
Title Analyzing using software defined radios as wireless sensor
network inspection and testing devices: An Internet of Things
penetration testing perspective

Authors O'Mahony, George D.;Harris, Philip J.;Murphy, Colin C.

Publication date 2020-06-03

Original Citation O’Mahony, G. D., Harris, P. J. and Murphy, C. C. (2020)
'Analyzing using Software Defined Radios as Wireless Sensor
Network Inspection and Testing Devices: An Internet of Things
Penetration Testing Perspective'. 2020 Global Internet of Things
Summit (GIoTS), Dublin, Ireland, 3 June, (6 pp). doi: 10.1109/
GIOTS49054.2020.9119606

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/9119606 - 10.1109/
GIOTS49054.2020.9119606

Rights © 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-19 21:39:25

Item downloaded
from

https://hdl.handle.net/10468/10461

https://hdl.handle.net/10468/10461

Analyzing using Software Defined Radios as Wireless Sensor
Network Inspection and Testing Devices: An Internet of

Things Penetration Testing Perspective

George D. O’Mahony
Dept. of Electrical and
Electronic Engineering,
University College Cork

Cork, Ireland
george.omahony@umail.ucc.ie

Philip J. Harris
Raytheon Technologies

Research Center
Cork,
Ireland

harrispj@rtx.com

Colin C. Murphy
Dept. of Electrical and
Electronic Engineering,
University College Cork

Cork, Ireland
colinmurphy@ucc.ie

Abstract—Wireless sensor network (WSN) research and de-
velopment is producing viable solutions for various innovative
applications, including critical areas such as the Internet of
Things (IoT), which is becoming a significant feature of modern
technology. WSNs form an integral component of the IoT
infrastructure by, frequently, implementing the communication
links between sensors and the access point or central coordinator.
This design and use in IoT applications intensifies the incentive
to attack WSNs as sensitive data is available and transmitted in
wireless links, which inherently contain security vulnerabilities,
especially from external malicious interference. To ensure sat-
isfactory performance, safety and privacy, communication links
and WSN devices must be secure. Hence, penetration testing
to identify security vulnerabilities and responses to external
intrusions is a prerequisite to forming secure connections and an
overall secure network. Derived from a prior study, this paper
explores the benefits of using software-defined radios (SDRs) for
WSN/IoT data analysis and penetration testing by concentrating
on implementing various intrusions using signal processing block
based software like Simulink or GNU Radio. A comparison with
traditional WSN packet sniffing/debugging tools is provided and
the main security vulnerabilities of existing WSNs are surveyed
by adopting the ZigBee protocol. An extension to WSN security
analysis and testing is established by utilizing low-cost SDRs and
specifying the ease of implementing various analysis techniques
even when certain equipment, such as anechoic chambers, are
unavailable. Stemming from previous simulations, the benefits of
obtaining the in-phase and quadrature-phase samples, both with
and without external interference, is also discussed.

Index Terms—Data, IEEE 802.15.4, Interference, Intrusion,
IoT, SDR, Security, Sniffer, WSN and ZigBee.

I. INTRODUCTION

Wireless Sensor Network (WSN) applications are evolving,
based on over a decade of research and development, into inte-
gral components of modern society and various safety-critical
applications exist [1]. This evolution inherently produces new
challenges in terms of privacy and safety, where securing the
communication link against spectral coexistence and malicious
intrusions, while identifying the threat, becomes imperative.
Examples of the diverse application field include space-based
WSNs [2], remote patient monitoring [3] and implementing
the sensor to access point communication in the Internet
of Things (IoT) [4], which reduces the computational load
on, typically, resource constrained commercial off the shelf
(COTS) IoT devices. However, securing these applications is
challenging as these constrained devices hinder the use of

computationally intensive security protocols, and WSNs in
use have very similar physical (PHY) and medium access
control (MAC) layer designs, which are typically based on
open-source standards [1]. Hence, security vulnerabilities are
identifiable and network compromise, whether malicious or
unintentional, is achievable. This, combined with predictions
that over 20 billion connected devices are forecast by 2022,
emphasizes the need for secure networks and identifying why
communications links fail, where possible.

Software defined radios (SDRs) allow for the rapid proto-
typing and field testing of new protocols and algorithms. New
digital communication technologies are looking towards SDRs
as a platform to expand the application space and improve
communications [5]. In a SDR, the core logic of a required
protocol is implemented in software, thereby enabling both
changes easily and the rapid field-testing of algorithms for
various inputs and approaches. Hence, SDRs can be beneficial
for testing WSN responses to malicious attacks and enabling
debugging processes, which assist developing penetration tests
and security algorithms. This paper identifies how SDRs grant
access to and produce data which can, potentially, enhance
security in WSN/IoT devices by classifying link failures.

