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RESEARCH Open Access

Antimicrobial use and production system
shape the fecal, environmental, and slurry
resistomes of pig farms
Oscar Mencía-Ares1, Raúl Cabrera-Rubio2,3, José Francisco Cobo-Díaz4,5, Avelino Álvarez-Ordóñez4,5,
Manuel Gómez-García1, Héctor Puente1, Paul D. Cotter2,3,6, Fiona Crispie2,3, Ana Carvajal1* , Pedro Rubio1 and
Héctor Argüello1

Abstract

Background: The global threat of antimicrobial resistance (AMR) is a One Health problem impacted by
antimicrobial use (AMU) for human and livestock applications. Extensive Iberian swine production is based on a
more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how
sustained differences in AMU impact the resistome, not only in the animals but also on the farm environment.
Here, we evaluate the resistome footprint of an extensive pig farming system, maintained for decades, as compared
to that of industrialized intensive pig farming by analyzing 105 fecal, environmental and slurry metagenomes from
38 farms.

Results: Our results evidence a significantly higher abundance of antimicrobial resistance genes (ARGs) on intensive
farms and a link between AMU and AMR to certain antimicrobial classes. We observed differences in the resistome
across sample types, with a higher richness and dispersion of ARGs within environmental samples than on those
from feces or slurry. Indeed, a deeper analysis revealed that differences among the three sample types were
defined by taxa-ARGs associations. Interestingly, mobilome analyses revealed that the observed AMR differences
between intensive and extensive farms could be linked to differences in the abundance of mobile genetic
elements (MGEs). Thus, while there were no differences in the abundance of chromosomal-associated ARGs
between intensive and extensive herds, a significantly higher abundance of integrons in the environment and
plasmids, regardless of the sample type, was detected on intensive farms.

Conclusions: Overall, this study shows how AMU, production system, and sample type influence, mainly through
MGEs, the profile and dispersion of ARGs in pig production.
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Background
Antimicrobial resistance (AMR) is one of the largest
threats to global health and food security [1, 2]. Anti-
microbial use (AMU) in human medicine is an important
factor, but it is also widely recognized that the use of anti-
microbials in food-producing animals contributes to the
burden of AMR in human health [3]. The frequent AMU
to treat or prevent infections in livestock, mainly through
prophylactic and metaphylactic administration in feed or
water, together with the misuse of antimicrobials as
growth promoters in certain countries, have facilitated the
selection and spread of AMR bacteria [4–6].
The pig industry is the most extensive agricultural user

of antimicrobials in the European Union [7, 8]. Monitor-
ing of indicator and zoonotic bacteria on pig farms reveals
a frequent detection of AMR [9] and the presence of cer-
tain antimicrobial resistance genes (ARGs) of critical im-
portance, such as blaCTX-M, mecA, or mcr [10–12].
Metagenomic approaches complement traditional AMR
surveillance systems by characterizing the total pool of
ARGs, including those on mobile genetic elements
(MGEs), in the whole microbial community [13–15].
Recent studies describing the fecal resistome in pigs have

suggested a direct link between the resistome (the collection
of all resistance genes in a microbiome) and AMU or the
country in which the farm was located [16, 17]. Associations
between animal genetics, age or diet with microbiome com-
position and, therefore, with its resistome, have also been un-
covered [16]. So far, pig resistome studies have been
performed in industrialized intensive swine herds [18, 19].
The traditional extensive system, mainly associated with the
Iberian pig breed (Sus scrofa domesticus) in Spain, is defined
by eco-friendly and sustainable husbandry practices, includ-
ing the constrained use of antimicrobials [20], which has
been maintained for decades. Thus, this extensive production
system offers an ideal means to study how sustained differ-
ences in AMU have impacted the resistome of animals and
the farm environment.
To address these knowledge gaps, this study uses a

metagenomic approach to characterize structural, quali-
tative, and quantitative differences in the resistome, and
its associated mobilome, from 467 pooled fecal, environ-
mental, and slurry samples from 38 pig farms.

Results
Resistome alpha diversity and richness of ARGs
One hundred five metagenomes from 467 pooled fecal,
environmental, and slurry samples from 19 intensive pig
farms and 19 extensive swine farms were sequenced.
The average number of reads obtained per sample was
8.1 million (range 5.3 million–9.8 million). An average
of 0.1% of these reads were assigned to ARGs (range
0.004–0.35%). The alpha diversity of the resistome was
calculated for each sample (Fig. 1; see Additional file 1:

Figure S1). Inverse Simpson and ARG richness indexes
showed that the total ARGs diversity was significantly
lower in feces, both from intensive and extensive farms,
than in farm environments and slurry samples. A similar
result was observed for almost all AMR classes, when
analyzed individually (Fig. 1).
More importantly, analyses by production system re-

vealed a significantly higher ARG richness on the envir-
onmental samples from intensive farms than in those
from extensive herds. This applied to both total ARGs (p
< 0.01) and for most AMR classes (Fig. 1a). Furthermore,
the Inverse Simpson index showed a significantly higher
diversity for tetracycline ARGs within the fecal micro-
biomes from intensive farms as compared to those from
extensive herds (p < 0.01) (Fig. 1b).

Resistome beta diversity analysis
A comparison of the beta diversity of ARGs using the
Bray-Curtis dissimilarity index revealed the combined
influence of sample type and production system (ado-
nis2, p < 0.001) in the clustering and ordination of sam-
ples (Fig. 2a; Fig. 2b). However, while the type of sample
explained 37.9% of the variation, the production system
was of lesser importance (5.7%).
On intensive farms, the ordination showed that slurry

samples represented a tightly clustered group of samples
located within a more heterogeneous cluster of environ-
mental samples, with fecal samples grouped closely
nearby. In extensive herds, the slurry resistome was more
highly dispersed, and was located between clusters repre-
senting farm environment and pig feces samples (Fig. 2c).
The effect of the production system (adonis2, p < 0.001)
explained 36.9% of the variation in feces, 17.8% in slurry
and 8.8% in the environment. Beta dispersion varied sig-
nificantly among sample types, with higher dispersion be-
ing observed in environmental samples; while between
production systems there were only significant differences
in the dispersal of slurry samples (p < 0.001) (Fig. 2d).
Specific ordination effects among ARGs associated with

resistance to beta-lactams, tetracyclines, aminoglycosides,
and macrolides-lincosamides-streptogramins-pleuromuti-
lins (MLSP) were identified (see Additional file 2: Figure
S2 and Additional file 3). We observed that ordination
patterns were similar to those described for the total resis-
tome, with a strong effect of the production system on the
fecal resistome (i.e., 41.2% of the variation (adonis2, p <
0.001) in ARGs related to tetracycline resistance).

