
Title Multiple sink and relay placement in wireless networks

Authors Sitanayah, Lanny;Brown, Kenneth N.;Sreenan, Cormac J.

Publication date 2012-08

Original Citation Sitanayah, L., Brown, K. N. and Sreenan, C. J. (2012) 'Multiple
Sink and Relay Placement in Wireless Networks', ECAI 2012
European Conference on Artificial Intelligence, Workshop on
Artificial Intelligence for Telecommunications and Sensor
Networks (WAITS), Montpellier, France, 28 August.

Type of publication Conference item

Link to publisher's
version

http://www.lirmm.fr/ecai2012/images/stories/ecai_doc/
pdf/workshop/W38_WAITS2012_Proceedings.pdf, http://
www.lirmm.fr/ecai2012/

Rights © 2012

Download date 2024-04-24 19:37:00

Item downloaded
from

https://hdl.handle.net/10468/8966

https://hdl.handle.net/10468/8966

Multiple Sink and Relay Placement
in Wireless Sensor Networks

Lanny Sitanayah 1 and Kenneth N. Brown 2 and Cormac J. Sreenan 3

Abstract. Wireless sensor networks are subject to failures. Deploy-
ment planning should ensure that when a sink or sensor node fails,
the remaining network can still be connected, and so may require
placing multiple sinks and relay nodes in addition to sensors. For
network performance requirements, there may also be path-length
constraints for each sensor node. We propose two local search al-
gorithms, GRASP-MSP and GRASP-MSRP, to solve the problem
of multiple sink placement and the problem of multiple sink and
relay placement, respectively. GRASP-MSP minimises the deploy-
ment cost, while ensuring that each sensor node in the network is
double-covered, i.e. it has two length-constrained paths to two sinks.
GRASP-MSRP deploys sinks and relays to minimise the deployment
cost and to guarantee that all sensor nodes in the network are double-
covered and noncritical. A sensor node is noncritical if upon its re-
moval, all remaining sensor nodes still have length-constrained paths
to sinks. We evaluate the algorithms empirically and show that both
GRASP-MSP and GRASP-MSRP outperform the closely-related al-
gorithms from the literature for the lowest total deployment cost.

1 INTRODUCTION
A wireless sensor network (WSN) is composed of a large number of
sensor nodes [1]. Each sensor node is a battery-powered device with
limited storage, processing and communication capability. It is able
to sense a close-by physical phenomenon, perform a simple com-
putation and send its data wirelessly over a multi-hop network to a
special node called a data sink. This network is subject to failure as
the wireless devices and the communication links are unreliable. A
sensor node may fail due to limited battery life or hardware malfunc-
tion, or may be damaged by weather or human intervention. When
some sensor nodes fail, the network may be disconnected and thus
it cannot gather information from the isolated area. Although a sink
has more resources than a sensor node, this electronic device may
fail too.

To protect against network failure, it is important to plan the topol-
ogy deployment. In this paper, we study WSN deployment planning,
with the aim of protecting the network against a single failure. That
is, after a failure of a sink or a sensor node, each remaining sensor
node can deliver its data to a sink through a multi-hop path with an
acceptable length. We consider the path length restriction as data la-
tency requirements may be important in WSN applications. To be

1 Mobile & Internet Systems Laboratory (MISL) and Cork Constraint Com-
putation Centre (4C), Department of Computer Science, University College
Cork, Ireland, email: ls3@cs.ucc.ie

2 Cork Constraint Computation Centre (4C), Department of Computer Sci-
ence, University College Cork, Ireland, email: k.brown@cs.ucc.ie

3 Mobile & Internet Systems Laboratory (MISL), Department of Computer
Science, University College Cork, Ireland, email: cjs@cs.ucc.ie

robust to sink failure, it is necessary to deploy multiple sinks in the
network such that each sensor node is double-covered, i.e. it has
length-bound paths to two sinks. While we restrict our assumption
to k-covered, where k = 2 in this paper, our solution is also appli-
cable to any integer k≥ 1. To protect against sensor node failure, it
is necessary to place some relay nodes, which do not sense, but only
forward data from other nodes. So when a sensor node fails, each re-
maining sensor node still has at least one length-bound path to a sink.
Installing sinks and relays comes at a cost that includes not only the
hardware purchases, but also the installation and maintenance cost,
thus motivating our solution to minimise the total deployment cost.