This study demonstrates the advantages of utilizing SDRs,
and available software packages, as WSN signal analysis
and penetration testing tools. Emerging from previous work
[6], [7], extracting received samples in coexistence with both
unintentional and malicious interference has potential security
benefits and SDRs enable access to this data. The SDR
architecture, which can be manipulated and provide local and
remote access, is specified for producing various jamming
scenarios in a real WSN/IoT testbed by utilizing Simulink,
GNU Radio and a Raspberry Pi/Python combination. Through-
out this paper, the main SDRs employed are low-cost COTS
devices with available plug-ins for either Simulink, GNU
Radio or Python. SDRs are compared to the traditional WSN
debugging platform, the so-called packet sniffer, which pro-
vides network traffic data and statistics including the received
signal strength indicator (RSSI) and link quality indicator
(LQI). These metrics identify the channels with high levels
of interference and are most likely to incur packet errors, but
the cause is not specified, while SDRs provide access to raw
data from the channel for post-processing and analysis.

The remainder of this paper is organized as follows. Section
II summarizes related work in this area. Section III describes
WSNs and their involvement in IoT applications. Section IV
discusses available SDR hardware and compares the output to
conventional packet sniffers. Section V specifies example im-
plementations for deploying SDRs as WSN inspection devices
and penetration testers, while the value of accessing in-phase
(I) and quadrature-phase (Q) samples is also described. Section
VI concludes this paper and provides future work.

II. RELATED WORK

Using SDRs in WSN protocol and application development
is not an entirely original concept, but one which is advancing
to include several use cases due to their versatility and per-
formance. Initially using a packet sniffer to aid WSN research
is evident in [8], where a packet sniffer is used as a network
traffic tool to debug and develop code for a ZigBee application
involving small robots and tens of modules. The packet sniffer
identifies which modules required retries and what exception
was being transmitted by the ZigBee stack. In [9], the lim-
itations of using a traditional packet sniffer as a debugger
include the difficulty of scaling as the number of sniffed
packets becomes large. In [10], a packet sniffer exploited a
ZigBee network by sniffing the security keys on a node join
process, which again identifies the usefulness of packet sniffers
for protocol development. SDR use cases include software
defined networks [11] aimed at WSNs for industrial IoT and
a multi-channel packet sniffer [5] developed using a universal
software radio peripheral (USRP) and the Wireshark software
package. Some other typical packet analyzers include Texas
Instruments smart packet sniffer, Perytons protocol analyzer
and Ubiqua protocol analyzer. The paper produced a 5 channel
sniffer, produced RSSI, LQI and packet error statistics and
also discussed the concept of developing a protocol that can
dynamically adapt to its environment. Using a SDR to analyze
wireless signals for the presence of interference was discussed
in [12], where a GPS jamming detector was developed using a
RTL-SDR dongle and analysis of received samples. The work
in this paper differs from the literature, as focus is applied
to using low-cost SDRs to retrieve and analyze real-world
data signals for the presence of interference, both malicious
and otherwise. No packet analysis program is used and using
received I/Q samples is motivated from prior interference
detection investigations [6], [7].

III. WSNS & IOT: DISCUSSION

Here, the IEEE 802.15.4 based low rate wireless personal
area network (LR-WPAN) protocol, ZigBee, is adopted. It is
the de-facto standard for WSNs, due to almost all available
commercial and research sensor nodes being equipped with
ZigBee transceiver chips [13]. ZigBee enabled devices are
essential for the all-inclusive IoT communication architecture,
shown in Fig. 1, as, typically, the sensing/actuating devices
(or “things”) use a LR-WPAN to communicate with other
equipment and the internet access point. This utilization re-
duces node firmware complexity, supports a higher number of

TABLE I
IEEE 802.15.4 (ZIGBEE) PHY PARAMETERS

Parameter: 2.4 GHz PHY Value:
Number of Channels 16

Channel Width Spacing 2 MHz 5 MHz
Data Rate Chip Rate 250 kb/s 2 Mchips/s

Symbol Rate 62.5 ksymbols/s
Modulation Scheme OQPSK

Pulse Shaping Half Sine/Normal Raised Cosine
Byte Spreading DSSS

Maximum Packet Length 133 bytes

connected devices and a longer range (compared to wireless
local area networks), while the available mesh topology au-
tomatically configures routing between devices. A successful
IoT deployment requires reliable sensor and control data
and, so, each WSN link needs to be secure and maintain
uninterrupted, safe and non-malicious operation.