Characterization of the acquired resistome
Total ARGs abundance varied significantly (p < 0.01) by
production system regardless of the sample type (Fig. 3).
This was also evident when the abundance of ARGs
from the aminoglycosides, MLSP, oxazolidinones, and
tetracyclines AMR classes was analyzed (see Additional
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Fig. 1. (See legend on next page.)
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file 4: Figure S3). We ranked samples by ARG abundance
and observed that seven intensive farm environments were
among the top 10 samples, all showing over 2000 counts per
million (CPM) of total ARG abundance. In contrast, ARG
abundances on extensive farm environments were among the
lowest observed, with seven of these samples showing under
200 CPM (Fig. 3). While ARGs linked to beta-lactam resist-
ance were significantly more abundant (p < 0.01) in feces re-
covered from intensive farms than in those from extensive
farms (see Additional file 4: Figure S3), their diversity was sig-
nificantly lower in fecal samples from intensive farms (p <
0.05) (Fig. 1a), indicating a larger number of more homoge-
neous beta-lactam ARGs in feces from intensive farms.
The abundance of ARGs linked to 15 different AMR classes

was stacked to identify trends across production systems and
sample types (Fig. 4a). Analyses by production system showed
similar patterns of AMR class distribution for slurry and feces,
but with lower ARG abundance on extensive farms, as de-
scribed previously. The environmental samples showed less
consistent patterns, with a higher heterogeneity of AMR clas-
ses found, both on intensive and extensive farms. The tetra-
cycline class was predominant, particularly in feces and slurry,
followed by the aminoglycosides, MLSP, and oxazolidinones
classes. The sulfonamide class was significantly more abun-
dant in slurry than in fecal samples (p < 0.001), while the op-
posite trend was found for the beta-lactam class (p < 0.001).
The 20 most abundant ARGs were represented to

characterize AMR abundance at gene level (Fig. 4b). This
ARG distribution was impacted by the type of sample.
The tetracycline ARGs tet(Q) and tet(W/32/O) were pre-
dominant in feces (p < 0.001), while tet(M) and tet(36)
were the most abundant tetracycline ARGs in slurry (p <
0.001). Again, the environmental samples showed a higher
ARGs heterogenicity, especially on intensive farms. The
high abundance of the oxazolidinone cfr(C) gene on sam-
ples from certain intensive farms was remarkable and was
significantly less abundant among extensive herds (p <
0.001). All significant differences (p < 0.05) across produc-
tion systems and sample types are shown at AMR class
and ARGs level in an additional file (see Additional file 5).

Bacterial microbiome composition and its association
with the resistome
To evaluate the degree to which the bacterial compos-
ition determined the resistome, Procrustes analyses were

performed. We observed a significant correlation be-
tween the resistome and the bacterial microbiome com-
position (p < 0.001; correlation = 0.71), demonstrating
that similar taxonomic compositions tended to have a
similar antimicrobial resistance profile (see Additional
file 6: Figure S4). Interestingly, sample type and produc-
tion system impacted significantly (p < 0.001) on this
association, with stronger association on intensive farms
(correlation = 0.81) than in extensive herds (correlation =
0.72) and in slurry (correlation = 0.70) than environmental
(correlation = 0.64) and fecal (correlation = 0.53) samples.
Further details in bacterial microbiome data can be
accessed in additional files (see Additional file 7:
Supplementary information and Additional file 8: Figure
S5).

Taxonomic assignment of ARGs
Ninety-four percent of the obtained ARG-reads were
assigned to ARG-containing contigs. These ARG-
containing contigs were predicted to belong to 120 different
bacterial families, with Streptococcaceae, Bacteriodaceae,
Peptostreptococcaceae, Staphylococcaceae, Enterobacteria-
ceae, Moraxellaceae, Lactobacillaceae, Bacillaceae, Entero-
coccaceae, and Clostridiaceae accounting for 58.5% of the
total ARGs abundance and 75.8% of all assigned ARGs.
Most of these families were among the most abundant taxa
on these farms, with exemptions such as Peptostreptococca-
ceae and Enterococcaceae, whose proportion in the total
bacterial microbiome was much smaller. In contrast, des-
pite their high abundance, Pseudomonadaceae, Prevotella-
ceae, or Flavobacteriaceae families did not contribute
remarkably to the resistome composition.
We further investigated the 10 most abundant families

with assigned ARGs from the main AMR classes (Fig. 5a).
The distribution of AMR-encoding taxa at family level
varied across and within families by production system
and type of sample. Thus, in Bacteroidaceae and Strepto-
coccaceae, ARGs from the tetracycline AMR class were
predominant, while those from the MLSP and oxazolidi-
none AMR classes were the most abundant in Bacillaceae
and Peptostreptococcaceae, respectively. The impact of the
production systems (p < 0.05) on the abundance of ARGs
assigned to Enterobacteriaceae, Staphylococcaceae, and
Streptococcaceae was remarkable, with a higher abundance
on intensive farms, particularly in environmental samples.

