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Abstract  

Processed meat manufacturers continuously seek new ways to reduce salt in meat products, 

without compromising consumer acceptability, but with enhanced safety and shelf-life. 

Response surface methodology (RSM) was used to develop optimised low-salt processed 

meat products (frankfurters and cooked ham). A box-Behnken experimental design was 

used to assess independent factor effects; salt replacer (ArtisaltTM) (0-100%), high pressure 

processing (HPP) (0.1-600 MPa) and a mix of organic acids (InbacTM) (0.2-0.4%) on 

measured responses for overall sensory acceptability (OSA). Optimum parameters to 

maximise salt reduction and produce cooked ham with similar OSA associated with these 

product types were ArtisaltTM (53%), HPP (535 MPa) and InbacTM (0.3%), while optimum 

parameters for frankfurters were ArtisaltTM (48%), HPP (580 MPa) and InbacTM (0.3%). 

Total salt contents for optimised low-salt cooked ham and frankfurters were 1.4% and 

1.3%, respectively. Hurdles applied extended the shelf-life of low-salt frankfurters or 

cooked ham by 51% or 97%, respectively, compared to control samples. Consumers 

(n=100) assessed optimised low-salt and control frankfurters and cooked hams in 

comparison to ‘gold standard’ commercially-available products on the Irish market and 

results showed that optimised low-salt processed meat products were as acceptable, or 

better, than ‘gold standard’ equivalents, thereby confirming the potential for use of the salt 

replacer ArtisaltTM and hurdles HPP and InbacTM to produce consumer-acceptable low-salt 

processed meat products with enhanced safety and shelf-life.  

A combination of HPP (300 MPa, 400 MPa or 500 MPa) and a mix of organic acids InbacTM 

(0.3%) were then used as hurdles to extend the shelf-life of marinated pork chops. Results 

showed that HPP ≥400 MPa increased (P<0.05) piri-piri marinade absorption which 

enhanced the flavour acceptability of the marinated pork chops; however, at 500 MPa, 

initial toughness was increased. The piri-piri marinade masked the whitening effect caused 
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by HPP and also increased (P<0.05) the tenderness of the marinated pork chops over 

storage time. Combined effects of HPP at 300, 400 or 500 MPa and Inbac™ (0.3%) 

extended (P<0.05) product shelf-life by 16, 22 and 29 days, respectively. Finally, the 

effects of griddle and steam cooking on the physicochemical and sensory characteristics of 

HPP piri-piri pork chops were investigated. Results indicated that the acceleration of 

marinade by HPP modified product fatty acid profile by increasing Oleic acid, as this was 

the main fatty acid present in the piri-piri marinade. Overall, steam cooking resulted in 

better quality marinated pork chops with improved physicochemical and sensory 

characteristics compared to griddled marinated pork chops.  
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Processed meat, high pressure processing, frankfurters, cooked ham, low salt, salt 
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1.1 Introduction  

The knowledge to preserve meat by making fermented sausages dates back to ancient times 

(Pederson, 1979). Such products were described in old Greek, Roman and even Babylonic 

scripts. In Northern and Central Europe “meat animals” were slaughtered before winter; 

however, not all this meat could be eaten at once, so the remaining part was processed to 

preserve the meat for later consumption (Vandendriessche et al. 2008).  

It is said that the success of the Roman army in conquering nearly all the territories of the 

“Old World” was partly due to the knowledge of preserving meat (dry-cured ham and 

fermented sausages), which made the long distance supply of food to the troops feasible. 

In the 18th century, meat consumption increased significantly owing to agricultural 

innovations (Fiddes, 2004).  

To this day, meat is still an integral part of the human diet in most cultures, often seen with 

a deep symbolic meaning and relative social function (Leroy and Praet, 2015). Due to richer 

and more diverse diets, the high-value protein that meat offers improves nutrition for the 

majority of the global population. Meat is also an important source of a wide range of 

essential micronutrients, including; zinc, iron and vitamins such as vitamin B-complex, α-

tocopherol, retinol and vitamin K (Belitz et al. 2009). However, excessive consumption of 

meat-based products can lead to high intakes of saturated fat and salt (WHO, 2003a), which 

in turn can lead to an increase of chronic diseases, such as; obesity, diabetes, hypertension, 

stroke, cardiovascular disease, and some types of cancer. Consequently, the World health 

organisation (WHO) are currently driving measures to reduce salt and saturated fat content 

in foods by raising consumer awareness of such issues and setting guidelines for the food 

processing industry to follow.  
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1.2 Overview of the global meat industry 

The world’s livestock sector is growing at an unprecedented rate and the driving force 

behind this enormous surge is a combination of population growth, rising incomes and 

urbanization. Worldwide, meat production has tripled over the last four decades and has 

increased by 20% in the last 10 years due to a growing demand for high-value animal 

protein (WHO, 2003b; Worldwatch Institute, 2018). Annual meat production is projected 

to increase from 326 million tonnes in 2018 to 376 million tonnes by 2030 (WHO, 2003b; 

Statista, 2018).  

Pork is currently the most widely consumed meat in the world, followed by poultry, beef, 

and mutton; however, poultry production is the fastest growing muscle-food producing 

sector, (Worldwatch Institute, 2018; Statista, 2018) and is predicted to rise to 181 million 

tonnes by 2050 (Figure 1.1).  

The growing demand for livestock products is likely to have an undesirable impact on the 

environment as there will be more larger-scale industrial production, often located close to 

urban centres, which brings with it a range of environmental and public health risks (WHO, 

2003b; Griffin, 2018). Animal waste also significantly contributes to global greenhouse gas 

emissions and is one of the main reasons why emissions are continuing to rise at the rate 

that they are as animal waste releases methane and nitrous oxide, greenhouse gases that are 

25 and 300 times more potent than carbon dioxide, respectively (Worldwatch Institute, 

2018; Griffin, 2018). 
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Figure 1.1 - Global demand for meat (in million tonnes) 2018 –V- 2050 

Source: FAO, 2008; Statista, 2018. 
 

 

 

 

 

1.3 The Irish Meat Industry 

 

Despite the difficult market environment for some meats in 2015, most notably pigmeat, 

the value of meat and livestock exports grew by 2% to over €3.7 billion. This equates to 

over 32% of total Irish food and drink exports (Bord Bia, 2016a).  

Ireland is the highest consumer of poultry meat in the EU. The Irish poultry industry is 

divided into two separate sections – poultry meat and egg production. Each year in Ireland, 

approximately 70 million chickens and four million turkeys are produced, while two 

million hens lay eggs (Enterprise Ireland, 2015).  



25 
 

Irish beef production is predominately a grass-based system, with around 588,000 tonnes 

produced in 2016. Beef self-sufficiency is estimated at over 650%. In 2016, Ireland 

exported an estimated 535,000 tonnes of beef worth approximately €2.38 billion (Bord Bia, 

2018).  

Sheep meat production in 2016 was over 61,000 tonnes and self-sufficiency is estimated at 

over 360%. During 2016, Ireland exported an estimated 50,000 tonnes of sheep meat which 

was valued at approximately €240 million (Bord Bia, 2018). 

In regards to pork, Ireland exported an estimated 235,000 tonnes in 2016 and was worth an 

estimated €615 million, with the UK being the primary market for Irish pork, taking 56% 

of our total pig meat exports. Continental EU markets accounted for 16% of our pork 

exports, while the remaining 28% went to international markets (Bord Bia, 2018). In terms 

of self-sufficiency, Ireland is over 180% self-sufficient in pork production (Bord Bia, 

2016a). In Ireland, bacon sales comprise 38% of total retail pork sales and are dominated 

by the sales of bacon joints and rashers. Pork retail sales make up around 23% and are 

comprised mainly of pork chops and joints, followed by pork casserole and mince. 

Sausages make up 19%, while sliced meats make up 20% of retail pork sales. (Bord Bia, 

2016a

 

1.4 Current trends on meat consumption and added value meat products  

The global importance of the nutritional value of food has increased significantly in recent 

years. There is an ever increasing demand in the meat industry for minimally processed 

foods, which are lower in salt, preservatives, fat and calories, whilst maintaining good-

quality products with respect to physicochemical, nutritional and sensory characteristics 

(Weiss et al, 2010).   
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The consumer demand for convenience is a driving force within the meat industry (Bord 

Bia, 2011). The work and leisure lifestyle patterns of the Western consuming culture, with 

high disposable incomes, have created a demand for pre-prepared foods (Purdy and 

Armstrong, 2007).  Both retailers and foodservice businesses are responding to this demand 

with increasingly innovative solutions (Figure 1.2). Cook-in pouches offer a new solution 

to meal preparation and have emerged in the retail space over recent times (Bord Bia, 2011). 

Demands for convenience, snack foods, processed and ready-to-eat (RTE) meat products 

is expected to grow into the future (Brennen et al., 2013; Alberta agriculture and forestry, 

2017).  

Consumers are becoming increasingly motivated to protect the environment by enhancing 

sustainability in the meat industry. One way of achieving this is reducing food waste by 

extending shelf-life (Bord Bia, 2016b). This means more processing innovations and the 

necessity to link novel processing technologies more closely with packaging innovations.  

Global trends in new and unique flavours and tastes are influencing cuts and varieties in 

foodservice and retail. Demand for new flavours is also impacting upon consumer 

expectations pertaining to pre-marinated and ready-to cook products.  The growing 

popularity of Asian food in Western markets has driven consumer demands for more 

sophisticated and authentic Asian ingredients (Bord Bia, 2016b).  

Clean label is now a consumer-driven movement, demanding a return to ‘real food’ and 

transparency through authenticity. Food products containing natural, familiar, simple 

ingredients that are easy to recognise, understand, and pronounce and contain no artificial 

ingredients or synthetic chemicals are now in greater demand (GoCleanLabel, 2018) and 

policed by the involvement of retailers.  
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Figure 1.2 - Examples of ready to eat snack foods and flavoured meat in a cook in pouch.     

(Bridgford foods, Dukes meats, Tyson fresh meats) 

 

 

1.5 Morphology and chemical composition of meat 

The unit of muscular tissue is a fibre, consisting of myofibrils between which resides a 

solution, the sarcoplasm, and a fine network of tubules (sarcoplasmic reticulum). The fibre 

is bound by a very thin membrane called the sarcolemma, which is attached by connective 

tissue on the outside (Lawrie and Ledward, 2006).  Proteins in muscles can be divided into 

those which are either soluble in water or diluted salt solutions (sarcoplasmic proteins 

(11.5%); myoglobin and enzymes), those which are soluble in concentrated salt solutions 
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(myofibrillar proteins (5.5%); actin and myosin) or those which are completely insoluble 

(connective tissues (collagen and elastin) and membrane proteins (2%)).  

Most of the sacroplamic proteins are enzymes involved in the glycolytic pathway. 

Myofibillar proteins, myosin and actin are responsible for the overall structure of the 

muscle (Greaser et al., 1981; Lawrie and Ledward, 2006).  

Fat in meat can be either adipose tissue (triglyceride) or intramuscular fat (phospholipids 

and unsaponifiable constituents e.g cholesterol) (Lea, 1962). Despite meat containing only 

a small amount of carbohydrates, they are important in developing flavour during cooking 

through caramelization and Maillard-type reactions between reducing sugars and amino 

groups. Furthermore, carbohydrates are responsible for the brown colour of cooked meat 

(Belitz et al. 2009). Besides the excellent source of protein, meat contains all of the nine 

essential amino acids. Obtaining complete proteins in your diet is important for cell 

regrowth, hormone production, immune function and muscle gain (Sfgate, 2018). Meat is 

also a good source of all the B-complex vitamins (thiamin, riboflavin, niacin, biotin, 

vitamins B6 and B12, pantothenic acid and folacin), vitamins A, E and K (Belitz et al. 

2009) and minerals including iron, zinc copper and manganese. Meat therefore plays an 

important role in the prevention of zinc deficiency, and particularly of iron deficiency 

which is widespread (Bender, 1992).  

 

1.6 Health and safety concerns for processed meat products 

The food industry is currently under pressure from the Food Standards Agency of Ireland 

(FSAI) to deliver reductions in the salt intake of the Irish population through the 

introduction of lower salt levels in processed foods (Gilbert and Heisler, 2004). A national 

guideline for the Irish meat industry was agreed by the FSAI (2017), with the target to 

decrease salt content. The following salt levels for processed meats were set; 0.68% salt 
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for uncured cooked meat products, 1.38% salt for sausages, 1.5% salt for frankfurters, 

1.63% salt for ham and other cured meats, 2.88% salt for bacon and 0.75% salt for burgers 

(FSAI, 2017).   

Salt is primarily consumed within processed foods, with the remaining salt intake from 

natural sources, discretionary salt and tap water (Kenten, 2013). Over 80% of salt intake in 

the UK, Ireland and the USA comes from processed food, meaning many consumers do 

not realise they are consuming such high quantities (Gray, 2013).  

Government research indicates that meat and meat products as a food category are the 

second largest contributor to dietary salt after cereal products (Figure 1.3). 

 

 

 

Figure 1.3 Major contributors of dietary sodium in our diet. 

Source: Shrivastav, 2015. 
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1.6.1 Health Concerns of processed meat products 

High salt consumption has been associated with hypertension (also known as high blood 

pressure) and which is the dominant cause of death and disability in adults worldwide (He 

and McGregor, 2008). The risk of developing cardiovascular disease (CVD) increases with 

increasing blood pressure (Cappuccio, 2013). CVD is the most common cause of death in 

Ireland, which accounts for 10,000 deaths per year (IHF, 2016).  

Salt intake of less than 5g/day for adults has been recommended by the WHO to reduce 

blood pressure and risk of cardiovascular disease, stroke and coronary heart attack; 

however, in most European countries this recommended dietary intake is greatly exceeded, 

with an estimated salt consumption as high as 9-12g/day. It was reported that an estimated 

2.5 million deaths could be prevented each year if global salt consumption was reduced to 

WHO recommended levels (WHO, 2016). The cost of CVD to the EU economy is 

estimated at €210 billion per annum (Luengo-Fernandez et al., 2017), while in the US, the 

estimated total cost of CVD in 2015 was $565 billion and this amount is expected to 

increase by almost 100% by 2030 (Farmakis et al., 2016). The association between 

excessive sodium intake and the development of hypertension and CVD (MacGregor and 

Sever, 1992; De Wardener, and MacGregor, 2002) has prompted public health and 

regulatory authorities to recommend reducing dietary intake of salt (NaCl). Another health 

concern regarding processed meat products is obesity. Obesity is a global problem leading 

to chronic diseases such as diabetes and cardiovascular disease (Apovian, 2009). The 

Western dietary pattern includes high amounts of red and processed meat which are rich 

sources of saturated fatty acids and cholesterol and is therefore considered an ‘obesity 

inducing dietary pattern’. (Esmaillzadeh and Azadbakht, 2008). There is also increasing 

evidence that salt intake is related to diabetes, associated with renal stones and osteoporosis 
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and may play a role in the development of stomach cancer (He and MacGregor, 2009; 

Wang et al., 2009). 

Due to these health concerns, there is an ever increasing demand in the meat industry for 

products which are lower in various salts, preservatives, fat and calories (Weiss et al., 

2010).   

 

1.6.2 Microbiology of meat; pathogens and spoilage microorganisms 

Many foodborne diseases are associated with consumption of meat and poultry (Mor-mor 

And Yuste, 2009). The pathogens of greatest concern in fresh and frozen meat and meat 

products are Salmonella spp., Escherichia coli O157:H7 and other enterohemorrhagic E. 

coli (EHEC), L. monocytogenes, Staphylococcus aureus, and the potential for Clostridium 

botulinum in cured hams and sausages. Emerging pathogens, include; Campylobacter 

jejuni, Arcobacter butzleri, Mycobacterium avium subsp. paratuberculosis, Aeromonas 

hydrophila and prions (Mor-mor And Yuste, 2009).  

Many of these pathogens may cause severe gastroenteritis, and although they are typically 

short-lived, chronic complications and even fatalities can occur (Kroll, 2001). Examples of 

the complications, include; arthritis, Chrons disease, meningitis and septicaemia.  

Fatal outbreaks of foodborne disease caused by E. coli O157:H7 and L. monocytogenes 

have increased consumer awareness and aroused interest by public health authorities and 

the food industry in improving sanitary conditions and controlling pathogens in meat and 

poultry production and processing (Mor-Mur and Yuste, 2009). The predominant bacteria 

associated with spoilage of beef and pork under refrigerated conditions are; Brochothrix 

thermosphacta, Carnobacterium spp., Enterobacteriaceae, Lactobacillus spp., 

Leuconostoc spp., Pseudomonas spp. and Shewanella putrefaciens. (Borsch et al., 1996). 
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Many of these meat spoilage micro-organisms can also cause illnesses such as 

gastroenteritis (Mor-Mur and Yuste, 2009). 

 

 

1.7 Meat Processing  

Meat processing technologies can combine a variety of methods such as cutting, mincing, 

chopping, salting, injecting, tumbling, stuffing/filling into casings/moulds, heat treatments 

and ripening, drying or smoking. Based on the processing technologies used and taking 

into account the treatment of raw materials and the individual processing steps, it is possible 

to categorize processed meat products in six broad groups (Figure 1.4).  

 

Figure 1.4 Meat products grouped according to the processing technology applied 

Source: Heinz and Hautzinger, 2007. 

 

 

Frankfurters (raw-cooked products) and cooked ham (cured meat pieces) are commercially 

important processed meat products which are very popular in Europe and were therefore 

chosen for investigation in the current thesis.  
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1.7.1 Frankfurters  

Comminuted cooked meat products (gel/emulsion systems) are a commercially important 

group of processed meat products, of which frankfurters are among one of the more popular 

varieties (Delgado-Pando et al., 2010).  Frankfurters are a type of highly seasoned sausage 

which can contain up to 30% fat with an industrial average of about 20% (Keeton, 1994) 

and a salt content of 2% or higher.  

Emulsification ensures the physicochemical stability of the product, thereby, determining 

the characteristic structure of the batter. It also creates the typical sensory properties 

(appearance, texture, flavour) associated with such products. Low-value meat offcuts such 

as trimmings, parts with higher content of connective tissues or fat can be used (Sebranek, 

2003). Through the addition of salt and other preservatives during the emulsification 

process, and following thermal treatment, the shelf-life of the final product is increased 

(Allais, 2010).  

 

1.7.2 Cooked ham 

Cooked ham is a reformed cured meat product made from pork leg meat. Brine curing is 

the most popular way to produce hams. It is a wet cure whereby fresh meat is injected with 

a curing solution before cooking. Brining ingredients, include;  salt, sugar, sodium nitrite, 

sodium nitrate, sodium erythorbate, sodium ascorbate, sodium phosphate, potassium 

chloride, water and flavourings. Smoke flavouring (liquid smoke) may also be injected via 

the brine solution (USDA, 2016).  
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1.8 Functions of Sodium Chloride in meat processing  

Sodium chloride (NaCl), commonly known as salt, plays a significant technological role in 

processed meat due to its preservation and antimicrobial properties provided by its ability 

to reduce water activity. Moreover, salt activates salt-soluble myofibrillar proteins to 

increase hydration and water-binding capacity; it increases the binding properties of these 

proteins to improve texture and it is essential for flavour (Terrell, 1983; Mariutti and 

Bragagnolo, 2017). Thus, salt reduction in processed meat products is challenging as 

quality of the final product can be compromised.  

 

1.8.1 Physical Processing effects and texture development in processed meats 

One of salt’s main functions in processed meats is in the solubilisation of the functional 

myofibrillar proteins in meat (Desmond, 2006). A wide range of meat products depend on 

this property of muscle proteins to generate their characteristic texture (Matthews and 

Strong, 2005).  Protein solubility in water depends on the distribution of polar and nonpolar 

groups in the amino acid lateral chain (Cheftel et al., 1989) and the ionic species present in 

solutions (Curtis and Lue, 2006).  

The myofibrillar (contractile) proteins of muscle, actin and myosin, are insoluble at low-

salt concentrations, but become soluble in concentrated salt solutions (Schmidt et al. 1987). 

This activates the proteins to increase hydration and water-binding capacity, ultimately 

increasing the binding properties of proteins to improve texture.  

Increasing the water holding capacity of the meat reduces cook loss, thereby increasing 

tenderness and juiciness of the meat product (Desmond, 2006; Tobin et al., 2012). The 

resulting tenderising effect gives the characteristic texture of meat products such as cooked 

hams. Increased solubilisation results in extracted proteins which, on cooking, form stable 

cross links and bind pieces of meat together (Desmond, 2006).   

http://www.sciencedirect.com/science/article/pii/S0309174006001161#bib58
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In finely chopped or emulsified products such as frankfurters, bologna, etc., the salt-

solubilised myofibrillar proteins, derived from the lean meat component, forms a sticky 

exudate on the surface of the highly comminuted meat pieces, which subsequently binds 

the meat pieces together through the formation of a gel-based continuous phase which 

forms a protein film around fat globules. This matrix of heat-coagulated protein entraps 

free water, thereby, retaining the fat during cooking which results in a product with 

acceptable quality characteristics (Desmond, 2006; The Salt institute, 2013).  

Cooking yield also affects the cost of manufacture of processed meats (O’ Flynn et al., 

2014). The control of cook loss is also important because changes in the cooking yields 

may result in compositional changes in finished products, which may in turn affect 

palatability characteristics. As moisture is lost from meat, both during and after thermal 

processing, product yield and other quality attributes such as tenderness, texture, and 

flavour are negatively affected (Pietrasik, 1999). 

 

1.8.2 Preservation effects 

The use of salt for preservation originated long before the use of refrigeration (Matthews 

and Strong, 2005). The antimicrobial effects of salt is based on its ability to reduce water 

activity (aw), which is defined as the amount of free water available for the growth of 

microorganisms (Ingulgia et al., 2017). The effect of salt on microorganisms depends on 

the amount of salt present in the aqueous phase of the food (Ingulgia et al., 2017), therefore 

salt reduction increases water activity, which in turn increases water availability for 

microbial growth. The preservation effect of salt also suppresses the growth of pathogens, 

such as Clostridium botulinum and Listeria monocytogenes in vacuum packed and chilled 

products (Matthews and Strong, 2005).  
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1.8.3 Sensory properties 

In addition to functional and microbial stability, salt can significantly affect sensory 

properties and subsequent flavour perception of meat (Liem et al., 2011). Sensory 

properties of food products are the most important attributes as they are most apparent to 

consumers (Singham et al., 2015).  

Salt has a flavour enhancing effect in meat products, with perceived saltiness primarily due 

to Na+, with the Cl− anion modifying the perception (Ruusunen and Puolanne, 2005; Miller 

and Barthoshuk, 1991). The perception of salt involves the activation of physiologic 

processes such as stimulation of salivation and secretion of gastric acid (Mattes, 1997). 

A particular problem with low-salt meat products is that not only is perceived saltiness 

reduced, but so too is flavour intensity (Ruusunen and Poulanne 2004). While the loss of 

saltiness may be generally problematic for some products, additional challenges exist for 

those containing bitter-eliciting compounds, where lower sodium leads to a reduced 

capacity for bitterness suppression and may lead to an excessively bitter product (Gaudette 

and Pietrasik, 2017). In addition, saltiness enhances the perceived in-mouth aroma of 

products, and for meat, this equates to an enhancement of “meaty” flavour an important 

factor in the overall acceptability of meat products (Ruusunen and Puolanne, 2005). The 

effects of salt on the physical properties of meat products also results in an influence on 

sensory textural attributes (Matthews and Strong, 2005).  

Considering the significant technological role of salt in meat processing, a global approach 

is necessary to reduce salt content in processed meat products (Albarracin et al., 2011).  
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1.9 Approaches to salt reduction in processed meat products  

Although the Irish food industry has had great achievements in lowering salt content in a 

wide variety of foods, further reductions are still required to meet the targets for healthy 

salt consumption levels. For frankfurters, the salt target set by the FSAI in 2017 is 1.5% 

salt and for cooked ham the salt target is 1.6% salt. 

The main strategies used for salt reduction in processed meat products, include; product 

reformulation, compensation through use of substitutes, use of saltiness enhancers and use 

of salt replacers (Kilcast and Angus, 2007). Salt reduction in processed meat products has 

been thoroughly investigated by many authors using product reformulation and various salt 

replacers/substitutes and enhancers (Table 1.1).  A number of commercial sodium replacers 

and flavour enhancers have entered the market to fully, or partially, replace NaCl in 

processed meats. However, it is difficult to assess their impact on sensory properties or to 

determine the best approach toward sodium reduction in specific meat products without 

direct comparison within a model system. In addition, due to their potential impact on 

sensory properties, the employment of replacers or enhancers may be appropriate and 

successful for some meat system applications, but not for others (Desmond, 2006; 

Fouladkhah et al., 2015). The main strategies for salt reduction in processed meat products 

are described as follows; 

 

1.9.1 Product Reformulation  

In product reformulation, a small gradual reduction of salt from the recipe might be 

unnoticed by assessors (Bertino et al., 1982; Puolanne, 2010). Larger reductions might be 

achieved with a gradual salt reduction over a period of years, thereby, allowing consumers 

to get used to lower salt levels in food. For example, to reduce the salt content in cooked 

sausages from 2.3 - 2.4% to 1.5 - 1.7% took approximately 20 years to achieve in Finland 
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(Ruusunen and Puolanne, 2005). However, international governments and regulatory 

agencies are now looking for significant salt reduction in foods in the short-term and cannot 

afford to wait for decades to achieve this overall goal. Therefore, the use of salt replacers 

and salt enhancers in food products may play an essential role in achieving this. 

 

1.9.2 Salt substitutes or replacers   

Among the chloride salts, potassium chloride (KCl) is the most commonly used salt 

alternative (Dötsch et al., 2009). However, at blends over 50:50 NaCl/KCl in solution, a 

significant increase in bitterness and loss of saltiness is observed (Desmond, 2006). The 

basis for using salt replacers is to reduce sodium cations by replacement with potassium, 

magnesium, calcium or to reduce the chloride anions with ingredients such as glutamates, 

phosphates, etc. as a means of providing salty tastes or flavours (Wheelock and Hobbiss, 

1999). KCl contributes to some saltiness by itself, but sometimes imparts off-flavours such 

as bitterness and metallic flavour (Doyle and Glass, 2010). The bitterness perception of 

KCl can be suppressed by using it in combination with further salt replacers or flavour 

enhancers. Prime Favourites, a US company, has launched NeutralFres®, which the 

company claims naturally neutralises the characteristic taste or bitter alkaline off-flavour 

of KCl (Primefavourites, 2005).  

The use of KCl in salt mixtures also gives an additional benefit, owing to the fact that 

potassium is a counter-ion to sodium and reduces the harmful effect of sodium on blood 

pressure (Ruusunen and Poulanne, 2005). Solubilisation of muscle proteins, which is 

critical in the manufacture of processed meats, can also be achieved using salt replacers 

such as KCl. According to the “Hofmeister Series” which ranks the relative influence of 

ions on the physical behaviour of a wide variety of aqueous processes (Zhang and Cremer, 
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2006), KCl has been found to be effective at solubilising meat protein (Puolanne and 

Halonen, 2010).  

Research has also demonstrated that phosphates can be very useful in lowering the NaCl 

content in meat products (Ruusunen et al., 2002; Ruusunen and Poulanne. 2005). 

Phosphates are generally used in meat products to enhance water-holding capacity and 

improve cook yield. They increase water-holding capacity in fresh and cured meat products 

by increasing the ionic strength, which frees negatively charged sites on meat proteins, such 

that these proteins can bind more water.  

Other salt replacers include Sodium or Potassium lactate which can maintain certain 

saltiness, while reducing the sodium content in products (Price et al., 1997) and water 

binders such as starches or gums which are used to maintain the water binding function lost 

due to salt reduction (Desmond, 2006).  

 

1.9.3 Flavour enhancers  

There are a number of flavour enhancing and masking agents commercially available and 

the number of products coming to the market is increasing. These include; yeast extracts, 

lactates, monosodium glutamate (MSG) and nucleotides amongst others. Taste enhancers 

work by activating receptors in the mouth and throat, which helps compensate for salt 

reduction (Brandsma, 2006). A commonly used salt enhancer is MSG, which contains high 

levels of glutamic acid and imparts a ‘umami’-type taste to enhance the palatability and 

acceptability of savoury foods; however, it has been associated with the so-called ‘Chinese 

Restaurant Syndrome’ that may cause headaches, swelling and weakness (Durack et al., 

2008). Yeast autolysates are also commonly used in low salt products, in particular, they 

mask the metallic flavour of KCl (Desmond, 2006).  

 



40 
 

1.9.4 Physical form of salt 

The perception of salt in the solid form is affected by crystal size and shape. Research has 

been carried out using various forms (flaked versus granular) as a method of reducing salt 

content in meat products (Desmond, 2006). Leatherhead Food International have 

investigated optimising and altering the physical form of salt, thereby making it more taste 

bioavailable, with the consequence being able to add less of it to products. This involves 

increasing the efficiency of the salt, changing the structure and modifying the perception 

of the salt (Angus et al., 2005). Lutz (2005) has shown that flake salt can produce red meat 

batters with superior fat and water binding properties compared to regular vacuum 

evaporated salts.  

 

1.9.5 High Pressure Processing 

High pressure processing (HPP) may be of interest to improve protein functionality, where 

it is desired to reduce the sodium content of meat products (Cheftel and Culioli, 1997). 

Sensory analysis on reduced salt HPP frankfurter batters have shown that panellists 

preferred these products to controls. Results also indicated that the texture of these products 

was improved after HPP at 150 MPa (Crehan et al., 2000). These authors concluded that 

HPP is a viable technology that partially compensates for the reduction of salt levels in 

frankfurters.  

Some studies have also shownthat HPP enhances the saltiness perception in meat products 

(Ken et al., 2006; Clariana et al., 2011) due to differential binding forces of NaCl within 

the product network and its release in the mouth (Tamm et al., 2016), which in turn would 

permit salt reduction, as the saltiness perception would be increased.  
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Table 1.1 – Previous salt reduction studies in processed meat products using various approaches.  

 

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Sofos (1983) 

 

Product reformulation 

 

Frankfurters Salt content ranging from 1 - 

2.5% 

 

Reduction >20% resulted 

in softer and less firm 

texture 

Sofos (1985) Use of Salt replacer 

(Potassium Sorbate) 

Frankfurters Salt replacer compensated 

for the 20% NaCl reduction 

Based on textural 

attributes 

Dimitrakopoulou et al. (2005) Product reformulation Reformulated pork 

shoulder 

Salt reduced from 2% to 1% Based on acceptability of 

sensory attributes. 

Aaslyng et al. (2014) Product reformulation Cooked ham Salt reduced from 2.3% to 

1.8% 

Without altering the 

sensory properties, 

sliceability, production 

yield, shelf life and safety. 

Fellendorf et al. (2016) Product reformulation White pudding The critical acceptable limits 

were achieved at 0.6% 

sodium and 5% fat 

Based on acceptable 

scores for sensory 

attributes 

Fellendorf et al. (2016) Product reformulation Black pudding The critical acceptable limits 

were achieved at 0.4% 

sodium and 5% fat 

Based on acceptable 

scores for sensory 

attributes 
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Table 1.1 contd. 

 

 

 

 
 

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Tobin et al. (2013) Product reformulation Sausages The sausages containing 

1.4% and 1.0% salt were the 

most acceptable 

Based on the highest 

scores for sensory 

attributes 

Tobin et al. (2012) Product reformulation Frankfurters Salt levels below 1.5% had a 

negative effect on consumer 

acceptability 

Based on acceptable 

scores for sensory 

attributes 

Tobin et al. (2012) Product reformulation Beef patties Salt reduction of 50% 

achieved 

Based on highest scores 

for overall sensory 

acceptability 

Pietrasik et al. (2014) The use of two 

commercial salt replacers: 

Oceans flavour sea saltTM 

OF45 or 0F60 

Cooked ham 100% replacement of NaCl 

was achieved 

Texture and cook loss 

were not affected; 

however, salt replaced 

ham was liked less in 

terms of flavour and 

aftertaste 
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Table 1.1 contd.  

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Tamm et al. (2016) Partial replacement of 

NaCl with KCl and HPP  

100MPa 

Cooked ham 45% salt reduction was 

achieved 

Acceptable in terms of 

texture, consistency and 

appearance but lower 

saltiness taste. 

Aliño et al. (2009) Partial replacement of 

NaCl with KCl 

Dry cured loin Up to 50% replacement was 

achieved 

Similar physicochemical 

characteristics to control 

Lorenzo et al. (2015) Partial replacement of 

NaCl with KCl 

Cooked ham NaCl was 50% replaced 

with KCl. 

Resulted in an increased 

bitterness taste. 

Pietrasik et al. (2017) Partial replacement of 

NaCl with modified KCl 

Wieners Substitution of 50% NaCl 

with modified KCl 

Negative effects on 

textural and sensory 

characteristics 

Frye et al. (1986) Replacement of NaCl with 

KCl or MgCl2 

Ham 50% or 100% ionic strength 

replacement with KCl or 

MgCl2 

Control – best OSA 

NaCl/KCl – best bind and 

acceptable sensory scores    

NaCl/MgCl2 – lowest bind 

and lowest sensory scores 

Stanley et al. (2017) The use of modified KCl 

based salts to replace NaCl 

Sausage patties NaCl reduced from 1.7% to 

1.07% using modified KCl 

Limited impact on  

physicochemical traits; 

however, scored lower in 

all sensory traits 
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Table 1.1 contd. 
 

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Skogsberg et al. (2017) Partial replacement of 

NaCl with KCl 

Frankfurters Up to 40% of salt can be 

replaced 

Without major quality or 

sensory changes 

Gou et al. (1996) Substitution of NaCl with 

glycine and potassium 

lactate 

Fermented sausages 40% NaCl reduction 

achieved 

Above this level a slight 

off taste or an 

unacceptable sweet taste 

was detected. 

Guardia et al. (2008) Substitution of NaCl by 

mixtures of KCl and 

potassium lactate 

Fermented sausages 50% NaCl substitution was 

achieved 

It was possible to achieve 

50% reduction of NaCl to 

obtain sensory acceptable 

product 

Gimeno et al. (2001) Partial replacement of 

NaCl with calcium 

ascorbate 

Fermented sausages Replacement of 15%, 24%, 

37% and 45% of NaCl 

Replacement ≥ 24% 

resulted in higher 

lightness, redness and 

yellowness and lower 

hardness and gumminess. 

Fulladosa et al. (2009) Partial replacement of 

NaCl with potassium 

lactate and HPP 

Dry-cured ham 50% replacement of NaCl 

with K-lactate 

Did not have a negative 

effect on colour, flavour or 

texture 

 

 



45 
 

Table 1.1 contd.      

 

 

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Gelabert et al. (2003) The substitution of NaCl 

with KCl, potassium 

lactate or glycine 

Fermented Sausages The critical level of salt 

substitution with KCL was 

40% 

Flavour and texture 

defects occurred when 

NaCl was replaced >40% 

Morton Salt. (2004) Partial replacement of 

NaCl with KCl 

Ham, bacon, turkey 40% replacement of NaCl 

was achieved 

Similar flavour scores to 

the control products and 

maintained protein 

hydration 

Zanardi et al. (2010) Partial replacement of 

NaCl by KCl, MagCl2 and 

CaCl2 

Italian salami 40% replacement of NaCl Limited detrimental 

effects on sensory 

attributes 

O’ Flynn et al. (2014) Application of HPP to 

reduce NaCl 

Sausages HPP at 150 MPa has 

potential for reducing salt 

levels in sausages to 1.5% 

Based on textural and 

sensory attributes 

Verma et al. (2010) Partial replacement of 

NaCl with a salt substitute 

blend (KCl, citric and 

tartaric acid, and sucrose) 

and apple pulp 

Chicken nuggets 40% replacement of NaCl 

was achieved 

Similar scores for saltiness 

and juiciness as control, 

although flavour, texture, 

and OSA were lower 
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Table 1.1 contd.      

Reference Salt reduction strategy Processed meat product Details Findings/Based on 

 

Paulsen et al. (2014) The use of salt substitutes 

(KCl, Na-lactate, K-

lactate/Na-diacetate and 

milk minerals) 

Sausages NaCl was reduced from 

0.9% to 0.5% and replaced 

with substitutes 

Control was preferred in 

terms of sensory attributes 

(saltiness, texture and 

after-taste) 

 

Santos et al. (2014) The use of salt replacers 

(KCl) and flavour 

enhancer (MSG) in 

combination with lysine, 

taurine, disodium 

inosinate and disodium 

guanylate 

Sausages NaCl was 50% or 75% 

replaced with KCl. 

Flavour enhancers masked 

the undesirable sensory 

attributes associated with 

the replacement of 50% 

and 75% NaCl with KCl 

resulting in good sensory 

acceptance 
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1.10 Preservation of processed meat products  

Meat provides favourable growth conditions for various microorganisms, but is also 

susceptible to spoilage due to chemical and enzymatic activities. The breakdown of fats, 

proteins and the limited content of carbohydrates present in meat due to microbiological, 

chemical and enzymatic activities results in the development of off-odours, off-flavour and 

slime formation, which makes the meat objectionable for human consumption. Therefore, 

it is necessary to control meat spoilage in order to increase its shelf-life and maintain its 

nutritional value, colour, texture and flavour (Dave and Ghally, 2011).  

Traditionally, methods of meat preservation may be grouped into three broad categories 

based on temperature control, moisture control and, more directly, by inhibitory processes 

(bactericidal and bacteriostatic, such as ionising radiation, packaging, etc.) (Zhou et al. 

2010). Methods of meat preservation can also be categorised based on physical and 

chemical treatments (Mor-Mur and Yuste, 2009) (Table 1.2).  
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Table 1.2 – Physical and Chemical preservation techniques. Adapted from: (Mor-Mur 

and Yuste, 2009). 

 

 

Physical preservation techniques Chemical preservation techniques 

Chilling Modified atmosphere packaging and 

Active packaging (e.g. edible coating films 

containing ascorbic acid or plant essential oils ) 

Freezing 

Heating Spray washing with water, steam, or solutions 

(e.g., organic acids, such as lactic acid, 

trisodium phosphate) 

Drying Agents in solution, such as fatty acid esters, 

para-hydroxybenzoic acid esters, lysozyme, 

phenolic compounds, isothiocyanates, ascorbic 

acid 
Packaging (e.g vacuum packaging) 

High pressure processing Salts 

Ultraviolet radiation Nitrites 

Ohmic heating Sulphites 

Ionizing radiation Spices, condiments, and plant essential oils 

Pulsed electric fields Chitosan 

Ultrasound Bacteriocins 

Oscillatory magnetic fields Bacteriophages 
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1.10.1 Physical treatments  

1.10.1.1 Heat treatments  

Meat and meat products are considered cooked when the centre (coldest point) of the 

product is maintained at a temperature of 65-70°C for 10 minutes since the proteins will 

then be coagulated and the meat tenderised by partial hydrolysis of the collagen. (Bender, 

1992). The vegetative form of bacteria, but not spores, will have been destroyed 

(thermoresistant spores can survive heating above 100°C) (Bender, 1992). Heat treatment 

at a minimum of 62.8 °C internal temperature is also sufficient for destruction of enteric 

pathogens such as Salmonella spp. and pathogenic E. coli (Van Schothorst, 1998; Mor-mor 

and Yuste, 2009).  

 

1.10.1.2 Cooling and Freezing  

The aim of cooling techniques is to slow or limit the spoilage rate of food, as temperature 

below the optimal range can inhibit microbial growth. Low temperature storage employ 

three approaches: (a) chilling (b) freezing and (c) superchilling. All these levels help to 

inhibit or completely prevent bacterial growth (Zhou et al., 2010) and the physicochemical 

and biochemical reactions that govern the deterioration of foods (George, 1993). 

However, the growth of psychrophilic bacteria, yeasts and moulds is not prevented by all 

levels of refrigeration (Neumeyer et al., 1997) and both enzymatic and non-enzymatic 

changes will continue at a much slower rate (Berkel et al., 2004). 

The loss of quality of frozen foods depends primarily on storage temperature, length of 

storage time, and thawing procedure. Microbial growth is completely prevented below -

18°C, and both enzymatic and non-enzymatic changes continue at much slower rates during 

frozen storage (Rahman, 2004). Most pathogens (Salmonella, Staphylococcus species and 
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Clostridium perfringens) are inhibited by cooling, but Listeria monocytogenes can grow at 

+2°C, some Salmonella species at +5°C and Campylobacter at +7°C (Bender, 1992).  

 

1.10.1.3 High pressure processing  

High pressure processing is the technology by which a product is treated at or above 100 

MPa of pressure. Pressure is transmitted uniformly and instantaneously throughout the 

food, but does not change the nutrient content, odour or taste of the product (Yuste et al., 

2001). It is likely that modifications in cytoplasmic membrane (the primary site of pressure 

damage) are the main causes of sub-lethal injury generated by pressure treatment to some 

microorganisms. HPP effectively inactivates the spoilage microbiota of numerous food 

types, and important foodborne pathogens, such as; Campylobacter jejuni, Escherichia coli 

O157:H7, Listeria monocytogenes, and Salmonella spp. (Yuste et al., 2001).  

 

1.10.1.4 Irradiation  

The potential application of ionising radiation in food processing is based on the fact that 

ionising radiation damages DNA very effectively, so much so that living cells become 

inactivated which consequently prevents microorganisms from reproducing, resulting in 

various preservative effects as a function of the absorbed radiation dose (Farkas, 2006). 

High doses (50 kiloGrays (kGy)) are required for sterilisation of meat, while WHO 

recommendations and legislation in most countries limit the dose to 10 kGy (Bender, 1992). 

The 10 kGy dose does not sterilise the product, but substantially reduces bacterial load and 

is effective in destroying many pathogens, including Salmonellae. Although the 

preservation of food by irradiation has been intensively studied for many years, its 

commercial application is still in its infancy since the process calls for heavy investment in 
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factory plant and is regarded with some suspicion by consumers (Bender, 1992; Elhermann, 

2006).  

 

1.10.2 Chemical treatments 

1.10.2.1 Salt 

Salt addition is one of the oldest and most widely used meat preservation techniques. 

Common salt does not display antimicrobial action, but its capacity to reduce water activity 

values (aw) in foods slows down, or even interrupts, vital microbial processes (Albarracin 

et al., 2011).  A high salt concentration generates changes in cellular metabolism because 

of its osmotic effect. Moreover, the salting process alone is inadequate as a sole 

preservation method in ready-to-eat products, necessitating its combination with other 

preservation processes (Lück and Pager, 2000). 

 

1.10.2.2 Organic acids  

Organic acids have been traditionally used as food preservatives but are becoming more 

popular in application as antimicrobial ingredients; particularly, for their ability to reduce L. 

monocytogenes in ready-to-eat meat products. Typical organic acids utilized for their 

antimicrobial properties include sodium lactate, potassium lactate, sodium citrate, sodium 

lactate combined with sodium diacetate, and combinations of sodium lactate with 

potassium lactate and diacetate (Alvardo and Mc Kee, 2007).  

Organic acids have optimal inhibitory activity at low pH (Aslim et al., 2005; Nazer et al., 

2005). It is believed that the inhibitory action of organic acids on a microorganism is as a 

result of the compound in the undissociated state being able to freely cross the plasma 

membrane to enter the bacterial or fungal cell (Brul et al., 1999) and the ability to inhibit 

essential metabolic reactions, such as the production of ATP and the production of essential 



52 
 

enzymes, however, they can also cause membrane disruption and stress on intracellular pH 

homeostasis (Lues, 2005). Organic acids can be applied to meat systems through inclusion 

in the formulation, packaging and also through marination via immersion or injection.  

 

1.10.2.3 Nitrites   

The nitrites used in meat preservation are always in the form of salts such as sodium nitrite 

or potassium nitrite (Dave and Ghally, 2011). They are long known for their antimicrobial 

properties, preventing the growth of the toxin producing Clostridium botulinum, 

Staphylococcus aureus and Yersinia enterocolitica which can grow under anaerobic 

environment in vacuum packages (Roberts, 1975; Cassen, 1994; Archer, 2002; Ray, 2004; 

Lövenklev et al., 2004; Sindelar and Houser, 2009). Nitrite salts are effective in controlling 

colour, lipid oxidation and odour, in addition to controlling anaerobic bacteria (Roberts, 

1975; de Giusti and de Vito 1992; Archer, 2002; Lovenklev et al., 2004; Sindelar and 

Houser, 2009); however, nitrite is used in extremely small quantities in processed meat 

products due to the negative health effects of higher concentrations. (Alahakoon et al., 

2015).  

 

1.11 Hurdle Technology  

The microbial safety and stability, as well as the sensory and nutritional quality of most 

food products is based on hurdle technology (Leistner, 2000). Hurdle technology 

intelligently combines different mild preservation techniques (hurdles) to control or 

eliminate pathogens (Rodriguez-Calleja et al., 2012) in order to achieve multi-target, mild, 

but reliable preservation effects (Leistner and Gorris, 1995). The hurdle technology concept 

fits well with the present consumer trend for minimally-processed foods and, as such, has 

gained much in popularity regarding practical application and research (Mukhopadhyay 
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and Gorris, 2014). Since the 1980’s the intelligent application of hurdle technology became 

more prevalent, because the principles of major preservative factors for foods (e.g., 

temperature, pH, water activity, competitive flora) and their interactions became better 

known (Leistner, 2000).  

Potential hurdles for food preservation, include; temperature (low or high), pH (low or 

high), water activity (low or high), redox potential (low or high), modified atmospheres 

(nitrogen, carbon dioxide, oxygen etc.), packaging systems (aseptic packaging, vacuum or 

modified atmosphere packaging, active packaging or  coating systems), HPP, radiation 

(microwave, ultraviolet, irradiation), other physical processes (pulsed electric field, 

oscillating field pulses, radiofrequency energy), competitive flora (lactic acid bacteria), 

preservatives (organic acids (e.g lactate, acetate, sorbate, ascorbate), free fatty acids and 

their esters, ethanol, spices and their extracts, nitrite, nitrate, smoke, antioxidants, chitosan, 

nisin and other bacteriocins) (Leistner, 1999).  

The application of hurdle technology has been thoroughly investigated by numerous 

authors applying various combinations of hurdles to many food products for shelf life 

extension/preservation and also in challenge testing for various food pathogens (Table 1.3).  
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Table 1.3 – Previous studies which use hurdle technology for shelf life extension of meat 

products. 

Reference Product Combination of 

hurdles applied 

 

Findings 

 

Rodriguez calleja et al. 

(2012) 

Raw chicken 

breast fillet 

Applied HPP at 300 

MPa for 5mins and an 

edible antimicrobial 

coating Articoat™ 

and MAP 

 

Extended shelf life by 

4 weeks in terms of 

total viable count 

(TVC) compared to 

control samples 

 

Vercammen et al. 

(2011) 

Cooked ham Applied HPP at 600 

MPa for 10 min and 

natural antimicrobials 

(Caprylic acid or 

Purasal) 

 

Extended shelf life by 

at least 44 in terms of 

TVC days compared 

to control samples 

Thomas et al. (2008) Pork sausages Lower pH, lower 

water activity, dipped 

in potassium sorbate 

solution and vacuum 

packaging 

 

Extended shelf life by 

6 days in terms of 

TVC compared to 

control samples 

Chawla et al. (2006) Natural lamb 

casing 

Reduced water 

activity, packaging 

and gamma 

irradiation (10 KgY) 

No viable count 

detected over 90 day 

storage; however, 

TVC of control 

samples were 3 log at 

this time 

 

Karthikeyan et al. 

(2000) 

Indian Keema Lower water activity 

and pH 

Extended shelf life by 

at least 2 days in terms 

of TVC compared to 

control samples 

 

Rindhe et al. (2017) Chicken sausage Lower pH, addition of 

humectants and bio 

preservative Nisin 

Extended shelf life by 

4 days in terms of 

TVC compared to 

untreated control 

samples 
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Table 1.3 contd. 

