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Abstract

Background

Vitamin D deficiency may be a risk factor for mortality but previous meta-analyses lacked

standardization of laboratory methods for 25-hydroxyvitamin D (25[OH]D) concentrations

and used aggregate data instead of individual participant data (IPD). We therefore per-

formed an IPD meta-analysis on the association between standardized serum 25(OH)D and

mortality.

Methods

In a European consortium of eight prospective studies, including seven general population

cohorts, we used the Vitamin D Standardization Program (VDSP) protocols to standardize

25(OH)D data. Meta-analyses using a one step procedure on IPD were performed to study

associations of 25(OH)D with all-cause mortality as the primary outcome, and with cardio-

vascular and cancer mortality as secondary outcomes. This meta-analysis is registered at

ClinicalTrials.gov, number NCT02438488.

Findings

We analysed 26916 study participants (median age 61.6 years, 58% females) with a median

25(OH)D concentration of 53.8 nmol/L. During a median follow-up time of 10.5 years, 6802

persons died. Compared to participants with 25(OH)D concentrations of 75 to 99.99 nmol/L,

the adjusted hazard ratios (with 95% confidence interval) for mortality in the 25(OH)D groups

with 40 to 49.99, 30 to 39.99, and <30 nmol/L were 1.15 (1.00–1.29), 1.33 (1.16–1.51), and

1.67 (1.44–1.89), respectively. We observed similar results for cardiovascular mortality, but

there was no significant linear association between 25(OH)D and cancer mortality. There

was also no significantly increased mortality risk at high 25(OH)D levels up to 125 nmol/L.

Interpretation

In the first IPD meta-analysis using standardized measurements of 25(OH)D we observed

an association between low 25(OH)D and increased risk of all-cause mortality. It is of public

health interest to evaluate whether treatment of vitamin D deficiency prevents premature

deaths.

Introduction

Vitamin D is involved in the regulation of calcium homeostasis and exerts beneficial effects on

skeletal health.[1] Serum concentrations of 25-hydroxyvitamin D (25[OH]D) are measured to

assess vitamin D status, which is mainly determined by sunlight (ultraviolet-B [UV-B])

induced vitamin D production in the skin and, to a lesser extent, by dietary or supplemental

vitamin D intake.[1] Low 25(OH)D status has emerged as a risk factor for various adverse

health outcomes including mortality,[2] but there is controversy on the classification of 25

(OH)D status and the shape of the association between 25(OH)D concentrations and mortal-

ity.[1–10]
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Existing knowledge on 25(OH)D status and mortality has been limited by lack of standard-

ized serum 25(OH)D data. Previous studies have shown that differences in assay and labora-

tory methods have a significant impact on the reported 25(OH)D concentrations and thus on

the association between 25(OH)D and health outcomes.[11,12] Therefore, the Vitamin D

Standardization Program (VDSP), a collaborative initiative led by the National Institutes of

Health-Office of Dietary Supplements (NIH-ODS), has developed protocols for standardizing

25(OH)D data from current and previous surveys to the standardized concentrations as mea-

sured by the National Institute of Standards and Technology (NIST) and Ghent University ref-

erence measurement procedure (RMP).[13,14]

In this work, which is part of the EU-project ‘Food-based solutions for eradication of vita-

min D deficiency and health promotion throughout the life cycle’ (ODIN), we aimed to

address the knowledge gap on the association between standardized 25(OH)D concentrations

and mortality in a collaborative meta-analysis using individual participant data (IPD) from

eight prospective studies across Europe. We are the first to use a one step approach for such a

meta-analysis which has the advantage that IPD from all studies are modelled simultaneously

whereas conventional two step approaches are based on aggregate data, thereby combining

measures of effect (e.g. risk ratios) from studies instead of using data of each individual for

meta-analyses, which causes a significant loss of information, especially for mortality data.