Our main contribution is a solution that minimises the total cost of
sink and relay deployment but ensures the network robustness against
a single device failure, either a sink or a sensor node. Our solution
uses local search algorithms based on GRASP [4]. Firstly, we look
at the multiple sink placement (MSP) problem to ensure that each
sensor node is double-covered. We propose GRASP-MSP and show
that it can find the same cost as the optimal solution with shorter
runtime. Even though finding the optimal solution is sufficient for
the multiple sink placement problem, the GRASP-MSP performance
gives us confidence to use the same local search technique for the
more complex multiple sink and relay placement (MSRP) problem.
GRASP-MSRP employs the concept of length-constrained connec-
tivity and rerouting centrality (l-CRC) introduced in [10] to identify
every sensor node which if failed can cause other nodes to lose their
length-bound paths to sinks. We demonstrate empirically that the so-
lutions produced by GRASP-MSRP are over 30% less costly than
those of a greedy-based approach. Although GRASP-MSRP’s exe-
cution time is longer than that for the greedy approach, the runtime
issue is not a problem since the deployment planning is an offline
process that is executed before the actual deployment.

The remainder of this paper is organised as follows. In Section 2,
we briefly describe the background and review the related work
on sink and relay deployment algorithms. We present and evaluate
GRASP-MSP and GRASP-MSRP in Section 3 and 4, respectively.
Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK

A WSN can be modeled as a graph G=(V, E), where V is a set of
nodes and E is a set of edges. Each edge connects two nodes that are
within transmission range of each other4, and the two nodes are said
to be adjacent. A path of length t between two nodes v and w is a se-
quence of nodes v=v0, v1, . . . , vt =w, such that vi and vi+1 are ad-
jacent for each i. A path from a node v to a set of nodes W is simply

4 For simplicity we assume bi-directional links, but this could be easily re-
laxed by specifying a more complex connectivity graph.

a path from v to any node w∈W . Two nodes are connected if there
is a path between them. A graph is connected if every pair of nodes is
connected. Sensor network topology is an undirected graph and for
simplicity, we assume that the graph is connected. H =(W, E↓W) is
an induced subgraph of G=(V, E) if W ⊂V and E↓W has exactly
the edges that appear in G over the same vertex set (where E ↓X
means a set of edges restricted to those that connect nodes in X).

In the literature, the problems of deploying sinks and relays are
solved separately. Some sink deployment algorithms have been pro-
posed with objectives to minimise and balance the energy consump-
tion across networks [11, 6], reduce packet delivery latency [12],
meet the required lifetime [8] and make the network double-covered
for fault-tolerance [3]. Even though the algorithm in [3] is not de-
signed for WSNs, the problem of finding the optimal positions for
core nodes in passive optical networks [3] is similar to the problem
of finding optimal positions for sinks in WSNs. Similar to our objec-
tive, i.e. to minimise the deployment cost, the algorithms proposed
in [11, 8] try to minimise the number of sinks deployed, while the
number of sinks is given in [6, 12, 3]. In [11], a sink is chosen greed-
ily from a set of candidate locations such that it can cover as many
sensor nodes, which are within the hop count bound from the sink, as
possible. However, this algorithm does not consider double-covered
networks. In [8], the algorithm deploys sinks one by one until the
desired network lifetime is reached. It does not make the network
double-covered and uses the well-known k-means clustering algo-
rithm to identify the positions of sinks, which are assumed can be
placed anywhere in the region. The algorithm in [3] also uses the k-
means clustering algorithm to place a given number of sinks to make
the network double-covered.

The problem of deploying relay nodes for increased reliability has
long been acknowledged as a significant problem [2, 9, 5, 7, 10]. The
relay placement algorithm proposed in [10], GRASP-ABP, is also
a GRASP-based local search algorithm. It uses length-constrained
connectivity and rerouting centrality (l-CRC) to identify critical
nodes. Centrality indices is a core concept in social network analysis,
used to determine the importance of a node in a network. Originally,
it is measured by counting the number of the shortest paths passing
through a certain node. A sensor node is identified as a critical node
if upon its removal, more sensor nodes will have no path of length
≤ lmax to a sink, where lmax is the maximum acceptable path length.
Using l-CRC, a sensor node is critical if its centrality index is above
a threshold. l-CRC is formulated as

l-CRC(v)= < l-CC(v), l-RC(v)> (1)

l-CRC has two values: length-constrained connectivity centrality (l-
CC) and length-constrained rerouting centrality (l-RC), which are
formulated below.