 

Reference Product Combination of 

hurdles applied 

 

Findings 

 

Gunasekaran et al. 

(2018) 

BBQ chicken Addition of glycerol, 

lactic acid, 

gluconodelta-lactone 

and irradiation 

Reduced bacterial 

growth by 3 Log 

compared to control 

samples over 6 days 

storage 

 

Liu et al. (2012) Cooked ham 

inoculated with 

104 CFU/g L. 

monocytogenes 

and Salmonella 

enteritidis 

HPP (400 MPa for 10 

min) and Enterocin 

(256/2560 AU/g) 

Extended the shelf life 

above 90 days 

compared to control 

by inhibiting the 

growth of bacteria and 

pathogenic 

microorganisms 

 

De Alba et al. (2013) Dry cured ham 

inoculated with 

E.Coli 106 CFU/g 

HPP (500 MPa for 

10mins) combined 

with bio preservative 

(Nisin) 

 

Reduced E.Coli by 4 

Log over 60 day 

storage compared to 

control samples 

Marcos et al. (2008) Cooked ham 

inoculated with 

104 

CFU/g L. 

monocytogenes 

 

HPP (400 MPa for 10 

min) in combination 

with natural 

antimicrobials 

(enterocins and 

lactate-diacetate) 

 

Reduced the levels of 

L. monocytogenes 

during storage by 2.7 

log CFU/g. 

Stratakos et al. (2015) Chicken breast 

inoculated with L. 

monocytogenes 

105 CFU/g 

HPP (500 MPa for 1 

min and active 

packaging (coriander 

oil active film) 

 

Maintained  L. 

monocytogenes count 

below the detection 

limit throughout the 

60 day storage period 

 

Rodrigues et al. (2016) Marinated Beef 

inoculated with L. 

innocua and 

E.faecium 106 

CFU/g 

HPP (600 MPa for 5 

min) and NaCl (1-

2%) and Citric acid 

(1-2%) 

The combination of 

HPP and 2% NaCl/ 

2% Citric acid resulted 

in a six log cycle 

reduction of both 

microorganisms 
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1.12 High pressure processing of meat products  

The application of HPP in the food industry traces back to the early 19th century (Medina-

Meza et al., 2014) and HPP of meat has been a fascinating research subject ever since 

(Ledward, 1998).  HPP is an alternative method for food preservation which subjects liquid 

semi-solid and solid foods, with or without packaging, to pressures between 100 and 800 

MPa and (Bermúdez-Aguirre and Barbosa-Cánovas, 2011). For most food applications, the 

minimum and maximum limits of HPP are 200 MPa and 600 MPa, respectively. (Medina-

Meza et al., 2014) 

HPP treatment is currently being used in commercial meat products to eliminate pathogenic 

microorganisms, extend shelf-life, improve safety and increase sensory quality by 

improving texture and of these products (PFV, 2009). However, HPP treatment can also 

increase lipid oxidation, negatively affect texture and induce colour changes in red meat 

which can present a cooked appearance (Yagiz et al., 2009).  

HPP is a technology of interest to the food industry and its advantages over thermal 

processing, include; reduced heat damage, shorter processing times, the retention of 

nutritive value, freshness, texture, flavour, colour, retention of vitamin C and fewer 

undesirable functional changes (Al-Khuseibi et al., 2005; Patterson et al., 2005; Vega-

Gálvez et al., 2011). HPP foods also have a distinct advantage over foods processed by 

other means, in that they have the potential to be marketed as value‐added foods due to the 

retention of organoleptic and nutritional qualities similar to those of ‘fresh’ unprocessed 

products (Rastogi et al., 2007) and can also be marketed as novel foods as they fulfil two 

criteria: a new manufacturing process employed in their production, and their history of 

human consumption has been minimal (Hogan et al., 2005). Furthermore, HPP can fulfil 

consumer requirements for minimally processed additive-free products and can maintain 

nutritional properties (Watson, 2012).  
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Product yield is of immense economic importance to food manufacturers, and HPP 

treatment in general, provides a higher food product yield in uncooked products compared 

with heat treatment, with effects depending on product type and treatment intensity (Hugas 

et al., 2002).  

Some studies have also pointed out that HPP applied to raw meat before processing can 

also maintain or improve protein functionality where it is desired to reduce the sodium 

content of processed meats (Cheftel and Culioli 1997; Mújica et al., 2011). An application 

of this concept to develop low salt meat products is that HPP could increase the solubility 

of myofibrillar proteins thereby improving the chances to lower the amount of salt for the 

development of healthier meat products (Sikes et al., 2009; Grossi et al., 2012; Tornberg, 

2013). Of all foods and food constituents, muscle and muscle proteins are probably the 

most responsive to HPP. This is due to the relatively high sensitivities of muscle glycolytic 

processes and of the associations between myofibrillar proteins (actin and myosin) to 

pressure (Macfarlane, 1985).  

 

1.12.1 The effects of high pressure on meat texture  

HPP application up to 1000 MPa can influence meat protein conformation and induce 

protein denaturation, aggregation or gelation which can result in meat becoming either 

tenderised or toughened. These outcomes depend on the meat protein system, the rigor 

state, the temperature used, the pressure applied and its level of duration (Sun and Holley, 

2010).   

The effect of HPP on the texture of muscle foods has been known since 1973, when 

Macfarlane (1973) reported the potential use of HPP for pressure-induced tenderization of 

meat. Since then many authors have investigated muscle texture changes in meat, poultry 

and fish during HPP treatment and have also observed that HPP at lower levels (100-
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400MPa) can tenderise meat when applied pre rigor (Bouton et al., 1980; Beilken et al., 

1990; Angsupanich and Ledward 1998; Angsupanich et al., 1999; Jung et al., 2000b; 

Chevalier et al., 2001; Iwasaki et al. 2006). Tenderisation postrigor with HPP can only be 

achieved at higher temperatures (up to 80 °C) (Sun and Holley, 2010). HPP had no 

beneficial effects on the tenderisation of post rigor meat at temperatures below 50 °C (Ma 

and Ledward, 2004).  

Jung et al. (2000a) reported that in post rigor meat myofibrillar proteins appeared capable 

of increasing toughness and/or neutralizing the effect of HPP on meat tenderness in the 

absence of heat treatment. It is well known that HPP increases meat toughness 

proportionally with increasing pressure levels up to 600MPa (Macfarlane et al., 1980-81; 

Yuste et al., 1998; Jung et al., 2000a; Ma and Ledward, 2004; Zamri et al., 2006; Del Olmo 

et al., 2010; McArdle et al., 2011; Kruk et al., 2011). The increased toughness with HPP 

has been attributed to an increasing incidence of sarcomeres, in which thick filaments have 

been compressed onto the Z-line, thus removing the I-band as a zone of weakness 

(Macfarlane et al., 1980). HPP primarily affects the physicochemical properties of 

raw/uncooked meat products and has minimum effects on cooked products (Considine et 

al., 2008; Neto et al., 2015; Bansal et al., 2015) as the myofibrillar proteins in cooked 

products have already been denatured due to the cooking process.  
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1.12.2 The effects of high pressure on meat colour  

The colour of meat depends on the amount and type of myoglobin present in the muscle 

(Campus et al., 2010). HPP has minimum effects on the physicochemical properties of 

cooked products as the myofibrillar proteins have already been denatured due to the 

cooking process. (Considine et al., 2008; Neto et al., 2015; Bansal et al., 2015). In dry 

cured meat products the pigment responsible for the dry-cured meat colour is 

nitrosylmyoglobine, a compound which is hardly affected by HPP (Cheftel and Culioli, 

1997). However, HPP causes drastic colour changes in fresh meat especially in redness, 

and thus is not considered suitable for commercial applications (Cheftel and Culioli, 1997). 

Souza et al. (2011) also stated that consumers' purchasing preferences are highly based on 

fresh meat colour and HPP treatment caused meat to appear lighter in colour meaning that 

more work was and is needed to investigate meat colour preservation.  

Colour changes in fresh muscle food products after HPP have been reported to be related 

to the denaturation of myofibrillar and sarcoplasmic proteins (Zhou et al., 2010; Ma and 

Ledward, 2013). Similar results have been reported by Carlez et al. (1995) who suggested 

that fresh meat discolouration after HPP at 200-350 MPa is due to a “whitening” effect 

(increase in L* values) caused by globin denaturation, haem release or displacement or by 

oxidation of ferrous myoglobin to ferric metmyoglobin when fresh meat is HPP at ≥400 

MPa. Goutefongea et al., (1995) also suggested that discolouration occurs as a results of 

protein coagulation which would affect sample structure and surface properties. According 

to Ledward, (1971), myoglobin undergoes a pre-denaturational conformational change that 

makes the haem more exposed/available to other denatured or denaturing proteins in the 

system and that it co-precipitates with them.  
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The degree of discoloration in fresh meat is usually proportional to the level of protein 

denaturation which increases with increasing pressure level. Kruk et al. (2011) applied HPP 

to raw chicken breast fillets at 300, 450 or 600 MPa for 5 minutes and found that lightness 

and yellowness increased significantly and that this increase was proportional to the level 

of HPP applied. Another colour-related observation was that when HPP was applied to beef 

at extremely low levels (80 to 100 MPa 2 days post-slaughter), its colour stability increased 

during storage, however, treatment of beef 7 or 9 days post-slaughter led to no increase in 

colour stability at all (Cheah and Ledward, 1997). The authors suggested that this was 

because the treatment destroyed part of the catalytic system responsible for the oxidation 

of myoglobin to metmyoglobin.  

 

1.12.3 The effects of high pressure on lipid oxidation  

From a sensory point of view, lipid oxidation can impair quality and cause rancidity 

problems which are considered unpleasant by consumers (Jeremiah, 2001; Guyon et al., 

2016). Lipid oxidation was reported to be linked to an increase in protein oxidation (Souza 

et al. 2013), a deterioration of meat texture (Estevez et al. 2005) and a potentially negative 

association with drip loss, discolouration, loss of nutrient value, decrease in shelf-life, and 

the accumulation of toxic compounds, which may be detrimental to the health of consumers 

(Richards et al. 2002; Chaijan, 2008; Mapiye et al., 2012) 

The maximum acceptable limit for TBARS is 1 mg/kg meat (Warriss, 2000) which is 

regarded as the limit beyond which meat products will normally develop objectionable 

odours/tastes.  

HPP can accelerate lipid oxidation in HPP-treated meat products (Cheah and Ledward, 

1995; Andres et al., 2004) by triggering intrinsic pro-oxidants such as myoglobin (Medina-

Meza et al. 2014). Increased rates of lipid oxidation due to HPP has also been attributed to 
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pressure-induced protein denaturation, which leads to the release of free-radicals catalysing 

oxidation (Cheftel and Culioli, 1997), the release of metal ions from iron complexes 

promoting auto-oxidation of lipids in HPP meat and also due to membrane damage (Cheah 

and Ledward, 1996; Cheah and Ledward, 1997; Angsupanich and Ledward, 1998; 

Chevalier et al., 2001). 

Cheah and Ledward (1996 and 1997) reported that the effect of HPP on oxidative stability 

of lipids in pork meat depends on the applied pressure, with a value between 300 and 400 

MPa constituting the critical pressure to induce catalysis. 

Previous studies have also shown that HPP decreases oxidative stability of meat. Ma et al. 

(2007) reported increased TBARS values in HPP beef at ≥ 400 MPa. Núñez et al. (2003) 

used response surface methodology (RSM) to model changes induced by HPP at 24 to 400 

MPa, and holding times from 7 to 28 minutes, on lipid oxidation of vacuum-packed slices 

of dry-cured Iberian ham and pork loin and reported that significantly increased TBARS 

values were obtained as the pressure level and holding time increased. Cava et al. (2002) 

also reported that pressure level and holding time increased the extent of lipid oxidation in 

dry-cured Iberian ham and pork loin. Kruk et al. (2011) reported no significant increased 

rate of oxidation when raw chicken breast fillets were HPP at 300 MPa for 5 minutes; 

however, above this pressure the oxidation rate increased significantly with pressure 

intensity. Souza et al. (2011) found that lipid oxidation only increased slightly in HPP-

treated pork samples; however, the pressure level applied (215 MPa) was lower than 300 

MPa, which is the critical pressure required to accelerate lipid oxidation (Cheah and 

Ledward, 1997).  
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1.12.4 Effects of HPP on the sensory quality of meat products  

Sensory properties of food products are the most important product attributes owing to the 

fact that they are the most apparent to consumers (Singham et al., 2015). Physicochemical 

changes are reflected in sensory characteristics; colour changes (Lightness, redness and 

yellowness) affect liking of appearance, WBSF changes affect liking of texture and 

tenderness and TBARS values >1mg/kg can decrease liking of flavour and increase off-

flavour perception. Studies have reported that HPP of cooked meat products does not affect 

sensory acceptability as HPP has minimum effects on the physicochemical properties of 

cooked products as a consequence of the myofibrillar proteins already being denatured 

through the cooking process (Considine et al., 2008; Neto et al., 2015; Bansal et al., 2015). 

Furthermore, it was reported that HPP did not affect significantly the sensory quality of 

various cooked meat products (low-fat pastrami, strassburg beef, export sausage, cooked 

ham, wieners and cajun beef) (Hayman et al., 2004; Karlowski et al., 2002; Pietrasik et al., 

2017), even if the products were HPP at 600 MPa.  

However, in fresh meat products, HPP can significantly alter the sensory attributes such as 

appearance, texture, juiciness and overall sensory acceptability. HPP can decrease liking 

of appearance due to the whitening effect described previously and which can decrease 

consumer acceptability of HPP processed fresh meats (Cheftel and Culioli, 1997; Souza et 

al., 2011). The appearance and colour of food has been shown to significantly influence 

consumer sales (Considine et al, 2008). The ability of HPP to either toughen or tenderise 

meat can also result in positive or negative textural effects (Chevalier et al., 2001; Iwasaki 

et al., 2006; Zamri et al., 2006; Kruk et al., 2011). HPP has been shown to improve 

juiciness by Crehan et al. (2000), who demonstrated that the application of 300 MPa 

significantly increased juiciness of frankfurters. This may be due to the fact that HPP can 

lower the cook loss of meat products (Rodriguez- Calleja et al., 2012; Souza et al., 2011), 
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which in turn would increase product juiciness. With respect to flavour, Crehan et al. (2000) 

stated that HPP does not markedly alter taste, flavour or the nutrient content of foods.  

Interestingly, studies have also suggested that HPP enhances saltiness perception in meat 

products, which can positively affect flavour and OSA (Ken et al., 2006; Clariana et al., 

2011). This effect may be due to differential binding forces of NaCl within the product 

network and its release in the mouth (Tamm et al., 2016). This offers a unique opportunity 

for HPP to assist in salt reduction within processed meats.  

 

 

1.12.5 Effects of HPP on microorganisms – spoilage and pathogens  

One of the principal advantages of HPP is through its ability to extended shelf-life and 

improve food safety due to its inactivation of microbial populations (Rendueles et al. 2011).  

The loss of viability of microorganisms through HPP is the result of a combination of 

factors, so cell death is due to multiple or accumulated damage inside the cell (Simpson 

and Gilmour, 1997).  

For most forms of vegetative bacteria and spoilage microorganisms, significant reductions 

(usually higher than 4 log units) in the microbial population are achieved when 400-600 

MPa is applied at room temperature (Campus, 2010). Pressure level, temperature and time 

are the critical factors that determine the lethality of microorganisms in a particular food 

matrix (Bajovic et al., 2012). The nature of the food product, such as; low water activity, 

high fat, high protein and high solute concentration have been identified as important 

factors that can increase the barotolerance of microorganisms and reduce the extent of 

bacterial inactivation, thereby leading to the recovery of sub-lethally damaged cells during 

product storage (Rendueles et al., 2011; Szerman et al., 2011). In general, Gram-negative 

http://www.sciencedirect.com/science/article/pii/S1466856416301424#bb0005
http://www.sciencedirect.com/science/article/pii/S1466856416301424#bb0045
http://www.sciencedirect.com/science/article/pii/S1466856416301424#bb0045
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bacteria and cells in the growth phase, are more sensitive than Gram-positive bacteria and 

cells in the stationary phase (Campus et al., 2010). 

The resistance of microorganisms to pressure is highly variable, depending mainly on the 

type of organism and the food matrix being considered. Prokaryotes are usually more 

resistant when compared to eukaryotes (Yuste et al., 2001). The destruction of protozoa 

and parasites is achieved with relatively low pressures (100-400MPa) (Collins et al., 2005; 

Lindsay et al., 2006; Rosypal et al., 2007; Brutti et al., 2010). Moulds and yeasts have 

intermediate resistance (Palou et al., 1997; Shimoda et al., 2002). Viruses possess a wide 

range of pressure resistance which appears to be dependent upon their structural diversity. 

Enveloped viruses are usually more sensitive to pressure than naked viruses (Hygreeva 

and.Pandey, 2016). 

However, bacterial spores show great resistance to inactivation by HPP. The genera 

Bacillus and Clostridium comprise significant species as foodborne spore-forming 

pathogens, such as Clostridium botulinum, Clostridium perfringens and Bacillus cereus 

(Rendueles et al., 2011). 

One strategy has been successfully employed to induce germination of spores and 

subsequently inactivate the bacteria by HPP. The strategy was developed and applied to 

poultry meat (Atkar et al., 2009) and consisted of the following: (1) a primary heat 

treatment (80°C, 10 min) to pasteurize and denature meat proteins and to activate 

Clostridium Perfringens spores for germination, (2) cooling of the product to 55°C for 20 

min and further incubation at 55°C for 15 min for spore germination (3) inactivation of 

vegetative from germinated spores by pressure-assisted thermal processing (586 MPa at 

73°C for 10 min). This approach is not new as the principal is based upon the process of 

Tyndallisation, but using pressure rather than a temperature application.   
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The pathogenic microbiota that associates with meat and meat products has a wide history 

in causing severe food borne infections for humans in different countries throughout the 

world (Juck et al., 2012; Ahmadi et al., 2015). The most common pathogens that are 

associated with food borne illness are Salmonella spp., Staphylococcus aureus, Bacillus 

cereus, Clostridium botulinum, Yersinia enterocolitica, Campylobacter spp., Listeria 

monocytogenes and Escherichia coli O157 (Bover-Cid et al., 2012). The successive control 

of food borne outbreaks can be achieved through the complete inactivation of growth of 

pathogenic microflora in the food product (Jofré et al., 2009).  

Listeria monocytogenes is a bacterial pathogen of major concern to the processed meat 

industry, because this pathogen is ubiquitous and will grow under refrigerated conditions 

in the presence of both salt and nitrite (Myers et al. 2013). HPP has been permitted as a 

post-processing decontamination technology for RTE cooked and cured meat products in 

different countries in order to eliminate the risksposed by pathogens, including; Salmonella 

spp., E. coli O157:H7 and Listeria monocytogenes (Hygreeva and Pandey, 2016). The 

following recommended microbiological limits are applied for cook-chill products 

examined at the point of consumption before reheating or cooking is applied: Aerobic plate 

counts < 5x105 CFU/g of product; E. coli< 10 CFU/g of product; LAB < 109 CFU/g of 

product, Salmonella: absent in 25 g of product, (FSAI, 2014). For fresh meat products the 

recommended microbiological limits are: Aerobic plate counts < 5x106 CFU/g of product; 

E. coli< 10 CFU/g of product, Salmonella: absent in 25 g of product (FSAI, 2015).  

Numerous studies have investigated the effects of HPP on the inactivation of various 

spoilage and pathogenic microorganisms in different meat products (Table 1.4). The 

majority of these studies apply HPP at 600 MPa, which is the standard pressure level used 

in commercial meat applications (Myers et al., 2013).  
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Table 1.4 - Previous studies investigating the effects of HPP on the inactivation of various spoilage and pathogenic microorganisms in meat products. 

 

Reference Meat product HPP Findings 

 

Carlez et al. (1994) Minced beef 450 MPa for 20 mins Resulted in a delay of 13–15 days for 

TVC growth compared to untreated 

control samples 

Carpi et al. (1999) Cooked ham 600 MPa for 5 mins Extended shelf life up to 75 days 

compared to untreated control samples 

which spoiled at 15 days 

Lopez – Caballero et al. 

(1999) 

Cooked ham 400 MPa for 20 mins Extended shelf life by at least 14 days 

compared to untreated control samples 

Diez et al. (2008) Blood sausage 600 MPa for 10 mins Resulted in 15 days shelf life 

extension compared to untreated 

control samples based on TVC 

Pietrzak et al. (2007) Cooked ham 600 MPa for 10 mins After 8-week storage, spoilage 

microorganisms in the HPP samples 

were 4–5 log cycles lower than in 

untreated control samples 
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Table 1.4 contd. 

 

Reference Meat product HPP Findings 

 

Han et al. (2011) Cooked ham 600MPa for 10 mins Reduced initial TVC by 2 log 

compared to untreated control samples 

Pietrasik et al. (2017) Wieners 600 MPa for 3 mins Control samples spoiled at 8 weeks. 

TVC and LAB of wieners were below 

the limit of detection for 12 weeks. 

Yanqing et al. (2009) Smoked ham 400MPa and 600 MPa for 10 mins Based on TVC and LAB,  Control 

spoiled at 2 weeks, 400MPa spoiled at 

8 weeks, 600MPa spoiled at 10 weeks 

Garriga et al. (2004) Marinated beef loin 600 MPa for 6 mins Reduced TVC and LAB at least 4 log 

cycles compared to untreated control 

samples 

Wang et al. (2015) Honey garlic pork chops 450 MPa for 3 mins Shelf life extension by 21 days based 

on TVC compared to untreated control 

samples 

Karlowski et al. (2010) Cooked ham and Smoked pork 

loin 

600 MPa for 10 mins Reduced TVC by 5-6 logs and 

extended shelf life to 6-8 weeks. 
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Table 1.4 contd. 

 

Reference Meat product HPP Findings 

 

Hugas et al. (2002) Cooked ham and Marinated 

beef 

600MPa for 6 mins Reduced initial S.aureus counts by 2 

log. Reduced LAB by 1 log 

 

Rubio et al. (2007) Cured beef 500 MPa for 5 mins TVC was 2 log lower over 210 day 

storage compared to untreated control 

samples 

 

Kruk et al. (2011) Chicken fillets inoculated with 

Salmonella typhimurium, 

Escherichia coli, and Listeria 

monocytogenes 10 8-9 CFU/g 

600 MPa for 5 mins Reduced the total bacterial count by 

6–8 logs improving shelf-life for 7–14 

days. 

 

Myers et al. (2013) Sliced ham inoculated with L. 

monocytogenes 

 

600 MPa 

 

Reduced L. monocytogenes                

by 3 log cycles 

Hayman et al. (2004) Pastrami, Strassburg beef, 

export sausage, Cajun beef 

inoculated with L. 

monocytogenes 104 CFU/g. 

600 MPa for 3 mins 

 

Below detection limit for TVC, LAB 

and L. monocytogenes for 90 day 

storage 

 



69 
 

 

Table 1.4 contd. 

 

Reference Meat product HPP Findings 

 

Tanzi et al. (2004) Dry-cured ham inoculated with 

L. monocytogenes 104.65 CFU/g 

 

600 MPa for 9 min 

 

Total inactivation (<1 cfu/g) 

Scheinberg et al. (2014) Beef jerky inoculated with 107 

CFU/g L. monocytogenes, 

Salmonella spp, E.Coli 

0157:H7, S.aureus 

 

HPP 550 MPa for 1 min (x2) 6.83 and 4.45 log reduction in 

Salmonella spp. and Escherichia coli 

O157: H, respectively. 

1.28 and 1.32 log reduction in L. 

monocytogenes and Staphylococcus 

aureus, respectively 

 

Porto-Fett et al. (2010) 

 

Salami inoculated with 107 

CFU/g E.Coli 

 

HPP 600 MPa for 5 mins 

 

>5 log reduction 
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1.13 Commercial applications of HPP  

Research into HPP in the 1980’s led to it being commercially exploited with the 

development of rigs capable of processing large volumes of food at pressures of several 

hundred MPa. Initial success was with fruit- and vegetable-based products such as orange 

juice and guacamole. For such products HPP applied at 500 MPa inactivated both bacteria 

and enzymes, fully or partially, so that products could be stored for several weeks at 

refrigeration temperatures with no loss of quality (Patterson et al., 2005).  

Currently, the meat industry has the greatest number of industrial scale HPP rigs in the food 

industry, followed by vegetable-based processors (Figure 1.5). Commercially-available 

HPP meat products, include; dry cured ham, tapas, parma ham, chorizo, salami, and turkey, 

chicken and beef (Campus, 2010). These HPP meat products are currently commercialised 

mainly for export purposes. Consequently, HPP offers the possibility of increasing 

commercial commodities and expanding product portfolios for meat companies (Campus, 

2010). Fresh meat is not typically commercially HPP, primarily owing to negative colour 

changes in the meat. (Cheftel and Culioli, 1997). 

 

               Figure 1.5 Industrial HPP machines in different food industries. 

Source: Campus, 2010 
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Custom HPP systems range between $500,000 and $2.5 million; however numerous 

facilities now offer HPP tolling services (Balasubramaniam et al., 2008; Patterson et al., 

2005). Industrial HPP units can range in size up to 525 litre capacity (Figure 1.6). 

HPP service costs will vary due to different operating parameters, product specifications, 

packaging, volume, and labour costs; however, available sources have estimated treatment 

costs ranging between $0.04 and $0.11 per pound of product (Patterson et al., 2005; 

Balasubramaniam et al., 2008). In more recent times, the development of high-efficiency 

HPP machines has reduced the processing costs to more acceptable levels and HPP as a 

low-temperature treatment is also viewed as an environmentally friendly and waste-free 

technology (Campus, 2010).  

 

 

 

Figure 1.6 Industrial HPP unit (HPP Tolling, Dublin) 
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1.14 Marination of meat products 

Marinade technology has been used in the meat industry for several decades. The role and 

perception of marinades has evolved from flavouring and tenderising to enhancing yield, 

colour, shelf-life and meat quality (Yusop et al., 2011).  

 

1.14.1 Types of marinades 

Based on their functionality marinade ingredients are classified into two categories; 1) 

Ingredients that affect the water-binding or textural properties, and condition the meat to 

bind water via ionic strength and pH such as water, salt, phosphates, organic acids, 

hydrocolloids, protein isolates, curing aids and enzymes and 2) ingredients which affect 

consumer appeal and eating quality of marinated meat products such as herbs and spices, 

flavour extracts and sweeteners. (Toledo, 2007).  

 

1.14.2 Marinating techniques  

Marinades diffuse from the meat surface into the interior of the meat due to the gradient 

formed from the higher concentration of marinade to the lower concentration of fluid in the 

interior of the meat (Yusop et al,. 2011).  

Consumers generally incorporate marinades into meat via immersion. This consists of 

immersing the meat in a liquid marinade and allowing penetration of the meat through 

diffusion over time. Dry/paste marinating is also a common method of marinate delivery 

for consumers; however, injection processing and tumbling/massaging are operating 

marinade processes more commonly employed by the meat industry (Yusop et al., 2011).  
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1.14.3 Effects of marination on physicochemical characteristics of fresh meat  

1.14.3.1 Flavour enhancement 

There has been an increase in the range of commercially available marinade products 

(Yusop et al., 2011) and flavour components such as barbeque and piri piri marinade are 

in high consumer demand (Nachay, 2011). Ethnic marinades and ethnic flavour-marinated 

meat products are very popular due to the increased demand for such products by 

consumers who are more adventurous, demand products possessing more authenticity and 

desire a more flavourful experience when eating meat (Yusop et al., 2009a; Yusop et al., 

2009b; Yusop et al., 2010).  Marinades can increase the sensory acceptability of meat 

products by enhancing flavour (Yusop et al., 2011). Kim et al. (2010) found that pork 

marinated with garlic and onion juice had significantly higher flavour attributes than 

control samples which were not marinated. Similarly, Kingsley et al. (2015) found that a 

combination of Sriracha® hot sauce flavouring and HPP at 600MPa for 5mins yielded a 

raw oyster with improved sensory quality in regards to flavour.  

 

1.14.3.2 Texture  

With respect to texture, marinades containing organic acids are primarily applied for 

tenderisation. Many authors have demonstrated the ability of marinades to tenderise meat 

products such as beef, chicken and pork (Lewis and Purslow, 1991; Oreskovich et al., 1992; 

Berge et al., 2001; Aktas et al., 2003; Burke and Monahan 2003; Sheard and Tali, 2004; 

Bowkler et al., 2010; Birk et al., 2010; Wang et al., 2015; Rodrigues et al., 2016). 

Marinades increase tenderness due to marinade uptake by muscle proteins and through 

solubilisation of collagen (Burke and Monahan, 2003).  
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1.14.3.3 Yield  

Marinades containing Phosphates have been applied to muscle foods to increase product 

yield. Phosphates increase water-holding capacity in fresh and cured meat products by 

increasing the ionic strength, which frees negatively charged sites on meat proteins, 

allowing them to bind more water (Desmond, 2006).  

Many products are marinated by vacuum tumbling meat with a mixture of water, salt, and 

phosphates to increase cook yield (Smith and Young, 2007). Sheard and Tali, (2004) 

reported that injection of a marinade consisting of salt, tripolyphosphate and bicarbonate 

increased the yield of pork loin. Alvarado and Sams (2004) found that vacuum tumbling 

with phosphate increased the yield of broiler chicken breast fillets. Other authors have also 

reported an increase in product yield in muscle foods after vacuum tumbling with 

phosphates (Landes, 1972; Smith et al., 1991; Young and Lyon, 1997; Young et al., 2004; 

Smith and Young, 2007).  

. 

1.14.3.4 Colour  

Marinating can also be employed to incorporate colours into meat products (Yusop et al. 

2011). Colour enhancement through marination is particularly beneficial in the case of HPP 

treated processed meats, but might also be a potential approach to dealing with fresh meat 

discolouration associated with the application of HPP.  

Wang et al. (2015) demonstrated the potential of marinades to mask the whitening 

effect/discolouration of HPP on raw meat as the authors concluded that honey garlic 

marinade partially masked HPP-associated meat discolouration up to 600MPa.  
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1.14.4 Preservation   

Marinades containing organic acids are becoming more popular as antimicrobial 

ingredients; particularly, for their ability to reduce Listeria monocytogenes in ready-to-eat 

meat products. Typical marinades utilized for their antimicrobial properties include sodium 

lactate, potassium lactate, sodium citrate, sodium lactate combined with sodium diacetate, 

and combinations of sodium lactate with potassium lactate and diacetate (Alvardo and Mc 

Kee, 2007). The inhibitory action of organic acids on a microorganism is believed to be a 

result of the compound in the undissociated state being able to freely cross the plasma 

membrane to enter the bacterial or fungal cell (Brul et al., 1999) and the ability to inhibit 

essential metabolic reactions, such as the production of ATP and the production of essential 

enzymes, they can also cause membrane disruption and stress on intracellular pH 

homeostasis (Lues, 2005).  

Organic acids are typically employed in hurdle technology in combination with another 

method of preservation (Marcos et al., 2008; Jofre et al., 2009; Vercammen et al., 2011; 

Rodriguez calleja et al., 2012; De Alba et al., 2013; Gunasekaran et al., 2018).   

Rodrigues et al. (2016) inoculated marinated beef with 106 CFU/g of Listeria innocua and 

Escherichia faecium, and marinated it with solutions in different concentrations of NaCl (1 

or 2%) and citric acid (1 or 2%) for 18 hrs followed by HPP (300, 450 or 600 MPa) and 

found that the different marinating solutions were not sufficient to reduce initial microbial 

loads in the non-pressurized samples, but the combination with HPP caused six log cycle 

reductions of both microorganisms.  
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1.15 Cooking methods of meat products  

Cooking of meat is essential to achieve a palatable and safe product (Tornberg, 2005) as it 

enhances flavour and tenderness and inactivates pathogenic microorganisms (Rodríguez-

Estrada et al., 1997; Broncano et al., 2009). Cooking denatures proteins and increases the 

digestibility and bioavailability of nutrients (Davey and Gilbert 1974; Meade et al., 2005). 

Temperature and time play an important role in the characteristics of cooked meat and fish 

(Sobral et al., 2018). The major components of myofibrillar protein (myosin and actin) start 

to denature at ∼40–60 °C and ∼80 °C, respectively (Ishiwatari et al., 2013). Myofibrillar 

and connective tissue proteins (collagen and elastin) control the toughness of muscle tissues 

and during heating, these proteins are denatured, causing destruction of cell membranes, 

shrinkage of fibres, aggregation, and gelling of myofibrillar and sarcoplasmic proteins, and 

shrinkage and solubilisation of connective tissue (Tornberg 2005; Yu et al., 2017).  

The most common methods of cooking meat include roasting, boiling, grilling, broiling, 

frying, braising, steaming, griddling, poaching, microwaving, baking, poaching, 

barbequing, sousvide and confit (AMSA, 2018; Sobral et al., 2018) and the three main 

factors that differ among various cooking techniques are the temperature on the surface of 

the meat, the temperature profile through the meat and the method of heat transfer 

(convection or conduction by contact, air or steam) (Bejerholm and Aaslyng, 2004).  

Steam cooking is a widely used, convenient and healthy cooking method as the typical 

characteristics of colour, flavour, texture, palatability and nutrients are retained (Kahlon et 

al., 2008). Steaming relies on cooking with steam heat resulting from boiling water. The 

meat has direct contact only with steam which contributes to the moist texture of steam 

cooked meat (Sobral et al., 2018). Air convection is often coupled with steam injection in 

the oven chamber to improve meat tenderness and to reduce cooking losses (Murphy et al., 

2001). Griddle cooking is gaining popularity in meat research, especially in industry 
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settings. The griddle cooks meat through conduction heating as the heat is transferred 

directly from the hot griddle surface to the meat (Yancey et al., 2011). 

 

1.15.1 Effects of cooking methods on physicochemical quality of meat products 

The physical properties and quality of cooked meat are strongly affected by the degree of 

protein denaturation resulting from different heat treatment conditions, such as 

temperature, time and contact method (Ishiwatari et al., 2013). Many studies have shown 

that protein denaturation due to cooking causes structural changes in meat and affects its 

physical properties such as water-holding capacity, texture, and colour (Bendall and 

Restall, 1983; Palka and Daun, 1999; Tornberg, 2005; Garcia-Segovia et al., 2007) and as 

a result all sensory attributes can be influenced by changes in the cooking technique 

(Bejerholm and Aaslyng, 2004). Cooking method can also alter the fatty acid composition 

in meat products (Badiani et al., 2004; Maranesi et al., 2005; Sarriés et al., 2009) due to 

increased cook loss or oxidation (Weber et al., 2008).  

It is well known that different cooking techniques result in different eating qualities 

(Fjelkner-Modig, 1986; Heymann et al., 1990; Wood et al., 1995).  Dreeling et al. (2000) 

examined the effect of various cooking methods (grilling, frying, griddling, roasting or 

deep fat frying) on the quality of low-fat beef burgers and found that the cooking method 

significantly affected the cook loss with deep fat frying and grilling resulted in the highest 

cooking losses and deep fat frying also resulted in beef burgers with the lowest moisture 

content. The sensory characteristics of overall sensory acceptability, tenderness, flavour, 

appearance, texture and juiciness were significantly affected by the cooking method and 

griddling was the most acceptable cooking method in terms of overall sensory 

acceptability. Latif (2010) concluded that the most suitable cooking methods for marinated 

chicken breast meats were roasting and boiling as they reduced the cook loss compared to 
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microwaving and frying. Barbanti and Pasquini, (2005) reported that marination, followed 

by air-steam cooking is the best combination to obtain the most tender chicken breast slices.   

 

1.16 Consumer attitudes towards HPP meat products  

When introducing new technologies in food processing, consumer opinion plays a 

significant and deciding role (Lyndhurst, 2009). In the past few years, research 

organizations and social media have been actively working to promote consumer awareness 

about newer food processing technologies and associated benefits relating to their health 

and convenience aspects. Recent reports have indicated positive responses from consumers 

who are ready to accept the foods that are being processed by novel processing techniques 

(Sorenson et al., 2011).  

Butz et al. (2003) surveyed 3000 consumers in France, Germany and UK in relation to their 

perceptions of HPP and found that HPP was acceptable to the majority of consumers in 

France and Germany; however, it was important that the product price does not exceed that 

of conventional products and that there is a health and convenience benefit.  
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Overall, the evidence presented above highlights the great potential of salt replacers to 

significantly reduce salt content in processed meat products and also the potential of HPP 

for enhancement of safety and shelf life with minimum effects on the quality characteristics 

of cooked meat products. However, HPP and organic acids have not been previously 

applied through reponse surface methodology as a hurdle technology to compensate in 

terms of safety and shelf life for significant salt reduction in processed pork meat products 

such as frankfurters or cooked ham.  

HPP can also improve the safety and shelf life of fresh meat products; however, the 

drawbacks of applying HPP to fresh meat products include the whitening effect which can 

decrease consumer acceptability and also the ability of HPP to increase fresh meat 

toughness. A combination of HPP, organic acids and marinades have the potential not only 

to enhance the safety and shelf life of fresh meat products but also to mask the 

discolouration and improve the tenderness. Furthermore, the ability of HPP to accelerate 

marinade absorption in order to enhance the yield and flavour acceptability of marinated 

piri-piri pork chops has not been examined previously; therefore two novel approaches are 

investigated in the current thesis.   
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1.17 Thesis objectives 1-6   

 Use RSM to develop a sensory-acceptable, low-salt cooked ham using salt replacers 

(Artisalt™) and hurdles including HPP and a mix of antimicrobial organic acids 

(Inbac™).  

 

 Use RSM to develop sensory-acceptable, low-salt frankfurters with enhanced safety 

and shelf-life using salt replacers (Artisalt™) and hurdles including HPP and a mix 

of antimicrobial organic acids (Inbac™).  

 

 Establish the efficacy of a combination of HPP and a mix of organic acids InbacTM 

as hurdles to extend the shelf life of previously sensory optimised low-salt 

frankfurters and low-salt cooked ham from a microbiological and physicochemical 

point of view.  

 

 Assess the acceptability and consumer appeal of previously sensory optimised low-

salt frankfurters and cooked ham with enhanced safety and shelf life compared to 

research control and commercial gold standard frankfurters and cooked ham 

products available in the Irish market.  

 

 Determine the efficacy of HPP to accelerate the marinade absorption of piri piri 

pork chops and to study these effects on the physicochemical, sensory and 

microbiological characteristics over storage time.  

 

 Compare the effects of griddle and steam cooking on the physicochemical and 

sensory characteristics of HPP marinated pork chops.  
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CHAPTER 2  

The application of response surface methodology for the development of 

sensory accepted low-salt cooked ham using high pressure processing and 

a mix of organic acids. 

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is in the form of an accepted manuscript published in Innovative food science 

and emerging technologies (2018) 45: 401-411.   
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Abstract 

The objective of this study was to develop sensory accepted low-salt cooked ham by the 

application of response surface methodology (RSM). A Box-behnken experimental design 

was used to assess the effects of the independent factors salt replacer (ArtisaltTM) (0-100%), 

high pressure treatment (0.1-600 MPa) and a mix of organic acids (InbacTM) (0.2-0.4%) on 

hardness, flavour, saltiness and overall sensory acceptability (OSA) of the cooked ham. 

The main factor that affected all response variables was salt replacement. The optimum 

parameters to maximise salt reduction and produce hams with similar OSA associated with 

this type of products were ArtisaltTM (53%), HPP (535 MPa) and InbacTM (0.3%) and the 

cooked ham manufactured using the optimum parameters contained 1.4% total salt which 

is a 46% reduction compared to control samples which contained 2.6% total salt. Overall, 

a combination of salt replacer, HPP and organic acids showed great potential for the 

development of cooked ham with significantly reduced salt content.  

 

Industrial Relevance 

Consumer studies have shown that meat consumption is being more and more influenced 

by health, nutritional and environmental considerations; therefore, companies are 

constantly searching for new and emerging technologies to reduce salt in meat products 

and enhance shelf life to reduce food waste. In this study we used a novel approach which 

showed great potential in salt reduction of ham as the quality and sensory acceptability of 

the ham were similar and/or better after salt was replaced by 53%. The hurdle approach 

used in this study is expected to improve the safety and shelf life of the low-salt optimised 

ham and this confirmatory study is underway.  
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2.1 Introduction 

Sodium chloride (NaCl), commonly known as salt plays a significant technological role in 

processed meat due to its preservation and antimicrobial properties provided by its ability 

to reduce water activity. Moreover, salt activates proteins to increase hydration and water-

binding capacity; it increases the binding properties of proteins to improve texture and it is 

essential for flavour (Terrell, 1983; Mariutti and Bragagnolo, 2017). Thus salt reduction in 

processed meat products is challenging as quality of the final product can be compromised. 

High salt consumption has been associated with cardiovascular disease (CVD) which is the 

most common cause of death in Ireland which accounts for 10,000 deaths per year (IHF, 

2016). Salt intake of less than 5 g/day for adults has been recommended by the World 

Health Organisation (WHO) to reduce blood pressure and risk of cardiovascular disease, 

stroke and coronary heart attack; however, in most European countries this recommended 

dietary intake is greatly exceeded with an estimated salt consumption as high as 9-12 g/day. 

It was reported that an estimated 2.5million deaths can be prevented each year if global salt 

consumption is reduced to the WHO recommended levels (WHO, 2016).  

Due to the preservation properties of salt, when salt is reduced in meat products, the safety 

and shelf-life can be compromised. Hurdle technology combines intelligently different 

mild preservation techniques (hurdles) such as high pressure processing (HPP) to control 

or eliminate pathogens (Rodriguez-Calleja et al., 2012). HPP can fulfil consumer 

requirements for minimally processed additive-free products, maintain sensory and 

nutritional properties and can contribute to the development of meat products with lower 

salt content (Watson, 2012). Furthermore, Karłowski et al., (2002) reported that HPP did 

not have an effect on the sensory quality of cooked ham; indicating that HPP affect 

minimally the physicochemical characteristics of cooked meat products as the protein had 

been denatured by cooking. Some studies have also pointed out that HPP enhances the 

http://www.sciencedirect.com/science/article/pii/S0309174006001161#bib58
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0320
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saltiness perception in meat products (Ken et al., 2006; Clariana et al., 2011) due to 

differential binding forces of NaCl within the product network and its release in the mouth 

(Tamm et al., 2016).  

The main strategies used for salt reduction in processed meat products include product 

reformulation, compensation by the use of substitutes, use of saltiness enhancers and the 

use of salt replacers (Kilcast and Angus, 2007). Dimitrakopoulou et al. (2005) successfully 

reduced salt in reformulated pork shoulder from 2% to 1% based on acceptability of sensory 

attributes. Aaslyng et al. (2014) found that through product reformulation the salt in cooked 

ham can be reduced from 2.3% to 1.8% without altering the sensory properties, sliceabilty, 

production yield, shelf life and safety; however, further reductions affected significantly 

product quality and would therefore require other measures such as the substitution of salt 

with other functional ingredients such as salt replacers.  

Potassium Chloride (KCl) is probably the most common salt substitute/replacer used in 

reduced-salt meat products and has been extensively examined for salt reduction in cooked 

ham (Tamm et al., 2016; Lorenzo et al., 2015; Aliño et al., 2009; Ruusunen and Puolanne., 

2005; Hand et al., 1982); however, one of the major problems when replacing NaCl with 

KCl is the bitterness and the use of higher concentrations of KCl can leave a metallic 

aftertaste (Albarracín et al., 2011). Lorenzo et al. (2015) found that partial replacement 

(50%) of NaCl with KCl in the manufacture of hams resulted in an increased bitterness.  

Pietrasik et al. (2014) examined the effects on the physicochemical characteristics and 

sensory acceptability of cooked ham when NaCl was fully replaced (100%) with two 

commercial salt replacers: Oceans flavour sea saltTM OF45 or 0F60, which are natural sea 

salts that contain 45% and 60% less sodium than table salt, respectively. The authors 

reported that the texture and cook loss of the cooked ham were not significantly affected; 

http://www.sciencedirect.com/science/article/pii/S1466856416301424#bb0005
http://www.sciencedirect.com/science/article/pii/S1466856416301424#bb0045
http://www.sciencedirect.com/science/article/pii/S0309174010000811#bib50
http://www.sciencedirect.com/science/article/pii/S0309174010000811#bib50
http://www.sciencedirect.com/science/article/pii/S0309174010000811#bib21
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however, the hams containing the sea salt replacers were liked significantly less compared 

to control for flavour and aftertaste. The authors concluded that further flavour optimisation 

through the application of bitter masking agents or flavour enhancers was required to 

suppress undesirable levels of bitterness elicited by the ingredients used. Tamm et al. 

(2016) achieved a 45% salt reduction in ham through the use of KCl combined with a 

pressurisation step at 100 MPa after tumbling, these salt-reduced hams were acceptable in 

terms of texture, consistency and appearance but a lower saltiness taste was detectable by 

the sensory panel, which can potentially reduce product acceptability.  

To the best of our knowledge no previous studies have been carried out on the application 

of product optimisation using a combination of salt replacers, HPP and antimicrobials in 

the development of low-salt cooked ham; therefore, the objective of this study was to use 

response surface methodology (RSM) to develop a sensory accepted low-salt cooked ham 

using salt replacers (Artisalt™) and hurdles including high pressure processing (HPP) and 

a mix of antimicrobial organic acids (Inbac™). 
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2.2 Materials and Methods 

2.2.1 Materials  

Pork Silverside was obtained from Ballyburden meats, Ballincollig, Cork. NaCl, Sodium 

Nitrite, Sodium Nitrate, Sodium Ascorbate and Sodium tripolyphosphate hydrated food 

grade, Carfosel 990 (Prayon, Belgium) were obtained from All in All ingredients Ltd, 

Dublin. Artisalt™ (a mix of Potassium chloride 41%, Ammonium chloride 40% and 

flavour enhancers - yeast extract, onion and celery 19%) is a commercially available salt 

replacer used in processed meat products. which was obtained from Chemital Ltd, 

(Chemital Ltd, Barcelona, Spain). According to the manufacturer specification sheet 

ArtisaltTM can replace all (100%) or part (50%) of common salt in meat products without 

giving any off-taste and allowing meat proteins solubilisation which is an essential factor 

in producing products with good texture and palatability. A commercial antimicrobial 

InbacTM (a mix of Sodium acetate 43%, Malic acid 7%, emulsifier-mono and diglycerides 

of fatty acids and technological coadjuvants; anticaking agents, calcium phosphate, 

magnesium carbonate and silicon dioxide ~50%,) was obtained from Chemital Ltd and 

used as recommended by the manufacturer (2-4 g/kg of product).  

 

2.2.2 Methods 

2.2.2.1 Experimental Design 

A three-factor experimental design (Box-Behnken) was used to optimise salt reduction and 

consisted of the manufacture of 15 different formulations (Table 2.1). The centre point of 

the experimental design was repeated 3 times. The independent factors were Salt replacer 

ArtisaltTM (0-100%), HPP (0.1-600MPa) and organic acid InbacTM (0.2-0.4%). The full 

polynomial model involving the main effects (linear terms), interaction terms (cross 
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products) and quadratic or squared terms were defined to fit the responses as is shown in 

Equation 1. 