[15,16] Specifically, we studied associations of 25(OH)D with all-cause mortality as the pri-

mary outcome, and with cardiovascular and cancer mortality as secondary outcomes. Consid-

ering that the majority of the individual studies of this meta-analysis have already reported

mortality data on original 25(OH)D concentrations, we present our results for standardized as

well as for original 25(OH)D levels.[17]

Methods

Study identification and selection

We established a collaboration to undertake this meta-analysis of IPD. Potential partners in a

work-package of the European Commission-funded ODIN project (www.odin-vitd.eu/) were

invited to attend a one-day workshop in Amsterdam in November 2012 to discuss aims, imple-

mentation and development of the task. Invited European-based participants were mainly

identified on the basis of having recently published data from large prospective cohorts on 25

(OH)D and mortality. There were a number of prerequisites for inclusion of individual cohort

studies in ODIN, such as availability of bio-banked samples and validated prospective data on

clinical outcomes. This meta-analysis is registered at ClinicalTrials.gov, number

NCT02438488 and adheres to recommendations for the rationale, conduct, and reporting of

IPD meta-analysis.[15]

Studies and participants

We used IPD from eight independent prospective cohort studies from Norway, Germany, Ice-

land, Denmark, and the Netherlands which included the 4th survey of the Tromsø study, the

Ludwigshafen Risk and Cardiovascular Health Study (LURIC), the Age, Gene/Environment

Susceptibility-Reykjavik Study (AGES), the New Hoorn Study (NHS), the Aarhus Mammogra-

phy Cohort Study, the German Health Interview and Examination Survey for Adults (DEGS)

and the first and second cohort of the Longitudinal Aging Study Amsterdam (LASA). Within

each cohort, we standardized cardiovascular and cancer end points on an individual basis,

using definitions based on clinical and research expertise, availability of data, published guide-

lines and definitions, and the Standardized Data Collection for Cardiovascular Trials Initia-

tive.[18] Definitions were sought to fit as closely as possible by each participating institution.
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The present analysis was based on individuals with complete data on age, sex, body mass

index (BMI), season of blood sampling, 25(OH)D concentration, vital status at follow-up and

follow-up-time (which was at least one day). Participants with missing data were excluded

from the analysis and we performed no data imputation. Detailed study descriptions, includ-

ing all covariate definitions, are presented in the appendix in S1 File. All cohort studies were

conducted in accordance with the declaration of Helsinki and written informed consent was

obtained from all participants.

Participant involvement

No participants were involved in setting the research question or the outcome measures, nor

were they involved in developing plans for design, or implementation of the study. No partici-

pants were asked to advise on interpretation or writing up of results. Easily comprehensible

parts of the results will be disseminated to the public at http://www.odin-vitd.eu/.

Standardization of 25(OH)D

In line with the VDSP protocol we conducted a sampling procedure to select a subset of 100–

150 bio-banked serum samples from each individual cohort study to re-analyze 25(OH)D

using a standardized and CDC-certified liquid chromatography-tandem mass spectrometry

(LC- MS/MS) method, traceable to the United States NIST and RMPs standards.[13,14] The

re-analysed 25(OH)D values were used to develop master regression equations for each cohort

study which were used to re-calibrate existing 25(OH)D measurements according to the

RMPs.[13,14] The NHS cohort had no previous 25(OH)D measurements and was analysed in

full.

Grouping by 25(OH)D concentrations

The IPD population was divided into seven groups according to their baseline 25(OH)D mea-

surement. Thresholds of 25(OH)D incorporating both Institute of Medicine[1] and Endocrine

Society[3] recommendations were defined as follows: Severely vitamin D deficient (<30.00

nmol/L); two groups of participants at risk for inadequacy (from 30 to 39.99 nmol/L and 40 to

49.99 nmol/L); vitamin D sufficient (from 50 to 74.99 nmol/L); two groups of vitamin D levels

which are sufficient although not consistently associated with increased benefit (from 75 to

99.99 nmol/L and 100 to 124.99 nmol/L); and high vitamin D concentrations (� 125 nmol/L)

with possible reason for concern.[1] To convert nmol/L to ng/mL divide by 2.496.[1]

Statistical analysis

Differences between original and standardized 25(OH)D concentrations were assessed by

paired Student’s t-test. For comparisons of characteristics across vitamin D status groups, we

used ANOVA for continuous and χ2 test for categorical data, as appropriate.

