
Title Semi-online task assignment policies for workload consolidation
in cloud computing systems

Authors Armant, Vincent;De Cauwer, Milan;Brown, Kenneth N.;O'Sullivan,
Barry

Publication date 2018-01-03

Original Citation Armant, V., De Cauwer, M. Brown, K. N. and O'Sullivan, B. (2018)
'Semi-online task assignment policies for workload consolidation
in cloud computing systems', Future Generation Computer
Systems, 82, pp. 89-103. doi:10.1016/j.future.2017.12.035

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1016/j.future.2017.12.035

Rights © 2018, Elsevier B.V. All rights reserved. This manuscript version
is made available under the CC-BY-NC-ND 4.0 license. - http://
creativecommons.org/licenses/by-nc-nd/4.0/

Download date 2024-04-19 22:22:22

Item downloaded
from

https://hdl.handle.net/10468/5268

https://hdl.handle.net/10468/5268

Accepted Manuscript

Semi-online task assignment policies for workload consolidation in cloud
computing systems

Vincent Armant, Milan De Cauwer, Kenneth N. Brown, Barry O’Sullivan

PII: S0167-739X(17)31914-3
DOI: https://doi.org/10.1016/j.future.2017.12.035
Reference: FUTURE 3873

To appear in: Future Generation Computer Systems

Received date : 1 September 2017
Revised date : 11 December 2017
Accepted date : 22 December 2017

Please cite this article as: V. Armant, M.D. Cauwer, K.N. Brown, B. O’Sullivan, Semi-online task
assignment policies for workload consolidation in cloud computing systems, Future Generation
Computer Systems (2018), https://doi.org/10.1016/j.future.2017.12.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2017.12.035

Semi-Online Task Assignment Policies for Workload
Consolidation in Cloud Computing Systems

Vincent Armant, Milan De Cauwer, Kenneth N. Brown, Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland

{vincent.armant|milan.decauwer|ken.brown|barry.osullivan}@insight-centre.org

Abstract

Satisfying on-demand access to cloud computing infrastructures under quality-of-service
constraints while minimising the wastage of resources is an important challenge in
data centre resource management. In this paper we tackle this challenge in a semi-
online workload management system allocating tasks with uncertain duration to phys-
ical servers. Our semi-online framework, based on a bin packing approach, allows us
to gather information on incoming tasks during a short time window before deciding
on their assignments. Our contributions are as follows: (i) we propose a formal frame-
work capturing the semi-online consolidation problem; (ii) we propose a new dynamic
and real-time allocation algorithm based on the incremental merging of bins; and (iii)
an adaptation of standard bin packing heuristics with a local search algorithm for the
semi-online context considered here. We provide a systematic study of the impact of
varying time-period size and varying the degrees of uncertainty on the duration of in-
coming tasks. The policies are compared in terms of solution quality and solving time
on a data-set extracted from a real-world cluster trace.

Our results show that, around periods of high demand, our best policy saves up
to 40% of the resources compared to the other polices, and is robust to uncertainty in
the task durations. Finally, we show that small increases in the allowable time win-
dow allows a significant improvement, but that larger time windows do not necessarily
improve resource usage for real world data sets.

Keywords: Cloud Computing, Workload consolidation, Semi-Online policies,
Stochastic task duration.

1. Introduction

As the demand for IT services continues to increase, worldwide deployment of
large data centres is continuing to grow. Those data centres consume enormous amounts
of electricity, estimated at 70 terawatt hours for the USA alone in 2014, at a cost of 7
billion dollars [1]. It has been estimated that only 6 to 12% of electricity used by data
centres can be attributed to productive computation [2]. Opportunities for reducing the
energy consumption of data centres include more efficient cooling, enhanced power
management for idle running, and aggressive resource sharing through virtualization.

Preprint submitted to Computers and Operations Research January 2, 2018

The latter strategy is the one explored in this paper. The aim of resource consolidation
through virtualization is to increase the utilisation of a subset of servers. Consolida-
tion is usually achieved by allocating multiple tasks on the same physical machine. In
turn, workload consolidation allows data centre operators to spread workload over a
smaller set of machines so that those remaining unused can be powered down or put
into a standby mode. Data centres are usually over-provisioned so they can cope with
high fluctuations in demand from clients. Having a much larger pool of servers than
needed also allows the design of fault-resilient systems [2]. As a consequence of over-
provisioning, the workload can be dispatched without delays due to resource scarcity.
In such a context one aims to dispatch tasks on machines so that resource wastage is
minimised.

We leverage semi-online optimisation techniques in which workload allocations
must be made without full knowledge of future demands. A semi-online formulation
of the workload consolidation problem gathers information on incoming tasks for a
short period of time. It may allow an operator to take more informed decisions than
the fully online formulation while keeping control of delays in task deployments. In
a cloud computing production environment, it is often the case that the duration for
which a task will lock resources is either approximated or not known at all. This fits
the new challenge of on-demand allocations in which demands are guaranteed to be
satisfied in real-time. We therefore formalise the workload consolidation problem as a
semi-online bin-packing problem whereby each bin maps to a machine and each item
maps to a task.

The remainder of this paper is organised as follows. Section 2 discusses relevant
work from both the cloud computing and optimisation communities. In Section 3 we
provide a mathematical formulation of the on-demand bin packing (ODBP) problem.
Section 4 introduces a novel methodology based on bin merging to solve the ODBP.
Section 5 shows the performance of our approach compare to adapted heuristics of the
related work in terms of solving time and solution quality. We demonstrate that our bin
merging policy can achieve reductions in energy use of up to 40% over the comparator
approaches. We show that the policy is relatively robust to increased errors in the
predicted duration of the tasks. Finally, we show that moving from the pure online
problem to the semi-online problem, with relatively small decision time windows, has
a significant impact on the solution quality, but that all policies quickly stabilise and do
not benefit further from longer time windows.

2. Related Work

Workload consolidation in data centres (DC) is a key challenge in the operations
of cloud computing systems through which operators efficiently dispatch a workload
on a pool of servers over which operations are virtualised [3]. Workload consolida-
tion aims at maximising the usage of servers by grouping tasks to run concurrently on
fewer machines. This technique is used to maintain control over the potentially high
economic and environmental cost [4]. Due to the large spectrum of technologies that
implement cloud computing systems, there is a vast body of literature reviewing efforts
to optimise task placement (see surveys [5, 6, 7]). Depending on the technologies at
play, this can be achieved either dynamically or statically. In the dynamic version, the

2

DC management system is allowed to migrate tasks across hosts [8, 9]. On the other
hand, static workload consolidation does not allow migrations and focuses on consol-
idating the initial task placement. The operational setting in which our work stands is
on-demand static placement of tasks. Moreover an efficient placement of tasks may
reduce the cost of migrating tasks from a physical host to an other.

Policies for static consolidation have been studied in [10]. The authors leverage
machine learning methods to predict the often unknown size of the virtual machines
(VMs). They show that different prediction methods lead to assignments with signifi-
cant differences in terms of resource usage. Our study takes place after this prediction
step. We suppose that the size of each task can be predicted by the consolidation system
upon its arrival. In the context of cloud gaming, the authors of [11] have considered the
play-request dispatching problem where the aim is to minimise the total rental cost of a
cloud platform. Although this problem has strong connections to ours, it differs in that
it assumes that each task has the same size as well as perfect information concerning
the their duration.

We tackle the semi-online formulation of the on-demand workload consolidation
where tasks have to be allocated to servers in real-time. While the vast majority of
the work carried on workload consolidation considers either the offline [12, 13] or
online [14, 15, 16] setting, we cast the problem in a semi-online framework by con-
sidering a short period of a few seconds within which tasks are grouped before being
allocated to hosts. More precisely, we build upon the offline workload consolidation
problem discussed in [17].

In classical bin packing (BP) (see survey [18]) we are given a set of items along
with their sizes and a set of bins having equal capacities. The objective is to find an
assignment from items to bins such that the total number of bins is minimised. Many
variants of BP have been studied extensively in both offline and online settings. Van
Hentenryck et al [19] considered a number of different approaches to online stochastic
optimisation under time constraints, including various packing models. The authors
exploited distributions over future task arrivals. Delaying or rejecting tasks is allowed
but neither of which applies to the problem we address. The semi-online bin packing
problem, also known as batch bin packing, has been described in [20] in which the au-
thors derive lower bounds on the minimum number of bins to be used to accommodate
tasks over time. That work does not model the relationship between batches induced
by item durations.

Several variants of BP are concerned with items that have a ‘lifespan’ within the
bins. In offline dynamic BP (DBP), we are given items defined by their size and lifes-
pan. The objective is to minimise the maximum number of bins over a given horizon.
Here, we study the problem from a different viewpoint where we aim to minimise the
cumulative cost. As an extension, fully DBP [21, 22] considers rearranging the items
across the bins to retain a minimal number of used bins. In our study, instead of rear-
ranging tasks to optimise the consolidation, we explore the possibility of gathering the
tasks during a short time window to make more informed decisions for their placement.
In [11], the authors revisited the online version of the dynamic BP problem in which
items are characterised by size, arrival time, and an arbitrary departure time with the
objective being to minimise the maximum number of bins ever used over time.