Equation 1:  

Y=b0 + b1A + b2B + b3C + b4AB + b5AC + b6BC + b7A
2 + b8B

2 + b9C
2 

Where: Y represents the dependent or response variable (overall sensory acceptability 

(OSA), flavour, saltiness or hardness), b0 is a constant coefficient of the models and A, B 

and C represents the independent coded variables; A = Salt replacement (%), B = HPP 

(MPa) and C = Inbac (%)) ranging from -1 to +1and b0–b9 are the regression coefficients 

to be determined.; b1–b3 are the linear coefficient terms; b4–b6 are the interaction coefficient 

effects; and b7–b9 are the quadratic coefficient effects of the model estimated by multiple 

regression analysis, respectively. The effect of variables at the linear, quadratic, and 

interactive levels on individual responses was described using a significance level of 

confidence set at 5%.  
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Table 2.1 Experimental design of uncoded and coded parameters. 

Independent variables Symbols Levels 

Uncoded Coded Uncoded Coded 

Salt replacement (%) A X1 0 -1 

   50 0 

   100 +1 

High Pressure treatment (MPa) B X2 0.1 -1 

   300 0 

   600 +1 

Concentration of Inbac (%) C X3 0.2 -1 

   0.3 0 

   0.4 +1 
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2.2.2.2 Characterisation of salt replacer and antimicrobial  

 

Ammonium Chloride was determined using the methods outlined in 23rd Joint FAO/WHO 

Expert Committee on Food Additives (1979). KCl, Nitrites and Nitrates concentration of 

the salt replacer ArtisaltTM and concentration of sodium acetate and malic acid of the 

antimicrobial InbacTM was determined by a commercial external analytical testing facility 

(ALS laboratories, Little Island, Cork). For the determination of KCl, Artisalt™ was 

homogenized and mineralized by acids and hydrogen peroxide prior to analysis by atomic 

emission spectrometry with inductively coupled plasma and stoichiometric calculations of 

compounds concentration carried out from measured values. Nitrites and Nitrates were 

determined by flow-injection analysis and gas-phase molecular absorption spectrometry. 

Results were expressed as a percentage of the salt replacer ArtisaltTM. Organic acids 

(Sodium acetate and Malic acid) were determined by high pressure liquid chromatography 

with UV detection and results were expressed as percentage of the antimicrobial InbacTM.   

 

2.2.2.3 Brine preparation and injection  

The brine composition for the 15 ham formulations contained 13% NaCl, 2% Sodium 

tripolyphosphate hydrated food grade (Carfosel 990), 0.3% Sodium ascorbate, 0.15% 

Nitrate and 0.15% Nitrite with varying levels of NaCl replacer ArtisaltTM (0% replacement, 

50% replacement or 100% replacement) and InbacTM (0.2 – 0.4%) (Table 2.1). The brine 

containing 13% salt was injected using a multineedle injector (Machine factory Hollstein 

and Fuhrmann, Vienna, Austria) to obtain a 10% weight gain. After injection pork meat 

pieces were placed in a vacuum tumbler (Inject Star, Austria) and tumbled at 4°C for 2 

hours at a speed of 6 rpm and vacuum of -0.9 bar. The pork pieces (~1kg) were packed into 

stainless steel moulds which were then sealed, clamped and cooked at full steam (100°C) 
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in a Zanussi oven (Zanussi Professional, Italy) and temperature monitored using a 

thermocouple data logger (Omega Engineering Ltd, Manchester, UK) inserted into the 

coldest point of the ham  until an internal temperature of 74°C was reached. The cooked 

hams were then removed from the oven and final end-point temperature of the moulded 

hams were re-checked using a Testo hand-held food thermometer. The cooked hams were 

cooled down at room temperature and stored overnight in a chill room at 4°C before high 

pressure processing was carried out.  

 

2.2.2.4 High Pressure Processing 

Chilled whole cooked hams were packed individually in combivac vacuum pouches (20 

polyamide/70 polyethylene bags; Alcom, Campogalliano, Italy) and vacuum-sealed using 

a Webomatic vacuum packaging system (Werner Bonk, type D463, Bochum, Germany). 

Samples were placed in a second vacuum pouch and this was again vacuum-sealed. 

Packaged samples were HP treated in a Stansted Fluid Power Iso-Lab 900 Power High 

Pressure Food Processor (Stansted Fluid Power Ltd., Stansted, UK), using an ethanol-

castor oil (90:10) as the pressure transmitting medium. The speed of pressurisation was 300 

MPa per minute, the speed of depressurisation was 600 MPa per minute and holding time 

at the required pressure level was 5 minutes. Pressurisation was carried out at room 

temperature 20°C which was monitored by the temperature sensor contained in the HP units 

pressure transmitting medium. Adiabatic heating resulted in a ~3°C increase per 100 MPa.  
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2.2.2.5 Compositional Analysis and pH 

Fat and moisture were determined using the SMART Trac and CEM Analysis System 

(CEM Corporation, Matthews, NC 28105, USA) (Bostian et., al, 1984). Protein content 

was determined according to AOAC Procedures (1997) (method 981.10). The ash content 

of the cooked hams were determined by overnight incineration in a furnace (Nabertherm, 

Model L9/C6, Nabertherm, Germany) at 550 °C. Each value represents the average of 4 

measurements (two independent trials x two samples). 

The pH of the cooked hams were measured using a digital pH-metre (Mettler-Toledo 

GmbH, Schwerzenbach, Switzerland) by inserting the glass probe directly into the cooked 

ham. Each value represents the average of 8 measurements (two independent trials x two 

samples x two readings).  

 

2.2.2.6 Expressible moisture 

The expressible moisture was determined as previously described by Grau and Hamm 

(1953) with some modifications. Briefly, 300 mg of grounded ham sample was placed on 

a filter paper (Whatman No. 1) and compressed for 2 min with a force of 1kg using a 

Texture Analyser TA-XT2 (Stable Micro Systems, Surrey, UK). The compressed sample 

was then removed and the filter paper was weighed. Expressible moisture was calculated 

as the quantity of water released by the sample and expressed in percentage using the 

following equation. 

% EM = (weight of filter paper and sample – weight of filter paper after compression) / 

(weight of filter paper and sample before) * 100. 

http://www.sciencedirect.com/science/article/pii/S0309174013006037#bb0055
http://www.sciencedirect.com/science/article/pii/S0309174013006037#bb0055
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Each value represents the average of 8 measurements (two independent trials x two samples 

x two readings). 

 

2.2.2.7 Salt content and Ionic strength  

Salt content was determined using the DiCromat II Salt Analyser (The Noramar Co, US). 

Before use, the instrument was calibrated using a 2% NaCl (Sigma, Ireland) solution. For 

the determination of salt content in the cooked ham samples, 25g of blended cooked ham 

was weighed to which 225 mls of distilled water was added and then blended for 1 min 

using an Ultraturrax homogeniser (IKA-Werke GmbH and Co, Germany). The homogenate 

was then filtered through a Watmann no.1 filter paper and the filtrate received in a 250 ml 

beaker. The dip-in probe of the DiCromat II Salt Analyser was immersed in the filtrate and 

the percentage of salt in the sample was read in the instrument display. Each value 

represents the average of 8 measurements (two independent trials x two samples x two 

readings).  

The ionic strength was calculated using the Debye and Huckel formula as described by 

Stanley (2017) using the following equation;  

IS =
1

2
𝑛 ∑ I (Ci Zi)

 2 

Where IS = ionic strength, n = number of ions in solution, I = the specific ion in solution, 

Ci= concentration to the species (M), Zi = the valence or oxidation number of the species. 

Results were expressed as (M). 
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2.2.2.8 Cook Loss  

The cooking loss of the hams were determined prior to HP treatment and expressed as a 

percentage of the differential weight between hams before and after cooking.  Briefly, the 

initial weight of the raw ham was recorded, after cooking the ham was patted dried with a 

paper towel to remove excess moisture and re-weighed. Cook loss was calculated as 

follows: 

% Cook loss = (cooked weight – initial raw weight) / (initial raw weight) * 100 

Each value represents the average of 4 measurements (two independent trials x two 

samples). 

 

2.2.2.9 Sliceability 

Sliceability of the cooked hams was determined as previously described by O’ Neill et al. 

(2003). Briefly, 10 slices of 2 mm thickness were obtained from the cooked ham and 

breakage of the slices observed. The results were expressed as a percentage of slice 

breakage out of 10 during the slicing procedure. Each value represents the average of 8 

measurements (two independent trials x two samples x two readings). 

 

2.2.2.10 Colour 

The colour of the surface of the cooked ham was measured using a Minolta Chromameter 

CR-300 (CR-300, Minolta Camera Co., Osaka, Japan). Before measurement, the 

Chromameter was calibrated using a white tile (Y = 86, X = 0.3166, y = 0.3237). CIE L*, 

a* and b* values (Lightness, redness and yellowness, respectively) are reported. Each value 
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represents the average of 8 measurements (two independent trials x two samples x two 

measurements) 

 

2.2.2.11 Texture profile analysis (TPA) 

Cylindrical sections of the cooked ham (2.5 cm x 4 cm) were extracted using a corer and 

texture measurements were performed at room temperature (20°C) using a Texture 

Analyser TA-XT2 (Stable Micro Systems, Surrey, UK). The cooked ham samples were 

subjected to a two-cycle compression to 40% of their original height with a cylindrical 

probe (SMSP/35 Compression plate) 35 mm diameter using a 25 kg load cell at a cross-

head speed of 1.5 mm/s. Texture profile parameters measured were hardness (N), 

adhesiveness (N x mm), springiness (mm), gumminess, chewiness (N) and cohesiveness 

(dimensionless). Each value represents the average of 8 measurements (two independent 

trials x four samples) 

 

2.2.2.12 Sensory evaluation    

A 25 member semi-trained taste panel was used to evaluate the cooked hams over three 

sessions using a 9-point hedonic scale. The panellists were recruited from staff and 

postgraduate students at the School of Food and Nutritional Sciences, University College 

Cork and chosen based on their experience in the sensory analysis of processed meat 

products and on their availability. The panellists have partaken in sensory analysis of 

processed meat products on numerous occasions and are familiar with the sensory 

terminology. The tested attributes included; Appearance (1= extremely dislike, 9= 

extremely like), Texture (1= extremely dislike, 9= extremely like), Flavour (1= extremely 

dislike, 9= extremely like), Juiciness (1= extremely dry, 9= extremely juicy) Tenderness 



95 
 

(1= extremely tender, 9= extremely tough,), Saltiness (1= not salty, 9= extremely salty), 

Off-flavour intensity (1= imperceptible, 9= extremely pronounced), metallic taste (1= 

imperceptible, 9= extremely pronounced), Overall acceptability (1= extremely dislike, 9= 

extremely like). Cooked ham samples were labelled with a three digit random numbers and 

10 random samples per session were served to each of the 25 panellists.  

 

2.2.2.13 Statistical analysis 

The experiment was performed twice and the software STATGRAPHICS® centurion XV 

(Statpoint, Inc., USA) was used for the design of the experiment (DOE) which consisted of 

15 ham formulations (Table 2.1), for prediction of the full model (Equation 1), ANOVA of 

the 4 response variables for optimisation and their interactions (Table 2.5) and to carry out 

product optimisation (Figure 2.2). The DOE was randomised by the software; however; the 

formulations have been arranged in order in the tables to allow for better understanding.  

One-way ANOVA of all physicochemical (colour, texture, cook loss, pH, expressible 

moisture, sliceability, salt content) and sensory data was carried out using the SPSS 21 for 

Windows (SPSS Statistical software, IBM Corp., Armonk, NY, USA) software package. 

Differences between pairs of means was resolved by means of confidence intervals using 

Tukey's test; the level of significance was set at P < 0.05. Two independent trials were 

carried out consisting of the manufacture of 15 formulations of ham and all analysis was 

carried out in duplicate. 
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2.3 Results and Discussion 

2.3.1 Composition of salt replacer and antimicrobial  

The results of the quantitative chemical analysis of Artisalt™ indicated it contains 41% 

Potassium chloride, 40% Ammonium chloride, and 19% flavour enhancers (yeast extract, 

onion and celery (calculated by difference)). The contents of nitrates and nitrites in 

ArtisaltTM were 5.8 and 2.3 ppm, respectively. This may be due to the fact that Artisalt™ 

contains celery and celery is a natural source of nitrates and nitrites (Sebranek et al., 2012). 

The results of the quantitative chemical analysis of InbacTM indicated it contains 43% 

Sodium acetate, 7% Malic acid, ~50% (emulsifier-mono and diglycerides of fatty acids, 

and technological coadjuvants; anticaking agents, calcium phosphate, magnesium 

carbonate and silicon dioxide (calculated by difference)). Small quantities of InbacTM (0.2-

0.4%) were used in the formulation therefore its inclusion in such small amounts would not 

affect the sodium content significantly nor contribute to the ionic strength. 

Ionic strength of 2% NaCl, 2% ArtisaltTM and 1% NaCl / 1% ArtisaltTM, concentrations 

used in the ham formulation, was calculated using the Debye and Huckel formula and the 

results indicated that the control (2% NaCl) formulation had an ionic strength of 0.34M, 

the 50% replacement formulation (1% NaCl and 1% Artisalt™) had an ionic strength of 

0.31M and the 100% replacement formulation (2% ArtisaltTM) had an ionic strength of 

0.26M. The results indicates that control samples that contained 2% NaCl and samples that 

were 50% NaCl replaced with Artisalt™ were quite similar which would result in similar 

protein solubility and binding of the ham which in turn would increase the water holding 

capacity (WHC) and reduce cook loss. These results are in agreement with O’ Flynn et al., 

(2014) who reported that lower cook losses were observed in sausage samples with higher 

salt concentration due to increased ionic strength. Frye et al. (1986) also found that a 
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combination of KCl/NaCl gave the best physical bind in ham and concluded that partial 

replacement of NaCl ionic strength with 50% or less of KCl in tumbled ham can be 

accomplished while maintaining acceptable sensory and physical attributes. 

Solubilisation of muscle proteins can also be achieved using salt replacers such as KCl. 

According to the “Hofmeister Series” which ranks the relative influence of ions on the 

physical behaviour of a wide variety of aqueous processes (Zhang and Cremer, 2006), KCl 

has been found to be effective at solubilising meat protein (Puolanne and Halonen, 2010).  

 

2.3.2 Compositional analysis 

Compositional analysis of cooked hams as affected by HP treatment, salt content and 

InbacTM showed no significant differences in protein, ash or fat content between samples 

(Table 2.2).The moisture content of the cooked ham decreased significantly (P<0.05) when 

the NaCl was 100% replaced with ArtisaltTM, this may be due to a significantly higher 

(P<0.05) cook loss as a result of reduced protein solubility and binding due to a lower ionic 

strength. These results are in agreement with the findings of O’ Flynn et al. (2014) who 

reported that the fat content in sausages was not affected by salt content or high pressure 

treatment and that higher moisture loss due to cooking were observed in sausage samples 

with lower salt concentration due to decreased ionic strength. 

The results in this study also indicated that there was no significant differences in the 

proximate composition when 50% of NaCl was replaced with ArtisaltTM compared to 

control samples, suggesting that the 50/50 combination of NaCl and ArtisaltTM produces 

hams of a similar quality to that of the control but with significantly less (P<0.05) salt 

content. 
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Similar results were reported by Bansal et al. (2015) who found that HP treatment produces 

minimal changes in cooked meat products; indicating that the physicochemical differences 

between treatments was mainly due to the level of salt replacement and subsequent total 

salt content. Several authors have reported that HPP primarily affects the physicochemical 

properties of raw/uncooked meat products and has minimum effects on cooked products 

(Considine et al., 2008; Neto et al., 2015). 

In this study the main purpose of using HPP as a factor in the product optimisation is to 

enhance the safety and shelf life of the low-salt ham and this confirmatory study is 

underway. 
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Table 2.2 Effects of different ham formulations on the proximate composition of the cooked ham* 

Formulation 
Salt 

replacement 
HPP Inbac Fat Moisture Protein Ash 

 (%) (MPa) (%) % % % % 

1 0 0.1 0.3 2.51 ± 0.48 a 68.56 ± 0.15 a 24.46 ± 0.18 a 3.18 ± 0.43 a 

2 0 300 0.2 2.68 ± 0.56 a 69.11 ± 0.15 a 24.42 ± 0.74 a 3.26 ± 0.85 a 

3 0 300 0.4 2.60 ± 0.51 a 68.61 ± 0.23 a 24.70 ± 0.65 a 3.32 ± 0.82 a 

4 0 600 0.3 2.84 ± 0.67 a 68.73 ± 0.08 a 24.34 ± 0.68 a 3.82 ± 0.4 a 

5 50 0.1 0.2 2.53 ± 0.51 a 68.65 ± 0.34 a 24.76 ± 0.27 a 3.53 ± 0.96 a 

6 50 0.1 0.4 2.46 ± 0.46 a 69.60 ± 0.24 a 24.46 ± 0.48 a 3.48 ± 0.09 a 

7 50 300 0.3 2.57 ± 0.53 a 68.91 ± 0.18 a 24.87 ± 0.57 a 3.32 ± 0.53 a 

8 50 300 0.3 2.45 ± 0.43 a 69.49 ± 0.26 a 24.79 ± 0.34 a 2.95 ± 0.57 a 

9 50 300 0.3 2.59 ± 0.27 a 69.45 ± 0.09 a 24.8 ± 0.26 a 3.35 ± 0.54 a 

10 50 600 0.2 2.51 ± 0.15 a 69.69 ± 0.15 a 24.26 ± 0.19 a 3.75 ± 0.33 a 

11 50 600 0.4 2.53 ± 0.54 a 69.45 ± 0.35 a 24.27 ± 0.66 a 3.72 ± 0.37 a 

12 100 0.1 0.3 2.68 ± 0.65 a 66.61 ± 0.11 b 24.76 ± 0.24 a 3.21 ± 0.24 a 

13 100 300 0.2 2.50 ± 0.46 a 66.27 ± 0.23 b 24.95 ± 0.41 a 3.37 ± 0.35 a 

14 100 300 0.4 2.76 ± 0.91 a 65.91 ± 0.07 b 24.30 ± 0.69 a 3.38 ± 0.53 a 

15 100 600 0.3 2.75 ± 0.73 a 66.58 ± 0.09 b 25.03 ± 0.6  a 2.69 ± 0.06 a 

* Values are Mean ± standard deviation, a,b Different superscripts in the same column indicate significant difference (P < 0.05) between 

treatments.
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2.3.3 Salt content and pH  

The total salt content significantly (P<0.05) increased as the level of replacement decreased 

hence cooked ham that were 0% replaced with Artisalt™  (control samples) contained the 

highest salt content (2.6% total salt), compared to samples that NaCl was 50%  or 100% 

replaced with Artisalt™ which contained 1.4% and 0.5% total salt, respectively (Table 2.3).  

The pH of the raw pork meat was 5.6. After injection, there were no significant differences 

in pH values between the control ham and ham which NaCl was 50% replaced with 

ArtisaltTM however, significantly higher pH values (P<0.05) were noticed in samples that 

100% NaCl was replaced with Artisalt™ (Table 2.3). The measured pH of ArtisaltTM is 7.4 

in 2% which is higher than the measured pH of NaCl which is 6.6 in 2% and this may 

explain why the ham in which NaCl was 100% replaced with Artisalt™ had a significantly 

higher (P<0.05) pH value than any other treatment.  

The results found in this study are in agreement with the findings of Aaslyng et al. (2014) 

who reported that the pH of ham was not affected when salt was reduced from 2.3% to 

1.3%. Conversely an earlier study by Lee and Chin (2011) showed that a reduction in salt 

in ham from 1.5% to 0.5% did not change the pH; however, in this study significant higher 

pH values were noticed in samples containing 0.5% salt (100% salt replaced with 

Artisalt™). The higher pH values in the latter samples may have been due to the 

composition of the Artisalt™ which contains celery extract. Similar results were found by 

Pietrasik et al., (2016) who reported that hams manufactured containing celery powder had 

significantly (P<0.05) higher pH due to high pH (9.8) of celery powder solution; 

furthermore, Sebranek et al. (2012) and Horsch et al. (2014) also reported that the pH was 

as much as 0.4 units higher in products manufactured using celery concentrate. 
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2.3.4 Cook loss and sliceability  

The cook loss of the ham was determined prior to HP treatment and is shown in Table 2.3. 

There were no significant differences in cook loss between the control ham and ham that 

NaCl was 50% replaced with ArtisaltTM; however, the ham in that NaCl was 100% replaced 

with ArtisaltTM produced significantly (P<0.05) higher cook loss values which was due to 

a significantly (P<0.05) lower salt content and ionic strength which may have affected the 

protein solubility and binding of the ham which in turn increased the cook loss.  

The sliceability of the ham was significantly affected (P<0.05) when NaCl was 100% 

replaced with ArtisaltTM as this product contained the lowest total salt content (Table 2.3). 

The negative effects on sliceability may be due to the fact that salt increases protein 

solubility providing binding strength between adjacent pieces of meat (The Salt Institute, 

2013) and that full replacement of NaCl with KCL had a detrimental effect on water binding 

properties of restructured ham possibly due to lower protein solubilisation of KCl salt 

(Pietrasik et al, 2016). The significant effect of NaCl reduction on the water binding 

characteristics in this study supports the findings of a number of authors that binding 

properties are strongly influenced by NaCl content in processed muscle foods (Tamm et 

al., 2016; Desmond, 2006; Pietrzak et al., 2007; Pietrasik et al., 2014; Jimenez-Colmenero 

et al., 2010; Lee and Chin, 2011; Ruusunen and Puolanne, 2005). 

Conversely, Frye et al. (1986) reported that replacement of 50% of NaCl (2%) with KCl 

had the best binding when compared to the control samples which contained 2% NaCl 

indicating that the combination of NaCl and KCl can improve the binding ability of salt 

reduced hams which is in agreement with our findings as no significant differences in the 

cook loss and sliceability were found between the ham in 50% NaCl was replaced with 

ArtisaltTM and control ham samples. Overall, apparently similar values for ionic strength 

http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0035
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0155
http://www.sciencedirect.com/science/article/pii/S0309174013002544#bb0120
http://www.sciencedirect.com/science/article/pii/S0309174013002544#bb0120
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0165
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resulted in no significant differences in the cook loss or sliceability between control and 

samples that 50% of NaCl was replaced with Artisalt™ suggesting that the combination of 

NaCl and ArtisaltTM produces hams of a similar quality to that of the control but with 

significantly (P<0.05) less salt.  

 

2.3.5 Expressible moisture  

The results showed that expressible moisture (%EM) was significantly (P<0.05) affected 

when the NaCl was 100% replaced with ArtisaltTM (Table 2.3). The WHC of meat is the 

inherent ability of the cellular and subcellular structures of meat to retain excess water 

compared with the amount of the other muscular constituents (Honikel and Hamm, 1994). 

The EM is directly related to WHC as a higher EM indicates a lower WHC. Salt performs 

an important function in the production of tumbled meat products by the extraction of salt 

soluble proteins to the surface of ham pieces and their subsequent coagulation during 

cooking (Pietrasik et al., 2007). The significant (P<0.05) effect of salt content on water 

binding characteristics in this study supports the findings of a number of authors who 

reported that binding properties are strongly influenced by salt content in processed muscle 

foods (Pietrasik et al., 2016; Pietrasik and Gaudette, 2014; Desmond, 2006; Pietrzak et al., 

2007; Ruusunen and Puolanne, 2005) as reducing salt content limits protein extractability 

and alters thermal protein denaturation and aggregation patterns of the major muscle 

proteins (Trout and Schmidt, 1986), which affects the binding characteristics of meat 

products and subsequently the WHC.  

 

 

 

http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0145
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0035
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0155
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0155
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0165
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0215
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2.3.6 Colour 

Colour changes of cooked hams are shown in Table 2.3. The results showed that lightness 

and redness were significantly (P<0.05) affected when NaCl was 100% replaced by 

ArtisaltTM; however, results indicated that there were no significant differences between 

the control samples and hams that were 50% replaced with ArtisaltTM which indicates that 

when the total salt was reduced from 2.6% to 1.4% the lightness and redness were not 

affected (Table 2.2).  

These results are in agreement with Dimitrakopoulou et al. (2005) who reported that the 

lightness of the cooked restructured pork shoulder increased (P<0.05) while the redness 

significantly  (P<0.05) decreased when the salt level was reduced from 2% to 1%. 

Wettasinghe and Shahidi (1997) also reported that darker pork meat was obtained when 

salt was increased from 1% to 2% due to oxidised products of meat pigments which have 

a brown and darker colour. In cooked ham samples that 100% of NaCl was replaced with 

ArtisaltTM the increase in lightness and decrease in redness may be due to this effect.  

 

 

http://www.sciencedirect.com/science/article/pii/S0309174016300262?np=y#bb0040
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Table 2.3 Effects of different ham formulations on the physicochemical characteristics of the cooked ham* 

*Values are Mean ± standard deviation, **this analysis was carried out before HPP treatment. a,b,c,d Different superscripts in the same column 

indicate significant difference (P<0.05) between treatments

Formulation Salt 

replacement 

HPP Inbac Lightness Redness Yellowness Salt content pH Sliceablity EM **Cook loss 

 (%) (MPa) (%) (L*) (a*) (b*) (%)  (%) (%) (%) 

1 0 0.1 0.3 63.76 ± 1.26 a 12.45 ± 0.76 ab 8.03 ± 0.84 a 2.5 ± 0.07 a 6.27 ± 0.03 a 98 ± 4.47 a 29.8 ± 0.56 a 16.0 ± 0.7 a 

2 0 300 0.2 63.20 ± 1.28 a 12.23 ± 1.09  ab 8.91 ± 0.95 a 2.6 ± 0.08 a 6.25 ± 0.04 a 96 ± 5.31 a 29.6  ± 1.76 a 17.4 ± 0.89 a 

3 0 300 0.4 63.71 ± 1.55 a 12.85 ± 1.23 ab 8.14 ± 1.5 a 2.5 ± 0.08 a 6.26 ± 0.07 a 94 ± 5.47 a 29.4 ± 0.6 a 17.0 ± 1.58 a 

4 0 600 0.3 62.95 ± 2.12 a 12.83 ± 0.16 ab 7.51 ± 0.54 a 2.6 ± 0.08 a 6.23 ± 0.03 a 90 ± 5.2 abc 29.1 ± 0.04 a 17.4 ± 1.14 a 

5 50 0.1 0.2 64.58 ± 2.15 a 13.01 ± 0.08 ab 8.32 ± 0.77 a 1.4 ± 0.07 b 6.28 ± 0.03 a 90 ±7.07 abc 29.7 ± 0.5 a 17.2 ± 0.94 a 

6 50 0.1 0.4 62.89 ± 0.82 a 12.60 ± 0.61 ab 8.39 ± 1 a 1.3 ± 0.04 b 6.29 ± 0.02 a 90 ± 7.09 abc 29.1 ± 0.83 a 17.8 ± 0.84 a 

7 50 300 0.3 65.24 ± 2.14 a 12.11 ± 2.05 b 7.22 ± 1.04 a 1.4 ± 0.07 b 6.28 ± 0.04 a 94 ± 4.17 ab 29.2 ± 1.88 a 17.1 ± 1.43 a 

8 50 300 0.3 64.18 ± 2.65a 11.92 ± 2.14 b 8.12 ± 0.81 a 1.3 ± 0.05 b 6.26 ± 0.06 a 93 ± 5.44 ab 30.1 ± 0.42 a 17.1 ± 1.43 a 

9 50 300 0.3 64.27 ± 2.74 a 11.81 ± 2.45 b 7.92 ± 0.94 a 1.4 ± 0.1 b 6.22 ± 0.05 a 93 ± 6.47 ab 29.9 ± 1.87 a 17.1 ± 1.43 a 

10 50 600 0.2 64.80 ± 1.47 a 13.12 ± 1.21 a 8.92 ± 1.24 a 1.3 ± 0.05 b 6.29 ± 0.07 a 94 ± 5.61  a 29.7 ± 0.5 a 16.8 ± 1.48 a 

11 50 600 0.4 64.67 ± 1.81 a 12.13 ± 1.01 ab 8.52 ± 0.87 a 1.4 ± 0.04 b 6.29 ± 0.05 a 94 ± 5.47 a 29.4 ± 0.94 a 16.6 ± 1.24 a 

12 100 0.1 0.3 74.16 ± 1.16 b 10.18 ± 0.27 c 8.63 ± 0.59 a 0.5 ± 0.1 c 6.62 ± 0.03 b 78 ± 8.36 cd 33.3 ± 1.2 b 23.6 ± 1.14 b 

13 100 300 0.2 74.39 ± 1.17 b 9.95 ± 0.35 c 8.91 ± 0.24 a 0.6 ± 0.08 c 6.42 ± 0.46 b 76 ± 5.47 d 33.8 ± 0.98 b 24.6 ± 1.11 b 

14 100 300 0.4 74.51 ± 0.91 b 10.12 ± 0.21 c 8.85 ± 0.48  a 0.5 ± 0.08 c 6.60 ± 0.02 b 80 ± 7.07 bcd 33.5 ± 0.63 b 24.6 ± 1.13 b 

15 100 600 0.3 73.68 ± 1.11 b 10.32 ± 0.24 c 8.43 ± 0.59  a 0.5 ± 0.07 c 6.61 ± 0.04 b 78 ± 4.47 cd 32.9 ± 0.21 b 25.0 ± 0.7 b 
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2.3.7 Texture Profile Analysis 

The texture profile analysis of the cooked hams is shown in Table 2.4. The results showed 

that hardness, chewiness, springiness, cohesiveness values were significantly lower 

(P<0.05) when NaCl was 100% replaced with ArtisaltTM. A similar salt effect on hardness 

was reported on dry cured ham muscles (Gou et al., 2008; Morales et al., 2007). Bonbrum 

et al (2014) reported that in cooked ham, molecular bonds are able to form inside the 

exudate matrix due to gel cohesion and between the exudate and the muscle; therefore when 

the NaCl concentration is reduced the protein solubility is limited due to the solubility of 

the myosin (Offer, 1988) which subsequently effects the binding ability resulting in ham in 

which the hardness/firmness is reduced. Patana-Anake et al. (1985) suggested that 

springiness is affected by the type and amount of protein solubilised and this may explain 

the lower springiness observed in cooked ham samples in which 100% NaCl was replaced 

with ArtisaltTM. Texture represents another meat quality parameter which was not 

compromised when NaCl was replaced with 50% ArtisaltTM compared to control samples
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Table 2.4 Effects of different ham formulations on the texture parameters of the cooked ham*. 

*Values are Mean ± standard deviation. a,b,c,d Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments. 

Formulation Salt 

replacement 

HPP Inbac Hardness Adhesiveness Springiness Cohesiveness Gumminess Chewiness 

 (%) (MPa) (%) (N) (N) (mm)  (N) (N-mm) 

1 0 0.1 0.3 16.97 ± 1.23  a -.089 ± 0.16 a .846 ± 0.04 a .548 ± 0.02 ab 9.70 ± 2.68 a 9.05 ± 0.9 a 

2 0 300 0.2 17.23  ± 1.19 a -.022 ± 0.03 a .842 ± 0.04 a .568 ± 0.14 a 9.76 ± 2.03 a 8.49 ± 1.21 ab 

3 0 300 0.4 17.72  ± 0.80 a -.231 ± 0.40 a .880 ± 0.02 a .527 ± 0.03 b 8.07 ± 1.28 a 8.02 ± 1.16 ab 

4 0 600 0.3 16.99 ± 1.08 a -.027 ± 0.02 a .869 ± 0.47 a .566 ± 0.02 a 8.14 ± 0.74 a 7.56 ± 1.41 ab 

5 50 0.1 0.2 17.50 ± 0.79 a -.052 ± 0.06 a .837 ± 0.03 ab .536 ± 0.01 ab 6.99 ± 0.83 a 8.62 ± 0.97 ab 

6 50 0.1 0.4 17.46 ± 1.13 a -.003 ± 0.02 a .845 ± 0.02 a .565 ± 0.08 a 7.18 ± 0.4 a 8.79 ± 1.0 ab 

7 50 300 0.3 17.74 ± 0.6 a -.174 ±  0.07 a .849 ± 0.06 a .541 ± 0.01 ab 8.51 ± 1.15 a 8.16 ± 0.77 ab 

8 50 300 0.3 17.30 ± 0.79 a -.168 ±  0.14 a .848 ± 0.04 a .561 ± 0.02 ab 8.42 ± 2.16 a 7.96 ± 0.18 ab 

9 50 300 0.3 17.70 ± 0.51 a -.171 ±  0.16 a .851 ± 0.07 a .558 ± 0.01 ab 8.66 ± 2.19 a 7.99 ± 0.28 ab 

10 50 600 0.2 17.39 ± 0.46 a -.024 ± 0.04 a .835 ± 0.03 ab .539 ± 0.04 ab 7.81 ± 0.6 a 8.03 ± 0.32 ab 

11 50 600 0.4 17.68 ± 0.60 a -.191 ±  0.26 a .842 ± 0.04 a .551 ± 0.02 ab 7.85 ± 1.48 a 8.05 ± 1.01 ab 

12 100 0.1 0.3 13.04 ± 0.69 b -.034 ± 0.03 a .788 ± 0.03 c .497 ± 0.02 c 8.62 ± 2.03 a 5.96 ± 0.73 c 

13 100 300 0.2 13.28 ± 1.2 b -.024 ± 0.4 a .787 ±  0.04 c .500 ± 0.17 c 6.90 ± 0.62 a 5.88 ± 0.58 c 

14 100 300 0.4 12.72 ± 0.3 b -.051 ± 0.07 a .794 ± 0.01 bc .471 ± 0.04 c 8.71 ± 1.55 a 6.36 ± 0.49 c 

15 100 600 0.3 12.15 ± 1.14 b -.052 ± 0.06 a .786 ± 0.02 c .492 ± 0.01 c 9.22 ± 1.4 a 5.69 ± 0.57 c 
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2.3.8 Sensory Analysis 

The results of the sensory analysis of the cooked ham showed that sensory attributes were 

not affected when NaCl was 50% replaced with ArtisaltTM; however, when NaCl was 100% 

replaced with ArtisaltTM, significantly (P<0.05) lower values for the sensory attributes 

including flavour, texture, saltiness and tenderness and higher values for off-flavour and 

metallic taste were observed (Table 2.5); however, due to the fact that the OSA of these 

samples scored above 4.5 on the 9 point scale indicated that they could not be considered 

as unacceptable. The control hams were formulated to contain similar ingredients and salt 

content as hams available in the Irish market therefore no significant differences between 

the control ham and ham which NaCl was 50% replaced with ArtisaltTM indicated that the 

50/50 combination of NaCl/ArtitsaltTM produces ham of similar quality to commercial 

products.  

Many studies (Keeton, 1984; Aliño et al., 2009; Costa-Corredor et al., 2009; Fulladosa et 

al., 2009; Lorenzo et al., 2015) reported that partial replacement (up to 50%) with salt 

replacers such as KCl can adversely affect the flavour and overall acceptability of meat 

products by producing a bitter off-flavour and according to Crehan et al. (2000) overall 

flavour intensity and perceived saltiness are decreased by salt reduction; however, in this 

study when NaCl was 50% was replaced with Artisalt™ none of the sensory attributes were 

negatively affected nor did the panel perceive a reduction in saltiness. This may be due to 

the composition of the salt replacer ArtisaltTM which contains flavour enhancers (yeast 

extract, celery and onion) which can mask the bitterness associated with KCl and enhance 

the flavour and saltiness perception of the ham. 
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Table 2.5 Effects of different ham formulations on the sensory characteristics of the cooked ham* 

*Values are Mean ± standard deviation a,b,c,d Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments*

Formulation Salt 

replacement 

HPP Inbac Appearance Texture Flavour Saltiness Tenderness Juiciness Off-

flavour 

Metallic 

Taste 

OSA 

 (%) (MPa) (%)          

1 0 0.1 0.3 6.12 a 6.57 a 6.36 a 5.79 a 6.57 a 6.44 a 1.55 a 1.35 a 7.01 abc 

2 0 300 0.2 6.24 a 6.78 a 6.15 a 5.68 a 6.37 a 6.47 a 1.53 a 1.24 a 7.11 abc 

3 0 300 0.4 6.32 a 6.50 a 6.34 a 5.85 a 6.44 a 6.34 a 1.42 a 1.55 a 7.26 abc 

4 0 600 0.3 6.18 a 6.82 a 6.31 a 5.74 a 6.66 a 6.38 a 1.56 a 1.12 a 7.34 ab 

5 50 0.1 0.2 6.14 a 6.50 a 6.30 a 5.75 a 6.28 a 6.30 a 1.52 a 1.38 a 6.88 c 

6 50 0.1 0.4 6.20 a 6.80 a 6.15 a 5.71 a 6.44 a 6.38 a 1.58 a 1.47 a 6.92 bc 

7 50 300 0.3 6.29 a 6.70 a 6.21 a 5.76 a 6.48a 6.49 a 1.60 a 1.25 a 7.17 abc 

8 50 300 0.3 6.19 a 6.67 a 6.24 a 5.74 a 6.50 a 6.29 a 1.50 a 1.11 a 7.07 abc 

9 50 300 0.3 6.24 a 6.66 a 6.33 a 5.8 a 6.59 a 6.37 a 1.42 a 1.26 a 7.09 abc 

10 50 600 0.2 6.26 a 6.78 a 6.16 a 5.72 a 6.52 a 6.30 a 1.44 a 1.89 a 7.27 abc 

11 50 600 0.4 6.24 a 6.52 a 6.14 a 5.78 a 6.60 a 6.40 a 1.38 a 1.25 a 7.39 a 

12 100 0.1 0.3 6.18 a 4.84 bc 5.23 b 3.30 b 4.36 b 6.42 a 3.02 b 4.12 b 4.66 d 

13 100 300 0.2 6.28 a 4.78 c 5.22 b 3.31 b 4.34 b 6.36 a 3.08 b 3.05 b 4.93 d 

14 100 300 0.4 6.24 a 5.40 b 5.24 b 3.31 b 4.40 b 6.38 a 3.00 b 3.15 b 4.90 d 

15 100 600 0.3 6.22 a 5.41 b 5.25 b 3.42 b 4.35 b 6.28 a 3.19 b 3.54 b 4.98 d 
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2.3.9 Modelling and Optimisation  

The fitness of the models were evaluated using the coefficients of determination (R2) and 

lack of fit test. It has been suggested that for the good fit of a model R2 should be ≥ 80% 

(Joglekar et al., 1987). However, the adjusted R-squared statistic is more suitable for 

comparing models with different numbers of independent variables. The lack of fit test is 

designed to determine whether the selected model is adequate to describe the observed data, 

of the P value is greater than or equal to 0.05 then the model appears to be adequate for the 

observed data at the 95% confidence level. (STATGRAPHICS® Centurion XV User 

Manual, Statpoint, Inc., USA)  

ANOVA was carried out on ham hardness, OSA, flavour and saltiness (Table 2.6). A, B 

and C indicates Salt replacement, HPP and Inbac, respectively. In the Pareto charts (Figures 

2.1a-1d) the length of the horizontal bars are proportional to the significance of the effect 

of each factor. Each figure shows that Salt replacement had the most significant effect on 

all response variables. The vertical line is the threshold for significant effects at the level P 

< 0.05 thus the effects are statistically significant when the respective bars exceed this 

vertical line. 

For hardness, the Pareto chart (Figure 2.1a) shows that the linear effects of the independent 

factors A and B, the interactive effects of AB and AC and the quadratic effects of AA, BB  

and CC affected significantly (P<0.05) the hardness of the cooked ham. For overall 

acceptability, the Pareto chart (Figure 2.1b) shows that the linear effects of A and B and 

quadratic effects of AA affected significantly (P<0.05) the OSA of the cooked ham. For 

flavour, the Pareto chart (Figure 2.1c) shows that the linear effects of A and B, the 

interactive effects of AC and the quadratic effects of AA affected significantly (P<0.05) 

the flavour of the cooked ham. For saltiness, the Pareto chart (Figure 2.1d) shows that the 
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linear effects of A and the quadratic effects of AA affected significantly (P<0.05) the 

saltiness of the cooked ham. The following regression equations predict the value of each 

response variable when the independent factors are varied; 

Equation 2: Hardness = 17.41 + 0.0797205*A + 0.00176317*B - 5.61525*C - 

0.00103705*A^2 - 0.00001514*A*B - 0.05257*A*C - 0.00000358083*B^2 + 

0.00275333*B*C + 12.7575*C^2.  

Equation 3: OSA = 7.2125 + 0.02225*A + 0.0004375*B - 2.3125*C - 0.000415*A^2 - 

8.33333E-7*A*B - 0.0125*A*C + 0.0*B^2 + 0.000833333*B*C + 5.0*C^2.  

Equation 4: Flavour = 6.78525 - 0.00134*A + 0.00114917*B - 0.3225*C - 0.0002949*A^2 

+ 0.00000546667*A*B + 0.0452*A*C + 4.91667E-7*B^2 - 0.00458333*B*C - 

0.175*C^2 

Equation 5: Saltiness = 5.597 + 0.02482*A - 0.000448333*B + 1.045*C - 0.0004764*A^2 

+ 0.000003*A*B - 0.008*A*C + 1.44444E-7*B^2 + 0.000866667*B*C - 1.1*C^2 

After generating the model polynomial equation to relate the dependant and independent 

variable, the combination was optimised for all 4 responses. The final optimal experimental 

parameter was calculated using the optimisation technique in the Statgraphics® software. 

For hardness, OSA and flavour, the absolute values of partial regression coefficient were 

A > B > C within the range of the experimental design, demonstrating the greatest effects 

of Salt replacement on hardness followed by HPP and InbacTM, respectively. For saltiness, 

the absolute values of partial regression coefficient were A > B and C within the range of 

the experimental design, demonstrating the greatest effects of salt replacement on the 

overall acceptability followed by HPP and InbacTM equally. 
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For hardness, OSA, flavour and saltiness the adjusted R2 of the predicted models was 

99.68%, 98.85%, 95.33% and 99.64%, respectively indicating that the predicted model can 

reasonably represent the observed values shown in the regression equations 2-5. For OSA, 

the lack of fit value was 0.33 which was insignificant and therefore indicates that the 

selected model is adequate to describe the observed data. 

The 3-Dimentional Response Surface Plots were formed based on the polynomial function 

and show how varying the salt replacement and HPP level s can affect the measured 

responses. The relationship between the dependent and independent variables can be 

clearly understood by these plots (Figure 2.2). For each response one 3-D response plot 

was produced. The yellow area of Figure 2.2a represents the optimum hardness and the 

corresponding factors required in order to achieve this level of hardness. The results 

showed that the best combination of the variables in order to maximise hardness were; Salt 

replacement 26%, HPP 345MPa and InbacTM 0.3%. The red area of Figure 2.2b represents 

the optimum OSA and the corresponding factors required in order to achieve this level of 

OSA. The results showed that the best combination of the variables in order to maximise 

OSA were; Salt replacement 53%, HPP 535MPa and InbacTM 0.3%. The yellow area of 

Figure 2.2c represents the optimum flavour and the corresponding factors required in order 

to achieve this level of flavour. The results showed that the best combination of the 

variables in order to maximise flavour were; Salt replacement 44%, HPP 455MPa and 

InbacTM 0.3%. The red area of Figure 2.2d represents the optimum saltiness and the 

corresponding factors required in order to achieve this level of saltiness. The results showed 

that the best combination of the variables in order to maximise saltiness were; Salt 

replacement 24.6%, HPP 600MPa and InbacTM 0.3%. 

Sensory properties of food products are the most important attributes as they are most 

apparent to consumers (Singham et al., 2015). While attributes such as hardness, flavour 



112 
 

or saltiness can be predicted by the models; a higher level of salt replacement and HPP was 

achieved when product optimisation was carried out based on OSA which subsequently 

produced a lower salt product with increased safety and shelf life; therefore, manufacture 

of the optimised cooked ham was carried out based on maximising the OSA.  
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Table 2.6 ANOVA of the independent factors and their interactive effects on each response 

variable.  

 Sum of Squares Df Mean Square F-Ratio P-Value SL 

Hardness       

A:Salt replacement 78.4907 1 78.4907 5314.51 0.0000 * 

B:HPP 0.144096 1 0.144096 9.76 0.0056 * 

C:Inbac 0.00896809 1 0.00896809 0.61 0.4454 NS 

AA 49.6372 1 49.6372 3360.8 0.0000 * 

AB 0.412595 1 0.412595 27.94 0.0000 * 

AC 0.552721 1 0.552721 37.42 0.0000 * 

BB 0.766975 1 0.766975 51.93 0.0000 * 

BC 0.0545821 1 0.0545821 3.70 0.0697 NS 

CC 0.120187 1 0.120187 8.14 0.0102 * 

Blocks 0.0 1 0.0 0.00 1.0000 NS 

Total error 0.280614 19 0.0147691    

Total (correlation) 130.535 29     

R-squared = 99.78%       

R-squared (adjusted ) = 99.68%       

       

OSA       

A:salt replacement 21.6225 1 21.6225 2594.7 0.0000 * 

B:HPP 0.600625 1 0.600625 72.07 0.0011 * 

C:Inbac 0.015625 1 0.015625 1.87 0.2427 NS 

AA 7.94885 1 7.94885 953.86 0.0000 * 

AB 0.00125 1 0.00125 0.15 0.7183 NS 

AC 0.03125 1 0.03125 3.75 0.1249 NS 

BB 0.0 1 0.0 0.00 1.0000 NS 

BC 0.005 1 0.005 0.60 0.4818 NS 

CC 0.0184615 1 0.0184615 2.22 0.2109 NS 

Blocks 0.003 1 0.003 0.36 0.5808 NS 

Total error 0.0333333 4 0.00833333    

Total (correlation) 30.6337 29     

R-squared = 99.2%       

R-squared (adjusted) = 98.84%       

       

Flavour       

A:salt replacement 9.77188 1 9.77188 257.68 0.0000 * 

B:HPP 0.168921 1 0.168921 4.45 0.0483 * 

C:Inbac 0.033489 1 0.033489 0.88 0.3591 NS 

AA 4.01382 1 4.01382 105.84 0.0000 * 

AB 0.053792 1 0.053792 1.42 0.2483 NS 

AC 0.408608 1 0.408608 10.78 0.0039 * 

BB 0.0144595 1 0.0144595 0.38 0.5442 NS 

BC 0.15125 1 0.15125 3.99 0.0603 NS 

CC 0.0000226154 1 0.0000226154 0.00 0.9808 NS 

Blocks 0.0175692 1 0.0175692 0.46 0.5043 NS 

Total error 0.720515 19 0.0379218    

Total (correlation) 15.4326 29     

R-squared = 95.33%       

R-squared (adjusted ) = 93.23%       
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SL = Significance level, NS = Not Significant, * = P<0.05 

 

 

 

 

 

 

 

 

 

 

Saltiness 

A:salt replacement 23.6585 1 23.6585 5280.1 0.0000 * 

B:HPP 0.003364 1 0.003364 0.75 0.3970 NS 

C:Inbac 0.009604 1 0.009604 2.14 0.1595 NS 

AA 10.4749 1 10.4749 2337.8 0.0000 * 

AB 0.0162 1 0.0162 3.62 0.0725 NS 

AC 0.0128 1 0.0128 2.86 0.1073 NS 

BB 0.001248 1 0.001248 0.28 0.6038 NS 

BC 0.005408 1 0.005408 1.21 0.2857 NS 

CC 0.000893538 1 0.000893538 0.20 0.6602 NS 

Blocks 0.00188813 1 0.00188813 0.42 0.5240 NS 

Total error 0.0851339 19 0.00448073    

Total (correlation) 34.3891 29     

R-squared =  99.75%       

R-squared (adjusted) = 99.64%       
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Figure 2.1 – Pareto charts of the significance of the effects of the independent factors and their interactions on the (a) hardness, (b) OSA, (c) 

flavour and (d) saltiness of cooked ham. 
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Figure 2.2 – Effect of salt replacement and high pressure processing on the (a) hardness, (b) OSA, (c) flavour and (d) saltiness of cooked ham.