All-cause mortality was the primary outcome and was available in all participating cohort

studies. All mortality analyses were performed for original and standardized 25(OH)D con-

centrations, for the whole IPD and for each single cohort study.

Hazard rates were estimated by a one-step meta-analysis model. In general, the one-step

approach for IPD meta-analyses was shown to be the more concise approach for binary out-

comes compared to the frequently used two-step procedure.[16] A one-step IPD procedure

can be employed by means of a parametric (e.g. Weibull) survival model, which may be more

flexible compared to a Cox model when analysing mortality data.[19,20] A Weibull distribu-

tion of survival function was used since it graphically and in likelihood ratio testing appeared

Vitamin D and mortality: Individual participant data meta-analysis
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to fit best the underlying data against exponential, log-logistic, and log-normal distributions.

We used a mixed model implemented in SAS PROC NLMIXED procedure (SAS Institute Inc.,

100 SAS Campus Drive, Cary, USA) with random effects to account for clustering across

cohort studies.[21] The goodness of fit was examined by likelihood ratio test and plotting esti-

mated versus observed survival curves.

For mortality analyses, 25(OH)D was modelled two ways: using a traditional categorical

variable approach with seven groups and a restricted cubic splines approach.[7] The cubic

splines approach was chosen to retain the continuous nature of 25(OH)D values and to obtain

hazard ratios (HR) with 95% confidence intervals (CI) at the median value of each group. For

HR computation we chose the 25(OH)D group with the lowest mortality risk of model 2 as the

reference.[22,23] Cubic splines were also used to estimate the nadir of the mortality curve, i.e.

the concentration of 25(OH)D with the lowest mortality risk.[7] For cubic splines five knots

located at the fifth, 27.5th, 50th, 72.5th, and 95th percentile of the 25(OH)D distribution were

selected.[24]

Our outcome analyses were adjusted for risk factors of mortality and determinants of vita-

min D status. In model 1 we adjusted for age (in years), sex (male/female), and season of blood

collection (Spring, Summer, Autumn, and Winter). In model 2, our main statistical model, we

additionally adjusted for BMI (in kg/m2). In model 3, we additionally adjusted for diabetes

mellitus (yes/no) and arterial hypertension (yes/no), and in model 4 we added history of can-

cer (yes/no), history of cardiovascular disease (yes/no) and current smoking status (yes/no) as

covariates.

Additional covariate adjustments had model 2 as reference model and included adjust-

ments for supplemental intake of calcium, supplemental intake of vitamin D, physical activity,

estimated glomerular filtration rate (eGFR), parathyroid hormone, C-reactive protein, systolic

blood pressure, low density lipoprotein cholesterol, and glucose. Participants or cohorts with

missing additional covariate data were excluded from the respective additional covariate

analysis.

All models for all-cause and cause-specific mortality were computed using original 25(OH)

D but without NHS, as NHS had no original 25(OH)D measurements. For standardized 25

(OH)D, we computed all models first without data from NHS to provide comparable results

between models of original and standardized 25(OH)D measurements and then with all data

(including NHS).

Sensitivity analyses. Pre-specified subgroup analyses were performed to stratify for risk

factors for vitamin D deficiency and mortality. Specifically, we stratified for sex (females/

males), age groups (<60 yrs; 60 to<70 yrs;�70 yrs), BMI groups (<25 kg/m2; 25 to<30 kg/

m2;�30 kg/m2), calcium supplementation (yes/no), vitamin D supplementation (yes/no), his-

tory of CVD (yes/no), and history of cancer (yes/no). Further sensitivity analyses were

restricted to general population cohorts (i.e. all cohorts except LURIC) and to individuals that

died > 1 year and> 3 years after baseline examination.

