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Abstract

Swallow and breathing are highly coordinated behaviors reliant on shared anatomical space and 

neural pathways. Incremental ascent to high altitudes results in hypoxia/hypocapnic conditions 

altering respiratory drive, however it is not known whether these changes also alter swallow. We 

examined the effect of incremental ascent (1,045m, 3,440m and 4,371m) on swallow motor pattern 

and swallow-breathing coordination in seven healthy adults. Submental surface electromyograms 

(sEMG) and spirometry were used to evaluate swallow triggered by saliva and water infusion. 

Swallow-breathing phase preference was different between swallows initiated by saliva versus 

water. With ascent, saliva swallows changed to a dominate pattern of occurrence during the 

transition from inspiration to expiration. Additionally, water swallows demonstrated a significant 

decrease in submental sEMG duration and a shift in submental activity to earlier in the apnea 

period, especially at 4,371m. Our results suggest that there are changes in swallow-breathing 

coordination and swallow production that likely increase airway protection with incremental 

ascent to high altitude. The adaptive changes in swallow were likely due to the exposure to 

hypoxia and hypocapnia, along with airway irritation.
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1. Introduction

Swallow and breathing are highly coordinated airway protective behaviors. Swallow is a 

multi-phase event, however the pharyngeal phase presents the highest risk for aspiration 

(Paydarfar et al., 1995). During the pharyngeal phase, supra-laryngeal/hyoid musculature 

moves the larynx superiorly and anteriorly resulting in closure of the airway and a functional 

apnea (German et al., 2009; Wheeler Hegland et al., 2011; Wheeler Hegland et al., 2009).

The expiratory phase of breathing is the preferred phase for swallow to occur, likely due to 

the limited inspiratory airflow (Martin-Harris et al., 2003). The central mechanism is 

thought to be due to interactions of breathing and swallow pattern generators (Dick et al., 

1993; Miller, 1982), however this preference can be modified by peripheral feedback (Pitts 

et al., 2015b) and disease (Brodsky et al., 2010; Leslie et al., 2002; Troche et al., 2011). 

Specifically, alterations in respiratory mechanics due to chronic obstructive pulmonary 

disease (Nagami et al., 2017; Pinto et al., 2017) and/or upper abdominal laparotomy can 

shift swallow occurrences to inspiration, potentially increasing risk of aspiration (Pitts et al., 

2015b). Additionally, there is also limited evidence that alterations in blood gasses (i.e., 

oxygen [O2] and carbon dioxide [CO2]) can also increase the likelihood that swallow will 

occur during inspiration (D’Angelo et al., 2014), (Ghannouchi et al., 2013).

Incremental ascent to high altitudes (>2,000m) produces hypoxia (low O2) induced 

hyperventilation, resulting in hypocapnia (low CO2) (Huang et al., 1984; Weil, 1986). As 

climbers acclimatize to high altitude they can reach a new “steady-state chemoreflex drive” 

in which balance is achieved between hypoxia and hypocapnia, while ventilation parameters 

can return to near baseline conditions (Bruce CD, 2018; Pfoh et al., 2017). Additionally, 

healthy individuals that are not acclimatized to high altitude conditions can have changes in 

pulmonary mechanics due to interstitial pulmonary edema, which can be accompanied with 

accumulation of fluid within and around the airway walls (Cremona et al., 2002; Pratali et 

al., 2010; Schoene et al., 1988). Early symptoms such as shortness of breath and cough are 

often overlooked leading to mortality (Dunin-Bell and Boyle, 2009).

Due to the significant coordination necessary for swallow and breathing, it is likely that 

conditions which significantly alter respiratory drive and mechanics would also affect 

swallow production and swallow-breathing coordination. We hypothesized that with 

incremental ascent to high altitude there would be a decrease in swallow duration, and a shift 

in swallow phase preference to inspiration.