(See figure on previous page.)
Fig. 1. Alpha diversity of different antimicrobial resistance (AMR) classes measured by antimicrobial resistance genes richness (ARGs) (a) and
Inverse Simpson (b) indexes. These indexes were calculated from the counts per million matrix and represented as boxplots. Each sample is
represented by a dot with horizontal jitter for visibility. The horizontal box lines represent the first quartile, the median, and the third quartile.
Whiskers include the range of points within the 1.5 interquartile range. The differences per sample type and per production system within each
sample type were evaluated with the Wilcoxon signed-rank test. n = 105 metagenomes from 38 independent farms. Nineteen metagenomes per
sample type per production system were used, with the exception of extensive-slurry (n = 9). MLSP refers to the macrolides-lincosamides-
streptogramins-pleuromutilins AMR class
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Similar analyses by the 20 most abundant ARGs assigned
to these 10 taxonomical families (Fig. 5b) revealed a gene-
specific taxonomical association of tet ARGs, a result which
helps to explain their heterogeneous distribution among
sample types shown in Fig. 4b. More specifically, the tet(Q)
gene was associated with members of the Bacteroidaceae
family, particularly in feces, while other tetracycline ARGs,
such as tet(L) and tet(M), were mainly linked to families be-
longing to the Firmicutes phylum, such as Streptococcaceae,
Staphylococcaceae, Lactobacillaceae, or Enterococcaceae. The
oxazolidinone ARG cfr(C) was predominantly associated
with the Peptostreptococcaceae, while optr(A) was most
abundant in Streptococcaceae, both showing a significantly
higher abundance on intensive farms (p < 0.001). Further de-
tails of differences by production system and sample type in
taxonomical assignation of ARGs, both at AMR class level
and individual ARG level, are summarized in an additional
file (see Additional file 9).

Characterization of the AMR mobilome
We evaluated the presence of ARGs on 678,111 contigs
that contain MGEs in all samples after metagenomics as-
sembly. Thereof, we identified 3130 contigs (0.5%) larger
than 1500 base pairs (bp) that contained ARGs. The
number of these ARG-containing contigs was signifi-
cantly higher on samples from intensive farms than on
those from extensive herds (p < 0.01), regardless of the
sample type (Fig. 6a). These ARG-containing contigs
were predicted to be mainly, but not exclusively, regions
of plasmids (Fig. 6b). Notably, while a significantly higher
number of ARGs were located in plasmids on samples
from intensive farms (p < 0.05), no significant differences
were observed between production systems in the abun-
dance of ARGs of chromosomal location (Fig. 6b). Correl-
ation analyses revealed a significant association (p < 0.05)
between the abundance of plasmids carrying ARGs and
tetracycline use (rs = 0.41) and total AMU (rs = 0.51), sug-
gesting that the resistome is associated with AMU. This
pattern was also apparent for environmental and fecal
samples (rs ≥ 0.47), but not for slurry samples.
The abundance of integrons was significantly higher

within environments from intensive than on extensive
farms (p < 0.01), while integrons were relatively uncom-
mon in fecal samples (Fig. 6c). A total of 68 integrons
were characterized carrying 144 ARGs, which clustered in
39 different groups, 2 of which contained 23.9% of the
identified integrons. The aminoglycoside ARGs aadA
(representing 61.1% of the ARGs found in integrons), the
trimethoprim ARGs dfrA (19.4%), or both (31.3% of the
integrons) were frequently contained within these regions.
Lateral gene transfer (LGT) events were significantly more
frequent in slurry than in fecal or environmental samples
(p < 0.05), but no differences were observed between the
two production systems (Figure 6c). We detected 57 LGT
events involving 59 ARGs, among which tetracycline
ARGs were the most abundant (59.6% of the LGT events),
with bacteria from the class Clostridia as the main donor,
particularly for the tet(W/32/O) gene. ARGs linked to re-
sistance to MLSP were detected in 21.1% of the LGT
events with the Bacteroidia class being the main donor
bacteria in this instance. Further information on the LGT
events and integrons identified, including the ARGs in-
volved and their clustering, are available in an additional
file (see Additional file 10).

(See figure on previous page.)
Fig. 2 Resistome structure in samples from three sample types on intensive and extensive farms. a Dendrogram showing the complete linkage
clustering of Bray-Curtis dissimilarities among intensive and extensive pig farms per sample type. b Two-dimension non-metric multidimensional
scaling (NMDS) based on Bray-Curtis dissimilarities. Subsampling was carried out by the three types of samples within each production system
prior to performing ordination analysis and PERMANOVA. The centroid of each ellipse represents the group mean, and the shape was defined by
the covariance within each group. c NMDS resulting from the division of the previous analysis by the two production systems to observe clearer
differences. d Distance to the centroid for the evaluation of homogeneity of variances within each group. n = 105 metagenomes from 38
independent farms. Nineteen metagenomes per production system per sample type were used, with the exception of extensive-slurry (n = 9).

Fig. 3 Overview of total antimicrobial resistance genes (ARGs)
abundance per sample. Boxplots of the total ARGs in counts per
million per sample, stratified by production system and sample type.
Each sample is represented by a dot with horizontal jitter for
visibility. The horizontal box lines represent the first quartile, the
median, and the third quartile. Whiskers include the range of points
within the 1.5 interquartile range. The differences per sample type
and per production system within each sample type were evaluated
with the Wilcoxon signed-rank test. n = 105 metagenomes from 38
independent farms. Nineteen metagenomes per sample type per
production system were used, with the exception of extensive-slurry
(n = 9)
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The resistome is associated with AMU
Correlation of global ARGs abundance data and total
AMU revealed a significant association (p < 0.05) be-
tween AMU and the abundance of ARGs from the ami-
noglycoside (rs = 0.52), tetracycline (rs = 0.55), MLSP (rs
= 0.58), and oxazolidinone (rs = 0.68) AMR classes (see
Additional file 11: Figure S6A). Analysis on AMU from
the perspective of antimicrobial class level yielded sig-
nificant correlations between the abundance of ARGs
from the oxazolidinone AMR class and the use of pheni-
cols (rs = 0.45), macrolides-lincosamides-pleuromutilins
(MLP) (rs = 0.60), or tetracyclines (rs = 0.45).
Similar association patterns were observed for fecal

and environmental resistomes when analyzed individu-
ally (rs ≥ 0.43, see Additional file 11: Figure S6B and Fig-
ure S6C)). Indeed, the impact of AMU on the
abundance of ARGs was even more marked (rs ≥ 0.58)

in fecal samples. In both sample types, MLP and pheni-
cols consumption was positively associated (rs ≥ 0.43)
with the abundance of ARGs from most AMR classes.
Although only a few positive correlations were observed
for slurry samples, the general patterns were consistent
with the results obtained for fecal and environmental
samples (see Additional file 11: Figure S6D). No remark-
able associations were observed for other antimicrobial
classes, including the beta-lactams, despite their high use
on these farms.

