
Title Introduction to the special section—General Theories of Software
Engineering: new advances and implications for research

Authors Stol, Klaas-Jan;Goedicke, Michael;Jacobson, Ivar

Publication date 2016-08-17

Original Citation Stol, K.-J., Goedicke, M. and Jacobson, I. (2016) 'Introduction to
the special section—General Theories of Software Engineering:
New advances and implications for research', Information
and Software Technology, 70, pp. 176-180. doi: 10.1016/
j.infsof.2015.07.010

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://www.sciencedirect.com/science/article/pii/
S0950584915001330 - 10.1016/j.infsof.2015.07.010

Rights © 2015 Elsevier B.V. All rights reserved. This manuscript version
is made available under the CC-BY-NC-ND 4.0 license - http://
creativecommons.org/licenses/by-nc-nd/4.0/

Download date 2024-04-27 01:18:51

Item downloaded
from

https://hdl.handle.net/10468/7043

https://hdl.handle.net/10468/7043


Information and Software Technology 70 (2016) 1–6

Inform Soft
Technol

Introduction to the Special Section — General Theories of Software
Engineering: New advances and implications for research

Klaas-Jan Stola, Michael Goedickeb, Ivar Jacobsonc

aLero—the Irish Software Research Centre, University of Limerick, Ireland
bUniversity of Duisburg-Essen, Essen, Germany

cIvar Jacobson International, Verbier, Switzerland

Abstract

In recent years, software engineering researchers have recognized the importance of the role of theory or SE research, resulting in the emergence
of the General Theories of Software Engineering (GTSE) community. This editorial introduces a special section that contains four articles, and
reflects on the advances made by the contributing authors.

We discuss the different approaches taken in each of the four papers and outline a number of avenues for future research.

1. Introduction

In the last decade or so, the software engineering research
community has increasingly started to pay attention to the topic
of theory in software engineering [1, 2, 3, 4, 5]. In addition
to several workshops on the theme of General Theories of Soft-
ware Engineering (GTSE), a first special issue was published in
the journal Science of Computer Programming [6]. Given the
momentum of the emerging community around this theme, we
published a call for papers, and this special section is the result.

Many other disciplines have general theories—for example,
physics has the Standard Model of particle physics [7]. General
theories are useful for several reasons, and one important rea-
son in particular is that it helps to identify important questions
and as such helps to set out a research agenda for a discipline
as a whole. A recent example of this is a long-time missing
component of the Standard Model in physics. The Standard
Model suggested the existence of a specific type of particle (a
boson). By 2013, physicists announced that they believed they
had found the Higgs boson. Thus, the Standard Model provided
an overall framework that suggested to researchers what to look
for.

In software engineering, such an overall framework is miss-
ing. The SEMAT (Software Engineering Methods and Theory)
initiative, founded in 2009 by Ivar Jacobson, Bertrand Meyer
and Richard Soley, has argued that software engineering needs
to identify a common ground. To that end, the SEMAT initia-
tive has defined the ‘Essence’ language and kernel [4] which
has been accepted as an OMG standard [8].

Most studies in software engineering pay little or no atten-

tion to theory development, and very few studies are based on
existing theories, although exceptions do exist [9]. The expla-
nation for this may lie in the tradition of how software engineer-
ing studies have been conducted thus far. Software engineering
studies can be roughly organized into two categories. The first
category is what we call solution-seeking studies. These studies
observe a certain technical problem and ‘engineer’ a solution
that addresses the problem. Wieringa would call these ‘practi-
cal problems’ [10]. In most cases such engineering studies also
contain an experimental, quantitative evaluation to demonstrate
how well the formulated solution addresses the problem.

The second category is what we call knowledge-seeking stud-
ies. These are studies that investigate software engineering
practice by studying, for example, what software professionals
do, what their challenges are, and what processes they use, ad-
dressing questions such as “how are things done” and “what’s
going on here.” Wieringa would call these ‘knowledge prob-
lems’ [10]. This type of study has become more common over
the last decade, and researchers conducting this type of study
have adopted a variety of research methods from other disci-
plines most notably from the social sciences, such as case stud-
ies, surveys, grounded theory and ethnography. The use of
qualitative data is quite common in knowledge-seeking studies

Solution-seeking studies tend to focus on very specific and
detailed software engineering problems. Often, solutions are
composed to analyze or change a system’s source code. In such
studies, the ‘theory’ tends to be in the form of a hypothesis that
the proposed solution works better than existing solutions. Ex-
emplar constructs in such studies are program size (which can