l-CC(v)= |{w∈D(v); d(w, S)≤ lmax, dv(w, S)>lmax}| (2)

l-RC(v)=
∑

w∈D(v)

(
max{dv(w, S), lmax}
max{d(w, S), lmax}

−1

)
; dv(w, S) 6=∞

(3)
D(v) is the set of node v’s descendants in the routing tree, S is the
set of sinks, d(u, w) denotes the shortest path length between nodes
u and w, while dv(u, w) represents the length of the shortest path
from u to w which does not visit v. After identifying the critical
nodes, relays are deployed around those nodes to preserve backup
paths if they die. Using l-CRC allows us to trade off the deployment
cost against the robustness of the network. GRASP-ABP has been
shown to deploy fewer relays compared to the algorithm in [2, 9].

The greedy randomized adaptive search procedure (GRASP) [4] is
a metaheuristic intended to capture the good features of pure greedy
algorithms and of random construction procedures. It is an iterative
process, which consists of two phases: a construction phase and a lo-
cal search phase. The construction phase builds a feasible solution as
a good starting solution for the local search. The probabilistic com-
ponent of a GRASP is characterised by randomly choosing one of the
best initial solution. Since the solution produced by the construction
phase is not necessarily the local optimum, the local search works
iteratively to replace the current solution by a better one.

3 MULTIPLE SINK PLACEMENT (MSP)

Figure 1. (a) A WSN with 4 candidate sinks and (b) the double-covered
WSN where lmax = 3

We partition nodes into a set of sensors T and sinks S. In the
graph representation, V = T ∪S. Note that at this stage we do not
use relay nodes yet. A sensor node is double-covered if and only if it
has at least two paths of length ≤ lmax to two sinks in S. If a sensor
node is not double-covered, it is uncovered. We define a WSN to
be double-covered if each sensor node v ∈ T is double-covered. In
the multiple sink placement problem, given a graph G=(T∪AS, E),
where AS is a set of candidate locations for sinks with a non-negative
cost function c : AS→ R, we find a minimum cost subset S ⊆AS

such that H = (T ∪S, E↓T∪S) is double-covered. We illustrate this
problem in Figure 1.

We propose GRASP-MSP to solve the multiple sink placement
problem. As with other GRASP-based algorithms, GRASP-MSP
consists of two steps: construction phase to construct an initial feasi-
ble solution and local search phase to explore the neighbourhood of
the initial solution, looking for lower cost solutions. To speed-up our
GRASP algorithm’s processing time, we compute the shortest path
from all sensor nodes to all candidate sinks once in the beginning and
store the length of the shortest path in Distance table, while the parent
of each sensor node in the shortest path to a candidate sink is stored
in Parent table. For example, for G=(T∪AS, E), DistanceG(v, w)
shows the length of the shortest path from a sensor node v ∈ T to a
candidate sink w ∈ AS, while ParentG(v, w) shows the parent of a
sensor node v on the shortest path to a candidate sink w∈AS.

3.1 GRASP-MSP: Construction Phase
In the construction phase, we find S, an initial set of sinks. Instead
of selecting the best candidate sink from AS to be put in S, which
can minimise the number of uncovered nodes, we add randomisation
to the initial solution by choosing a sink from AS randomly. This
random selection is repeated until the network is double-covered or
all candidate sinks have been chosen.

3.2 GRASP-MSP: Node-based Local Search
Let S be the set of sinks. We explore the neighbourhood of the cur-
rent solution by adding a new sink s∈AS\S into S that can eliminate
some existing sinks from S to minimise the total cost as possible.
This move must always ensure that the network is double-covered.