Discussion
The characterization of farm metagenomes provided an
integral overview of differences in the resistome of ani-
mals and of the farm environment across two swine pro-
duction systems. The farm resistomes were defined by a

Fig. 4. Distribution of antimicrobial resistance genes (ARGs) abundance and composition. a Stacked bar plot of total ARGs abundance per
antimicrobial class (colors), per sample (x axis). b Stacked bar plot of 20 most abundant ARGs (colors), per sample (x axis); the less abundant ARGs
were grouped into “Others”. n = 105 metagenomes from 38 independent farms. Nineteen metagenomes per sample type per production system
were used, with the exception of extensive-slurry (n = 9). ARGs abundance was expressed as counts per million. MLSP refers to the macrolides-
lincosamides-streptogramins-pleuromutilins AMR class
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combination of three factors: production system, sample
type, and antimicrobial consumption at farm level.
Extensive Iberian pig production generates high qual-

ity cured products within a particular rearing system,
which includes differentiating factors such as outdoor
farming in oak fields, lower animal density, and/or the
compulsory slaughter at age 14 months [21], instead of
at age 6–8 months in the case of pigs reared on intensive
farms. This extensive approach translates to greater
health and thus a lower AMU [20]. The lower ARG
abundance detected in samples collected from these ex-
tensive farms, regardless of the sample type (i.e., envi-
ronments, feces or slurry), is likely primarily linked to
the significantly lower AMU on these farms, which is
the main factor driving the rise and spread of ARGs in

animal fecal microbiomes [16, 17, 22–24]. As noted,
additional factors, such as feeding regime, husbandry
practices, or farm environments, which have been previ-
ously suggested as having an influence on the resistome
composition in cattle [25, 26], might also contribute to
the differences observed in this study.
Slurry and farm environments may play an important

role in the spread and on farm re-circulation of ARGs
and AMR bacteria. We disclosed structural differences
between the resistome of these two sample types and
that of pig feces. Indeed, both slurry and environmental
samples exhibited a higher ARG richness and beta dis-
persion when compared to the resistome of fecal sam-
ples, regardless of the AMR class and even on intensive
farms, where feces and farm environments are in closer

Fig. 5. Taxonomical assignment of the resistome at family level. The abundance of antimicrobial resistance genes (ARGs) taxonomically assigned
was expressed in counts per million, selecting the 10 most abundant taxonomical families harboring ARGs. a Pie chart distribution of total AMR
abundance per antimicrobial class (colors), per taxonomical family, production system and sample type; the size of each pie chart is proportional
to the ARGs abundance within each group. b Pie chart distribution of the 20 most abundant ARGs in the 10 most abundant taxonomical families
harboring ARGs (colors), per taxonomical family, production system and sample type; the less abundant ARGs were grouped into “others”. n =
105 metagenomes from 38 independent farms. Nineteen metagenomes per sample type per production system were used, with the exception
of extensive-slurry (n = 9). MLSP refers to the macrolides-lincosamides-streptogramins-pleuromutilins AMR class
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and continuous contact. This agrees with results from
previous studies in cattle [27] and reflects that within
farm environments there are different micro-ecosystems
with a wide range of microbes, including indigenous
microbiota [28], and ARGs present. In addition, the
strong effect shown by sample type in the resistome was
also observed for the bacterial microbiome composition,
with, for instance, the dominance of Proteobacteria in
environmental samples, in contrast with a more diverse
taxonomy in feces and slurry, with the predominance of
members of the Firmicutes phylum. These findings sug-
gested an association between the resistome and the
microbiome, which was further supported by Procrustes
analyses, evidencing that changes in the environment
and slurry resistomes were linked to shifts in the micro-
bial populations dominating these niches, as it has been
recently reported on pig farms [29].
Some major differences between the resistome of feces

and farm environments were found, for instance, in the
abundance of ARGs assigned to Enterobacteriaceae. This
family, which includes bacteria of relevance for public
health [30], was a sub-dominant taxa in feces due to the
relatively small proportion of members of the Proteobac-
teria phylum in fattening pig feces [31, 32], but repre-
sented a major group in environmental samples. In the
farm environment, this family, together with certain fam-
ilies from the Firmicutes phylum, becomes the dominant
taxonomic groups carrying ARGs, probably due to their
aerotolerance, which would provide them a competitive
advantage over other fecal-associated strict anaerobic taxa.
Thus, the resistome structure on the farm environment,
regardless of the production system, was determined by
the high abundance of a combination of soil-associated
bacteria, such as members of the Moraxellaceae or Sta-
phylococcaceae families, together with fecal-associated fac-
ultative anaerobic bacteria, such as Enterobacteriaceae,
Streptococcocaeae, or Lactobacillaceae.
The fecal and slurry resistomes had a similar qualita-

tive composition at AMR class level, but clear differ-
ences were observed with respect to the specific ARGs,
suggesting that the composition of the bacterial commu-
nity dominating each sample type shapes the associated
resistome, as previously proposed [33, 34]. Through the
taxonomic assignment of ARGs to bacterial families, we
confirmed that such differences by sample type were

linked to a differential abundance of ARG-containing
taxa. For instance, the tetracycline ARG tet(Q), the most
abundant gene within the most common AMR class,
was almost exclusively assigned to the Bacteroidaceae
family, which agrees with previous reports [35]. While
this ARG was predominant in fecal Bacteroidaceae,
slurry and, to a lesser extent, environmental Bacteroida-
ceae frequently carried also the tet(36) ARG.
We also found that the oxazolidinone-resistance genes

cfr(C) and optrA were mainly associated with members of
the Peptostreptococcaceae and Streptococcacae families, re-
spectively. This agrees with previous studies describing
that the cfr(C) gene was mainly confined to Clostridioides
difficile [36, 37], and that the optrA gene was previously
described in Streptococcus of swine origin [38–40]. In our
study, both genes were mainly identified in samples from
intensive herds and were associated with high consump-
tion of phenicols and MLP at farm level. Despite the fact
that oxazolidinones are not currently used in food-
producing animals [41], these two ARGs confer resistance
to other antimicrobial families which have been widely
used on swine farms, such as phenicols in cfr(C), and phe-
nicols, lincosamides, pleuromutilins, and streptogramins
A in optrA [42]. Altogether, these facts demonstrate that
the cross-selection for AMR to last resort antimicrobials
can occur on swine farms.
In our study, the most consistent associations between