1

Authors' copy, published in Information and Software Technology, vol. 70, pp. 176-180, February 2016. 
http://dx.doi.org/10.1016/j.infsof.2015.07.010



Stol et al. / Information and Software Technology 70 (2016) 1–6 2

be measured as lines of code or object code size) and perfor-
mance. We call such ‘theories’ (the sets of hypotheses put forth
around a specific tool or technique) micro theories. While these
studies offer direct value in that they provide a solution to a soft-
ware engineering problem, it is often not immediately clear how
they contribute to the larger issues in software engineering.

Knowledge-seeking studies, on the other hand, can be con-
ducted at many different levels of detail. Some studies are
case studies to investigate a new phenomenon. A classic ex-
ample of this is the study by Mockus et al. investigating open
source software development [11]. Based on the results of that
study, the authors proposed a set of hypotheses that they suggest
could explain how open source software development works ‘in
general,’ and form the basis for a middle-range theory. Such
middle-range theories are very useful as they facilitate the in-
tegration and linking of several studies with one another and
construct a body of knowledge on software engineering phe-
nomena.

Despite an active community that publishes hundreds of re-
search papers every year, many researchers in our field agree
that our research is not making a significant impact on in-
dustry. Perhaps we are not asking the right questions. Soft-
ware engineering researchers are studying a wide variety of
topics, and the boundaries of software engineering as a disci-
pline are still expanding. Partly this is due to the fact that new
trends are continuously emerging that are relevant for software
practitioners—for example, the use of social media in software
engineering practice [12]. However, the ‘big picture’ of soft-
ware engineering research remains unclear—a General Theory
of Software Engineering is missing. A GTSE is needed to po-
sition all those micro and middle-range theories.

The goal of this special section, as well as the workshop se-
ries on this theme organized by other members of the GTSE
community, is to draw attention to this issue, to explore com-
munity members’ ideas, and to encourage others to think about
how their research could benefit from a theory-oriented ap-
proach to software engineering research. The scope of this spe-
cial section was not limited to general theories. Instead, we
welcomed middle-range theories, evaluations of theories, and
proposals for how to use theories from other disciplines to ex-
plain software engineering phenomena.

2. The Articles in this Special Section

Following the call for papers on the theme of General Theo-
ries of Software Engineering, we received 11 submissions. Of
those, one was desk-rejected as it did not fall within the scope
of the original call. The remaining ten articles were each re-
viewed by two reviewers as well as by the guest editors. Of
these ten, four articles were accepted for publication.

In their article “The Tarpit – A General Theory of Software
Engineering,” Pontus Johnson and Mathias Ekstedt propose a
general theory of software engineering. Johnson and Ekstedt
developed this theory (the ‘Tarpit’) based on their argument that
communication breakdowns are at the heart of the challenges
in software engineering. The Tarpit is based on four theoreti-
cal fields that are of central importance to software engineering:

languages and automata, cognitive architecture, problem solv-
ing, and organizational structure. These four different fields
also reflect the socio-technical nature of the software engineer-
ing field. To illustrate the utility of the Tarpit as a theory, John-
son and Ekstedt demonstrate how it can be used to explain and
predict three well-known phenomena in software engineering:
Brooks’s Law (a principle), domain-specific languages (an arti-
fact), and continuous integration (a practice). The Tarpit theory
can be seen as a common framework that offers explanations
and allows predictions for a variety of phenomena. One current
limitation of the Tarpit theory, as acknowledged by Johnson and
Ekstedt is that its presentation is qualitative and not formalized.
We believe that the Tarpit theory can be further explored in a
number of ways. As the authors suggest, further work may fo-
cus on formalization, such as the definition of an explicit set
of propositions. Another venue is the use of the Tarpit theory
as a framework for integrating an existing body of literature in
a particular area, for example, coordination in global software
development. By doing so, the Tarpit can be used as ‘theoretical
glue’ to integrate an existing body of empirical research.