3.3 GRASP-MSP: Algorithm Description
The GRASP-MSP pseudocode is given in Algorithm 1. It takes as
input the original graph G=(T ∪AS, E), the set T of sensor nodes,
the set AS of candidate sinks, the cost function c, the pre-computed
DistanceG table, the maximum acceptable path length lmax, and the
number of iterations (max iterations). In each iteration, the construc-
tion phase to find the initial set of sinks S is executed in line 3. The
local search starts with the initialisation of the best set and the best
cost in line 6. The loop from line 7 to 22 searches for the best move,
i.e. finding a new sink r∈AS\S that can eliminate as many existing
sinks from S as possible. The loop from line 9 to 15 tries to find the
set Z ⊆ S of existing sinks that are safe to be removed after the in-
sertion of r. The sinks in Z are safe to be removed if all sensor nodes
in H =(T∪S∪{r}\Z, E↓T∪S∪{r}\Z) are double-covered. In line 16,
we check if the new solution reduces the total cost of the current best
solution. If the total cost can be reduced, we reset the set of the best
set in line 17. If the total cost is the same, we keep this new solution
in the set of the best set as shown from line 19 to 21.

When all moves have been evaluated, we check in line 23 if an
improving solution has been found. If the moves produce a better
solution, the set of sinks S is updated in line 24 by selecting one
best set randomly from the set of the best set. Then, the local search
continues. If at the end of the local search we find a better solution
compared to the best solution found so far, we update in line 29 the
set of sinks and the lowest total cost found. The best sink set S∗ is
returned in line 32.

Algorithm 1. GRASP-MSP
Input : G, T , AS, c, DistanceG, lmax, max iterations
Output: S∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: Find S by choosing sinks from AS randomly
4: do
5: solution updated←false

/* Local search phase */
6: best set0←S, best cost←

∑
v∈S cv , best num set←1

7: for all r∈AS\S do
8: Z←∅
9: for all t∈S do

10: Z←Z∪{t}, H =(T∪S∪{r}\Z, E↓T∪S∪{r}\Z)
11: Find num uncovered in H using DistanceG and lmax

12: if num uncovered>0 then
13: Z←Z\{t}
14: end if
15: end for
16: if

∑
v∈S∪{r}\Z cv <best cost then

17: best num set←0
18: end if
19: if

∑
v∈S∪{r}\Z cv≤best cost and S∪{r}\Z /∈best set then

20: best setbest num set←S∪{r}\Z,
best cost←

∑
v∈S∪{r}\Z cv ,

best num set++
21: end if
22: end for
23: if best cost<

∑
v∈S cv then

24: S←select a set randomly from best set
25: solution updated←true
26: end if
27: while solution updated

/* Best solution update */
28: if

∑
v∈S cv <best value then

29: S∗←S, best value←
∑

v∈S cv

30: end if
31: end for
32: return S∗

3.4 Evaluation of GRASP-MSP
In the evaluation, we want to show that GRASP-MSP is effective
and efficient in finding the lowest cost sink deployment compared to
other closely-related algorithms and the optimal solution. To measure
the performance of the algorithms, we use cost and runtime metrics.
Cost measures the total cost of sinks, while runtime is the algorithm’s
total execution time.

The results are based on the mean value of 20 randomly gener-
ated network deployments. The network consists of 100 sensor nodes
deployed within randomly perturbed grids, where a sensor node is
placed in a unit grid of 8m×8m and the coordinates are perturbed.
To get sparse networks (average degree 2-3), we generate more grid
points than the number of nodes. We use 11×11 grids to randomly
deploy 100 sensor nodes. 25 candidate sinks are also distributed in a
grid area, where a candidate occupies a unit grid of 18m×18m. Both
sensor nodes and sinks use 10 metres transmission range.

We compare GRASP-MSP against minimise the number of sinks
for fault-tolerance (MSFT) algorithm, cluster-based sampling for
multiple sink placement (CBS-MSP), the greedy version of multiple
sink placement (Greedy-MSP) and the optimal solution. MSFT and
CBS-MSP are algorithms based on the well-known k-means cluster-
ing algorithm. MSFT is similar to [8]. In [8], sinks can be deployed
anywhere and they are added one by one in the network until a re-
quired lifetime is met. Unlike [8], MSFT has candidate locations and
keeps adding sinks until the network is double-covered. CBS-MSP is
similar to cluster-based sampling (CBS) algorithm proposed in [3],
but with some modification. In CBS, the number of sinks is given
and the objective is to minimise the total road distance from all nodes
to the sinks where each node is required to be double-covered. Un-
like CBS, CBS-MSP tries to reduce the number of sinks and thus
the deployment cost. We implement CBS-MSP using path length to
represent distance between two nodes and also we have path-length
restrictions. In each iteration, both CBS and CBS-MSP try to find
the best sink locations to ensure the network is double-covered. k-
means clustering algorithm is used in these algorithms to divide the
network into clusters and to find the position of each sink, which is
in the centre of a cluster. The performances of MSFT and CBS-MSP
depend on the randomly selected sink locations. Therefore, we use
the maximum iteration (MaxIter) to limit the number of iterations.
Greedy-MSP is similar to [11], but it considers double-covered net-
works. Greedy-MSP deploys sinks one by one until the network is
double-covered. In each iteration, the greedy move picks the best
sink that can minimise the number of uncovered nodes as possible.
In Greedy-MSP, if two or more moves offer the same solution, we
select one arbitrarily. We also try to evaluate them all, which we call
Greedy-MSP-All.