abundance of ARGs and AMU were observed for ARGs
from the tetracyclines or MLSP AMR classes with the
application of antimicrobials from these respective
groups, which are frequently administered during the
fattening period, in agreement with a recent study car-
ried out by Van Gompel et al. [43]. Although we did not
collect AMU data corresponding to the early stages of
production, this previous study reported the absence of
an association between AMU during these early stages
and the resistome at the end of the fattening period.
Interestingly, despite beta-lactams were one of the most
frequently used antimicrobials on these farms, particu-
larly in intensive herds, its use was not significantly asso-
ciated with the abundance of ARGs. When compared to
other antimicrobial classes which exhibited positive
resistome-AMU correlations, we observed lower abun-
dance of beta-lactam ARGs in MGEs. Further research
is needed to establish the possible link between short-

(See figure on previous page.)
Fig. 6 Antimicrobial resistance mobilome characterization. a Boxplot of contigs with more than 1500bp carrying antimicrobial resistance genes
(ARGs). b Boxplots of chromosomal or plasmid location of ARGs containing contigs with PlasFlow. c Boxplots of integrons and lateral gene
transfer events involving ARGs detected in contigs with Integron_Finder and WAAFLE, respectively. Each sample is represented by a dot with
horizontal jitter for visibility. The horizontal box lines represent the first quartile, the median, and the third quartile. Whiskers include the range of
points within the 1.5 interquartile range. The differences per sample type and per production system within each sample type were evaluated
with the Wilcoxon signed-rank test. n = 105 metagenomes from 38 independent farms. Nineteen metagenomes per sample type per production
system were used, with the exception of extensive-slurry (n = 9)
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term AMU data and AMR spread through MGEs
depicted in this study. Furthermore, associations ob-
served between AMU and resistance to antimicrobials of
different AMR classes suggests that ARGs are selected
and enriched in the absence of exposure to the AMR
class they confer resistance to. This arises through their
co-selection due to the use of other antimicrobials or
the enrichment of certain components of the micro-
biome [14].
MGEs promote the mobilization and dissemination of

ARGs in bacterial communities [44–46]. A large propor-
tion of the resistome in the present study was not only
associated with MGEs, and mainly with plasmids, but
also with integrons. The majority of integrons that con-
tained ARGs carried the aminoglycoside aadA and tri-
methoprim dfrA ARGs, a phenomenon that was
highlighted in previous surveys conducted on zoonotic
and indicator bacteria on Spanish swine farms [47, 48].
Remarkably, plasmid-associated ARGs were predomin-
antly found on intensive farms and linked to a high
tetracycline consumption and total AMU. Integrons
were also more abundant in samples from intensive farm
environments, with a potential association with members
of the Enterobacteriaceae family [49]. Altogether, these
results demonstrate that the significant differences in
ARG abundance observed between intensive and exten-
sive production systems were mainly associated with a
higher abundance of MGEs on intensive farms, probably
favored by a higher AMU. The high abundance of ARGs
and MGEs-associated ARGs on farm environments and
slurry evidences the risk of their transmission and spread.
The metagenomic approach followed in our study could

be adopted to characterize the resistome in food-
producing animals in future AMR surveillance schemes
through an integral analysis of the whole microbial com-
munity [50]. Using a combination of read-mapping tech-
niques and metagenomic assembly pipelines, we could
observe the actual association existing between the micro-
biome, mobilome, and resistome of pig farms. However,
the sequencing depth can represent a limiting factor, and
low abundant genes could be easily underreported [51].
Besides, the presence of particular ARGs does not neces-
sarily mean that they will be expressed, and, therefore, dis-
crepancies could occur with the results of phenotypic
susceptibility testing. That is why Forslund et al. [24] in-
troduced the concept “antibiotic-resistance potential”, to
account for differences in gene expression and regulation
that could affect phenotypic resistance.

Conclusions
To the best of our knowledge, the current study provides
the first integral analysis of the resistome on swine farms
that compares two different production systems, exten-
sive and intensive, exploring the animals, the farm

environments, and slurry. A higher ARG abundance was
observed in samples recovered from intensive swine
farms, with higher AMU, relative to those from exten-
sive herds. A differential distribution of ARGs was also
observed among different types of samples, likely due to
the dominance of different bacterial taxa in different
sample types, as clearly shown by the distribution of
tetracycline ARGs. Finally, the majority of identified
ARGs were located on plasmids and differences in ARGs
abundance among production systems were linked to a
higher abundance of plasmids on intensive farms,
highlighting the importance of the mobilome in the
spread of ARGs on swine farms. Overall, these results
show that sustainable farming practices can help reduce
AMR pressure in the food chain.

Methods
Farms selection and sample collection
The final number of farms included in the study was 38,
distributed all over Spain (see Additional file 12: Figure
S7). These farms were divided into intensive (19 herds)
and extensive (19 herds) farms based on their produc-
tion system. Farm and sampling characteristics, includ-
ing sampling season, and antimicrobial consumption of
each farm are included in an additional table (see Add-
itional file 13). Sampling was carried out between 2017
and 2018 in feedlots with pigs between 6 and 8 months
old. No antimicrobial treatment was administered in the
immediate month prior to the sampling.
On each farm, feces, environmental swabs, and slurry

were collected. Five fresh fecal samples were obtained
from the rectum of fattening pigs. Five samples were
swabbed in the environment of the fattening unit (feeders,
drinkers, floors, walls, and windows) using swabs soaked
in phosphate buffer saline (PBS) 1×. On those farms with
slurry pits, three samples were collected from different
points of the pit. Nine extensive farms did not provide
slurry samples due to the lack of slurry pits in their facil-
ities. The samplings were carried out by trained veterinar-
ians and the samples were sent to our laboratory under
cooling conditions (2–8 °C) in less than 24 h.