2. Methods

Ethics and Participant Recruitment

This study abided by the Canadian Government Tri-Council policy on research ethics with 

human participants (TCPS2) and the Declaration of Helsinki, except for registration in a 

database. Ethical approval was received in advance through Mount Royal University Human 

Research Ethics Board (Protocol 100012) and was harmonized with the Nepal Health 

Research Council (Protocol 109–2017). Participants were recruited via email 
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correspondence or direct verbal communication, and provided written, voluntary, informed 

and ongoing consent.

Ten participants were recruited for the study, while only seven (two males, five females) 

completed the study. One participant voluntarily withdrew from the study during ascent, 

another was excluded following baseline data acquisition due to a persistent cough and a 

third was excluded due to complications with data acquisition. Exclusion criteria included 

facial hair, as electrodes were unable to effectively adhere to skin, and health status (e.g., 

persistent cough, severe altitude illness). No pre-existing medical conditions were reported 

by any participants. Participants avoided rigorous exercise for at least 12 hours prior to data 

collection.

Incremental ascent to high altitude

Baseline measurements were recorded at 1,045m (Calgary) prior to the departure to Nepal. 

Following arrival in Kathmandu (1,400m), participants spent up to 3 days in Kathmandu 

before flying to Lukla (2,860m) where the trek to high altitude commenced (Figure 1). 

Consecutive measurements were obtained on rest days at 3,440m (Namche; day 3 at 

altitude) and 4,371m (Pheriche; day 5 at altitude) on every second day following arrival in 

Lukla (Figure 1), following one night sleep at each respective altitude.

Data Collection

Data acquisition was performed using an analog to digital data acquisition system 

[Powerlab/16SP ML880; AD Instruments (ADI), Colorado Springs, CO, USA], and data 

was collected, archived and analyzed offline using commercially available software 

(LabChart Pro software version 8) and a personal laptop computer. Surface electromyogram 

(sEMG) (ADI MLA2503 & ADI FE132) electrodes were placed approximately 3 cm 

posterior to the mental region of the mandible, on each side of the midline, capturing the 

submental complex. The grounding electrode was placed inferior to the participant’s left 

clavicle. Voluntary swallow was performed in advance to ensure an adequate electrical 

signal through the sEMG electrodes.

A pneumotachometer (800L flow head; Series 3813; Hans Rudolph Inc.) and spirometer 

amplifier (ADI ML141) were used to monitor respiratory variables using a mouthpiece and 

nose-clip. Calibration of the flow head was performed with a 3L calibration syringe before 

data acquisition in each participant. Respiratory flow (L/s) was measured directly by the 

pneumotachograph. Inspired volume (VTI; L) and respiratory frequency (ƒR; min−1) were 

derived from respiratory flow. The product of VTI and ƒR was used to determine 

instantaneous minute ventilation (VI
·

; L/min). The pressure of end-tidal PETCO2 was 

measured using a portable, calibrated capnograph (Masimo EMMA, Danderyd, Sweden) 

with a personal mouthpiece and nose clip and peripheral oxygen saturation (SpO2) was 

measured with a portable finger pulse oximeter (Masimo SET® Rad-5, Danderyd, Sweden). 

Electrocardiography (ECG; ADI MLA2503 & ADI FE132; lead II configuration) was 

utilized to derive instantaneous heart rate (HR; 1/R-R Interval in min−1). The protocol was 

carried out with participants sitting comfortably in a dark, quiet room with ear plugs and 

eyes closed. Resting ventilation at each altitude was analyzed from a one-minute 
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representative period near the end of a 10-min baseline period, whereas PETCO2 and SpO2 

measures were obtained after stability was achieved.

Swallow stimulation

1. Swallows produced during the baseline respiratory data via normal saliva collection in the 

mouth, termed saliva swallows.