 
 

2.3.10 Validation experiments    

The robustness of the model used for the product optimisation was validated carrying out 

three independent confirmatory trials to ascertain difference between predicted and 

experimental values. Optimised hams (53% salt replacement, 535MPa and 0.3% InbacTM) 

were produced and analysed on three occasions by a 25 member semi-trained panel. The 

predicted and average values for all sensory attributes (flavour, saltiness and OSA) and 

hardness were similar (Table 2.7). The results of the validation indicated that the RSM 

approach was effective for modelling and optimizing the operational conditions for the 

manufacture of low salt cooked ham. 
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Table 2.7 Predicted and observed responses of the ham manufactured using the optimised 

OSA parameters (53% salt replacement. 535 MPa and 0.3% InbacTM).* 

Response Y (predicted) Y (observed) 

OSA 7.1  7.21 ± 0.55 

Hardness (N) 17.5  17.07 ± 0.87 

Saltiness 5.6  5.29 ± 1.02 

Flavour 6.7  6.38 ± 0.77 

*Values are Mean ± standard deviation 
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2.4 Conclusion  

In general, quality parameters such as pH, cook loss, sliceability, expressible moisture, 

colour, texture or sensory attributes were not significantly affected when NaCl was partially 

replaced (50%) with ArtisaltTM compared to control samples; however, when added NaCl 

was fully replaced (100%) with ArtisaltTM all quality parameters were significantly affected 

and the obtained cooked ham were significantly less acceptable to the sensory panel.  

Response Surface Methodology can be successfully used to develop low-salt cooked ham 

products and the results indicated that the main independent factor that significantly 

influenced the assessed response variables of the cooked ham was salt replacement. The 

optimisation process carried out maximising the OSA indicated that the best formulation 

to obtain low-salt cooked ham was: Salt replacer ArtisaltTM (53%), HPP (535MPa) and 

concentration of Inbac™ (0.3%).  

The validation process indicated that the observed responses were found to be quite similar 

to the predicted values for the OSA optimised low salt cooked meat products indicating 

that the model obtained can accurately predict changes on the OSA of the cooked ham. 

Therefore, a 53% added salt reduction was achieved reducing the total salt content in the 

cooked hams from 2.6% to 1.4% and the developed product can be classified as ‘salt 

reduced’ cooked ham. This significant salt reduction in cooked ham was achieved through 

the use of salt replacer ArtisaltTM which contains flavour enhancers along with HPP and 

InbacTM without compromising the physicochemical or sensory quality of the cooked hams. 

The addition of the hurdles HPP and antimicrobial InbacTM are expected to compensate the 

reduction in safety and shelf life as a result of the extensive salt reduction and this study is 

underway.  
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CHAPTER 3  

The application of response surface methodology for development of 

sensory-acceptable, low-salt, shelf-stable frankfurters using high 

pressure processing and a mix of organic acids.  

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 
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Abstract  

Response surface methodology (RSM) was used to develop sensory-acceptable, low-salt, 

shelf-stable frankfurters. A Box-behnken experimental design assessed the effects of three 

independent factors; salt replacer (ArtisaltTM) (0-100%), high pressure processing (HPP) 

(0.1-600 MPa) and a mix of organic acids (InbacTM) (0.2-0.4%). Measured responses 

included: hardness, flavour, saltiness and overall sensory acceptability (OSA) of the 

frankfurters. The primary factor affecting (P<0.05) all responses was the salt replacer. The 

optimum parameters to maximise salt reduction and produce frankfurters with OSA similar 

to commercial-type products were; ArtisaltTM (48%), HPP (580 MPa), InbacTM (0.3%) 

which contained a total salt content of 1.3%, compared to control samples which contained 

2.5% total salt. The hurdle approach used in this study extended product shelf-life by 51% 

compared to control samples. Overall, a combination of salt replacer, HPP and organic 

acids showed great potential for the development of low-salt frankfurters with enhanced 

shelf-life, without compromising on sensory attributes.  

 

Industrial Relevance  

Processed meat manufacturers are constantly looking for new ways to reduce salt levels 

without compromising food safety, shelf-life or consumer acceptability. In this study we 

used a novel approach which showed great potential for reducing salt in frankfurters. 

Frankfurters manufactured in this study were similar or better than frankfurter controls after 

48% of Sodium Chloride (NaCl) was replaced with Artisalt™ and the hurdles of HPP and 

an organic acid mix were applied. The optimised frankfurter formulation, in addition to 

possessing lower salt levels, was accepted sensorially and had a shelf-life that was extended 
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by 51%. This finding is not just of commercial and processing interest, but of public health 

significance also.  

 

3.1 Introduction 

The global importance of the nutritional value of food has increased significantly in past 

years. There is an ever increasing demand in the meat industry for products which are lower 

in salt, preservatives, fat and calories, whilst maintaining good-quality products in regards 

to physicochemical, nutritional and sensory characteristics (Weiss et al., 2010). 

Cardiovascular disease (CVD) which is largely associated with high salt consumption 

accounts for 33% of deaths in Ireland (IHF, 2016) and 31% of deaths worldwide (World 

Health Organisation (WHO), 2016). It has also been suggested that there is increasing 

evidence that salt intake is related to obesity, associated with renal stones and osteoporosis 

and may play a role in the development of stomach cancer (He and MacGregor, 2009; 

Wang et al., 2009). The WHO recommends a salt intake of less than 5g/day for adults; 

however, the recommended dietary intake is greatly exceeded and estimated to be as high 

as 9-12g NaCl/day (WHO, 2016). The work and leisure lifestyle patterns of the Western 

consuming culture, with high disposable incomes, have created demand for pre-prepared 

foods (Purdy and Armstrong, 2007). Over 80% of salt intake in the UK, Ireland and the 

USA comes from processed food, meaning many consumers do not realise they are 

consuming such high quantities (Gray, 2013). Therefore, processed meat manufacturers 

require new solutions in the reformulation of low-sodium processed meat products as a 

means of reducing dietary sodium in consumer foods. 

Comminuted cooked meat products (gel/emulsion system) are a commercially important 

group of processed meat products, of which frankfurters are among one of the more popular 
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varieties (Delgado-Pando et al., 2010).  Frankfurters are a type of highly seasoned sausage 

which can contain up to 30% fat with an industrial average of about 20% (Keeton, 1994) 

and a salt content of 2% or higher. In processed meat products, salt provides essential 

functions as it affects flavour, preservation, safety, texture characteristics and consumer 

acceptability (Inguglia, 2017; Xiong, 1997). The salt-solubilised myofibrillar proteins 

derived from the lean meat component used in frankfurter processing forms a sticky 

exudate on the surface of the highly comminuted meat pieces which binds the meat pieces 

together through the formation of a gel-based matrix after cooking. This matrix of heat-

coagulated protein entraps free water. In finely chopped or emulsified products such as 

frankfurters, bologna, etc. the solubilised protein in the continuous phase forms a protein 

film around fat globules, thereby retaining the fat during cooking (Desmond, 2006) which 

results in a product with acceptable quality characteristics. Therefore, salt reduction in these 

products can have negative effects in terms of quality and safety if the reduction of salt is 

not compensated for in another way. Considering the significant technological role of salt 

in meat processing, it was suggested that a global approach is necessary to reduce salt 

content in meat products (Albarracin et al., 2011).  

Several approaches to reduce the sodium content in processed meat products have been 

reported: (i) dietary salt reduction based on sensory evaluation and acceptance of products, 

either by a complete or partial replacement of NaCl (Fellendorf et al., 2016; Liem et al., 

2011; Tobin et al., 2012 and 2013), (ii) replacement with a low-sodium mixture (Paulsen 

et al., 2014), (iii) use of flavour enhancers such as monosodium glutamate or yeast extract 

(Santos et al., 2014), (iv) changes in the physical form of salt (Rama et al., 2013), (v) 

improvement of salt diffusion via HPP or ultrasound technology (McDonnell et al., 2014; 

Ojha et al., 2016).  

http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib20
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib20
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib55
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib55
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib63
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib19
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib46
http://www.sciencedirect.com/science/article/pii/S0924224416302539#bib46
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HPP is an alternative method for food preservation which subjects liquid and solid foods, 

with or without packaging, to pressures between 100 and 800 MPa (Bermúdez-Aguirre and 

Barbosa-Cánovas, 2011) which can also be used for the development of meat products with 

lower salt contents (Watson, 2012). It was reported that HPP can maintain or improve 

protein functionality where it is desired to reduce the sodium content of processed meats 

(Mújica et al., 2011; Cheftel and Culioli 1997) and improve safety through the application 

of hurdle technology (Rodriguez-Calleja et al., 2012) which advocates the intelligent use 

of combinations of different preservation factors or techniques (‘hurdles’) in order to 

achieve multi-target, mild, but reliable preservation effects (Leistner and Gorris, 1995) and 

this concept fits well with the present consumer trend for minimally processed foods and, 

as such, has gained much in popularity regarding practical application and research 

(Mukhopadhyay, 2014).  

Crehan et al. (2000) found that HPP (150MPa) can be used to improve the functionality of 

frankfurters formulated with lower salt levels (1.5%). This conclusion was based on the 

fact that no significant effect on colour was observed and sensory attributes such as 

juiciness and also textural attributes were found to have improved. A recent study carried 

out by Pietrasik et al. (2017) found that substitution of 50% NaCl with modified KCl 

(modified to create a single crystal that significantly reduced the bitter/metallic note 

associated with normal KCl) had a negative effect on textural and sensory characteristics 

of conventionally cured wieners; however; consumer acceptability results indicated that 

HPP did not impact sensory acceptability.  

A study carried out by Diez et al. (2008) examined independently the application of organic 

acids (L-potassium lactate, L-potassium lactate/sodium lactate or L-potassium 

lactate/sodium acetate) and HPP (300, 500 or 600 MPa for 10 mins) to improve the shelf-

life of blood sausage. An increased shelf-life of blood sausages by 15 days was achieved 

http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0015
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0320
http://www.sciencedirect.com/science/article/pii/B978012384730000166X
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using L-potassium/sodium lactate or HPP at 600 MPa for 10 mins. The authors suggested 

that the synergistic effects of HPP and InbacTM could improve the effectiveness of the 

treatments; however, they did not investigate this further. In our previous study (Chapter 

2) a low-salt reformed meat product (cooked ham) was developed using RSM to optimise 

salt replacer ArtisaltTM, HPP and InbacTM based on maximizing overall sensory 

acceptability (OSA).  

To the best of our knowledge, no previous studies have been carried out on the use of RSM 

to optimise salt replacers, HPP and organic acids for the development of sensory accepted 

low-salt comminuted meat products (frankfurters). Furthermore, a combination of HPP and 

organic acids as hurdles has not previously been used as a methodology to enhance the 

safety and shelf life of low-salt processed meat products. Therefore, the study objective 

was to use RSM to develop sensory-acceptable, low-salt frankfurters with enhanced safety 

and shelf-life using salt replacers (Artisalt™) and hurdles including HPP and a mix of 

antimicrobial organic acids (Inbac™).  

 

 

3.2 Materials and Methods 

3.2.1 Materials  

Pork oyster meat (90-95% VL) and pork fat were obtained from Ballyburden meats, 

Ballincollig, Cork. NaCl, starch, farina (milled wheat), paprika, Sodium caseinate, tomato 

powder, Sodium tripolyphosphate hydrated food grade (Carfosel 990, Prayon, Belgium), 

carmine, Sodium nitrite and Sodium ascorbate were sourced from All in All ingredients 

(All in All ingredients, Ltd, Ireland). Frankfurter spice and artificial cellulose casings 
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(26mm) were obtained from Fispak (Fispak Ltd, Ireland) and Viscofan (Viscofan, Spain), 

respectively.  

A commercially available salt replacer used in processed meat products Artisalt™ (a mix 

of Potassium chloride 41%, Ammonium chloride 40% and flavour enhancers - yeast 

extract, onion and celery 19%) was obtained from Chemital (Chemital Ltd, Barcelona, 

Spain). According to the manufacturer specification sheet ArtisaltTM can replace all (100%) 

or part (50%) of common salt in meat products without giving any off-taste and allowing 

meat proteins solubilisation which is an essential factor in  producing products with good 

texture and palatability. A commercial antimicrobial InbacTM (a mix of Sodium acetate 

43%, Malic acid 7%, emulsifier-mono and diglycerides of fatty acids and technological 

coadjuvants; anticaking agents, calcium phosphate, magnesium carbonate and silicon 

dioxide ~50%,) was obtained from Chemital Ltd and used as recommended by the 

manufacturer (2-4g/kg of product). 

 

3.2.2 Methods  

3.2.2.1 Experimental Design  

A three-factor experimental design (Box-Behnken) was used to optimise salt reduction and 

consisted of the manufacture of 15 different formulations (Table 3.1). The centre point of 

the experimental design was repeated 3 times. The independent factors were Salt replacer 

ArtisaltTM (0-100%), HPP (0.1-600MPa) and organic acid InbacTM (0.2-0.4%) and the 

measured response variables included Hardness (N) and sensory characteristics flavour, 

saltiness and OSA. The full polynomial model involving the main effects (linear terms), 

interaction terms (cross products) and quadratic or squared terms is shown in Equation 1. 
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Equation 1:  

Y=b0 + b1A1 + b2B + b3C3 + b4AB + b5AC + b6BC + b7A
2 + b8B

2 + b9C
2 

Where: Y represents the dependent or response variable (overall sensory acceptability 

(OSA), Hardness, flavour and saltiness), and A, B and C represents the independent 

variables (A) = Salt replacement (%), B= HPP (MPa) and C = Inbac (%) and b0–b9 are the 

regression coefficients to be determined. The regression coefficient b0 is the constant or 

intercept term; b1–b3 are the linear coefficient terms; b4–b6 are the interaction coefficient 

terms; and b7–b9 are the quadratic coefficient terms, respectively. The effect of variables at 

the linear, quadratic, and interactive levels on individual responses was described using a 

significance level of confidence set at 5%.  

 

3.2.2.2 Characterisation of salt replacer and antimicrobial  

Ammonium Chloride was determined using the methods outlined in 23rd Joint FAO/WHO 

Expert Committee on Food Additives (1979). KCl, Nitrites and Nitrates concentration of 

the salt replacer ArtisaltTM and concentration of sodium acetate and malic acid of the 

antimicrobial InbacTM was determined by a commercial external analytical testing facility 

(ALS laboratories, Little Island, Cork). For the determination of KCl, Artisalt™ was 

homogenized and mineralized by acids and hydrogen peroxide prior to analysis by atomic 

emission spectrometry with inductively coupled plasma and stoichiometric calculations of 

compounds concentration carried out from measured values. Nitrites and Nitrates were 

determined by flow-injection analysis and gas-phase molecular absorption spectrometry. 

Results were expressed as a percentage of the salt replacer ArtisaltTM. Organic acids 

(Sodium acetate and Malic acid) were determined by the high pressure liquid 
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chromatography with UV detection and results were expressed as percentage of the 

antimicrobial InbacTM.   

 

3.2.2.3 Frankfurters manufacture 

Frankfurters were manufactured according to the formulation shown in Table 3.2. Each 

batch included varying levels of NaCl replacer ArtisaltTM (0% replacement, 50% 

replacement or 100% replacement) and InbacTM (0.2 – 0.4%) (Table 3.1). For each 

treatment, four kilograms of batter was prepared on two separate occasions. 

Pork meat  and pork fat were minced separately through a 3-mm plate using a Talsa mincer 

(Talsabell, Valencia, Spain).The minced pork meat was placed in a bowl chopper 

(Seydelmann, Germany) and chopped at low speed for 3 minutes and then the curing 

ingredients, seasonings and half of the ice were added. The mixture was then chopped for 

2 minutes at high speed and the minced pork fat and remaining ice was added and then 

chopped for a further 2 minutes. The batter was then stuffed into a 26 mm diameter 

cellulose casings using a Mainca vacuum filler (Mainca, Barcelona, Spain). The 

frankfurters were hand-linked (~12cm in length) and heat-treated at 100ºC in an electric 

steam-convection oven (Zanussi Professional, Italy) until an internal temperature of 74°C 

was achieved. Final internal end-point temperatures were re-checked using a hand-held 

food thermometer (Testo, Germany). The frankfurters were cooled down by immersion in 

icy cold water (1-2ºC) for 5 minutes and then stored at 4°C overnight. Before packaging, 

the casing of the frankfurters were aseptically removed and 7 frankfurters were placed into 

a combivac vacuum pouch (20 polyamide/70 polyethylene bags (Alcom, Campogalliano, 

Italy),  vacuum packed using a Webomatic vacuum packaging system (Werner Bonk, type 

D463, Bochum, German) and then stored at 4°C. 



 
 

Table 3.1 Experimental design of uncoded and coded parameters. 

 

 

 

 

 

 

 

Formulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Independent Factors                

Salt replacement (%) 50 50 0 100 0 50 0 50 50 50 50 100 0 100 100 

 (0) (0) (-1) (+1) (-1) (0) (-1) (0) (0) (0) (0) (+1) (-1) (+1) (+1) 

High Pressure (MPa) 300 600 300 600 600 0.1 300 0.1 300 300 600 300 0.1 300 0.1 

 (0) (+1) (0) (+1) (+1) (-1) (0) (-1) (0) (0) (+1) (0) (-1) (0) (-1) 

Organic Acids (%) 0.3 0.4 0.2 0.3 0.3 0.2 0.4 0.4 0.3 0.3 0.2 0.2 0.3 0.4 0.3 

 (0) (+1) (-1) (0) (0) (-1) (+1) (+1) (0) (0) (-1) (-1) (0) (+1) (0) 



 
 

Table 3.2 Standard frankfurter formulation 

Ingredient 

 

% 

Pork oyster meat 65 

Pork fat 19 

Water/Ice 10.2 

NaCl 2 

Starch 0.92 

Farina 0.92 

Frankfurter Spice 0.5 

Paprika 0.5 

Sodium Caesinate 0.35 

Tomato powder 0.25 

Phosphate 0.25 

Sodium Ascorbate 0.05 

Sodium nitrite 0.0075 

Carmine 0.05 
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3.2.2.4 High Pressure Processing 

For samples that were HP treated, vacuum-packed frankfurters were placed in a second 

vacuum pouch (20 polyamide/70 polyethylene bags; Alcom, Campogalliano, Italy) and 

vacuum-sealed using a Webomatic vacuum packaging system (Werner Bonk, type D463, 

Bochum, Germany). Packaged samples were HP treated in a Stansted Fluid Power Iso-Lab 

900 Power High Pressure Food Processor (Stansted Fluid Power Ltd., Stansted, UK), using 

an ethanol-castor oil (90:10) as the pressure transmitting medium. The speed of 

pressurisation was 300 MPa per minute, the speed of depressurisation was 600 MPa per 

minute and holding time at the required pressure level was 5 minutes. Pressurisation was 

carried out at room temperature 20°C which was monitored by the temperature sensor 

contained in the HP units pressure transmitting medium. Adiabatic heating resulted in a 

~3°C increase per 100 MPa.  

 

3.2.2.5 Compositional Analysis and pH 

Proximate composition was carried out on the raw batter and the cooked frankfurter. Fat 

and moisture were determined using the SMART Trac and CEM Analysis System (CEM 

Corporation, Matthews, NC 28105, USA) (Bostian et al., 1985). Protein content was 

determined according to AOAC Procedures (1997) (method 981.10). The ash content of 

the frankfurters was determined by overnight incineration in a furnace (Nabertherm, Model 

L9/C6, Nabertherm, Germany) at 550 °C. Each value represents the average of 8 

measurements (two independent batches x two frankfurters per batch x two readings per 

sample). 

The pH was measured using a digital pH metre (Mettler-Toledo GmbH, Schwerzenbach, 

Switzerland) by inserting the glass probe directly into the frankfurter. Each value represents 
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the average of 8 measurements (two independent batches x two frankfurters per batch x 

two readings per sample). 

 

3.2.2.6 Salt content and Ionic strength 

Salt content was determined using the DiCromat II Salt Analyser (The Noramar Co, US). 

Before use, the instrument was calibrated using a 2% NaCl (Sigma, Ireland) solution. For 

the determination of salt content in the frankfurter samples, 25g of sample was weighed to 

which 225 mls of distilled water was added and then blended using an Ultraturrax 

homogeniser (IKA-Werke GmbH and Co, Germany) for 1 min. The homogenate was then 

filtered through a Watmann no.1 filter paper and the filtrate received in a 250 ml beaker. 

The dip-in probe of the DiCromat II Salt Analyser was immersed in the filtrate and the 

percentage of salt in the sample was read in the instrument display. Each value represents 

the average of 8 measurements (two independent batches x two samples per batch x two 

readings per sample). 

The ionic strength was calculated using the Debye and Huckel formula as described by 

Stanley (2017) using the following equation;  

IS =
1

2
𝑛 ∑ I (Ci Zi)

 2 

Where IS = ionic strength, n = number of ions in solution, I = the specific ion in solution, 

Ci= concentration to the species (M), Zi = the valence or oxidation number of the species. 

Results were expressed as (M). 
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3.2.2.7 Emulsion stability  

The emulsion stability was determined on the raw frankfurter batter prior to HPP and was 

measured by the method described by Hughes et al. (1997). Briefly, 25g of raw batter was 

placed in a centrifuge tube and centrifuged for 1 min at 704 x g in a Beckman centrifuge 

(model J2-21) (Beckman Coulter, USA) to remove unbound water prior to cooking. The 

samples contained in the centrifuge tube were then heated in a water bath for 30min at 70°C 

and centrifuged for 3 min at 704 x g. The pelleted samples were removed and weighed and 

the supernatants poured into pre-weighed crucibles and dried overnight at 100°C and re-

weighed. Each value represents the average of 8 measurements (two independent batches 

x two samples per batch x two readings per sample). 

The volumes of total expressible fluid (TEF) and the percentage fat were calculated as 

follows: 

TEF = Weight of centrifuge tube and sample –Weight of centrifuge tube and pellet 

%TEF = TEF / Sample weight ∗ 100 

% Fat = (Weight of crucible + dried supernatant – Weight of empty crucible / TEF) ∗ 100. 

 

3.2.2.8 Cook Loss  

The cooking loss of the frankfurters were determined prior to HP treatment. The initial 

weight of a string of five raw frankfurters was recorded, after cooking the frankfurters were 

patted dry with a paper towel to remove excess water and re-weighed. Cook loss was then 

expressed as a percentage of the original raw weight. Calculation for cook loss was as 

follows: 

% cook loss = (cooked weight – initial raw weight) / (initial raw weight) * 100  
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Each value represents the average of 8 measurements (two independent batches x two 

strings of five frankfurters per batch x two readings per sample).  

 

3.2.2.9 Colour 

The Colour of the cross section of the frankfurter was measured using a Minolta 

Chromameter CR-300 (CR-300, Minolta Camera Co., Osaka, Japan). Before use, the 

Chromameter was calibrated using a white tile (Y = 86, X = 0.3166, y = 0.3237). CIE L*, 

a* and b* values (Lightness, redness and yellowness, respectively) are reported. Each value 

represents the average of 8 measurements (two independent batches x two samples x two 

measurements). 

 

3.2.2.10 Texture profile analysis (TPA) 

Cylindrical sections of the frankfurter (2.6 cm diameter x 5 cm length) were analysed at 

room temperature (20°C) using a Texture Analyser TA-XT2 (Stable Micro Systems, 

Surrey, UK). The samples were subjected to a two-cycle compression using a 25 kg load 

cell. The samples were compressed to 40% of their original height twice with a cylindrical 

probe (SMSP/35 Compression plate) 35 mm diameter at a cross-head speed of 1.5 mm/s. 

Texture profile parameters measured were hardness (N), adhesiveness (N), springiness 

(mm), chewiness (N-mm) and cohesiveness (dimensionless). Each value represents the 

average of 8 measurements (two independent batches x four samples) 
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3.2.2.11 Sensory evaluation    

A 25 internally semi-trained taste panel of the School of Food and Nutritional Sciences, 

University College Cork was used to evaluate the frankfurters over two sessions using a 9-

point hedonic scale. The panellists were recruited from staff and postgraduate students at 

the School of Food and Nutritional Sciences, University College Cork and chosen based 

on their experience in the sensory analysis of processed meat products and on their 

availability. The panellists have partaken in sensory analysis of processed meat products 

on numerous occasions and are familiar with the sensory terminology. Each frankfurter 

sample was labelled with a three digit random number and re-heated in a bain marie at 65ºC 

before being served on labelled polystyrene plates. The tested attributes included; 

Appearance (1= extremely dislike, 9= extremely like), Texture (1= extremely dislike, 9= 

extremely like), Flavour (1= extremely dislike, 9= extremely like), Juiciness (1= extremely 

dry, 9= extremely juicy) Tenderness (1= extremely tender, 9= extremely tough,), Saltiness 

(1= not salty, 9= extremely salty), Off-flavour intensity (1= imperceptible, 9= extremely 

pronounced), Overall acceptability (1= extremely dislike, 9= extremely like). 

 

3.2.2.12 Microbiological analysis 

Microbiological analyses were carried out after process optimisation. In order to obtain a 

representative sample, 10 g of frankfurters were weighted aseptically into a stomacher bag 

in a vertical laminar-flow cabinet and a primary 10-fold dilution was performed by addition 

(90 ml) of sterile maximum recovery diluent (Oxoid, Basingstoke, U.K.), stomached 

(Steward Stomacher 400 Lab Blender, London, UK) for 3 min and homogenates were 10-

fold serially diluted using maximum recovery diluent solution. For the enumeration of total 

viable counts (TVC) 1 ml of each appropriate dilution was inoculated on duplicated plates 
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in the centre of compact dry-total count plates (20 cm2) (Nissui Pharmaceutical, Co. Ltd., 

Japan) following incubation at 37°C for 48 hours. 24 hr. Results were expressed as log10 

colony-forming units (CFU) g−1 frankfurters. Each value represents the average of 8 

measurements (two independent batches x two samples x two readings). 

 

3.2.2.13 Statistical analysis  

The software STATGRAPHICS® centurion XV (Statpoint, Inc., USA) was used for the 

experimental design which consisted of 15 treatment combinations (Table 3.1). The DOE 

was randomised by the software and the experimental work carried out on random order as 

presented by the software However, for the presentation of the results the formulations have 

been arranged in order to allow for better understanding. 

For the process optimisation, RSM was used. Both the independent variables and responses 

were fitted to the quadratic model by performing the analysis of variance (ANOVA). The 

experimental results were analysed to determine the lack of fit and the significance of the 

quadratic model and the effect of interaction between the independent variables and 

responses. The statistical significance of the terms in the regression equations was 

examined by ANOVA for each response and the significance test level was set at 5% (P < 

0.05).  

All physicochemical results (colour, texture, cook loss, pH, emulsion stability, salt content) 

and sensory data were tested using one way ANOVA  and significance assessed using 

Tukey's test at 5% significance level using SPSS software package (SPSS for Windows, 

version 21  IBM Corp., Armonk, NY, USA). Two independent batches of frankfurters per 

treatment were manufactured and all analysis carried out at least in duplicate.    
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3.3 Results and Discussion 

3.3.1 Composition of salt replacer and antimicrobial  

The results of the quantitative chemical analysis of Artisalt™ indicated it contains 41% 

Potassium chloride, 40% Ammonium chloride, and 19% flavour enhancers (yeast extract, 

onion and celery (calculated by difference)). The contents of nitrates and nitrites in 

ArtisaltTM were 5.8 and 2.3 ppm, respectively. This may be due to the fact that Artisalt™ 

contains celery and celery is a natural source of nitrates and nitrites (Sebranek et al., 2012). 

The results of the quantitative chemical analysis of InbacTM indicated it contains 43% 

Sodium acetate, 7% Malic acid, ~50% (emulsifier-mono and diglycerides of fatty acids, 

and technological coadjuvants; anticaking agents, calcium phosphate, magnesium 

carbonate and silicon dioxide (calculated by difference)). Small quantities of InbacTM (0.2-

0.4%) were used in the formulation therefore its inclusion in such small amounts would not 

affect the sodium content significantly nor contribute to the ionic strength. 

Ionic strength of 2% NaCl, 2% ArtisaltTM and 1% NaCl / 1% ArtisaltTM, concentrations 

used in the ham formulation, was calculated using the Debye and Huckel formula and the 

results indicated that the control (2% NaCl) formulation had an ionic strength of 0.34M, 

the 50% replacement formulation (1% NaCl and 1% Artisalt™) had an ionic strength of 

0.31M and the 100% replacement formulation (2% ArtisaltTM) had an ionic strength of 

0.26M. The results indicates that control samples that contained 2% NaCl and samples that 

were 50% NaCl replaced with Artisalt™ were quite similar which would result in similar 

protein solubility and stability of the emulsion which in turn would increase the water 

holding capacity (WHC) and reduce cook loss. These results are in agreement with O’ 

Flynn et al. (2014) who reported that lower cook losses were observed in sausage samples 

with higher salt concentration due to increased ionic strength.  
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3.3.2 Compositional analysis 

Compositional analysis was carried out on the raw batter and also on the cooked 

frankfurters (Table 3.3 and 3.4). There were no significant compositional differences 

between treatments in the raw batter. After cooking, in general the fat and moisture were 

significantly lower (P<0.05) while protein was significantly (P<0.05) higher which was 

due to the cook loss. It has been reported that aggregation of the meat protein with increased 

temperature on cooking causes the meat protein matrix to shrink (Trout and Schmidt, 1986) 

which reduces the amount of water that the batter can bind, thereby decreasing the moisture 

content of cooked samples. Sheard et al. (1999) and Tornberg (2005) reported that during 

cooking water is lost not only by evaporation from the surface or exudation; and also as a 

result of heat protein denaturation which reduces the WHC of meat proteins. 

In cooked frankfurters, fat, ash or protein content was not significantly affected by the level 

of salt replacement, however; when 100% of NaCl was replaced with Artisalt™ the 

moisture content frankfurters was significantly lower (P<0.05) compared to control or 

frankfurters that 50% of NaCl was replaced with Artisalt™ and this correlates to a 

significantly (P<0.05) higher cook loss for these products due to reduced protein solubility, 

emulsion stability and WHC due to a lower ionic strength. 

Our results are in agreement with the findings of O’ Flynn et al. (2014) who reported that 

the fat content in sausages was not affected by salt content or HPP and also found that lower 

moisture losses due to cooking were observed in samples with higher salt concentration, 

indicating improved batter stability due to increased ionic strength. Tobin et al. (2012) also 

reported that fat and moisture levels in frankfurters decreased after cooking which in turn 

increased the percentage of protein in the samples. The proximate composition results 

indicated that there were no significant differences when 50% of NaCl was replaced with 

http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0310
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0270
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0305
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Artisalt™ in the manufacture of frankfurters compared to control samples suggesting that 

the combination of NaCl and ArtisaltTM produces frankfurters of a similar quality to that of 

control samples but with significantly (P<0.05) less salt content. 

Several studies have reported that HPP primarily affects the physicochemical properties of 

raw/uncooked meat products; however, HPP produces minimal changes in cooked meat 

products (Considine et al., 2008; Neto et al., 2015; Bansal et al., 2015). Therefore, the 

physicochemical differences observed in this this study may have been mainly due to the 

level of NaCl replacement and subsequent total salt content in the frankfurters. 
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Table 3.3 Effects of different frankfurter formulations on the proximate composition of the raw frankfurter batter* 

Formulation 
Salt 

replacement 
HPP Inbac Fat Moisture Protein Ash 

 (%) (MPa) (%) % % % % 

1 0 0.1 0.3 18.29 ± 0.24 a 60.18 ± 0.60 a 16.33 ± 0.28 a 2.59 ± 0.34 a 

2 0 300 0.2 17.97 ± 0.35 a 61.12 ± 0.53 a 16.11 ± 0.25 a 2.55 ± 0.26 a 

3 0 300 0.4 18.31 ± 0.45 a 60.35 ± 0.99 a 16.16 ± 0.30 a 2.48 ± 0.12 a 

4 0 600 0.3 18.08 ± 0.29 a 61.14 ± 0.65 a 16.33 ± 0.37 a 2.51 ± 0.18 a 

5 50 0.1 0.2 18.18 ± 0.35 a 60.49 ± 0.57 a 16.52 ± 0.40 a 2.54 ± 0.07 a 

6 50 0.1 0.4 18.45 ± 0.36 a 60.10 ± 0.41 a 16.46 ± 0.32 a 2.39 ± 0.15 a 

7 50 300 0.3 18.25 ± 0.31 a 60.72 ± 0.76 a 16.27 ± 0.41 a 2.34 ± 0.15 a 

8 50 300 0.3 18.33 ± 0.40 a 60.62 ± 0.50 a 16.22 ± 0.26 a 2.41 ± 0.14 a 

9 50 300 0.3 18.29 ± 0.30 a 60.62 ± 0.49 a 16.31 ± 0.31 a 2.50 ± 0.25 a 

10 50 600 0.2 18.37 ± 0.38 a 60.95 ± 0.28 a 16.41 ± 0.32 a 2.52 ± 0.23 a 

11 50 600 0.4 18.41 ± 0.45 a 60.46 ± 0.69 a 16.38 ± 0.35 a 2.48 ± 0.19 a 

12 100 0.1 0.3 18.54 ± 0.86 a 61.42 ± 0.62 a 16.37 ± 0.31 a 2.68 ± 0.21 a 

13 100 300 0.2 18.55 ± 0.32 a 60.85 ± 0.86 a 16.52 ± 0.32 a 2.53 ± 0.27 a 

14 100 300 0.4 18.36 ± 0.41 a 60.75 ± 0.32 a 16.76 ± 0.28 a 2.66 ± 0.19 a 

15 100 600 0.3 18.51 ± 0.42 a 60.91 ± 0.70 a 16.57 ± 0.24 a 2.68 ± 0.37 a 

*Values are Mean ± standard deviation, a Different superscripts in the same column indicate significant difference (P<0.05) between treatments. 

Analysis was carried out before HPP
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Table 3.4 Effects of different frankfurter formulations on the proximate composition of the cooked frankfurters* 

Formulation 
Salt 

replacement 
HPP Inbac Fat Moisture Protein Ash 

 (%) (MPa) (%) % % % % 

1 0 0.1 0.3 17.68 ± 0.41 a 58.99 ± 0.52 a 17.68 ± 0.41 a 2.62 ± 0.15 a 

2 0 300 0.2 17.57 ± 0.27 a 58.86 ± 0.18 a 17.55 ± 0.23 a 2.58 ± 0.25 a 

3 0 300 0.4 17.49 ± 0.32 a 58.79 ± 0.40 a 17.65 ± 0.31 a 2.48 ± 0.19 a 

4 0 600 0.3 17.83 ± 0.36 a 58.78 ± 0.38 a 17.58 ± 0.29 a 2.55 ± 0.24 a 

5 50 0.1 0.2 17.51 ± 0.31 a 58.94 ± 0.44 a 17.77 ± 0.27 a 2.56 ± 0.20 a 

6 50 0.1 0.4 17.56 ± 0.30 a 58.45 ± 0.23 a 17.67 ± 0.35 a 2.54 ± 0.18 a 

7 50 300 0.3 17.7 ± 0.14 a 58.79 ± 0.27 a 17.28 ± 0.31 a 2.7 ± 0.22 a 

8 50 300 0.3 17.84 ± 0.31 a 58.99 ± 0.43 a 17.49 ± 0.31 a 2.56 ± 0.30 a 

9 50 300 0.3 17.80 ± 0.51 a 58.94 ± 0.88 a 17.55 ± 0.30 a 2.58 ± 0.32 a 

10 50 600 0.2 17.47 ± 0.36 a 58.45 ± 0.47 a 17.53 ± 0.25 a 2.61 ± 0.21 a 

11 50 600 0.4 17.57 ± 0.49 a 59.18 ± 0.60 a 17.66 ± 0.27 a 2.58 ± 0.14 a 

12 100 0.1 0.3 17.68 ± 0.46 a 56.16 ± 0.41 b 17.49 ± 0.18 a 2.63 ± 0.24 a 

13 100 300 0.2 17.60 ± 0.46 a 56.22 ± 0.63 b 17.65 ± 0.23 a 2.68 ± 0.17 a 

14 100 300 0.4 17.44 ± 0.43 a 56.17 ± 0.42 b 17.70 ± 0.19 a 2.55 ± 0.16 a 

15 100 600 0.3 17.45 ± 0.28 a 56.45 ± 0.60 b 17.64 ± 0.28 a 2.64 ± 0.23 a 

*Values are Mean ± standard deviation a,b Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.
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3.3.3 Salt content and pH 

As the level of salt replacement increased, the total NaCl content significantly (P<0.05) 

decreased; therefore, frankfurters that were manufactured without NaCl replacement 

(control samples) contained the highest NaCl content (2.5% total salt), compared to 

frankfurters manufactured with 50% or 100% NaCl replacement with ArtisaltTM, which 

contained 1.3% and 0.5% total salt, respectively (Table 3.5). According to the FSAI the 

recommended NaCl concentration in pork sausages was set to 1.37% (FSAI, 2010) and in 

this study the set target was achieved when 50% of NaCl was replaced with Artisalt™.  

The pH values did not change significantly when NaCl was 50% replaced with Artisalt™; 

however, significantly higher pH values (P<0.05) were noticed in frankfurters that 100% 

of NaCl was replaced with Artisalt™. When measured the pH or Artisalt™ and NaCl at 

the same concentration, the pH of a 2% Artisalt™ solution was 7.4 while the pH of a 2% 

NaCl was 6.6 and this high pH of Artisalt™ may explain why the when 100% NaCl was 

replaced by Artisalt™ in the frankfurter had a significantly higher (P<0.05) pH value than 

any other treatment.  

Previous studies have reported that increasing salt content did not affect significantly the 

pH or neither increased the pH of sausages (Aaslyng et al., 2014; O’ Flynn et al., 2014; 

Clarke et al., 1987; Poulanne and Terrell, 1983;  Sofos, 1983); however, in this study, the 

higher pH values in the 100% NaCl replaced samples may have been due to the composition 

of the Artisalt™ which has a pH value of 7.4 in 2% and also as it contains celery extract 

and the concentration of celery extract present in each formulation increased as the 

concentration of Artisalt™ increased. The significant effect of celery extract on increasing 

pH in this study supports the findings of a number of previous studies (Pietrasik et al., 

http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0070
http://www.sciencedirect.com/science/article/pii/S0309174013002544#bb0205
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2016; Sebranek et al., 2012; Horsch et al., 2014) which reported that celery concentrate 

has a pH value of 9.2.  

 

3.3.4 Cook loss 

The cook loss of the frankfurters was determined prior to HP treatment and is shown in 

Table 3.5. There were no significant differences in cook loss between the control and 

frankfurters that 50% of NaCl were replaced with Artisalt™, however; the frankfurters that 

100% of NaCl was replaced with Artisalt™ produced significantly (P<0.05) higher cook 

loss values which was due to a significantly (P<0.05) lower salt content and subsequently 

a lower ionic strength and WHC.   

Cooking yield affects the cost of manufacture of processed meats (O’ Flynn et al., 2014). 

The control of cook loss is also important because changes in the cooking yields may result 

in compositional changes in the finished products that may affect the palatability 

characteristics. As moisture is lost from meat during and after thermal processing, product 

yield and other quality attributes such as tenderness, texture, and flavour are negatively 

affected (Pietrasik, 1999). The significant effect of salt reduction on the cooking loss in this 

study supports the findings of a number of authors that WHC and therefore the cook loss 

is significantly influenced by NaCl content in processed meats (O’ Flynn et al., 2014; Tobin 

et al., 2012; Desmond, 2006).  

The results also showed that the cook loss and therefore the WHC were not significantly 

affected although, a significantly (P<0.05) lower total salt content was obtained when 50% 

of NaCl was replaced with Artisalt™ compared to control samples. The results indicated 

that the combination of NaCl and ArtisaltTM can produce frankfurters of a similar quality 

to that of the control samples but with significantly (P<0.05) less salt. Crehan et al. (2000) 

http://www.sciencedirect.com/science/article/pii/S0309174013006037#bb0090
http://www.sciencedirect.com/science/article/pii/S0309174013006037#bb0090
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0155
http://www.sciencedirect.com/science/article/pii/S0309174016300262#bb0035
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0085
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and Hongsprabhas and Barbut (1999) found that salt levels in meat batters could be reduced 

to 1.5% without affecting cooking losses; however, in our study no significant effect on 

cook loss was found between the frankfurters that 50% of NaCl replaced with Artisalt™ 

which contained 1.3% total salt content and to control samples which contained 2.5% of 

total salt and this may be due to the fact they had similar ionic strengths. 

 

3.3.5 Emulsion stability  

The emulsion stability of the frankfurter batter was determined prior to cooking and HPP 

and is shown in Table 3.5. The results of TEF showed that emulsion stability was 

significantly (P<0.05) affected when NaCl was 100% replaced by ArtisaltTM, however, the 

emulsion stability was not significantly affected when 50% of NaCl was replaced with 

ArtisaltTM compared to control samples.  

It was reported that the level of fluid loss is directly related to the degree of emulsion 

stability as less water is lost during cooking if the emulsion is stable. (The Salt Institute, 

2013). In sausage manufacture, stable emulsions are formed when the salt-soluble protein 

coat the finely-formed globules of fat, providing a binding gel consisting of meat, fat and 

moisture (The Salt Institute, 2013). Terrell (1983) also reported that salt increases the 

viscosity of meat batters, facilitating the incorporation of fat to form stable meat batters; 

therefore, if salt content is reduction in the manufacture of comminuted products will 

reduce the stability of meat batters. Our results are in agreement with the results reported 

by O’ Flynn et al. (2014) who found that the stability of sausage batter was unaffected 

when salt was reduced up to 1.0%. In general, when salt content is reduced, the WHC and 

therefore the emulsion stability is affected negatively; however; in this study the 

combination of NaCl and ArtisaltTM  produced frankfurters of a similar quality to control 

http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0130
http://www.sciencedirect.com/science/article/pii/S0309174013006086#bb0300
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samples. This may be due to similar ionic strengths which increases protein solubility and 

subsequent emulsion stability. 

 

3.3.6 Colour 

The results showed that lightness, redness and yellowness were significantly (P<0.05) 

affected when 100% NaCl was replaced with ArtisaltTM resulting in a lighter, yellower and 

less red frankfurters compared to control samples. However, when 50% of NaCl was 

replaced with Artisalt™, generally there was no significant differences in lightness, redness 

and yellowness compared to control frankfurters even though the total salt was reduced 

from 2.5% to 1.3% (Table 3.5). Similar results were found by Wettasinghe and Shahidi 

(1997) who reported a decrease in the lightness of pork meat values due to increased salt 

levels (1.0 to 2.0%). The darker colour was attributed to oxidised products of meat pigments 

(due to increased salt levels) which have a brown and darker colour. Skogsberg (2017) 

reported that colour was not significantly affected in sausages when salt was replaced with 

up to 30% KCl; however; in our study a higher level of salt replacement was achieved 

(50%) without significantly affecting the colour of frankfurters. 

Our findings are also in agreement with the results reported by Grossi et al. (2012) who 

found that the salt content of pork sausages can be reduced from 1.8 to 1.2% salt by addition 

of hydrocolloids (either carrot fibres or potato starch) and subsequent HPP at 600 MPa 

without negative effects on colour. Conversely, Tobin et al. (2013) reported a paler sausage 

was observed when salt content was decreased while O’ Flynn et al. (2014) found that 

colour in sausages were significantly affected (P<0.05) when salt levels were reduced 

below 1.5%. Similarly, Crehan et al. (2000) found that salt reduction from 2.5 to 1.5% 

significantly (P<0.05) reduced the redness and yellowness of frankfurters. 
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Table 3.5 Effects of different frankfurter formulations on the physicochemical characteristics* 

*Values are Mean ± standard deviation, ** Analysis were carried out before HPP.  

a,b,c,d Different superscripts in the same column indicate significant difference (P<0.05) between treatments.

Formulation Salt 

replacement 

HPP Inbac Lightness Redness Yellowness Salt content pH TEF** Cook loss** 

 (%) (MPa) (%) (L*) (a*) (b*) (%)  (%) (%) 

1 0 0.1 0.3 70.36 ± 1.05 a 9.27 ± 0.55 a 12.35 ± 0.62  a 2.48 ± 0.08 a 5.97 ± 0.07 a 2.22 ± 0.13 a 2.4 ± 0.46 a 

2 0 300 0.2 71.13 ± 1 ab 8.86 ± 0.22 ab 12.52 ± 0.37 ab 2.52 ± 0.13 a 5.99 ± 0.04 a 2.42 ± 0.14 a 2.7± 0.4 a 

3 0 300 0.4 70.52 ± 0.45 ab 8.78 ± 0.29 ab 12.36 ± 0.73 a 2.52 ± 0.08 a 6.00 ± 0.09 a 2.38 ± 0.19 a 2.5 ± 0.49 a 

4 0 600 0.3 70.88 ± 0.54 ab 8.71 ± 0.5 ab 12.84 ± 0.08 ab 2.54 ± 0.05 a 5.95 ± 0.05 a 2.37 ± 0.17 a 2.5 ± 0.4 a 

5 50 0.1 0.2 71.05 ± 1.04 ab 8.49 ± 0.25 b 12.18 ± 0.68 a 1.28 ± 0.08 b 6.03 ± 0.02 a 2.46 ± 0.11 a 2.5 ± 0.23 a 

6 50 0.1 0.4 71.04 ± 1.03 ab 8.44 ± 0.27 b 12.55 ± 0.23 ab 1.31 ± 0.1 b 5.97 ± 0.06 a 2.42 ± 0.19 a 2.5 ± 0.58 a 

7 50 300 0.3 71.18 ± 1.02 ab 8.74 ± 0.66 ab 12.22 ±  0.63 a 1.34 ± 0.16 b 6.01 ± 0.03 a 2.31 ± 0.16 a 2.6 ± 0.61a 

8 50 300 0.3 71.28 ± 0.83 ab 8.67 ± 0.21 ab 12.32 ± 0.56 a 1.29 ± 0.08 b 5.99 ± 0.02 a 2.64 ± 0.16 a 2.5 ± 0.37 a 

9 50 300 0.3 70.59 ± 0.49 ab 8.56 ± 0.26 ab 12.19 ± 0.06 a 1.24 ± 0.05 b 6.02 ± 0.02 a 2.50 ± 0.11 a 2.3 ± 0.46 a 

10 50 600 0.2 71.54 ± 0.34 b 8.82 ± 0.47 ab 12.37 ± 0.56 a 1.28 ± 0.08 b 6.03 ± 0.04 a 2.46 ± 0.31 a 2.4 ± 0.23 a 

11 50 600 0.4 71.10 ± 0.61 ab 8.60 ± 0.19 ab 12.57 ± 0.32 ab 1.29 ± 0.08 b 6.04 ± 0.05 a 2.42 ± 0.29 a 2.4 ± 0.51 a 

12 100 0.1 0.3 72.64 ± 0.72 c 6.74 ± 0.4 c 14.02 ± 0.64 d 0.52 ± 0.08 c 6.35 ± 0.05 b 6.66 ± 0.36 b 5.0 ± 0.27 b 

13 100 300 0.2 73.01 ± 0.81 c 6.87 ± 0.65 c 13.71 ± 0.51 cd 0.48 ± 0.09 c 6.33 ± 0.04 b 6.90 ± 0.82 b 5.3 ± 0.28 b 

14 100 300 0.4 72.64 ± 0.47  c 7.26 ± 0.41 c 13.57 ± 0.52 cd 0.56 ± 0.08 c 6.38 ± 0.05 b 6.44 ± 0.83 b 5.3 ± 0.46 b 

15 100 600 0.3 73.31 ± 0.55 c 7.26 ± 0.21 c 13.23 ± 0.55 bc 0.50 ± 0.1 c 6.36 ± 0.06 b 6.58 ± 0.31 b 5.1 ± 0.9 b 
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3.3.7 Texture Profile Analysis  

The texture profile of the frankfurters is shown in Table 3.6. The results showed that 

hardness, chewiness, springiness, cohesiveness values were significantly lower (P<0.05) 

when the NaCl was 100% replaced with ArtisaltTM; however, when 50% of NaCl was 

replaced with ArtisaltTM no significant differences on the texture profile was noticed  

compared to control samples. Negative effects of salt reduction on the texture of processed 

meats has been well documented (Hand et al., 1987; Matulis et al., 1995; Corral et al., 2013 

; Desmond 2006 ; Gimeno et al., 2001). In regards to salt replacement, Gelabert (2003) 

reported that in sausages the critical level of salt substitution with KCL was 40%; however, 

in our study a higher level of salt replacement was successfully achieved (50%). Grossi et 

al. (2012) found that the salt content of pork sausages could be reduced from 1.8 to 1.2% 

salt by addition of hydrocolloids (either carrot fibres or potato starch) and subsequent HPP 

at 600 MPa without negative effects on texture.  

