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EQUATORIALLY-TRAPPED NONLINEAR WATER WAVES IN A
β−PLANE APPROXIMATION WITH CENTRIPETAL FORCES

DAVID HENRY

Abstract. In this paper we present an exact and explicit nonlinear solution of
a β−plane approximation to the governing equations which retains all Coriolis
terms. The solution represents an Equatorially-trapped wave propagating in the
presence of a constant underlying background current. In particular, we show
that retaining the (relatively) small-scale centripetal forces in the governing equa-
tions enables us to admit currents of any physically plausible magnitude in the
background flow.

1. Introduction

The aim of this paper is to present an exact and explicit (in the Lagrangian
labelling variables) solution to a β−plane approximation of the governing equations
for geophysical fluid dynamics in the equatorial region, which incorporates both
Coriolis and centripetal forces. The resulting solution represents a wave-current
interaction, whereby the zonally-periodic wavelike term is “equatorially-trapped” (it
exhibits exponentially strong decay meridionally) and propagates eastwards above a
flow which accommodates a constant underlying background current. Geophysical
fluid dynamics is the study of fluid motion where the physical scale is such that
the effects of the Earth’s rotation play a significant role, and accordingly the full
governing equations incorporate both Coriolis and centripetal forces in the Euler
equation. These governing equations are applicable for a wide range of oceanic and
atmospheric flows [?, see]]CR,Val, and due to their complexity and intractability one
typically invokes geophysical considerations in order to derive simpler approximate
models. In an oceanographic context centripetal forces are typically neglected as
they are relatively much smaller (∼ O(Ω2)) than Coriolis terms (∼ O(Ω)), where
Ω = 7.3× 10−5 rad/s is the (constant) rotational speed of earth. While we invoke a
β−plane approximation, which is applicable in modelling equatorial flows restricted
to regions of relatively small latitudinal variation (to the order of 5◦), in the following
we also retain both Coriolis and centripetal forces. Remarkably, centripetal force
terms play a central role in facilitating the admission of a wide-range of constant
underlying currents in the exact solution we present below in (3.1).

The β−plane governing equations we solve, modified to incorporate centripetal
terms, were recently derived in [Constantin & Johnson(2016)] in a different con-
text, whereby the authors established the existence in the equatorial region of ex-
act, purely azimuthal solutions to the geophysical governing equations in spheri-
cal, cylindrical and β−plane coordinates. The solution (3.1) we present for the
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2 EQUATORIALLY-TRAPPED NONLINEAR WATER WAVES

modified β−plane corresponds, in the absence of a current, to an azimuthally peri-
odic wave solution. The existence of explicit and exact nonlinear solutions to the
standard equatorial β−plane model was first established in [Constantin(2012)], and
subsequently generalisations of this solution were obtained which modelled a vari-
ety of geophysical scenarios [Constantin(2013),Constantin(2014),Constantin & Ger-
main(2013),Hsu(2014),Ionescu-Kruse(2015),Matioc(2012),Matioc(2013)]. In partic-
ular, it was shown in [Henry(2013)] that the solution in [Constantin(2012)] could be
suitably modified to admit a constant following current of any magnitude, whereas
the range of admissible adverse currents is greatly restricted. In the main result of
this paper, presented in Proposition 3.1 below, we show that this restriction on the
magnitude of adverse currents is greatly alleviated by the presence of centripetal
forces, and indeed the solution (3.1) to the modified β−plane model admits both
following and adverse currents of any physically plausible (in the sense that relation
(3.4) holds) magnitude.

While the consideration of underlying currents in wave motion, and in particu-
lar wave-current interactions, is a compelling subject in itself from a purely math-
ematical viewpoint, these physical processes are evidently highly important in a
variety of contexts [Constantin(2011), Mollo-Christensen(1978)]. The presence of
strong currents in the Equatorial Pacific is well-documented and they feature sig-
nificantly in the geophysical dynamics of the Equatorial region [Constantin & John-
son(2015), Constantin & Johnson(2016), Cushman-Roisin & Beckers(2011), Federov
& Brown(2009),Izumo(2005)]. We note that while the underlying current in the ex-
act solution (3.1) assumes an apparently simple form in the Lagrangian setting, yet
it leads to significant complexifications, both mathematically and physically, in the
resulting fluid motion [Genoud & Henry(2014),Henry & Sastre-Gómez(2016)]. This
is perhaps not surprising since the nonlinear passage from Lagrangian to Eulerian
coordinates is a delicate issue. Furthermore, we note that while the existence of an
exact finite-amplitude solution to a given water wave problem is remarkable, due
to the inherent rarity of such solutions, it is also noteworthy that such solutions
(particularly if they are explicit) offer an opportunity to generate more general and
useful solutions, representing more physically complex flows, by way of employing
perturbative or asymptotic considerations, for example.