2. Water swallows were trigged via water delivery from a 250 mL wash bottle (Nalgene 

2089–0008 Narrow-Mouth Economy Bottle; Thermo Scientific, Waltham, MA, USA) 

inserted approximately 5 cm into the participant’s mouth, lateral to the pneumotachometer 

mouthpiece. The wash bottle was positioned by each participant to ensure comfort with the 

water delivery. The infusion protocol began by recording a thirty-second baseline with all 

instrumentation in place. Following this baseline, water was infused at ~1 mL/second for 30 

seconds into the participants’ mouths. Finally, a 30 second washout was conducted after all 

instrumentation remaining in place. In all instances, participants were instructed before the 

introduction of water to swallow normally as needed.

Statistical Analysis

Data was analyzed from seven participants (5 female and 2 male) ages 19–23 at 1,045m 

(Calgary), 3,440m (Namche; day 3 at altitude), and 4,371m (Pheriche; day 7 at altitude) 

(Figure 1). All results were expressed as means ± standard deviation (SD) using SPSS 

software (IBM).

To examine changes in swallow phase preference the following designations were used for 

respiratory phase: A) transition from inspiration to expiration (In-Ex); within expiration (Ex-

Ex); transition from expiration to inspiration (Ex-In); and within inspiration (In-In). Then 

the following assigned coding system was used with In-Ex = 1; Ex-Ex = 2; Ex-In = 3; and 

In-In = 4 to categorize where each swallow occurred (Table 1). Finally, Wilcoxon signed 

ranks tests were run to determine changes across swallow-type and altitude, as we have 

previously used (Pitts et al., 2015b).

Swallow apnea duration was measured as the period of zero airflow in the event of a 

swallow (Figure 2). The apnea duration then was divided into three sub-phases: a) pre-

swallow apnea, b) duration of submental sEMG, and c) post-swallow apnea (Figure 2). Pre-

swallow apnea began at the time of zero airflow before the submental activation. Submental 

sEMG duration was measured as the activation and inactivation of submental sEMG. Post-

swallow apnea was measured as the zero airflow after the inactivation of submental complex 

(Figure 2). Additionally respiratory rate, heart rate, mean arterial pressure (MAP), V̇I, SpO2, 

PETCO2 and steady-state chemoreflex drive (SS-CD) were measured. The SS-CD was 

computed by calculating a stimulus index (SI; PETCO2/SpO2), and then comparing minute 

ventilation against SI (Bruce CD, 2018; Pfoh et al., 2017). A repeated measures ANOVA 

was used to determine differences in swallow motor pattern and respiratory parameters 

across the three elevations with significance at p ≤ 0.05, and if significance was met the LSD 

post-hoc test was used. A p ≤ 0.07 was designated as “approaching significance”.
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3. Results

Swallow was present during baseline respiratory measurements (saliva swallows), and 

reliably elicited with infusion of water in all subjects (water swallows). A total of 379 

swallows (122 saliva and 257 water) were analyzed across the three altitudes (142 at 

1,045m; 121 at 3,440m; and 116 at 4,371m).

Swallow-breathing coordination

Table 1 reports percent of swallow occurrences across each respiratory phase/transition. 

Water swallows had a strong In-Ex phase preference (69–79%) which was maintained 

through the ascent protocol. For saliva swallows at 1,045m only 43% occurred during In-Ex 

[significantly different than water (Z = −3.3, p < 0.001)], but this shifted at 3,440m with 

76% of swallows occurring during In-Ex [significantly different than 1,045m (Z = −3.3, p < 

0.001)]. At the highest altitude 4,371m the percent of swallows which occurred during the 

In-Ex transition reduced to 55% (p = 0.07). Interestingly, at 1,045m 21% of saliva swallows 

occurred during inspiration (In-In), which reduced to 6% at 3,440m and at 4,371m none 

occurred. In contrast <6% of water swallows occurred during inspiration (Table 1).