Antimicrobial use (AMU)
The veterinary practitioner responsible for each farm re-
corded the antimicrobial consumption of the pigs of the
fattening unit sampled over the immediate 4-month
period prior to sampling. AMU was categorized into 10
classes: (i) total, (ii) aminoglycosides, (iii) beta-lactams,
(iv) diaminopyrimidines, (v) MLP, (vi) phenicols, (vii)
polymyxins, (viii) quinolones, (ix) sulfonamides, and (x)
tetracyclines. For each antimicrobial class, consumption
per farm was expressed in annual mg/PCU, following
the European Surveillance of Veterinary Antimicrobial
Consumption (ESVAC) protocol [52].
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Sample processing, DNA extraction, library preparation,
and sequencing
From each farm, a single DNA sample was obtained
from fecal, environmental and, if available, slurry sam-
ples. A total of 105 DNA samples were sequenced from
these 38 independent herds, including three DNA ex-
traction negative controls. The samples were divided
into environment (38), feces (38), and slurry (29). Prior
to DNA extraction, fecal samples from each farm were
pooled by stirring thoroughly with a sterile tongue de-
pressor using 3 g per individual sample, obtaining a final
composite sample of 15 g. After its homogenization, 2 g
were soaked in 18 ml of PBS 1× and vigorously mixed
for 5 min using a Stomacher Laboratory Blender (Sew-
ard, Worthing, UK). For the environmental and slurry
samples, 2 ml were recovered from each individual sam-
ple and added to a 15-ml sterile Falcon tube (BD, Erem-
bodegem, Belgium), obtaining a final volume of 10 ml
and 6 ml, respectively. These tubes were centrifuged at
4500×g for 10 min at 4 °C, discharging the supernatant.
Sample handling was performed on ice.
DNA was extracted using the Stool DNA Purification

Kit (EURX, Gdańsk, Poland) following the manufac-
turer’s instructions with minor modifications. As starting
material for DNA extractions, 500 μl were used for the
three different samples. The final DNA was eluted in
200 μl of 10 mM Tris HCl buffer (pH 8) after its incuba-
tion for 5 min for maximum elution efficiency and
stored at – 80 °C until its use. Negative controls were
prepared with 500 μl of sterile distilled water as starting
material and included in DNA extraction batches to
confirm that no contamination occurred in the samples
during DNA extraction and sequencing.
Prior to sequencing, a Qubit High Sensitivity DNA assay

(BioSciences, Dublin, Ireland) was used to determine the
total DNA concentration, being its purity assessed by the
260/280 and 260/230 absorbance ratios using a spectro-
photometer NanoDrop ND-1000 (Thermo Fisher Scien-
tific, Wilmintong, Delaware). Paired-end sequencing
libraries were prepared from the extracted DNA using the
Illumina Nextera XTLibrary Preparation Kit (Illumina
Inc., San Diego, CA, USA) followed by sequencing on the
Illumina NextSeq 500, with a NextSeq 500/550 High Out-
put Reagent kit v2 (300 cycles), in accordance with the
standard Illumina sequencing protocols.

Reads quality filtering
Pre-processing of raw reads by sequence quality and
length was performed with PRINSEQ-Lite v0.20.4 [53].
A mean quality lower than Q25 in a 10 base pair sliding
window was the criteria utilized for trimming low quality
reads at the 3′-end. Moreover, a minimum length of 150
base pairs was ensured for all reads. The Illumina se-
quences clean were screened against the pig reference

genome (Sus scrofa UCSC) downloaded from Illumina
iGenomes (https://support.illumina.com/sequencing/se-
quencing_software/igenome.html, 2019) to remove host
reads using BMTagger v3.101 (ftp://ftp.ncbi.nlm.nih.gov/
pub/agarwala/bmtagger/, 2011). Read duplicates were re-
moved using the Picard MarkDuplicates tool v2.18.1
(https://broadinstitute.github.io/picard/, 2016) to create
fastq files with unique reads only. Afterwards, reads were
subjected to a further quality filtering step. In brief, se-
quences were trimmed for low quality score using a
modified version of the script trimBWAstyle.pl that
works directly from BAM files (TrimBWAstyle.using-
Bam.pl, 2010; https://github.com/genome/genome/blob/
master/lib/perl/Genome/Site/TGI/Hmp/HmpSraPro-
cess/trimBWAstyle.usingBam.pl). The script was used to
trim off bases with a quality value of 3 or lower. This
threshold was chosen to delete all the bases with an un-
certain quality as defined by Illumina’s EAMMS (End
Anchored Max Scoring Segments) filter. Additionally,
reads trimmed to less than 200bp were also removed.

Assembly into contigs and taxonomic annotation of reads
and contigs
Filtered reads were assembled using IDBA_UD v1.1.3
(kmers 20–120) [54], keeping those contigs with length
above 500 bp. Contigs and filtered reads were taxonom-
ically assigned by using Kraken2 software v2.0.8-beta
[55] and kraken2-microbial database (2018-09-03)
(https://lomanlab.github.io/mockcommunity/mc_data-
bases.html). Only those taxa belonging to the kingdom
Bacteria were used for further analyses. The same pro-
cedure and database were employed for the taxonomical
assignment of both reads and contigs in order to avoid
biases caused by the use of different approaches. The
relative abundance matrix of filtered reads at family level
was used for bacterial microbiome characterization
analyses.

ARGs annotation
Reads from each sample were mapped against the
ResFinder database (2019-08-28) [56] using Bowtie2
v2.3.4.1 [57, 58]. The “.trimmed_pairs” fastq files gener-
ated by Bowtie2 were transformed into a fasta file where
forward and reverse reads were concatenated. This new
fasta file was employed to perform a BLAST v2.6.0 [59]
against the ResFinder database [56] using a 70% identity
cut-off and taking 100 hits (max_target_seqs) in order to
avoid problems associated to BLAST use in local [60].
Only the first hit per sequence was kept for further
analyses.
The document “phenotypes.txt” was downloaded from

the ResFinder repository (2019-10-01) (https://bitbucket.
org/genomicepidemiology/resfinder_db/src/master/) and
manually curated in order to modify the “class” variable,
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gathering genes that confer resistance to macrolides, lin-
cosamides, streptogramins, and pleuromutilins into the
MLSP class, and those that confer resistance to oxazoli-
dinones, as the oxazolidinone class. This last group in-
cluded cfr genes, which confer resistance to phenicols,
lincosamides, oxazolidinones, pleuromutilins and strep-
togramins A, the optrA gene, which confers resistance to
phenicols and oxazolidinones, and the poxtA gene,
which confers resistance to phenicols, oxazolidinones,
and tetracyclines.
The manually curated version of phenotypes.txt file

(see Additional file 14) was used to create two different
matrices from BLASTn-firsthit file: (a) gene abundance,
(b) antimicrobial resistance class abundance. Abundance
matrices were transformed to CPM matrices, defined as
a normalization which consists of scaling the counts by
the total number of filtered reads, for further analyses.