2. Preliminaries

We begin this section by first presenting the governing equations of geophysi-
cal fluid motion in cylindrical coordinates, and from this framework we derive the
appropriate β−plane approximation. Both systems are highly nonlinear, and the
β−plane approximation utilises the idea that if the spatial scale of motion on the
spherical domain is moderate enough then the horizontal region occupied by the
fluid domain can be approximated as a tangent plane. This framework was recently
exploited in [Constantin & Johnson(2016)] where the authors found a new exact so-
lution of the full governing equations which does not vary azimuthally (in spherical
coordinates), and this new exact solution was shown to have (more tractable, yet
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physically illustrative) analogue solutions when transformed to the settings of both
cylindrical coordinates and the β−plane approximation. From our viewpoint, the
wave-like terms in the exact solution we present below may be regarded as being
in a sense “azimuthally periodic”. The cylindrical coordinates (x, θ, z) are chosen
such that the origin is located at the centre of the Earth, the generator of the
cylinder is the x−axis which represents the “straightened-out” equator (with the
positive x−direction going from west to east), θ is the angle of latitude (and not
the typical polar angle) and we set z = r − R to be the variation in the locally
vertical direction of the radial variable from the Earth’s surface. The geophysical
parameters we employ are: g = 9.8 m/s−2 is the standard gravitational acceleration,
R = 6378 km is the Earth’s radius (we make the assumption that the Earth is a
perfect sphere), Ω = 7.3 × 10−5 rad/s is the (constant) rotational speed of earth
and β = 2Ω/R ≈ 2.28× 10−11 m−1s−1, cf. [Cushman-Roisin & Beckers(2011)]. The
Euler equation for fluid motion in these cylindrical coordinates (cf. [Constantin &
Johnson(2016)] for details) assumes the form

ut + uux +
v

R + z
uθ + wuz + 2Ω(w cos θ − v sin θ) = −1

ρ
Px

vt + uvx +
vvθ
R + z

+
wv

R + z
+ 2Ωu sin θ + (R + z)Ω2 sin θ cos θ = −1

ρ

Pθ
R + z

(2.1a)

wt + uwx +
vwθ
R + z

+ wwz −
v2

R + z
− 2Ωu cos θ − (R + z)Ω2 cos2 θ = −1

ρ
Pz − g,

together with the equation for incompressibility

ux +
1

R + z
vθ +

1

R + z

∂

∂z
[(R + z)w] = 0. (2.1b)

Here (u, v, w) is the fluid velocity field in the (ex, eθ, ez) directions, ρ is the water
density (which we take to be constant, although see Section 4.2 for a discussion on
stratified, or variable density, fluid) and P is the pressure distribution. Terms in
(2.1a) involving Ω to the first order of magnitude represent Coriolis forces, whereas
terms of the order Ω2 denote centripetal forces. Typically, in an oceanographic con-
text, centripetal terms are neglected due to their comparably small size. However,
we retain them here in our consideration of wave-like solutions, and remarkably it
will become apparent that centripetal forces play an important role in ensuring that
the exact solution we present below can admit all physically plausible ranges of un-
derlying currents. Indeed, we can see by comparison with [Henry(2013)] that this
robust admissibility property of all physically plausible ranges of underlying currents
in our solution hinges completely on the presence of the centripetal forces. We note
that this phenomenon whereby Coriolis terms which, although negligible in general
oceanographic considerations, can perform an important role in specific wave (and
wave-current) dynamics, while curious, may be observed in other geophysical fluid
dynamical contexts, an example being Rossby waves [?, see]]CR.
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The β-plane approximation results under the assumption that we are close to the
equator, namely we are restricted to latitudes in the region s ∈ [−s0, s0], where

s0 =
√
c̃/β ≈ 250km is a typical value for the equatorial radius of deformation (and

c̃ is a characteristic geophysical wavespeed, cf. [Cushman-Roisin & Beckers(2011)]).
Mathematically this corresponds to an assumption that θ → 0, and furthermore
the radius R is very large relative to the vertical variations z, whence z/R → 0.
Defining y = Rθ and retaining only terms of linear order (O(θ)) in the expansion of
the trigonometric functions in (2.1) we get the β−plane governing equations