The second article, “A Theory of Distances in Software De-
velopment” by Elizabeth Bjarnason, Kari Smolander, Emelie
Engström and Per Runeson also presents a theory. In contrast
with the Tarpit theory by Johnson and Ekstedt which is based on
existing theoretical constructs, the Theory of Distances was in-
ductively developed and grounded in empirical data. The The-
ory of Distances is based on an empirically-based model, which
the authors named the “Gap model,” that consists of three parts.
The first part of the Gap Model is the definition of eight dif-
ferent types of distances. These include the well-known geo-
graphical and temporal distances, but new types of distances
are psychological and cognitive distances which affect an in-
dividual’s perceptions, communication skills and competence
levels. The second part is the definition of eight so-called align-
ment practices which help to link requirement engineering on
the one hand and testing on the other hand. One such alignment
practice is cross-role collaboration, which involves roles from
different disciplines in software engineering activities; for ex-
ample, testers who participate in the reviewing of requirements
documents. The third part of the Gap Model provides the link
between the former two parts and explains how alignment prac-
tices help to reduce the various types of distances. Effectively,
this third part in which Bjarnason and colleagues outline how
the various alignment practices affect distances is a set of im-
plicit propositions. The Gap Model is based on empirical find-
ings, and offers practical insights that can be of immediate use
to software professionals. At the same time, we also believe
that the Gap Model invites further studies that empirically test
the various implicit propositions. To do so, these propositions
should be instantiated as hypotheses through the operationaliza-
tion of the various constructs, i.e., the various types of distances
and alignment practices. For example, geographical distance
is not sufficiently operationalized as longitudinal geographical
distance will be affected differently than latitudinal distance. In
the former, time zone differences will play a role, whereas in
the latter no time differences are present.

The third article, “What does it mean to use method? To-
2



Stol et al. / Information and Software Technology 70 (2016) 1–6 3

wards a Practice Theory for Software Engineering” by Yvonne
Dittrich presents a conceptual foundation for understanding
software development as a social practice. In particular, Dit-
trich aims to develop an understanding of why the use of soft-
ware development methods varies by project. The issue ad-
dressed here is that each organization, project, or team adopts
methods (or practices) in their own specific way that fits within
a specific context. Earlier researchers named this ‘method-in-
action’ [13]. Following an in-depth philosophical argumenta-
tion that draws from several insights from other disciplines,
Dittrich outlines a number of very important implications for
research, practice and education. Dittrich argues that methods
emerge in one of two ways: either as abstracted practice pat-
terns to communicate to colleagues, or as output of software
engineering research. The impact of the latter is very small.
In both cases, empirical research is concerned with evaluating
those methods and techniques, but also with understanding the
context in which these methods and techniques are used. As
each software development endeavor takes place in a unique
context with specific challenges and constraints, the methods
used may or may not work as expected. Furthermore, Dittrich
also argues that the tailoring and adoption of methods needs
to be carefully deliberated and that the suitability of methods
should be evaluated after adoption so as to ensure that their in-
tended goals are achieved.

The fourth and final article in this special section is by
Paul Ralph, entitled “Software Engineering Process Theory:
A Multi-Method Comparison of Sensemaking-Coevolution-
Implementation Theory and Function-Behavior-Structure The-
ory.” This article does not propose a new theory, but instead
presents a comparison of two software engineering process the-
ories. Whereas the Tarpit theory (by Johnson and Ekstedt)
and the Theory of Distances (Bjarnason et al.) are variance
theories, Ralph discusses and compares two process theories.
As Ralph points out, the former tend to focus on why events
occur, whereas the latter tend to focus on how events occur.
The two theories that Ralph compares are the Sensemaking-
Coevolution-Implementation (SCI) theory on the one hand,
and the Function-Behavior-Structure (FBS) theory on the other
hand. The SCI was developed by Ralph himself [14], whereas
the FBS theory was developed by Gero [15]. Ralph employed
a multi-methodological approach, using a multiple case study
and a questionnaire study to compare the two theories. The
results suggest that SCI better explains how developers create
software than the rival theory FBS. Ralph emphasizes that his
study does not prove SCI or falsify FBS, arguing that verifica-
tionism and Karl Popper’s falsification are defunct epistemolo-
gies. Furthermore, he also points out a number of implications
of these results. For example, the article argues that problem
framing and design are tightly-coupled activities in practice,
and therefore separating them as conceptually separate activi-
ties (as is done in the waterfall model) can be misleading.

