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Abstract:  

Substitutional doping in metal oxides is a well-known approach to modifying properties such as ionic 

conductivity or activity in catalysis. Chromium (III) oxide is an attractive reducible material that has 

potential use as an oxygenation catalyst, and the fact that it maintains its integrity at high operating 

temperatures makes it useful for high temperature methanol synthesis and solid oxide fuel cells.  

Understanding the defect chemistry of Cr2O3 is important for rational catalyst design, in particular when 

the material is modified by isovalent doping. Density functional theory calculations with a Hubbard +U 

correction applied to the Cr 3d and O 2p states are used to investigate isovalent doping with Al3+, Fe3+ 

and La3+ cations. Point defects including Cr and O vacancies, and Frenkel defects are investigated and 

the effect of cation doping on the defect formation energies in Cr2O3 is explored. Our calculations show 

that Cr Frenkel and peroxide point defects are the most favourable defects in undoped Cr2O3. Al3+ 

doping in Cr2O3 does not change the defect formation energies over undoped Cr2O3, and Fe3+ doping 

improves oxygen vacancy formation while greatly increasing the formation energies of other defects 

that are potential competing processes that may kill ionic conductivity. La3+ doping in Cr2O3 is found 

to also improve oxygen vacancy formation and induces a considerable decrease in the cost to form Cr 

vacancies and Frenkel defects. The modifications to the defect formation energies induced by these 

dopants in Cr2O3 can be used to impede formation of undesirable defects, thus enhancing ionic 

conductivity for oxygenation catalysis.  
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1. Introduction:  

The need for sustainable energy technologies becomes increasingly more prevalent with the 

decreasing supply of non-renewable fossil fuels, which will eventually become exhausted by 

the end of the century.  To lessen our dependence on fossil fuels as an energy source, clean, 

efficient technologies based on renewable energy sources are required.  Fuel cells are an 

alternative renewable energy technology as they can cleanly and efficiently produce electrical 

power from a variety of renewable fuel sources such as H2, CH4 and synthesis gas (mixture of 

CO and H2). Solid oxide fuel cells (SOFCs) consist of a cathode, anode, electrolyte and 

interconnect materials operating at high temperatures (>1000K).  Issues such as high 

overpotentials for the oxygen reduction reaction (ORR) in SOFCs require expensive ORR 

catalysts such as Pt metal, or high operating temperatures that can cause premature aging of 

the SOFC. Intermediate temperature SOFCs (IT-SOFC) that operate between 800K and 1000K 

are studied to lower the ORR by using mixed oxygen-ion-electron conducting (MIEC) cathode 

materials that increase the active region of the cathode. MIEC cathode materials allow bulk 

oxygen transport, as well as electronic conduction, and the oxygen mobility property 

determines the potential for using the material for IT-SOFCs. A material that has high oxygen 

mobility at elevated temperatures is crucial for redox processes in IT-SOFCS applications, and 

mobility that is governed by an oxygen vacancy hopping mechanism [1-3]. Oxygen vacancy 

formation is typically examined in metal oxide catalysis as a descriptor for candidate materials, 

and as an indicator for reducibility of the material. Improving the oxygen vacancy formation 

energy can enhance the ability of a material to transport oxygen for improved performance at 

lower temperatures.  

Materials with the capacity to store and release oxygen are potential candidates for SOFCs 

since they have the ability to regulate the oxygen partial pressure which is crucial for the control 

of redox reactions, such as oxygen vacancy formation. In addition, oxygen storage and release 
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materials are used in three-way catalytic converters to remove gases such as CO or NOx. 

Commercially, the most widely used oxygen storage material (OSM) is CeO2-ZrO2 as it is a 

highly reducible material that can easily form oxygen vacancies, and is therefore highly 

reactive for catalytic reactions on the surface and also displays good oxygen transport. The 

crucial step for this is the ability of Ce4+ cations to reduce to Ce3+ cations to facilitate oxygen 

vacancy formation which is also a key property for many reducible oxide catalysts such as TiO2 

(Ti4+ to Ti3+) for photocatalysis or V2O5 (Vi5+ to V4+) for a number of catalytic reactions. 

However the problem with CeO2 based catalysts for SOFC applications is the inability to 

operate at moderate to high temperatures over extended periods.  

A reducible oxide that can sustain high temperatures and pressures is chromium oxide 

(chromia), which has oxidation states that range from Cr2+ to Cr6+, crystallising in different 

phases of CrO, Cr2O3, Cr2O5 and CrO3.[4] The hexagonal corundum (α-Cr2O3) structure is the 

most thermodynamically stable phase and is a dielectric material with a wide band gap (> 3eV) 

that has both Mott-Insulator and charge transfer semi-conducting properties,[5, 6] which has 

been characterised by electron-energy-loss spectroscopy,[7] and X-ray photoemission 

spectroscopy.[8] Density functional theory calculations (DFT) with the generalised gradient 

approximation (GGA) have calculated the fundamental band gap in the range of 2.8eV – 3.1 

eV,[9-15] and from a screened hybrid functional method the computed band gap is 3.31 eV.[16] 

Chromia is a magnetic material that displays anti-ferromagnetic ordering with alternating “-+-

+” Cr cation layers.[12, 13] Defect formation in undoped Cr2O3 was explored using Mott-

Littleton calculations which found that Cr and O vacancies are the dominant charge 

carriers.[17] DFT calculations have been presented using a Hubbard +U correction applied to 

the Cr 3d states to investigate intrinsic defects in Cr2O3, showing that charge neutral Cr Frenkel 

defects [𝐶𝐶𝐶𝐶𝑖𝑖… + 𝑉𝑉𝐶𝐶𝐶𝐶′′′] have the lowest formation energy while Cr vacancies are more stable than 

O vacancies.[9] The facile formation of vacancies in the undoped Cr2O3 material makes it a 
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promising candidate for a number of applications as cation and anion vacancies are useful for 

improved catalysis. Not only is chromia a potential candidate material for SOFCs,[18, 19] but 

it is an OSM material for a wide range of applications in oxygenation catalysis,[20-23] 

methanol synthesis,[24-26] an anode material for battery applications,[27, 28] as a gas 

sensor,[29] protective coatings,[30, 31] and adhesion promoters.[32] Since the reducibility of 

chromia is important for these applications, the formation of oxygen vacancies is a crucial step 

for ion conductivity and allowing the material to efficiently act as an active oxidising 

component.  

Substitutional doping by replacing a Cr cation on its lattice site with a different metal dopant 

is an approach to alter the electronic properties of the host material, improving its reducibility, 

and has been extensively investigated for well-known oxides such as TiO2[33-38] and CeO2.[39-

46] The changes in the local geometry as well as the change in electronic properties arising from 

the presence of the dopant can also facilitate oxygen vacancy formation in the host metal oxide. 

A metal dopant which has a valence state in its parent oxide that is lower than the host oxide is 

called a lower valence dopant (LVD), a dopant with a valence state in its parent oxide that is 

higher than the host material is a higher valence dopant (HVD) and a dopant with the same 

valence state as the host metal oxide is an isovalent dopant (IVD). In LVD doping of a +2 

cation in Cr2O3, the spontaneous formation of a charge compensating oxygen vacancy releases 

two electrons into the host oxide which fill the holes present on the lattice oxygen anion.[15] 

This has been investigated for +2 dopants in Cr2O3[15, 47] and CeO2 [14, 39, 40, 42, 46], and 

for +3 dopants in CeO2 [43-45] and TiO2.[35, 36] The removal of a second lattice oxygen to 

form an oxygen vacancy has an energy requirement and is termed the ‘active’ or reducing 

oxygen vacancy.  