Finally, the family of online scheduling problems are to some extent related to our

3

work. In [23], the authors propose and evaluate online scheduling policies and define
new distance metrics used in the best-Fit family of heuristics. The objective function
under consideration is to minimise the queuing delay under constrained overall compu-
tational capacity. In our study, we propose a new approach for the semi online context
that enforces a fixed delay satisfying the on demand placement. We also compare the
efficiency of this heuristic against adapted Bin Packing heuristics.

3. Minimising Resource Wastage

On-line policies decide the placement of incoming tasks as soon as they arrive in
the system. Such a framework must fully satisfy on-demand Quality-of-Service (QoS)
requirements, guaranteeing the real-time placements of tasks. However, due to the lack
knowledge of which tasks might come next, on-line placement strategies may provide
poor consolidation solutions and waste more resources than required.

On the other hand, for efficient resource utilisation, off-line approaches consider
the task placement as a batch optimisation problem for which the incoming tasks are
known in advance. The knowledge of forthcoming tasks allows a better consolidation
but involves more sophisticated techniques that may required an expensive solving
time. In the context of on-demand placement, neither the existence of incoming tasks
nor their duration can be known in advance.

The aim of our approach is to fill the gap between on-line and off-line approaches
and investigate the benefit of a semi-online framework in terms of the trade-off be-
tween efficient resource utilisation and on-demand placement QoS. To have a better
understanding of our overall objective in the semi-online context, consider an arbitrary
start time of 0. For any time t, let ztm be the observed run time duration for machine
m between the time points 0 and t. Then, our overall objective is, for some sufficiently
large time t, to allocate tasks to machines such that each task starts within δ seconds of
its arrival time, and so that the sum over m of ztm is minimised.

Let us consider the following example of a sequence of six incoming tasks a0...a5,
having respectively an expected duration of 50, 10, 100, 50, 10, 100 minutes, requir-
ing the same CPU resource equivalent to 50% of a machine capacity, and arriving at
one second of intervals. We aim to minimise the run-time of allocated machines. Fig-
ure 1 shows an optimal placement of the incoming tasks within three different contexts,
on-line, semi-online, and off-line. In an on-line context, the time for deciding the place-
ment of the incoming tasks is negligible. The optimal placement, seen on the first row
of Figure 1, allocates the tasks a0 and a1 to the machine m1, then, a2 and a3 to m2 and
finally, a4 and a5 to m3. The run-time of allocated machines is 250 mins. In a semi-
online context, incoming tasks are first gathered and then allocated at the start of the
next time period. In the example we consider a time period of 3 seconds. Within this
context, the optimal placement shown in 2nd row Figure 1 corresponds to 210 minutes
total run-time. Machine m1 allocates its first task at 6 seconds while m2 and m3 start
respectively at 9 and 12 seconds. In the first time period of 3 seconds the system first
collects the tasks a0, a1, a2. From 3 to 6 seconds the system solves the placement con-
cerning the tasks received between 0 and 3 seconds. At the same time, it also collects
a3, a4, a5 for future placement. At 6 seconds the system implements last processed
solution and allocates a0 and a2 to m0 and a1 to m1. From 6 to 9 seconds the system

4

Figure 1: Optimal placement considering respectively an on-line, a semi-online (time window of 3s), and a
off-line contexts.

δ
=

0s

m0 m1 m2

a0

a1

a2

a3

a4

a5

10min 50min 100min50min 10min 100min

50% 50% 50%

δ
=

6s

m0 m1 m2

a0

a2

a1

a4

a3

a5

100min50min 10min 100min

50% 50% 50%

δ
=
∗

m0 m1 m2

a1

a4

a0

a3

a2

a5

10min 50min 100min

50% 50% 50%

decides the placement of a4, a5. At 9 seconds it implements the solution by allocating
a4 to m1 and a3 and a5 to m2. Note that in the semi-online framework the waiting
time δ between the arrival and the allocation of a task is at most twice greater than the
time period of 3 seconds. A small waiting time positively affects on-demand QoS1.

In the off-line context where all incoming tasks are known before being allocated,
the optimal placement shown in 3rd row Figure 1 corresponds to 160 mins of run-time
of allocated machines. In this context, the system has decided the placement of the
tasks before they arrive, they are allocated as soon as they arrive.

Intuitively, the greater the knowledge of the incoming tasks, the better the con-
solidation. However, to satisfy on-demand assignment of tasks placement, strategies
cannot afford to wait too long to have a greater knowledge. By using a semi-online
framework we expect to have more information that can lead to better overall assign-
ments while satisfying on-demand QoS.

3.1. The Semi-Online Framework

We introduce the semi-online on-demand bin packing problem for which the ob-
jective is to minimise the global waste of CPU resources allocated across the pool of
machines. Table 1 introduces the notations. The semi-online framework 2 is imple-

1∗ = undefined
2https://github.com/ElVinto/semi_online_task_allocation

5

Table 1: Notation of the model

Notation Semantics
i Time step index
ti End time of time step i
tw Duration of a time step in seconds
M Set of machines
Mi State of the machines at time i
Cm Capacity of machine m
lm Maximal expected remaining duration of tasks currently allocated to m
A Stream of tasks
Ai Tasks received at step i
ta Arrival time of task a
t̄a Time at which a machine starts processing task a
d̄a Expected duration of task a in seconds
da Expected remaining duration of task a in seconds
qa Requirement of task a
hi Map Ai 7→ M from tasks received at step i to allocated machines
ztm Observed run time for machine m between the time points 0 and t
xam Boolean variable denoting the assignment of task a to machine m
em Auxiliary integer variable em denotes the expected runtime of a machine m

mented using two distinct modules as illustrated in Figure 2. The first module acts as
a monitor and receives the stream of tasks A to be allocated to the pool of machines
M. At each time step i, from the previous placement solutions sent by the solver, the
monitor updates and sends back in the setMi the information representing the current
state of the machines. From the stream of incoming tasks A, the monitor also gathers
the tasks received during the current time step i into the set Ai before passing them to
the solver.

Monitor Solver

A,M
〈A1,M1〉, . . . ,〈Ai,Mi〉

h0, . . . , hi

Figure 2: The semi-online framework

Finally from the current state of the machinesMi and newly arrived tasks Ai the
solver builds the corresponding packing problem. The resulting placement solution hi,
mapping each incoming task to a machine, is then sent to the monitor module.

6

3.2. The Monitor Module

The monitor module decomposes time into a sequence of time steps of size tw
mesured in seconds. Each time step i is mapped to the end time ti of the corresponding
time period. Each task a received during time step i is characterised by an arrival
time ta, an expected duration d̄a and a required CPU resource qa. The starting time
t̄a of a corresponds to the end of the next time step after the task has been received,
t̄a = ti+1. We implicitly guarantee on-demand placement by requiring the solver to
return a consolidation plan within a single time step, which ensures each task will start
within 2* tw seconds of its arrival time.

Algorithm 1: Monitor
Input: A,M, hi−1
Output: Ai,Mi

1 for each a ∈ A, ta < ti do
2 if isAlive(a) then
3 da ← max(tw, t̄a + d̄a − ti)
4 else
5 da ← 0

6 Ai ← {(a, da, qa) | a ∈ A, ti − tw ≤ ta < ti}
7 for each m ∈M do
8 RunningTasks(m)← {a|∀j < i, a ∈ Aj , hj(a) = m, da > 0}
9 Cm ← 1−

∑

a∈RunningTasks(m)

qa

10 lm ← max({da | a ∈ RunningTasks(m)})
11 Mi ← {(m, lm, Cm) |m ∈M} return Ai,Mi

Algorithm 1 provides details on how the monitor module is implemented. The
monitor first updates (resp. initiates) the remaining expected duration da of the tasks
received so far (line 1). If a task is still alive (isAlive(a)), i.e. a has not completed,
its expected remaining duration is updated and corresponds at least to the size of a
time step (line 3). Tasks that have completed, have a remaining duration of 0 (line 5).
The tasks that have not yet started will have a remaining duration initialized after been
scheduled. The monitor then gathers the tasks revealed during time step i into the set
Ai (line 6). For a machine m, the tasks that have been placed but that have not yet
completed are gathered into the set RunningTasks(m) (line 8). This set is built upon
the previous placement solutions hj , j < i. A placement solution hj , received during
time step j, is a mapping from the incoming tasksAj to the machines in the clusterM.

From the tasks running a step i, the monitor updates the remaining capacity Cm of
each machine m (line 9). It also updates the expected remaining run-time lm of each
machine (line 10). lm represents the maximal expected duration of tasks currently
allocated to the machine m, lm = 0 if the machine is currently hosting no tasks. In
the end, the monitor sends both the current state of the machinesMi and the incoming
tasks Ai to the solver (line 11).