ZigBee adopts the PHY (Table I) and MAC layers from the
IEEE 802.15.4 standard and, here, the 2.4 GHz unlicensed
industrial, scientific and medical (ISM) radio frequency (RF)
band is chosen. ISM band ZigBee transmissions can be visu-
alized by a Tektronix real-time spectrum analyzer (RTSA) and
associated digital phosphor technology (DPX), which performs
hardware digital signal processing and rasterizing of samples
into pixel information. Various signals, including Bluetooth,
other LR-WPANs and WiFi, coexist in the ISM band and an
example of this coexistence issue is provided in Fig. 2. Each
operating center frequency is supplied in (1), where Fc is the
center frequency and i is the channel number. ZigBee’s oper-
ating topology is either star, mesh or peer-to-peer and, in each
case, is self-organizing, self-repairing and can exploit cluster-
ing approaches [14]. Direct sequence spread spectrum (DSSS)
splits every byte into two 4-bit symbols, which are each spread
to a predefined 32-bit pseudo-noise (PN) sequence. Trans-
mitted signals are modulated using offset quadrature-phase
shift keying (OQPSK), which mutually offsets the I and Q
components by half a symbol duration, and pulse shaped using
the raised cosine or half-sine method, which ideally achieves
the desirable property of zero inter-symbol-interference at the
maximum effect points. Carrier sense multiple access with
collision avoidance (CSMA/CA) accesses the channel and a
clear channel assessment determines whether the channel is
free or busy, prior to transmission.

Fc = 2405 + 5(i− 11)MHz, for i = 11, 12, ...26 (1)

Typical WSN devices have low processing power, memory
and speed and operate on a finite energy source which,
when combined with cost, impedes the use of conventional
security protocols. However, to maintain safety and data
privacy, security is a necessity and is required across a diverse
range of WSN applications deployed in different operating
environments. Generally, WSN security can be described in
terms of requirements, vulnerabilities, attacks and defenses
[15]. This study focuses on the vulnerabilities and attacks,
which, along with deployments in hostile environments and/or
in safety critical applications, intensifies the need for se-

Moblie App / User/
Secuirty Manager /
Network Manager

*LR-WPAN (ZigBee) / NFC / WiFi / Bluetooth
**Internet Protocol (4G / 5G / Ethernet) / Optical Fibre

Sensor Data Control Data

*

Cloud Services/
Command CentreIoT Gateway/

WSNCoordinator

Internet
Access Point: **

Operating Environment / "Things"

Pressure

Motion etc.

Temperature

Humidity

Heart Rate

Actuators

Transducers

Sensing Sensing

Sensing /
Actuating

IoT Node:

**

Fig. 1. IoT Architecture showing the use of ZigBee

2.410 2.414 2.418 2.422 2.426 2.430 2.434 2.438 2.442 2.446 2.450
Frequency (GHz)

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

P
ow

er
 (

dB
m

)

Bluetooth Advertising Channel
@ 2.426 GHz

802.11g/n (OFDM)
Channel 1

ZigBee Channel 17
@ 2.435 GHz

Fig. 2. ZigBee signal, visualized using a Tektronix RTSA and its DPX
software, in the ISM band @ 2.435 GHz with coexisting signals

curity. Guaranteeing data confidentiality and authenticity in
WSNs can be difficult due to known vulnerabilities [1], [16],
including the open interface of the wireless channel and
(unavoidably) publicly known WSN protocols. Frequently,
device deployments are in hostile or remote environments,
where continued surveillance is difficult to guarantee and
nodes can be physically available to potential attackers. In
addition, WSN attack types are numerous and can occur across
the entire communication protocol stack, where applications
and sensitive data incentivize attacks, which can vary from
denial of service (DoS) attacks, that can corrupt all packets,
to privacy attacks, that can aim to seize sensitive data. Here,
jamming attacks are employed to investigate the usefulness of
SDRs as WSN penetration testers and analysis tools.