For undoped bulk chromia, under O-rich/Cr-poor conditions, Cr vacancies (𝑉𝑉𝐶𝐶𝐶𝐶′′′) are dominant 

defects, while under O-poor/Cr-rich conditions O vacancies (𝑉𝑉𝑂𝑂∙∙) dominate. When bulk Cr2O3 
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is doped with Mg2+, the most stable defect under O-rich/Cr-poor conditions changes to Mg on 

a Cr lattice site. The formation of holes suggests that p-type behavior should be possible. 

However, under O-poor conditions the system cannot be doped p-type as O vacancies are 

expected to compensate and fill the hole states. [14, 48-54] This indicates that vacancy 

formation, either cation or anion, appears to be the dominant defect that forms in undoped 

chromia and doping the system can modify the dominant defects formed and change the nature 

of the conductivity in the systems. 

For IVD of chromia, the oxidation state is the same as Cr3+ so that there is no change in charge 

around the substitutional dopant lattice site and the system remains charge balanced with no 

extra electrons or holes present, as shown;  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥 + 𝑀𝑀2𝑂𝑂3  → 𝑀𝑀𝐶𝐶𝐶𝐶
x +  𝐶𝐶𝐶𝐶2𝑂𝑂3    (Charge neutral process) 

Where M is an IVD that has an oxidation state of +3, and 𝑀𝑀𝐶𝐶𝐶𝐶
𝑥𝑥  is the metal substituting a Cr3+ 

lattice site with an effective neutral charge. Doping chromia with such dopants will modify the 

local atomic structure, and the electronic and magnetic properties by altering the magnetic 

ordering and changing the band gap separation of the valence band maximum (VBM) and 

conduction band minimum (CBM) as observed for Fe doping of chromia.[55] Although IVDs 

will not introduce acceptor or donor states, they do alter the material on an electronic level and 

local geometry that can lead to improved ion conduction and band-gap engineering approaches 

for more efficient oxygen transport mediums or photo catalysis applications.  

The use of IVDs in metal oxides to improve electronic and ionic conductivities for various 

applications and catalysis is well-known.[56, 57] For example, Ag2SO4 is an alkali metal free 

solid based electrolyte with high cationic conductivity, and doping this material with the IVDs 

Ca2+ and Ba2+ greatly improves its conductivity in both α and β phases.[58] The origins of the 

increased conductivity in the doped systems is attributed to the presence of the dopants that 
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promote Ag+ vacancy formation which is also affected by the size of the dopant ionic radius. 

Isovalent doping of CeO2 by Zr is found to improve the catalytic performance of ceria towards 

soot and CO oxidation by promoting oxygen vacancy formation over the undoped 

structures.[59] The promotion of oxygen vacancy formation is attributed to the local distortions 

caused by the IVDs and also the changes in the electronic structure which increases the 

concentration of oxygen vacancies for greater catalytic performance.[60, 61] A range of 

Frenkel and Schottky-type defects and the effect of isovalent doping on their formation was 

studied in MgTa2O6.[62] Substitutional doping of the Mg2+ by other M2+ dopants was found to 

improve the ionic conductivity and the redox properties of the material. For materials with 

similar corundum structures such as Al2O3, and Fe2O3, isovalent doping has positive effects on 

the electronic properties of the systems. Al3+ surface treatment of Ti doped Fe2O3 has a positive 

effect on the photochemical properties of the material for water splitting applications making 

it a more efficient photo-catalyst than either Fe2O3 or Ti-Fe2O3.[63] The presence of the 

isovalent Al3+ atom passivates the surface charge by introduction of surface states that improve 

electron-hole separation, preventing charge recombination. Not only can isovalent doping 

occur at the cation lattice sites, but substitutional doping of IVDs at the anion sites to improve 

materials properties can also be examined. Sulfur doping in Fe2O3 replaces the O anion site 

and the presence of S atoms reduce the fundamental band gap of the material which is 

correlated to the concentration of S doping.[64] Modifying properties of Cr2O3 in such a way 

by IVDs could modify redox properties of the material and the nature of the dominant bulk 

defects. 

Defect chemistry in metal oxides focuses on cation/anion interstitials and vacancies, and 

Frenkel defects to understand the redox properties of a material for catalytic applications. 

However a defect that can form in oxides that has received less attention in the current literature 

is the formation of peroxides (O2
2-). Peroxide defects are typically examined at surfaces of 
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metal oxides in catalysis as they act as active species to promote surface reactions or photo-

catalysis in materials such as TiO2 which are identified by electron paramagnetic resonance 

spectroscopy (EPR).[65]  Indeed, peroxide formation is found to occur at the surfaces of CeO2 

and crucial to the oxygenation potential of the catalyst for a number of surface reactions and 

soot prevention.[66-68]  Peroxide formation is also suggest to form in the CeO2 bulk and vital 

to the OSC potential of the material for SOFC applications and in oxygenation catalysis.[69] 

The peroxide formation in bulk materials, e.g. in group two binary oxides such as MgO,[70] 

can act as source of excess oxygen in the metal oxide bulk that can be released under suitable 

operating conditions to supply oxygen to the surface for catalytic reactions or as an OSC 

material for SOFC applications. The formation of peroxides to store and release excess oxygen 

is also seen in ternary oxides such as zirconate perovskites where the peroxide defect greatly 

promotes anion migration throughout the material to greatly improve its OSC properties.[71] 

The formation of peroxide defects is not possible for all metal oxides as for example, CeO2 and 

ThO2 cannot accommodate O2- interstitials as their cations cannot be oxidized to a valence state 

of +5.[72] For metal oxides such as chromium oxide, oxygen interstitials can exist in Cr2O3 

since Cr can have a +4 valence state and the formation of peroxides as a charge neutral defect 

has been reported but not examined in detail.[14]  Peroxide formation in Cr2O3 as a means to 

enhance the OSC for oxidative catalysis is therefore interesting and requires investigation to 

determine their role in defect chemistry for Cr2O3 and also the effect of IVDs on their 

formation.  

This study uses DFT with Hubbard +U corrections to the Cr 3d states (DFT+U) to assess the 

effect of isovalent doping on the geometric and electronic structure in bulk chromia. The IS 

dopants that we will examine are Al, La, and Fe that have the structure M2O3 as their most 

stable structure for their parent oxides.  Al and Fe doping in Cr2O3 do not distort the structure 

while the larger La dopant is seen to cause local distortions in the bulk oxide. Al doping does 
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not greatly change the defect formation energies in Cr2O3 while Fe doping is seen to increase 

the formation energies of oxygen interstitials, Frenkel oxygen defect and peroxide formation 

while decreasing the oxygen vacancy formation energy. For La doping in Cr2O3, the formation 

energies of Cr vacancies and Cr Frenkel defects are greatly lowered indicating that the presence 

of La dopants improved the formation of Cr vacancies in Cr2O3.  

2. Computational Methodology:  

All calculations are carried out using density functional theory (DFT) within the 

generalised gradient approximation (GGA)[73] using the Perdew-Burke-Ernzerhof 

(PBE)[74] exchange-correlation functional as implemented in the Vienna Ab initio 

Simulation Package (VASP).[75-77] The valence electrons are described using a plane 

wave basis set and the interaction of the core (Cr:[Ar], O:[He], Al:[Ne], Fe:[Ar], 

La:[Xe]) and valence (Cr 3d5 4s1, O 2s2 2p4, Al 3s2 3p1, Fe 3p6 3d7 4s1, La 5p6 5d1 6s2) 

electrons is described using the projector augmented wave method (PAW).[78, 79] The 

Hubbard +U correction (PBE+U) as described by Dudarev et al.[80, 81] for the 

electronic on-site coulombic interactions is applied to the Cr 3d (+U=5eV) and O 2p 

(+U = 5.5eV) states which has been shown to correctly described the ground state 

electronic and magnetic structure of Cr2O3 and doped Cr2O3.[12, 13, 15] The application 

of a Hubbard +U correction also been applied to the valence states of dopants that have 

varying oxidation states, which in this case is Fe 3d (+U = 4.5eV).[12]  

 

The α-Cr2O3 bulk is optimised using a conjugated gradient algorithm at a series of 

constant volume calculations with the atomic positions and lattice vectors being allowed 

to relax, and the unit cell lattice constant parameter is varied from ±2% of the 

experimental lattice constant. This was carried out for a number of k-point meshes 

(4x4x4, 6x6x6, 8x8x8) using the Monkhorst-Pack method,[82] and a number of energy 
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cut-off values (400eV, 500eV, 600eV). The obtained energies for each series of k-point 

meshes and energy cut-offs were fitted to the Murnaghan equation of state[83] to 

determine the parameters that provided the lowest energy structure for bulk α-Cr2O3. 