7

3.3. The Solver Module

At each time step i the solver is called to solve the on-demand bin packing Problem
(ODBP) corresponding to the current state of clusterMi and newly arrived tasks Ai.
The goal is to return a valid placement hi of the incoming tasks Ai on the physical
servers M minimizing the expected run-time of allocated machines. The solver has
no further knowledge of subsequent arriving tasks. The tasks for which the placement
decision is made during time step i will start running on the assigned machines at the
beginning of the next time step i + 1. In the following ODBP problem formulation,
each {0, 1} decision variable xam denotes the assignment of the task a to the machine
m ∈ M such that xam = 1 if task a has been assigned to machine m, xam = 0
otherwise. The auxiliary integer variable em denotes the expected runtime of a machine
m, it is entirely determined by the decision variables xam.

The input data da and qa have the same meaning as before; they represent the
expected remaining duration and the CPU requirement of the task a. Similarly, lm
and Cm denote the current maximal expected remaining run-time and the expected
remaining capacity of the machinem. We denote by um the maximal expected duration
of the remaining and the current incoming tasks, um = max(lm, {da | a ∈ Ai}).
The mathematical model corresponding to the on-demand bin packing problem is as
follows: ODBP (Ai,Mi) :

min
∑

m∈Mi

em (1)

s.t.
∑

m∈M
xam = 1 ∀a ∈ Ai (2)

∑

a∈Ai

xam · qa ≤ Cm ∀m ∈Mi (3)

xam · da ≤ em ∀m ∈Mi ∀a ∈ Ai (4)

xam ∈ {0, 1} ∀m ∈Mi ∀a ∈ Ai (5)

em ∈ [lm...um] ∀m ∈Mi (6)

At each time step i the solver aims at minimising the sum of the expected remaining
run-times of the allocated machines (1). The placement solution returned by the solver
enforces the following constraints. Each incoming task is assigned to exactly one ma-
chine (2). The sum of CPU requirement of incoming tasks assigned to a machine do
not exceed the current machine capacity (3). The expected remaining run time of a ma-
chine is bound by the largest remaining duration of any incoming task assign to it (4)
and the maximal expected remaining run-time of the machine constraints (6).

A solution of the above mathematical model is a placement reflected in the assign-
ment of the xam Boolean variables (5). Thus, given a current state of the clusterMi

and newly arrived tasks Ai, the mapping hi : Ai 7→ M sent back to the monitor is a
function s.t. hi(a) = m if and only if xam = 1.

8

m0 m1 m2

a1

a2
a3

a4 a5

d1 + d3 + d5

10min 90min 30min 50min 20min

25%

50%

25%

50%

90%

m0 m1 m2

a1

a2

a3

a4

a5

d1 + d5

10min 50min 90min 20min

25%

50%

75%

100%
90%

Figure 3: Two valid assignments of tasks {a1, . . . , a5} to 3 standby machines {m0, . . . ,m2}. All tasks
are starting at the current time step t.

3.4. Illustration of the Consolidation of Run-time of Allocated Machines

In Figure 3, we consider two placements of five tasks, {a1, . . . , a5}, with the fol-
lowing duration in minutes (min): d1 = 90, d2 = 10, d3 = 50, d4 = 30, d5 = 20.
The machines, {m0,m1,m2}, have the same CPU capacity. The tasks have the fol-
lowing CPU requirements (in percentage of the CPU capacity): q1 . . . q4 = 25% and
q5 = 90%. In the first assignment depicted at the top of the figure, the objective func-
tion evaluates the wastage of m0 to w(m0) = 90 − ((25% ∗ 10) + (25% ∗ 90)) = 65
minutes of CPU resources. m1 and m2 waste, respectively, w(m1) = 50 − ((25% ∗
30) + (25% ∗ 50)) = 30m and w(m2) = 20 − (90% ∗ 20) = 2 minutes. The total
wastage of the first assignment is then 65 + 30 + 90 = 185 minutes of allocated CPU.
Similarly, in the the second assignment of the Figure 3, the total wastage is evaluated
to w(m0)+w(m1)+w(m2) = 45+0+2 = 47 minutes of allocated CPU. The second
assignment wastes less CPU resources than the first assignment.

Note that the total running time of active machines in the first assignment is d1 +
d3 + d5 = 160 minutes. The total running time of active machines in the second
assignment is d1+d5 = 110 minutes. Implicitly, this example gives us insights into the
importance of task duration. It also shows the relationship between the total wastage
and the total running time of active machines.

Minimising the global duration of active machines is a hard task. In [17] where a
static version of ODBP is tackled, the approaches using state-of-the art CPLEX and CP
solvers cannot solve the problem optimally for more than a few hundred of tasks. In
the context of real world on-demand task placement, heuristic approaches are needed
to cope with problem sizes reaching thousands of tasks. In the following, we focus our

9

study on heuristic methods minimising the wastage in homogeneous platform in data
centres for minimising the global duration of active machines.

4. Solution Methods

4.1. Adapting Bin Packing Heuristics

A range of policies originally developed for the bin packing problem can be adapted
to produce solutions to ODBP in a semi-online fashion. The hard constraint on the bin
capacities is an aspect usually tackled by these policies such as the family of AnyFit
(First, Next, Best, Worst) policies, Sum of Squares and Harmonic heuristics.

Due to the semi-online nature of the problem at hand, solving policies must only
consider information available up to time i when finding an assignment for tasks Ai.
An aspect traditionally not handled by bin packing models is the duration for which
an item will be locking resources on its host bin. As shown in Section 3, the current
expected run-time of machine m is modeled by lm.

In addition to the policies themselves, the order of tasks to be assigned in any
particular time window may significantly impact the solution’s quality. The natural
order is given by the LIST and leaves the tasks a ∈ Ai ordered by their arrival time
ta. Alternatively, the order D sorts the incoming tasks by decreasing duration da(i).
Finally, at every time step i, the set of machines is ordered on their lm values.

First Fit (FF). The FF policy can be applied as-is to the ODBP problem. The tasks in
Ai are in turn assigned to the first machine that has enough remaining capacity. The
condition for assigning task a to machine m at time i is thus qa ≤ Cm. Assigning a to
m updates the remaining capacity on machine m such that Cm = Cm − qa.

Next Fit (NF). The NF policy maintains a pointer to the machine that was last selected
to host a task. In turn, each task a ∈ Ai will be assigned to the machine currently
referenced by the pointer. If there is insufficient remaining space on this machine (i.e.
qa > Cm), NF will move the pointer in to the next machine. If no machine in the
list of active machines can accommodate the task under consideration (i.e. the pointer
reaches the machine it started with), a non-active machine will host the task. Note that
the position of the pointer is maintained across the successive optimisation steps.

Best Fit on Requirements (BFR) / Best Fit on Duration (BFD). Since items are char-
acterised by both size and duration, the best fit policy is ambiguous in the context of
ODBP. BFR acts similarly to the Best Fit policy for the bin packing problem. For each
task a ∈ Ai, BF selects m ∈ M so that the quantity Cm − qa is minimised. On the
other hand, the BFD policy focuses on finding the machine with the closest running
time hence minimising the quantity |lm − da|. Naturally if no machine in the set of
active machines has enough spare capacity to accommodate the task, a new machine is
made active and the task assigned to it.

10

Max Rest on Requirements (MRR) / Max Rest on Duration (MRD). The Max Rest
policy, also known as Worst Fit acts as the opposite of the BFR/BFD policies.

The MRR policy ensures that each task a ∈ Ai gets assigned to the machine max-
imising its unused space: Cm − qa. Similarly, MRD selects for each task the machine
maximising the difference in runing time before and after the assignement, hence max-
imising the quantity |lm − da|.

Sum Square - (SS). The Sum-of-Squares algorithm was introduced by János Csirik et
al [24]. Sum-of-Squares uses the notion of the gap of a bin which is its spare capacity.
The number of bins with spare capacity g is denoted byN(g). Initially, ∀g : N(g) = 0.
Then SS assigns an item a of size qa such that the the quantity

∑
1≤g≤B N(g)2 is

minimised. Here, B stands for the capacity of the bins. The main intuition behind this
algorithm is that is maximises the likelihood of finding a item that almost perfectly fits
the gap in a bin at any time.

Harmonic - (HA). Lee and Lee [25] introduced the Harmonic heuristic for bin packing
with the underlying idea being an harmonic partitioning of items and bins on the seg-
ment [0, 1] into M families. In our case, the M parameter depends on the number of
machines that are hosting tasks at solving time. This partitioning allows us to classify
items in an efficient manner. We reuse that idea but instead of partitioning items on
their sizes, we partition them on their remaining duration.

4.2. First Merged Fit (FMF)

On-line placement policies (cf. section 4.1) make a clear separation between al-
ready allocated machines hosting a set of running tasks and the list of upcoming tasks
Ai that have to be allocated. The policies iteratively allocate tasks to machines, and
may miss the opportunity to associate the first two tasks together before assigning them
to a machine. This is the main idea behind our algorithm. We propose a flexible ap-
proach that does not try to allocate a task to a machine but rather allows each task to be
associated to another task or machine.