The results obtained in this study suggest that the combination of NaCl and ArtisaltTM 

produced frankfurters of a similar texture to that of the control samples containing full NaCl 

content; which may be due to similar ionic strengths which resulted in the cook loss or 

emulsion stability not being significantly affected when 50% of NaCl was replaced with 

Artisalt™ as these parameters are known to affect the texture of the final product after 

cooking.  
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Table 3.6 Effects of different frankfurter formulations on the texture parameters*. 

 

*Values are Mean ± standard deviation a,b,c,d,e Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.

Formulation Salt 

replacement 

HPP Inbac Hardness Adhesiveness Springiness Cohesiveness Chewiness 

 (%) (MPa) (%) (N) (N) (mm)  (N-mm) 

1 0 0.1 0.3 15.62 ± 1.22 abc -.077 ± 0.07 a .845 ± 0.04 a .535 ± 0.02 a 13.15 ± 0.81 abc 

2 0 300 0.2 16.42 ± 0.98 a -.112 ± 0.1 a .843 ± 0.03 a .535 ± 0.03 a 13.83 ± 0.94 a 

3 0 300 0.4 14.92 ± 0.89 bcd -.111 ± 0.06 a .854 ± 0.03 a .538 ± 0.02 a 12.73 ± 0.77 abc 

4 0 600 0.3 15.94 ± 0.82 ab -.136 ± 0.1 a .859 ± 0.03 a .542 ± 0.01 a 13.70 ± 1.1 ab 

5 50 0.1 0.2 14.24 ± 0.93 d -.119 ± 0.05 a .861 ± 0.02 a .524 ± 0.02 a 12.26 ± 0.9 c 

6 50 0.1 0.4 14.64 ± 0.90 cd -.071 ± 0.09 a .849 ± 0.02 a .544 ± 0.03 a 12.44 ± 1.12 bc 

7 50 300 0.3 14.84 ± 1.11 bcd -.115 ± 0.03 a .859 ± 0.02 a .541 ± 0.02 a 13.04 ± 1.31 abc 

8 50 300 0.3 15.24 ± 1.02 bcd -.116 ± 0.56 a .848 ± 0.04 a .529 ± 0.03 a 12.78 ± 1.07 abc 

9 50 300 0.3 15.01 ± 0.82 bcd -.115 ± 0.05 a .867 ± 0.02 a .531 ± 0.04 a 12.74 ± 1.23 abc 

10 50 600 0.2 15.26 ± 1.01 abcd -.520 ± 0.65 a .856 ± 0.04 a .515 ±  0.01 ab 13.06 ± 0.86 abc 

11 50 600 0.4 14.64 ± 1.28 cd -.307 ± 0.4 a .867 ± 0.01 a .544 ± 0.02 a 12.69 ± 1.11 abc 

12 100 0.1 0.3 12.34 ± 0.46 e -.257 ± 0.26 a .799 ± 0.02 b .483 ± 0.04 bc 9.86 ± 0.57 d 

13 100 300 0.2 11.78 ± 0.49 e -.559 ± 0.25 a .795 ± 0.02 b .474 ± 0.03c 9.35 ± 0.32 d 

14 100 300 0.4 12.02 ± 0.85 e -.338 ± 0.31 a .769 ± 0.03 b .480 ± 0.04 bc 9.24 ± 0.79 d 

15 100 600 0.3 11.82 ± 0.57 e -.055 ± 0.04 a .796 ± 0.02 b .471 ± 0.04 c 9.40 ± 0.65 d 
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3.3.8 Sensory analysis 

The results of the sensory analysis of the frankfurters showed that all sensory attributes 

were not significantly affected when 50% of NaCl was replaced with ArtisaltTM; however, 

when 100% of NaCl was replaced with ArtisaltTM significantly (P<0.05) lower scores for 

sensory attributes including flavour, texture, saltiness, tenderness and juiciness and higher 

(P<0.05) scores for off-flavour were obtained (Table 3.7); however, due to the fact that the 

OSA of these samples scored above the limit of acceptability set at 4.5 on the 9 point scale 

indicated that these frankfurters could not be considered as unacceptable. The control 

frankfurters were formulated to contain similar ingredients and salt content as frankfurters 

available in the Irish market therefore no significant differences between the control 

frankfurters and frankfurters which NaCl was 50% replaced with ArtisaltTM indicated that 

the 50/50 combination of NaCl/ArtitsaltTM produces frankfurters of similar quality to 

commercial products. 

Jaenke et al. (2017) examined salt reduction, salt replacement or compensation in processed 

meats. Random effects meta-analyses conducted on salt-reduced products showed that salt 

in processed meats can be reduced by approximately 70% without significantly impacting 

consumer acceptability; however; physicochemical quality was not assessed. Mc Gough et 

al., (2012); Skogsberg (2017) and Gelabert (2003) reported that in frankfurters up to 40% 

of salt can be replaced without major quality or sensory changes. However, in this study a 

higher level of salt replacement (50%) with ArtisaltTM was achieved without negatively 

affecting the sensory attributes of the frankfurters nor did the panel perceive a reduction in 

saltiness. This may be due to the composition of the salt replacer ArtisaltTM which contains 

flavour enhancers (yeast extract, celery and onion) which can mask the bitterness 

associated with KCl and enhance the flavour and saltiness perception of the frankfurters.
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Table 3.7 Effects of different frankfurter formulations on the sensory characteristics* 

*Values are Mean ± standard deviation 

a,b,c,d Different superscripts in the same column indicate significant difference (P<0.05) between treatments.

Formulation Salt 

replacement 

HPP Inbac  

Sensory attributes 

 (%) (MPa) (%) Appearance Texture Flavour Saltiness Tenderness Juiciness Off-flavour OSA 

1 0 0.1 0.3 6.22 a 6.40 ab 7.22 a 6.26 a 6.80 a 6.73 a 1.36 a 7.33 a 

2 0 300 0.2 6.37 a 6.22 ab 6.94 a 5.90 a 6.86 a 7.00 a 1.59 a 7.44 a 

3 0 300 0.4 6.50 a 6.00 b 7.09 a 6.22 a 6.80 a 6.86 a 1.37 a 7.36 a 

4 0 600 0.3 6.40 a 6.87 a 7.32 a 6.56 a 6.86 a 7.06 a 1.57 a 7.23 a 

5 50 0.1 0.2 6.26 a 6.40 ab 7.22 a 6.53 a 6.80 a 7.13 a 1.52 a 7.82 a 

6 50 0.1 0.4 6.33 a 6.05 b 7.18 a 6.05 a 6.73  a 7.00 a 1.46 a 7.24 a 

7 50 300 0.3 6.38 a 6.34  ab 7.11 a 6.29 a 6.98 a 6.87 a 1.24 a 7.38 a 

8 50 300 0.3 6.55 a 6.45  ab 7.41 a 6.11 a 6.86 a 6.95 a 1.39 a 7.24 a 

9 50 300 0.3 6.71 a 6.29  ab 7.24 a 6.36 a 6.59 a 7.14 a 1.55 a 7.68 a 

10 50 600 0.2 6.86 a 6.36 ab 7.38 a 5.91 a 6.80 a 7.06 a 1.53 a 7.51 a 

11 50 600 0.4 6.23 a 6.47 ab 6.90 a 6.04 a 6.53 a 6.93 a 1.57 a 7.58 a 

12 100 0.1 0.3 6.65 a 4.33 d 4.95 b 3.60 b 7.00 a 3.80 b 2.07 ab 4.06 c 

13 100 300 0.2 6.35 a 4.20 d 5.28 b 3.73 b 6.86 a 3.46 b 2.93 b 4.96 b 

14 100 300 0.4 6.60 a 4.73 cd 5.10 b 3.66 b 6.45 a 2.86 b 2.46 b 5.02 b 

15 100 600 0.3 6.44 a 5.06 c 4.75 b 3.23 b 6.66 a 3.06 b 2.70 b 5.28 b 
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3.3.9 Modelling and Optimisation  

The fitness of the models were evaluated through the coefficients of determination (R2). It 

has been suggested that for the good fit of a model R2 should be ≥ 80% (Joglekar et al. 

1987). The adjusted R-squared statistic is more suitable for comparing models with 

different numbers of independent variables. The lack of fit test is designed to determine 

whether the selected model is adequate to describe the observed data, of the P value is 

greater than or equal to 0.05 then the model appears to be adequate for the observed data at 

the 95% confidence level. (STATGRAPHICS® Centurion XV User Manual, Statpoint, 

Inc., USA. 2005). 

ANOVA was carried out on frankfurters hardness, OSA, flavour and saltiness (Table 3.8). 

Salt replacement, HPP and Inbac were represented by A, B and C, respectively. In the 

Pareto charts (Figures 3.1a-1d) the length of the horizontal bars are proportional to the 

significance of the factor. The vertical line is the threshold for significant effects at the level 

P < 0.05 thus the effects are statistically significant when the respective bars exceed this 

vertical line. The Pareto charts indicated that Salt replacement had the most significant 

effect on all response variables.  

For hardness, the Pareto chart (Figure 3.1a) shows that the linear effects of the independent 

variable salt replacement (A), the interactive effects of salt replacement and Inbac (AC) 

and the quadratic effects of salt replacement (AA) affected significantly (P<0.05) the 

hardness of the frankfurters. For OSA, the Pareto chart (Figure 3.1b) shows that the linear 

effects of A and B, the interactive effects of AB and the quadratic effects of AA and CC 

affected significantly (P<0.05) the OSA of the frankfurters. For flavour and saltiness, 

Figures 3.1c and 3.1d showed that the linear effects of A and the quadratic effects of AA 

affected significantly (P<0.05) the flavor and saltiness of the frankfurters. The regression 
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equations which predicted the value of each response variable when the independent factors 

are varied were as follows: 

Equation 2: Hardness = 14.42 - 0.01905*A + 0.004225*B + 10.75*C - 0.000402*A^2 - 

0.000014*A*B + 0.087*A*C - 0.00000105556*B^2 - 0.0085*B*C - 24.0*C^2 

Equation 3: OSA = 9.35 + 0.0149167*A - 0.000180556*B - 13.0*C - 0.000486667*A^2 + 

0.0000233333*A*B + 0.005*A*C - 7.40741E-7*B^2 + 0.000833333*B*C + 

20.8333*C^2 

Equation 4: Flavour = 7.0 + 0.0275*A + 0.00104167*B - 0.625*C - 0.00042*A^2 - 

0.000005*A*B - 0.015*A*C + 2.77778E-7*B^2 - 0.00333333*B*C + 2.5*C^2 

Equation 5: Saltiness = 5.775 + 0.031*A- 0.00104167*B + 3.625*C - 0.0005*A^2 - 

0.0000116667*A*B - 0.015*A*C - 2.77778E-7*B^2 + 0.005*B*C - 7.5*C^2 

For hardness and flavour, the absolute values of partial regression coefficient were A > C 

> B within the range of the experimental design, demonstrating the greatest effects of Salt 

replacement followed by InbacTM and HPP, respectively. For OSA and saltiness, the 

absolute values of partial regression coefficient were A > B > C within the range of the 

experimental design, demonstrating the greatest effects of salt replacement followed by 

HPP and InbacTM respectively. 

For hardness, OSA, flavour and saltiness the adjusted R2 of the predicted models was 

96.63%, 99.22%, 95.39% and 95.5%, respectively indicating that the predicted model can 

reasonably predict the observed values shown in the regression equations 2-5. For OSA, 

the lack of fit value was 0.19 which was insignificant and therefore indicates that the 

selected model is adequate to describe the observed data. 
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The 3-Dimentional Response Surface Plots were formed based on the polynomial function 

depicting the variation in the parameter modelled (measured response) as the two factors 

(salt replacement and HPP) levels changed along the plots, while holding the third factor 

constant at the optimum point predicted for that factor. In particular, in Figure 3.2, the 

response variable correlates salt replacement (%) and pressure as a function of Inbac™ set 

at 0.3%. The relationship between the dependent and independent variables can be clearly 

understood by these plots (Figure 3.2). For each response one 3-D response plot was 

produced.  

The yellow area of Figure 3.2a represents the highest hardness of the frankfurters and the 

corresponding combination of the independent factors required in order to achieve this level 

of hardness. The results showed that the best combination of the variables in order to 

maximise hardness were: Salt replacement 19%, HPP 403 MPa and InbacTM 0.3%. The 

yellow area of Figure 3.2b represents the highest OSA and the corresponding combination 

of the independent factors required in order to achieve this level of OSA. The results 

showed that the best combination of the variables in order to maximise OSA were; Salt 

replacement 48%, HPP 580MPa and InbacTM 0.3%. The orange area of Figure 3.2c 

represents the highest liking of flavour and the corresponding combination of the 

independent factors required in order to achieve this level of flavour. The results showed 

that the best combination of the variables in order to maximise flavour were; Salt 

replacement 26%, HPP 600MPa and InbacTM 0.3%. The orange area of Figure 3.2d 

represents the highest saltiness and the corresponding combination of independent factors 

required in order to achieve this level of saltiness. The results showed that the best 

combination of the variables in order to maximise overall acceptability were; Salt 

replacement 36%, HPP 305MPa and InbacTM 0.3%. 



154 
 

It is well known that sensory properties of food products are the most important attributes 

as they are the most apparent to consumers (Singham et al. 2015). While attributes such as 

hardness, flavour or saltiness were predicted by the models; a higher level of salt 

replacement and HPP was achieved when product optimisation was carried out based on 

OSA which subsequently produced a product with lower salt content an increased safety 

due to the use of a combination of HPP and antimicrobial organic acids; therefore, 

production of the optimised frankfurters was carried out based on maximising the OSA.  

 

 

 

 

 

 

 

 

 

 

 

 

 



155 
 

Table 3.8 ANOVA of the independent factors and their interactive effects on each response 

variable. 

 Sum of Squares Df Mean Square F-Ratio P-Value SL 

Hardness       

A:Salt replacement 27.9005 1 27.9005 345.05 0.0000 * 

B:HPP 0.08405 1 0.08405 1.04 0.3547 NS 

C:Inbac 0.2738 1 0.2738 3.39 0.1251 NS 

AA 3.72932 1 3.72932 46.12 0.0011 *  

AB 0.1764 1 0.1764 2.18 0.1997 NS 

AC 0.7569 1 0.7569 9.36 0.0281 * 

BB 0.0333231 1 0.0333231 0.41 0.5492 NS 

BC 0.2601 1 0.2601 3.22 0.1329 NS 

CC 0.212677 1 0.212677 2.63 0.1658 NS 

Total error 0.4043 5 0.08086    

Total (correlation) 33.6838 14     

R-squared = 98.78%       

R-squared (adjusted ) = 96.63%       

       

OSA       

A:salt replacement 12.7513 1 12.7513 1177.04 0.0000 * 

B:HPP 0.45125 1 0.45125 41.65 0.0013 * 

C:Inbac 0.0 1 0.0 0.00 1.0000 NS 

AA 5.46564 1 5.46564 504.52 0.0000 * 

AB 0.49 1 0.49 45.23 0.0011 * 

AC 0.0025 1 0.0025 0.23 0.6512 NS 

BB 0.0164103 1 0.0164103 1.51 0.2731 NS 

BC 0.0025 1 0.0025 0.23 0.6512 NS 

CC 0.160256 1 0.160256 14.79 0.0120 * 

Total error 0.0541667 5 0.0108333    

Total (correlation) 19.556 14     

R-squared = 99.72%       

R-squared (adjusted) = 99.22%       

       

Flavour       

A:salt replacement 8.405 1 8.405 197.76 0.0000 * 

B:HPP 0.00125 1 0.00125 0.03 0.8706 NS 

C:Inbac 0.06125 1 0.06125 1.44 0.2837 NS 

AA 4.07077 1 4.07077 95.78 0.0002 * 

AB 0.0225 1 0.0225 0.53 0.4995 NS 

AC 0.0225 1 0.0225 0.53 0.4995 NS 

BB 0.00230769 1 0.00230769 0.05 0.8250 NS 

BC 0.04 1 0.04 0.94 0.3765 NS 

CC 0.00230769 1 0.00230769 0.05 0.8250 NS 

Total error 0.2125 5 0.0425    

Total (correlation) 12.9133 14     

R-squared = 98.35%       

R-squared (adjusted ) = 95.39%       
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SL = Significance level, NS = Not Significant, * = P<0.05 

 

 

 

 

 

 

 

 

 

 

Saltiness 

      

A:salt replacement 14.58 1 14.58 216.00 0.0000 * 

B:HPP 0.06125 1 0.06125 0.91 0.3845 NS 

C:Inbac 0.00125 1 0.00125 0.02 0.8971 NS 

AA 5.76923 1 5.76923 85.47 0.0002 * 

AB 0.1225 1 0.1225 1.81 0.2358 NS 

AC 0.0225 1 0.0225 0.33 0.5887 NS 

BB 0.00230769 1 0.00230769 0.03 0.8606 NS 

BC 0.09 1 0.09 1.33 0.3004 NS 

CC 0.0207692 1 0.0207692 0.31 0.6030 NS 

Total error 0.3375 5 0.0675    

Total (correlation) 21.004 14     

R-squared =  98.39%       

R-squared (adjusted) = 95.5%        
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Figure 3.1 – Pareto charts of the significance of the effects of the independent factors and their interactions on the (a) hardness, (b) OSA, (c) 

flavour and (d) saltiness.  
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Figure 3.2 – Effect of salt replacement and high pressure processing on the (a) hardness, (b) OSA, (c) flavour and (d) saltiness of frankfurters.
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3.3.10 Validation experiments   

The robustness of the model used for the process optimisation was validated by carrying 

out three independent confirmatory trials to ascertain differences between predicted and 

experimental values. Optimised frankfurters (48% Salt replacement, 580MPa and 0.3% 

InbacTM) were produced and analysed on three different occasions by a 25 member semi-

trained sensory panel. The predicted and average response values for all sensory attributes 

(flavour, saltiness and OSA) obtained by the sensory panel and instrumental measurement 

of hardness were similar to the observed values obtained using regression equations 1-4 

(Table 3.9). The results of the validation experiments indicated that the RSM approach used 

was effective for modelling and optimizing the operational conditions for the manufacture 

of low salt frankfurters.  
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Table 3.9 Predicted and observed responses of the frankfurters manufactured using the 

optimised OSA parameters (48% salt replacement. 580 MPa and 0.3% InbacTM)* 

*Values are Mean ± standard deviation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Response Y (predicted) Y (observed) 

Hardness (N) 15.3  15.4 ± 0.96 

Saltiness 6.0  5.62 ± 1.02 

Flavour 7.2  7.01 ± 0.67 

OSA 7.4  7.14 ± 0.68 
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3.3.11 Microbiological analysis 

The microbiological changes for TVC during chilled storage (4°C) of vacuum packed 

frankfurters (Low-salt optimised frankfurter and Control) are shown in Figure 3.3. The 

recommended microbiological limit for Aerobic plate counts is < 5x105 CFU/g of product 

and is applied for cook-chill products examined at the point of consumption before 

reheating or cooking is applied (FSAI, 2014) 

The initial microbiological quality of the both control and optimised frankfurters were of 

good quality with a TVC below the limit of detection <10 CFU/g. The limit of acceptability 

for control frankfurters was reached after 53 day storage; however, the limit of acceptability 

for the low-salt optimised frankfurter manufactured using HPP and Inbac™ as hurdles was 

reached after 80 days of storage which had a 51% longer shelf life than control samples 

(Figure 3.3).  

The application of HPP to increase the shelf life of processed meat products has been well 

documented (Diez et al., 2008; Garriga et al., 2004; Hayman et al., 2004); however, in this 

study the combined hurdle effects of HPP and a mix of organic acids extended significantly 

(P<0.05) the shelf life of low-salt frankfurters in which the safety and shelf life had been 

reduced due to significant salt reduction and the reduction on the preservative effects of 

salt. Our findings are in agreement with the results reported by Rodriguez-Calleja et al. 

(2012) who demonstrated the strongly potential synergetic interaction of HPP and a mix of 

organic acids as hurdles extending the shelf-life of skinless chicken breast fillets up to four 

weeks. This confirms the potential utility of the hurdle strategy for improving the shelf-life 

and safety of low-salt processed meat products.      
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Figure 3.3 - Microbiological changes of TVC during chilled storage at 4°C of vacuum 

packed optimum formulation (▬) or control (▬) frankfurters.  Each point shown is the 

average value from two different trials (n=8). The dotted lines show the limits of 

detection and acceptability, respectively. 
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3.4 Conclusion 

When NaCl was partially replaced (50%) with ArtisaltTM quality parameters such as cook 

loss, pH, emulsion stability, colour, texture and sensory attributes were not significantly 

affected compared to control samples; however, when NaCl was 100% replaced with 

ArtisaltTM all frankfurter quality parameters were negatively (P<0.05) affected resulting in 

a less (P < 0.05) acceptable product by the sensory panel.  

Response Surface Methodology was successfully used to develop sensory accepted low-

salt frankfurters and the results indicated that the main independent factor that significantly 

(P<0.05) influenced the assessed response variables of the frankfurters was salt 

replacement. The product optimisation carried out maximising the OSA indicated that the 

best formulation to obtain low-salt cooked frankfurters was: Salt replacer ArtisaltTM (48%), 

HPP (580MPa) and concentration of Inbac™ (0.3%).   

The validation process indicated that the observed responses were found to be quite similar 

to the predicted values for the OSA optimised low salt cooked meat products indicating 

that the model obtained can accurately predict changes on the OSA of the frankfurters. 

Therefore, a 48% added salt reduction was achieved reducing the total salt content in the 

cooked frankfurters from 2.5% to 1.3% and the developed product can be classified as ‘salt 

reduced’ frankfurters. This significant salt reduction in cooked frankfurters without 

compromising the physicochemical, OSA or safety and shelf life of the product was 

achieved through the use of salt replacer ArtisaltTM which contain flavour enhancers and 

the application of HPP and InbacTM as hurdles. The hurdle approach used in this study 

extended significantly the shelf life of low salt frankfurters by 51% compared to control 

samples, indicating the potential utility of the hurdle strategy for improving the shelf-life 

and safety of low-salt processed meat products. 
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CHAPTER 4  

Shelf life extension of vacuum-packed salt reduced frankfurters and 

cooked ham through the combined application of high pressure 

processing and organic acids.  

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is in the form of a manuscript accepted for publication in Food Packaging and 

Shelf life (2018) 17: 120-128.  
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Abstract  

The objective of this study was to assess the efficacy of a combination of high pressure 

processing (HPP) and a mix of organic acids InbacTM as hurdles to extend the shelf life of 

previously optimised sensory accepted frankfurters and cooked ham with significantly 

(P<0.05) lower salt content. The optimum parameters for the manufacture of low-salt 

frankfurters were; Salt replacer ArtisaltTM (48%), HPP (580 MPa) and InbacTM (0.3%) and 

for manufacture of low-salt cooked ham the optimum parameters were; Salt replacer 

ArtisaltTM, HPP (535 MPa) and InbacTM (0.3%). Physicochemical changes (P<0.05) 

occurred over storage time; however, the sensory acceptability did not change significantly. 

From the microbiological point of view, the results indicated that the hurdles (HPP and 

Inbac™) applied in the manufacture of low-salt processed meat products extended 

(P<0.05) the shelf-life of low-salt frankfurters by 51% and low-salt cooked ham by 97%, 

compared to control samples which contained full salt content. These results highlight the 

potential use of the hurdle strategy for extending the shelf-life and safety of low-salt 

processed meat products.  
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4.1 Introduction  

The functions of salt in meat processing fall into three broad categories; enhancing sensory 

properties, providing specific physical processing effects and affecting preservation 

(Matthews and Strong, 2005), therefore salt reduction in processed meats can be 

problematic (Pietrasik et al., 2017) as the sensory acceptability and the safety and shelf life 

can be compromised. The antimicrobial effects of salt is based on its ability to reduce water 

activity (aw) (Sofos, 1984; Ingulgia et al., 2017). The effect of salt on microorganisms 

depends on the concentration of salt present in the aqueous phase of the food (Ingulgia et 

al., 2017). The concentration of salt in the water phase has to be high enough to inhibit the 

growth of pathogenic micro-organisms such as Clostridium botulinum and Listeria 

monocytogenes in vacuum packed and chilled food products (Matthews and Strong, 2005). 

However, salt reduction increases aw reducing the preservative effects of salt which in turn 

increases water availability for microbial growth.  

There is strong evidence that our current salt consumption is the major factor increasing 

blood pressure and thereby cardiovascular disease (He and McGregor, 2009). Regardless 

of this, in most European countries the recommended dietary salt intake of <5g/day is 

greatly exceeded with an estimated salt consumption as high as 9-12g/day (WHO, 2016) 

with 75% of dietary salt coming from processed foods (Appel and Anderson, 2010). As a 

result, the food industry is currently under pressure from food standards agencies to deliver 

reductions in the salt intake of the population through the introduction of lower salt levels 

in processed foods (Phillips, 2003) without compromising consumer acceptability or food 

safety and shelf life. Salt replacers such as Potassium Chloride (KCl) are commonly used 

to reduce salt in meat products; however, health concerns regarding the replacement of 

Sodium chloride (NaCl) with KCl have been highlighted by Steffensen et al. (2018) and 

include renal malfunctioning, hypoaldosteronism and Addison disease. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-3010.2005.00469.x/full#b1
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Shelf life is the period of time during which a food retains acceptable characteristics of 

flavour, colour, aroma, texture, nutritional value, and safety under defined environmental 

conditions (Lee et al., 2009). During storage, the main factors of deterioration leading to 

unacceptable food quality or safety issues of cooked food products are physical, chemical 

and microbiological, such as; discoloration, oxidative rancidity, increase in the numbers of 

spoilage microorganisms or the presence of food pathogens (Robertson, 2009; Lee et al., 

2009).   

Hurdle technology combines intelligently different mild preservation techniques (hurdles) 

to control or eliminate pathogens (Rodríguez-Calleja et al., 2012). One of the potential 

hurdles to assure the safety of reduced sodium ready-to-eat (RTE) meat products is HPP 

(Han et al., 2011; Rendueles et al., 2011; Myers et al., 2013; Oliveira et al., 2015). 

Application of HPP at 600 MPa has demonstrated the inactivation of most pathogens and 

spoilage bacteria resulting in substantial extension of shelf-life of RTE meat products such 

as low-fat pastrami, strassburg beef, export sausage, cajun beef, cooked ham, dry cured 

ham and marinated beef loin (Jofré et al., 2009; Hayman et al., 2004). Marcos et al. (2007) 

improved the microbial quality of fermented sausages without affecting the quality 

applying HPP at 400 MPa for 10 mins at 17 °C. Pietrasik et al. (2017) reported that HPP 

does not impact the sensory acceptability of reduced sodium naturally cured wieners and 

can also successfully extend the shelf-life up to 12 weeks without compromising eating 

quality. Garriga et al. (2004) examined microbial inactivation on cooked ham after HPP at 

600 MPa and found that after 60 days storage lactic acid bacteria (LAB) count was 6 log 

(CFU/g) lower in HPP cooked ham than in untreated samples. A study carried out by Diez 

et al. (2008) examined independently the application of organic acids (L-potassium lactate, 

L-potassium lactate/sodium lactate or L-potassium lactate/sodium acetate) and high-

pressure treatments (300, 500 or 600 MPa for 10 mins) to improve the shelf life of blood 
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sausage. The longest shelf life of 15 days was achieved using L-potassium/sodium lactate 

or HPP at 600 MPa for 10 mins. The authors suggested that the synergetic effects of the 

organic acids and HPP might further improve the effectiveness of these treatments.  

In Chapters 2 and 3, sensory accepted low-salt frankfurters and cooked ham were 

developed through the application of response surface methodology (RSM). The optimum 

parameters to maximize the overall sensory acceptability (OSA) of frankfurters were salt 

replacer ArtisaltTM (48%), HPP (580 MPa) and InbacTM (0.3%) and for cooked ham the 

optimised parameters were ArtisaltTM (53%), HPP (535 MPa) and InbacTM (0.3%). As 

processed meat manufacturers are constantly looking for new ways to reduce salt levels 

without compromising food safety, shelf-life or consumer acceptability; in our previous 

work a novel approach which showed great potential for reducing salt in frankfurters and 

ham was used; however, the shelf life of these low-salt products was not investigated. The 

use of HPP as additional post packaging processing and a mix of organic acids InbacTM as 

hurdles was expected to not only increase the shelf life of the significantly reduced salt 

processed meat products but also increase the safety of these products which is necessary 

to compensate for the loss of safety and shelf life due to significant salt reduction. 

Extending the shelf life of these low-salt processed meat products can also reduce food 

waste of these products which will enhance sustainable food production 

Moreover, most of the studies reported in the literature were carried out using lab scale 

HPP to treat processed samples (Vercammen et al., 2011; Rodriguez-calleja et al., 2012; 

O’Flynn et al., 2014; Crehan et al., 2000; Andres et al., 2004; Han et al., 2011; Cava et al., 

2009) with a few studies using industrial HPP units for treating processed meat products. 

(Garriga et al., 2004; Jofre et al., 2009; Marcos et al., 2007). In the present study an 

industrial scale HPP unit and commercially available mix of organic acids InbacTM were 
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used in the manufacture of frankfurters and cooked ham which have the advantage of 

scaling the manufacture of these products up easily.  

While there are studies that use a combination of HPP and organic acids to extend the shelf 

life of meat products such as chicken and sausages (Rodrigues-Calleja et al., 2012; Diez et 

al., 2008; Vercammen et al., 2011); to the best of our knowledge, a combination of HPP 

and organic acids as hurdles has not been used as a methodology to enhance the safety and 

shelf life of low salt processed meat products. Therefore, the objective of this study was to 

assess the efficacy of a combination of HPP and a mix organic acids InbacTM as hurdles to 

extend the shelf life of previously sensory optimised low-salt frankfurters and cooked ham 

from a microbiological and physicochemical point of view”. 

 

 

4.2 Materials and Methods 

4.2.1 Materials  

Pork oyster meat (90-95% VL), pork silverside and pork fat were obtained from 

Ballyburden meats, Ballincollig, Cork, Ireland. NaCl, starch, Farina (milled wheat), 

paprika, Sodium caseinate, tomato powder, Sodium tripolyphosphate hydrated food grade 

(Carfosel 990, Prayon, Belgium), carmine, Sodium nitrite, Sodium nitrate and Sodium 

ascorbate were sourced from All in All ingredients (All in All ingredients, Ltd, Ireland). 

Frankfurter spice and artificial cellulose casings (26 mm) were obtained from Fispak 

(Fispak Ltd, Ireland) and Viscofan (Viscofan, Spain), respectively. Combivac vacuum 

pouches (20 polyamide/70 polyethylene bags were obtained from Alcom, Campogalliano, 

Italy. The barrier characteristics of the vacuum pouches were: oxygen permeability 50 

cm3/m3/ 24 hr at STP) and water vapour transmission rate 2.2 g/m2/ 24 hr at STP.  
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A commercially available salt replacer Artisalt™ (a mix of Potassium chloride 41%, 

Ammonium chloride 40% and flavour enhancers - yeast extract, onion and celery 19%) and 

a commercial antimicrobial mix of organic acids InbacTM (a mix of Sodium acetate 43%, 

Malic acid 7%, emulsifier-mono and diglycerides of fatty acids and technological 

coadjuvants; anticaking agents, calcium phosphate, magnesium carbonate and silicon 

dioxide ~50%,) used in processed meat products were obtained from Chemital (Chemital 

Ltd, Barcelona, Spain).  

 

4.2.2 Methods  

4.2.2.1 Frankfurters manufacture  

The formulation of control frankfurters were as follows: pork oyster (65%), pork fat (19%), 

ice/water (10.15%). Additional ingredients were as follows: NaCl (2%), starch (0.92%), 

Farina (milled wheat) (0.92%), frankfurter spice (0.5%), paprika (0.5%), Sodium caesinate 

(0.35%), tomato powder (0.25%), Phosphate (0.25%), Sodium ascorbate (0.05%), Sodium 

nitrite (0.0075%) and carmine (0.005%). For the manufacture of optimised frankfurters 

48% of the NaCl was replaced with ArtisaltTM and included 0.3% InbacTM.  

Pork meat  and pork fat were minced separately through a 3 mm plate using a Talsa mincer 

(Talsabell, Valencia, Spain).The minced pork meat was placed in a bowl chopper 

(Seydelmann, Germany) and chopped at low speed for 3 minutes and then the curing 

ingredients, seasonings and half of the ice were added. The mixture was then chopped for 

2 minutes at high speed and the minced pork fat and remaining ice was added and then 

chopped for a further 2 minutes. The batter was then stuffed into a 26 mm diameter 

cellulose casings using a Mainca vacuum filler (Mainca, Barcelona, Spain). The 

frankfurters were hand-linked (~12cm in length) and heat-treated at full steam (100 ºC) in 
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an electric steam-convection oven (Zanussi Professional, Italy) until an internal 

temperature of 74 °C was achieved. Final internal end-point temperatures were re-checked 

using a hand-held food thermometer (Testo, Germany). The frankfurters were rapidly 

cooled down by immersion in icy cold water (1-2 ºC) for 5 minutes and then stored at 4 °C 

overnight. Before packaging, the casing of the frankfurters were aseptically removed and 

7 frankfurters were placed into a combivac vacuum pouch, vacuum packed using a 

Webomatic vacuum packaging system (Werner Bonk, type D463, Bochum, German) and 

then stored at 4 °C in a chill room. The treatments used for the shelf life analysis are 

presented in Table 4.1.  

 

4.2.2.2 Cooked ham manufacture 

The treatments used for the shelf life analysis are presented in Table 4.1. The cooked ham 

was manufactured as previously described in Chapter 2. Briefly, the brine was injected into 

pork to obtain a 10% weight gain, tumbled at 6rpm for 2 hours, packed into stainless steel 

moulds and then cooked at full steam (100 °C) until an internal temperature of 74 °C was 

reached. The cooked hams were cooled down at room temperature, then placed into vacuum 

pouches, vacuum packed and stored at 4 °C in a chill room.  

 

4.2.2.3 High Pressure Processing 

Vacuum-packed frankfurters or cooked ham requiring HPP were removed from the chill 

room and were HPP at the HPP Tolling facilities (HPP tolling, St. Margaret’s, Dublin) 

using an industrial Hiperbaric 420 litre unit (Burgos, Spain) which uses water as the 

pressure transmitting medium. The speed of pressurisation was 130 MPa per minute, the 

speed of depressurisation was instantaneous (~ 1 second) and the holding time was 5 
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minutes. Initial temperature of the pressure transmitting medium (water) was 10°C and an 

increase of ~2-3 °C per 100 MPa during HPP due to adiabatic heating was recorded. 

Optimised low salt samples that required HPP was carried out according to Table 4.1.  
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Table 4.1 Frankfurter and cooked ham treatments.* 

 

Product 

 

Treatment 

 

Salt replacer 

(ArtisaltTM) 

(%) 

 

HPP 

(MPa) 

 

Inbac™ 

(%) 

 

Frankfurters 

Control 0 0.1 0 

F-LS/2T 48 580 0.3 

F-LS/1T 48 0.1 0.3 

 

Cooked 

Ham 

Control 0 0.1 0 

H-LS/2T 53 535 0.3 

H-LS/1T 53 0.1 0.3 

 

*Control frankfurter = Untreated frankfurters with 0% Artisalt™ (2% NaCl) 

F-LS/2T = Optimised low-salt frankfurters containing 1.04%NaCl+ 0.96% Artisalt™, 

optimum levels of 2 treatments (a mix of organic acids (0.3% Inbac™) and HPP at 580 

MPa for 5 mins).  

F-LS/1T = Optimised low-salt frankfurters containing 1.04%NaCl+ 0.96% Artisalt™, 

optimum levels of 1 treatment (a mix of organic acids (0.3 % InbacTM) without HPP).  

Control ham = Untreated ham with 0% Artisalt (2% NaCl) 

H-LS/2T = Optimised low-salt ham containing 1.06% ArtisaltTM + 0.94% NaCl, optimum 

levels of 2 treatments (a mix of organic acids (0.3% Inbac™) and HPP at 535 MPa for 5 

mins). 

H-LS/1T= Optimised low-salt ham containing 1.06% Artisalt™ + 0.94% NaCl, optimum 

levels of 1 treatment (a mix of organic acids (0.3 % InbacTM) without HPP). 
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4.2.2.4 Salt content 

Salt content was determined as described in Chapter 2. Briefly, a 1/10 dilution of samples 

was made and filtered before the dip-in probe of the DiCromat II Salt Analyser (The 

Noramar Co, US) was immersed in the filtrate and the percentage of salt in the sample was 

read in the instrument display. Each value represents the average of 8 measurements (two 

independent trials x two samples x two readings per sample). 

 

4.2.2.5 Microbiological analysis  

Microbiological analysis was carried out throughout the shelf life. In order to obtain a 

representative sample, 10 g of sample (frankfurters or cooked ham) was weighed 

aseptically into a stomacher bag in a vertical laminar-flow cabinet and a primary 10-fold 

dilution was performed by addition (90 ml) of sterile maximum recovery diluent (Oxoid, 

Basingstoke, U.K.), stomached (Steward Stomacher 400 Lab Blender, London, UK) for 3 

min and homogenates were 10-fold serially diluted using maximum recovery diluent 

solution (MRD). For the enumeration of TVC 1 ml of each appropriate dilution was 

inoculated on duplicated plates in the centre of compact dry-total count plates (20 cm2) 

(Nissui Pharmaceutical, Co. Ltd., Japan) following incubation at 37 °C for 48 hours. LAB 

was determined on overlaid de Man Rogosa Sharpe medium (Oxoid), after incubation at 

30 °C for 72 hours. Escherichia coli (E. Coli) and total coliforms were determined using 

Compact Dry EC plates (Nissui Pharmaceutical, Japan) after incubation at 37ºC for 24 

hours. At the start and the end of the shelf life, frankfurters or cooked ham were tested also 

for the presence or absence of Salmonella in Compact dry SL plates (Nissui 

Pharmaceutical, Co. Ltd., Japan). Compact dry SL is a dry medium for Salmonella 

detection, which contains chromogenic substrate and Novobiocin. The presence of 
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Salmonella is detected by the combination of different test principles: 1) Alkalinisation of 

the medium by Salmonella’s lysine decarboxylase ability (medium colour will change blue 

purple to yellow) 2) Greening colony caused by decomposition of chromogenic substrate 

with specific enzyme of Salmonella (black colonies are generated by hydrogen sulphide 

producing Salmonella)  and 3) motility of Salmonella    Pre-enrichment process was carried 

out by weighting 25 g of sample into a sterile filter stomacher bag  and then 225 ml of  

Buffered Peptone water (Oxoid) was added and homogenised with a stomacher for 1 min  

and incubated at 37 °C for 24 hr. The bag was taken from the incubator and 0.1 ml of 

enriched specimen was then dropped on the sheet gently 1 cm from the edge of the plate. 

After inoculation of the enriched culture, 1 ml of sterilized water was dropped at the 

opposite point were the specimen was dropped. The sterilised water diffused automatically 

and the sheet was wetted uniformly. The innoculated compact dry SL plates were incubated 

at 42 °C for 24 hrs. All results (except Salmonella) were expressed as log10 colony-forming 

units (CFU/g). Each value represents the average of 8 measurements (two independent 

trials x two samples x two readings per sample).  

 

4.2.2.6 pH 

The pH of frankfurters or cooked ham was measured using a digital pH metre (Mettler-

Toledo GmbH, Schwerzenbach, Switzerland) by inserting the glass probe directly into the 

sample. The pH was measured throughout the shelf life and each value represents the 

average of 8 measurements (two independent trials x two samples x two readings per 

sample). 
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4.2.2.7 Texture analysis  

Hardness (N) and Springiness (mm) of the cooked hams or frankfurters were determined 

as previously described in Chapters 2 and 3. Briefly, cylindrical sections of the frankfurter 

(2.6 cm diameter x 5 cm length) or cooked ham (2.5 cm diameter x 4 cm length) were 

analysed using a Texture Analyser TA-XT2 (Stable Micro Systems, Surrey, UK). The 

texture was analysed throughout the shelf life and each value represents the average of 8 

measurements (two independent trials x two samples x two readings per sample). 

 

4.2.2.8 Colour  

Colour of ham was determined as previously described in Chapter 2 while the colour of the 

cross section of the frankfurter was measured as described in Chapter 3. CIE L*, a* and b* 

values (Lightness, redness and yellowness, respectively) are reported. Each value 

represents the average of 12 measurements (two independent trials x two samples x three 

readings per samples).  

 

 4.2.2.9 Sensory evaluation  

Sensory analysis was carried out as described in Chapters 2 and 3. To ensure that all 

samples were safe for consumption, microbiological analysis was carried out before each 

sensory test. Sensory analysis was carried out at day 1 and at the time when samples reached 

Log 4 CFU/g of sample which indicated end of shelf life based on the microbiological limit 

for aerobic plate count (< 5x105 CFU/g of product) (FSAI, 2014). For control samples, 

sensory analysis for frankfurters was carried out on day 31 while that for control cooked 

ham was carried out on day 22. For F-LS/1T samples, sensory analysis was carried out on 
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day 16 while for H-LS/1T samples the sensory analysis was carried out on day 18. For F-

LS/2T samples, sensory analysis was carried out on day 72 while for H-LS/2T samples the 

sensory analysis was carried out on day 55.  

Briefly, samples were labelled with a three digit random number, frankfurters were re-

heated in a bain marie at 65 ºC and sliced cooked ham was served cold on labelled 

polystyrene plates. The tested attributes were: Liking of Appearance, Liking of Texture, 

Liking of Flavour, Juiciness, Tenderness, Saltiness, Off-flavour intensity and Overall 

acceptability.  

 

4.2.2.10 Lipid oxidation  

Throughout storage, lipid oxidation of frankfurters or cooked ham was measured using the 

2-thiobarbituric acid (TBARS) assay (Siu and Draper, 1978). The malondialdehyde (MDA) 

content was calculated using an extinction coefficient of 1.56 × 105 L mol−1 cm−1 and 

results were expressed in mg MDA/kg sample. Each value represents the average of 8 

readings (two independent trials x two samples x two readings per sample). 

 

4.2.2.11 Statistical analysis  

All physicochemical results (colour, texture, TBARS, pH and sensory) were tested using 

one way ANOVA, sensory data was also analysed using t-test analysis and significance 

assessed using Tukey's test at 5% significance level using SPSS software package (SPSS 

for Windows, version 21  IBM Corp., Armonk, NY, USA). Two independent trials were 

carried out and all analysis was carried out in duplicate.  
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4.3 Results and Discussion  

4.3.1 Compositional analysis and salt content  

The results for proximate composition in our previous chapters (Chapters 2 and 3) in which 

the same ingredients and formulations were used in the manufacture of frankfurter and 

cooked hams indicated there were no significant differences in fat, moisture, protein or ash 

between control and low-salt frankfurters or ham. The total salt content of the low salt 

frankfurter and cooked ham was 1.3% and 1.4%, respectively, the control frankfurter and 

cooked ham had significantly higher (P<0.05) total salt contents of 2.5% and 2.6%, 

respectively.  

 

4.3.2 Colour  

At day 1, in both low salt frankfurters and cooked ham that were not HPP (F-LS/1T and H-

LS/1T) had the lowest L* values; however, the results showed that these differences were 

not significantly different in the CIE L*, a* and b* values between any of the treatments 

(Tables 4.2 and 4.3). These results are in agreement with our previous findings (Chapters 

2 and 3) where no significant differences on the CIE L*, a* and b* values on the low-salt 

products compared to control untreated frankfurters or cooked ham. Conversely, Crehan et 

al. (2000) found that salt reduction from 2.5 to 1.5% significantly (P<0.05) reduced the 

redness and yellowness of frankfurters manufactured using HPP raw pork meat. Tobin et 

al. (2013) also reported a paler sausage when salt content was decreased while O’ Flynn et 

al. (2014) found that colour in sausages were significantly affected (P<0.05) when salt 

levels were reduced below 1.5% on breakfast sausages manufactured using HPP pork meat. 

The differences on the colour changes between our study and the studies mentioned above 

may be due to the fact that in those studies salt content was reduced without the use of any 
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salt replacer and manufactured using HPP raw meat while in the present study salt replacer 

ArtisaltTM was used and the HPP on both products was carried out after cooking. 

During storage time, the colour parameters CIE L*, a* and b* values of the frankfurters did 

not change significantly in control, F-LS/2T or F-LS/1T. During storage of cooked ham, 

significant (P<0.05) changes in the CIE L* and a* values were noticed, as control, H-LS/2T 

and H-LS/1T became lighter (P<0.05) and less red (P<0.05) towards the end of storage 

time. These results are in agreement with the results reported by Lopez-Lopez et al. (2009) 

who found that storage time had little effect on the lightness of low-fat frankfurters and 

Garcia-estaban et al. (2004) who reported that lightness of vacuum packed cooked ham 

increased significantly over chilled storage while Parra et al. (2010) and Cava et al. (2009) 

found that during chilled storage vacuum packed cooked ham became less red. The changes 

in the redness during storage of the untreated control, H-LS/2T or H-LS/1T samples may 

be due to the oxidation of nitrosylmyoglobin as Lindahl et al., (2001) reported that colour 

fading in ham was attributed to the oxidation of nitrosylmyoglobin (MbFe(II)NO) resulting 

in the formation of metmyoglobin which is primarily responsible for meat browning.  

 

4.3.3 Texture  

While in both frankfurters and cooked ham, initially at day 1, the low salt samples that were 

not HPP (F-LS/1T and H-LS/1T) had the lowest hardness values; however, the results 

showed that at day 1, these differences in hardness and springiness were not significantly 

different between any of the treatments assessed (Tables 4.2 and 4.3). No significant 

differences in hardness or springiness between the low-salt samples with or without HPP 

may be due to the fact that HPP primarily affects raw meat and causes minimal changes in 

cooked products (Bansal et al., 2015). The results found in this study are in agreement with 
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our previous findings (Chapters 2 and 3) where hardness and springiness were not 

significantly different between low-salt and control frankfurters or cooked ham and this 

may be due to the calculated IS of a 50/50 combination of ArtisaltTM/NaCl was similar to 

that the IS of 2% NaCl. This similar ionic strength resulted in the development of optimised 

sensory accepted low-salt products without compromising the physiochemical 

characteristics and sensory acceptability associated with these type of products. 

Conversely, Corral et al. (2013) and Gimeno et al. (2001) reported the negative effects of 

salt reduction on the texture of processed meats; however, these studies did not use HPP or 

salt replacers such as ArtisaltTM which has a similar ionic strength to NaCl (Chapters 2 and 

3) which apparently maintained the desired texture of the processed meat products even 

when the salt content of these products was significantly reduced.  