Taxonomical assignment of ARGs
The “.trimmed_pairs” fastq files generated by mapping the
reads on the ResFinder database [56] by Bowtie2 [57, 58]
were re-mapped against contigs using the same approach,
in order to know which ARG-read belonged to each contig.
Taxonomic assignment for each contig was exported

to the contained ARG-read, prior to the final quantifica-
tion of ARG gene and AMR class per taxonomic group
at family level. Abundance matrices were transformed to
CPM matrices for further analyses.

AMR mobilome characterization
BLASTn comparison [59] against the ResFinder database
[56] was carried out for contigs longer than 1500bp,
keeping only those contigs containing ARG for their
mobilome analysis. Plasmid location was predicted by
PlasFlow v1.1 [61], LGT events were detected by WAAF
LE (https://huttenhower.sph.harvard.edu/waafle) and
integrons were predicted by Integron_Finder v2 [62],
using the assembled contig files as query files.
The coding sequences (CDS) within LGT events and

integron regions were extracted by using their coordi-
nates in the contig from WAAFLE and Integron_Finder
output files, and bedtools utilities v2.29.0 (https://bed-
tools.readthedocs.io/en/latest/) to extract this CDS fasta
files from contig fasta files. CDS fasta files were used for
BLASTn comparison [59] against the ResFinder database
[56] to determine which LGT events and integrons con-
tained ARGs. Additionally, complete integron sequences
were extracted from contig fasta files and clustered using
VSEARCH v2.7.1 [63] with “--cluster_fast” option, to
evaluate which integrons were shared between samples.
An in-house ruby script was developed to summarize

AMR mobilome outputs in a contig-count per sample
matrix, gathering ARGs with chromosomal, plasmid or
unknown location, together with LGT events and

integron location data. ARGs with unknown location
were excluded from further mobilome analyses.

Statistical analyses and figures visualization
Along the study, analyses were carried out initially for
the whole sample collection and later among the two
production systems (extensive and intensive) and the
three different sample types (environment, feces, and
slurry), individually and nested. Besides, the analyses
were split into the 16 antimicrobial classes provided by
the curated ResFinder database: (i) total, (ii) aminoglyco-
sides, (iii) beta-lactams, (iv) diaminopyrimidines, (v) fos-
fomycin, (vi) glycopeptides, (vii) MLSP, (viii) multidrug,
(ix) nitroimidazoles, (x) phenicols, (xi) oxazolidinones,
(xii) polymyxins, (xiii) quinolones, (xiv) rifamycins, (xv)
sulfonamides, and (xvi) tetracyclines. All analyses were
carried out using R v3.6.2 [64].
The within-herd resistome diversity was computed at

the gene-level CPM matrix using the R package vegan
v2.5.6 [65]. Alpha diversity was estimated by the Inverse
Simpson Diversity (1/D), Simpson (1-D), Shannon and
ARGs richness indexes. Comparisons in alpha diversity es-
timates were carried out with the Wilcoxon signed-rank
test through the ggpubr package v0.4.0 [66]. Beta diversity
was estimated by Bray-Curtis dissimilarities and analyzed
by non-metric multidimensional scaling (NMDS) using
the “metaMDS” function in vegan. Within-group disper-
sion was evaluated through the “betadisper” function. Fi-
nally, the effect of the type of sample and the production
system on sample dissimilarities was determined by per-
mutational multivariate analysis of variance (PERM
ANOVA) using distance matrices with “adonis2” function
(pairwise adonis). These analyses were also computed for
bacterial microbiome characterization at the family-level
relative abundance matrix.
Associations among the variables under study (produc-

tion system and sample type) with the CPM matrices for
ARGs and AMR classes, as those taxonomically assigned,
the contig-counts matrix for AMR mobilome and the
relative abundance matrix for microbiome
characterization, were performed with the Kruskal Wal-
lis test and the post hoc Wilcoxon signed-rank test. All
p values were adjusted by following the Benjamini and
Hochberg method [67] and significance was established
at p < 0.05.
Procrustes analyses were used to determine the associ-

ation between the resistome and the bacterial micro-
biome composition. Bray-Curtis dissimilarities from
each matrix were ordinated using NMDS. The symmet-
ric Procrustes correlation coefficients between the resis-
tome and the microbiome ordinations, p values and
plots were obtained using the “protest” function in
vegan.
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As AMU data were strongly skewed, they were log10
transformed. In addition, a pseudocount of 1 was added
before the log10 transformation to deal with an excess of
zeros in the data [43]. To reveal the association between
AMU and AMR, as the link between AMU and AMR
mobilome, the pairwise Spearman’s rank correlation was
calculated for CPM matrices for AMR classes and the
contig-count AMR mobilome matrix, respectively. Cor-
relations were removed if the Spearman correlation coef-
ficient, rs, was lower than 0.4 and the p value > 0.05,
adjusting this p value to avoid false positives using the
Benjamini and Hochberg method [67]. The correlations
were carried out with the R package Hmisc v4.4.0 [68].
The circular Bray-Curtis resistome dendrogram was

constructed by exporting the dendrogram in Newick for-
mat using the R package ape v5.4 [69] and further anno-
tating it using the Interactive Tree of Life tool (https://
itol.embl.de/). Other plots were produced using the
ggplot2 package v3.3.2 [70], and further modified using
the software Inkscape v0.92.4 (https://inkscape.org/).
The level of statistical significance was represented with
asterisks: four asterisks (****) indicated a p value less
than 0.0001; three asterisks (***) indicated a p value be-
tween 0.0001 and 0.001; two asterisks (**) indicated a p
value between 0.001 and 0.01; one asterisk (*) indicated
a p-value between 0.01 and 0.05; non-significance (ns)
indicated a p value higher than 0.05.
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Additional file 1: Figure S1. Alpha diversity of different antimicrobial
resistance (AMR) classes measured by A) Simpson and B) Shannon
indexes. These indexes were calculated from the counts per million
matrix and represented as boxplots. Each sample is represented by a dot
with horizontal jitter for visibility. The horizontal box lines represent the
first quartile, the median, and the third quartile. Whiskers include the
range of points within the 1.5 interquartile range. The differences per
sample type and per production system within each sample type were
evaluated with the Wilcoxon signed-rank test. n = 105 metagenomes
from 38 independent farms. Nineteen metagenomes per sample type per
production system were used, with the exception of extensive-slurry (n =
9). MLSP refers to the macrolides-lincosamides-streptogramins-pleuromu-
tilins AMR class.