4.2.1. Illustration
A key concept of the algorithm is to group both allocated machines and arriving

tasks under the same notion of bin. A bin thus represents either a machine currently
running, or a set of tasks to be allocated, or both. In Figure 4, we illustrate an execution
of our approach. The first step is to create a bin for each running machine and each
arriving task. Then, the list of bins is sorted according to some criteria. In the exam-
ple, the order of the machines prioritises the longest remaining running time. At each
iteration the algorithm merges the best ranked bin with the next compatible bin in the
list.

Two bins are said to be compatible if: (i) at most one of the bins is built from a
currently running machine, (ii) if one of the bins is active, then merging must be into
that bin, without exceeding its capacity; otherwise, merging can be in either bin but
must respect that bin’s capacity. As an illustration, in Figure 4, b1 is the bin hosting
the longest task. Since the second bin is b2, b1 and b2 are compatible, b2 and b1 merge
into b1. The merge operation transfers the tasks from b2 to b1 and removes b2 from the

11

b5

a2
30min
b4

45min

(m0)

b3 (m1)

50min
b2

b1

b1(m2)

100min

b3(m1)

me
rg
e(b

1,
b 2
)

m
er
ge
(b
3
,
b 5
)

a0
100min

a1

a0
a190min

a2

50min

Figure 4: A run of First Merged Fit FMF.

queue. No other bins in the queue are compatible with the updated bin b1. Tasks from
the newly created bin b1 will be allocated to a new machine (m2). Next up in the list
is b3 which is built from a currently running machine, as is b4. Consequently, b3 and
b4 are not candidates for merging. b3 will be merged with b5 to form the updated bin
b3(m1). The algorithm terminates with no new tasks to be allocated.

4.2.2. Algorithm
Algorithm 2, First Merged Fit (FMF), receives the set of incoming tasks Ai and

the current state of the machine Mi and returns a valid placement hi assigning the
incoming tasks to the machines. First, each machine currently running, and each up-
coming task is mapped to a bin (line 1). Implicitly, in our approach, a bin is an object
that models the expected state of a physical machine that will be hosting the incoming
tasks assigned to it. Thus, a bin either corresponds to an already running machine or
represents a machine that will start running with its new set of assigned tasks. The
function buildBins returns the bins corresponding to each incoming task and each
machine currently running (Cm < 1), buildBins(Ai,Mi) = {(b, db, qb,Ab)|∀a ∈
Ai, (b, db, qb,Ab) = (a, da, qa, ∅),∀m ∈ Mi, Cm < 1, (b, db, qbAb) = (m, dm, 1 −
Cm, ∅). For a bin b, db represents the expected duration of the task, qb the sum of CPU
requirement, Ab the list of incoming tasks in Ai newly assigned to m. The list of bins
B is sorted according to the maximal duration of tasks of each bin (line 2). Each iter-

12

Algorithm 2: First Merged Fit (FMF)
Input: Ai,Mi

Output: hi

1 B ← buildBins(Ai,Mi)
2 SB ← sortByMaxDuration(B)
3 while SB is not empty do
4 bi ← pop(SB)

5 bj ← nextAllocableWith(bi, SB,Mi)
6 while bj 6= null do
7 bi ← merge(bi, bj , SB,Mi)

8 bj ← nextAllocableWith(bi, SB,Mi)

9 for each a ∈ bi do
10 hi(a)← physicalMachine(bi)

11 return hi

Algorithm 3: merge
Input: bi, bj , SB,Mi

Output: br
1 SB ← SB \ bj
2 if bi ∈M i then
3 br ← bi
4 bs ← bj

5 else
6 br ← bj
7 bs ← bi

8 dbr ← max(dbr , dbs)
9 qbr ← qbr + qbs

10 Abr ← Abr ∪ Abs

11 return br

Algorithm 4: nextAllocableWith

Input: bi, SB,Mi

Output: bj
1 for each bj ∈ SB from j do
2 if not (bi ∈Mi and bj ∈Mi) then
3 if qbi + qbj ≤ 1 then
4 return bj

5 Return null

ation sees the best-ranked bin bi, line 4, merged with the next compatible bin bj in the
queue (line 7). When the bin is filled, i.e. no further bins can be merged with the cur-
rent bin, each task allocated to the bin is then map to a physical machine for placement.
The function physicalMachine(b) returns either the running machine corresponding
to the bin or an unassigned machine.

Algorithm 3 gathers the tasks of two bins in one (line 10) and updates the state of
the bin accordingly (lines 8-9). In the case of a merge between a bin associated with a
running machine and a bin associated with a new machine, the bin receiving the merge
is the bin associated with the running machine (lines 3-6).

Algorithm 4 searches the next compatible bin starting from the index of the last
visited bin j and iterates over the queue of unvisited bins (line 1). If a compatible bin is
found, i.e. the input bin bi and the visited bin bj do not both represent running machines
(line 2) and the sum of the resources requirement is not excessive (line 9), the two bins
will be merged (cf. Algorithm 3). If no compatible bin is found, the bin is completed,
its new allocated tasks will be placed and start running on the corresponding machine
at the next time step.

Let n = |B| be the number of bins, i.e. the number of running machine plus the
number of upcoming tasks. The complexity of sorting the list of bins is O(nlog(n)).

13

For each bin in the list (Algorithm 2 Line 3) we only iterate over the remaining part of
the list (Algorithm 4) in descending order. In the worst-case scenario, no compatible
bins are found, so the list of bins does not decrease over the iteration. In this case the
complexity is n ∗ (n− 1)/2. Overall, the complexity of FMF is O(nlog(n) +n ∗ (n−
1)/2) = O(n2).

4.3. Enhancing Policies with Local Search

The previously described policies can be used to produce valid solutions heuristi-
cally in a rather short amount of computational time. In a real operational setting one
could use the time left in the window to try to converge to better solutions using tech-
niques such as local search. The underlying idea is to build a MIP model capturing the
decision problem local to a time window. This local problem is composed of the state
of the system and the list of incoming tasks for which an assignment is expected. The
various policies are used to produce a feasible solution (incumbent) in turn provided as
a first assignment to the complete solver (CPLEX). The complete solver is then allowed
the time left to explore further solutions.

CPLEX was tuned to use a local search technique (RINS) method described in [26]
as a black box. RINS exploits information contained in the linear relaxation of the MIP
model. RINS can be thought as an anytime approach to local search in the sense that it
always yields the best feasible solution found so far.

5. Empirical Evaluation

5.1. Dataset

We evaluated the different approaches against a data-centre trace released by Google.
From the trace we extracted the information of one week’s worth of tasks.

0 20 40 60 80 100 120 140 160

Elapsed time in hours

0

1000

2000

3000

4000

5000

In
co

m
in

g
 t

a
sk

s
p
e
r

ti
m

e
-s

te
p
 o

f
2
 s

e
cs

0

50000

100000

150000

200000

250000

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

in
co

m
in

g
 t

a
sk

s

(a) Number of incoming tasks over elapsed time

0 5000 10000 15000 20000 25000 30000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Workload in CPU seconds

Ta
sk

s'
 d

en
si

ty

(b) Empirical distribution of tasks over the
workload

Figure 5: Characterizing incoming times and workload distribution of tasks in the dataset.

14

Figure 5a shows a high variability in the number of incoming tasks received over
time. Each vertical bar represents the number of incoming tasks (left y-axis) received
within a time period of 2 seconds at a specific time (x-axis). The cumulative number of
incoming tasks (right y-axis) is depicted by the red dotted line. The dataset shows that
the number of tasks received by two consecutive time steps can differ by several orders
of magnitude. There are two noticeable activity peaks of around 5000 tasks arriving
after 57 hours and 123 hours. The second noticeable peak is closely surrounded by
other peaks of several thousand tasks. This specificity in the dataset is of particular
interest since it allows us to compare the behavior of the different policies in case of
intensive demand of resources in Section 5.2.2.

Figure 5b represents the tasks empirical distribution of workload. The workload of
a task is computed by multiplying its CPU-requirement by its duration. CPU-requirement
of tasks is expressed in terms of the percentage the largest capacity server in the data-
centre. The figure shows that the dataset is extremely skewed toward small tasks. There
is a rather wide gap between small tasks (e.g. a few CPU seconds) against large tasks
(e.g. thousands of CPU seconds). We discuss in more detail of the dataset’s heavy tail
behavior when introducing figure 6c and Figure 6d.