Change of swallow motor pattern with increasing altitude

Figure 3 demonstrates changes in pre-swallow apnea, submental duration, and post swallow 

apnea plotted by subjects across the three altitude locations. For swallows elicited by water, 

the average submental duration (ms) approached significance [1170 ± 539, 1038 ± 218, and 

710 ± 227 respectively (F2, 12 = 4.19, p = 0.07)]. As elevation increased pre-swallow apnea 

duration (ms) significantly decreased [−256 ± 236, −115 ± 99, and −5 ± 172 respectively 

(F2, 12 = 4.218, p = 0.06)], and post-swallow apnea duration (ms) significantly increased [56 

± 109, 111 ± 171, and 241 ± 218 (F2, 12 =6.137, p < 0.05)] (Table 2 and Figure 2 and 3). Of 

note, pre-swallow submental sEMG activity was seen during swallows at each elevation and 

of each type (Figure 2). For saliva swallows there was no significant change in submental 

sEMG and apnea duration, or swallow frequency (Table 2).

Breathing related variables

Table 2 also illustrates resting minute ventilation (VI
·

), the pressure of end-tidal PETCO2, 

peripheral oxygen saturation (SpO2), stimulus index (SI) and measurement of steady-state 

chemoreflex drive (SS-CD) during incremental ascent to high altitude. All variables changed 

in predictable ways with incremental ascent. Heart rate [81.6 ± 9.5, 97.8 ± 7.9, and 93.5 

± 5.8 respectively (F2,12 =10.29, p < 0.05)], MAP [90.4 ± 8.4, 96.0 ± 6.5, and 99.1 ± 9.2 

respectively (F2,12 = 11.88, p < 0.05)] and SS-CD significantly increased as altitude 

increased [36.8 ± 8.5, 49.3 ± 12.7, and 58.7 ± 19.5 respectively (F2,12 = 7.41, p < 0.05)]. 

SpO2 [96.2 ± 1.0, 88.1 ± 2.3, and 83.3 ± 5.3 respectively (F2,12 = 37.44, p < 0.001)] and 

PETCO2 [31.1 ± 4.2, 25.9 ± 2.7, and 21.3 ± 2.3 respectively (F2,12 = 31.61, p = 0.001)] 

significantly decreased as altitude increased. Additionally, respiratory rate and instantaneous 

minute ventilation remained stable across all elevations (Table 2).
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4. Discussion

This is the first evidence of a significant change in swallow-breathing coordination as well 

as swallow production during incremental ascent to high altitude. There was a significant 

change in swallow phase preference comparing saliva to water swallows during baseline and 

approached significance at the highest elevation (4,371m). This was due to a shift in the 

dominance of the In-Ex pattern seen during water swallows and at 3,440m for saliva 

swallows. Additionally, in the water trials there was a significant increase in the post-

swallow apnea period and a decrease (approaching significance) in the submental duration 

and pre-swallow apnea, while the overall swallow apnea duration did not change.

Phase Preference

Swallow phase preference has been intensely studied in humans (Martin-Harris, 2008; 

Martin-Harris et al., 2008; Martin-Harris et al., 2003; Martin-Harris and McFarland, 2013; 

Pratali et al., 2010; Wheeler Hegland et al., 2011; Wheeler Hegland et al., 2009), as well as 

in cats (Dick et al., 1993; Pitts et al., 2015a; Pitts et al., 2013; Pitts et al., 2015b), goats 

(Bonis et al., 2011; Feroah et al., 2002a; Feroah et al., 2002b), and rats (Saito et al., 2002a, 

b). However, all the peripheral stimulations and/or central mechanisms which regulate their 

interactions are not entirely understood. In the present study there was not a strong 

expiratory phase preference (~80%) which is observed in single swallow studies in which a 

5 or 10 mL bolus is placed in the mouth (Wheeler Hegland et al., 2009). Saliva swallows 

(probably most akin to the typical single swallow task) demonstrated only 9% occurred 

during expiration, with 43% occurring in the transition of In-Ex, and of great interest is that 

21% of these swallows occurred during inspiration (Table 1).