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px

vt + uvx + vvy + wvz + βyu+Ω2y = −1

ρ
Py (2.2a)

wt + uwx + vwy + wwz − 2Ωu−Ω2R = −1

ρ
Pz − g,

together with the equation of incompressibility

ux + vy + wz = 0. (2.2b)

Denoting the free surface by η(x, y, t) and letting Patm be the (constant) atmospheric
pressure, the relevant boundary conditions at the free surface are the kinematic
boundary condition

w = ηt + uηx + vηy on z = η(x, y, t), (2.2c)

which implies that fluid particles on the free surface remain on the surface for all
time, and the dynamic boundary condition

P = Patm on z = η(x, y, t), (2.2d)

which decouples the water flow from the motion of the air above. Finally, we assume
the water to be infinitely deep, with the flow converging rapidly with depth to a
uniform zonal current, that is,

(u, v, w)→ (−c0, 0, 0) as z → −∞. (2.2e)

The set of equations (2.2) comprise the governing equations for the modified β−plane
approximation of geophysical ocean waves with a free-surface.

We remark that the system (2.2a) requires a very specific pressure distribution in
the absence of motion (u = v = w = 0): if the free surface is a surface of constant
amospheric pressure (Patm = 1 atm = 1.01325 bar), then

P (x, y, z, t) = Patm −
1

2
ρΩ2 y2 + ρ(Ω2R− g) z

throughout the fluid, so that the free surface is given by

z =
Patm

ρ(g − Ω2R)
− Ω2

2(g − Ω2R)
y2 ≈ Patm

ρg
− Ω2

2g
y2

since Ω2R ≈ 3× 10−2 m/s2 � g ≈ 9.8 m/s2. The above distortion from a constant
value of z corresponds to a free surface following the curvature of Earth away from



EQUATORIALLY-TRAPPED NONLINEAR WATER WAVES 5

the equator, as the curved surface of the Earth drops below the tangent plane at
the Equator – this is consistent with, and indeed a consequence of, the β-plane
approximation.

3. Main result

The aim of this section is to explicitly show that, for all physically admissible
values of the underlying current c0 (taken to be uniform), the fluid motion prescribed
by

x = q − c0t−
1

k
ek[r−f(s)] sin [k(q − ct)], (3.1a)

y = s, (3.1b)

z = r +
1

k
ek[r−f(s)] cos [k(q − ct)], (3.1c)

defines an exact solution of the β−plane governing equations (2.2). Here the Euler-
ian coordinates of fluid particles (x, y, z) are expressed as functions of the La-
grangian labelling variables (q, r, s) ∈ (R, (−∞, r0),R), and time t, where r0 < 0
and k = 2π/L is the wavenumber with L the wavelength. Regarding the latitu-
dinal s parameter, although we demonstrate below that the formula (3.1) defines
a mathematical solution of the system (2.2) for all values of s ∈ R, purely geo-
physical considerations imply that we work in a restricted region s ∈ [−s0, s0] ⊂ R
for which the β−plane approximation is applicable. The solution (3.1) prescribes a
three-dimensional eastward-propagating steady geophysical wave in the presence of
a constant underlying current of magnitude |c0|— for c0 > 0 the underlying current
is adverse, while for c0 < 0 the current is following. The wave-like term is periodic
in the zonal (azimuthal) direction and it has a constant wave phasespeed c > 0
which will be prescribed by the dispersion relation (4.14) below. The role of the
function f(s), defined by

f(s) =
cβ

2g
s2, (3.2)

is to enforce a strong exponential decay in fluid particle oscillations meridionally,
thereby ensuring that the wave is Equatorially trapped. We define

g = g + 2Ωc0 − Ω2R > 0 (3.3)

to be a modification of standard gravitational acceleration with additional terms due
to Coriolis effects and the underlying constant current. We infer that the inequality
holds above in (3.3) since otherwise we would have c0 ≤ −g/2Ω + ΩR/2, a scenario
we can exclude on physical grounds bearing in mind that g/2Ω ≈ 6.7 × 104m/s,
ΩR/2 ≈ 2.33× 102m/s. We now state the main result of this paper as follows:

Proposition 3.1. The fluid motion prescribed by (3.1) represents an exact solution
of the governing equations (2.2) if the underlying current c0 satisfies

c0 <
ΩR

2
≈ 2.33× 102m/s. (3.4)
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Henceforth, such values of c0 will be referred to as “physically plausible”. The free-
surface z = η(x, y, t) is implicitly prescribed at the equator (y = s = 0) by setting
r = r0 in (3.1), and for any other fixed latitude s ∈ [−s0, s0], whenever (3.4) holds,
there exists a unique value r(s) < r0 which implicitly prescribes the free-surface
z = η(x, s, t) by way of setting r = r(s) in (3.1).