IV. HARDWARE INVESTIGATION & ANALYSIS

Analyzing WSN operation in real-time, while simultane-
ously providing metrics describing the wireless channel and
the packets in transit, can be beneficial. This concept is
illustrated in previous work aiming to develop interference
detection systems (IDS) using received I/Q samples [6], [7],
which require hardware to extend simulated approaches to
real wireless environments. Initially, a comparison between
a traditional packet sniffer and a modern low-cost SDR is
provided to demonstrate the advantages of using SDRs and
how access to I/Q samples is granted. Here, the Texas Instru-
ments CC2531 is the chosen packet sniffer, while the Analog
Pluto and LimeSDR Mini are the (relatively) low-cost SDRs.
These SDRs were validated for use in WSNs in [17], in which

the Pluto was used to transmit matched signal interference
[18] using Simulink and the LimeSDR Mini acted as a WSN
transceiver and was shown to operate remotely on Raspberry
Pi 3 B+ by utilizing GNU Radio. Table II describes the wide
range of functionality of various SDRs, whose frequency range
reaches the ISM band, and includes the relatively expensive
Ettus USRPs. However, the desired SDR WSN analyzer and
penetration tester should be relatively low-cost and, so, as
multiple lower-cost SDRs can be acquired for the price of a
single USRP, Ettus products were deemed out of scope here.

A. TI CC2531EMK Packet Sniffer

For traditional packet sniffers, the sniffed packet structure is
significant. Results are obtained based on the sniffed signal’s
frame and can be used to debug networks by determining, for
example, link quality and retransmissions. Fig. 3 specifies a
simplified expanded ZigBee packet structure showing the dif-
ferent frame segments. TI’s CC2531 USB dongle employs TI’s
Packet Sniffer software to both capture and decode ZigBee
packets. The sniffer provides information as displayed in Fig.
3 where, for example, the packet type (data, acknowledgment,
etc.) is found in the MAC’s frame control field while the source
and destination addresses are in the address information. The
sniffer is capable of monitoring one channel at a time and can
report the channel’s RSSI and LQI metrics for each received
packet. RSSI is a measure of the energy contained in a received
signal and is reported in dBm, while the LQI provides the
error in the received signal modulation. A Raspberry Pi, or
Linux system, enables limited operation of the dongle but still
supplies a useful set of information based on the frames in Fig.
3. Notably, the packet sniffer does not provide the received
samples, nor has it any functionality for transmitting a packet,
thus, an extra transmitting device is required. As a result, these

PHY
Frame

Physical Protocol Data Unit

Physical Service Data Unit (PSDU)
Data Payload

Preamble SFD
Frame
Length

4 Bytes 1 Byte 1 Byte

Synchronization Header PHY Header
PHY Payload

Variable - Max 127 Bytes
(PHR)(SHR)

MAC Protocol Data Unit (MPDU)

Network Protocol Data Unit (NPDU)

Application Protocol Data Unit (APDU)

MAC
Frame

Frame
Control

Data Sequence
Number

Address
Information Data Payload FCS

MAC Header (MHR) MAC Service Data Unit MAC Footer

1 Byte 4-20 Bytes Variable - Max 102 Bytes2 Bytes 2 Bytes

Auxiliary
Security HDR

0-14 Bytes

Network Service Data Unit
Data Payload

Frame
Control Routing Fields

2 Bytes 6 Bytes
Network (NWK) Header Network Payload

Variable

NWK
Frame

APS
Frame

Application Service Data Unit
Data Payload

Frame
Control

Addressing Fields

1 Byte 0-5 Bytes
Application (APS) Header Application Payload

Variable

Transaction
Sequence
Number

Transaction
Data

Transaction
Count

Frame
Type

4 Bits 4 Bits Variable

Transaction
 1

Transaction
 n

...

Variable

8 Bits
Transaction Header Transaction Payload

Variable

APS Data Payload
Frame

(MSDU) (MFR)

Transaction
Length

Transaction
Data

4 Bits Variable
Message
Frame

Command
type

Identifier

Attribute
Data Type

Attribute
Identifier

Error
Code

Attribute
Data

4 Bits

KVP
Frame

4 Bits 16 Bits 0-8 Bits Variable

Fig. 3. A simplified ZigBee frame structure visualizing the typical data output
of a traditional packet sniffer by specifying frame specific bytes

TABLE II
SDR SPECIFICATIONS

SDR Interface Frequency Range RF Bandwidth ADC Resolution Mode TX/RX Channels Approx. Price
LimeSDR USB 3.0 100KHz → 3.8GHz 61.44MHz 12 bit I/Q Full Duplex 2/2 $299

LimeSDR Mini USB 3.0 10MHz → 3.5GHz 30.72MHz 12 bit I/Q Full Duplex 1/1 $159
Analog Pluto USB 2.0 325MHz → 3.8GHz 20MHz 12 bit I/Q Full Duplex 1/1 $149