However, during storage, significant changes (P<0.05) in the hardness and springiness 

were noticed resulting in the frankfurters and cooked ham becoming harder and less 

springy. In cooked ham, while the increase in hardness occurred after 18 days in H-LS/1T, 

in the case of untreated control ham significantly higher hardness (P<0.05) was noticed 

after 28 days and in H-LS/2T samples the significant increase (P<0.05) in hardness was 

noticed after 42 days. In frankfurters, for untreated control, F-LS/2T and F-LS/1T the 

increased (P<0.05) hardness was noticed after 32 days chilled storage. The increase in 

hardness during storage may be attributed to the formation of protein cross-links as Herrera 

(2006) reported that during storage ham can be hardened due to formation of protein cross-

links and/or between collagen fibres. The results found in this study are in agreement with 

the findings of Garcia-estaban et al. (2004), Martinez et al. (2004), Lopez-Lopez et al. 

(2009) and Silva et al. (2014) who reported that the hardness of processed meat products 

(vacuum packed cooked ham, low-fat frankfurters, salted pork loin, bacon and goat blood 

sausage) increased significantly (P<0.05) over storage time.  
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4.3.4 pH  

In regards to pH, the results showed that in both frankfurters and cooked ham, there were 

no significant differences between the three treatments on day 1 (Tables 4.2 and 4.3). These 

results are also in agreement with our previous findings (Chapters 2 and 3) where no 

significant differences in pH between low-salt and control frankfurters or cooked ham were 

observed. Similarly, previous studies have reported that increasing salt content did not 

significantly affect the pH of sausages (Aaslyng et al., 2014; O’ Flynn et al., 2014).  

Over the storage time, the pH of frankfurters or cooked ham decreased significantly 

(P<0.05) in all treatments. In general, when the main spoilage micro-organism LAB 

reached ~Log4 in all treatments of cooked ham and frankfurters, the pH began to decrease 

(P<0.05). For frankfurters, this significant (P<0.05) decrease in pH began on day 32 for 

control frankfurters, at day 28 for F-LS/1T and day 70 for F-LS/2T. In ham, significant 

(P<0.05) decrease in pH occurred on day 28 for control samples, day 14 for H-LS/1T and 

day 56 for H-LS/2T samples.    

It was reported that LAB, produce acids such as lactic acid, acetic acid and formic acid; the 

levels of which depending on genus, species and growth conditions which cause decrease 

in pH (Borch et al., 1991). The decrease in pH in meat products depends on the presence 

of fermentable carbohydrate. Pexara et al. (2002) noted a drop in the pH of turkey fillets 

during storage time from the initial 6.2 to 5.5; however; in piroski sausages which contain 

a lower amount of carbohydrate, the pH decreased at a slower rate than the turkey fillets. 

In the present work the pH decrease in cooked ham was less than in frankfurters and this is 

possibly due to a lower carbohydrate content in cooked ham than frankfurters. Han et al. 

(2011) also reported that the pH of vacuum packed untreated and HPP at 400 or 500 MPa 

cooked ham decreased significantly over storage time. 
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Table 4.2 Physicochemical changes of frankfurters during storage at 4°C* 

 

*Values are Mean ± standard deviation.a Different lower case superscripts in the same column indicate significant difference (P < 0.05) between 

different treatments. 
A, B, C, Different capital superscripts in the same row indicate significant differences (P<0.05) in the same treatment over time.  

(/) indicates analysis was not determined on this day as end of shelf life was reached. 

 Day 1 Day 14 Day 28 Day 32 Day 40 Day 56 Day 70 Day 80 

Lightness (L*)         

Control 71.00 ± 1.04 aA 71.11 ± 0.74 A 70.60 ± 0.60 A 71.42 ± 1.74 A 70.75 ±  1.34 A 70.53 ± 0.64 A / / 

F-LS/2T 71.07 ± 0.61 aA 70.99 ± 1.24 A 70.34 ± 0.90 A 71.20  ± 1.19 A 71.16 ± 1.08 A 71.16 ± 0.97 A 71.55 ± 0.85 A 71.36 ± 0.71A 

F-LS/1T 70.75 ± 0.70 aA 70.63 ± 0.72 A 70.45 ± 1.39 A 69.18 ±  1.13 A / / / / 

Redness (a*)         

Control 8.90 ± 0.23 aA 8.81 ± 0.26  A 9.10 ± 0.32 A 8.81 ± 0.30 A 9.06 ± 0.36 A 8.91 ± 0.18  A / / 

F-LS/2T 8.83 ± 0.29 aA 8.89 ± 0.48 A 8.75 ± 0.50 A 8.92 ± 0.64 A 9.06 ± 0.46 A 8.68 ± 0.21 A 9.02 ± 0.31  A 8.93 ± 0.29 A 

F-LS/1T 8.63 ± 0.34 aA 8.71 ± 0.48 A 9.03 ± 0.29 A 8.67 ± 0.26 A / / / / 

Yellowness (b*)         

Control 12.29 ± 0.60  aA 12.18 ± 0.62 A 12.51 ± 0.20 A 12.43 ± 0.24 A 12.44 ± 0.33A 12.46 ± 0.42 A / / 

F-LS/2T 12.86 ± 0.38 aA 12.48 ± 0.45 A 12.39 ± 0.21 A 12.46 ± 0.34 A 12.50 ± 0.30 A 12.66 ± 0.49 A 12.39 ± 0.21A 12.50 ± 0.32 A 

F-LS/1T 12.57±0.69 aA 13.02 ±0.60 A 12.72 ± 0.58 A 13.02 ± 0.60 A / / / / 

Hardness (N)         

Control 14.10 ± 0.10 aA 14.15 ± 0.13 A 14.12 ± 0.11 A 14.52 ± 0.16 B 14.50 ± 0.27 B 14.65 ± 0.29 B / / 

F-LS/2T 14.12 ± 0.15 aA 14.11± 0.18 A 14.46 ± 0.15 AB 14.68 ± 0.21 B 14.74 ± 0.25 B 14.59 ± 0.34 B 14.84 ± 0.47 B 14.81 ± 0.27 B 

F-LS/1T 14.01 ± 0.11 aA 14.17 ± 0.16 AB 14.18 ± 0.29 AB 14.62 ± 0.54 B / / / / 

Springiness (mm)         

Control 0.854 ± 0.01 aA 0.861 ± 0.02 A 0.852 ± 0.01 A 0.820 ± 0.01 B 0.821 ± 0.01 B 0.817 ± 0.01 B / / 

F-LS/2T 0.854 ± 0.01 aA 0.853 ± 0.02 A 0.853 ± 0.01 A 0.851 ± 0.02 A 0.859 ± 0.01 A 0.825 ± 0.01 B 0.820 ± 0.01 B 0.793 ± 0.01 C 

F-LS/1T 0.859 ± 0.02 aA 0.859 ± 0.01 A 0.824 ± 0.01 B 0.821 ± 0.01 B / / / / 

pH         

Control 5.80 ± 0.05 aA 5.71 ± 0.06 AB 5.72 ± 0.04 AB 5.65 ± 0.07 BC 5.58 ± 0.05 C 5.60 ± 0.02 C / // 

F-LS/2T 5.83 ± 0.04 aA 5.81 ± 0.02 A 5.79 ± 0.04 A 5.80 ± 0.03 A 5.78 ± 0.04 A 5.76 ± 0.02 A 5.69 ± 0.05 B 5.61 ± 0.02 C 

F-LS/1T 5.82 ± 0.02 aA 5.80 ± 0.03 A 5.71 ± 0.03 B 5.68 ± 0.03 B / / / / 
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 Table 4.3 Physicochemical changes of cooked ham during storage at 4°C*.  

*Values are Mean ± standard deviation.a Different lower case superscripts in the same column indicate significant difference (P<0.05) between 

different treatments. 
A, B, C, Different capital superscripts in the same row indicate significant differences (P<0.05) in the same treatment over time.  

(/) indicates analysis was not determined on this day as end of shelf life was reached. 

 Day 1 Day 14 Day 18 Day 20 Day 28 Day 42 Day 56 Day 70 

Lightness (L*)         

Control 61.40 ± 1.11 aAB 61.10 ± 0.92 A 61.70 ± 1.07 AB 62.24 ± 1.02 AB 62.66 ± 1.56 AB 63.52 ± 1.40 B / / 

H-LS/2T 61.33 ± 0.54 aA 61.49 ± 0.87AB 61.45 ± 1.23 AB 61.66 ± 1.01 AB 61.83 ± 0.79 AB 62.34 ± 1.19 AB 62.61± 1.01 AB 63.39 ± 1.59 B 

H-LS/1T 61.13 ± 0.86 aA 61.19 ± 0.84 A 64.60 ± 0.86 B 63.7 1 ± 1.69 B / / / / 

Redness (a*)         

Control 13.51 ± 0.96 A 13.57 ± 1.18 A 12.18 ± 0.63 AB 12.27 ± 0.77 AB 11.58 ± 0.81 B 11.74  ± 0.58 B / / 

H-LS/2T 13.39 ± 0.51 A 13.56 ± 0.62 A 12.65 ± 1.16 AB 12.77 ± 0.82 AB 12.70 ± 0.38 AB 12.06 ± 0.77 B 11.84 ± 0.58 B 12.14 ± 0.48 B 

H-LS/1T 13.48  ± 1.01 aA 13.80 ± 0.56 A 11.89 ± 0.50 B 12.20 ± 0.62 B / / / / 

Yellowness (b*)         

Control 7.99 ± 0.87 aA 8.11 ± 1.24 A 8.37 ± 1.27 A 8.33 ± 0.64 A 7.80 ± 0.75 A 8.10 ± 0.96 A / - 

H-LS/2T 8.23 ± 1.11 aA 8.06 ± 0.49 A 8.30 ± 0.35 A 8.08 ± 0.87 A 8.29 ± 0.71 A 7.88 ± 1.14 A 7.77 ± 0.84A 8.07 ± 0.87 A 

H-LS/1T 8.09 ± 1.07 aA 8.70 ± 0.59 A 8.29 ± 0.77 A 8.18 ± 0.93 A / - - - 

Hardness (N)         

Control 16.12 ± 0.70 aA 16.29 ±0.69 A 16.06 ± 0.53 A 16.62 ± 0.54 AB 17.27 ± 0.44 BC 17.47 ±  0.26 C / / 

H-LS/2T 16.24 ± 0.47 aA 16.26 ± 0.48 A 16.42 ± 0.52 A 16.56 ± 0.34 AB 16.78 ± 0.29 AB 17.16 ± 0.94 BC 17.57 ± 0.29 C 17.54 ± 0.56 C 

H-LS/1T 15.93 ± 0.39 aA 16.49 ± 0.60 AB 17.51 ± 0.28 B 17.45 ± 0.41 B / / / / 

Springiness (mm)         

Control 0.861 ± 0.01 aA 0.86 ± 0.01A 0.852 ± 0.01 A 0.793 ± 0.04 B 0.765 ± 0.05 B 0.781 ±  0.03 B / / 

H-LS/2T 0.855 ± 0.02 aAB 0.861 ± 0.01 A 0.865 ± 0.01 A 0.83 ± 0.02 B 0.816 ± 0.05 B 0.768 ± 0.02 C 0.758 ± 0.02 C 0.744 ± 0.02C 

H-LS/1T 0.864 ± 0.01 aA 0.848 ± 0.01 A 0.788 ± 0.03 B 0.757 ± 0.02 B / / / / 

pH         

Control 6.28 ± 0.02 aA 6.27 ± 0.04 A 6.28 ± 0.07 A 6.25 ± 0.03 AB 6.21 ± 0.02 BC 6.19 ± 0.02 C / / 

H-LS/2T 6.27 ± 0.03 aA 6.25 ± 0.01 6.25 ± 0.01A 6.27 ± 0.02 A 6.26 ± 0.02 A 6.27 ± 0.01 A 6.17 ± 0.03 B 6.16 ± 0.02 B 

H-LS/1T 6.29 ± 0.02  aA 6.19 ± 0.01 B 6.18 ± 0.02 B 6.18 ±  0.01 B / / / / 
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4.3.5 Lipid oxidation 

From the sensory point of view, lipid oxidation cause rancidity problems which are 

considered unpleasant for consumers (Jeremiah, 2001). Lipid oxidation was also reported 

to be linked to the increase in protein oxidation (Souza et al., 2013), the deterioration of 

texture (Estevez et al., 2005) and the discolouration of meat (Faustman and Cassens, 1990; 

Skibsted et al., 1998). The results for lipid oxidation showed that in both frankfurters and 

cooked ham; at day 1 the low-salt samples which had been HPP (F-LS/2T and H-LS/2T) 

had the highest TBARS values (Figure 4.1) compared to control and low-salt samples 

which were not HPP (F-LS/1T and H-LS/1T). This may be due to the use of HPP in the F-

LS/2T and H-LS/2T formulations which has been reported that HPP can accelerate lipid 

oxidation on HPP meat products (Andres et al., 2004; Cheah and Ledward, 1995) by 

triggering intrinsic pro-oxidants such as myoglobin (Medina-Meza et al., 2014). The 

findings on this study are in agreement with the results reported by Núñez et al. (2003) who 

used response surface methodology (RSM) to create models of the changes induced by 

HPP at 24 to 400 MPa and holding time from 7 to 28 min on lipid oxidation of vacuum-

packed slices of dry-cured Iberian ham and pork loin and reported that significantly 

increased TBARS values were obtained as the pressure level and holding time increased. 

Cava et al. (2002) also reported that pressure level and holding time increased the extent 

of lipid oxidation in dry-cured Iberian ham and pork loin. 

Throughout storage, TBARS increased significantly (P<0.05) in untreated control and low-

salt frankfurter and cooked ham which were HPP or not HPP (F-LS/2T and H-LS/2T, F-

LS/1T and H-LS/1T) samples. While in all frankfurter and cooked ham samples the 

TBARS values increased significantly during storage, the frankfurters and cooked ham that 

were HPP (F-LS/2T and H/LS/2T) had higher initial TBARS and also the highest TBARS 

values throughout storage (Figure 4.1). Independent of the formulation used to manufacture 
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frankfurters or cooked ham, throughout storage the TBARS values remained below the 

maximum acceptable limit of 1 mg/kg (Warriss, 2000) which is regarded as the limit 

beyond which processed meat products will normally develop objectionable odours/tastes. 

Similar results were reported by Parra et al. (2010) and Ospina et al. (2015) where TBARS 

values of dry-cured Iberian ham and frankfurters increased during chilled storage, 

respectively.  
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    (a)      (b)     

 

 

                  

Figure 4.1 – Lipid oxidation (TBARS) of (a) vacuum packed frankfurters; control (▬),F-LS/2T (▬) and F-LS/1T (▬) and (b) vacuum packed 

ham; control (▬), H-LS/2T (▬) and H-LS/1T (▬) during chilled storage at 4°C. Each point shown is the mean value from two different trials.
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4.3.6 Sensory Analysis  

Sensory properties of food products are the most important attributes as they are most 

apparent to consumers (Singham et al., 2015). The results for sensory analysis at day 1 

showed that there were no significant differences between any of the treatments of 

frankfurters or cooked ham (Table 4.4). These results are in agreement with our previous 

studies (Chapters 2 and 3) where no significant differences in regards to sensory attributes 

between low-salt and control frankfurters or cooked ham were obtained when optimising 

the manufacture of these products using RSM. Conversely, authors have reported a 

decreased sensory acceptability in sausages, frankfurters and cooked ham due to reduced 

salt content (Crehan et al., 2000; Aaslyng et al., 2014); however, these studies did not use 

RSM to sensory optimise the manufacture of these products and also did not use salt 

replacers such as ArtisaltTM which contains flavour enhancers.  

At the end of storage, the results showed that sensory acceptability was not significantly 

affected as all sensory attributes (Liking of appearance, Liking of texture, Liking of flavour, 

Juiciness, Tenderness, Saltiness, Off-flavour intensity and OSA) did not change. These 

results are in agreement with Sink and Hsu (1979) who reported that storage time generally 

had little effect on the sensory attributes of frankfurters. Parra et al. (2010) and Yanqing et 

al. (2009) also found that sensory attributes of dry cured Iberian ham and smoked cooked 

ham did not vary significantly throughout storage under chilling conditions. 

During storage, TBARS values were below the acceptability limits and sensory 

acceptability did not change significantly; therefore, the end of shelf life for all frankfurter 

and cooked ham formulations was determined based on the recommended microbiological 

limits for cook-chill products.    
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Table 4.4 – Sensory evaluation of frankfurters and cooked ham during chilled storage*       

 

*Values are Mean a Different lower case superscripts in the same column indicate significant difference (P<0.05) between different treatments. 
A Different capital superscripts in the same row indicate significant differences (P<0.05) in the same treatment over time.  

Sensory Attribute Frankfurters 

 

Day 1 End of 

storage 

Ham Day 1 End of 

storage 

 

Appearance 

Control 6.81 aA 6.85 aA Control 6.70 aA 6.38 aA 

F- LS/2T 6.78 aA 6.40 aA H-LS/2T 6.43 aA 6.72 aA 

F- LS/1T 6.79 aA 6.62 aA H-LS/1T 6.80 aA 6.70 aA 

 

Flavour 

Control 6.45 aA 6.70 aA Control 6.42 aA 6.63 aA 

F- LS/2T 6.40 aA 6.56 aA H-LS/2T 6.47 aA 6.46 aA 

F- LS/1T 6.67 aA 6.47 aA H-LS/1T 6.51 aA 6.70 aA 

 

Texture 

Control 6.71 aA 6.49 aA Control 6.42 aA 6.34 aA 

F- LS/2T 6.82 aA 6.58 aA H-LS/2T 6.61 aA 6.66 aA 

F- LS/1T 6.55 aA 6.20 aA H-LS/1T 6.54 aA 6.55 aA 

 

Saltiness 

Control 4.96 aA 4.96 aA Control 5.72 aA 5.58 aA 

F- LS/2T 4.66 aA 4.51 aA H-LS/2T 5.43 aA 5.55 aA 

F- LS/1T 4.85 aA 4.79 aA H-LS/1T 5.67 aA 5.59 aA 

 

Juiciness 

Control 6.07  aA 6.40 aA Control 6.15 aA 6.27 aA 

F- LS/2T 6.37 aA 6.12 aA H-LS/2T 6.32 aA 6.15 aA 

F- LS/1T 6.25 aA 6.30 aA H-LS/1T 6.41 aA 6.04 aA 

 

Tenderness 

Control 6.27  aA 6.60  aA Control 6.18 aA 6.42 aA 

F- LS/2T 6.00 aA 6.25  aA H-LS/2T 6.04 aA 6.51 aA 

F- LS/1T 6.30  aA 6.64  aA H-LS/1T 6.28 aA 6.46 aA 

 

Off-flavour 

Control 1.30  aA 1.56  aA Control 1.48 aA 1.37 aA 

F- LS/2T 1.53  aA 1.62  aA H-LS/2T 1.50 aA 1.44 aA 

F- LS/1T 1.53  aA 1.41  aA H-LS/1T 1.45 aA 1.41 aA 

 

OSA 

Control 7.00  aA 6.85  aA Control 7.10 aA 6.97 aA 

F- LS/2T 7.13  aA 7.04  aA H-LS/2T 7.06 aA 6.91 aA 

F- LS/1T 6.96  aA 6.79  aA H-LS/1T 7.03 aA 6.69 aA 
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4.3.7 Microbiological Analysis 

The microbiological changes for TVC and LAB during chilled storage (4 °C) in all 

treatments of vacuum packed frankfurters or cooked ham is shown in Figures 4.2 and 4.3. 

The following recommended microbiological limits are applied for cook-chill products 

examined at the point of consumption before reheating or cooking is applied: Aerobic plate 

counts < 5x105 CFU/g of product; E. coli< 10 CFU/g of product; LAB < 109 CFU/g of 

product, Salmonella: absent in 25 g of product (FSAI, 2014). For this study, the 

recommended microbiological limits of acceptability for the frankfurters and cooked ham 

were set as above with reference to TVC, E. coli and Salmonella. The initial 

microbiological quality of all treatments of frankfurters or cooked ham were of good quality 

with a TVC below the limit of detection <10 CFU/g, E. coli < 10 CFU/g and absence of 

Salmonella in 25 g of sample. Throughout storage Salmonella and E.Coli remained absent.  

For frankfurters, the limit of acceptability in terms of TVC for the reformulated low-salt 

frankfurters which contained the antimicrobial Inbac™ but was not HPP (F-LS/1T) was 

reached after 31 days of storage. The limit of acceptability in terms of TVC for control 

frankfurters was reached after 53 days of storage. However, the limit of acceptability in 

terms of TVC for the low-salt optimised frankfurter manufactured using a combination of 

HPP and Inbac™ as hurdles (F-LS/2T) was reached after 80 days of storage. These results 

indicated that F-LS/2T had 51% longer shelf life compared to control samples and 158% 

longer shelf life than F-LS/1T samples which contained antimicrobial Inbac™ but were not 

HPP (Figure 4.2a).  

For cooked ham, the limit of acceptability in terms of TVC for low-salt cooked ham 

samples which contained antimicrobial Inbac™ but were not HPP (H-LS/1T) was reached 

after 18 days of storage. For control cooked ham samples the limit of acceptability was 
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reached after 32 days of storage and the limit of acceptability in terms of TVC for the low-

salt sensory optimised cooked ham manufactured using a combination of antimicrobial 

Inbac™ and HPP as hurdles (H-LS/2T) was reached after 63 days of storage. These results 

indicated that H-LS/2T samples had 97% longer shelf life than control samples and 250% 

longer shelf life than H-LS/1T cooked ham samples which contained antimicrobial Inbac™ 

but were not HPP (Figure 4.3a). Overall, these results indicated the effectiveness of the 

combined effect of HPP and a mix of organic acids in enhancing the safety and shelf life 

of processed meat products which contained significantly low salt content and that the 

combined effect of the hurdles used can compensate the preservation effect lost due to salt 

reduction.        

Previous studies conducted on cooked ready to eat products indicated that HPP can 

significantly extend shelf-life of vacuum-packed meat products such as wieners, turkey 

breast ham, cooked pork ham, dry-cured ham and marinated beef loin. (Pietrzak et al., 

2007; Jofré et al., 2009; Han et al., 2011; Vercammen et al., 2011; Myers et al., 2013; 

Oliveira et al., 2015).  

Apparently, the main spoilage micro-organism in all frankfurter and cooked ham treatments 

was LAB (Figures 4.2b and 4.3b) which increased significantly (P<0.05) over storage time 

at a rate similar to TVC.  It is well known that LAB is the major group associated with 

spoilage of refrigerated vacuum or modified atmosphere packed cooked meat products 

(Korkeala and Björkroth, 1997) and vacuum packed HPP meat products (Pietrasik et al., 

2017; Yanqing et al., 2009) Pietrasik et al. (2017) reported that HPP at 600MPa resulted in 

the TVC and LAB of wieners remaining below the limit of detection for 12 weeks; 

however, for control samples LAB reached 7 Log (CFU/g) after 8 weeks of storage. 

Yanqing et al. (2009) examined the shelf life of HPP smoked ham and found that untreated 

samples were spoiled by LAB after 2 weeks of refrigerated storage; however, the shelf-life 
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of smoked ham HPP at 400 or 600 MPa was extended to 8 or 10 weeks, respectively. 

Vercammen et al. (2011) used a combination of HPP at 600 MPa at 10 °C for 10 min and 

natural antimicrobials (Caprylic acid (0.15%) or Purasal® (2.5%)) as hurdles to enhance 

the shelf life of sliced cooked ham. The results showed that untreated sliced ham with or 

without antimicrobials reached 6 log (CFU/g) after 40 days and HPP further delayed this 

initiation of spoilage to 59 days in absence of antimicrobials; however the sliced ham that 

were HPP and also contained either Caprylic acid or Purasal® remained < 1 log (CFU/g) 

up to 84 days. The authors indicated that this was due to the synergetic effect of these two 

hurdles.  

While the shelf life in the study reported by Vercammen et al. (2011) which applied the 

hurdles HPP and organic acids was longer than the shelf life obtained in the present study; 

the differences may be due the higher pressure level and holding time applied as it is known 

that the effect on the microbiological load is affected significantly by these parameters.  

Our group also have demonstrated the synergetic interaction of HPP and a mix of organic 

acids as hurdles extending the shelf-life of skinless chicken breast fillets up to four weeks 

(Rodriguez-Calleja et al., 2012). This results confirms the potential utility of the hurdle 

strategy for improving the shelf-life and safety of low-salt processed meat products.  

The results of this study indicated that a combined effect of HPP at 580 MPa or 535 MPa 

for 5 min and Inbac™ (0.3%) for frankfurters and cooked ham, respectively, were a feasible 

alternative for the preservation of low-salt frankfurters and cooked ham compared to 

control samples which contained full salt content and the preservative effects of salt.  
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(a) (b) 

 

 

Figure 4.2 Microbiological changes (a) TVC and (b) LAB of Control (▬),  F-LS/2T (▬) and F-LS/1T (▬) vacuum packed frankfurters during 

chilled storage at 4°C. Each point shown is the mean value from two different trials. The dotted lines show the limits of detection (▬) or 

acceptability (▬).  
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Figure 4.3 - Microbiological changes (a) TVC and (b) LAB of Control (▬), H-LS/2T (▬) and H-LS/1T (▬) vacuum packed cooked ham 

during chilled storage at 4°C. Each point shown is the mean value from two different trials. The dotted lines show the limits of detection (▬) 

or acceptability (▬).  

 

 

(a) (b) 



 
 

4.4 Conclusion 

Throughout the storage, most physicochemical characteristics of frankfurters or cooked 

ham changed significantly (P<0.05). However, regardless of the physicochemical changes, 

the OSA of the frankfurters or cooked ham was not reduced over storage time. In both 

processed meat products, independent of the formulation, LAB apparently was the main 

spoilage micro-organism.  

The need for meat processors to reformulate processed meat with lower NaCl levels is an 

urgent requirement. However, as NaCl is an excellent microbial preservative and enhances 

microbial safety of meat products, when NaCl levels are reduced a major microbial hurdle 

is removed. The results found in this study indicated that the optimum combination of HPP 

and a mix of organic acids InbacTM compensated for the significant salt reduction and 

extended (P<0.05) the shelf life of low salt frankfurters by 51% and low salt cooked ham 

by 97% compared to control samples which contained significantly (P<0.05) higher NaCl 

content. These results indicate the potential use of the hurdle approach for improving the 

shelf-life and safety of low-salt processed meat products.  
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CHAPTER 5 

Comparative study on the acceptability and consumer appeal of 

commercial products and research optimised low-salt frankfurters and 

cooked ham manufactured using high pressure processing and organic 

acids. 

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 
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Abstract  

The objective of this study was to assess the acceptability and consumer (n=100) appeal of 

research optimised low-salt (ROLS) frankfurters or cooked ham manufactured using high 

pressure processing (HPP) and organic acids as hurdles and compared to research control 

and gold standard commercially available products. For frankfurters, consumers preferred 

the firmness and saltiness of the ROLS and research control frankfurters while the flavour 

and juiciness of commercial frankfurters was preferred. In terms of overall sensory 

acceptability (OSA), the ROLS frankfurter was liked just as much as the commercial brand 

frankfurter. For cooked ham, the appearance and firmness of ROLS and research control 

cooked ham was preferred while the juiciness of the commercial cooked ham was preferred. 

Consumers did not find significant differences in flavour, saltiness or OSA and the ROLS 

cooked ham was liked just as much as the commercial brand cooked ham. Overall, these 

results indicate that the ROLS processed meat products were just as acceptable or better 

than the gold standard commercially available products confirming the potential of the use 

of response surface methodology to optimise salt replacer ArtisaltTM, HPP and organic 

acids to manufacture consumer accepted low-salt processed meat products with enhanced 

safety and shelf life.  
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5.1 Introduction  

Consumers are becoming more and more aware of the link between diet and health (Grasso 

et al., 2014). As a result, there is an increasing demand in the meat industry for minimally 

processed foods which are lower in salt, preservatives, fat and calories, whilst maintaining 

good-quality products in regards to shelf life, physicochemical, nutritional and sensory 

characteristics (Weiss et al., 2010). The effects of high sodium on blood pressure, and 

consequently on the risk of cardiovascular disease and various other diseases, have been 

well documented (Aburto et al., 2013; Morgan et al., 2001). The general concern in regards 

to sodium intake from the diet has led to the development of methods to reduce the amount 

of salt added to products, as well as intensive reformulation of product recipes employing 

salt replacers to help reduce the quantities of salt used in a range of prepared foods (Doyle 

and Glass, 2010; Pietrasik and Gaudette, 2014). In Europe, North America and Australia, 

around 70% of consumed salt comes from processed foods, among which 20% is derived 

from meat products (Ruusunen and Puolanne, 2005). The main strategies used for salt 

reduction in processed meat products include product reformulation, compensation by the 

use of substitutes, use of saltiness enhancers and the use of salt replacers (Kilcast and 

Angus, 2007). It was also reported that high pressure processing (HPP) can maintain or 

improve protein functionality where it is desired to reduce the sodium content of processed 

meats (Mújica,-Paz et al,, 2011; Cheftel and Culioli, 1997) and improve safety when 

applied as one of the hurdles in the hurdle preservation technology (Rodriguez-Calleja et 

al., 2012).  

When introducing new technologies in food processing, consumer opinion plays an 

increasing role (Lyndhurst, 2009). In the past few years, research organisations and social 

media have been actively working to promote consumer awareness about the newer food 

processing technologies and associated benefits related to their health and convenience 
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aspects. Recent reports have indicated positive responses from consumers who are ready 

to accept the foods that are being processed by novel processing techniques such as HPP 

(Sorenson et al., 2011). Butz et al. (2003) surveyed 3000 consumers in France, Germany 

and UK in relation to their perceptions of HPP and reported that HPP was acceptable to the 

majority of consumers in France and Germany; however, it was important that the product 

price does not exceed that of conventional products and that there is also a health benefit.  

In our previous chapters (Chapters 2, 3 and 4) sensory accepted ROLS frankfurters and 

cooked ham were developed through the application of response surface methodology 

(RSM). The optimum parameters to maximize the OSA of frankfurters were salt replacer 

ArtisaltTM (48%), HPP (580MPa) and InbacTM (0.3%) while for cooked ham the optimised 

parameters were salt replacer ArtisaltTM (53%), HPP (535MPa) and InbacTM (0.3%). In 

those studies, salt was significantly (P<0.05) reduced in frankfurters or cooked ham using 

the salt replacer ArtisaltTM to 1.3% or 1.4% total salt, respectively, compared to control 

frankfurters or cooked ham which contained 2.5% and 2.6% total salt, respectively. From 

the microbiological point of view, the combined effect of HPP and a mix of organic acids 

InbacTM compensated for the significant salt reduction and extended (P<0.05) the shelf life 

of ROLS frankfurters by 51% and ROLS cooked ham by 97% compared to control samples 

which contained significantly (P<0.05) higher salt content. In those studies, sensory 

accepted ROLS frankfurters and cooked ham with enhanced safety and shelf life were 

successfully developed using RSM; however, consumer acceptance of these ROLS 

processed meat products were not investigated.  

Many authors who have employed various salt reduction strategies achieved salt reductions 

between 30-50% and reported that significantly salt reduced meat products were just as 

acceptable as full salt content products in terms of physicochemical and sensory 

characteristics (Guardia et al., 2008; Skogsberg, 2017; Aliño et al., 2009; Dos Santos et 
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al., 2014; Fellendorf et al., 2012; Dimitrakopoulou et al., 2005; Aaslyng et al., 2014). 

However, none of the studies highlighted above carried out an optimisation process to 

develop low-salt products using RSM nor did they use the hurdle approach to compensate 

the loss of microbiological safety due to significant salt reduction nor did carried out a 

consumer study on the developed low-salt products to confirm acceptability and consumer 

appeal.  

While Guardia et al. (2006, 2008), Pietrasik and Gaudette (2014) and Pietrasik et al. (2016) 

carried out consumer studies on research developed low-salt fermented sausages and 

cooked ham and compared to full salt control samples, they did not compare to 

commercially available products. Pietrasik et al. (2016) used HPP to enhance the quality 

and shelf life of reduced sodium restructured cooked hams manufactured using modified 

Potassium Chloride (KCl) as a salt replacer and found that the appearance, flavour, 

saltiness, texture, juiciness, aftertaste and OSA of the low-salt cooked ham which contained 

1.4% Sodium Chloride (NaCl) was significantly less acceptable than the control cooked 

ham which contained 2.4% NaCl. The lower acceptability of the low salt cooked ham was 

attributed to the composition of the salt replacer KCl which induced bitterness. The authors 

also reported no significant differences in consumer acceptability on hams that were 

subjected to HPP compared to untreated hams indicating that HPP can effectively extend 

shelf-life of the restructured ham without compromising eating quality. In a different study, 

Pietrzak et al. (2007) reported that HPP did not affect significantly the colour, smell, taste, 

and consistency of cooked ham which contained low or regular salt.  

To the best of our knowledge, there are no consumer studies comparing ROLS processed 

meat products with enhanced safety and shelf life manufactured using the hurdle approach 

(combination of HPP (at commercial level) and a mix of organic acids) to research control 

samples and gold standard commercially available processed meat products. Therefore, the 
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objective of this study was to assess the acceptability and consumer appeal of previously 

sensory optimised low-salt frankfurters and cooked ham with enhanced safety and shelf 

life compared to research control and commercial gold standard frankfurters and cooked 

ham products available in the Irish market.  

 

 

5.2 Materials and Methods 

5.2.1 Materials  

Pork oyster meat (90-95% VL), Pork silverside and pork fat were obtained from 

Ballyburden meats, Ballincollig, Cork. NaCl, starch, milled wheat, paprika, Sodium 

caseinate, tomato powder, carmine, Sodium nitrite, Sodium nitrate, Sodium ascorbate and 

Sodium tripolyphosphate hydrated food grade, Carfosel 990 (Prayon, Belgium) were 

obtained from All in All ingredients (All in All ingredients Ltd, Dublin). Frankfurter spice 

and artificial cellulose casings (26mm) were obtained from Fispak (Fispak Ltd, Ireland) 

and Viscofan (Viscofan, Spain), respectively.  

A commercially available salt replacer used in processed meat products Artisalt™ (a mix 

of Potassium chloride 41%, Ammonium chloride 40% and flavour enhancers - yeast 

extract, onion and celery 19%) and a commercial antimicrobial InbacTM (a mix of Sodium 

acetate 43%, Malic acid 7%, emulsifier-mono and diglycerides of fatty acids and 

technological coadjuvants; anticaking agents, calcium phosphate, magnesium carbonate 

and silicon dioxide ~50%,) were obtained from Chemital Ltd (Chemital Ltd, Barcelona, 

Spain). 
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5.2.2 Methods 

5.2.2.1 Frankfurter manufacture  

The frankfurters were manufactured as described in Chapter 3. Briefly, minced pork meat 

and pork fat were mixed in a bowl chopper with the curing and seasoning ingredients and 

ice, chopped for 7 minutes, stuffed into 26 mm diameter cellulose casings, hand-linked and 

cooked at full steam until an internal temperature of 74 °C was achieved. The frankfurters 

were cooled down in ice water and placed into vacuum pouches, vacuum packed and stored 

at 4°C in a chill room Research frankfurter treatments and commercial frankfurters used in 

this study are shown in Table 5.1.  

 

5.2.2.2 Cooked ham manufacture 

The cooked ham was manufactured as previously described by in Chapter 2. Briefly, the 

brine was injected into pork meat to obtain a 10% weight gain, tumbled at 6 rpm for 2 

hours, packed into stainless steel moulds and then cooked at full steam (100 °C) until an 

internal temperature of 74 °C was reached. The cooked hams were cooled down at room 

temperature, placed into vacuum pouches, vacuum packed and stored at 4 °C in a chill 

room. Research cooked ham treatments and commercial cooked ham used in this study are 

shown in Table 5.1.  

 

5.2.2.3 Salt content  

Salt content of the ROLS frankfurters, cooked ham and commercial products was 

determined as described in Chapter 2 and the results are shown in Table 5.1. Briefly, a 1/10 

dilution of each sample was made and the dip-in probe of the DiCromat II Salt Analyser 

was immersed in the filtrate and the percentage of salt in the sample was read in the 
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instrument display. Each value represents the average of 8 measurements (four samples x 

two readings).  

 

5.2.2.4 High Pressure Processing  

Vacuum-packed frankfurters or cooked ham were HPP according to Table 5.1 at the HPP 

Tolling facilities (HPP tolling, St. Margaret’s, Dublin) using an industrial Hiperbaric 420 

litre unit (Burgos, Spain) which uses water as the pressure transmitting medium. The speed 

of pressurisation was 130 MPa per minute, the speed of depressurisation was instantaneous 

(~ 1 second) and the holding time was 5 minutes. The temperature of the pressure 

transmitting medium (water) was 10°C. The initial temperature of the low-salt frankfurters 

and cooked ham before HPP was 3.4 °C and 2.9ºC respectively, and the final temperature 

measured after HPP ranged from 6.0 - 6.5 °C. 

 

5.2.2.5 Commercial frankfurters and cooked ham 

Leading commercially available frankfurters (HertaTM, Germany) and pre sliced cooked 

ham (Tesco Deli Style TM, Ireland) were purchased in Tesco, Ireland.  
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Table 5.1 The optimum parameters for the manufacture of research optimised low-salt, 

research control frankfurters or cooked ham and total salt content of frankfurters and 

cooked ham including commercial products.  

 

Product 

 

 

 

Salt 

replacement 

(%) 

 

HPP 

(MPa) 

 

Inbac™ 

(%) 

 

Total 

Salt 

content 

(%) 

  

Frankfurters 

Research control  0 0.1 0 2.5 

ROLS 48 580 0.3 1.3 

Commercial  N/A N/A N/A 2.0 

 

Cooked 

Ham 

Research control  0 0.1 0 2.6 

ROLS 53 535 0.3 1.4 

Commercial  N/A N/A N/A 2.3 

N/A – Not applicable 
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5.2.2.6 Sensory analysis 

Consumers (students and staff of University College Cork) were recruited via e-mail based 

on their availability. Consumers (Female n=54, Male n=46) of various age groups, 

nationalities, occupations and incomes (Table 5.2) participated in this consumer study 

which took place in the sensory booths at the School of Food and Nutritional Sciences, 

University College Cork, Ireland. ROLS, research control and commercial brand 

frankfurters were cut in half and re-heated in a bain-marie at 65ºC. Frankfurter samples 

were then assigned a three digit random number and served warm on labelled polystyrene 

plates. ROLS and research control cooked ham samples were sliced at a thickness of 3mm 

using a slicer (Scharfen G330F, Avery Berkel). Cooked ham samples were assigned a three 

digit random number and served cold on labelled polystyrene plates. The nine point hedonic 

scale was used for consumer analysis and the tested attributes were: Appearance (1= 

unacceptable, 7= excellent), Flavour (1= unacceptable, 7= excellent), Firmness (1= very 

mushy, 7= very firm), Juiciness (1= very dry, 7= very juicy), Saltiness (1= not salty, 7= 

extremely salty),  and OSA (1= unacceptable, 7= excellent). Rating questions included – 

How does this compare to your normal brand? (1= no comparison, 6= much better), Would 

you buy/eat this again? (1= definitely not, 5= definitely) and Which sample did you prefer?  

 

5.2.2.7 Statistical Analysis 

Consumer data was analysed by crosstabulation and one way ANOVA using SPSS 

software package (SPSS for Windows, version 21 IBM Corp., Armonk, NY, USA). For 

one way ANOVA, the consumer responses corresponding to each attribute/question were 

converted to numerical format and significance was assessed using Tukey's test at 5% 

significance level. Principle component analysis (PCA) was carried out using the 

Unscrambler software package version 10.3 (CAMO ASA, Trondheim, Norway) with the 
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X-matrix designated as the various treatments of frankfurters and cooked ham and the Y-

matrix designated as the sensory responses. 

 

 

5.3 Results and Discussion  

5.3.1 Consumer demographics  

The consumer demographics are shown in Table 5.2. The consumers age ranged between 

20-60 years old; with 61 or 39 % of the consumers under or over 40 years old, respectively.  

While Irish people accounted for 63% of consumers, 37% were of various other 

nationalities primarily French. In regards to occupation, the majority of consumers were 

students and researchers. Over half of consumers earned >50k per year with only 11% 

earning <20k per year. When asked how often do you eat cooked ham, the majority (82%) 

of consumers chose ‘weekly’ or more frequently. When asked how often do you eat 

frankfurters the majority (73%) of consumers chose ‘fortnightly’ or less frequently while 

only 27% of consumer stated they eat frankfurters weekly or more often.   
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Table 5.2 - Consumer demographics (%) and frequency of consumption. 

Age range % 

20-25 26 

26-30 9 

31-35 19 

36-40 7 

41-45 12 

46-50 10 

51-55 4 

56-60 8 

60 + 5 

Nationality  % 

Irish 63 

French 15 

Spanish 4 

English 3 

Brazilian 3 

German 3 

Other 9 

Occupation % 

Student 36 

Teacher 7 

Researcher 20 

Administrator 15 

Other 23 

Income % 

<20k               11 

20-50k 35 

>50k 54 

How often do you eat frankfurters? % 

4-5 times per week 5 

2-3 times per week 4 

Weekly 18 

Fortnightly 4 

Monthly  58 

Very rarely 11 

How often do you eat cooked ham? % 

Daily 8 

4-5 times per week 16 

2-3 times per week 26 

Weekly 32 

Fortnightly 9 

Monthly 9 
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5.3.2 Consumer results for frankfurters 

The consumer assessment of the sensory attributes of frankfurters are shown in Table 5.3 

while consumer rating of the frankfurters are shown in Figures 5.1a and 5.2a. The statistical 

analysis of the sensory attributes of frankfurters is shown in Table 5.4. The results for 

appearance indicated that ≤10% of consumers rated the appearance of the frankfurters 

(ROLS, research control and commercial) below ‘average’. The majority (≥64%) of 

consumers described frankfurters (ROLS, research control and commercial) as ‘good’, 

‘very good’ or ‘excellent’ (Table 5.3). The statistical analysis indicated there were no 

significant differences on the appearance between ROLS, research control or commercial 

frankfurters (Table 5.4). For flavour, ≤9% of consumers rated the frankfurters (ROLS, 

research control and commercial) below ‘Average’ while the majority of consumers 73% 

and 68% described the ROLS and research control frankfurters, respectively as ‘good’ or 

‘very good’; however, 64% of consumers described the commercial frankfurter as ‘very 

good’ or ‘excellent’ (Table 5.3). The statistical analysis indicated that the flavour of the 

commercial frankfurters was the most preferred (P<0.05) compared to ROLS and research 

control frankfurters (Table 5.4) and this may be due to the fact that the commercial 

frankfurters were smoked which may have enhanced flavour acceptability. In regards to 

firmness, 89% and 72% of consumers described the ROLS and research control 

frankfurters, respectively, as ‘just right’, ‘slightly firm’ or ‘firm’ compared to 51% of 

consumers who used these terms to describe the commercial frankfurters. It was also 

highlighted by 39% of consumers that the commercial frankfurters were ‘slightly mushy’, 

‘mushy or ‘very mushy’ while only 12% and 16% of consumers used these terms to 

describe the ROLS and research control frankfurters, respectively (Table 5.3). The 

statistical analysis indicated that the firmness of the ROLS and research control frankfurters 

were preferred (P<0.05) to the commercial frankfurters (Table 5.4). The results for 
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juiciness showed that the majority (58% and 54%) of consumers described the ROLS and 

research control frankfurters, respectively, as ‘slightly dry’ or ‘just right’, while the 

majority of consumers (82%) described the commercial frankfurter as ‘slightly juicy’, 

‘juicy’ or ‘very juicy’ (Table 5.3). The statistical analysis indicated that the commercial 

frankfurter was significantly (P<0.05) juicier than the ROLS and research control 

frankfurters (Table 5.4).  

For saltiness, the majority of consumers (64% and 67%) described as ‘moderately salty’ or 

‘just right’ the ROLS and research control frankfurters, respectively, while the majority of 

consumers (74%) described the commercial frankfurters as ‘quite salty’, ‘very salty’ or 

‘extremely salty’ (Table 5.3). The statistical analysis indicated that the commercial 

frankfurter was perceived to be significantly (P<0.05) saltier than the ROLS and research 

control frankfurters (Table 5.4). Contradictory to these results, the commercial frankfurter 

had a lower salt content (2.0%) compared to the research control which contained 2.5% 

salt; however, consumers may have perceived the commercial frankfurters to be saltier as 

they were juicier (P<0.05) which may have increased the saltiness perception. Similar 

results were found by NIZO researchers (NIZO, 2018) who reported that increasing 

juiciness in sausages resulted in enhancement of the saltiness perception. Consumers did 

not find significant differences in the perception of saltiness between the ROLS and 

research control frankfurters even though the ROLS frankfurter contained 48% less salt 

and this may be due to the ingredients contained in the salt replacer ArtisaltTM including 

flavour enhancers such as yeast extract, onion and celery.  

The results for OSA showed that ≤15% of consumers disliked (extremely, very much or 

moderately) the frankfurters (ROLS, research control and commercial). The majority of 

consumers 83%, 79% and 77% liked (moderately, very much or extremely) the ROLS, 

research control and commercial frankfurters, respectively (Table 5.3) and as a result the 
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statistical analysis showed that there were no significant differences in OSA between 

ROLS, research control and commercial frankfurters (Table 5.4).  

The consumer results found in this study are in agreement with our previous results 

(Chapter 3) where the development of sensory accepted optimised low salt frankfurters was 

carried out by semi trained panellists and no significant differences in appearance, flavour, 

juiciness, texture, saltiness or OSA between ROLS and research control frankfurters was 

reported. This was attributed to the calculated ionic strength (IS) of a 50/50 combination of 

ArtisaltTM /NaCl (0.31M) which was similar to that the IS of 2 % NaCl (0.34M) and resulted 

in the development of ROLS frankfurters without compromising the physiochemical 

characteristics and sensory acceptability compared to full salt control samples. The salt 

replacer ArtisaltTM also contained flavour enhancers such as yeast extract, onion and celery 

which may have enhanced saltiness perception. Flavours enhancers have been shown to 

improve the sensory acceptability of low-salt meat products (Desmond, 2006; Dos Santos 

et al., 2014).  

When consumers were asked to compare the frankfurters to their usual brand, 74%, 64% 

and 62% of consumers stated that the ROLS, research control and commercial frankfurters, 

respectively, were ‘just as good’, ‘slightly better’ or ‘much better’ than their usual brand 

(Figure 5.1a). When asked if they would buy or eat this product again, 70%, 58% and 66% 

of consumers said they probably or definitely would buy or eat again the ROLS, research 

control and commercial frankfurters, respectively (Figure 5.2a). When asked ‘which 

sample do you prefer’, 39% of consumers preferred the ROLS frankfurter, 39% preferred 

the commercial frankfurter and 22% preferred the research control frankfurter (Figure 

5.3a).  

The PCA plot (Figure 5.4a) is a graphical representation of the degree of existing 

correlations between the frankfurter samples, the measured sensory responses and 
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comparison to usual brand and purchase intent. The plot showed that the ROLS and 

research control frankfurters were closely related to each other and also to the sensory 

attribute of firmness. The commercial frankfurters were closely related to flavour, juiciness 

and saltiness and to a lesser extent they were related to appearance. The plot also indicated 

that the OSA was closely related to comparison to usual brand; would you buy/eat again? 

and appearance of the sample. 