We will see in Section 4 that one of the primary obstacles in incorporating an
underlying current term (and the motivation for condition (3.4)) lies in proving
the existence of a unique solution r(s) < r0 to (4.13) which prescribes the free-
surface at each fixed latitude, parameterised by the Langrangian labelling variable
q. We note that this method of prescription of the free-surface z = η(x, y, t) en-
sures that the kinematic boundary condition (2.2c) holds by design. In the absence
of a current (c0 = 0), at each fixed-latitude the free-surface is an inverted tro-
choid [Constantin(2011), Constantin(2012), Henry(2013)] and furthermore particle
trajectories take the form of closed circles. Note that closed particle trajectories are
encountered beneath periodic travelling surface gravity water waves very rarely in
irrotational flow and, when so, only isolated and at specific depths (see the theoret-
ical considerations in [Constantin(2006), Constantin & Strauss(2010), Henry(2008)]
confirmed numerically in [Nachbin & Ribeiro-Junior(2014)] and experimentally in
[Umeyama(2012)]). The fact that this feature is indicative of the flows with vorticity
will be expanded upon in Section 4.

The field data examined in [Moum, Nash & Smyth(2011)] highlights the impor-
tance of waves with relatively short wavelengths (in the range 150–250 m) for the
dynamics of the upper-equatorial oceans. Note that the vanishing of the merid-
ional component of the Coriolis force at the Equator has the effect that the Equator
works as a (fictitious) natural boundary, facilitating azimuthal flow propagation.
Moreover, equatorial field data (see [Johnson, McPhaden & Firing(2001)]) confirms
the fact that meridional speeds near the Equator are much smaller than the zonal
speeds, and neglecting them, as the prescribed fluid motion (3.1) does, therefore has
an insignificant dynamical effect. All these observations show that wave patterns
of the type predicted by our considerations are relevant for the ocean dynamics in
the equatorial Pacific. We point out that while our theoretical considerations were
restricted to roughly 2◦ of latitude from the Equator (since further away the under-
lying current structure starts to present significant changes), wave patterns of the
type described in this paper quite accurately match observations recorded within
50-100 km from the Equator.

4. Fluid kinematics

To examine aspects of the fluid motion prescribed by the exact solution (3.1) we
take advantage of working in the Lagrangian framework, a characteristic of which
is that the fluid kinematics can often be ascertained explicitly and with relative
ease— a nice exposition of general characteristics of the Lagrangian approach to
fluid dynamics can be found in [Bennett(2006)]. For ease of notation we denote
ξ = k (r − f(s)) and θ = k(q − ct), and the Jacobian matrix of the transformation
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(3.1) is computed as

∂(x, y, z)

∂(q, s, r)
=

 ∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂r

∂y
∂r

∂z
∂r

 =

 1− eξ cos θ 0 −eξ sin θ
fse

ξ sin θ 1 −fseξ cos θ
−eξ sin θ 0 1 + eξ cos θ

 . (4.1)

The determinant of the Jacobian is 1− e2ξ, which is non-zero (and hence the trans-
formation (3.1) is well-defined) if

r − f(s) ≤ r0 < 0. (4.2)

A consequence of (4.2) is that we must have c > 0 in order for our flow to exhibit
both meridional and vertical oscillatory decay, a fact which has further implications
when we derive the dispersion relation in (4.14) below. Furthermore, as 1 − e2ξ

is time independent the flow defined by (3.1) must be volume preserving, ensuring
that (2.2b) holds in the Eulerian setting [Bennett(2006), Constantin(2011)]. Since
the solution (3.1) is explicit in the Lagrangian formulation, by direct calculation we
may immediately discern some qualitative properties of the fluid kinematics:

u =
Dx

Dt
= ceξ cos θ − c0,

Du

Dt
= kc2eξ sin θ, (4.3a)

v =
Dy

Dt
= 0,

Dv

Dt
= 0, (4.3b)

w =
Dz

Dt
= ceξ sin θ,

Dw

Dt
= −kc2eξ cos θ, (4.3c)

where D/Dt is the material derivative. The fact that v ≡ 0 throughout the fluid is in
keeping with (and indeed necessary for) the equatorially-trapped nature of the flow.
The vorticity of the flow prescribed by (3.1) is determined by way of computing ∂u