HackRF USB 2.0 1MHz → 6GHz 20MHz 8 bit I/Q Half Duplex 1/1 $299
BladeRF USB 3.0 300MHz → 3.8GHz 40MHz 12 bit I/Q Full Duplex 1/1 $420
FreeSRP USB 3.0 70MHz → 6GHz 61.44MHz 12 bit I/Q Full Duplex 1/1 $420

Ettus B200 USB 3.0 70MHz → 6GHZ 61.44MHz 12 bit I/Q Full Duplex 1/1 $796
Ettus B210 USB 3.0 70MHz → 6GHZ 61.44MHz 12 bit I/Q Full Duplex 2/2 $1119

RF Front
End

FPGA
General
Purpose

Processor

Wireless Transmissions

Fig. 4. Simplified depiction of a typical SDR topology

device types are commonly used as WSN debugging tools
but not for received signal feature engineering or penetration
testing. This principle deters using packet sniffers for WSN
analysis as it only provides packet information on reception,
while SDRs have the ability to provide I/Q samples for off-line
analysis and protocol development.

B. SDR Hardware

SDRs are reconfigurable radio systems whose characteris-
tics are partially or fully defined via software or firmware
[19]. A typical simplified SDR topology is provided in Fig.
4, where the main components are the antenna, RF front-
end and processing unit. A SDR interacts with the wireless
environment using a hardware peripheral, whose capabilities
characterize transceiver operation, and the performance of the
software component depends on the proficiency of the RF
front-end. Received analog RF signals are converted into a
digital sequence, which depends on the available bandwidth
and sampling rate in use. Hence, it is necessary to use SDRs
which have the appropriate hardware for analyzing the chosen
RF signals. This study focuses on developing an IDS in the
ISM RF band, which relies on receiving the I/Q samples of a
2 MHz wide signal and implementing penetration tests.

Here, the LimeSDR Mini and Analog Pluto SDRs are em-
ployed as WSN analysis and testing tools. The manufacturers
describe the Lime Microsystems LMS7002M based LimeSDR
Mini (≈ $159) as “the perfect way to start experimenting
with and building your own wireless networks, protocols, and
testers”, which requires the LimeSuite package to operate as
the WSN analyzer and penetration tester. The Pluto SDR (≈
$149) is based on the Analog Devices AD9363 transceiver and
requires the “libiio” package. Both SDRs can be controlled
by using SDR software including GNU Radio, Pothos Flow,
CubicSDR, GQRX SDR, SDRConsole, etc., either through
signal processing blocks or graphical user interfaces, where
the SDRs can be, frequently, exploited as spectrum analyzers.
In addition, the Pluto can be controlled by Simulink, using the
Communications Systems Toolbox add on, and Python (pyadi-
iio) or C/C#/C++, using the “libiio” library.

The Pluto’s Simulink/Matlab plug-in provides further ben-
efits through the available toolboxes, for example, Signal
Processing and Communications. These toolboxes, along with
the transmitter and receiver Simulink blocks, provide efficient
analysis methods spanning different modulation methods, fil-
ters, mixers, etc. Both of these SDRs can also exploit the
available GNU Radio plug-in, to provide remote access and
deployment using the Linux based Raspberry Pi [17]. For
lightweight Pluto operation, the Python3 “pyadi-iio” library
is used. Typically, the chosen RF antenna is a critical element
of the analysis tool and/or tester design. Therefore, a ZigBee
Siretta stubby antenna, designed for use in the 2.4→ 2.5GHz
range, was selected, whose specifications include a 2 dBi
gain, vertical polarization, a maximum VSWR of 2.0 and an
input impedance of 50 Ω. The Pluto SDR, LimeSDR Mini
and RTSA, which captured and visualized the ZigBee signal
in Fig. 2, all employ this Siretta 2.4→ 2.5GHz antenna.

By utilizing these devices, raw received I/Q data can be
analyzed to gain an understanding of why links fail and what
is causing the interference levels to rise. This concept has been
proven in ZigBee simulations using a support vector machine
in [6] and a Random Forest decision tree detection algorithm
in [7]. Notably, the SDRs can receive I/Q samples even when
ZigBee packets are erroneous and the packet error rate (PER)
is close to 1, while many packet sniffers need to be able to
synchronize to the packet preamble and identify the start frame
delimiter. This paper uses this concept to outline why SDRs
are effective in terms of WSN signal/samples analysis and for
a subsection of IoT penetration testing, by demonstrating how
simulation-based machine learning models for interference
detection can be initially adapted to a wireless environment
under legitimate and attack situations.