The optimal solution is modeled using binary linear programming
with the objective is to minimise the total sink cost, i.e.

min
∑
j∈S

cjxj (4)

subject to the following constraints ∑
j∈S

lijxj≥2; ∀i∈T (5)

dij≤ lmax⇒ lij =1, dij >lmax⇒ lij =0; i∈T, j∈S (6)

xj ∈{0, 1}; j∈S (7)

c is the cost of a candidate sink x. The first constraint guarantees each
sensor node has at least two paths to two sinks. The paths are length-
bounded, which are shown in the second constraint using a binary

function lij . It has value equal to one if the shortest path length from
a sensor node i to a sink j ≤ lmax, otherwise its value is zero. In the
third constraint, a candidate sink is either selected to be deployed or
not. The binary linear programming for the optimal solution is im-
plemented in Matlab, while the other algorithms are written in C++.
Tests are carried out in 2.40 GHz Intel Core2 Duo CPU with 4 GB
of RAM.

In the simulation, we find the best locations to deploy the least
number of sinks to make the networks double-covered. We consider
the cases where the maximum acceptable path length from each sen-
sor node to a sink is 6 and 10. The number of sinks deployed by
each algorithm is shown in Figure 2 and the runtime is in Table 1.
The simulation results show that GRASP-MSP with max iterations
= 10 requires the same number of sinks with shorter runtime com-
pared to the optimal solution. It also outperforms MSFT, CBS-MSP
and Greedy-MSP. Greedy-MSP has the shortest runtime, but it places
more sinks compared to GRASP-MSP. At this stage, finding the op-
timal solution is sufficient for the multiple sink placement problem
since the runtime issue is not a problem in offline algorithms. How-
ever, using local search technique to later solve the multiple sink and
relay placement problem is fully justified by GRASP-MSP as it pro-
vides the same result as the optimal solution and even faster.

Figure 2. Number of sinks needed for multiple sink placement algorithms
versus maximum path length

Table 1. Multiple sink placement algorithms’ runtime

Algorithms Runtime (sec)
lmax =6 lmax =10

MSFT-MaxIter=1 0.4188 0.0288
MSFT-MaxIter=10 4.0429 0.3102
MSFT-MaxIter=100 40.8313 3.1647
CBS-MSP-MaxIter=1 1.0297 0.0235
CBS-MSP-MaxIter=10 10.1797 0.2069
CBS-MSP-MaxIter=100 97.0899 2.0844
Greedy-MSP 0.0024 0.0040
Greedy-MSP-All 7.9664 0.0071
GRASP-MSP 0.0688 0.0452
GRASP-MSP-All 0.1305 0.0750
Optimal Solution 0.0727 0.0867

4 MULTIPLE SINK AND RELAY PLACEMENT
(MSRP)

For the sink and relay placement, nodes are partitioned into a set of
sensors T , relays R and sinks S. In the graph representation, V =
T ∪R∪S. We identify a sensor node to be critical if and only if
upon its removal, more sensor nodes will have no path of length ≤

Figure 3. (a) A WSN with 4 candidate sinks and 4 candidate relays, and
(b) the double-covered and noncritical WSN where lmax = 3

lmax to a sink. Otherwise, it is noncritical. We define a WSN to be
noncritical if each sensor node v ∈ T is noncritical. In the multiple
sink and relay placement problem, given a graph G = (T ∪AR∪
AS, E), where AR and AS are sets of candidate locations for relays
and sinks, respectively, we find minimum cost subsets R⊆AR and
S ⊆ AS such that H = (T ∪R∪S, E ↓T∪R∪S) is double-covered
and noncritical. The relay and sink candidate locations are associated
with a non-negative cost function c : AR∪AS→R. We assume that
a relay is cheaper than a sink because sinks usually are assumed to
be powered and have WiFi/ethernet backhaul. The multiple sink and
relay placement problem is illustrated in Figure 3, where the numbers
represent the devices’ costs.