Additional file 2: Figure S2. Resistome variation among different types
of production system and samples at antimicrobial resistance (AMR) class
level. Two-dimension non-metric multidimensional scaling (NMDS) based
on Bray-Curtis dissimilarities was calculated for A) Beta-lactams, B) Tetracy-
clines, C) MLSP and D) Aminoglycosides. Subsampling was carried out by
the three types of samples within each production system prior to per-
forming ordination analysis and PERMANOVA. The centroid of each el-
lipse represents the group mean, and the shape was defined by the
covariance within each group. Each NMDS was divided by the two pro-
duction systems to observe clearer differences. n = 105 metagenomes
from 38 independent farms. Nineteen metagenomes per production sys-
tem per sample type were used, with the exception of extensive-slurry (n
= 9). MLSP refers to the macrolides-lincosamides-streptogramins-pleuro-
mutilins AMR class.

Additional file 3: Table S1. Resistome variation among different
production systems and samples at AMR class level.

Additional file 4: Figure S3. Overview of antimicrobial resistance
genes (ARGs) abundance within antimicrobial resistance (AMR) classes
per sample. Boxplots of the ARGs in counts per million within each AMR
class per sample, were stratified by production system and sample type.
Each sample is represented by a dot with horizontal jitter for visibility.
The horizontal box lines represent the first quartile, the median, and the
third quartile. Whiskers include the range of points within the 1.5
interquartile range. The differences per sample type and per production
system within each sample type were evaluated with the Wilcoxon
signed-rank test. n = 105 metagenomes from 38 independent farms.
Nineteen metagenomes per production system per sample type were
used, with the exception of extensive-slurry (n = 9). MLSP refers to the
macrolides-lincosamides-streptogramins-pleuromutilins AMR class.

Additional file 5: Tables S2-S11. Significant associations at
antimicrobial resistance class and antimicrobial resistance genes level (p
< 0.05) across production systems and sample types.

Additional file 6: Figure S4. Association between the resistome and
the bacterial microbiome composition. A) Correlation between
antimicrobial resistance genes and bacterial abundance at family level
using Procrustes analyses. The lines show the Procrustes residuals; the
change in the ordination position when using the resistome (dotted
ends) compared to the bacterial microbiome (non-dotted ends) is
displayed. The correlation coefficient and significance were determined
using the “protest” function in R package vegan. B) Residual error plot for
Procrustes residual size comparison showing the difference in the
resistome-microbiome association across production systems and sample
types. Horizontal lines denote the median (solid), 25% and 75% quantiles
(dashed). n = 105 metagenomes from 38 independent farms. Nineteen
metagenomes per production system per sample type were used, with
the exception of extensive-slurry (n = 9).

Additional file 7:. Supplementary information. Supplementary text with
additional information.

Additional file 8: Figure S5. Bacterial microbiome composition at
family level. A) Alpha diversity of bacterial composition measured by
family richness, Inverse Simpson, Shannon and Simpson indexes. These
indexes were calculated from the relative abundance matrix and
represented as boxplots. Each sample is represented by a dot with
horizontal jitter for visibility. The horizontal box lines represent the first
quartile, the median, and the third quartile. Whiskers include the range of
points within the 1.5 interquartile range. The differences per sample type
and per production system within each sample type were evaluated with
the Wilcoxon signed-rank test. B) Two-dimension non-metric multidimen-
sional scaling (NMDS) based on Bray-Curtis dissimilarities. Subsampling
was carried out by the three types of samples within each production
system prior to performing ordination analysis and PERMANOVA. The
centroid of each ellipse represents the group mean, and the shape was
defined by the covariance within each group. C) Stacked bar plot of the
relative abundance of the 20 most abundant bacterial families (colors),
per sample (x axis); the less abundant families were grouped into
“Others”. n = 105 metagenomes from 38 independent farms. Nineteen
metagenomes per production system per sample type were used, with
the exception of extensive-slurry (n = 9).

Additional file 9: Tables S12-S26. Significant associations at
antimicrobial resistance class and antimicrobial resistance genes (ARGs)
level (p < 0.05) across production systems and sample types in
taxonomically assigned ARGs.

Additional file 10: Tables S27-S28. Summary of integrons and lateral
gene transfer events detected on contigs with more than 1,500bp.

Additional file 11: Figure S6. Association between antimicrobial use
(AMU) and antimicrobial resistance (AMR). To reveal the association
between AMU and AMR, the pairwise Spearman’s rank correlation was
calculated for the counts per million matrices at AMR class level. These
correlations were carried out for A) all the samples, B) environmental
samples, C) faecal samples and D) slurry samples. Correlations were
removed if the Spearman correlation coefficient, rs, was lower than 0.4
and the p-value > 0.05, adjusting this p-value to avoid false positives
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using the Benjamini & Hochberg method. n = 105 metagenomes from
38 independent farms. Nineteen metagenomes per sample type per
production system were used, with the exception of extensive-slurry (n =
9). MLSP refers to the macrolides-lincosamides-streptogramins-pleuromu-
tilins AMR class. MLP refers to macrolides-lincosamides-pleuromutilins.

Additional file 12: Figure S7. Distribution of the 38 Spanish pig farms
sampled throughout Spain grouped by their production system into
intensive and extensive.

Additional file 13: Table S29. Characteristics of 38 independent
Spanish pig farms included in the study.

Additional file 14: Table S30. Manually curated "phenotypes.txt" from
the ResFinder repository.
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