Figure 6 shows various task distributions of the dataset according to different pa-
rameters. Figure 6a, (resp. Figure 6b) shows the number of time steps of 2s, resp.
30s, when varying the interval of tasks received within a time step. Over the week of
incoming tasks, while considering 2s time period, more than 246000 time steps of 2s
representing a sum of 56 hours receive no tasks (Figure 6a), while only 1038 time steps
of 30s representing a sum of 21 hours are empty (Figure 6b). The difference between
the number of time steps of 2s and 30s remains significantly high when 1 or 2 tasks
are received within a time step. Then, as expected, since tasks have more chance to be
pooled within time steps of longer time periods, there are more time steps of 30s that
receive between 6 to 10 tasks, 11 to 20 tasks, ..., > 1000 tasks than the number of time
steps of 2s. Note that, for both the 2s and 30s cases, there are more than 700 time-steps
receiving between 20 and 100 tasks. Finding an optimal placement for these time steps
remains challenging even for state of the art techniques and solver [17]. From more
than 100 tasks received during a time step, the difference between the number of time
steps of 30s and 2s is tightening and becomes almost equal. There are 13 time steps
of 30s against 12 time steps of 2s that received more than 1000 tasks. This pattern is
specific to the dataset built from a real trace of incoming tasks. As shown in Figure 5a
peaks of incoming tasks are spread across time. Implicitly, in case of peaks of demand,
the associated placement problems are very hard to solve optimally within a service
level agreement matching on-demand QoS expectations. Heuristics and semi-online
policies are required in this kind of applications.

Note that, For 2s and 30s, the number of time steps decreases logarithmically as the
number of incoming tasks increases. As a consequence for both time periods 2s and
30s most of the time steps received less than 10 incoming tasks. As shown Figure 7,
when there are few tasks per time step, there are no noticeable differences between the
placement policies. Differences are more noticeable at the arrival of peaks of tasks,
i.e., when the placement problem become harder to solve. On the other hand, because
of the sparse distribution of peaks of tasks over time (> 30s) and the abundance of
under loaded time steps, both the number of tasks per peak and the number of peaks

15

0 1 2 5 10 20 50 100 200 500 1000 >1000

Incoming tasks

101

102

103

104

105

106

T
im

e
-s

te
p
s

o
f

2
 s

e
cs

(a) Number of time steps of 2s (y-axis log
scale) that received (x, x+ δ] tasks (x-axis)

0 1 2 5 10 20 50 100 200 500 1000 >1000

Incoming tasks

101

102

103

104

T
im

e
-s

te
p
s

o
f

3
0
 s

e
cs

(b) Number of time steps of 30s (y-axis log
scale) that received (x, x+ δ] tasks (x-axis)

101 102 103 >103

 Task's Workload in Cpu Time (secs)

103

104

105

106

 I
n
co

m
in

g
 T

a
sk

s

(c) Number of incoming tasks (y-axis log
scale) having a workload in between (x, x+δ]
Cpu Time secs (x-axis log scale)

101 102 103 >103

 Task's Workload in Cpu Time (secs)

105

106

107

 T
o
ta

l
W

o
rk

lo
a
d
 i
n
 C

p
u
 T

im
e
 (

se
cs

)

(d) Total Workload of Tasks (y-axis log scale)
having a workload in between (x, x + δ] Cpu
Time secs (x-axis log scale)

Figure 6: Distributions of incoming tasks in the dataset

remain close for 2s and 30s time periods. As a consequence, the placement problem is
almost as hard to solve for 2s and 30s time periods, see Figure 9, there is only a small
difference in overall consolidation quality.

The dataset contains 221.140 tasks representing a total workload of 16.343.165
CPU seconds. Figure 6c and Figure 6d respectively show the distribution of incom-
ing tasks and the total workload of tasks over an interval of individual task workload.
Figure 6c shows that the dataset contains 153.879 small tasks, ≤10 CPU seconds, rep-
resenting almost 70% of the incoming tasks, while it only contains 4207 large tasks
representing only 1.9% of the incoming tasks. On the contrary, Figure 6d shows that
the rather small tasks,≤1000 CPU seconds, represent approximatively 40% of the total
workload, while the largest tasks, >1000 CPU seconds, represent 60% of the work-
load. These last two distributions are representative of the heavy tail behavior of real
world workload distribution in data-centre where a majority of small tasks corresponds
a roughly half of the total workload and a smaller proportion of larger tasks represents
the other half.

16

5.2. Results of the Experiments

In theses experiments, we first compare the performance of the workload consol-
idation of the incoming tasks as reported in the trace (i.e. we assume we know the
actual duration of each task when it arrives). Section 5.2.1 compares the total allocated
resources of the different approaches for the period one week of incoming tasks. Sec-
tion 5.2.2 analyses the resource consumption of the policies during periods of high ac-
tivity. Section 5.2.3 measures the resource usage when varying the time step durations.
Section 5.2.4 relaxes the hypothesis on full knowledge of tasks’ duration and measures
the resource usage when varying the uncertainty of tasks’ duration. Section 5.2.5 com-
pares the time performance. The last section 5.2.6 summarises the resource usage and
the time performance of the approaches.

5.2.1. Total Resource allocated and use of Neighbourhood Search Heuristics
Figure 7 shows the solution quality of the different approaches by comparing the

total allocated resources over time. The allocated resource is measured in term of run-
time of allocated machines. The time step duration is two seconds. Figure 7 a) shows
the evolution of the total resource usage of each policy. Figure 7 b) shows the evolution
of the total resource usage when the remaining time left is used to improve the solution
returned by each policy using a neighborhood search heuristic [27] with the CPLEX
solver.

0 20 40 60 80 100 120 140 160 180
elapsed time in hours

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l
ru

n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

0 20 40 60 80 100 120 140 160 180
elapsed time in hours

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l
ru

n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

a) Policies b) Policies + Neighbourhood Search

Figure 7: Total allocated resources over the time per policies against elapsed time

The total resource allocated over time interleaves steady growths and steps. Steady
growth corresponds to time periods when few tasks arrived per time-window. Steps
correspond to arrivals of peaks of incoming tasks. In periods of steady growth all
the approaches slightly increase the total allocated resources. The gap in resource
utilisation of the approaches slightly increases after each change of step.

At these times, the placement of tasks becomes more challenging and the difference
between the solution quality of the policies increase accordingly. We analyse in details
the arrival of peaks of tasks in Section 5.2.2.

The best placements policies are FMF followed by FF then BFD. The HA and
MRR policies waste significantly more resources and exceed the resource limit shown

17

in the Figure 7 a). When the solution of each policy is enhanced by the neighbourhood
search, Figure 7 b), less efficient policies significantly improve their resource usage and
narrow the gap between the best policies. Note that the use of local search marginally
improves the resource usage of the best policies.

Table 2: Total run-time of allocated machines (in hours) of the placement policies

Approaches: FMF BFD BFR FF HA MRD MRR NF SS
Policy: 5016 5902 6239 5223 18232 6225 8786 6313 6327

Policy+NS: 4969 5392 5474 5231 5102 5205 6113 5138 5279

In Table 2 we present the total resources allocated by the different approaches after
seven days, i.e., 168 hours of workload consolidation. Compared to the leading stan-
dard bin-packing heuristics, FMF consumes 4% less resource than FF and 15% less
resource than BFD. Compared with the most inefficient policies, FMF saves 1.75 and
3.6 times more resource than MRR and HA.

5.2.2. Extra Resource Allocated and Released during Peaks of Incoming Tasks
We analyse the resources allocated and released after incoming peaks of tasks.

Figures 8 a) and 8 b) compare the behaviour of the approaches at the arrival of three
peaks of 3293, 959 and 3899 tasks received at different time steps. During the 123rd

hour 10246 tasks have to be placed, the three noticeable peaks represent 80% of the
incoming tasks. In both figures, the x axis corresponds to a specific time span of one
hour, i.e. 1800 time steps of 2 seconds of the 123rd hour of the simulation of task
arrivals. The y axis describes the number of allocated machines.

Figure 8: Number of allocated machines over the peaks of the 123rd hour

123.0 123.2 123.4 123.6 123.8 124.0
elapsed time in hours

200

250

300

350

400

450

n
u
m

b
e
r

o
f

a
llo

ca
te

d
 m

a
ch

in
e
s

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

123.0 123.2 123.4 123.6 123.8 124.0
elapsed time in hours

200

250

300

350

400

450

n
u
m

b
e
r

o
f

a
llo

ca
te

d
 m

a
ch

in
e
s

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

a) Policies b) Policies + Neighbourhood Search

In Figure 8 a), at the arrival of the first noticeable peak of tasks, all the approaches
perform similarly. They allocate new machines to cover the peak of activity. The same
behaviour can be observed at the arrival of the second and the third noticeable peaks.
The quality of the tasks consolidation methods can in fact be observed after the peaks
when the CPU resource is gradually released by the tasks finishing their execution.

18

Placement policies from the related work waste significantly more resource than FMF.
At the end of the first and the third peaks, HA allocates up to 40 more machines than
FMF while the others placement policies allocate up to 80 more machines than FMF.

Figure 8 b) shows the resource allocated by the policies enhanced by neighbour-
hood search heuristics. Only the less efficient placement policies HA, MRD and NF
show a clear benefit of using the neighbourhood search heuristic to improve their so-
lutions. At the arrival of the first peak of incoming tasks the number of allocated ma-
chines used by MRD is significantly reduced when using local search and drops from
more than 450 machines to less than 350 machines. The resource consumption of HA
enhanced by neighbourhood search is also significantly reduced. It remains constantly
closed to FMF along the hour. For the other methods, the local search approach does
not improve the solution returned by the policies. In these cases, the solutions returned
by the policies are already good. The local search does not have the time to improve
the placement within the time step of two seconds. In Table 3, 4th line, we also check
the performance of the enhanced policies when the duration of each time step has been
increased to 30 seconds. The results show that with longer time step duration, the gain
in resources utilisation is not significant for the policies already showing an efficient
consolidation.