We develop GRASP-MSRP to solve the multiple sink and relay
placement problem. To identify critical nodes, GRASP-MSRP uses
length-constrained connectivity and rerouting centrality (l-CRC)
proposed in [10]. A node is critical if its centrality index is above
a threshold. We can raise the threshold to trade off the deployment
cost against the robustness of the network. However, in this paper,
we only assume zero threshold for full reliability.

4.1 GRASP-MSRP: Construction Phase
In the construction phase, we find R and S as our initial sets of re-
lays and sinks, respectively. We need at least two sinks for a double-
covered WSN, so we firstly choose two sinks randomly from AS.
We then deploy relays from AR to minimise the number of uncov-
ered and critical nodes. If a sensor node v ∈ T is uncovered, we
try to place some relays to construct a path to a sink w ∈ S if Dis-
tanceH(v, w) > lmax but DistanceG(v, w) ≤ lmax. We choose the
relays that appear on the shortest path from v to w by tracing the
path in ParentG(v, w). If the sensor node needs two paths to make it
double-covered, this step is repeated twice. If a sensor node v∈T is
critical, we deploy relays that appear on the shortest path from each
descendant of v to a sink w ∈ S bypassing v, as long as the short-
est path length is ≤ lmax. We basically alternate the sink and relay
addition during this process. However, we do not add more sinks if
at some points the network is already double-covered. If the problem
has a feasible solution, the network is double-covered and noncritical
at the end of the construction phase.

4.2 GRASP-MSRP: Node-based Local Search
Let R be the set of relays and S be the set of sinks. We look for
a lower cost solution by adding either a new relay r ∈ AR \R into
R or a new sink s ∈AS\S into S that can eliminate some existing
relays from R and sinks from S to minimise the total cost as possible.
Given that the cost of a sink is higher than the cost of a relay, we also
try to minimise the total cost by adding some relays into R when
we eliminate an existing sink from S. The local search moves are
performed to reduce the total cost, but must ensure that the network
is still double-covered and noncritical in each iteration.

4.3 GRASP-MSRP: Algorithm Description
The GRASP-MSRP pseudocode is given in Algorithm 2. Its concept
is similar to GRASP-MSP in Algorithm 1 with some differences. We
will only describe its differences. Firstly, GRASP-MSRP takes the
set of candidate relays AR as one of its input. Secondly, the shortest
paths from all sensor nodes to all sinks are computed several times
in line 12, 18 and 24 due to the addition and elimination of relays.

Algorithm 2. GRASP-MSRP
Input : G, T , AR, AS, c, lmax, max iterations
Output: R∗, S∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: Find initial R and S, W←R∪S
4: do
5: solution updated←false

/* Local search phase */
6: best set0←W , best cost←

∑
v∈W cv , best num set←1

7: for all r∈AR∪AS\W do
8: Y ←{r}, Z←∅, X←∅
9: for all t∈W∪X do

10: Z←Z∪{t}, X←∅
11: H =(T∪W∪Y \Z, E↓T∪W∪Y\Z)
12: Calculate DistanceH
13: Find uncovered set in H using DistanceH and lmax

14: if |uncovered set|>0 then
15: X←X∪{Find relays to minimise |uncovered set|}
16: end if
17: H =(T∪W∪X∪Y \Z, E↓T∪W∪X∪Y\Z)
18: Calculate DistanceH
19: Find critical set in H using DistanceH and lmax

20: if |critical set|>0 then
21: X←X∪{Find relays to minimise |critical set|}
22: end if
23: H =(T∪W∪X∪Y \Z, E↓T∪W∪X∪Y\Z)
24: Calculate DistanceH
25: Calculate num uncovered and num critical in H

using DistanceH and lmax

26: if num uncovered=0 and num critical=0 then
27: Y ←Y ∪X , Z←Z\X
28: end if
29: if num uncovered>0 or num critical>0 then
30: Z←Z\{t}
31: end if
32: end for
33: if