The dominance of In-Ex preference may be due in part to the mouthpiece which forces an 

“open mouth” swallow. It has been shown that muscle spindle afferents, in the masseter 

muscle, increase in discharge frequency during active opening of the jaw (Taylor et al., 

1997). It has also been shown that input of muscle spindle afferents influence other central 

pattern generators [i.e. locomotion (Pearson, 1995)], and has been speculated that muscle 

spindle afferents influence mastication CPG output (Kolta et al., 1990; Lund, 2011). This 

information allows speculation that position of the jaw, indicated by proprioception of 

muscle spindle afferents can modulate the interaction between the swallow and breathing 

CPGs.

These changes could also be related to the effects of hypoxia and/or hypocapnia on swallow. 

Although there are limited studies, there are also conflicting results. In mice an increase in 

swallow frequency was reported (Khurana and Thach, 1996), no change in rat (Ghannouchi 

et al., 2013), and a decrease in the cat (Nishino et al., 1986). Hypoxia has also been studied 

in nonnutritive swallow in newborn lambs which showed a decrease in frequency during 

quiet sleep (Duvareille et al., 2007). Interestingly, hypercapnia shifts swallows towards In 

and Ex-In (D’Angelo et al., 2014) while we found that hypocapnia with hypoxia shifts 

swallow toward In-Ex. In light of the present data, further studies may need to investigate 

swallow-breathing coordination not only with variation of respiratory drive but swallow 

drive as well. We speculate that the water trials increased swallow excitability, which likely 

altered and stabilized its relationship with breathing.
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Swallow motor pattern

In contrast to the swallow-breathing coordination data, the largest changes in the swallow 

motor pattern with ascent were on the water swallows, with a 39% decrease in the submental 

duration (Figure 2–3) at the highest altitude (compared to Calgary). This effect has been 

demonstrated in cats when swallow was coordinated with cough (airway irritation discussed 

below) (Leow et al., 2006); however we could find no study demonstrating a decrease in 

submental sEMG in healthy adults when using a mechanical/cold stimulus on the back of 

the mouth (Sciortino et al., 2003) or altering oral stimulation with taste (Leow et al., 2006).

To protect the airway during the pharyngeal phase of swallow the vocal folds must be 

adducted (zero flow; swallow apnea) during the laryngeal exposure to the bolus (Butler et 

al., 2004; Chi-Fishman and Sonies, 2000; Ding et al., 2003; Kijima et al., 1999; Martin-

Harris et al., 2003; Martin et al., 1994; Paydarfar et al., 1995; Wheeler Hegland et al., 2011). 

In a review by Martin-Harris (2008), she stated that increases in the timing from the onset of 

the submental activity to the apnea period is related to significant clinical risk for aspiration. 

Evidence of this has been demonstrated in patients with Parkinson’s disease with dysphagia 

(Ertekin, 2014). Based on this current data, we speculate that the decrease in submental 

sEMG and the shift in its activity to closer to the start of the swallow apnea period could 

increase airway protection. Of note, Ertekin and colleagues (Ertekin, 2014; Gürgör et al., 

2013) demonstrated an activation of the submental complex during the pre-swallow 

respiratory phase that is likely related to infusion of water into the mouth (termed foreburst). 

Figure 2 demonstrates the difference between swallow-related and pre-swallow submental 

activity.

Airway Irritation

Exposure to high altitude conditions is also associated with airway irritation from dry air and 

insensible water loss, which results in a chronic cough (Freer, 2004). The most common 

diagnosis in the Nepal Himalaya is “Khumbu cough”, also known as “high altitude hack” 

(Freer, 2004), thought to be caused by dry air, sub-zero temperatures, dust, and exposure to 

yak dung stoves in the lodges (Linoby et al., 2013). There is evidence that dry air increases 

airway responsiveness (Van Oostdam et al., 1986), and prolonged exposure results in an 

inflammatory response, desquamation of the epithelium, and edema of submucosa (Florey et 

al., 1932). While each subject did have evidence of coughing across the recording period, 

none were actively coughing during the measurement period. It is possible that activation of 

irritant receptors can alter swallow production without cough as a presenting feature.