Table 3: Run-time of allocated machines above 180 machines during the 123rd hour (in hours)

Policy: FMF BFD BFR FF HA MRD MRR NF SS

tw
:2

s Alone 35.8 51.8 54.9 49.7 74.7 57.2 76.8 55 54.1
+NS 35.3 51 53.5 50 43.2 49.5 69.9 50.6 50.3

tw
:3

0s Alone 35.9 52.4 52.2 48.6 71 53.5 75.5 53.2 53.4
+NS 36.4 48.4 50.2 48.1 42.1 48.5 67 48.6 48.8

Note that at the beginning and at the end of the 123rd hour more than 180 machines
remain allocated. Table 3, shows the extra resource above 180 machines allocated
during this hour. In the first part of Table 3, we show the extra resources allocated when
the time step is 2 seconds. In order to accommodate the peaks of incoming tasks of
the 123rd hour, FF allocates 40% more resources than FMF. The other policies, such as
BFD and HA, allocate between 40% and 2 times more resources than FMF. Table 3, 2nd

line, shows that HA enhanced by neighbourhood search approach drastically reduces
the resource consumption by 42%. MRD and NF are improved by approximatively
8%. FMF, BFD, BFR and FF show similar resources consumption enhanced or not
by neighbourhood search. In these cases, the consolidation is already efficient, the
remaining time dedicated to the local search heuristic to improve the polices’ solutions
shows no benefit. Note that HA enhanced by a local search heuristic returned better
results than BFD, BFR, FF. Implicitly it seems that the local minimum found by the
local search starting from HA solutions is better than the local minimum found when
starting from BFD, BFR and FF solutions.

In the second part of Table 3, we show the extra resources allocated when the

19

0 5 10 15 20 25 30
time step duration in secs

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

0 5 10 15 20 25 30
time step duration in secs

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

a) Policies b) Policies + Neighbourhood Search

Figure 9: Allocated resources per policies when increasing time step duration

time step is 30 seconds. In this case all the policies slightly improves their resource
consumption except FMF, BFD, FF, showing similar results to the ones obtained earlier.
Using local search heuristic drastically improves the allocated resources of HA and
more reasonably the resources consumption of MRR, NF, SS, BFD, and BFR. FMF
and FF return similar resource consumption than before.

In summary, during a period of high resource demand, the placement policies may
pay the price of an inefficient placement after the peaks. As a result when the short
duration tasks ended an unnecessary amount of machines has remained active to exe-
cute longer time duration tasks. This can be the result of a suboptimal placement of
tasks at decision time. FMF is showing a more efficient usage of the allocated resource.
This behaviour can be explained by the fact that FMF takes full advantage of the tasks
ordering based on duration compare to some other policies such as BFD or MRD. In
addition FMF exploits the opportunity to merge incoming tasks before allocating them
to a machine.

5.2.3. Total Resource Allocated When Varying Time Step Durations
Figure 9 shows the evolution of the resource usage of the different approaches

when increasing the time step duration. The resource usage (y-axis) is expressed in
run time hours of allocated machines. The time step durations (x-axis) is expressed in
seconds. Note that increasing the time step duration implicitly decreases on-demand
QoS ensuring real time placement of tasks. In an on-line context each task as to be
placed as soon as it arrives in the system. In the experiments we simulate the on-line
context by considering an ordering heuristic based on the arrival time of the tasks. The
result of the on-line simulation is shown by the time step duration 0s. The benefit of
the semi on-line context described in this study is shown from the time step durations
2s to 30s. We consider 30 seconds to be the upper bound on acceptable QoS level.

In Figure 9 a) each policy shows a noticeable improvement of the resource usage
from the on-line context, i.e. a time step duration of 0s, to the semi-online context,
i.e. a time step duration of 2s. Within the semi on-line context, i.e. from a time step
of 2s to a time step of 30s, the resource usage slightly decreases or remains stable
as the time step duration increases. FMF always shows the best resource utilisation

20

when increasing the time step duration, and is closely followed by FF. Figure 9 b)
shows the evolution of the resource usage of the placement policies enhanced by the
neighbourhood search. Compared to the solutions returned by policies, the policies
enhanced by neighbourhood search show a noticeable improvement in the resource
usage. FMF and FF are the exceptions, the resource usage remain stable.

Table 4 sums up the total resource usage at the specific time duration of 0s, 2s and
30s. In the online context (time step duration = 0), FMF is similar to BFD. From time
step duration 0s to 2s, NF, MRD and FMF respectively reduce the allocated resources
by 50%, 20% and 17%. These improvements represent the best gains among the poli-
cies for this variation of time step duration. Then, only HA shows a significant decrease
in the resource consumption and allocates 22% less resources from a time step duration
of 2 to 30 seconds. FMF only reduces it allocated resources by 1.5%. When it comes
to the policies enhanced by neighbourhood search, only BFD shows a slight decrease
in the resource utilisation of 6%. The other enhanced policies keep similar amounts
of allocated resources. Enhanced policies such as MRR+NS, NF+NS slightly increase
the resource consumption when passing to a time step duration of 30s. These cases
are counter-intuitive since the same methods give better results in a context with less
available information. In the general case, solving a succession of locally optimized
problem leads closer to the global optimal. However it is not always guaranteed. In our
experiments the cases of MRR+NS and NF+NS remain marginal.

Table 4: Resource utilisation (in hours) for time step durations 0, 2 and 30 seconds

Policy tw FMF BFD BFR FF HA MRD MRR NF SS

A
lo

ne

0*(s) 6076 6076 6514 5898 18493 7803 9643 13032 7072
2(s) 5016 5902 6239 5223 18232 6225 8786 6313 6327

30(s) 4943 5947 6228 5258 14255 6306 8648 6280 6280

+N
S 2(s) 4969 5392 5474 5231 5102 5205 6113 5138 5279

30(s) 4950 5050 5466 5228 5061 5138 6149 5213 5093

5.2.4. Total Resources Allocated When Varying Task Duration Uncertainty
In this section we relax the hypothesis on full knowledge of duration and measure

resource usage when varying the uncertainty of task durations. In our experiments,
given a task duration prediction error of x% and a task duration d recorded from the
data centre traces, the policy is only given the expected task duration in [max(0, d.(1−
x/100)), d.(1 + x/100)] to decide on its placement. As shown in Algorithm 1, the
monitor updates the expected remaining duration of tasks as the time passes. A task
is effectively deallocated only when its real duration ends, i.e. the task has completed
or has been interrupted. Note that a duration prediction error of 100% means that the
expected duration is randomly chosen between 0 and twice the real task duration. A
duration prediction error of 300% means that the expected duration is randomly chosen
between 0 and four times the real task duration.

Figure 10 a) and b) show for each policy the evolution of the allocated resource
when increasing the task duration prediction error. Both type of approaches, i.e., poli-

21

0 50 100 150 200 250 300
task duration prediction error in percent

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

0 50 100 150 200 250 300
task duration prediction error in percent

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

a) Policies b) Policies + Neighbourhood Search

Figure 10: Allocated resources while increasing tasks duration uncertainty

cies Figure 10 a) and policies enhanced by neighbourhood search Figure 10 b), follow
the same pattern. First, the resources allocated by the approaches increase linearly as
the error prediction increase from 0% to 100%. Then, from 100% the resources allo-
cated remain constant or slightly increase. Within the approaches based on policies,
FMF is noticeably better and shows better consolidation. The second best is FF while
the other policies consume significantly more resources. The policies HA and MRR
are outside the scope of the figure, their performance are shown in Table 5. Within the
approaches using neighbourhood search, FMF+NS remains better for prediction error
between 0% and 100%. Then, it is closely followed by MRD+NS. Here MRD takes
a clear advantage of the neighbourhood search heuristic to improve its resource con-
sumption. It is also the case for HA+NS and MRR+NS that now appear in the scope of
the figure.

Table 5: Total run-time of allocated machines (in hours) of the placement policies tw=2

Policy err FMF BFD BFR FF HA MRD MRR NF SS

A
lo

ne

0% 5016 5902 6239 5223 18232 6225 8786 6313 6327
100% 5766 7411 6794 6089 21181 6639 10590 7222 7485
300% 5775 8031 6760 6206 21271 6644 10420 7366 7401

+N
S

0% 4969 5392 5474 5231 5102 5205 6113 5138 5279
100% 5786 6490 6348 6082 7515 5804 6837 5915 6546
300% 5837 6809 6322 6133 7505 5849 7068 5973 6727

Table 5 sums up the two patterns followed by the approaches when increasing the
task duration prediction error. For a prediction error of 100%, the policy FMF wastes
5% less resources than FF and between 13% and 23% less than the other policies. MRR
and HA for that consumes 1.8 and 3.7 times more resources than FMF. For a prediction
error of 300%, the policy FMF wastes 7% less resources than FF and between 13%
and 28% less than the other policies. Enhanced policies using neighbourhood search
drastically reduce the resource usage of all policies except FMF+NS and FF+NS.

