.,
1991), when the f. is set below 10 Hz for all markers the first peak
of the curve is flattened, whereas for high f, the predicted wave-
form exhibits large fluctuations. Due to this, the use of different
f. for all considered segments leads to predictions that conform
better to the measured forces: Bobbert et al. (1991) employed
the same filter as Clark et al. but with 50 and 15 Hz f. for lower
and upper-body markers, respectively; Verheul et al. (2018) used
a 2nd order Butterworth low-pass filter with 20 and 10 Hz f. for
different segments. In our study, we likewise deduced that differ-
ent f, for the upper and lower-body markers optimise the GRFs’
estimation for the dataset in hand. Furthermore, as hypothesized,
the f. of the thigh markers tends to marginally increase with
higher running speeds.

The number and combination of segments taken into account
may also be critically reviewed. Specifically for open field applica-
tions, the number of deployed sensors should be kept at a mini-
mum. Then again, reducing the number of the considered
segments will significantly increase the errors in estimating GRFs.
Indeed, studies assessing a single body segment were accompanied
by high RMSE (e.g. Raper et al., 2018; Nedergaard et al., 2018).
Verheul et al. (2018) additionally demonstrated that during high
intensity running tasks, the errors substantially increase if the
number of incorporated segments is reduced below three.
Nonetheless, Clark et al. (2017) used merely two ankle markers
with robust results for slow and medium running speeds. In terms
of combinations of segments, previous studies concur that the
main contributors to the first impact peak in the vertical GRFs
(when present) are the leg segments, while the remaining masses
contribute to the second peak of the waveform (Bobbert et al.,
1991; Clark et al, 2017). To further support this argument,
Verheul et al. (2018) examined over 32,000 unique segment
combinations for the estimation of GRFs, and the trunk and thigh
(s) were always present in every optimal combination of two or
more segments. On those grounds, in the present study, we merely
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considered three segments: the lower-limbs were represented by
the thighs, while the remaining masses were treated along with
the pelvis. The reader should also keep in mind that the dataset
used for this work (Fukuchi et al., 2017) contains only kinematics
of the lower extremities, therefore the torso was substituted by
the pelvis.

A critical assumption in the approximation of forces from kine-
matics is that the considered accelerations correspond to segmen-
tal COM accelerations. Yet, a segment’s COM is not fixated in an
anatomical position, and its acceleration emanates from the move-
ment of bony structures and soft tissues (Bobbert et al., 1991).
Therefore, the presence of soft tissue artefacts and poor sensor
positioning may introduce high computational errors in such anal-
yses. It has been demonstrated (Boyer & Nigg, 2004; Schache et al.,
2011) that high running speeds were accompanied by larger soft
tissue vibrations and errors in kinematic calculations. This is even
apparent in the present study, where RMSEs increase substantially
during fast-paced running (Tables 1 and 2). Similarly, poor sensor
placement (Leardini et al., 2005) may also have a negative impact:
Reinschmidt et al. (1997) and Peters et al. (2010) observed errors
when markers were placed on large muscles due to intense muscle
activity and relative movements. This is particularly evident with
the tracking of thigh markers (Reinschmidt et al., 1997; Peters
et al., 2010); for this, it is advised to restrict marker placement to
areas with lower muscle contractions, such as the anterolateral
part of the distal third of the thigh (Schache et al., 2011).

A limitation of this study is imposed by the number of markers
used in the analysis. Ideally, only a marker per segment should be
considered allowing the applicability of the findings to be extended
to IMUs. Instead, four pelvis markers and two thigh clusters were
used. By all means, employing more markers per segment permits
a more accurate estimation of the segment’s COM location, and
consequently, more precise GRF estimations. Thus, it can be rea-
sonably expected that reducing the number of markers to one
per segment will return higher RMSE values. A second limitation
of this work arises from the use of only 2nd order filters; even
though Butterworth was the prevalent choice by researchers who
worked on the prediction of GRFs from human kinematics, the
order of the employed filter may extend from 2nd (e.g. Karatsidis
et al., 2016; Pavei et al., 2017; Verheul et al., 2018; Komaris
et al., 2019) to 4th (e.g. Udofa et al., 2016; Clark et al., 2017;
Nedergaard et al., 2018; Shahabpoor & Pavic, 2018). Since the order
alters the amplitude response in both passband and stopband, the
output signal may be significantly affected by this parameter;
therefore, our optimisation holds true only for 2nd order filters.
Lastly, anatomical differences between males and females were
not been taken into account in this work. Even though there is a
relatively little difference in the thighs’ segment mass between
sexes (as reported by De Leva, 1996: 14.78% and 14.16% of BW
for females and males, respectively), we were unable to gauge
the effect of sex in segment mass distribution since only one
female subject was included in the employed dataset (Fukuchi
et al,, 2017).

6. Conclusion

This study demonstrated that accurate prediction of vertical
GRFs, for moderate running speeds, can be reasonably achieved
with the kinematics of only three segments. The effects of the
filter's f. and body mass distribution on the estimation of the
waveforms were also investigated. Findings support the existence
of correlations between f. and two factors: running speed and
foot-strike strategies. Optimal segment masses were constant
along all tested conditions and in agreement with certain literature
reported values. However, researchers should be skeptical when

incorporating standardised values for biomechanical models due
to the different boundaries used to define segments. Future work
should consider the adoption of compensating techniques for the
presence of soft tissue artefacts, or the placement of sensors to
areas with lower muscle activity.
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