3. But what is it good for?

The four articles included in this special section differ in level
of abstraction (concrete vs. philosophical), research approach

(empirical vs. theoretical), and scope (general theory vs. mid-
dle range theory). Consequently, readers may find some articles
more accessible than others due to the different styles of presen-
tation. However, together these four articles offer a number of
useful contributions which can be classified into three dimen-
sions: the substantive dimension, representing the phenomenon
of interest; the conceptual dimension, representing conceptual-
izations and theoretical contributions; and the methodological
dimension, representing contributions in terms of research ap-
proaches [5]. Table 1 summarizes these domains and provides
examples.

3.1. Advances in the substantive domain
Each of the four articles is positioned in a certain topic of

interest, which is the real-world phenomenon that a researcher
may be interested in. This is the substantive area of interest.
Given the nature of this special section with a specific focus
on theory of software engineering, the substantive contributions
are limited in all four articles.

Johnson and Ekstedt offer their view on what they believe
software engineering is about and define what they consider to
be the core concepts in our discipline. In their own words, the
Tarpit theory revolves around “the communicative difficulty be-
tween the architecture of human cognition and the architecture
of computing systems.”

The substantive topic in the article by Bjarnason and col-
leagues is in the area of requirements engineering and test-
ing. Their article offers an empirically-grounded model that
emerged from data gathered through five case studies. The sub-
stantive contribution of their article is an understanding of the
relationships between so-called alignment practices and a va-
riety of distances that they identified. Consequently, given the
strong empirical foundation and the insights that are derived
from their analysis, the substantive contribution of this article
is considerable and offers sound advice to practitioners.

The substantive topic of the article by Dittrich is software
development methods. Dittrich focuses on the question what
it means to use a methods in practice as it is tailored to the
context within which the method is applied. Dittrich illustrates
her argumentation with various examples from the literature.

The substantive element in Ralph’s study is that of software
development as an activity. The contribution in this study is
similar to those of Johnson and Ekstedt, and Dittrich, namely,
in the description of software development as an activity.

As mentioned, the substantive contribution is limited in all
four articles – however, this should not be considered a limita-
tion of these studies. The substantive element in these studies
is the ‘background’ or area within which the authors have po-
sitioned their main contribution, which lies in the conceptual
domain. We discuss these contributions next.

3.2. Advances in the conceptual domain
The emphasis of the contributions of the articles in this spe-

cial section lies in the conceptual domain, which is the do-
main of theories, analytical frameworks, and new lenses to look
through when considering topics of study [5]. Table 2 lists the
theoretical contributions of the four articles.

3



Stol et al. / Information and Software Technology 70 (2016) 1–6 4

Table 1. Three domains of elements of research studies.

Domain Description Example

Substantive Software engineering phenomena or systems. These are
the objects of study that a researcher is interested in.

Open Source software development, Linux, crowdsourcing, software archi-
tecture, distributed software development, developer motivation

Conceptual Constructs, relations, frameworks, theories to describe,
compare or explain phenomena.

Analytical and comparative frameworks, micro theories, middle-range theo-
ries, hypotheses, propositions, concepts, abstractions, mathematical models,
Lehman’s Laws

Methodological Methods or techniques used to gather data Case study, survey, experiment, ethnography, repertory grid technique, com-
parative analysis, instruments, techniques, content analysis, MOOD metrics

Johnson and Ekstedt’s article contributes the Tarpit theory,
which is a general theory of software engineering. The Tarpit
theory is a variance theory as opposed to a process theory. The
Tarpit theory defines the relationships between the key concepts
that Johnson and Ekstedt identified. In their article, Johnson
and Ekstedt define three major inhibitors in software devel-
opment: (1) making informed design decisions, (2) correctly
translating between languages (specification, implementation),
and (3) coordination. The Tarpit theory, then, is presented as a
theory that can explain and predict a variety of software engi-
neering phenomena.

The article by Bjarnason et al. offers a theory that can ex-
plain why certain practices support alignment and coordination
of software development projects. Their Theory of Distances is
based on what they refer to as the Gap Model, which is an em-
pirically grounded model of how a number of alignment prac-
tices can help to overcome ‘distance’ in software engineering,
which they defined as a multi-faceted concept.

Dittrich offers a new conceptual lens, derived from concepts
in the philosophy of sociology, and through which she explains
the heterogeneity in the outcome of using software develop-
ment methods. Earlier empirical research had long established
that software development methods are almost never adopted
as-defined, but virtually always in an a la carte fashion [16].
The variety with which practitioners adopt methods has impor-
tant implications for comparing different projects that claim to
be using a certain method, as differences in project success can-
not easily be attributed to the use of a method as they are im-
plemented in different ways. However, thus far very few re-
searchers have tried to provide an understanding of this phe-
nomenon. Dittrich’s article aims to develop such an understand-
ing.