∑
v∈W∪Y\Z cv <best cost then

34: best num set←0
35: end if
36: if

∑
v∈W∪Y\Z cv≤best cost and W∪Y \Z /∈best set then

37: best setbest num set←W∪Y \Z,
best cost←

∑
v∈W∪Y\Z cv ,

best num set++
38: end if
39: end for
40: if best cost<

∑
v∈W cv then

41: W←select a set randomly from best set
42: solution updated←true
43: end if
44: while solution updated

/* Best solution update */
45: if

∑
v∈W cv <best value then

46: R∗←∅, S∗←∅
47: for all v∈W do
48: if v∈AR then
49: R∗←R∗∪{v}
50: else
51: S∗←S∗∪{v}
52: end if
53: end for
54: best value←

∑
v∈W cv

55: end if
56: end for
57: return R∗, S∗

In line 13, the algorithm checks for uncovered nodes. If some ex-
ist, it tries to deploy relays in line 15. The identification of critical
nodes is performed in line 19. If some exist, relays are added in
line 21. Note that we try to minimise the total cost by adding some
relays when we eliminate a sink. These relays are saved in X as
shown in line 15 and 21, which later will be included in Y , the set
of new relays and sinks to be inserted, if X helps the network be-
come double-covered and noncritical. The network is checked if it is
double-covered and noncritical in line 25. The rest of the pseudocode
has similar role to GRASP-MSP’s.

4.4 Evaluation of GRASP-MSRP
We evaluate the total deployment cost and the runtime of GRASP-
MSRP against minimise the number of sinks and relays for fault-
tolerance (MSRFT) algorithm, cluster-based sampling for multiple
sink and relay placement (CBS-MSRP) and the greedy version of
multiple sink and relay placement (Greedy-MSRP). MSRFT, CBS-
MSRP and Greedy-MSRP use MSFT, CBS-MSP and Greedy-MSP,
respectively, to find the best locations to deploy sinks and GRASP-
ABP [10] to deploy relays. These three algorithms start by finding
the best locations for two sinks before utilising GRASP-ABP [10]
to deploy relays. The number of sinks is gradually increased and
GRASP-ABP is used to deploy relays until the network becomes
double-covered and noncritical.

We follow the same simulation setting as for the multiple sink
placement problem in Section 3.4. In addition, we have 81 candidate
relays distributed evenly in a grid area. A candidate relay occupies
a unit grid of 10m×10m. In the simulation, we only use 100 as the
maximum iteration (MaxIter) for MSRFT and CBS-MSRP. We also
use different sink costs (cS), i.e. 3, 6, randomly between 3 and 6,
and 10 units, while relay cost is 1 unit. The total sink and relay de-
ployment cost suggested by each algorithm with lmax =6 is shown in
Figure 4 and the runtime is in Table 2. The results show that GRASP-
MSRP with max iterations=10 has the lowest total cost compared to
other algorithms. Although GRASP-MSRP’s runtime is the longest,
this is acceptable since the deployment planning is an offline process,
which is carried out during the initial design phase.

Figure 4. Total cost for multiple sink and relay placement algorithms
versus sink cost

Table 2. Multiple sink and relay placement algorithms’ runtime

Algorithms Runtime (sec)
cS =3 cS =6 cS =3−6 cS =10

MSRFT-MaxIter=100 61.9235 60.3157 60.1228 59.2399
CBS-MSRP-MaxIter=100 61.2929 64.0727 62.0789 61.9352
Greedy-MSRP 153.7541 146.8796 130.1220 141.8679
GRASP-MSRP 196.5039 216.4508 251.2635 228.3422

The numbers of deployed sinks and relays for GRASP-MSRP
are depicted in Figure 5. The results show that more sinks are ex-
changed with relays when the sink cost increases to reduce the total
deployment cost. We also simulate GRASP-MSRP with lmax = 10
as shown in Figure 6. When we increase lmax, the number of sinks
decreases significantly but the number of relays does not increase
much. The simulation runtime for lmax =6 is 196.5039 seconds and
for lmax =10 is 348.6041 seconds.