This approach is used to avoid the issues associated with Pulay stress that can occur for 

plane wave calculations. The optimised parameters for the minimum energy Cr12O18 

bulk were found for a k-point mesh of (4x4x4) and an energy cut-off of 500eV, where 

the lattice constants a=5.08Å, b=4.40Å and c=13.93Å deviate from the experimental 

lattice by 2.48%.[84] The structures were deemed converged when the forces on the 

atoms were reduced to below 0.02 eV/Å.  

 

To accommodate the inclusion of a dopant species of reasonable concentrations, and 

remove any interactions between images under periodic boundary conditions, the bulk 

cell for α-Cr2O3 was expanded to a 2x2x2 supercell with a Cr96O144 composition; this 

results in a 1.04% doping concentration for one metal atom on a Cr lattice site. This 

super cell was relaxed at an energy cut off of 500 eV but with a reduced k-point mesh 

of (2x2x2). One of the Cr cations was replaced on its lattice site with a dopant metal 

species, and the system was relaxed to obtain the total energies for the doped structures. 

 

The following defects were examined in the undoped Cr2O3 structure and each of the 

doped structures; Cr interstitials and vacancies, O interstitials and vacancies, peroxide 

formation (Op) , and Frenkel defects for [𝐶𝐶𝐶𝐶𝑖𝑖… + 𝑉𝑉𝐶𝐶𝐶𝐶′′′], [𝑂𝑂𝑖𝑖′′ + 𝑉𝑉𝑂𝑂..] and [𝑂𝑂𝑖𝑖′′ + 𝑂𝑂𝑝𝑝..].  All 

defects were exhaustively investigated in the undoped and metal (Al, Fe, La) doped 

structures by examining neighbouring (N), next neighbouring (NN), next next 

neighbouring (NNN) positions relative to the defect or dopant sites. This gave between 

9 and 12 individual configurations (the exact number is symmetry dependent) to test 
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each defect in each undoped and doped chromia structure.  The chromium interstitial 

formation was investigated by examining different positions of the Cr atom in the Cr 

and O layers, as well as the interstitial site between layers with the lowest energy 

configuration formation energy (E[Cri]) calculated by; 

E[Cri] = E[Mx:Cr(2+y)-xO3] – (E[Mx:Cr(2-x)O3] + yE[Crm]) 

 

Where E[Mx:Cr(2+y)-xO3] is the calculated energy for the metal (M) doped Cr2O3 lattice 

containing the Cr interstitial, E[Mx:Cr(2-x)O3] is the calculated energy for the M doped 

lattice and E[Crm] is the calculated energy per Cr atom in bulk Cr bcc metal. Chromium 

vacancy formation is examined by removing a Cr cation from its lattice sites in next 

nearest and nearest neighbour positions in the lattice relative to the metal with the 

calculated formation energy given by; 

E[Cr vac] = E[Mx:Cr(2-y)-xO3] + yE[Crm] – E[Mx:Cr(2-x)O3] 

 

E[Mx:Cr(2-y)-xO3] is the calculated energy for the Cr vacancy in the M doped Cr2O3 

lattice.  The oxygen interstitial formation is examined in a similar manner to Cr 

interstitial formation and the formation energy (E[Oi]) is calculated by; 

E[Oi] = E[Mx:Cr(2-x)O(3+y)] – (E[Mx:Cr(2-x)O3] + y/2 E[O2]) 

 

E[Mx:Cr(2-x)O(3+y)] is the calculated energy for the M doped Cr2O3 lattice with an O 

interstitial and E[O2] is the calculated energy for gaseous O2 in a vacuum with a Hubbard 

+U correction (+U = 5.5eV) applied to the O 2p states. The formation energy of a 

peroxide defect (Op) can be calculated in a similar manner, as an oxygen atom is added 

to the bulk bound to a lattice oxygen site.  The oxygen vacancy formation was 

investigated by exploring the removal of a lattice oxygen species from next nearest and 
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next-next nearest neighbour sites to the metal dopant atom. The formation energy of 

each vacancy was calculated by; 

E[Ovac] = (E[Mx-Cr(2-x)O(3-y)] + ½ E[O2]) – E[Mx-Cr(2-x)O3]  

 

Where E[Mx-Cr(2-x)O(3-y)] is the calculated energy for the metal (M) doped bulk α-Cr2O3 

with an oxygen vacancy, E[O2] is the calculated energy of gaseous O2 and E[Mx-Cr(2-

x)O3] is the calculated energy for bulk M doped α-Cr2O3.  

 

Frenkel defects are linked to the redox potential of the material and can be calculated 

by exploring the formation of Cr/O interstitials/vacancies at different positions nearest 

neighbour or next nearest neighbour to each other in the bulk lattice. For the doped 

systems this becomes complex as the dopant cation breaks the bulk symmetry and both 

interstitials/vacancies are varied to determine low energy arrangement in the lattice 

which does not necessarily correspond to the most favoured positions of the individual 

point defects. The formation energy for the Cr (E[Cr Fren]) and O (E[O Fren]) Frenkel 

defects is calculated by; 

E[Cr Fren] = E[𝐶𝐶𝐶𝐶𝑖𝑖… + 𝑉𝑉𝐶𝐶𝐶𝐶′′′] – E[Mx:Cr(2-x)O3] 

E[O Fren] = E[𝑂𝑂𝑖𝑖′′ + 𝑉𝑉𝑂𝑂..] – E[Mx:Cr(2-x)O3] 

 

Where E[𝐶𝐶𝐶𝐶𝑖𝑖… + 𝑉𝑉𝐶𝐶𝐶𝐶′′′] is the calculated energy for the Cr interstitial and Cr vacancy, and 

E[𝑂𝑂𝑖𝑖′′ + 𝑉𝑉𝑂𝑂..] is the calculated energy for the O interstitial and O vacancy in the M doped 

Cr2O3 bulk. Schottky defect formation is also investigated by removing oxygen anions 

and examining subsequent removal of neighbouring Cr cations to determine the lowest 

energy distribution of Cr and O vacancies. The formation energy is calculated by; 

E[Schottky] = E[2𝑉𝑉𝐶𝐶𝐶𝐶′′′ + 3𝑉𝑉𝑂𝑂.. ] - E[Cr2O3] 
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Where E[2𝑉𝑉𝐶𝐶𝐶𝐶′′′ + 3𝑉𝑉𝑂𝑂.. ] is the calculated energy of the Cr2O3 lattice containing two Cr 

vacancies and three O vacancies to charge balance the bulk.  

In the present study we limit our focus to the effect of isovalent doping on the formation 

of neutral defects without any applied bias. Investigating charge states in the doped 

chromia systems in this paper is computationally challenging for the multiple dopants 

in this study and is beyond the scope of the present paper. 