22

In summary we have analysed the behaviour of the different approaches when in-
creasing the uncertainty of the task duration prediction error. Here again enhancing
FMF or FF by a neighbourhood search does not improve the resource consumption,
and confirms the quality of the the solution returned by these policies. The other ap-
proaches clearly benefit from a local search and reduce the gap with FMF.

5.2.5. Real-time Placement of Incoming Tasks

MRD BFD SS MRR HA FF FMF BFR NF
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

so
lv

in
g
 t

im
e
 i
n
 s

e
co

n
d
s

BFR MRR MRD HA FF NF SS FMF BFD
0.0

0.5

1.0

1.5

2.0

so
lv

in
g
 t

im
e
 i
n
 s

e
co

n
d
s

a) Policies b) Policies + Neighbourhood Search (NS)

Figure 11: Solving time (in seconds) of the placement policies when number of incoming taks>100

Figure 11 compares the solving time quartiles of the different policies (Figure 11
a)) and the policies enhanced by Neighbourhood search (Figure 11 b)). Here we con-
sider only the solving time for placement problems having more than 100 incoming
tasks during a time-step during of 2 seconds. We show, for each approach, the solving
time quartiles using a candlestick. In Figure 11 a), the approaches based on policies
only show an almost instantaneous median solving time that does not exceed 0.1 sec-
ond. The highest point at the top of each policy denotes the time for solving the largest
peak of thousands tasks. The largest peak is solved in 1.2s and 1.4s for FMF and SS,
and less than 1 seconds for other methods. NF always answers instantaneously. The
NF policy only pays the cost of sorting the task by duration and then assign them as
they come to the next available machine. Even if FMF is able to allocate new incoming
tasks into a new machines without the need to iterate over all the allocated machines,
it pays the price of rearranging in one list both the incoming tasks and the currently
allocated machines. Nevertheless, since the worst solving time remains below the time
step duration and FMF is able to satisfy the on-demand QoS enforce by the semi-online
framework. Contrastingly, in Figure 11 a), the approaches based on policies plus neigh-
bourhood search hit the time limit of 2 seconds corresponding to the time step duration.
Implicitly, the solver driven by a neighbourhood search tries to improve the given pol-
icy solution till the end without proving the optimality. As noticed before, increasing
the time step duration from 2 secs to 30 secs drastically improves the solution found by
less efficient policies but does not improve the resource usage of FMF. Consequently
FMF+NS pays an unnecessary computation time.

In summary, with a time step period of 2s, all the heuristics are able to place the
incoming tasks instantaneously and within the time limit. Only NF Heuristic shows

23

A

B

C

D
E

F

G

7380.0 6760.0 6140.0 5520.0 4900.0

FMF
MRD
NF
FF
BFD

7380.0

6760.0

6140.0

5520.0

4900.0

7380.0

6760.0

6140.0

5520.0

4900.0

7380.0
6760.0

6140.0
5520.0

4900.0

55.0
50.0

45.0
40.0

35.0

1.6

1.2

0.8

0.4

0.0

1.6

1.2

0.8

0.4

0.0

Figure 12: Performance of the policies while varying different parameters

instantaneous placement time in period of peaks of incoming tasks. In this case FMF
shows the 2nd worst placement time but remains below the time limit. This modest
time performance is compensated by a better resource usage.

5.2.6. Summary of the Resource Usage and the Time Performance of the Policies
In this section we summarise the performance of the FMF, FF, BFD, MRD and NF

policies through the radar plot shown in Figure 12. The performances of the policies
are compared in terms of resource utilisation (axes A, B, C, D, E) and time perfor-
mance (axes F, G). For a given policy, the closer to the border, the better the policy is
performing. At a glance, we can see that FMF is the best or equal best policy on all
axes except one the solving time. Nonetheless FMF still shows solving time satisfying
On-Demand placement QoS within 2 seconds.

Axis A represents the total resource utilisation of the the policies in the on-line
context (cf. section 5.2.3). In this context FF shows the best resource usage. It is
closely followed by FMF and BFD.

Axis B shows the benefit of the semi-online context. Compared with the on-line
context it guarantees a placement within a 2 seconds time-step. In this case, all poli-
cies noticeably improve their resource usage compared with the on-line context. FMF
becomes the best policy and shows an improvement of 17% of its resource utilisation.
Even if NF shows the less efficient consolidation it is this policy that benefits most from
the semi-online context and wastes 50% less resources. As discussed in Section 5.2.3,
from a time step of 2 seconds to a time step of 30 seconds, the policies do not improve
significantly their solution quality.

Axis C shows the benefit of enhancing the policies with a neighbourhood search
heuristic in the semi-online context of 2 seconds time-step. Compared to policies on

24

their own, the benefit of local search is more noticeable for MRD and NF the less
efficient policies that strengthen the gap between FMF. FMF shows the best resources
utilisation but it only improves its resource utilisation by 1.5%. This improvement
does not sensibly change when more time is dedicated to the neighbourhood search
(cf. section 5.2.3). This is due to the dataset where peaks of incoming are spread over
time. This also confirms the quality of the solutions returned by FMF.

Axis D represents the total resource utilisation in a semi-online context with 2
seconds time-step and an uncertainty of task duration of 100%. Due to the uncertainty
of task duration all policies become less efficient and waste more resource. However,
FMF shows the best resource consolidation even if it degrades its resource utilisation
by 15%. More importantly the waste is limited and remains stable as the uncertainty in
the task duration goes from 100% to 300% (cf. section 5.2.4).

Axis E represents the extra resource consumes during the 123rd hour at peaks of
incoming tasks. This time period represents a more challenging placement problem
since the policies have to deal with large amount of tasks in a short time. Here, FMF
clearly outperforms the other policies. The second best policy allocates up to 40%
more resource than FMF (cf. section 5.2.2).

The last axes show respectively the maximal solving time (F) and the median solv-
ing time (G) for time step receiving more than 100 incoming tasks. The maximal
solving time corresponds to the placement of a peak of thousands tasks. Here NF an-
swers almost instantaneously. FMF show the slower solving time even if it remains
below 2 seconds (cf. axis F). In the average case all policies are qualified as real-time
approaches (cf axis G and section 5.2.5).

6. Conclusion

Because of their economic and environmental footprint, workload management in
data centres is an important challenge. Workload consolidation is one way to reduce the
wastage of resources by clustering tasks together on a subset of the pool of available
machines. In the literature many successful approaches have studied the problem of
task consolidation from different perspectives. In this study, we tackle the challenge of
task consolidation in the context of on-demand resource allocation where data centres
want to guarantee real-time allocations of users’ tasks. While most of the approaches
have envisaged on-line consolidation policies, placing one task at a time, or batch con-
solidation optimisation, allocating the tasks off-line, we consider the workload consol-
idation in the context of semi on-line optimisation. In this new context, we introduce a
novel approach that benefits from the short period time windows to take more informed
decisions while satisfying real-time requirement of on-demand placement QoS.

We have introduced a model allowing us to reason about the dynamics of the prob-
lem. We presented bin packing heuristics (FF, NF and BF) along with our ad-hoc algo-
rithm (FMF) that implement semi-online workload consolidation by locally (in time)
minimising resource wastage.

We have seen that FMF outperforms bin-packing inspired heuristics on the problem
as we have formulated it. After one week of workload consolidation, FMF saves up
to 40% more resources during periods of high resources demand than the best adapted

25

heuristics enhanced with local search. The gap between FMF and the other approaches
is more visible in period of peaks of incoming tasks. Moreover, FMF also shows the
best resource utilisation performance when increasing the uncertainty of task durations
or varying the time period of time step. Even if a better resource usage comes at the
cost of a more time consuming approach, FMF is able to guarantee on-demand QoS.
In future work, we will focus on exploiting improved measures of runtime duration for
the incoming tasks, and on opportunities for workload balancing between data centres.

Acknowledgments

This research has been funded in part by Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289.

References

[1] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet,
N. Horner, I. Azevedo, W. Lintner, United states data center energy usage report.

[2] A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, The cost of a cloud: Research
problems in data center networks, SIGCOMM Comput. Commun. Rev. 39 (1)
(2008) 68–73. doi:10.1145/1496091.1496103.
URL http://doi.acm.org/10.1145/1496091.1496103

[3] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers, Concurr. Comput. : Pract. Exper. 24 (13) (2012)
1397–1420. doi:10.1002/cpe.1867.

[4] J. G. Koomey, Worldwide electricity used in data centers, Environmental Re-
search Letters 3 (3) (2008) 034008 (8pp).
URL http://stacks.iop.org/1748-9326/3/034008

[5] R. C. Hemanandhini I.G., A survey on vm consolidation for energy efficient green
cloud computing, International Journal of Emerging Technology in Computer
Science and Electronics. 19.