∂x
∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =

 ∂q
∂x

∂s
∂x

∂r
∂x

∂q
∂y

∂s
∂y

∂r
∂y

∂q
∂z

∂s
∂z

∂r
∂z

 ∂u
∂q

∂v
∂q

∂v
∂q

∂u
∂s

∂v
∂s

∂v
∂s

∂u
∂r

∂v
∂r

∂v
∂r


=

ckeξ

1− e2ξ

 − sin θ 0 cos θ + eξ

fs(e
ξ − cos θ) 0 −fs sin θ

−eξ + cos θ 0 sin θ

 , (4.4)

and accordingly the vorticity takes the form ω = (wy − vz, uz − wx, vx − uy)

=

(
−skc

2β

g

eξ sin θ

1− e2ξ
,− 2kce2ξ

1− e2ξ
, s
kc2β

g

eξ cos θ − e2ξ

1− e2ξ

)
. (4.5)

We note that since the current is constant it does not impact on the vorticity (4.5)
of the flow directly, yet it has an indirect influence through the formulation of the
wavespeed c given by the dispersion relation (4.14). Furthermore, the vorticity
(4.5) is (weakly) three-dimensional away from the equator, and it becomes one-
dimensional either at the equator (s = 0) or by neglecting Coriolis effects (letting
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β → 0). Using (4.3) we can express (2.2a) as

Px = −ρ(kc2eξ sin θ + 2Ωceξ sin θ), (4.6a)

Py = −ρ(βs[ceξ cos θ − c0]+Ω2s), (4.6b)

Pz = −ρ(−kc2eξ cos θ − 2Ωceξ cos θ + g), (4.6c)

with g defined by (3.3) above. Multiplying both sides of (4.6) by the Jacobian matrix
(4.1) we obtain an expression for the pressure gradient in terms of the Lagrangian
variables: Pq

Ps
Pr

 = −ρ

 (kc2 + 2Ωc− g)eξ sin θ
fse

2ξ(kc2 + 2Ωc) + (βsc− fsg) eξ cos θ − βsc0+Ω2s
−(kc2 + 2Ωc)e2ξ − (kc2 + 2Ωc− g)eξ cos θ + g

 . (4.7)

The next stage in proving that (3.1) represents an exact solution of (2.2) is to
construct a suitable pressure function P such that (4.7), and also (2.2d), holds.
Choosing

P̃ = ρ
kc2 + 2Ωc

2k
e2ξ − ρgr +

ρg

c
f(s)

(
c0 −

RΩ

2

)
+ ρ

kc2 + 2Ωc− g

k
eξ cos θ + P̃0

(4.8)

gives

P̃q = −ρ(kc2 + 2Ωc− g)eξ sin θ

P̃s = −ρ(kc2 + 2Ωc)fse
2ξ − ρ(kc2 + 2Ωc− g)fse

ξ cos θ + ρβsc0−ρΩ2s (4.9)

P̃r = ρ(kc2 + 2Ωc)e2ξ − ρg + ρ(kc2 + 2Ωc− g)eξ cos θ.

To satisfy (2.2d), which enforces a time independence in the pressure function at
the surface, it is necessary to eliminate terms containing θ in (4.8) by setting

kc2 + 2Ωc− g = kc2 + 2Ωc− 2Ωc0 − g + Ω2R = 0. (4.10)

The first implication of relation (4.10) is that the function f(s), defined by (3.2),
has an alternative form which will be useful in calculations, namely

f(s) =
cβ

2g
s2 =

β

2(kc+ 2Ω)
s2. (4.11)

It now follows directly from (4.11) that the pressure gradient expression (4.9) matches
(4.7). Using (4.10) in relation (4.8), we infer that the choice of pressure function

P (r, s) = ρg

(
e2ξ

2k
− r+f(s)

c

(
c0 −

ΩR

2

))
+ Patm − ρg

(
e2kr0

2k
− r0

)
, (4.12)

together with the flow determined by (3.1), satisfies the governing equations (2.2a).
The constant terms on the right of equation (4.12) have been chosen bearing in mind
the last step in our process, which is to ensure that conditions (2.2c) and (2.2d) hold
on the free-surface. This is achieved if we show that, for each fixed latitude s, there
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exists a unique solution r(s) ≤ r0 < 0 such that P (r(s), s) = Patm in (4.12), which
is equivalent to

P(r(s), s) =
e2kr0

2k
+ r0, (4.13)

where

P(r, s) :=
e2k[r− cβ

2g
s2]

2k
− r +

β

2g

(
c0 −

ΩR

2

)
s2.