The electronic structure for each of the systems under consideration are examined using 

the partial (ion and quantum number l decomposed) electronic density of states 

(PEDOS). The charge interactions and transfer processes are investigated using Bader’s 

atoms in molecules (AIM) approach as implemented in VASP by the Henkleman 

group,[85-88] and computed spin magnetisations.  

 

3. Results:  

Point, Frenkel and Schottky defects in bulk chromia 

The calculated structure for bulk α-Cr2O3 and the PEDOS are shown in Figure 1(a) and (b). 

The Cr3+ cations adopt a distorted octahedral environment in the bulk lattice, while the O2- 

anions have a tetrahedral geometry. The structure of the bulk Chromia is composed of 

alternating, neutral stoichiometric Cr4O6 layers and the calculated Cr-O bond lengths range 

from 2.02Å to 2.05Å. The calculated PEDOS plot for bulk Chromia shows that the valence 

band (VB) and conduction band (CB) are a mixture of Cr 3d and O 2p states. The VB has 

similar degrees of mixing from the two species while the CB is dominated by Cr 3d states. The 

calculated band gap between the VB maximum (VBM) and CB minimum (CBM) is 2.60 eV 

which is underestimated from the experimental value but within the reported range for PBE+U 
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calculations.[9, 14] The Cr cations and O anions have computed Bader charges of 4.0 and 7.0 

electrons respectively. 

 

 

Figure 1: The calculated bulk structure of chromia and corresponding PEDOS plots. The grey, and red 
spheres are the lattice positions of the Cr3+ and O2- atoms. The green and red lines are the Cr 3d and O 2p 
states in the PEDOS, while the top of the valence band is set to 0eV and the dotted line is the Fermi level. 

The point defects that are considered in the bulk Cr2O3 lattice are; Cr interstitial and vacancy, 

O interstitial and vacancy, and peroxide formation. The calculated formation energies for each 

of the point defects are given in Table 1 and show that the oxygen related defects have lower 

formation energies than the Cr defects, and the lowest energy is associated with peroxide 

formation. The values show that O vacancies and interstitials are more dominant than Cr point 

defects; however any oxygen atoms that are introduced into the bulk are more likely to form 

peroxides with lattice oxygen than reside in interstitial sites.  
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Table 1: The calculated formation energies for various point defects in bulk Cr2O3. 

 Ef  (eV) 

O vacancy 4.11 

Cr vacancy  4.59 

O interstitial  3.60 

Cr interstitial  5.46 

Peroxide  2.52 

 

The lowest energy arrangement for each of the point defects and their corresponding PEDOS 

plots are given in Figure 2 and the calculated formation energies for these structures of each 

defect are given in Table 1. The formation of an oxygen vacancy releases two electrons into 

the lattice which partially reduce four neighbouring Cr cations in the Cr layers above and below 

the vacancy position. Attempts to localise the electrons on two neighbour proved unsuccessful 

as all calculations resulted in a configuration to that shown in Figure 2(a). The reduced Cr 

cations are identified by Bader analysis and spin magnetisation values. The Cr cations are 

reduced from Cr3+ to Cr(3-δ) with an increase in computed Bader charges from 4.0 electrons (e-

) to 4.3 e- and spin magnetisations of 3.3 spins (3.0 spins in stoichiometric Cr2O3). The partially 

reduced Cr cations have opposing spins giving an overall singlet spin configuration. The 

PEDOS plot for the oxygen vacancy shows that the formation of an O vacancy creates an 

occupied Cr defect peak around 1 eV and an unoccupied Cr peak around 2 eV above the top of 

the valence band. Both Cr atoms (Cr1 + Cr2) in the layer above the O vacancy contribute to the 

α-spin of these peaks, while the Cr atoms in the layer below the O vacancy contribute to the β-

spin. For the Cr vacancy, three holes are found on the neighbouring lattice O species forming 

three O- atoms, one above the Cr vacancy and two below the vacancy. The Bader charges for 

these O species are reduced from 7.3 e- to 7.0 e- and they have a spin magnetisation value of 
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0.7 spins, typical of oxygen polarons. The formation of hole states on each of the O species is 

shown in the PEDOS as the three unoccupied O 2p peaks found above the Fermi level in the 

band gap from 0.9 - 1.2 eV above the top of the valence band. The overall spin for the Cr 

vacancy is 3.  

The preferential site for the oxygen interstitial was found to be an interstitial site in the Cr 

layer where the Oi is bonded to one Cr atom in each layer, with Cr-O bond lengths of 2.09Å 

(x2) as shown in Figure 2(c). The oxygen interstitial is an O- species with a computed Bader 

charge of 6.48 e- and a spin of 1.17 spins with no indication of reduction/oxidation to any 

surrounding atoms. The O interstitial introduces an occupied O 2p defect peak into the band 

gap around 0.5eV above the top of the valence band as shown in the calculated PEDOS plot.  

The Cr interstitial (Figure 2(d)) preferentially lies in the interstitial site in the Cr layer in a 

square planar configuration bonding to two oxygen atoms above and two oxygen atoms below 

with Cr-O distances of 2.03Å (x2) and 2.13Å (x2) with an overall system spin of 4. Three Cr 

cations are reduced by the presence of the Cri from Cr3+ to Cr2+ with an increase in their Bader 

charges from 4.0 e- to 4.5 e- and a spin magnetisation of 3.5 spins. Two of the reduce Cr cations 

are located next nearest neighbour from the Cr interstitial and one is located in the layer below. 

The reduction of the Cr cations introduces Cr defect peaks between 0 – 0.9 eV and 1.55 – 2.0 

eV in the band gap from the top of the valence band.  

The peroxide formation in the Cr2O3 lattice is shown in Figure 2(e) when the introduced O2- 

species bonds to a lattice oxygen atom forming O2
2-. The lattice oxygen changes its geometry 

to facilitate the formation of the peroxide with both O atoms adopting bridging positions in the 

O layer between two Cr layers with four calculated Cr-O bonds of 2.03Å (x2) and 2.00Å (x2), 

and also forming an O-O bond of 1.48Å which is typical of peroxide formation.[65] The Bader 
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charge for the lattice oxygen reduces from 7.3 e- to 6.7 e- and the Bader charge of the O atom 

forming the bond with the lattice oxygen is 6.7 e-. Both atoms have a spin of 0.  

 

Figure 2: The calculated local geometry and PEDOS plots for (a) Oxygen vacancy, (b) Cr vacancy, (c) Oxygen 

interstitial, (d) Cr interstitial and (e) peroxide formation. The grey and red spheres are the lattice Cr and O atoms, 
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while the green atoms are the reduce Cr cations, the light blue atoms are the oxidised O anions, the orange atom 

is the O interstitial and the peroxide, and the dark blue atom is the Cr interstitial. The green and red lines in the 

PEDOS plot are the Cr 3d and O 2p states, while the lower panels show the defect states. The top of the valence 

band is aligned to 0ev in all plots and the Fermi level is indicated by the dotted line.  

The calculated formation energies for the lowest energy configurations of the Frenkel and 

Schottky defects in bulk Cr2O3 are given in Table 2.  The pairing of Cr vacancy and Cr 

interstitial is considerably more favourable than the other Frenkel defects and, in particular, the 

Schottky defect. The high formation energy for Schottky defects indicates that these are the 

least likely defect to occur in Cr2O3 and will not be investigated for the doped systems. The 

lower formation energy of the Cr Frenkel defect indicates that this defect pairing will dominate 

over formation of the oxygen and peroxide Frenkel defects which has also been seen by other 

DFT studies.[9]  However the peroxide formation energy is similar to the Cr Frenkel defect 

formation energy indicating that these could be competing process in the Cr2O3 bulk which has 

not been shown previously.  

Table 2: The calculated formation energies for the Cr, O, Peroxide Frenkel defects and the Schottky defect. 