Secondary outcomes. Secondary outcomes were cardiovascular mortality and cancer

mortality, and were available in all cohort studies except NHS. We utilized traditional Cox pro-

portional hazards and the modified risks regression according to the method of Fine and Gray

to account for competing risks.[25]

Heterogeneity. To assess the size of the random effect as well as the heterogeneity across

studies, we calculated an intra-class correlation coefficient (ICC) and its 95% CI. This coeffi-

cient can be interpreted as the I2 measure of inconsistency proposed by Higgins and col-

leagues, whereby 25% represents small heterogeneity, 50% represents medium heterogeneity,

and 75% represents large heterogeneity.[26]
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Macros. For the restricted cubic splines in regression models, we used a SAS macro pro-

vided by Harrell FE at the Department of Biostatistics, Vanderbilt University School of Medi-

cine, Nashville, TN, USA.[27] The competing risk analyses were performed using R and

‘crrSC’ package, Version 1.1 (2013-06-23; Bingqing Zhou and Aurelien Latouche), which is an

extension of the ‘cmprsk’ package, Version 2.2–7 (2014-06-17; Bob Gray) to stratified and clus-

tered data.[28]

All statistical tests were two sided using an α level of 0.05. Analyses of all-cause mortality

were conducted with SAS Version 9.2 (SAS Institute Inc., 100 SAS Campus Drive, Cary, USA),

analyses of cause-specific mortality were run by R Version 3.1.1 (2014-07-10; Copyright © The

R Foundation for Statistical Computing). Data pooling and management was performed with

SPSS version 20 (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, NY) or MS

Excel (Microsoft Excel. Redmond, Washington, USA). Additional details on the statistical

analyses can be found in the appendix in S1 File.

Results

Baseline characteristics of the entire study population and of all eight individual cohort studies

comprising 26916 participants are shown in Table 1.

Table A in S1 File shows study specific details on 25(OH)D assays and data availability.

Notably, we have already published data on the standardization procedure and the 25(OH)D

distribution for all of our study cohorts, except of the LURIC study.[17] Distributions of par-

ticipants across the 25(OH)D groups and differences between standardized and original 25

(OH)D concentrations are shown in Table B in S1 File. Associations between standardized 25

(OH)D concentrations and baseline variables are shown in Table C in S1 File. Several risk fac-

tors for mortality outcomes such as BMI, smoking, arterial hypertension, diabetes mellitus, C-

reactive protein and low physical activity were associated with low 25(OH)D concentrations.

Descriptive mortality follow-up data are shown for the entire study population, as well as

for each individual study in Table D in S1 File. Characteristics of survivors (n = 20114) com-

pared to deceased study participants (n = 6802) are shown in Table E in S1 File.

Results for the IPD meta-analysis on standardized 25(OH)D and total all-cause mortality

are presented in Table 2, and the respective cubic splines regression curve is shown in Fig 1.

Risk for all-cause mortality did not significantly differ by 25(OH)D concentration for values

ranging from 50 to 125 nmol/L and higher. The lowest mortality risk was detected for 25(OH)

D concentrations of approximately 78 nmol/L.[1,3] Compared to the reference group with 25

(OH)D concentrations from 75 to 99.99 nmol/L, all-cause mortality was marginally increased

in participants with 25(OH)D concentrations from 40 to 49.99 nmol/l and was significantly

increased in the group with 25(OH)D concentrations from 30 to 39.99 nmol/L, and even

more pronounced for 25(OH)D concentrations below 30 nmol/L. Results for mortality risk

according to standardized 25(OH)D using additional adjustments are shown in Table F in

S1 File.

For the seven studies with available original and standardized 25(OH)D concentrations we

present data on overall mortality according to 25(OH)D values in Figure A and in Table G and

Table H in S1 File. Individual study cohort results using standardized 25(OH)D appear in

Tables I—P and in Figures B—F in S1 File. Sensitivity analyses for standardized 25(OH)D con-

centrations are shown in Table Q in S1 File.

There was a significant inverse association between standardized 25(OH)D concentrations

and cardiovascular mortality (Table 3) while no linear association was found between catego-

ries of standardized 25(OH)D and cancer deaths (Table 4).
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For all of our meta-analyses the I2 measure of inconsistency was below 25%, thus indicating

small heterogeneity. The Preferred Reporting Items for Systematic Review and Meta-Analyses

of individual participant data (PRISMA-IPD) checklist is included in the appendix (S1 File).