[6] F. L. Pires, B. Barán, Virtual machine placement literature review, CoRR
abs/1506.01509.
URL http://arxiv.org/abs/1506.01509

[7] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, F. Xia, A survey
on virtual machine migration and server consolidation frameworks for cloud data
centers, J. Network and Computer Applications 52 (2015) 11–25. doi:10.
1016/j.jnca.2015.02.002.
URL http://dx.doi.org/10.1016/j.jnca.2015.02.002

26

[8] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, M. Bichler, More than bin packing:
Dynamic resource allocation strategies in cloud data centers, Information
Systems 52 (2015) 83 – 95, special Issue on Selected Papers from {SISAP}
2013. doi:http://dx.doi.org/10.1016/j.is.2015.03.003.
URL http://www.sciencedirect.com/science/article/pii/
S0306437915000472

[9] T. C. Ferreto, M. A. Netto, R. N. Calheiros, C. A. D. Rose, Server
consolidation with migration control for virtualized data centers, Fu-
ture Generation Computer Systems 27 (8) (2011) 1027 – 1034.
doi:http://dx.doi.org/10.1016/j.future.2011.04.016.
URL http://www.sciencedirect.com/science/article/pii/
S0167739X11000677

[10] J. O. Iglesias, M. D. Cauwer, D. Mehta, B. O’Sullivan, L. Murphy, Increasing
task consolidation efficiency by using more accurate resource estimations, Fu-
ture Generation Comp. Syst. 56 (2016) 407–420. doi:10.1016/j.future.
2015.08.018.
URL http://dx.doi.org/10.1016/j.future.2015.08.018

[11] Y. Li, X. Tang, W. Cai, Let’s depart together: Efficient play request dispatching
in cloud gaming, in: 13th Annual Workshop on Network and Systems Support
for Games, NetGames 2014, Nagoya, Japan, December 4-5, 2014, 2014, pp. 1–6.
doi:10.1109/NetGames.2014.7008968.
URL http://dx.doi.org/10.1109/NetGames.2014.7008968

[12] F. L. Pires, B. Barán, Multi-objective virtual machine placement with service
level agreement: A memetic algorithm approach, in: Proceedings of the 2013
IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC
’13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 203–210. doi:
10.1109/UCC.2013.44.
URL http://dx.doi.org/10.1109/UCC.2013.44

[13] G. Wu, M. Tang, Y.-C. Tian, W. Li, Energy-Efficient Virtual Machine Placement
in Data Centers by Genetic Algorithm, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2012, pp. 315–32. doi:10.1007/978-3-642-34487-9_39.
URL http://dx.doi.org/10.1007/978-3-642-34487-9_39

[14] J. T. Piao, J. Yan, A network-aware virtual machine placement and migration
approach in cloud computing, in: Proceedings of the 2010 Ninth International
Conference on Grid and Cloud Computing, GCC ’10, IEEE Computer Society,
Washington, DC, USA, 2010, pp. 87–92. doi:10.1109/GCC.2010.29.
URL http://dx.doi.org/10.1109/GCC.2010.29

[15] Y. Ho, P. Liu, J.-J. Wu, Server consolidation algorithms with bounded migration
cost and performance guarantees in cloud computing., in: UCC, IEEE Computer
Society, 2011, pp. 154–161.
URL http://dblp.uni-trier.de/db/conf/ucc/ucc2011.html#
HoLW11

27

[16] D. S. Dias, L. H. M. K. Costa, Online traffic-aware virtual machine placement in
data center networks.

[17] M. D. Cauwer, D. Mehta, B. O’Sullivan, The temporal bin packing problem:
An application to workload management in data centres, in: 28th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2016, San Jose,
CA, USA, November 6-8, 2016, IEEE Computer Society, 2016, pp. 157–164.
doi:10.1109/ICTAI.2016.0033.
URL http://dx.doi.org/10.1109/ICTAI.2016.0033

[18] E. Coffman Jr., J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing approx-
imation algorithms: Survey and classification, in: P. M. Pardalos, D.-Z. Du, R. L.
Graham (Eds.), Handbook of Combinatorial Optimization, Springer New York,
2013, pp. 455–531. doi:10.1007/978-1-4419-7997-1_35.
URL http://dx.doi.org/10.1007/978-1-4419-7997-1_35

[19] P. V. Hentenryck, R. Bent, E. Upfal, Online stochastic optimization under
time constraints, Annals OR 177 (1) (2010) 151–183. doi:10.1007/
s10479-009-0605-5.
URL http://dx.doi.org/10.1007/s10479-009-0605-5

[20] G. Gutin, T. R. Jensen, A. Yeo, Batched bin packing, Discrete Optimization 2 (1)
(2005) 71–82. doi:10.1016/j.disopt.2004.11.001.
URL http://dx.doi.org/10.1016/j.disopt.2004.11.001

[21] Z. Ivkovic, E. Lloyd, Fully dynamic bin packing, in: S. Ravi, S. Shukla (Eds.),
Fundamental Problems in Computing, Springer Netherlands, 2009, pp. 407–434.
doi:10.1007/978-1-4020-9688-4_15.
URL http://dx.doi.org/10.1007/978-1-4020-9688-4_15

[22] S. Berndt, K. Jansen, K. Klein, Fully dynamic bin packing revisited, CoRR
abs/1411.0960.

[23] M. NoroozOliaee, B. Hamdaoui, M. Guizani, M. B. Ghorbel, Online multi-
resource scheduling for minimum task completion time in cloud servers, in: Com-
puter Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Confer-
ence on, 2014, pp. 375–379. doi:10.1109/INFCOMW.2014.6849261.

[24] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor, R. R. Weber, A self organizing bin
packing heuristic, in: Algorithm Engineering and Experimentation, International
Workshop ALENEX ’99, Baltimore, MD, USA, January 15-16, 1999, Selected
Papers, 1999, pp. 246–265. doi:10.1007/3-540-48518-X_15.
URL https://doi.org/10.1007/3-540-48518-X_15

[25] C. C. Lee, D. T. Lee, A simple on-line bin-packing algorithm, J. ACM 32 (3)
(1985) 562–572. doi:10.1145/3828.3833.
URL http://doi.acm.org/10.1145/3828.3833

28

[26] E. Danna, E. Rothberg, C. L. Pape, Exploring relaxation induced neighborhoods
to improve mip solutions, Mathematical Programming 102 (1) (2005) 71–90.
doi:10.1007/s10107-004-0518-7.
URL http://dx.doi.org/10.1007/s10107-004-0518-7

[27] E. Danna, E. Rothberg, C. L. Pape, Exploring relaxation induced neighborhoods
to improve mip solutions, Mathematical Programming 102 (1) (2005) 71–90.

29

Vincent Armant is a Senior Post-Doc researcher at Insight Center for Data Analytics at the Uni-
versity College Cork, in Ireland. He is a Doctor in computer science of Paris Sud University (FRANCE).
His main interest is to design complex systems and solving large problems in the area of data analysis
and optimization, knowledge discovery, distributed reasoning using optimization techniques.

Milan De Cauwer received his Bachelors in Computer Science in July 2010 and a masters degree in
combinatorial optimisation and operations research in 2012 from the Department of Computer Science,
Faculty of Sciences and Technologies, University of Nantes, France. He started a PhD program in 2012,
University College Cork, Ireland, with a focus on optimisation methods for data centers.

Ken Brown joined UCC Computer Science Department as a senior lecturer in 2003. Prior to that
he was a lecturer at the University of Aberdeen, a Research Fellow at Carnegie Mellon University, and a
Research Associate at the University of Bristol. His research interests are in the application of AI, op-
timisation and distributed reasoning, with a particular focus on wireless networks. He is a Co-Principal
Investigator/Group Leader in Insight: Centre for Data Analytics

Barry O’Sullivan is Professor of Constraint Programming and Director of the Insight Centre for
Data Analytics at University College Cork. He is a Fellow of ECCAI, the European Coordinating Com-
mittee for Artificial Intelligence, and a Senior Member of the Association for the Advancement of Artificial
Intelligence. Professor O’Sullivan was President of the International Association for Constraint Program-
ming from 2007 to 2012. Professor O’Sullivan’s research focuses on optimisation, decision analytics, and
constraint programming.

2

Semi-Online Task Assignment Policies for Workload

Consolidation in Cloud Computing Systems

Vincent Armant, Milan De Cauwer, Ken Brown, Barry OSullivan

August 30, 2017

Highlights:

1. We tackle the challenge of consolidating resource in a semi-online workload management system
allocating tasks with uncertain duration to physical servers.

2. We propose a formal framework capturing the semi-online consolidation problem.

3. we propose a new dynamic and real-time allocation algorithm based on the incremental merging
of bins

4. We develop an adaptation of standard bin packing heuristics with a local search algorithm for the
semi-online context considered here.

5. We provide a systematic study of the impact of varying time-period size and varying the degrees
of uncertainty on the duration of incoming tasks

6. Our results show that, around periods of high demand, our best policy saves up to 40% of the
resources compared to the other polices.

1