 E[f] eV 

Cr Frenkel pair 2.33 

O Frenkel pair 6.75 

Peroxide Frenkel pair 6.64 

Schottky defect 10.72 

 

The calculated lowest energy configuration for the formation of Cr and O Frenkel defects are 

shown in Figure 3(a) and (b), with a Frenkel-type defect combination of an O vacancy and 

peroxide shown in Figure 3(c). A Schottky defect in bulk Cr2O3 is also shown in Figure 3(d). 

For the Cr Frenkel defect, the Cr interstitial is located nearest neighbour to the Cr vacancy in 

the O layer below, and it changes its geometry from the four fold square planar to a three-fold 
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trigonal pyramidal geometry with Cr-O bonds of 1.95Å (x3). The Cr interstitial moves to lie 

half way between the vacancy and previous interstitial site to compensate for the vacancy. The 

overall defect has a neutral charge as the three holes on neighbouring O atoms are filled by the 

electron donating Cr interstitial. The Bader charges for these O atoms have increased from 7.0 

to 7.3 e- and have a spin magnetisation of 0. The filling of the holes is also seen in the PEDOS 

plots as the lower panel shows that the previously unoccupied O 2p states above the Fermi 

level are now filled and located in the band gap around 1eV from the top of the valence band. 

The PEDOS plot for the Cr interstitial shows no occupied defect peaks and shows an 

unoccupied Cr 3d peak around 2.0eV.   

For the oxygen Frenkel defect, the oxygen interstitial is located in the nearest neighbour 

interstitial site to the oxygen vacancy. The oxygen vacancy reduces two neighbouring Cr 

cations, confirmed by an increase in their computed Bader charges from 4.0 to 4.5 e- and each 

have a spin magnetisation of 3.5 electrons in a singlet configuration. The O interstitial remains 

as O- with a Bader charge of 6.5 e- and a spin magnetisation value of 1.15. There are no oxidised 

species in the system to compensate for the reduced Cr cations, so that the oxygen Frenkel 

defect is not charge balanced, and hence a high formation energy. The PEDOS plots for the 

reduced Cr cations show that occupied Cr 3d defect peaks are located around 1eV above the 

top of the valence band and the O interstitial has an occupied O 2p peak in the band gap at a 

similar energy.  The Frenkel defect combination for oxygen vacancy and peroxide shows that 

the peroxide forms nearest neighbour to the vacancy. The oxygen vacancy reduces two 

neighbouring Cr cations, confirmed by the change in Bader charge from 4.0 to 4.5 e- and the 

peroxide has Bader charge of 6.7 e- for both O atoms. The overall system spin is 0 as the 

reduced Cr cations have opposing spins and the peroxide has no spin. The PEDOS plot shows 

that the reduced Cr cations introduce an occupied Cr 3d defect peak around 1eV above the top 

of the valence band, while the peroxide introduces no defect states.  
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The lowest energy configuration for the Schottky defect shows that the cation and anion 

vacancies preferentially form next neighbour to each other in a cluster of vacancies in the bulk 

lattice. The Cr vacancies (yellow spheres) form in the same layer while the oxygen vacancies 

(black spheres) are distributed between the oxygen layer above and below the Cr layer. 

Although both vacancy formations compensate each other so that electrons release from the O 

vacancies fill the holes (O-) formed from Cr vacancies, the overall system spin is 6 since the 

magnetic ordering in the alternating Cr layers is disturbed having unpaired electrons from the 

absence of cations and anions. The PEDOS plots shows that there are no defect peaks in the 

band gap since the holes are compensated by the electrons.  

 

 

Figure 3: The calculated local geometry and PEDOS plots for (a) Cr Frenkel, (b) O Frenkel, (c) Peroxide Frenkel, 

and (d) Schottky defects. The grey and red spheres are the lattice Cr and O atoms, while the green atoms are the 

reduce Cr cations, the light blue atoms are the oxidised O anions, the orange atom is the O interstitial and the 

peroxide, and the dark blue atom is the Cr interstitial. The black spheres are the vacancies and in the case of the 

Schottky defect, the yellow spheres are the Cr vacancies. The green and red lines in the PEDOS plot are the Cr 

3d and O 2p states, while the lower panels show the defect states. The top of the valence band is aligned to 0ev in 

all plots and the Fermi level is indicated by the dotted line.  
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Isovalent doping in bulk Cr2O3 

Metal doped Cr2O3 structures  

The doping of bulk Cr2O3 was carried out by substitutionally replacing Cr3+ cations on their 

lattice site with Al3+, Fe3+ and La3+ cations.  The calculated local geometry around the dopant 

cation in bulk Cr2O3 is shown in Figure 4, along with the corresponding calculated PEDOS 

plots. The Al dopant relaxes from the octahedral geometry of the Cr3+ cation to a three-fold 

trigonal planar geometry with Al-O bonds of 1.91Å (x3) which are shorter than Cr-O bonds, 

causing local distortions around the Al dopant. The PEDOS plot shows that the Al dopant does 

not introduce any defect states into the band gap, and has a negligible contribution of Al 3s/p 

states to the VB and to the CB. The calculated band gap between the VB and CB is 2.72eV 

which is a small increase on the calculated fundamental band gap for undoped Cr2O3 (2.60eV). 

The Bader charge for the Al atom is 0 e- confirming that it has a +3 oxidation state and no other 

species in the bulk are reduced/oxidised. 

For Fe doping in Cr2O3, the Fe dopant maintains the octahedral geometry similar to the Cr 

geometry with calculated Fe-O bonds of 1.98Å (x3) with the O layer below the dopant, and 

bond lengths of 2.01Å (x3) with the O layer above the dopant. The calculated PEDOS plot 

shows that the VB and CB are a mixture of Fe 3d states with Cr 3d and O 2p states. The Fe 3d 

states have an occupied β spin peak that lies above the top of the Cr and O states, while there 

is an unoccupied Fe 3d peak at the bottom of the CB below the Cr and O states. The calculated 

fundamental band gap between the VBM and CBM is 2.12eV which is a decrease compared to 
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the undoped Cr2O3 band gap. The Fe dopant has a Bader charge of 12.4 e- and prefers to have 

a high spin magnetisation of 4.26 spins.   

The La dopant in Cr2O3 maintains the six coordination around the cation but changes to a 

distorted trigonal prism geometry with La-O bond lengths of 2.48Å (x3) to the O layer above 

the dopant cation, and 2.23Å (x3) to the O layer below the dopant cation. The PEDOS plots 

show that, similar to Al, the La 5 p/d and 6s states have negligible contributions to the VB and 

CB. The La dopant has a computed Bader charge of 6.8 e-, and a spin magnetisation of 0 spins.  

 

Figure 4: The calculated local geometry and PEDOS plots for (a) Al, (b) Fe, and (c) La doped Cr2O3. The grey 

and red spheres are the lattice Cr and O atoms, while the pink, dark green and light blue atoms are the lattice 

positions of the Al, Fe and La dopants. The green and orange lines are the Cr and Fe/La d states, while the blue 

and red lines are the s and p states. The top of the valence band is aligned to 0ev in all plots and the Fermi level 

is indicated by the dotted line. 

 

Oxygen vacancy, interstitial and peroxide formation in metal doped Cr2O3 

The calculated formation energies for the most stable oxygen vacancy, oxygen interstitial and 

peroxide species in undoped and metal doped Cr2O3 are given in Table 3. Al doping of Cr2O3 



22 
 

does not significantly change the formation energies for oxygen vacancy and peroxide over the 

undoped Cr2O3 but it does increase the formation energy of the oxygen interstitial. This may 

facilitate the formation of peroxide defects which is as favourable as the undoped Cr2O3, as 

any excess oxygen in the lattice will be preferentially incorporated as peroxides. For Fe-Cr2O3, 

the dopant enhances the oxygen vacancy formation and is itself reduced, which is an indicator 

for improved reducibility and strongly inhibits oxygen interstitial and peroxide formation. 