Finally, rather than contributing a novel theory, the
theoretical element in Ralph’s study are two rival theo-
ries, the Sensemaking-Coevolution-Implementation theory and
Function-Behavior-Structure theory. The FBS theory was not
developed specifically for the software engineering field, and
had not been evaluated for the software engineering domain.
Ralph’s article presents the first empirical evaluation of the SCI
theory.

3.3. Advances in the methodological domain

Besides drawing attention to the potential benefits of a
theory-oriented approach [5], one of our goals in this special

section is to demonstrate how activities such as theory develop-
ment and comparison could be done. Table 2 summarizes the
methodological approaches taken in the four articles.

As is the case for all research studies, the studies included in
this special section have limitations. The research approaches
taken vary and therefore so do the limitations. Readers may be
left unconvinced as to the results of the studies or may disagree
with the theories that are proposed. However, this does not di-
minish the insights that we may glean from the methodological
approaches which the authors have employed, and we believe
the various approaches used in these four articles can be used
as exemplary ‘models’ or templates.

Johnson and Ekstedt take a theoretical approach, and base
their Tarpit theory on a set of constructs that they identify
in four different theoretical fields. To demonstrate the utility
of their theory, they presented three test cases. A different
approach to theory development is taken by Bjarnason et al.
who based their theory on a number of empirical case stud-
ies. From the analysis of the empirical data they developed
the “Gap Model.” Their Theory of Distances was based on
this empirically-grounded model. Dittrich follows a theoreti-
cal approach by presenting a philosophical argumentation that
is based on the philosophy of sociology. Throughout her arti-
cle she draws on empirical results published in the literature to
illustrate her arguments. Finally, Ralph presents an example of
how one could empirically compare two different process theo-
ries.

4. The Future of Theory-Oriented Software Engineering

The four articles in this special section offer a variety of dif-
ferent approaches to theory development and evaluation. We
hope these articles inspire others to consider how their future
studies can benefit and contribute to a theory-oriented software
engineering. Besides the theories proposed in these articles,
several other theories or theoretical frameworks have been pub-
lished in the first special issue on the GTSE theme [17, 18, 19].
Together, these proposed theories offer various opportunities to
explore how the extant software engineering literature can be
integrated, for example:

• Development of novel native theories for software engi-
neering that define a distinguishable theoretical core for
the field and integrate the numerous micro theories that
have resulted from both solution-seeking and knowledge-
seeking studies;

4



Stol et al. / Information and Software Technology 70 (2016) 1–6 5

Table 2. Overview of the articles in this special section

Article Scope Approach Contribution

Johnson, Ekstedt: The Tarpit – A gen-
eral theory of software engineering

Software engineering Theoretical: theory development based on
four theoretical fields.

A general theory of software engineering:
The Tarpit theory

Bjarnason, Smolander, Engström,
Runeson: A theory of distances in
software engineering

Requirements engi-
neering and testing

Empirical: multiple case study, followed by
theory development.

A theory of alignment of requirements engi-
neering and testing: the Theory of Distances,
and the Gap Model that underpins it.

Dittrich: What does it mean to use a
method? Towards a practice theory for
software engineering

Software develop-
ment methods

Theoretical: conceptualization of the use of
software development methods, grounded in
the philosophy of sociology.

A conceptual base for understanding soft-
ware development as social and epistemic
practices.

Ralph: Software engineering process
theory: A multi-method comparison of
SCI theory and FBS theory.

Software develop-
ment and design

Empirical: survey and multiple case study to
evaluate and compare two theories.

Empirical comparison of two process theo-
ries of software design.

• Evaluate the theories through further empirical studies to
gauge whether they capture the key concerns of software
engineering;

• Systematic literature reviews that use these theories as a
foundation for synthesis. Rather than grouping studies
based on topic (most studies that are called ‘systematic re-
views’ are, in fact, mapping studies), theories can be used
to position studies in relation to one another.

• Comparison of these theories, to evaluate which of them
fits best to explain software engineering phenomena. As
is the case for the articles in this special section, theories
may aim at capturing software engineering discipline as a
whole (e.g. the Tarpit theory), or a specific area (e.g. the
Theory of Distances).