Figure 5. Total numbers of sinks and relays for GRASP-MSRP versus
sink cost

Figure 6. Total numbers of sinks and relays for GRASP-MSRP versus
maximum path length

5 CONCLUSION
We have studied the WSN deployment planning problem where the
aim is to protect the network against one single failure, of either a
sink or a sensor node. We design a network to be double-covered
and noncritical. Double-covered means each sensor node must have
at least two paths with acceptable length to two sinks. Noncriti-
cal means all sensor nodes must have length-bound paths to sinks
when an arbitrary sensor node fails. We propose GRASP-MSP and
GRASP-MSRP, local search algorithms based on the GRASP tech-
nique to minimise the total cost of deployment. GRASP-MSP solves
the multiple sink placement problem by ensuring that each sensor
node in the network is double-covered. We demonstrate empirically
that it achieves the same deployment cost as the optimal solution with
shorter runtime. GRASP-MSP’s simulation results justify the use of
local search to solve the multiple sink and relay placement problem,
where linear solution is not available. GRASP-MSRP tries to opti-
mise the multiple sink and relay placement problem. Compared to

the most closely-related algorithms, GRASP-MSRP sacrifices run-
time to achieve the lowest total cost. This is not a significant problem
in the network deployment planning because it is an offline process.
We are currently investigating the performance of the topologies gen-
erated by our proposed algorithms using a network simulator.

ACKNOWLEDGEMENTS
This research is fully funded by the NEMBES project, supported by
the Irish Higher Education Authority PRTLI-IV research program.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘Wire-

less Sensor Networks: A Survey’, Computer Networks, 38(4), 393–422,
(Mar. 2002).

[2] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, ‘Deploying
Sensor Networks with Guaranteed Capacity and Fault Tolerance’, in
Proc. 6th ACM Int’l Symp. Mobile Ad Hoc Networking and Computing
(MobiHoc’05), pp. 309–319, (May 2005).

[3] H. Cambazard, D. Mehta, B. O’Sullivan, L. Quesada, M. Ruffini,
D. Payne, and L. Doyle, ‘A Combinatorial Optimisation Approach to
the Design of Dual-Parented Long-Reach Passive Optical Networks’,
in Proc. 23rd IEEE Int’l Conf. Tools with Artificial Intelligence (IC-
TAI’11), pp. 785–792, (Nov. 2011).

[4] T. A. Feo and M. G. C. Resende, ‘Greedy Randomized Adaptive Search
Procedures’, Journal of Global Optimization, 6, 109–133, (1995).

[5] X. Han, X. Cao, E. L. Lloyd, and C. C. Shen, ‘Fault-tolerant Relay
Node Placement in Heterogeneous Wireless Sensor Networks’, IEEE
Transactions on Mobile Computing, 9(5), 643–656, (May 2010).

[6] S. Mahmud, H. Wu, and J. Xue, ‘Efficient Energy Balancing Aware
Multiple Base Station Deployment for WSNs’, in Proc. 8th European
Conf. Wireless Sensor Networks (EWSN’11), pp. 179–194, (Feb. 2011).

[7] S. Misra, S. D. Hong, G. Xue, and J. Tang, ‘Constrained Relay Node
Placement in Wireless Sensor Networks to Meet Connectivity and Sur-
vivability Requirements’, in Proc. 27th Ann. IEEE Conf. Computer
Communications (INFOCOM’08), pp. 281–285, (Apr. 2008).

[8] E. I. Oyman and C. Ersoy, ‘Multiple Sink Network Design Problem
in Large Scale Wireless Sensor Networks’, in Proc. IEEE Int’l Conf.
Communications (ICC’04), pp. 3663–3667, (Jun. 2004).

[9] J. Pu, Z. Xiong, and X. Lu, ‘Fault-Tolerant Deployment with k-
connectivity and Partial k-connectivity in Sensor Networks’, Wireless
Communications and Mobile Computing, 9(7), 909–919, (May 2008).

[10] L. Sitanayah, K. N. Brown, and C. J. Sreenan, ‘Fault-Tolerant Relay
Deployment Based on Length-Constrained Connectivity and Rerouting
Centrality in Wireless Sensor Networks’, in Proc. 9th European Con-
ference on Wireless Sensor Networks (EWSN’12), pp. 115–130, (Feb.
2012).

[11] X. Xu and W. Liang, ‘Placing Optimal Number of Sinks in Sensor Net-
works for Network Lifetime Maximization’, in Proc. IEEE Int’l Conf.
Communications (ICC’11), (Jun. 2011).

[12] W. Youssef and M. Younis, ‘Intelligent Gateway Placement for Re-
duced Data Latency in Wireless Sensor Networks’, in Proc. IEEE Int’l
Conf. Communications (ICC’07), pp. 3805–3810, (Jun. 2007).