Their formation energies are significantly increased because the Fe dopant does not take a +4 

oxidation state.  

For La-Cr2O3, oxygen vacancy and peroxide formation are improved over undoped Cr2O3, 

while the oxygen interstitial is less favourable. The enhancement in oxygen vacancy formation 

energy arises from the larger ionic radius of La (1.03Å) compared to Cr (0.62Å) which induces 

local distortions that facilitate oxygen vacancy formation. These distortions also enhance 

formation of the peroxide and impede oxygen interstitial formation.  

 

Table 3: The calculated formation energies for an oxygen vacancy, an oxygen interstitial and a peroxide in Al, 

Fe and La doped Cr2O3 

 Ef [Ovac] (eV) Ef [Oi] (eV) Ef [Op] (eV) 

Cr2O3 4.11 3.60 2.52 

Al-Cr2O3 4.01 3.95 2.51 

Fe-Cr2O3 3.97 6.57 4.08 

La-Cr2O3 3.83 4.24 2.13 

 

The calculated local structures and PEDOS plots for the oxygen vacancy, oxygen interstitial 

and peroxide defects are shown in Figure 5 (a), (b) and (c) respectively for in each of the doped 

structures.  For all doped structures, oxygen vacancies preferentially form nearest neighbour to 
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the dopant cation and release two electrons to reduce neighbouring cations. The reduction 

process in Al-Cr2O3 and La-Cr2O3 are similar, reducing two neighbouring Cr cations from Cr3+ 

to Cr2+; the Bader charges change from 4.0 e- to 4.5 e- and the spin magnetisation is 3.7 spins 

for each reduced cation. The reduction of the Cr cations is reflected in the PEDOS for both 

doped systems with the appearance of a Cr 3d defect peak in the band gap around 1eV from 

the VBM. In Fe-Cr2O3 the reduction process is different, the oxygen vacancy reduces one 

neighbouring Cr cation and the Fe dopant. The reduced Cr2+ cation has a Bader charge of 4.5 

e-, and a spin magnetisation of 3.7 spins, and the reduced Fe2+ dopant has a Bader charge of 

12.7 e-. The spin magnetisation of the Fe dopant changes from 4.26 spins to 3.70 spins arising 

from Fe reduction and spin paring of two electrons.  The reduction of the Cr and Fe cations is 

shown in the PEDOS plot as Cr and Fe 3d occupied defect peaks now appear in the band gap 

at 0.65 to 1.46eV, respectively, from the top of the VB.  

Oxygen vacancy formation in Al-Cr2O3, Figure 5(a)(i), changes the Al coordination to a 

distorted five-fold trigonal bipyramidal geometry with Al-O bond lengths of 1.96Å (x2) to the 

O layer above the dopant, and 1.92Å, 1.89Å, and 1.80Å to the O layer below the dopant.  The 

oxygen vacancy forms nearest neighbour to the La dopant in La-Cr2O3 (Figure 5(a)(iii)), with 

the La dopant maintaining its initial geometry, but with the loss of one bond from the O 

vacancy.  The La-O bonds are similar to the doped bulk. The formation of an oxygen vacancy 

in Fe-Cr2O3 (Figure 5(a)(ii)) removes an oxygen atom previously bound to Fe and changes the 

coordination of the Fe cation to a five-fold configuration with Fe-O bond lengths of 2.15Å (x3) 

to the O layer above the dopant and 2.05Å, 2.00Å to the O layer below the dopant.  

The preferential positions for oxygen interstitial (Figure 5(b)) are next nearest neighbour to the 

Al dopant in the Cr layer above Al, but in the same Cr layer as the dopant in both Fe-Cr2O3 and 

La-Cr2O3. All bonding geometries and oxidation states for the dopant cations are unaffected by 

the presence of the interstitial in the bulk, and the oxygen interstitial has a computed Bader 
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charge of 6.3 e- indicating it is O-
, with no cation reduction or oxidation.  The PEDOS plots for 

each doped lattice indicate that the O interstitial introduces an occupied O 2p defect peak 

around 0.5eV above the top of the VB.  

Regarding peroxide formation, for each dopant the bonding and oxidation states of the dopants 

remain similar to the doped lattices (Figure 4), while the dopant-oxygen bond lengths are also 

similar indicating that the peroxide only affects the local structure. The position of the peroxide 

relative to the dopant is next next nearest neighbour above the Al dopant, nearest neighbour in 

Fe-Cr2O3 and next nearest neighbour below the La dopant. In each case the peroxide defect has 

an O-O bond length of 1.48Å and Cr-O bond lengths ranging from 2.00 – 2.02Å where the O 

atoms have a bridging geometry between the Cr layers. The O atoms in the peroxide defect 

each have Bader charges of 6.7 e- in all structures. As the peroxide has different bonding 

environment in each of the doped structures, the PEDOS plots show different O 2p overlaps 

and peaks to the VB and CB; however there are no new defect peaks present in the band gap 

for any of the doped lattices.  
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Figure 5: The calculated local geometry and PEDOS plots for (a) oxygen vacancy, (b) oxygen interstitial and (c) 

peroxide formation in (i) Al-Cr2O3, (ii) Fe-Cr2O3 and (iii) La-Cr2O3. The grey and red spheres are the lattice Cr 

and O atoms, while the pink, dark green and light blue atoms are the lattice positions of the Al, Fe and La dopants. 

The black, light green and orange spheres are the lattice positions of the vacancy, reduced Cr and 

interstitial/peroxide atoms. The green and orange lines are the Cr and Fe/La d states, while the blue and red lines 

are the s and p states. The top of the valence band is aligned to 0ev in all plots and the Fermi level is indicated by 

the dotted line. 
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Chromium vacancy and interstitial formation in metal doped Cr2O3 

The calculated formation energies for the lowest energy configuration of the Cr vacancy and 

interstitial in each of the doped structures are given in Table 4, along with the corresponding 

energies for undoped Cr2O3. Al doping in Cr2O3 does not significantly affect the formation 

energies of Cr vacancies and interstitials; the differences are smaller than 0.2 eV. For Fe-Cr2O3, 

formation energies for Cr vacancy and interstitial are greatly increased compared to the 

undoped lattice, so that Fe doping impedes the formation of Cr vacancies and interstitials.  

However the opposite is seen for La-Cr2O3, as La doping reduces the formation energy of Cr 

vacancies in Cr2O3 while maintaining a similar formation energy for Cr interstitials to the 

undoped Cr2O3 bulk.  

 

Table 4: The calculated formation energies for Cr vacancy and interstitial in Al, Fe and La doped Cr2O3. 

 Ef [Cr vac]  (eV) Ef [Cri]  (eV) 

Cr2O3 4.59 5.46 

Al-Cr2O3 4.37 5.57 

Fe-Cr2O3 5.59 6.02 

La-Cr2O3 3.70 5.36 

 

The lowest energy configuration and PEDOS plots for Cr vacancies and interstitials in Al, Fe 

and La doped Cr2O3 are shown in Figure 6(a) and (b). The Cr vacancy in each of the doped 

systems is preferentially located next to the dopant cations; in the Cr layer below the Al dopant 

and in the same Cr layer as the Fe and La dopants. In each case the oxidation state and geometry 

of the dopant is unaffected by the presence of the Cr vacancy.  The Cr vacancy forms three 

oxygen hole states on O species that were previously bound to the Cr cation as shown in Figure 

6 by the light blue atoms. The Bader charges for these O- species decrease from 7.3 e- to 7.0 e- 
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with each O- atom having a magnetisation of 0.7 spins. The formation of holes on the O anions 

is reflected in each of the PEDOS plots with the appearance of unoccupied O 2p defect peaks 

above the fermi level around 1eV from the top of the VB, characteristic of each O- species.  