V. SDR IMPLEMENTATION: RESULTS

For this study, a live WSN/IoT testbed is required to test
the SDR implementation. The ZigBee testbed designed in [17],
which incorporated 6 XBee nodes connected to 6 Raspberry Pi
devices and transmitted user-specific strings, was modified to
transmit environmentally sensed data, including temperature,
humidity and pressure. The Raspberry Pi SenseHat sensor was
utilized as it easily connects to available GPIO pins and can
imitate an actuator using the LED matrix. Testbed validation
occurred over multiple tests, where five SenseHats collected
environmental data and XBee devices transmitted the data to
a central coordinator. Operation was controlled using various
types of Raspberry Pis and the results are provided in Table

TABLE III
ZIGBEE TESTBED VALIDATION: SENSEHAT DATA

Node One Two Three Five Six
Validation Test One - Node Four as Coordinator(Receiver)

Approx. Operating Time (Hours) 64 64 64 64 64
Data Packets Transmitted 2042 2042 2006 2006 2042

Data Packets Received 2042 2042 2006 2006 2042
Validation Test Two - Node Four as Coordinator(Receiver)

Approx. Operating Time (Hours) 24 24 24 24 24
Data Packets Transmitted 749 749 749 749 749

Data Packets Received 749 749 749 749 749

III. To enable IoT abilities, a WiFi-enabled coordinator can
use available tools, for example, DropBox Uploader exploiting
a DropBox API application, to upload received data to the
internet for remote analysis. Data were verified as ZigBee
signals by sniffing the channel using the TI packet sniffer and
for zero packet loss by tracking all transmitted and received
data packets. Thus, the sensor level communication of the IoT
architecture, Fig. 1, is implemented and forms the foundation
of the WSN analysis and penetration testing.

A. Penetration Tester

A penetration test is performed to evaluate the security of
a system and, in terms of WSNs and IoT, specific penetration
tests could involve assessing responses to external interference.
Thus, a SDR having an RF front-end capable of transmitting
in the ISM band can be used as an interference response
tester. In this study, the penetration testing approach uses
Simulink signal processing blocks, where the attack style can
be designed and implemented by exploiting various toolboxes.
An example is provided in Fig. 5, in which the matched
protocol attack approach [18] is demonstrated. A dummy
ZigBee PHY payload is populated, along with the required
preambles, and spread according to the 32-bit PN sequences.
OQPSK and raised cosine pulse shaping are applied to the
chips and transmitted in the ISM band using the Pluto SDR.
This produces “ZigBee” interference, which matches expected
spectral images (Fig. 2) but, due to limitations of the transmit
power (≈ 7dBm), a power amplifier is required to produce
significant interference levels. The Analog Devices CN0417
provides an additional 20dB of gain and all ports are DC
blocked and matched to 50 Ω. Similarly, GNURadio can be
leveraged to implement this form of external interference.

Typical designs for penetration test orientations are shown in
Fig. 6, including wireless and wired approaches as, typically,
emitting wireless jamming signals is prohibited, unless in an
anechoic chamber. SDRs can be connected through a DC
block and power combiner to produce I/Q samples containing
various interference signals, without affecting neighboring
networks. This approach differs from typical signal generator
[12] methods as a lower cost, software configurable and open-
source technique is produced, which has remote deployment
potential. However, a 50 Ω termination must be connected
to the power splitter, either the power amplifier or a specific
termination block. In addition, Python has a Pluto library,
allowing Python’s multitude of data science approaches to be

Square root

Raised Cosine
Transmit Filter

Bit Generator ADALM-PLUTO
TransmitterdataOQPSK

OQPSK Modulator
(Baseband)

Fig. 5. An example Simulink OQPSK Pluto SDR transmission

SDR Device

SDR Device /
Signal Generator

(Optional)

Power Splitter/
Combiner

DC
Block

Wireless Channel

One of these
orientations

used

TxRx

Theory Practice

Fig. 6. SDR WSN/IoT analysis and testing approach, Theory and Practice

applied to received data points, emphasizing using SDRs as
interference transmitters and received response analyzers.