Discussion

In this IPD meta-analysis of a Northern European consortium, we have shown that low stan-

dardized 25(OH)D concentrations are associated with an increased risk of all-cause and car-

diovascular mortality, but not with cancer mortality.

Our results are, in general, in line with findings from previous studies, but our work is the

first meta-analysis using standardized 25(OH)D data and a one-step procedure for statistical

analyses, in which data from each individual participant was used to calculate the regression

curve for the 25(OH)D and mortality relationship.[4–10] The shape of this mortality curve

has, in our opinion, important clinical implications that significantly add to the existing litera-

ture (Fig 1). We acknowledge that there was limited statistical power to evaluate the association

between 25(OH)D and mortality for the small number of individuals with 25(OH)D concen-

trations higher than 125 nmol/L (n = 172). Nevertheless, in that group, there was no apparent

excess of mortality and thus no clear indication of vitamin D toxicity leading to reduced sur-

vival. Some other investigations have reported on increased mortality at very high 25(OH)D

levels, and it has been hypothesized that these findings may have been driven by individuals

with particular high 25(OH)D concentrations who started supplementing vitamin D because

Table 2. Adjusted hazard ratio of death from all causes (95% CI) by standardized 25-hydroxyvitamin D concentrations in nmol/L and statistical

approach for full database.

Category <30 30–39.99 40–49.99 50–74.99 75–99.99 100–124.99 �125

Median*, nmol/L 23.0 35.9 45.3 60.4 83.6 107.2 135.0

Sample size, n 2951 3106 5018 11865 3125 679 172

Deaths, n 999 892 1386 2935 522 57 11

Model 1a Categorical HR (95% CI) 1.65 (1.43–1.87) 1.32 (1.14–1.49) 1.13 (0.99–1.28) 1.05 (0.93–1.16) 1.00 1.00 (0.66–1.33) 0.97 (0.27–1.67)

Cubic-splines HR (95% CI) 1.75 (1.56–1.93) 1.28 (1.16–1.39) 1.13 (1.02–1.23) 1.05 (0.96–1.14) 1.00 1.06 (0.92–1.19) 1.14 (0.82–1.46)

Nadir, nmol/L (95% CI) 77.6 (68.2–87.0)

Model 2b Categorical HR (95% CI) 1.67 (1.44–1.89) 1.33 (1.16–1.51) 1.15 (1.00–1.29) 1.05 (0.93–1.17) 1.00 1.00 (0.66–1.33) 0.98 (0.27–1.68)

Cubic-splines HR (95% CI) 1.76 (1.58–1.95) 1.29 (1.17–1.41) 1.14 (1.03–1.24) 1.06 (0.96–1.15) 1.00 1.06 (0.92–1.19) 1.13 (0.81–1.45)

Nadir, nmol/L (95% CI) 78.1 (67.9–88.3)

Model 3c Categorical HR (95% CI) 1.61 (1.39–1.83) 1.32 (1.14–1.50) 1.14 (1.00–1.29) 1.06 (0.94–1.18) 1.00 1.03 (0.68–1.37) 0.97 (0.26–1.69)

Cubic-splines HR (95% CI) 1.72 (1.53–1.90) 1.27 (1.15–1.38) 1.12 (1.02–1.23) 1.05 (0.96–1.14) 1.00 1.06 (0.91–1.20) 1.15 (0.77–1.53)

Nadir, nmol/L (95% CI) 77.7 (68.7–86.7)

Model 4d Categorical HR (95% CI) 1.50 (1.28–1.71) 1.24 (1.07–1.42) 1.12 (0.97–1.27) 1.05 (0.92–1.18) 1.00 1.07 (0.69–1.45) 0.87 (0.21–1.53)

Cubic-splines HR (95% CI) 1.56 (1.38–1.74) 1.19 (1.08–1.31) 1.08 (0.97–1.19) 1.04 (0.95–1.12) 1.00 1.04 (0.89–1.19) 1.10 (0.72–1.49)