At the equator, for s = 0, the choice r(0) = r0 works in (4.13). For |s| > 0, we infer
that the last term on the right-hand side above is negative for physically plausible
values c0 such that (3.4) holds, bearing in mind (3.3), and so P(r, s) decreases as |s|
increases. It then follows that, for each fixed s 6= 0, there exists a unique r(s) such
that the equilibrium (4.13) holds, since

Pr(r, s) = e2k[r− cβ
2g
s2] − 1 < 0

implies that P(r, s) is a monotonically decreasing function of r, and furthermore
limr→−∞P(r, s) =∞. Finally, differentiating (4.13) with respect to s we have(

r′(s)− cβ

g
s

)
e2k[r− cβ

2g
s2] − r′(s) +

β

g

(
c0 −

ΩR

2

)
s = 0,

which by way of (3.4) gives us

r′(s) =
βs

g
·
c0 − ΩR

2
− ce2k[r− cβ

2g
s2]

1− e2k[r− cβ
2g
s2]

< 0,

and so the even function s 7→ r(s) is decreasing whenever condition (3.4) holds.
This completes the proof of Proposition 3.1.

4.1. Dispersion relations. We remark that relation (4.10) has additional impli-
cations in determining the dispersion relation for the wave motion prescribed by
(3.1) by way of regarding (4.10) as a quadratic in c. We first note that if c0 = c

then (4.10) implies that c =
√

(g − Ω2R)/k: for sufficiently large wavenumbers k
(corresponding to sufficiently small wavelengths L) the magnitude of the underlying
current c0 given by this relation may, in principle, be physically attainable, and fur-
thermore it does not contravene the bound given by (3.4). This dispersion relation is
a perturbation of the standard Gerstner wave (and deep-water gravity water wave)

dispersion relation c =
√
g/k by additional Coriolis terms which are attributable to

the centripetal force. Indeed, the potential balance between the wave phasespeed
and the adverse current prescribed by c = c0 is a curious phenomenon which is
unique to the modified β−plane formulation considered in this paper, since it is ex-
pressly prohibited by the absence of centripetal terms, cf. [Henry(2013)] for details.
In the more general scenario with c0 6= c, then solving (4.10) for the positive root
(to ensure c > 0) gives the dispersion relation

c =

√
Ω2 + k(g + 2Ωc0 − Ω2R)− Ω

k
, (4.14)
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which is well-defined due to (3.3), and which features contributions from the Coriolis
force, the centripetal force and the underlying current. Ignoring the effects of the
Earth’s rotation (letting Ω → 0) we recover the standard expression for the deep-

water gravity water wave (and Gerstner wave) dispersion relation, namely c =
√
g/k.

Surface waves with wavelengths of 300 m, propagating at speeds of about 22 m/s, are
common in the Pacific – see the discussion in [Constantin(2012)]; the corresponding

value of the speed predicted by the dispersion relation c =
√
g/k is therefore quite

accurate. For further relevant field data we refer to the discussion in [Constantin &
Johnson(2015)].

4.2. Stratification. We note that in the absence of an underlying current (c0 = 0)
we can allow variable density in our fluid through introducing an additional condition

ρt + uρx + vρy + wρz = 0 (4.15)

which must be satisfied to ensure conservation of mass. Assuming that the density
has a steady functional dependence of the form ρ(x, y, z, t) = ρ(x − ct, y, z), direct
computation together with (4.1), (4.3) and (4.15) implies that

ρq = ρx
∂x

∂q
+ ρy

∂y

∂q
+ ρz

∂z

∂q
= ρx(1− eξ cos θ)− ρzeξ sin θ = 0,

and so the density ρ is independent of q in terms of the Lagrangian labelling variables.
It then follows that all considerations of the preceding sections transfer unhindered
to the setting of stratified fluid upon prescribing the density function by

ρ(r, s) = F

(
e2ξ

2k
− r−Ω2s2

2g̃

)
,

where F : (0,∞)→ (0,∞) is a non-decreasing, continuously differentiable function,
g̃ = g−Ω2R, and the pressure function (4.12) is suitably adapted through defining,
for F ′ = F with F(0) = 0, the function

P = g̃F
(
e2ξ

2k
− r−Ω2s2

2g̃

)
+ Patm − g̃F

(
e2kr0

2k
− r0

)
.
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