Respiratory Drive

The changes in swallow and swallow-breathing coordination were also accompanied by 

changes/adaption of the chemoreflexes driving breathing. It is known that these reflexes 

become more dynamic as individuals acclimatize to their respective environment (Pfoh et 

al., 2017) (Steinback and Poulin). To asses this adaptation, Pfoh and colleagues (2017) 

created an index of steady-state chemoreflex drive (SS-CD), taking into account resting 

ventilation indexed against the overall contributions of both low O2 and low CO2 during 

exposure to hypoxia. Based on the magnitude of this index the significant change in the SS-
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CD from 1,045m to 3,440m is evidence of respiratory acclimatization in our participants 

[see also (Huang et al., 1984)].

Blood levels of O2 and CO2 are maintained in part by central (brainstem) and peripheral 

(carotid body) chemoreceptors. Central chemoreceptors, located throughout brainstem, 

detect PCO2/[H+] accumulation (Guyenet and Bayliss, 2015). Peripheral chemoreceptors 

located bilaterally within carotid bodies detect rapid changes in both O2 and CO2 

synergistically (Fitzgerald and Parks, 1971; Lahiri and DeLaney, 1975; López-Barneo et al., 

2016). A primary location for integrating these signals is in the nucleus tractus solitarius 

(NTS) (Jordan and Spyer, 1986; Paton et al., 2001). Due to the overlap in sensory integration 

in the NTS for breathing and swallow (Jean, 1984, 2001), this may be a site of shared central 

excitability which affects both respiratory and swallow central pattern generators.

Clinical Implications

Altitude exposure has inherent risks with 1–2% experiencing high altitude pulmonary edema 

(HAPE) (Houston, 1960; Hultgren, 1969; Schoene et al., 1986), a form of high altitude 

sickness, and of those 65% are diagnosed with a concomitant respiratory infection (most 

commonly pneumonia) (Leshem et al., 2008). It would be of interest to know if climbers 

with pneumonia display the same adaptations in swallow, especially in light of our 

knowledge of pneumonia rates with dysphagia.

5. Conclusions

Our results suggest that there are changes in swallow-breathing coordination and swallow 

motor production that increase airway protection with incremental ascent to high altitude. In 

conclusion, we suspect the adaptive changes in swallow were likely due to the exposure to 

superimposed hypoxia and hypocapnia, along with the increased airway irritation.
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Figure 1. 
Timeline of travel, ascent, and recording locations. The (★) represents where data was 

collected, and (✈) indicates flights.
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Figure 2. 
Example of submental sEMG and airflow from the same participant from Calgary (1,045m) 

and Pheriche (4,371m) during the water swallow protocol. B to C marks the swallow apnea 

period. A to B is the pre-swallow submental activity, A to D is the submental duration and C 

to D is the post-swallow apnea period. At 4,371m, there was a significant increase in the 

post-swallow apnea as well as a decrease submental duration. The “foreburst” is activity 

related to water being introduced to the oral cavity.
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Figure 3. 
Scatter plot of duration measures (pre-swallow, submental and post-swallow) for each 

subjects across th e recording locations for the saliva (A) and water (B) swallow tasks. 

Repeated measures ANOVA p-value reported for each dependent measure, and gray line 

represents group mean.
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Table 1.

Percent of swallow occurrence during breathing across the three levels of ascent.

In-Ex Ex-Ex Ex-In In-In

Saliva Swallow

1,045m 43 9 27 21

3,440m 76 12 6 6

4,371m 55 15 30 0

Water Swallow

1,045m 79 9 9 2

3,440m 69 14 11 6

4,371m 76 11 11 2
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