Nadir, nmol/L (95% CI) 78.6 (69.3–88.0)

Statistical approach was based on 1) categorical models and 2) cubic splines models. Estimates of the cubic splines approach were calculated for the (*)

median 25-hydroxyvitamin D value of each category. Categories are based on the Institute of Medicine report 2011 used cut-off values. Abbreviations:

HR = Hazard ratio with 95% confidence interval (CI). The nadir is the level of 25-hydroxyvitamin D with the lowest predicted risk.
aAdjusted for age, sex, and season of blood drawing at baseline visit.
bAdjusted for age, sex, season of blood drawing, and body mass index (BMI) at baseline visit.
cAdjusted for age, sex, season of blood drawing, BMI, diabetes mellitus, and arterial hypertension at baseline visit.
dAdjusted for age, sex, season of blood drawing, BMI, active smoker status, diabetes mellitus, arterial hypertension, history of cardiovascular disease

(CVD), and history of cancer at baseline visit. History of CVD was defined as history of myocardial infarction and/or history of stroke. History of CVD and

history of cancer were not available in the New Hoorn Study (NHS) therefore Model 4 was conducted without NHS.

doi:10.1371/journal.pone.0170791.t002
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Fig 1. Dose-response trend of hazard ratios of death from all causes by standardized

25-hydroxyvitamin D. Dose-response trend of hazard ratios of all-cause mortality by standardized

25-hydroxyvitamin D were adjusted for age, sex, body mass index and season of blood drawing

concentrations. Hazard ratios [blue line with 95% confidence interval as the dotted blue lines] are referring to

the 25-hydroxyvitamin D concentration of 83.4 nmol/L (i.e. the median 25-hydroxyvitamin D concentration for

the group with 25-hydroxyvitamin D concentrations from 75 to 99.99 nmol/L).

doi:10.1371/journal.pone.0170791.g001

Table 3. Adjusted hazard ratio of death from cardiovascular causes (95% CI) by standardized 25-hydroxyvitamin D concentrations in nmol/L in

competing risk analysis for full database without the New Hoorn Study.

Category <30 30–39.99 40–49.99 50–74.99 75–99.99 �100

Median*, nmol/L 22.8 35.9 45.3 60.2 83.7 110.3

Sample size, n 2716 2853 4638 10717 2648 753

Deaths, n 397 257 377 663 100 16

Model 1a Categorical HR (95% CI) 3.18 (1.82–5.53) 1.99 (1.64–2.40) 1.72 (1.47–2.02) 1.35 (1.12–1.63) 1.00 0.95 (0.69–1.31)

Model 2b Categorical HR (95% CI) 3.10 (1.78–5.41) 1.93 (1.60–2.33) 1.69 (1.47–1.95) 1.34 (1.12–1.61) 1.00 0.95 (0.69–1.31)

Model 3c Categorical HR (95% CI) 2.54 (1.74–3.71) 1.74 (1.61–1.89) 1.68 (1.41–2.00) 1.38 (1.11–1.70) 1.00 0.91 (0.65–1.29)

Model 4d Categorical HR (95% CI) 2.21 (1.50–3.26) 1.61 (1.46–1.77) 1.65 (1.39–1.97) 1.37 (1.12–1.67) 1.00 0.92 (0.62–1.36)

Categories are based on the Institute of Medicine report 2011 used cut-off values. Abbreviations: HR = Hazard ratio with 95% confidence interval (CI);

*The median is the median 25-hydroxyvitamin D value of each category.
aAdjusted for age, sex, and season of blood drawing at baseline visit.
bAdjusted for age, sex, season of blood drawing, and body mass index (BMI) at baseline visit.
cAdjusted for age, sex, season of blood drawing, BMI, diabetes mellitus, and arterial hypertension at baseline visit.
dAdjusted for age, sex, season of blood drawing, BMI, active smoker status, history of cardiovascular disease (CVD), and history of cancer at baseline visit.