Overall, the firmness and saltiness of the ROLS and research control frankfurters were 

preferred by the consumer while the flavour and juiciness of the commercial frankfurters 

were preferred; however, no significant differences in the appearance, OSA and rating 

questions; would you buy/eat this again? and comparison to usual brand were noticed 

between ROLS, research control or commercial frankfurters. It is also important to 

highlight that consumers did not detect differences in saltiness between the research control 

and ROLS frankfurters which contained 48% less added salt. These results indicated that 

the ROLS frankfurters were just as acceptable to consumers as the gold standard 

commercially available frankfurter confirming the potential of the use of the salt replacer 

ArtisaltTM, HPP and a mix of organic acids Inbac™ to manufacture consumer accepted 

low-salt frankfurters with enhanced safety and shelf life.  

Similarly, Guardia et al. (2006) reported that from a sensorial point of view it was possible 

to reduce NaCl in small calibre fermented sausages by 50% using salt replacers (50% KCl 

or 40% KCl + 10% of Potassium-lactate) and obtain a product acceptable to consumers; 

however, while consumer acceptability was achieved, compensation for compromising 

microbial stability due to significant salt reduction was not assessed.  
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Table 5.3 Consumer hedonic scores (%) on the sensory attributes of frankfurters*  

 Appearance 

Unacceptable Poor Fair Average Good Very 

good 

Excellent 

ROLS 0 1 5 17 25 42 10 

Research control 0 4 6 26 26 32 6 

Commercial 0 3 3 17 23 32 22 

 Flavour 

 Unacceptable Poor Fair Average Good Very 

good 

Excellent 

ROLS 1 3 3 12 38 35 8 

Research control 0 4 3 20 43 25 5 

Commercial 2 5 2 7 25 34 30 

 Firmness 

 Very Mushy  Mushy Slightly 

Mushy 

Just right Slightly 

Firm 

Firm  Very Firm 

ROLS 0 4 8 36 33 20 5 

Research control 0 13 3 31 18 23 12 

Commercial 2 25 12 13 15 23 10 

 Juiciness  

 Very Dry Dry Slightly 

Dry 

Just right Slightly 

Juicy 

 Juicy Very 

Juicy 

ROLS 0 2 24 34 16 23 1 

Research control 2 13 25 29 6 24 1 

Commercial 0 0 5 13 25 15 42 

 Saltiness 

 Not Salty Slightly 

Salty 

Moderately 

Salty 

Just right Quite 

Salty 

Very 

Salty 

Extremely 

Salty 

ROLS 5 9 10 54 20 2 0 

Research control 6 2 19 48 19 6 0 

Commercial 0 0 4 22 32 29 13 

 OSA 

 Extremely 

Dislike 

Very 

Much 

Dislike 

Moderately 

Dislike 

Neither 

Like nor 

Dislike 

Moderat

ely Like 

Very 

Much 

Like 

Extremely 

Like 

ROLS 0 4 4 9 35 40 8 

Research control 1 6 6 10 35 31 13 

Commercial 2 5 8 8 23 37 17 

 

*Results are expressed as %.



 
 

 

Table 5.4 Consumer hedonic scores for the sensory attributes and comparison to usual brand and purchase intent scores of frankfurters* 

 Appearance Flavour Firmness Juiciness Saltiness OSA Comparison to 

usual brand 

Would you 

buy/eat again? 

 

ROLS 5.32 ± 1.39 a 4.61 ± 1.14 a 4.97 ± 1.09 a 4.1 ± 1.09 a 3.81 ± 1.07 a 5.27 ± 1.12 a 4.1 ± 1.25 a 3.67 ± 1.1 a 

Research control 4.95 ± 1.20 a 4.66 ± 1.07 a 4.83 ± 1.34 a 3.8 ± 1.26 a 3.89 ± 1.11 a 4.77 ± 1.28 a 3.83 ± 1.23 a 3.45 ± 1.11 a 

Commercial 5.44 ± 1.41 a 5.78 ± 1.12 b 4.45 ± 1.47 b 5.89 ± 1.24 b 5.27 ± 1.07 b 5.22 ± 1.47 a 3.71 ± 1.43 a 3.61 ± 1.44 a 

*Values are mean (n=100) ± standard deviation a, b. Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments. 

 

 



 
 

5.3.2 Consumer results for cooked ham 

The consumer assessment of the sensory attributes of cooked ham are shown in Table 5.5 

while consumer rating of the cooked ham are shown in Figure 5.1b and 5.2b. The statistical 

analysis of the sensory attributes of cooked ham is shown in Table 5.6. In terms of 

appearance, 10% of consumers rated the ROLS and research control cooked ham as below 

‘average’ compared to 30% of consumers who described the commercial ham as below 

‘average’. Furthermore, the majority of consumers (73%) described the ROLS and research 

control cooked ham samples as ‘good’, ‘very good’ or ‘excellent’ whereas only 43% of 

consumers used these terms to describe the commercial cooked ham (Table 5.5). The 

statistical analysis indicated that the commercial cooked ham was significantly (P<0.05) 

less acceptable than the ROLS and research control cooked ham in terms of appearance 

(Table 5.6). For flavour, ≤16% of consumers rated the cooked ham (ROLS, research control 

and commercial) as below ‘average’. The majority of consumers (74%, 81% and 66%) 

described the ROLS, research control and commercial cooked ham, respectively, as ‘good’, 

‘very good’ or ‘excellent’ (Table 5.5). The statistical analysis indicated that no significant 

differences in flavour were observed between the cooked ham samples (Table 5.6).   

The results for firmness showed that the majority (73% and 83%) of consumers described 

the ROLS and research control cooked ham, respectively, as ‘slightly firm’, ‘firm’, or ‘very 

firm’ compared to 24% of consumers who used these terms to describe the commercial 

cooked ham (Table 5.5). The commercial cooked ham was also described as‘slightly 

mushy’ or ‘mushy’ by 42% of consumers. The statistical analysis indicated that significant 

differences (P<0.05) in firmness were observed between the research control and ROLS 

cooked ham in comparison to the commercial cooked ham (Table 5.6). In terms of juiciness, 

the majority (51% and 59%) of consumers described the ROLS and research control cooked 

ham as ‘just right’ or ‘slightly dry’; however, the majority (70%) of consumers described 
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the commercial cooked ham as ‘slightly juicy’, ‘juicy’ or ‘very juicy’ (Table 5.5). The 

statistical analysis indicated that significant differences (P<0.05) in juiciness were 

observed between the research control and ROLS cooked ham in comparison to the 

commercial cooked ham (Table 5.6).  

The saltiness was described to be ‘slightly salty’ ‘just right’ or ‘quite salty’ by the majority 

of consumers (67%, 78% and 65%) in ROLS, research control and commercial cooked 

ham, respectively, (Table 5.5) and consequently no significant differences were found 

between cooked ham samples in this regard (Table 5.6). No significant differences in 

saltiness between the research control and ROLS frankfurters which contained 53% less 

added salt may be due to the ingredients contained in the salt replacer ArtisaltTM which 

contains flavour enhancers. The commercial cooked ham had a lower salt content of 2.3% 

compared to the research control cooked ham which contained 2.6% salt; however, the 

commercial cooked ham was juicier (P<0.05) which may have increased saltiness 

perception resulting in no significant differences in saltiness between cooked ham samples. 

The ability of increased juiciness to enhance saltiness perception has been demonstrated by 

NIZO researchers (2018).  

The results for OSA showed that ≤19% of consumers disliked (extremely, very much or 

moderately) all cooked ham samples (ROLS, research control and commercial). The 

majority (72%, 70% and 62%) of consumers liked (moderately, very much or extremely) 

the ROLS, research control and commercial cooked ham, respectively (Table 5.5). The 

statistical analysis indicated that no significant differences were observed between cooked 

ham samples in terms of OSA (Table 5.6).  

The consumer results found in this study are in agreement with our previous results 

(Chapter 2) where the development of sensory accepted optimised low salt cooked ham 

was carried out by semi trained panellists and no significant differences in appearance, 
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flavour, juiciness, texture, saltiness or OSA between ROLS and research control cooked 

ham was reported. This was attributed to the calculated ionic strength (IS) of a 50/50 

combination of ArtisaltTM /NaCl (0.31M) which was similar to that the IS of 2 % NaCl 

(0.34M) and resulted in the development of ROLS cooked ham without compromising the 

physiochemical characteristics and sensory acceptability compared to full salt control 

samples. The salt replacer ArtisaltTM also contains flavour enhancers such as yeast extract, 

onion and celery which may have increased saltiness perception. Flavours enhancers have 

been shown to improve the sensory acceptability of low-salt meat products (Desmond, 

2006; Dos Santos et al., 2014).  

When asked to compare the cooked ham to their usual brand, the majority (60%, 64% and 

52%) of consumers stated that the ROLS, research control and commercial cooked ham, 

respectively, were ‘just as good as’, ‘slightly better’ or ‘much better’ than their usual brand 

(Figure 5.1b). When asked if they would buy or eat this product again, 62%, 68% and 58% 

of consumers said they probably or definitely would buy or eat the ROLS, research control 

and commercial cooked ham, respectively, again (Figure 5.2b). When asked ‘which sample 

do you prefer’, 36% of consumers preferred the ROLS cooked ham, 38% preferred the 

research control cooked ham and 26% preferred the commercial cooked ham (Figure 5.3b).  

The PCA plot (Figure 5.4b) is a graphical representation of the degree of existing 

correlations between the cooked ham samples, the measured sensory responses and 

comparison to usual brand and purchase intent. The plot showed that the ROLS and 

research control frankfurters were closely related to each other and also to the sensory 

attributes of firmness. The commercial frankfurters were closely related to juiciness and 

saltiness. The sensory attributes flavour, OSA and appearance are closely related to the 

rating questions; would you but/eat again? and comparison to usual brand and these 
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attributes were more closely related to the ROLS and research control cooked ham than the 

commercial cooked ham. 

Overall, the appearance and firmness of the ROLS and research control cooked ham was 

preferred, and the juiciness of the commercial cooked ham was preferred. However, in all 

cooked ham samples flavour, saltiness, OSA, would you buy/eat this again and comparison 

to usual brand were not significantly different. The consumers did not detect any 

differences in saltiness between any of the cooked ham samples even though the ROLS 

cooked ham contained 53% less added salt compared to the research control cooked ham. 

These results indicate that the ROLS cooked ham was just as acceptable to consumers as 

the gold standard commercially available cooked ham confirming the potential of the use 

of the salt replacer ArtisaltTM, HPP and organic acids to produce consumer accepted low-

salt cooked ham with enhanced safety and shelf life.  

In a recent study Pietrasik et al. (2016) used KCl as a salt replacer in the manufacture of 

reduced sodium cooked hams and then applied HPP to enhance the quality and shelf life. 

The authors reported that the salt replacement negatively affected the physicochemical 

characteristics of cooked ham as the low-salt cooked ham (1.4% NaCl) was significantly 

less acceptable than the control cooked ham (2.4% NaCl) in terms of all sensory attributes 

(appearance, flavour, saltiness, texture, juiciness, aftertaste and OSA). However, when 

HPP was applied to these products a significant shelf-life extension was obtained with 

minimal effects on physicochemical quality. In the present study and the results reported 

in Chapter 2 there were no significant differences in the physicochemical characteristics 

between the optimised low salt cooked ham and control samples due to composition of the 

salt replacer ArtisaltTM as the IS of a 50/50 combination of ArtisaltTM /NaCl was similar to 

that the IS of 2 % NaCl and also due to the flavour enhancers contained in the ArtisaltTM 
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which may have masked the bitter taste associated with KCl and increased the saltiness 

perception resulting in a product with similar acceptability as full salt control samples.  
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Table 5.5 Consumer hedonic scores (%) on the sensory attributes of cooked ham* 

 Appearance 

Unacceptable Poor Fair Average Good Very 

good 

Excellen

t 

ROLS 0 4 6 17 29 35 9 

Research control 0 2 8 17 25 36 12 

Commercial 1 11 18 27 17 17 9 

 Flavour 

 Unacceptable Poor Fair Average Good Very 

good 

Excellen

t 

ROLS 0 4 7 15 27 39 8 

Research control 0 1 6 12 35 40 6 

Commercial 1 8 7 18 26 31 9 

 Firmness 

 Very Mushy  Mushy Slightly 

Mushy 

Just right Slightly 

Firm 

Firm  Very 

Firm 

ROLS 0 0 11 16 23 36 14 

Research control 0 1 0 16 18 47 18 

Commercial 0 7 37 32 14 10 0 

 Juiciness  

 Very Dry Dry Slightly 

Dry 

Just right Slightly 

Juicy 

Juicy Very 

Juicy 

ROLS 3 11 24 27 11 15 9 

Research control 7 10 23 36 6 15 3 

Commercial 0 10 0 20 28 29 13 

 Saltiness 

 Not Salty Slightly 

Salty 

Moderately 

Salty 

Just right Quite Salty Very 

Salty 

Extreme

ly Salty 

ROLS 9 10 8 37 22 7 7 

Research control 8 12 17 40 21 2 0 

Commercial 9 11 15 37 13 10 5 

 OSA 

 Extremely 

Dislike 

Very 

Much 

Dislike 

Moderately 

Dislike 

Neither 

Like nor 

Dislike 

Moderately 

Like 

Very 

Much 

Like 

Extreme

ly Like 

ROLS 3 5 11 9 32 35 5 

Research control 0 4 15 11 24 39 7 

Commercial 0 7 10 21 28 27 7 

 

*Results are expressed as %. 

 



 
 

 

Table 5.6  Consumer hedonic scores for the sensory attributes and comparison to usual brand and purchase intent scores of cooked ham* 

 Appearance Flavour Firmness Juiciness Saltiness OSA Comparison 

to usual brand 

Would you 

buy/eat again? 

 

ROLS 5.72 ± 1.21 a  4.97 ± 1.27 a 5.46 ± 1.21 a 4.09 ± 1.14 a 4.02 ± 1.56 a 4.92 ± 1.42 a 3.73 ± 1.25 a 3.54 ± 1.2  a 

Research 

control 

5.81 ± 1.22 a 5.31 ± 0.99 a 5.68 ± 1.06 a 3.89 ± 1.30 a  3.58 ± 1.23 a 5.02 ± 1.33 a 3.90 ± 1.30 a 3.72 ± 1.11 a 

Commercial 4.13 ± 1.40 b 4.71 ± 1.1 a 3.96 ± 0.99 b 5.49 ± 1.18 b 3.87 ± 1.54 a 4.50 ± 1.42 a 3.18 ± 1.13 a 3.26 ±  1.20 a 

*Values are mean (n=100) ± standard deviation a, b. Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.  



 
 

 

(a) 

 

(b) 

 

 

Figure 5.1– Frequency of consumer comparison to usual brand for (a) frankfurters and 

(b) cooked ham. No comparison (▬), much less than (▬), slightly less than (▬), just as 

good as (▬), slightly better (▬), much better (▬).  Results are expressed as %.  
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(a) 

 

(b) 

 

 

Figure 5.2 - Frequency of consumer purchase intent of (a) frankfurters and (b) cooked 

ham. Definitely not (▬), Probably not (▬), Unsure (▬), Probably (▬), Definitely (▬). 

Results are expressed as %.  

 



 
 

 

 

                     (a)                                                                                                              (b)  

 

  

Figure 5.3 – Consumer preference on the Research optimised low-salt (▬), Research control (▬) and Commercial (▬) in (a) frankfurters and 

(b) cooked ham. Results are expressed as %.                    
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         Figure 5.4 – Principle component analysis of (a) frankfurters and (b) cooked ham.   
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5.4 Conclusion  

Salt (NaCl) reduction below the national target levels set by Food Safety Authority of 

Ireland (FSAI), 2017 for cooked ham (1.6%) and frankfurters (1.5%) can be achieved using 

the salt replacer Artisalt™, HPP and a mix of organic acids Inbac™ without compromising 

consumer acceptability and microbial stability. Consumers did not detect differences in the 

perception of saltiness between the ROLS, research control and commercial frankfurters or 

cooked hams. 

These results indicated that the low-salt processed meat products were just as acceptable or 

better than the gold standard commercially available products in the Irish market 

confirming the potential of the use of the salt replacer ArtisaltTM and the combined hurdles 

(HPP and organic acids) to produce consumer accepted low-salt processed meat products 

with enhanced safety and shelf life. Additionally, as industrial ingredients and processes 

were used in the development and manufacture of consumer accepted processed meat 

products with significantly low salt content, the scaling up of the process can easily be 

achieved. The findings of this study are not just of commercial and processing interest, but 

also of public health significance. 
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CHAPTER 6 

Improving flavour absorption and shelf life of marinated pork chops 

through the application of high pressure processing as a hurdle.  

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 
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Abstract 

The objective of this study was to determine the efficacy of HPP to accelerate marinade 

(piri-piri) flavour absorption in pork chops and to study the effects on the physicochemical, 

sensory and microbiological characteristics during chilled storage. A combination of HPP 

(300 MPa, 400 MPa or 500 MPa) and a mix of organic acids InbacTM (0.3%) were used as 

hurdles to extend the shelf life. The results showed that the level of pressure applied 

increased the pH, lipid oxidation, toughness and lightness proportionally; however, HPP 

≥400 MPa also increased (P<0.05) the marinade absorption which enhanced the flavour 

perception of the marinated pork chops. The piri-piri marinade masked the discolouration 

caused by HPP and increased (P<0.05) the tenderness of the pork chops over storage time. 

From the microbiological point of view, compared to untreated control samples, the 

combined effects of HPP at 300, 400 or 500 MPa and Inbac™ (0.3%) extended (P<0.05) 

the shelf-life by 16, 22 and 29 days, respectively. The results highlighted the potential of a 

combined effect of HPP and antimicrobial Inbac™ to accelerate flavour absorption and 

significantly extend the shelf life of marinated pork chops.  
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6.1 Introduction  

Marinade technology has been used in the meat industry for several decades. The role and 

perception of marinades has evolved from flavouring and tenderising to enhancing yield 

and quality of meats. Marinades are also applied to meat products for preservation and to 

improve colour (Yusop et al., 2011). Marination is a common method for infusing meat 

with savoury ingredients to improve flavour, texture and juiciness (Toledo, 2001). 

Consumers generally incorporate marinades into meat via immersion which consists of 

immersing the meat in a liquid marinade and allowing penetration of the marinade on the 

meat through diffusion over time. However, dry/paste marinating is also a common method 

of marinate delivery with consumers; Nevertheless, injection processing and 

tumbling/massaging are marination processes more commonly used in the meat industry 

(Yusop et al., 2011). Based on their functionality marinade ingredients are classified into 

two categories, Toledo (2007): 1) Ingredients that affect the water-binding or textural 

properties, and condition the meat to bind water via ionic strength and pH such as water, 

salt, phosphates, organic acids, hydrocolloids, protein isolates, curing aids and enzymes 

and 2) ingredients which affect the consumer appeal and the eating quality of marinated 

meat products such as herbs and spices, flavour extracts and sweeteners.  

The demand for value added meat products continues to increase in the market place and  

an increase in the range of commercially available marinade products was reported (Hall 

et al., 2008; Yusop et al., 2011) and flavour components such as barbeque and piri-piri 

marinade are in high consumer demand (Nachay, 2011). Ethnic marinades and ethnic 

flavour-marinated meat products are very popular due to the increased demand for such 

products by consumers who are more adventurous, demand products possessing more 

authenticity and desire a more flavourful experience when eating meat (Yusop et al., 

2009a; Yusop et al., 2009b; Yusop et al., 2010).  Marinades can increase the sensory 

https://www.sciencedirect.com/science/article/pii/B9781845694661500179#bb0485
https://www.sciencedirect.com/science/article/pii/B9781845694661500179#bb0560
https://www.sciencedirect.com/science/article/pii/B9781845694661500179#bb0560
https://www.sciencedirect.com/science/article/pii/B9781845694661500179#bb0565
https://www.sciencedirect.com/science/article/pii/B9781845694661500179#bb0570
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acceptability of meat products by enhancing flavour (Yusop et al., 2011). Kim et al. (2010) 

found that pork marinated with garlic and onion juice had significantly higher (P<0.05) 

flavour attributes than control samples which were unmarinated. Previous studies reported 

the tenderising effect of acidic marinades (i.e. organic acids) on beef and chicken (Aktas et 

al., 2003; Berge et al., 2001; Burke and Monahan, 2003; Lewis and Purslow, 1991; 

Oreskovich et al., 1992; Bowkler et al., 2010; Birk et al., 2010). Traditional methods for 

impregnating flavour such as tumbling, vacuum impregnation are time consuming and in 

the process the product can be contaminated and spoiled. The growing consumer demand 

for high quality, minimally processed, easy to store and prepare, additive-free and 

microbiologically safe meat food products has created a need for new food processing 

methods. 

HPP is a relatively new technology gaining importance in the food industry because of its 

advantage of inactivating microorganisms and enzymes at ambient or low temperatures 

without affecting the nutritional properties of food (Indrawati et al., 2003); however, 

pressure levels >300 MPa can negatively affect some other important product qualities, 

such as tenderness, colour and lipid oxidation (Cheftel and Culioli, 1997). Synergetic 

effects on microbial inactivation of HPP when used in combination with organic acids, 

antimicrobial peptides, the lactoperoxidase system, and phenolic compounds have been 

reported in the literature (Rodriguez-Calleja et al., 2012; Cheftel and Culioli, 1997; Mañas 

and Pagán, 2005; Raso and Barbosa-Canovas, 2003). 

Several authors have reported that HPP primarily affects the physicochemical properties of 

raw/uncooked meat products and has minimum effects on cooked products (Considine et 

al., 2008; Neto et al., 2015; Bansal et al., 2015). While many studies report the ability of 

HPP to increase the safety and shelf life of meat products (Kruk et al., 2011; Garriga et al., 

2004; Wang et al., 2015; Karlowski et al., 2010), many authors also report the negative 
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impact of HPP on the colour (Rodriguez calleja et al,. 2012; Karlowski et al., 2010; Bajovic 

et al., 2012), texture (Sun and Holley, 2010; Mc Ardle et al., 2011) and lipid oxidation 

(Kruk et al., 2011; Medina-Meza et al., 2014; He et al., 2012). Such altered 

physicochemical characteristics may have a negative effect on the sensory acceptability of 

HPP meat; however, marinades may be able not only to mask the physicochemical changes 

such as colour and improve the tenderness but also increase sensory acceptability by 

enhancing flavour of the marinated meat products.  

Shelf life is the period of time during which a food retains acceptable characteristics of 

flavour, colour, aroma, texture, nutritional value, and safety under defined environmental 

conditions (Lee et al., 2009). Kruk et al. (2011) used HPP at 300-600 MPa for 5 mins to 

extend the shelf life of raw chicken breast fillets and found that HPP at 600 MPa for 5 mins 

inactivated all microorganisms below delectable levels and improved shelf-life for 7–14 

days; however lipid oxidation, lightness and shear force (SF) were significantly increased. 

Rodriguez-Calleja et al., (2012) demonstrated the strongly potential synergetic interaction 

of HPP (300 MPa for 5 mins) and a mix of organic acids as hurdles extending the shelf-life 

of skinless chicken breast fillets up to 4 weeks and concluded that the combined effect of 

the antimicrobial edible coating Articoat™  and HPP was more effective than either 

treatment alone.  

Wang et al. (2015) examined the effects of HPP (350-600 MPa for 3 mins) on the quality 

and shelf life of honey garlic marinated pork chops and concluded that the marinade 

partially masked meat discolouration due to HPP, the pH of HPP marinated pork chops was 

higher (P<0.05) than the control pork chops and HPP of 450 MPa or higher for 3 mins can 

extend the shelf life from 10 days to 31 days with minimal effects on meat quality. Kingsley 

et al. (2015) found that a combination of Sriracha® hot sauce flavouring and HPP at 600 

MPa for 5 mins yielded a raw oyster with improved sensory quality in regards to flavour 
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and also lower bacterial counts (4 log) over 10 days of refrigerated storage. As outlined 

above, there are limited number of studies using the combined effects of HPP and a mix of 

organic acids to enhance flavour uptake and shelf life enhancement. Moreover, most of the 

studies that applied HPP to enhance safety and shelf life reported in the literature were 

carried out using lab scale HPP (Vercammen et al., 2011; Rodriguez-calleja et al., 2012; 

O’Flynn et al., 2014; Crehan et al., 2000; Andres et al., 2004; Han et al., 2011; Cava et al., 

2009) with a few studies reported using industrial HPP units for treating meat products. 

(Garriga et al., 2004; Jofre et al., 2009; Marcos et al., 2007); 

In the present study an industrial scale HPP unit and commercially available organic acids 

were used to treat marinated pork chops which have the advantage of easily scaling up. 

HPP and cooking of products in their final packaging also result in an extremely convenient 

product for consumer use. Other technologies such as hydrodynamic pressure (HDP) have 

been used to increase marinade absorption. Bowkler et al. (2010) applied HDP to turkey 

breasts before marination via tumbling in a brine consisting of water, salt, and phosphate 

and found that HDP enhanced the marinade absorption, increased processing yield, which 

resulted in improved tenderness; however, to the best of our knowledge, there are no studies 

which have been carried out examining the ability of HPP to accelerate the marinade (e.g. 

piri-piri sauce) absorption in pork chops, and their subsequent physicochemical analysis 

during chilled storage. Hence, the objectives of this research were to determine the efficacy 

of HPP to accelerate the marinade (e.g. piri-piri marinade) absorption in pork chops and 

investigate the effects of a combination of HPP and a commercially available mix of 

organic acids on the physicochemical, sensory and microbiological quality of marinated 

pork chops during chilled storage at 4°C.  
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6.2 Materials and Methods 

6.2.1 Materials  

Pork loins were obtained from a local meat processor (Ballyburden, Ballincollig, Cork). 

Piri-Piri marinade (Rapeseed oil 60%, Spices and flavourings 36% (chilli, garlic, jalapeno, 

black pepper, onion, paprika, lovage root, fenugreek seed, bird clover, onion leek, 

coriander, turmeric, ginger, cumin seed, fennel, sugar, grapefruit, passion fruit, papaya, 

mango, palm fat) and Salt 4%) was obtained from Oliver Carty (Athlone, Co. Roscommon, 

Ireland). A commercial antimicrobial mix of organic acids InbacTM (a mix of Sodium 

acetate 43%, Malic acid 7%, emulsifier-mono and diglycerides of fatty acids and 

technological coadjuvants; anticaking agents, calcium phosphate, magnesium carbonate 

and silicon dioxide ~50%) was obtained from Chemital (Chemital Ltd, Barcelona, Spain).  

 

6.2.2 Methods 

6.2.2.1 Marination of pork chops 

The pork loins were cut into 3 cm chops including the fat ring, weighed and placed in a 

combivac vacuum pouch (20 polyamide/70 polyethylene bags (Alcom, Campogalliano, 

Italy) and piri-piri marinade which contained Inbac™ (0.3%) at a weight ratio 80:20 (Pork 

chop:marinade) was added and then vacuum packed using a Webomatic vacuum packaging 

system (Werner Bonk, type D463, Bochum, German). Marinated control samples were 

stored in a chill room at 4°C for the duration of the shelf life. For samples requiring HPP 

(300 MPa, 400 MPa or 500 MPa), marinated pork chop samples were HPP (as outlined in 

section 6.2.2.2)  before storage in a chill room at 4°C for the duration of the shelf life.   
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6.2.2.2 High Pressure Processing  

Vacuum-packed marinated pork chops were HPP using an industrial Hiperbaric 420 litre 

unit (Burgos, Spain) at the HPP Tolling facilities (HPP tolling, St. Margaret’s, Dublin) 

using water as the pressure transmitting medium. The speed of pressurisation was 130 MPa 

per minute, the speed of depressurisation was instantaneous (~ 1 second) and the holding 

time was 3 minutes. The temperature of the pressure transmitting medium (water) was 

10°C. The initial temperature of the raw marinated pork chops before HPP was 3.4 °C and 

the final temperature measured after HPP was 6.5 °C.  

 

6.2.2.3 Cooking   

Vacuum-packed marinated pork chops were cooked at full steam (100 °C) in a Zanussi 

oven pH(Zanussi Professional, Italy) and temperature monitored using a thermocouple data 

logger (Omega Engineering Ltd., Manchester, UK) inserted into the coldest point of the 

marinated pork chops until an internal temperature of 74 °C was reached. The samples were 

then cooled down at room temperature before analysis was carried out.  

 

6.2.2.4 Marinade absorption  

The initial weight of raw unmarinated pork chops was recorded. Samples were then 

marinated as described in Section 6.2.2.1 and after 24 hours storage at 4°C untreated and 

HPP samples were placed on an elevated stainless steel wire rack for 5 mins to allow 

dripping of the excess marinade and then re-weighed. Calculation for marinade absorption 

was as follows; 
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% marinade absorption = (weight after 24 hours marination – initial unmarinated weight) / 

(initial unmarinated weight) * 100.  

Each value represents the average of 8 measurements (two independent trials x four 

samples).   

 

6.2.2.5 Cook loss  

The cook loss of both untreated control and HPP marinated pork chops was determined on 

Day 1. Briefly, the initial weight of the raw marinated pork chops was recorded after 

samples had been placed on an elevated stainless steel wire rack for 5 mins. After cooking 

the samples were re-weighed and cook loss calculated as follows:  

% cook loss = (cooked weight – initial raw weight) / (initial raw weight) * 100  

Each value represents the average of 8 measurements (two independent trials x four 

samples).  

 

6.2.2.6 Compositional analysis  

To obtain a representative sample for proximal composition analysis marinated pork chops, 

the outer layer of fat was removed after cooking and then the meat was homogenised for 1 

min in a Buchi™ mixer B-400 (Büchi Labortechnik, Switzerland). Proximate composition 

(fat, moisture, protein and ash) of cooked marinated pork chops was determined on Day 1 

using the methods previously described in Chapter 2. Each value represents the average of 

8 measurements (two independent trials x two samples x two readings).  
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6.2.2.7 Microbiological analysis  

Microbiological analysis of the raw marinated pork chops was carried out throughout 

storage at 4 °C. Briefly, 10 g of the surface of the raw marinated pork chop was weighed 

aseptically into a stomacher bag in a vertical laminar-flow cabinet and a primary 10-fold 

dilution was performed by the addition of 90 ml of sterile maximum recovery diluent 

(MRD) (Oxoid, Basingstoke, U.K.), stomached (Steward Stomacher 400 Lab Blender, 

London, UK) for 3 min and homogenates were 10-fold serially diluted using MRD solution. 

For the enumeration of total viable counts (TVC) 1 ml of each appropriate dilution was 

inoculated on duplicated plates in the centre of compact dry-total count plates (20 cm2) 

(Nissui Pharmaceutical, Co. Ltd., Japan) following incubation at 37 °C for 48 hours. Lactic 

acid bacteria (LAB) was determined on overlaid de Man Rogosa Sharpe medium (Oxoid); 

1ml of each appropriate dilution was inoculated on duplicated plates and incubated at 30 

°C for 48 hours. Escherichia coli (E. Coli) and total coliforms were determined using 

Compact Dry EC plates (Nissui Pharmaceutical, Japan) to which 1ml of each appropriate 

dilution was inoculated on duplicated plates (20 cm2) and incubated at 37 ºC for 24 hours. 

At the start and the end of the shelf life, marinated pork chops were tested also for the 

presence or absence of Salmonella spp. in Compact dry SL plates (Nissui Pharmaceutical, 

Co. Ltd., Japan). For this, pre-enrichment process was carried out by weighing 25 g of 

sample into a sterile filter stomacher bag and then 225 ml of Buffered Peptone water 

(Oxoid) was added and homogenised with a stomacher for 1 min and incubated at 37 °C 

for 24 hr. The bag was taken from the incubator and 0.1 ml of enriched specimen was then 

dropped gently on the sheet 1 cm from the edge of the plate. After inoculation of the 

enriched culture, 1 mL of sterilized water was dropped at the opposite point were the 

specimen was dropped. The sterilised water diffused automatically and the sheet was 

wetted uniformly. The inoculated compact dry SL plates were incubated at 42 °C for 24 
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hrs. All results (except Salmonella) were expressed as log10 colony-forming units (CFU/g). 

Each value represents the average of 8 measurements (two independent trials x two samples 

x two readings).  

 

6.2.2.8 pH 

The pH of raw and cooked untreated and HPP marinated pork chops was measured using 

a digital pH metre (Mettler-Toledo GmbH, Schwerzenbach, Switzerland) by inserting the 

glass probe directly into the sample. The pH was measured throughout the shelf life. Each 

value represents the average of 8 measurements (two independent trials x two samples x 

two readings).  

 

6.2.2.9 Warner-Bratzler Shear force  

Warner-Bratzler Shear force (WBSF) was measured according to the method outlined by 

Shackelford et al. (1991). Briefly, the 3 cm thick marinated pork chops were cooked as 

described in Section 2.2.3 to an internal temperature of 74 °C and then cooled at room 

temperature (20 °C). Four cylinders of a 1.27 cm diameter were obtained from each pork 

chop parallel to the muscle fibre direction using a corer. The pork steak cylinders were 

sheared using a Texture Analyser TA-XT2 (Stable Micro Systems, Surrey, UK) attached 

with a Warner Bratzler V-shaped shearing device at a crosshead speed of 4 mm/s. The 

WBSF of the untreated and HPP marinated pork chops were determined throughout the 

shelf life. Each value represents the average of 8 measurements (two independent trials x 

four samples).  
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6.2.2.10 Colour  

The colour of the surface of the raw and cooked marinated pork chop was measured as 

described in Chapter 2. CIE L*, a* and b* values (Lightness, redness and yellowness, 

respectively) during chilled storage at 4°C are reported and each value represents the 

average of 12 measurements (two independent trials x two samples x three readings).  

 

6.2.2.11 Sensory evaluation  

A 25 member semi-trained taste panel was used to evaluate the cooked untreated and HPP 

marinated pork chops over two sessions using a 9-point hedonic scale. The panellists were 

recruited from staff and postgraduate students at the School of Food and Nutritional 

Sciences, University College Cork and chosen based on their experience in the sensory 

analysis of meat products and on their availability. The panellists have partaken in sensory 

analysis of meat products on numerous occasions and were familiar with the sensory 

terminology.  

Vacuum pouches containing the raw marinated pork chops were labelled with a three digit 

random number and panellists evaluated the appearance of the vacuum packed untreated 

and HPP raw marinated pork chops before sensory evaluation of the cooked samples. 

Samples for cooked sensory analysis were then labelled with the corresponding three digit 

random number and cooked as described in Section 2.2.3 before being removed from the 

packaging and served warm (~60 °C) on labelled polystyrene plates. The tested attributes 

were: Liking of Appearance (raw), Liking of Appearance (cooked), Liking of Texture, 

Liking of Flavour, Juiciness, Tenderness, and Overall sensory acceptability (OSA).  

To ensure that all samples were safe for consumption, microbiological analysis was carried 

out before each sensory test. Sensory analysis was carried out at day 1 and at the time when 



237 
 

samples reached Log 5 CFU/g of sample which indicated end of shelf life based on the 

microbiological limit for TVC (< 5x106 CFU/g of product) as outlined in Section 3.3. For 

control samples (0.1 MPa), sensory analysis was carried out on day 8 while that for samples 

HPP at 300, 400 or 500 MPa was carried out on day 13, 29 or 34, respectively.  

 

6.2.2.12 Lipid oxidation 

Lipid oxidation of the raw marinated pork chops was measured using the 2-thiobarbituric 

acid (TBA) assay (Siu and Draper, 1978). The malondialdehyde (MDA) content was 

calculated using an extinction coefficient of 1.56 × 105 L mol−1 cm−1. The lipid oxidation 

was measured throughout the shelf life and results were expressed as 2-thiobarbituric acid-

reactive substances (TBARS) in mg MDA/kg sample. Each value represents the average of 

8 measurements (two independent trials x two samples x two readings). 

 

6.2.2.13 Statistical analysis  

All physicochemical results (marinade absorption, proximate composition, cook loss, 

colour, texture, TBARS and pH and sensory) were tested using one way ANOVA, sensory 

data was also analysed using t-test analysis and significance assessed using Tukey's test at 

5% significance level using SPSS software package (SPSS for Windows, version 21  IBM 

Corp., Armonk, NY, USA). Two independent trials were carried out and all analysis was 

carried out at least in duplicate.               
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6.3 Results and Discussion  

6.3.1 Marinade absorption 

The results showed that marinade absorption/yield of the pork chops HPP at 300 MPa did 

not increase significantly compared to control untreated samples; however, an increased 

(P<0.05) marinade absorption was noticed when the marinated pork chops were HPP at 

pressures ≥400 MPa (Table 6.1). It was reported that marinades diffuse from the meat 

surface into the interior of the meat due to the gradient formed from the higher 

concentration of marinade to the lower concentration of fluid in the interior of the meat 

(Yusop et al., 2011) and apparently the increased HPP levels may have accelerated this 

diffusion process. Previous studies reported that injection of a marinade consisting of salt, 

tripolyphosphate and bicarbonate can increase the yield and tenderness of pork loin (Sheard 

and Tali, 2004); however; to the best of our knowledge, there are no studies on the ability 

of HPP to increase the marinade (e.g. piri-piri) absorption of flavour components via 

immersion.  

 

6.3.2 Cook loss 

The results indicated that while marinated pork chops HPP at 400 MPa or 500 MPa had 

lower cook loss values compared to untreated control and marinated pork chops that were 

HPP at 300 MPa, these differences were not statistically significant (Table 6.1). These 

lower cook loss values may be due to the fact marinated pork chops HPP at ≥400 MPa had 

a higher (P<0.05) marinade absorption which may have increased the water holding 

capacity (WHC) and limited the moisture lost from the surface during cooking. Conversely, 

HPP has been shown to significantly decrease the cook loss on meat products such as 
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chicken and pork when HPP at 300 MPa for 5 mins or 215 MPa for 5 mins, respectively 

(Rodriguez calleja et al., 2012; Souza et al., 2011).  

 

6.3.3 Compositional analysis 

The results for proximate composition showed that HPP did not significantly affect the 

moisture, protein, fat or ash content of the cooked marinated pork chops (Table 6.1) which 

correlated with the cook loss results which were not significantly different. Conversely, 

Kruk et al. (2011) reported HPP increased significantly the moisture content of cooked 

chicken breast fillets when chicken breast fillets were HPP at 300, 450 or 600 MPa for 5 

mins and this moisture increase was attributed to the significant cook loss differences.  
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Table 6.1 Physicochemical changes of marinated pork chops* 

*Values are Mean ± standard deviation. a,b,c Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.  

 

  

HPP 

(MPa) 

Marinade 

absorption      

(%) 

Cook Loss 

(%) 

Moisture 

(%) 

Protein 

(%) 

Fat 

(%) 

Ash 

(%) 

       

0.1 1.95 ± 0.22 a 19.00 ± 1.04 a 63.37 ± 1.03 a 28.15 ± 0.49 a 4.42 ± 1.35 a 1.54 ± 0.11 a 

300 2.16 ± 0.19 ab 19.10 ± 1.56 a 63.50 ± 2.04 a 28.31 ± 0.82 a 4.78 ± 1.47 a 1.59 ± 0.04 a 

400 2.63 ± 0.31 bc 17.75 ± 1.04 a 62.85 ± 2.19 a 28.51 ± 1.22 a 4.9 ± 1.82 a 1.56 ± 0.04 a 

500 2.9 ± 0.48 c 17.38 ± 1.09 a 63.29 ± 1.04 a 29.11 ± 0.38 a 4.02 ± 1.92 a 1.58 ± 0.34 a 
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6.3.4 Colour 

At day 1, HPP raw marinated pork chops had significantly (P<0.05) higher CIE L-, and b-

values (lightness and yellowness, respectively) and the lowest a-values (redness) compared 

to control untreated raw marinated pork chops (0.1 MPa) (Table 6.2). Untreated control 

samples were the darkest (P<0.05) with lightness increasing (P<0.05) proportionally as the 

pressure level applied increased with raw marinated pork chops HPP at 500 MPa showing 

the highest (P<0.05) lightness. Colour changes in muscle food products after HPP have 

been reported that may be related to the denaturation of the myofibrillar and sarcoplasmic 

proteins (Zhou et al, 2010; Ma and Ledward, 2013). Similar results have been reported by 

Carlez et al. (1995) who suggested that fresh meat discolouration after HPP at 200-350 

MPa is due to a “whitening” effect (increase in L* values) caused by globin denaturation, 

haem release or displacement or by oxidation of ferrous myoglobin to ferric metmyoglobin 

when fresh meat is HPP at pressures ≥400 MPa. Goutefongea et al., (1995) also suggested 

discolouration due to HPP occurs as a results of protein coagulation which would affect 

sample structure and surface properties. Kruk et al. (2011) HPP raw chicken breast fillets 

at 300, 450 or 600 MPa for 5 mins and found that the lightness and yellowness increased 

significantly and this increase was proportional to the pressure level applied which is in 

agreement with our findings that the increased lightness depended on the pressure level 

applied. 

During storage, the lightness of both raw untreated control and raw marinated pork chops 

HPP decreased (P<0.05) significantly and these significant changes were noticed on day 

11 for raw untreated control marinated pork chops or on day 16, 23 or 30 for samples that 

were HPP at 300, 400 or 500 MPa, respectively. The decreased lightness may be due to the 

presence of oxidised products of meat pigments which have a brown and darker colour 

(Wettasinghe and Shahidi, 1997). It was also reported that the enzymatic systems can also 
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be affected by HPP and this could explain the progressive accumulation of metmyoglobin 

content during storage (Jung et al., 2003). Regarding the redness and yellowness, these 

colour parameters did not change significantly during storage in untreated control or HPP 

samples and this may be due to presence on the surface of the meat of the piri-piri marinade 

which is highly pigmented with L*, a* and b* values of 26.86, 17.68 and, 54.28, 

respectively. Throughout storage, the colour differences observed on day 1 among raw 

untreated control samples and HPP samples (higher lightness, higher yellowness and 

decreased redness in HPP samples) were also observed during chilled storage.  

After cooking, untreated and HPP marinated pork chops became significantly (P<0.05) 

darker, less red and less yellow (Table 6.3). The decrease in lightness may be due to the 

denaturation of myoglobin as the cooked pigment is denatured metmyoglobin which is 

darker in colour (Boles and Pegg, 1999). Decreased redness and yellowness may be due to 

loss of the red and yellow marinade pigments due to cook loss. Compared to cooked 

untreated control samples, greater colour changes were noticed on cooked HPP marinated 

pork chops which may be due to the fact that when marinated pork chops were HPP, HPP 

may have caused denaturation of proteins before cooking and that heat treatment may have 

caused further protein denaturation compare to untreated control marinated pork chops 

which were  just heat treated and apparently resulting in less protein denaturation and 

therefore a less colour change compared to HPP marinated pork chops. It was reported that 

the effects of pressure on proteins may be reversible or irreversible, similar to the effects 

of increasing temperatures on the denaturation of proteins (Balny and Masson, 1993). 

Reversible effects are generally observed at pressures less than 200 MPa, whereas 

irreversible effects occur at pressures greater than 300 MPa. Unlike thermal denaturation 

and unfolding induced by denaturing agents, volume determinations and limited changes 
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in heat capacity indicate that pressure-induced denaturation corresponds to partial 

unfolding of the protein (Balny and Masson, 1993) 

On day 1, independent of the pressure level applied cooked HPP marinated pork chops 

were lighter (P<0.05) than untreated control samples; however, no significant differences 

between samples were observed in regards to redness and yellowness, and this may be due 

to the presence of the marinade on the surface of the marinated cooked pork chops. During 

storage, the lightness of both cooked untreated marinated pork chops and HPP cooked 

marinated pork chops decreased (P<0.05) significantly and these significant changes were 

noticed on day 11 for cooked untreated marinated pork chops or on day 23, 16 or 23 for 

samples that were HPP at 300, 400 or 500 MPa, respectively. This decrease in lightness 

over storage time also may be due to oxidised products of meat pigments which have a 

brown and darker colour (Wettasinghe and Shahidi, 1997). Similar to raw marinated pork 

chops, the redness and yellowness did not change over storage time in both untreated or 

HPP cooked marinated pork chops and this may be due to presence on the surface of the 

meat of the piri-piri marinade which is highly pigmented. Throughout storage, the colour 

differences observed on day 1 among cooked untreated control samples and HPP samples 

(higher lightness in HPP samples) was also observed during storage.  

 

6.3.5 Texture 

Results on day 1 showed that as the pressure level increased, the WBSF of the cooked 

marinated pork chops increased (P<0.05) proportionally compared to untreated control 

marinated pork chops which had the lowest WBSF and that the marinated pork chops that 

were HPP at 500MPa had the highest WBSF indicating that these were the toughest 

samples (Table 6.3). It was reported that pressures up to 1000 MPa can influence meat 



244 
 

protein conformation and induce protein denaturation, aggregation or gelation which can 

result in meat becoming either tenderised or toughened and these outcomes depend on the 

meat protein system, the temperature used, the pressure applied and the holding time (Sun 

and Holley, 2010).  The results found in this study are in agreement with the findings of 

Kruk et al. (2011) and Zamri et al. (2006) who found that hardness in chicken breast fillets 

increased proportionally with increasing pressure levels up to 600 MPa while McArdle et 

al. (2011), Ma and Ledward (2004) reported higher WBSF and hardness values in beef 

HPP at 600 MPa than in beef treated at 400 MPa.  Similarly, Rodrigues et al. (2016) 

reported that marinated beef HPP at 300, 450 or 600 MPa increased significantly the WBSF 

as the pressure level increased and that samples HPP at 600 MPa resulted in the toughest 

samples compared to the other treatments. The increased toughness with pressure has been 

attributed to an increasing incidence of sarcomeres, in which thick filaments have been 

compressed onto the Z-line, thus removing the I-band as a zone of weakness (Macfarlane 

et al., 1980).  

Throughout storage time, in both untreated control and HPP marinated pork chops, WBSF 

values decreased significantly (P<0.05) resulting in marinated pork chops becoming more 

tender. The decrease in untreated control marinated pork chops was noticed after 11 days 

and on day 16, 23 or 11 for marinated pork chops that were HPP at 300, 400 or 500 MPa, 

respectively. While at day 1, significantly (P<0.05) tougher samples were noticed in 

marinated pork chops that were HPP; however, at day 7 onwards until the end of their 

respective shelf life, there were no significant differences in toughness between untreated 

control and HPP marinated pork chops which suggested the ability of higher pressure levels 

(HPP ≥400 MPa) to not only accelerate marinade absorption but also resulted in an 

increased rate of tenderisation as the 500 MPa marinated pork chops were more tender 

(P<0.05) at day 44 compared to control untreated samples at day 1 or throughout storage. 
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These results highlight the potential of the combination of marinades and HPP to tenderise 

meat which has become tougher immediately due to the application of HPP. Many authors 

have demonstrated the ability of marinades to tenderise meat products such as beef, chicken 

and pork (Aktas et al., 2003; Berge et al., 2001; Burke and Monahan, 2003; Lewis and 

Purslow, 1991; Oreskovich et al., 1992, Bowkler et al., 2010; Birk et al. 2010, Burke and 

Monahan 2003; Wang et al 2015). Similar to our results, Rodrigues et al. (2016) reported 

that the WBSF decreased (P<0.05) during storage in low-salt beef marinated in citric acid 

that were HPP at 600 MPa which may be due to tenderising effect of the marinade. 

Conversely, Souza et al (2011) examined the tenderness of pork meat HPP at 215 MPa over 

time and found that WBSF remained relatively unchanged; however, this study did not 

include the addition of marinades. The tenderisation of meat using marinades was attributed 

to marinade uptake by muscle proteins and also to solubilisation of collagen (Burke and 

Monahan, 2003). 