The Cr interstitial preferentially forms in the next next neighbour position from the Al dopant 

(Figure 6(b)(i)), in the Cr layer below the Fe dopant in Fe-Cr2O3 (Figure 6(b)(ii)) and nearest 

neighbour in the same Cr layer as the La dopant (Figure 6(b)(iii)).  In each case the Cr 

interstitial adopts a four coordinated square planar geometry in the Cr layer binding to two O 

atoms in each neighbouring oxygen layer with Cr-O bond lengths of 2.11Å and 2.06Å (x3) 

which are slightly longer than typical Cr-O distances (2.02Å). The formation of a Cr interstitial 

is a reduction process introducing three extra electrons (𝐶𝐶𝐶𝐶𝑖𝑖′′′) into the bulk lattice which shows 

similar characteristics in Al and La doped Cr2O3.  The Cr interstitial reduces two lattice Cr3+ 

cations to Cr2+ and is also a Cr2+ cation, having computed Bader charges of 4.5 e- , and a 

calculated magnetic spin of 3.7 spins. The reduction of Cr cations is reflected in the PEDOS 

plot as occupied Cr 3d peaks appear in the band gap around 0.5eV and 1.8 – 2.1eV from the 

top of the VB. The PEDOS plot for the Cr interstitial is consistent with reduced Cr2+ cations.  

For the Fe-Cr2O3 system, the Cr interstitial reduces a lattice Cr3+ cation and the Fe3+ dopant to 

Cr2+ and Fe2+ with respective Bader charges of 4.5 e- and 12.8 e- for Cr2+ and Fe2+.  The Cr 

interstitial has an oxidation state of +2 with a computed Bader charge of 4.5 e- and a spin 

magnetisation of 0. The PEDOS plot reflects the reduction process as occupied Cr/Fe 3d peaks 

appear in the band gap around 0 – 1eV and 1.8 – 2.1eV from the reduced Fe/Cr cation and the 

Cr interstitial cation.  
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Figure 6: The calculated local geometry and PEDOS plots for (a) Cr vacancy, and (b) Cr interstitial formation in 

(i) Al-Cr2O3, (ii) Fe-Cr2O3 and (iii) La-Cr2O3. The grey and red spheres are the lattice Cr and O atoms, while the 

pink, dark green and light blue atoms are the lattice positions of the Al, Fe and La dopants. The black, light green 

and dark blue spheres are the lattice positions of the Cr vacancy, reduced Cr and Cr interstitial atoms. The green 

and orange lines are the Cr and Fe/La d states, while the blue and red lines are the s and p states. The top of the 

valence band is aligned to 0ev in all plots and the Fermi level is indicated by the dotted line. 
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Chromium, oxygen and peroxide Frenkel defects in metal doped Cr2O3 

The calculated formation energies for the lowest energy configuration of the Cr, O and peroxide 

Frenkel defect pairs are given in Table 5. For the Cr Frenkel defect pairing, the Al and Fe 

dopants do not significantly alter the formation energies while the La dopant reduces the 

formation energy of the Cr Frenkel defect pair, promoting its formation in Cr2O3, this arises 

from the presence of the large La cation. The Al and Fe dopants greatly increase the formation 

energies of the O Frenkel pairs compared to undoped Cr2O3 and thus suppressing their 

formation in Cr2O3. The formation energy for the peroxide Frenkel pair is relatively unaffected 

by Al doping, while La enhances the formation, albeit with a larger formation energy and Fe 

doping greatly increases the defect formation energy. The Cr Frenkel defect is more likely to 

occur in doped Cr2O3 than the other Frenkel defects. 

 

Table 5: The calculated formation energies for Cr, O and Peroxide Frenkel defect pairs in Al, Fe and La doped 
Cr2O3. 

 Ef [Cr Fren] (eV) Ef [O Fren] (eV) Ef [Oper Fren] (eV) 

Cr2O3 2.34 6.75 6.64 

Al-Cr2O3 2.17 7.41 6.35 

Fe-Cr2O3 2.24 8.96 7.79 

La-Cr2O3 1.32 --- 5.22 

 

The calculated local geometry and associated PEDOS plots for the formation of chromium, 

oxygen and peroxide Frenkel defects in Al, Fe and La doped Cr2O3 are shown in Figure 7. For 

all doped structures, the relative positions of the Cr vacancy and interstitial are nearest 

neighbour to each other, where the Cr interstitial is positioned between an interstitial site in the 

Cr layer and the Cr vacancy site. The Cr interstitial has a three-fold trigonal planar geometry 
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with Cr-O bond distances of 1.95Å (x3) in both Al-Cr2O3 and Fe-Cr2O3 while in La-Cr2O3 it 

has a five coordinated distorted trigonal bipyramidal geometry with Cr-O bond distances of 

1.98Å (x3) and 2.09Å (x2). The position of the Cr Frenkel defect pair is next next nearest 

neighbour above the Al dopant, next nearest neighbour below the Fe dopant, and nearest 

neighbour in the same Cr layer as the La dopant. Frenkel defects are typically charge neutral 

as they are redox defects; the oxidising Cr vacancy creates holes that are filled by the reduction 

arising from the formation a Cr interstitial. The calculated Bader charges for each doped 

structures confirm this with all Cr and O species having computed charges of 4.0 e- and 7.3 e-. 

The PEDOS plots for the Cr Frenkel defect pairs in each of the doped structures show that the 

holes on the O atoms arising from the Cr vacancy are filled with the appearance of the occupied 

O 2p defect peaks in the band gap around 0.5eV above the top of the VB.  

The O Frenkel defect pair is not stable for La-Cr2O3 as it relaxes to a [𝑂𝑂𝑖𝑖′′ + 𝑉𝑉𝑜𝑜..] defect as shown 

in Figure 7(b).  For Al-Cr2O3 and Fe-Cr2O3, the O vacancy for the oxygen Frenkel defect is 

nearest to the Al and Fe dopants, changing their local coordination. Al adopts a four-fold 

tetrahedral coordination geometry with Al-O bonds of 1.84Å (x3) and 1.88Å, and Fe has a five-

fold trigonal bipyramidal geometry with Fe-O bonds of 2.06Å (x2) and 1.98Å (x3).  The 

relative position of the O interstitial is next next nearest neighbour to the oxygen vacancy for 

both dopants. In Al-Cr2O3, the formation of an oxygen vacancy reduces a neighbouring Cr3+ 

cation to Cr2+ (Bader charge of 4.5 e-) and the Oi atom (Bader charge of 6.7 e-). The 

corresponding spin magnetisations for the reduced Cr cation and the Oi are 3.7 and 0.9 spins. 

The PEDOS plot with an occupied Cr 3d and O 2p defect peaks appearing in the band gap 

around 1.2eV above the top of the VB. For Fe-Cr2O3, the formation of the oxygen vacancy 

reduces the neighbouring Cr cation and Fe dopant to an oxidation state of +2, with computed 

Bader charges of 4.5 e- and 12.7 e- respectively. The spin magnetisation value of the reduced 

Cr cation is 3.7 spins, and the Fe dopant is 1.8 spins.  The Oi is not oxidised and maintains a 
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Bader charge of 6.3 e- with a spin magnetisation of 1.3, similar to the point Oi defect.  The 

reduction of the Cr/Fe species is seen in the PEDOS plot with the appearance of occupied Cr/Fe 

3d defect peaks in the band gap around 0.8eV from the top of the VB. An occupied O 2p defect 

peak can also been seen in the PEDOS plot from the Oi atom around 0.5eV from the top of the 

VB.  