History of CVD was defined as history of myocardial infarction and/or history of stroke.

doi:10.1371/journal.pone.0170791.t003
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they were previously vitamin D deficient.[29,30] While there is an ongoing debate on whether

50 and/or 75 nmol/L should be used as a threshold for 25(OH)D classification of sufficiency,

[1,3] we observed no meaningful variation of all-cause mortality risk for 25(OH)D concentra-

tions ranging from 50 to 125 nmol/L and higher. Compared to the reference group, there was

a marginally increased risk of mortality in participants with 25(OH)D concentrations from 40

to 49.99 nmol/L, but statistical significance was lost in the majority of the multivariate adjusted

models (Table F in S1 File). A consistent and steep increase in mortality was, however,

observed in participants with 25(OH)D concentrations below 40 nmol/L. It is, thus, of concern

that the prevalence of standardized 25(OH)D concentrations below 40 nmol/L was 22.5% in

all cohort studies and 18.3% in the seven population-based studies. In this context, it should

also be noted that even relatively small differences in mortality risk may be of clinical signifi-

cance on a population level.

With regard to our secondary outcomes, we observed that vitamin D deficient individuals

were at significantly increased risk of cardiovascular mortality, whereas there was no clear lin-

ear relationship between 25(OH)D and cancer mortality. Season and follow-up time did not

have a significant effect on the association between 25(OH)D and cancer mortality (data not

shown).[31–33] Furthermore, the association between 25(OH)D and cancer-specific mortality

may be different in secondary compared to primary prevention cohorts [6]. Our findings on

cause-specific mortality may, however, suggest that the association between 25(OH)D and

mortality is significantly driven by cardiovascular rather than cancer deaths, but general limi-

tations regarding the classification and analyses of specific causes of death should be consid-

ered.[19,34]

We did not observe major differences between original and standardized 25(OH)D concen-

trations, but a few percent of the participants, which is relevant from a public health perspec-

tive, were indeed re-classified into different 25(OH)D groups after the standardization

procedure (Table B in S1 File). While there were thus no dramatic changes in mean 25(OH)D

concentrations, as expected, it should be noted that previous investigations reported on signifi-

cant assay and laboratory differences in 25(OH)D concentrations.[11–14,27] This underlines

the importance of using standardized 25(OH)D concentrations, and caution is warranted

when interpreting results based on 25(OH)D data (even from LC-MS/MS methods) that

Table 4. Adjusted hazard ratio of death from cancer causes (95% CI) by standardized 25-hydroxyvitamin D concentrations in nmol/L in competing

risk analysis for full database without the New Hoorn Study.

Category <30 30–39.99 40–49.99 50–74.99 75–99.99 �100

Median*, nmol/L 22.8 35.9 45.3 60.2 83.7 110.3

Sample size, n 2716 2853 4638 10717 2648 753

Deaths, n 152 158 313 670 105 16

Model 1a Categorical HR (95% CI) 1.08 (0.74–1.60) 1.11 (0.91–1.35) 1.29 (1.12–1.49) 1.25 (1.07–1.47) 1.00 0.80 (0.60–1.06)

Model 2b Categorical HR (95% CI) 1.10 (0.75–1.61) 1.13 (0.93–1.36) 1.30 (1.13–1.50) 1.26 (1.07–1.48) 1.00 0.80 (0.60–1.07)

Model 3c Categorical HR (95% CI) 1.15 (0.78–1.69) 1.16 (0.94–1.42) 1.33 (1.14–1.55) 1.26 (1.07–1.49) 1.00 0.82 (0.61–1.10)

Model 4d Categorical HR (95% CI) 1.08 (0.73–1.60) 1.07 (0.87–1.32) 1.25 (1.07–1.46) 1.24 (1.06–1.45) 1.00 0.79 (0.60–1.04)

Categories are based on the Institute of Medicine report 2011 used cut-off values. Abbreviations: HR = Hazard ratio with 95% confidence interval (CI);

*The median is the median 25-hydroxyvitamin D value of each category.
aAdjusted for age, sex, and season of blood drawing at baseline visit.
bAdjusted for age, sex, season of blood drawing, and body mass index (BMI) at baseline visit.
cAdjusted for age, sex, season of blood drawing, BMI, diabetes mellitus, and arterial hypertension at baseline visit.
dAdjusted for age, sex, season of blood drawing, BMI, active smoker status, history of cardiovascular disease (CVD), and history of cancer at baseline visit.