B. WSN I/Q Sample Analysis

For WSN analysis, a SDR can simply receive on the
required channel and acquire I/Q samples for off-line examina-
tion. Fig. 7(a) demonstrates this process by providing received
ZigBee samples, on channel 23, using a 4MHz sampling
rate, resulting in four samples per chip. The motivation for
access to I/Q samples was specified in [6] and [7] using
ZigBee Matlab simulations, where various forms of interfer-
ence were applied to ZigBee transmissions. A feature set,
extracted from the probability distribution function (PDF) and
statistical analysis of the samples, was used in a support vector
machine and a Random Forest approach to detect interference
in received ZigBee I/Q samples, which are, generally, not
publicly available on commercial WSN nodes or by using
traditional sniffers. Therefore, SDRs were the key element in
translating and, potentially, validating the simulated approach
in a real wireless application, as samples can be received
even when the channel becomes noisy and packets are lost
or erroneous, since no preamble is required, as reception can
be linked to known packet transmission times or periods. In
this manner, erroneous, error-free and interference data are
collected for feature extraction and analysis. Once analyzed,
results can be implemented as part of the designed machine
learning detection approach to highlight why a link has failed
and packets have been lost. Hence, WSN security, in terms of
attack detection, is enhanced and Fig. 7(b) (ZigBee samples
only) and Fig. 7(c) (ZigBee samples and noise tails) signify
that live data adheres to the simulated approach as the PDF
becomes more bimodal as interference increases. However,
the choice of samples is vital, as the PDF differs when extra
samples are used, emphasizing the need for accurate sample
detection or identification of specific windows. Differentiation
exists from comparable literature [5], as no additional software
program is required, since all analysis is done on the sample
level using low-cost SDRs. In addition, this study focuses
on sample variations under interference, while [5] focuses
on packet capturing for protocol development. Thus, ZigBee

0 500 1000 1500 2000 2500 3000 3500 4000
Samples - I Channel @ 2.465 GHz

-1

-0.5

0

0.5

1

R
ec

ei
ve

d
V

al
ue

Received ZigBee Samples

Noise Noise

(a)

-15 -10 -5 0 5 10 15
Probability Bins - Received I Channel Samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

ba
bi

li
ty

 D
en

si
ty

Free

e Collision

Jamming to Signal Ratio
- Approx. = 5
Jamming to Signal Ratio
- Approx. = 10

ZigBee Collision

Error Free

(b)

-15 -10 -5 0 5 10 15
Probability Bins - Received I Channel Samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

ba
bi

li
ty

 D
en

si
ty

ZigBee Collision

Error Free
Free

e Collision

Jamming to Signal Ratio
- Approx. = 5
Jamming to Signal Ratio
- Approx. = 10

(c)

Fig. 7. Provisional results of using the Pluto SDR and a 4 MHz sampling rate, to emphasize access granted to the I/Q samples, motivated by the simulation
work in [6] and [7]. (a) Example of non-interfered ZigBee I samples on the 2.465 GHz channel. (b) Example PDF of Pluto received ZigBee I samples on
channel 23, confirming simulated results. (c) Example PDF of Pluto received ZigBee I samples on channel 23, showing the effect of additional noise samples.

simulations motivated using received I/Q samples to detect
interference and SDRs facilitate testing, sample analysis and
designed simulation-based methodology validation.

VI. CONCLUSION

This investigation adopted previous simulation based IDS
designs to motivate the exploration of accessing I/Q samples
and facilitating interference situations in real WSN environ-
ments. SDRs were established as both WSN/IoT analysis tools
and penetration testers concerning external interference scenar-
ios. Available low-cost SDRs and suitable software packages
were identified, while the benefits of Simulink and Python
were specified. The link between WSNs and the IoT was
illustrated and used to update and validate a ZigBee testbed, to
include SenseHat sensors and an IoT connection using Drop-
Box. By exploiting this testbed and available Simulink plug-
ins, the Analog Pluto SDR provided I/Q samples for analysis,
even when packets were erroneous, and produced matched
protocol interference. Receiving samples in the presence of
strong channel interference is the key identified advantage
that SDRs provide over traditional packet sniffers. A testing
method, which embraces this concept and connects multi-
ple SDRs, was developed to test the effects of interference
with/without interfering with other ISM band services in use.
Signal processing blocks and coding libraries allow various
attacks to be implemented, which can produce specific datasets
to expand previous simulation work in detecting WSN inter-
ference. Future work includes assembling datasets of received
I/Q samples for specific signals (Noise, WiFi, ZigBee, etc.)
and for WSN signals under distinct interference patterns. The
data will help to evaluate if the extracted simulation features
are applicable to real wireless signals. In essence, this SDR
study was crucial for developing the WSN IDS data strategy.

ACKNOWLEDGMENT

This work has been jointly funded by the Irish Research
Council (IRC) and Raytheon Technologies Research Cen-
ter, Ireland, under the post-graduate Enterprise Partnership
Scheme 2016, award number EPSPG/2016/66.