The Frenkel oxygen vacancy and peroxide defect is shown in Figure 7(c) along with the 

corresponding PEDOS plots. In all cases the oxygen vacancy and peroxide are nearest 

neighbour to each other and to the Fe/La dopants; the defect pair are next nearest neighbour to 

the Al dopant. The local bonding geometry around each of the dopants is unaffected by the 

defect pair, and the dopants maintain their coordination found in the non-defective metal doped 

Cr2O3.  The O-O bond distance in the peroxide is 1.48Å and the Cr-O bonds to the peroxide 

oxygen are 2.03Å (x4). In Al-Cr2O3 and La-Cr2O3, the formation of the oxygen vacancy 

reduces two Cr3+ cations to Cr2+ which have computed Bader charges of 4.5 e- , and both 

oxygen atoms in the peroxide have Bader charges of 6.7 e-.  The spin of each peroxide oxygen 

is 0 while both reduced Cr cations have opposite spins of 3.7 each.  For the Fe-Cr2O3 structure, 

the oxygen vacancy reduces one Cr cation and the Fe dopant to a +2 oxidation states with 

computed Bader charges of 4.5 e- and 12.7 e- respectively. The Cr cation and Fe dopant have 

spins of 3.7 and 1.0 spins. Each of the PEDOS plots confirm the reduction process with 

occupied Cr 3d defect peaks appearing in the band gap around 1.3eV above the top of the VB. 

The peroxide O 2p contribution is mainly to the VB in Al-Cr2O3, however for Fe- and La- 

doped Cr2O3 an O 2p defect peak from the peroxide is seen in the band gap around 0.3eV above 

the top of the VB.  
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Figure 7: The calculated local geometry and PEDOS plots for (a) Cr Frenkel pair, and (b) O Frenkel pair and (c) 

Peroxide Frenkel pair in (i) Al-Cr2O3, (ii) Fe-Cr2O3 and (iii) La-Cr2O3. The grey and red spheres are the lattice Cr 

and O atoms, while the pink, dark green and light blue atoms are the lattice positions of the Al, Fe and La dopants. 

The black, light green and dark blue spheres are the lattice positions of the Cr vacancy, reduced Cr and Cr 

interstitial atoms, while the orange atoms are the O interstitials and peroxide atoms. The green and orange lines 

are the Cr and Fe/La d states, while the blue and red lines are the s and p states. The top of the valence band is 

aligned to 0ev in all plots and the Fermi level is indicated by the dotted line. 
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4. Discussion:  

The Cr/O interstitial/vacancy defects, peroxide formation and Frenkel defect pairs were 

investigated in undoped, Al, Fe and La doped CrO3.  For the undoped Cr2O3 bulk, the most 

favourable defect is the Cr Frenkel defect pair, consistent with previous work.[9]  Previous 

work did not consider peroxide formation in bulk Cr2O3 and our calculations indicate that the 

peroxide defect has a similar formation energy (2.52eV) to the Cr Frenkel defect (2.34eV). 

This would imply that these two defects are competing in Cr2O3.  Both are charge neutral but 

will have different transport capabilities. The Cr Frenkel defect is the dominant Cr defect and 

possibly the main cation transport carrier, while the peroxide is possibly the dominant anion 

defect. The low formation energy of the peroxide in Cr2O3 points to the potential for Cr2O3 to 

store excess oxygen in its lattice and release the oxygen when higher temperatures are achieved. 

The formation of excess oxygen in bulk Cr2O3 by peroxide defect, similarly to CeO2 and 

ThO2,[72]  and the hyper-stoichiometry can be accommodated in Cr2O3 as the formation energy 

is relatively low.  The examination of the Frenkel defect, oxygen vacancy and peroxide 

formation shows that the peroxide is stable even when vacancies are present in the bulk which 

is not seen for CeO2 and ThO2.[72]  This may indicate that Cr2O3 has the potential to readily 

store excess oxygen at higher operating temperatures and not fill oxygen vacancies that may 

kill the ionic conductivity.   This is an important property for OSC materials and also as an 

oxygenation catalyst which could potentially supply excess oxygen atoms to the surface for 

oxygenation reactions such as methanol synthesis and water gas shift reactions,[89] and to 

improve protective coatings.[19, 30]  

The doping of Cr2O3 with Al changes the local geometric and electronic structure of the bulk 

and the defects, but does not significantly change the formation energies for all the defects 

studied.  The exception is the O Frenkel defect, which has an increased formation energy. The 

dominant defect for Al-Cr2O3 is the Cr Frenkel pair with the peroxide defect is also a competing 
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process.  Fe doping does not greatly enhance the formation energy of oxygen vacancies and 

the defect with the lowest formation energy is also the Cr Frenkel defect pair. However the Fe 

dopant notably increases the formation energies of the other defects (oxygen interstitial, 

peroxide, Cr vacancies), so that they are no longer competing with the O vacancy formation. 

This would indicate that Fe doping can improve the reducibility of Cr2O3 and thus the OSC 

properties. Since the Fe dopant greatly increases the formation energies for the O interstitial 

and peroxide Frenkel defect pairings, this indicates that oxygen vacancy formation could occur 

without formation of interstitials or peroxides which would otherwise kill the O vacancies.  

The large La dopant cation in the Cr2O3 lattice greatly promotes Cr vacancy and Cr Frenkel 

defect formation, but does not significantly improve the oxygen vacancy or peroxide formation 

in the Cr2O3 bulk.  The promoting effect of the La doping on cation vacancies in the bulk may 

be useful for p-type conduction as the La-Cr2O3 more easily generates holes.  However, the 

low formation energy of the Cr Frenkel defect pair does suggest that the holes could be killed 

by the formation of the Cr interstitial close to the Cr vacancy. The utility of La doping in Cr2O3 

is worthy of attention, in particular for charged defect formation which is however beyond the 

scope of this work.  

In contrast to aliovalent dopants,[15] the presence of the isovalent dopants in bulk Cr2O3 does 

not greatly improve the reducibility of the material.  We suggest that the isovalent dopants do 

not introduce sufficient structural distortions and charge compensating vacancies, when 

compared to lower valence dopants. These distortions generally appear to be important in 

ensuring higher reducibility in doped metal oxides, as also seen for CeO2 and TiO2.[35, 36, 39, 

40, 45, 46]  The dopants do however introduce interesting changes to the bulk properties of the 

material. Fe doping can suppress defects that compete with oxygen vacancies, while La doping 

can enhance cation defect formation.  These have beneficial implications in catalysis as 

competing processes that could potentially kill desired defects such as oxygen vacancies in 
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oxygenation catalysis or the cathode of an SOFC can be suppressed, and enhance cation 

vacancies in the bulk may be useful in semiconducting properties required for oxygen transport.  

 

5. Conclusion: 

Density functional theory calculations with a Hubbard +U correction applied to the Cr 3d and 

O 2p states were used to investigated the formation of Cr/O vacancies/interstitials and Frenkel 

defect pairs in undoped, Al, Fe and La doped Cr2O3. For undoped Cr2O3, the dominant defects 

are the peroxide and Cr Frenkel defect pair which have similar formation energies and can be 

competing processes in the bulk lattice. Al doping does not significantly alter any of the defect 

formation energies. Fe doping in Cr2O3 does not promote any of the defects under 

consideration, however it does greatly increase the formation energy of oxygen interstitial and 

peroxide defects, suppressing their formation which may assist in forming the dominant defects 

such as oxygen vacancies. Also Fe undergoes reduction in addition to Cr which may promote 

reducibility in the material without killing conductivity. For La-Cr2O3, the formation of Cr 

vacancies and Cr Frenkel defect pair are promoted by the presence of the La dopant.  
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