History of CVD was defined as history of myocardial infarction and/or history of stroke.

doi:10.1371/journal.pone.0170791.t004
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have not been standardized to the concentrations as measured by the NIST and Ghent RMPs.

[11–14]

The association between 25(OH)D and mortality could be causal because the vitamin D

receptor (VDR) is expressed in almost all human tissues and activation of this receptor regu-

lates hundreds of genes with relevance for several diseases.[2–5] Alternatively, our results

could be explained by reverse causation, i.e. that 25(OH)D is reduced due to underlying dis-

eases, or by confounding. Potential confounding factors such as inflammation, obesity, low

physical activity and poor nutrition are associated with both vitamin D deficiency and

increased mortality. In the present meta-analysis, the association between low 25(OH)D and

mortality remained, however, significant despite careful statistical adjustments, but we cannot

exclude residual confounding. Moreover, our findings remained materially unchanged in sen-

sitivity analyses of individuals who died at least three years after baseline examination, which

argues against, but does not exclude, reverse causation. When addressing the question of cau-

sality, it should also be acknowledged that most findings from observational studies on the

associations between vitamin D deficiency and increased risk of chronic diseases such as can-

cer or cardiovascular diseases could not be confirmed as causal vitamin D effects in random-

ized controlled trials (RCTs).[4,5] It should, however, be underlined that meta-analyses of

RCTs suggest that vitamin D supplementation may moderately, yet statistically significantly,

reduce mortality.[6,34–37] Putting these results into perspective with our IPD meta-analysis,

there exists, in our opinion, an urgent need to perform vitamin D RCTs in individuals with

initial “standardized” 25(OH)D concentrations below 40 nmol/L, or, even better, below

30 nmol/L which represents 13% of the European population and to achieve optimal 25(OH)D

levels.[17,38] It is therefore of concern that none of the large ongoing vitamin D RCTs has tar-

geted such study populations.[37–39] In the event that these RCTs will not show significant

survival benefits of vitamin D, we should not draw the final conclusion that vitamin D has no

effect unless we have sufficient RCT data in participants with 25(OH)D levels below 40 or

30 nmol/L. Results from subgroup analyses of RCTs in participants with severe vitamin D defi-

ciency, even if showing survival benefits of vitamin D in pre-specified analyses, will likewise

not change clinical practice.[37–40]

A drawback of our work is that our data are based on a selection of European cohort stud-

ies, albeit representing data from almost 27000 individuals. Our data are also limited by signifi-

cantly different results in the individual studies and by the fact that our data were restricted to

high income countries. Therefore, the generalisability of our findings to other populations is

somewhat limited. Moreover, the observational nature of our work precludes final conclusions

regarding causality. Our analyses were, however, adjusted for a panel of potential confounders

and our findings remained materially unchanged in several sensitivity analyses. Main strengths

of our meta-analysis are the use of standardized 25(OH)D, the inclusion of previously unpub-

lished study data on 25(OH)D status and mortality (e.g. first 25[OH]D mortality data of the

NHS and 10-year follow-up data of the LURIC study) and the IPD meta-analysis approach

with data harmonization.

In conclusion, we have shown, using standardized methods to assess 25(OH)D, that indi-

viduals at the lower end of the 25(OH)D distribution are at significantly increased risk of mor-

tality, whereas for the majority of the population there is no consistent association between 25

(OH)D status and mortality. This finding could be an explanation why available data on vita-

min D supplementation and mortality are inconsistent because previous RCTs have, by the

majority, enrolled participants regardless of their prevailing 25(OH)D status. Based on our

results, we believe that the final answer on potential survival benefits of vitamin D should be

derived from RCTs in severely vitamin D deficient individuals. These RCTs are urgently

Vitamin D and mortality: Individual participant data meta-analysis
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needed because vitamin D deficiency and its diagnosis and treatment are important public

health issues.[1–4,17,39,40]
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