REFERENCES

[1] G. D. O’Mahony, P. J. Harris, and C. C. Murphy, “Investigating the
Prevalent Security Techniques in Wireless Sensor Network Protocols,”
Proc. 30th IEEE Irish Signals Syst. Conf. (ISSC), 2019, pp. 1–6.

[2] T. Vladimirova, C. P. Bridges, J. R. Paul, S. A. Malik, and M. N.
Sweeting, “Space-based wireless sensor networks: Design issues,” IEEE
Aerosp. Conf., pp. 1–14, 2010.

[3] S. Tennina, M. Santos, A. Mesodiakaki, et al., “WSN4QoL: WSNs for
remote patient monitoring in e-Health applications,” in 2016 IEEE Int.
Conf. Commun., May 2016, pp. 1–6.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things : A survey,”
Comput. Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[5] L. Choong, “Multi-Channel IEEE 802.15.4 Packet Capture Using Soft-
ware Defined Radio,” Ph.D. dissertation, UCLA, 2009.

[6] G. D. O’Mahony, P. J. Harris, and C. C. Murphy, “Identifying Distinct
Features based on Received Samples for Interference Detection in
Wireless Sensor Network Edge Devices,” in 2020 Wirel. Telecommun.
Symp. (WTS), Washingt. DC, Virtual, 2020, pp. 1–7.

[7] G. D. O’Mahony, P. J. Harris, and C. C. Murphy, “Detecting Interference
in Wireless Sensor Network Received Samples: A Machine Learning
Approach,” in IEEE Virtual World Forum on Internet of Things (WF-
IoT V2020), Virtual, 2020, pp. 1–6.

[8] R. Fitch and R. Lal, “Experiments with a ZigBee wireless communi-
cation system for self-reconfiguring modular robots,” IEEE Int. Conf.
Robot. Autom., pp. 1947–1952, 2009.

[9] A. Wheeler, “Commercial applications of wireless sensor networks using
ZigBee,” IEEE Commun. Mag., vol. 45, no. 4, pp. 70–77, 2007.

[10] T. Zillner, “ZigBee Exploited The good, the bad and the ugly,” Black
Hat USA, 2015. [Online]. Available: http://www.sicherheitsforschung-
magdeburg.

[11] Y. Duan, W. Li, X. Fu, Y. Luo, and L. Yang, “A methodology for
reliability of WSN based on software defined network in adaptive
industrial environment,” IEEE/CAA J. Autom. Sin., vol. 5, no. 1, pp.
74–82, Jan. 2018.

[12] G. D. O’Mahony, S. O’Mahony, J. T. Curran, and C. C. Murphy,
“Developing a low-cost platform for GNSS interference detection,” in
Eur. Navig. Conf., 2015, pp. 1–8.

[13] B. Stelte and G. D. Rodosek, “Thwarting attacks on ZigBee - Removal
of the KillerBee stinger,” in Proc. 9th Int. Conf. Netw. Serv. Manag.,
2013, pp. 219–226.

[14] I. Tomi and J. A. McCann, “A Survey of Potential Security Issues in
Existing Wireless Sensor Network Protocols,” IEEE Internet Things J.,
vol. 4, no. 6, pp. 1910–1923, 2017.

[15] G. D. O’Mahony, J. T. Curran, P. J. Harris, and C. C. Murphy,
“Interference and Intrusion in Wireless Sensor Networks,” in IEEE
Aerosp. Electron. Syst. Mag., vol. 35, no. 2, pp. 4–16, 1 Feb. 2020.

[16] Y. Zhou, Y. Fang, and Y. Zhang, “Securing Wireless Sensor Networks:
A Survey,” IEEE Commun. Surv., vol. 10, no. 3, pp. 6–28, 2008.

[17] G. D. O’Mahony, P. J. Harris, and C. C. Murphy, “Developing Low-
Cost Testbeds for Enhancing Security Techniques in Wireless Sensor
Network Protocols,” in 2019 30th IEEE Irish Signals Syst. Conf. (ISSC),
Maynooth, Ireland, 2019, pp. 1–6.

[18] ——, “Analyzing the Vulnerability of Wireless Sensor Networks to a
Malicious Matched Protocol Attack,” in 2018 Int. Carnahan Conf. Secur.
Technol. (ICCST), Montreal, QC, 2018 pp. 1-5.

[19] J. T. Curran, C. Fernandez-Prades, A. Morrison, and M. Bavaro, “The
Continued Evolution of Software-Defined Radio for GNSS,” GPS World,
no. 29, pp. 43–49, 2018.