• Re-evaluate research on software development methods
and tools using new conceptual lenses, such as that pro-
vided in Dittrich’s article in this special section. Software
Engineering researchers continuously develop new meth-
ods and tools, but such proposals often ignore the context
within which these methods and tools will be used. In
many cases, methods and tools are not used as initially in-
tended by the method or tool designer.

We believe a further investigation of how the various theories
and theory development approaches can contribute to theory-
oriented software engineering research is warranted.

Acknowledgments

We wish to thank all authors who have submitted to the spe-
cial section. We are also grateful to all anonymous reviewers
who have contributed their time and expertise, without whom
this special section would not have been possible. Furthermore,
we are grateful to Prof. Claes Wohlin, the Editor-in-Chief of
Information and Software Technology, for providing assistance
and guidance throughout the process of this special issue. This
work was supported in part by Science Foundation Ireland grant
13/RC/2094 to Lero—the Irish Software Research Centre.

References

[1] P. Johnson, M. Ekstedt, In search of a unified theory of software engi-
neering, in: International Conference on Software Engineering Advances,
IEEE Computer Society, 2007.

[2] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, J. E. Hannay, Building theories
in software engineering, in: F. Shull, J. Singer, D. I. K. Sjøberg (Eds.),
Guide to Advanced Empirical Software Engineering, Springer Verlag,
2008, pp. 312–336.

[3] P. Johnson, P. Ralph, M. Goedicke, P.-W. Ng, K. J. Stol, K. Smolander,
I. Exman, D. E. Perry, Report on the second SEMAT workshop on gen-
eral theory of software engineering (gtse 2013), ACM SIGSOFT Software
Engineering Notes 38 (5) (2013) 47–50.

[4] I. Jacobson, N. Pan-Wei, P. E. McMahon, I. Spence, S. Lidman, The
Essence of Software Engineering, Addison-Wesley, 2013.

[5] K. Stol, B. Fitzgerald, Theory-oriented software engineering, Science of
Computer Programming 101 (2015) 79–98.

[6] P. Johnson, M. Ekstedt, M. Goedicke, I. Jacobson, Editorial: Towards
general theories of software engineering, Science of Computer Program-
ming 101 (2015) 1–5.

[7] D. Griffiths, Introduction to Elementary Particles, Wiley & Sons, 2008.
[8] Object Management Group, Kernel and language for

software engineering methods (essence), available at:
http://www.omg.org/spec/Essence/1.0/PDF/ (2014).

[9] T. Hall, N. Baddoo, S. Beecham, H. Robinson, H. Sharp, A systematic
review of theory use in studies investigating the motivations of software
engineers, ACM Trans Softw Eng Methodol 18 (3).

[10] R. Wieringa, Design science as nested problem solving, in: Proceedings
of the 4th International Conference on Design Science Research in Infor-
mation Systems and Technology (DESRIST’09), ACM, 2009.

[11] A. Mockus, R. Fielding, J. Herbsleb, A case study of open source soft-
ware development: The apache server, in: Proceedings of the 22nd inter-
national conference on Software engineering, 2000, pp. 263–272.

[12] M.-A. Storey, L. Singer, B. Cleary, F. Filho, A. Zagalsky, The (r) evolution
of social media in software engineering, in: Proceedings of the Future of
Software Engineering (FOSE), 2014, pp. 100–116.

[13] B. Fitzgerald, N. Russo, E. Stolterman, Information systems develop-
ment: methods in action, McGraw-Hill Education, 2002.

[14] P. Ralph, The sensemaking-coevolution-implementation theory of soft-
ware design, Science of Computer Programming 101 (2015) 21–41.

[15] J. S. Gero, U. Kannengiesser, The situated function-behaviour-structure
framework, Design Studies 25 (2004) 373–391.

[16] B. Fitzgerald, An empirical investigation into the adoption of systems
development methodologies, Information and Management 34 (6).

[17] C. Erbas, B. C. Erbas, Modules and transactions: Building blocks for a
theory of software engineering, Science of Computer Programming 101
(2015) 6–20.

[18] T. Päivärinta, K. Smolander, Theorizing about software development
practices, Science of Computer Programming 101 (2015) 124–135.

[19] A.-J. Stoica, K. Pelckmans, W. Rowe, System components of a general
theory of software engineering, Science of Computer Programming 101
(2015) 42–65.

5