 

6.3.6 pH 

The results for pH showed that in raw marinated pork chops, the level of HPP increased 

the pH proportionally as untreated control samples had the lowest (P<0.05) pH values and 

500 MPa samples had the highest (P<0.05) pH values (Table 6.2). The pH of the piri-piri 

marinade was 4.4 and due to the higher marinade absorption in samples which were HPP 

at 400 or 500 MPa it would be expected that these samples would also have a lower 

(P<0.05) pH compared to untreated control and 300 MPa marinated pork chops which had 

lower (P<0.05) marinade absorption; however, independent of the pressure applied HPP 

increased the pH of the marinated pork chops regardless of the level of marinade 

absorption.. Increase in pH after HPP has been attributed to a decrease in available acidic 
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groups in the meat as a result of conformational changes associated with protein 

denaturation (McArdle et al., 2010; Angsupanich and Ledward, 1998). Rodriguez-Calleja 

et al. (2012) found that the pH values of chicken HPP at 300 MPa for 5 mins were 

significantly higher than control samples and Wang et al. (2015) also found that the pH 

was higher (P<0.05) in honey garlic pork chops treated at 450-600 MPa for 3 mins 

compared to control samples. Similar results on increased pH on muscle food products 

were reported by McArdle et al. (2011) and Cruz-Romero et al. (2007; 2008a; 2008b).  

Throughout storage time, independent of the treatment applied to raw marinated pork 

chops, the pH decreased (P<0.05) which may have been due to the production of lactic acid 

through LAB metabolism (Farber, 1991). In general, the pH decrease occurred when LAB 

reached ~Log 4 CFU/g of sample. These results are in agreement with the findings of Kruk 

et al. (2011) who observed significant (P<0.05) reductions in pH values throughout the 

storage period for raw chicken breast fillets.  

After cooking of marinated pork chops, the pH increased (P<0.05) in all treatments; 

however, the increase was not significantly different between untreated or HPP marinated 

pork chops at day 1 or throughout storage time (Table 6.3). Increase in pH due to cooking 

may be due to the decreased number of acidic groups in muscle proteins as proteins unfold 

(Hamm and Deatherage, 1960). In the HPP marinated pork chops, the effects of the 

combined application of cooking and HPP were not additive in regards to increasing of pH 

and therefore no significant differences were observed compared to untreated control 

samples which were cooked but not HPP. This may be due to increased severity of the 

cooking process in comparison to the milder process of HPP. A similar effect on pH was 

also observed in HPP cooked beef muscle compared to untreated cooked samples (Ma and 

Ledward, 2004). 

https://www.sciencedirect.com/science/article/pii/S0956713511004968#bib14
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Table 6.2 Changes in colour and pH during chilled storage of raw untreated and HPP marinated pork chops* 

 

*Values are Mean ± standard deviation a, b, c Different superscripts in the same column indicate significant difference (P<0.05) between different 

treatments.  
A, B, C Different superscripts in the same row indicate significant difference (P<0.05) in the same treatment over time. 

(/) indicates analysis was not determined on this day as end of shelf life was reached.  

 

 

 

 Treatment 

(MPa) 

Day 1 Day 7 Day 9 Day 11 Day 16 Day 23 Day 30 Day 37 Day 44 

 

Lightness 

(L*) 

0.1 55.06 ± 2.68 aA 54.77 ± 1.40 aA 54.03 ± 1.42 aAB 51.97 ± 1.21 aBC 51.29 ± 2.34 aC / / / / 

300 63.64 ± 3.05 bA 63.20 ± 2.25 bAB 63.01 ± 1.48 bAB 62.89 ± 2.85 bAB 61.93 ± 1.81 bBC 58.11 ± 2.41 aC 58.01 ± 2.31 aC / / 

400 66.79 ±  1.83 cA 65.75 ± 3.27 bcA 64.95 ± 2.55 bcA 63.69 ± 1.45 bcAB 63.59 ± 3.85 bcAB 60.02 ± 3.29 aBC 58.69 ± 2.74 aC 58.62 ± 2.70 aC / 

500 68.18 ± 2.39 cA 67.11 ± 1.62 cA 66.95 ± 2.06 cAB 66.54 ± 2.81 cAB 65.51 ± 2.99 cAB 64.02 ± 2.53 bAB 62.53 ± 2.15 bB 62.51 ± 1.16 bB 59.92 ± 1.77 B 

 

Redness 

(a*) 

0.1 14.12 ± 1.95 aA 13.71 ± 3.40 aA 14.36 ± 2.96 aA 13.23 ± 2.79 aA 13.03 ± 1.30 aA / / / / 

300 11.58 ± 1.01  bA 10.94 ± 1.58 bA 11.45 ± 1.86 bA 10.23 ± 2.72 bA 10.37 ± 1.34 bA 10.34 ± 1.09 aA  / / 

400 11.30 ± 1.45 bA 10.98 ± 1.14 bA 11.46 ± 1.73 bA 10.37 ± 0.92 bA 10.81 ± 1.38 bA 10.54 ± 1.44 aA 11.19 ± 1.75 aA 10.87± 2.05 aA / 

500 10.65 ± 1.37  bA 11.04 ± 2.01 bA 10.87 ± 1.81 bA 10.64 ± 2.14 bA 10.57 ± 1.20 bA 10.48 ± 0.88 aA 10.69 ± 1.73 aA 10.22 ± 2.26 aA 10.17 ± 1.69 A 

 

Yellowness 

(b*) 

0.1 26.74 ± 2.67 aA 24.41 ± 3.86 aA 25.1 ± 2.41 aA 27.09 ± 4.24 aA 25.95 ± 3.67 aA / / / / 

300 36.54 ± 2.40  bA 34.21 ± 3.51 bA 37.54 ± 2.47 bA 38.31 ± 3.95 bA 38.44 ± 2.89 bA 38.08 ± 4.03 aA 38.39 ± 2.47 aA / / 

400 34.21 ± 4.47 bA 32.59 ± 4.74 bA 33.58 ± 3.57 bA 34.57 ± 4.01 bA 37.63 ± 2.94 bA 38.13 ± 4.92 aA 37.76 ± 3.93 aA 37.44 ± 2.84 aA / 

500 37.36 ± 3.35 bA 35.00 ± 2.77 bA 37.3 ± 4.84 bA 37.94 ± 3.68 bA 37.08 ± 3.12 bA 37.09 ± 4.09 aA 37.76 ± 3.12 aA 35.14 ± 3.47 aA 37.85 ± 2.97 A 

 

pH 

0.1 5.59  ± 0.02 aA 5.48 ± 0.04 aB 5.46 ± 0.05 aB 5.40 ± 0.08 aB 5.28 ± 0.07 aC / / / / 

300 5.68 ± 0.03 abA 5.65 ± 0.07 bA 5.53 ± 0.05 bB 5.52 ± 0.05  bB 5.50 ± 0.02 bB 5.46 ± 0.08 aB 5.37 ± 0.04 aC / / 

400 5.71 ± 0.16 bA 5.68 ± 0.08 bcA 5.67 ± 0.06 cA 5.62 ± 0.06 cAB 5.65 ± 0.05 cAB 5.59 ± 0.10 abAB 5.50 ± 0.02 bBC 5.38 ± 0.08 aC / 

500 5.73 ± 0.06 bA 5.75 ± 0.05 cA 5.69 ± 0.04  cA 5.68 ± 0.04 cA 5.69 ± 0.07 cA 5.65 ± 0.02 bA 5.48 ± 0.02 bB 5.44 ± 0.07 aB 5.34 ± 0.08 C 



248 
 

Table 6.3 Changes in colour, pH and hardness over the shelf life of cooked marinated pork chops* 

 

*Values are Mean ± standard deviation a, b Different superscripts in the same column indicate significant difference (P<0.05) between different 

treatments. 
A, B, C Different superscripts in the same row indicate significant difference (P<0.05) in the same treatment over time. 

(/) indicates analysis was not determined on this day as end of shelf life was reached.  

 

 Treatment 

(MPa) 

Day 1 Day 7 Day 9 Day 11 Day 16 Day 23 Day 30 Day 37 Day 44 

 

Lightness 

(L*) 

0.1 51.74 ± 1.99 aA 52.20 ± 3.37 aA 51.48 ± 3.52 aA 47.44 ± 2.27  aB 47.15 ± 4.11 aB / / / / 

300 58.82 ± 2.00 bA 58.61 ± 3.89 bA 58.91 ± 3.55 bA 58.43 ± 3.37 bA 57.27 ± 4.03 bAB 54.80 ± 2.57 aB 53.80 ± 2.84 aB / / 

400 59.62 ± 3.45 bA 61.30 ± 3.01 bA 58.98 ± 2.87 bA 58.25 ± 2.91 bAB 54.47 ± 2.64 bBC 54.59 ± 1.78 aBC 53.44 ± 1.25 aC 53.34 ± 3.24 aC / 

500 60.99 ± 3.08 bA 61.52 ± 3.29 bA 60.33 ± 3.17 bAB 60.97 ± 3.81 bA 55.73 ± 2.13 bC 56.26 ± 1.66 aBC 55.92 ± 3.04 aC 55.70 ± 1.94 aC 54.75 ± 2.85 C 

 

Redness 

(a*) 

0.1 8.96 ± 1.73 aA 8.89 ± 1.16 aA 8.26 ± 1.43 aA 8.92 ± 1.18 aA 8.67 ± 1.59 aA / / / / 

300 8.66 ± 2.18 aA 8.76 ± 1.35 aA 8.45 ± 2.14 aA 8.81 ± 1.36 aA 8.67 ± 1.24 aA 8.78 ± 1.18 aA 8.91 ± 1.20 aA / / 

400 8.67 ± 1.69 aA 9.14 ± 1.47 aA 8.03 ± 1.62 aA 8.54 ±1.87 aA 8.64 ± 1.04 aA 9.10 ± 1.39 aA 9.04 ± 1.93 aA 8.49 ± 2.03 aA / 

500 8.38 ± 2.31 aA 8.28 ± 1.74 aA 8.07 ± 1.80 aA 8.71 ± 2.14 aA 8.33 ± 1.20 aA 9.06 ± 1.90 aA 8.64 ± 2.33 aA 8.27 ± 1.77 aA 8.19 ± 2.12 A 

 

Yellowness 

(b*) 

0.1 30.83 ± 3.35  aA 30.59 ± 3.97 aA 32.07 ± 3.02 aA 31.19 ± 2.64 aA 32.77 ± 3.02 aA / / / / 

300 30.42 ± 3.73 aA 28.52 ± 2.82 aA 30.87 ± 2.98  aA 29.62 ± 2.71 aA 30.76 ± 3.34 aA 30.04 ± 2.82 aA 30.24  ± 3.51 aA / / 

400 31.06 ± 3.43 aA 31.65 ± 2.47 aA 31.49 ± 2.67 aA 30.57 ± 3.54 aA 31.44 ± 3.44 aA 33.65 ± 3.24 aA 32.06 ± 2.47 aA 32.54 ± 3.84 aA / 

500 30.12 ± 2.35 aA 31.82 ± 4.48 aA 34.16 ± 3.98 aA 32.02 ± 4.39 aA 30.06 ± 2.32 aA 32.94 ± 3.45 aA 33.24 ± 3.45 aA 33.94 ± 2.48 aA 33.28 ± 3.41 A 

 

pH 

0.1 5.86 ± 0.06 aA 5.87 ± 0.04 aA 5.83 ± 0.07 aA 5.79 ± 0.09 aA 5.78 ± 0.08 aA / / / / 

300 5.87 ± 0.07 aA 5.83 ± 0.06 aA 5.79 ± 0.08 aA 5.80 ± 0.06 aA 5.84 ± 0.07 aA 5.79 ± 0.06 aA 5.80 ± 0.05 aA / / 

400 5.91 ± 0.06  aA 5.86 ± 0.04 aA 5.85  ± 0.04 aA 5.85 ± 0.06 aA 5.87 ± 0.05 aA 5.84 ± 0.06 aA 5.85 ± 0.08 aA 5.84 ± 0.05 aA / 

500 5.90 ± 0.07 aA 5.83 ± 0.04 aA 5.79 ± 0.05 aA 5.83 ± 0.07 aA 5.83 ± 0.05 aA 5.80 ± 0.05 aA 5.84 ± 0.06 aA 5.87 ± 0.05 aA 5.79 ± 0.07 A 

 

Shear force 

(N) 

0.1 14.71 ± 2.82  aA 14.25 ± 3.01 aAB 14.84 ± 1.67 aA 12.66 ± 1.59 aAB 12.07 ± 1.96 aB / / / / 

300 15.08 ± 2.37 abA 15.63 ± 1.97 aA 16.39 ± 2.23 aA 14.82 ± 2.06 aA 12.46 ± 1.52 aB 12.17 ± 1.43 aB 11.67 ± 1.38 aB / / 

400 16.52 ±  3.02 abA 14.00 ± 2.89 aAB 14.68 ± 2.23 aAB 14.30 ± 2.75 aAB 13.94 ± 2.62 aAB 11.96 ± 1.90 aB 11.89 ± 2.26 aB 12.04 ± 1.87 aB / 

500 18.83 ± 2.16 bA 15.82 ± 3.64 aAB 15.50 ± 1.77 aAB 14.05 ± 3.43 aBC 14.15 ± 3.61 aBC 12.91 ± 2.90 aBC 11.21 ± 2.65 aC 12.32 ± 2.16 aBC 11.04 ± 2.57 C 
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6.3.7 Lipid oxidation  

From the sensory point of view, lipid oxidation cause rancidity problems which are 

considered unpleasant for consumers (Jeremiah, 2001) Lipid oxidation also results in off 

odours, off-flavour development, drip losses, discolouration, loss of nutrient value, 

decrease in shelf life, and the accumulation of toxic compounds, which may be detrimental 

to the health of consumers (Chaijan, 2008; Mapiye et al., 2012; Richards et al., 2002). The 

results for TBARS showed that HPP increased (P<0.05) the lipid oxidation of the marinated 

pork chops and this increase was proportional to the HPP level applied as the control 

untreated marinated pork chops had the lowest TBARS values and that the marinated pork 

chops HPP at 500 MPa had the highest TBARS values (Figure 6.1). These results are in 

agreement with Cheah and Ledward (1996, 1997) who reported that the effect of HPP on 

the oxidative stability of lipids in pork meat depends on the applied pressure with a value 

between 300 and 400 MPa constituting the critical pressure to accelerate lipid oxidation. 

Similarly, it was reported that the pressure level and holding time increased the extent of 

lipid oxidation in meat products such as dry-cured Iberian ham, pork loin, chicken breast 

fillets and pork (Cava et al., 2002; Kruk et al., 2011; Souza et al., 2011). Increased rates of 

lipid oxidation due to HPP has been attributed to pressure-induced protein denaturation 

which leads to the release of free-radicals catalysing oxidation (Cheftel and Culioli, 1997) 

and also has been attributed to the release of metal ions from iron complexes promoting 

auto-oxidation of lipids in HPP meat and also due to membrane damage (Angsupanich and 

Ledward, 1998; Cheah and Ledward, 1996; Cheah and Ledward. 1997; Chevalier et al. 

2001). 

Over storage time, the TBARS values increased significantly (P<0.05) in untreated control 

and HPP marinated pork chops (Figure 6.2). At the end of their respective shelf life, the 

TBARS differences observed on day 1 between untreated control and HPP marinated pork 
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chops (TBARS increased as HPP level increased) were similar. However, throughout 

storage, TBARS values in all samples were below the maximum acceptable limit for 

TBARS of 1 mg/kg (Warriss, 2000) which is regarded as the limit beyond which meat 

products will normally develop objectionable odours/tastes. In agreement with the results 

found in this study Rodrigues et al. (2016) and Grossi et al (2014) reported significantly 

increased TBARS values during storage of marinated beef or brine injected pork meat that 

were HPP at 600 MPa.  
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Figure 6.1 – Lipid oxidation (TBARS) changes during chilled storage at 4°C of control 

raw marinated pork chops (0.1 MPa) (▬) or raw marinated pork chops HPP at 300 MPa 

(▬), 400 MPa (▬) or 500 MPa (▬) for 3 mins. Each point shown is the mean value from 

two different trials. 
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6.3.8 Sensory Analysis  

The results for sensory analysis showed that at day 1 there were no significant differences 

between untreated control or HPP marinated pork chops in terms of appearance (raw in 

packaging), appearance (cooked), juiciness or OSA; however, significant differences 

(P<0.05) were observed in flavour, texture and tenderness (Table 6.4). In terms of flavour, 

the control untreated marinated pork chop was the least (P<0.05) preferred and the 500 

MPa sample was the most (P<0.05) preferred which may be attributed to HPP’s ability to 

increase the marinade absorption proportionally which in turn may have improved the 

flavour of the cooked marinated pork chops. The higher flavour acceptability may also be 

due to the fact that marinated raw pork chops HPP at 400 or 500 MPa had lower cook loss 

values which may have also resulted in more marinade being retained on the surface of the 

pork chops compared to control untreated and 300 MPa marinated raw pork chop samples 

(Table 6.1)  

Regarding the texture of the marinated pork chops, at day 1, there were no significant 

differences in the texture acceptability of control untreated and marinated pork chops HPP 

at 300 MPa ; however, marinated pork chops that were HPP at 400 MPa or 500 MPa were 

the least (P<0.05) preferred compared to untreated control or samples that were HPP at 300 

MPa Similarly to the WBSF values, untreated control samples had the lowest WBSF values 

and were therefore the most tender; however,  WBSF values increasing as samples 

becoming tougher (P<0.05) as the pressure level of HPP increased (Table 6.3). The ability 

of HPP to increase the toughness of post rigor meat has been well documented (Kruk et al., 

2011; Ma and Ledward, 2004; Del Olmo et al., 2010; Zamri et al., 2006; Jung et al., 2000; 

Grossi et al., 2014). Interestingly, regardless of the ability of HPP to initially increase 

toughness and decrease liking of texture in marinated pork chops HPP at 400 or 500 MPa; 

these samples were preferred in regards to flavour which ultimately resulted in no 
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significant differences on day 1in the OSA of the untreated control and marinated pork 

chops that were HPP. This suggests that the use of HPP to accelerate marinade absorption 

and improve flavour can compensate for the negative effects on texture. 

Over storage time, there were no significant differences in terms of appearance (raw in 

packaging), appearance (cooked), flavour, juiciness or OSA in untreated control and HPP 

marinated pork chops; however, marinated pork chop samples that were HPP at ≥400 MPa 

became more tender (P<0.05) and as a result the liking of texture increased (P<0.05). These 

results are in agreement with findings on the instrumental WBSF results which decreased 

significantly over time, subsequently increasing tenderness. Despite increased tenderness 

in marinated pork chops that were HPP at 400 or 500 MPa, no significant differences on 

the OSA were observed over storage time. While the tenderness and liking of texture also 

increased over storage time in untreated control and marinated pork chops that were HPP 

at 300 MPa; however, these differences were not statistically significant which may be due 

to a lower (P<0.05) marinade absorption compared to marinated pork chops that were HPP 

at 400 or 500 MPa and  According to Burke and Monahan, (2003), marination has been 

reported to increase tenderness due to marinade uptake by muscle proteins and through 

solubilisation of collagen  

Conversely, Diaz et al. (2008) reported that sensory spoilage preceded microbiological 

spoilage of sous vide pork loin and this loss of acceptance was mainly due to the 

deterioration of meaty flavour and odour, although the loss of appearance, juiciness and 

toughness also contributed. In that case, the sensory analysis was the most effective method 

for determining the shelf life of the sous vide pork. While the shelf life in the study reported 

by Diaz et al. (2008) concluded that the sensory acceptability of pork loin decreased 

(P<0.05) over storage time, this study did not include marinades which are known to 

improve the sensory acceptability of meat products nor did it include HPP.  
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Cheftel and Culioli (1997) suggested that HPP of fresh meat causes drastic changes, 

especially in redness, and thus cannot be suitable of practical applications. Souza et al. 

(2011) also stated that consumers' purchasing preferences are highly based on fresh meat 

colour and HPP treatment caused meat to appear lighter meaning that more work is needed 

to investigate meat colour preservation. However, in the current study the addition of the 

piri-piri marinade masked the significant colour changes of the raw pork meat after HPP as 

there were no significant differences in the sensory attribute of appearance (vacuum 

packaged raw marinated pork chops) between samples that were HPP and untreated control 

samples even though instrumental colour results showed a significant (P<0.05) increase in 

lightness and yellowness and a decrease in redness in raw marinated pork chops that were 

HPP. These results indicate the potential of marinades to mask the whitening 

effect/discolouration of HPP on raw meat which can decrease consumer acceptability. 

Similarly, Wang et al. (2015) concluded that the application of honey garlic marinade 

partially masked meat discolouration due to the application of HPP up to 600 MPa.  

In the present study, as TBARS values were below the acceptability limits throughout 

storage and sensory acceptability did not change significantly; the end of shelf life for all 

marinated pork chop samples was determined based on the recommended microbiological 

limits for raw meat products.   
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Table 6.4 Sensory changes over the shelf life of cooked marinated pork chops*  

 

*Values are Mean. a, b Different superscripts in the same column indicate significant 

difference (P < 0.05) between different treatments. 
A, B Different superscripts in the same row indicate significant difference (P<0.05) in the 

same treatment over time.  

 

 

 

 

Sensory Attribute Treatment (MPa) Day 1 End of shelf life 

 

Appearance (raw in 

packaging) 

0.1 6.72 ± 1.24 aA 6.46 ± 1.33 aA 

300 6.78 ± 1.39 aA 6.51 ± 1.08 aA 

400 6.54 ± 1.15 aA 6.34 ± 1.41  aA 

500 6.70 ± 1.42 aA 6.52 ± 1.27  aA 

 

Appearance (cooked) 

0.1 7.48 ± 0.59 aA 7.25 ± 0.61aA 

300 7.25 ± 0.45 aA 7.42 ± 0.62  aA 

400 7.22 ± 1.24 aA 7.14 ± 0.67 aA 

500 7.35 ± 0.66 aA 7.15 ± 0.84  aA 

 

Flavour 

0.1 6.08 ± 1.56 aA 6.24 ± 1.65 aA 

300 6.78 ± 1.63 abA 6.36 ± 1.37 aA 

400 6.91 ± 1.22 abA 6.94 ± 0.91  abA 

500 7.54 ± 1.05 bA 7.61 ± 0.77 bA 

 

Texture 

0.1 6.30 ± 0.90 aA 7.03 ± 0.89 aA 

300 5.84 ± 1.16 aA 6.12 ± 1.44 aA 

400 3.99 ± 0.78 bA 6.01 ± 0.92 aB 

500 3.82 ± 0.84 bA 6.10 ± 1.11 aB 

 

Juiciness 

0.1 5.82 ± 0.90 aA 5.86 ± 1.15 aA 

300 5.33 ± 2.25 aA 5.68 ± 0.81 aA 

400 5.59 ± 1.74 aA 5.86 ± 1.03 aA 

500 5.49 ± 1.81 aA 5.62 ± 0.89 aA 

 

Tenderness 

0.1 6.44 ± 0.85 aA 6.73 ± 1.14   aA 

300 6.29 ± 0.99 aA 6.63 ± 1.24 aA 

400 4.34 ± 0.97 bA 6.37 ± 0.91  aB 

500 4.45 ± 1.10 bA 6.26 ± 1.22  aB 

 

OSA 

0.1 6.84 ± 1.18 aA 6.63 ± 0.64 aA 

300 6.83 ± 1.28 aA 6.85 ± 1.07 aA 

400 7.08 ± 1.32 aA 6.93 ± 1.20 aA 

500 6.78 ± 1.25aA 6.46 ± 0.94 aA 
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6.3.9 Microbiological Analysis  

The microbiological changes for TVC and LAB during vacuum packed chilled storage at 

4°C in untreated control and marinated pork chops that were HPP is shown in Figure 6.2. 

The following recommended microbiological limits are applied for fresh meat products: 

Aerobic plate counts < 5x106 CFU/g of product; E. coli < 10 CFU/g of product; LAB < 109 

CFU/g of product, Salmonella: absent in 25 g of product (FSAI, 2015). For this study, the 

recommended microbiological limits of acceptability for the raw marinated pork chops 

were set as above with reference to TVC, E. coli and Salmonella. The initial 

microbiological quality of the untreated marinated pork chops were of good quality (Figure 

6.1). After HPP the marinated raw pork meat samples were below the limit of detection 

<10 CFU/g, E. coli < 10 CFU/g and absence of Salmonella in 25 g of sample and untreated 

control samples (0.1 MPa) had a TVC of 2 log (CFU/g), E. coli < 10 CFU/g and absence 

of Salmonella in 25 g of sample. Throughout storage Salmonella and E.Coli remained 

absent in all samples.  

For untreated control raw marinated pork chop samples which contained 0.3% InbacTM, the 

limit of acceptability in terms of TVC was reached after 14 days of storage while the limit 

of acceptability for raw marinated pork chop samples that were HPP at 300, 400 or 500 

MPa and contained 0.3% InbacTM was reached after 30, 36 or 43 days, respectively, 

indicating that the shelf life significantly increased by 114, 157 and 207 % when the raw 

marinated pork chops were HPP at 300, 400 or 500 MPa, respectively compared to 

untreated control samples (Figure 6.2a). Apparently, for untreated control and marinated 

raw pork chops that were HPP, the main spoilage microorganism was LAB (Figure 6.2b) 

which increased significantly (P<0.05) over storage time at a rate similar to TVC.  It is well 

known that LAB is the major group associated with spoilage of refrigerated vacuum or 
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modified atmosphere packed meat products (Korkeala and Björkroth, 1997) and vacuum 

packed HPP meat products (Pietrasik et al., 2017; Yanqing et al., 2009).  

These results are in agreement with the results reported by Kruk et al. (2011) who found 

that HPP at 600 MPa for 5 mins reduced the total bacterial count by 6–8 log (CFU/g) 

improving shelf-life for 7–14 days in raw chicken breast fillets. Similarly, Rodriquez-

Calleja et al. (2012) reported that a combination of HPP 300 MPa for 5 mins and an edible 

antimicrobial coating Articoat™ reduced the bacterial load on raw chicken breast fillets 

below the detection limit and the shelf life of skinless chicken fillets was extended up to 

four weeks with LAB constituting the main spoilage micro-organism. Garriga et al. (2004) 

also reported that HPP at 600MPa for 6 mins of vacuum-packed marinated beef loin 

samples reduced at least 4 log cycle for aerobic, psycrothrophic, and LAB counts and that 

E. coli and Staphylococcus aureus were kept below the detection limit (<10 or <102 

CFU/g), respectively, during the chilled storage for 120 days. Wang et al. (2015) reported 

that HPP at pressures ≥450 MPa for 3 min significantly extend the shelf life of honey garlic 

marinated pork chops from 10 days to 31 days based on results for TVC.  

The results presented in this study indicated that a combined effect of HPP and InbacTM 

extended the shelf life of marinated pork chops and that the shelf life extension depended 

on the pressure level applied. The results presented in this study also indicated the 

effectiveness of the combined effect of HPP and a mix of organic acids not only in 

improving the safety and shelf life of marinated pork chops but also, the effectiveness of 

HPP at pressures ≥ 400 MPa in accelerating the marinade absorption of pork chops which 

in turn improved the flavour, masked the discolouration caused by HPP and improved the 

texture of the marinated pork chops over storage time.  
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Figure 6.2 - Microbiological changes of (a) Total viable count and (b) Lactic acid bacteria during chilled storage at 4°C of control raw 

marinated pork chops (0.1 MPa) (▬) or or raw marinated pork chops HPP at 300 MPa (▬), 400 MPa (▬) or 500 MPa (▬) for 3 mins.  Each 

point shown is the mean value from two different trials. The dotted lines show the limits of detection (▬) and acceptability (▬).  
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6.4 Conclusion  

Pressures higher than 400 MPa were required to significantly accelerate (P<0.05) the piri-

piri marinade absorption in pork chops and improve the flavour acceptability; therefore 

compensating in terms of OSA for the negative textural effects caused by HPP. Throughout 

storage, marinated pork chops that were HPP at pressures ≥400 MPa became more tender 

(P<0.05); however, the OSA did not change. A symbiotic effect between HPP and the piri-

piri marinade was observed as HPP increased marinade absorption and in turn the marinade 

increased the flavour acceptability and the tenderness of the marinated pork chops over 

storage time. The piri-piri marinade also masked the whitening effect on raw pork due to 

HPP which can decrease consumer acceptability.  

The results found in this study indicated that the combination of HPP and antimicrobial 

InbacTM increased the safety and shelf life of piri-piri marinated pork chops and that the 

shelf-life compared to control untreated samples was increased proportionally to the 

pressure level applied resulting in a shelf life extension of 16, 22 or 29 days, for samples 

that were HPP at 300, 400 or 500 MPa, respectively. LAB apparently was the main spoilage 

micro-organism.  

Herein we have demonstrated that this relatively novel processing method can improve the 

flavour of marinated pork chops by accelerating the marinade absorption and in 

combination with the commercial antimicrobial InbacTM can extend significantly the shelf 

life of marinated pork chops without compromising the physicochemical or sensory quality 

of the pork meat. The extended shelf life can enhance sustainability by reducing food waste 

of these meat products and also offers potential benefits to meat processors, retail food 

service suppliers and consumers.  
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CHAPTER 7  

Comparative effect of different cooking methods on the physicochemical 

and sensory characteristics of high pressure processed marinated pork 

chops.  

 

Ciara M. O’ Neill, Malco C. Cruz-Romero, Geraldine Duffy, Joseph  P. Kerry 
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Abstract  

The objective of this study was to assess the effect of griddle and steam cooking on the 

physicochemical and sensory characteristics of high pressure processed (HPP) piri-piri 

marinated pork chops (MPC). Raw MPC that were HPP at 400 MPa had higher (P<0.05) 

marinade absorption compared to untreated samples. After cooking, griddled MPC were 

significantly (P<0.05) darker, less red, less yellow, tougher and had higher cook loss 

compared to steam cooked samples. The appearance of the griddled MPC was preferred 

while the texture, tenderness, juiciness and overall sensory acceptability (OSA) were 

preferred in steam cooked MPC. The increased marinade absorption in MPC that were HPP 

modified the fatty acid composition resulting in increased (P<0.05) levels of oleic acid 

(C18:1c). Steam cooked MPC had a lower (P<0.05) n-6: n-3 PUFA ratio and were preferred 

by the sensory panel compared to griddled MPC. Overall, from the cooking methods 

assessed steam cooking was the best cooking method for untreated and MPC that were 

HPP.  
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Industrial Relevance 

Processed meat manufacturers are constantly looking for new ways to increase yield, safety 

and shelf life of meat products. While high pressure processing (HPP) of raw meat has been 

shown to increase the safety and shelf life of these products; however, negative effects on 

the physicochemical characteristics of raw meat products have been reported. For example, 

HPP of raw meat products causes a whitening effect which may negatively affect 

consumers' acceptance of these products. In this study, we used a novel approach (a 

combination of HPP, marinade and a mix of organic acids InbacTM) which showed great 

potential not only for enhancing the yield of marinated pork chops but also enhancement 

of the sensory properties, safety and shelf life and particularly the piri-piri marinade masked 

the discoloration of raw pork meat caused by HPP. This study also provides consumers, 

retailers and caterers with information on how to best prepare HPP meat products and 

showed that steam cooked HPP marinated pork chops had the best physicochemical and 

sensory characteristics compared to griddled marinated pork chops.  
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7.1 Introduction  

Pork is currently the most widely consumed meat in the world followed by poultry, beef, 

and mutton (Worldwatch Institute, 2018) and the global demand for pork meat continuing 

to rise. (Bord Bia, 2018). The consumer demand for convenience is a driving force within 

the meat industry (Bord Bia, 2011) and an increase in the range of commercially available 

marinated products was reported (Hall et al., 2008; Yusop et al., 2011). HPP is gaining 

importance in the food industry because of its advantage of inactivating microorganisms 

and enzymes at ambient or low temperatures without affecting the nutritional properties of 

food (Indrawati et al., 2003). However, pressure levels applied at commercial levels in raw 

meat products have been reported to denature protein, increase lipid oxidation and induce 

colour and texture changes (Yagiz et al., 2009). Our previous study (Chapter 6), evaluated 

the ability of HPP to accelerate marinade absorption and improve flavour of MPC and the 

results showed that HPP at 400 and 500 MPa combined with InbacTM (0.3%) accelerated 

(P<0.05) the marinade absorption of raw piri-piri pork chops and enhanced the flavour 

acceptability and also extended the shelf life significantly; however, immediately after HPP 

at 500 MPa the MPC were tougher (P<0.05) than untreated control samples or MPC that 

were HPP at 300 or 400 MPa. HPP at 400MPa was apparently the best pressure level at 

which significantly lower changes on the physicochemical characteristics of MPC were 

obtained with an enhanced safety and shelf life.   

As meat is usually cooked before consumption it is important to understand the 

physicochemical and sensorial characteristics of meat products that were HPP and cooked 

before consumption. Cooking of meat is essential to achieve a palatable and safe product 

(Tornberg, 2005) as it enhances flavour and tenderness, inactivates pathogenic 

microorganisms (Broncano et al., 2009; Rodríguez-Estrada et al., 1997), denature proteins 

and increases the digestibility and bioavailability of nutrients (Davey and Gilbert, 1974; 
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Meade et al., 2005). The physical properties and quality of cooked meat are strongly 

affected by the degree of protein denaturation as a result of the type of heat treatment 

applied, the temperature and length of time of cooking (Ishiwatari et al., 2013). Many 

studies have shown that protein denaturation due to cooking causes structural changes in 

meat and affects its physical properties such as water-holding capacity, texture, and colour 

(Bendall and Restall, 1983; Palka and Daun, 1999; Tornberg, 2005; Garcia-Segovia et al., 

2007) and as a result all sensory attributes can be influenced by changes in the cooking 

technique (Bejerholm and Aaslyng, 2004).  

The most common methods of cooking meat includes roasting, boiling, grilling, broiling, 

frying, braising, steaming, griddling, poaching, microwaving, baking, poaching, 

barbequing, sousvide and confit (AMSA, 2018; Sobral et al., 2018). The three main factors 

that differ among various cooking techniques are the temperature on the surface of the 

meat, the temperature profile through the meat and the method of heat transfer (convection 

or conduction by contact, air or steam) (Bejerholm and Aaslyng, 2004). Time also plays an 

important role in the characteristics of cooked muscle-based food products (Sobral et al. 

2018). Steam cooking is a widely used, convenient and healthy cooking method as the 

typical characteristics of colour, flavour, texture, palatability and nutrients are retained 

(Kahlon et al., 2008). Steaming relies on cooking with steam heat resulting from boiling 

water. The meat has direct contact only with steam which contributes to the moist texture 

of steam cooked meat (Sobral et al. 2018). Air convection is often coupled with steam 

injection in the oven chamber to improve meat tenderness and to reduce cooking losses 

(Murphy et al., 2001). Griddle cooking is gaining popularity in meat research, especially 

in industry settings. The griddle cooks meat through conduction heating as the heat is 

transferred directly from the hot griddle surface to the meat (Yancey et al., 2011).  
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It is well known that different cooking techniques result in different eating qualities of meat 

products (Fjelkner-Modig, 1986; Heymann et al., 1990; Wood et al., 1995). Cooking 

method can also alter the fatty acid composition in meat products (Badiani et al., 2004; 

Maranesi et al., 2005; Sarriés et al., 2009) due to increased cook loss or due to oxidation 

(Weber et al., 2008).  

Dreeling et al. (2000) examined the effect of various cooking methods (grilling, frying, 

griddling, roasting or deep fat frying) on the quality of low-fat beef burgers and found that 

the cooking method significantly affected the cook loss with deep fat frying and grilling 

resulting in the highest cooking losses and deep fat frying also resulted in beef burgers with 

he lowest moisture content. The sensory characteristics of overall sensory acceptability 

(OSA), tenderness, flavour, appearance, texture and juiciness were significantly affected 

by the cooking method and griddling was the most acceptable cooking method in terms of 

OSA. Latif (2010) concluded that the most suitable cooking methods for marinated chicken 

breast meats were roasting and boiling as they reduced the cook loss compared to 

microwaving and frying; however, griddling and steaming were not investigated in this 

study. Barbanti and Pasquini, (2005) reported that marination, followed by air-steam 

cooking is the best combination to obtain the most tender chicken breast slices.   

While there are studies that assessed the effects of various cooking methods on the 

physicochemical and sensory characteristics of marinated muscle-based food products 

(Barbanti and Pasquini, 2005; Latif , 2010; Kim et al., 2008; Dhanda et al., 2006), to the 

best of our knowledge, there are no studies investigating the effects of different cooking 

methods (griddle and steam cooking) on the physicochemical characteristics of MPC that 

were HPP; therefore the objective of this study was to assess the effects of different cooking 

methods (e.g. griddle and steam cooking) on the physicochemical and sensory 

characteristics of MPC that were HPP. 
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7.2 Materials and Methods 

7.2.1 Materials  

Pork loins were obtained from a local meat processor (Ballyburden, Ballincollig, Cork). 

Piri-Piri marinade (Rapeseed oil 60%, Spices and flavourings 36% (chilli, garlic, jalapeno, 

black pepper, onion, paprika, lovage root, fenugreek seed, bird clover, onion leek, 

coriander, turmeric, ginger, cumin seed, fennel, sugar, grapefruit, passion fruit, papaya, 

mango, palm fat) and Salt 4%) was obtained from Oliver Carty (Athlone, Co. Roscommon, 

Ireland). A commercial antimicrobial mix of organic acids InbacTM (a mix of Sodium 

acetate 43%, Malic acid 7%, emulsifier-mono and diglycerides of fatty acids and 

technological coadjuvants; anticaking agents, calcium phosphate, magnesium carbonate 

and silicon dioxide ~50%) was obtained from Chemital (Chemital Ltd, Barcelona, Spain).  

 

7.2.2 Methods  

7.2.2.1 Marination of pork chops 

The pork loins were cut into 3cm chops including the fat ring, weighed and placed in a 

combivac vacuum pouch (20 polyamide/70 polyethylene bags (Alcom, Campogalliano, 

Italy) and piri-piri marinade which contained Inbac™ (0.3%) at a weight ratio 80:20 (Pork 

chop:marinade) was added and then vacuum packed using a Webomatic vacuum packaging 

system (Werner Bonk, type D463, Bochum, German). Marinated untreated control samples 

were stored in a chill room at 4 °C for 24 hrs before cooking. For samples requiring HPP 

(400 MPa), MPC were HPP (as outlined in section 7.2.2.2) before storage in a chill room 

at 4 °C for 24 hrs before cooking.   

 



267 
 

7.2.2.2 High Pressure Processing  

Vacuum-packed pork chops that were marinated for 24 hr were HPP using an industrial 

Hiperbaric 420 litre unit (Burgos, Spain) at the HPP Tolling facilities (HPP tolling, St. 

Margaret’s, Dublin) using water as the pressure transmitting medium. The speed of 

pressurisation was 130 MPa per minute, the speed of depressurisation was instantaneous 

(~ 1 second) and the holding time was 3 minutes. The water inlet temperature was 10°C. 

Before HPP, the initial temperature of the surface of the vacuum packaged MPC was 3.6 

°C and after HPP the temperature on the surface of the meat was ~6.5 °C and this was 

measured using a hand held temperature probe (Monika, United Kingdom).  

 

7.2.2.3 Marinade absorption  

The initial weight of raw unmarinated pork chops was recorded. Samples were then 

marinated as described in Section 7.2.2.1 and after 24 hrs storage at 4°C untreated and HPP 

samples were placed on an elevated stainless steel wire rack for 5 mins turned half way 

through and then re-weighed. Calculation for marinade absorption was as follows; 

% marinade absorption = (weight after 24 hours marination – initial unmarinated weight) / 

(initial unmarinated weight) * 100.  

Each value represents the average of 8 measurements (two independent trials x four 

samples).  

 

7.2.2.4 Cooking 

MPC were either steam cooked or griddled. For steam cooked, vacuum-packed MPC were 

cooked at full steam (100 °C) in a Zanussi oven (Zanussi Professional, Italy) and 
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temperature monitored using a thermocouple data logger (Omega Engineering Ltd., 

Manchester, UK) inserted into the coldest point of the MPC until an internal temperature 

of 74 °C was reached. For griddling, MPC were removed from the vacuum pouch and 

placed on a Gico grill plate, Model 90185 (Gico, Italy), turned half way through and 

temperature monitored using the thermocouple data logger which was inserted into the 

coldest point of the MPC until an internal temperature of 74 °C was reached. The samples 

were then cooled down at room temperature before analysis was carried out.  

 

7.2.2.5 Cook loss   

The cook loss of both untreated MPC and MPC that were HPP was determined after griddle 

or steam cooking. Briefly, the initial weight of the raw MPC was recorded after samples 

had been placed on an elevated stainless steel wire rack for 5 mins. After cooking, the 

samples were re-weighed and calculated as follows:   

% cook loss = (cooked weight – initial raw weight) / (initial raw weight) * 100  

Each value represents the average of 8 measurements (two independent trials x four 

samples).  

 

7.2.2.6 Compositional analysis 

To obtain a representative sample for proximal composition analysis of cooked MPC the 

outer layer of fat was removed and the meat was homogenised for 20 seconds in a Buchi™ 

mixer B-400 (Büchi Labortechnik, Switzerland). Proximate composition (fat, moisture, 

protein and ash) of cooked MPC was determined using the methods previously described 
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in Chapter 2. Each value represents the average of 8 measurements (two independent trials 

x two samples x two readings).   

 

7.2.2.7 pH 

The pH of cooked untreated MPC and MPC that were HPP was measured using a digital 

pH metre (Mettler-Toledo GmbH, Schwerzenbach, Switzerland) by inserting the glass 

probe directly into the sample. Each value represents the average of 8 measurements (two 

independent trials x two samples x two readings).  

 

7.2.2.8 Warner-Bratzler Shear force  

Warner-Bratzler Shear force (WBSF) was measured according to the method outlined by 

Shackelford et al. (1991). Briefly, the 3 cm thick MPC were cooked as described in Section 

7.2.2.4 to an internal temperature of 74 °C and then cooled at room temperature (20 °C). 

Four cylinders of a 1.27 cm diameter were obtained from each cooked pork chop parallel 

to the muscle fibre direction using a corer. The pork steak cylinders were sheared using a 

Texture Analyser TA-XT2 (Stable Micro Systems, Surrey, UK) attached with a Warner 

Bratzler V-shaped shearing device at a crosshead speed of 4 mm/s. Each value represents 

the average of 8 measurements (two independent trials x four samples). 

 

7.2.2.9 Colour  

The colour of the surface of the cooked MPC was measured as described in Chapter 2. CIE 

L*, a* and b* values (Lightness, redness and yellowness, respectively) are reported and 



270 
 

each value represents the average of 12 measurements (two independent trials x two 

samples x three readings).  

 

7.2.2.10 Fatty acid analysis 

7.2.2.10.1 Lipid extraction, Transesterification and Gas chromatography  

Total lipids for fatty acid analysis were extracted using the method described by Bligh and 

Dyer (1959). Briefly, 1.5g of MPC was homogenised in methanol and lipid was extracted 

from 0.6g of homogenate using water, methanol and chloroform as the extracting solvents. 

Following phase separation, the lower chloroform layers were dried under nitrogen prior 

to transesterification. The lipid fractions were trans-esterified to fatty acid methyl esters 

(FAME’s) according to the procedure described by Slover and Lanza (1979). FAME’s were 

separated using a Varian 3800 gas chromatograph (Varian, Walnut Creek, CA, USA) using 

a WCOT fused silica capillary column (Varian CP-SIL 88 Tailor Made FAME, 60 m x 

0.25 mm i.d. x 0.20 µm film thickness) and a flame ionisation detector.  Helium was used 

as the carrier gas at a pressure of 30 psi.  The injection volumes and split ratios for FAME’s 

were 1 µl and 1:2 split, respectively.  Individual fatty acids were identified by comparing 

relative retention times with pure FAME standards (Supleco 37 component FAME mix, 

Sigma-Aldrich Ireland Ltd., Vale Road, Arklow, Wicklow, Ireland).  Each value is the 

average of 8 measurements (two independent trials x four samples).  
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7.2.2.11 Sensory evaluation    

A 25 member semi-trained taste panel was used to evaluate the cooked untreated MPC and 

MPC that were HPP over two separate sessions using a 9-point hedonic scale. The panellists 

were recruited from staff and postgraduate students at the School of Food and Nutritional 

Sciences, University College Cork and chosen based on their experience in the sensory 

analysis of meat products and on their availability. The panellists have partaken in sensory 

analysis of meat products on numerous occasions and were familiar with the sensory 

terminology.  

Samples were labelled with a three digit random number, steam or griddled cooked as 

described in Section 2.2.3 and served warm (50 °C) on labelled polystyrene plates. The 

tested attributes were: Liking of Appearance (1=Extremely dislike, 9=Extremely like), 

Liking of Texture (1=Extremely dislike, 9=Extremely like), Liking of Flavour 

(1=Extremely dislike, 9=Extremely like), Juiciness (1=Very dry, 9=Very juicy), 

Tenderness (1-Extremely tough, 9= Extremely tender), Off-flavour (1= Imperceptible, 

9=Extremely pronounced) and Overall sensory acceptability (OSA) (1=Extremely dislike, 

9=Extremely like).   

 

7.2.2.12 Statistical analysis 

Colour, texture, cook loss, marinade absorption, proximate composition, pH, fatty acid 

composition and sensory data were tested using one way ANOVA and significance 

assessed using Tukey's test at 5% significance level using SPSS software package (SPSS 

for Windows, version 21  IBM Corp., Armonk, NY, USA).
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7.3 Results and Discussion  

7.3.1 Marinade absorption and Cook loss  

The results showed that marinade absorption/yield of the pork chops increased (P<0.05) 

when MPC were HPP at 400 MPa compared to untreated MPC samples (Table 7.1). It was 

reported that marinades diffuse from the meat surface into the interior of the meat due to 

the gradient formed from the higher concentration of marinade to the lower concentration 

of fluid in the interior of the meat (Yusop et al., 2011) and apparently HPP may have 

accelerated this process.  

The cook loss was significantly higher (P<0.05) in griddled MPC compared to steam 

cooked MPC independent of whether HPP was applied or not (Table 7.1). The higher cook 

loss in samples that were cooked using the griddle may be due to the longer cooking time 

as this cooking method is by contact between the hot surface and the MPC and the main 

method of heat transfer is via conduction. It was reported that different cooking methods 

have significant effects on the physicochemical changes due to the cook loss of meat 

products that affect the cooking times, temperatures and methods of heat transfer 

(Ishiwatari et al., 2013; Bejerholm and Aaslyng, 2004). Alfaia et al. (2010) and Utama et 

al. (2018) reported increased cook loss when beef was oven roasted rather than boiled due 

to prolonged heat exposure duration. In this study, independent of the cooking method used 

(Griddle or steam cooking) MPC that were HPP at 400 MPa had lower cook loss values 

than untreated MPC samples; however, these differences were not statistically significant. 

Similar results on the decrease of cook loss in HPP chicken and pork have been reported 

(Rodriguez Calleja et al., 2012; Souza et al., 2011).  
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7.3.2 Compositonal analysis and pH  

The results for proximate composition of untreated MPC or MPC that were HPP and 

cooked using griddle or steam cooking are shown in Table 7.1. The results indicated that 

the cooking method did not affect significantly the protein and ash content of untreated 

MPC or MPC that were HPP; however, the moisture content was significantly lower 

(P<0.05) when MPC were cooked using the griddle method compared to steam cooked 

MPC independent of whether HPP was applied or not and this may be attributed to the 

significantly (P<0.05) higher cook loss in samples that were cooked using the griddle 

(Table 7.1). The fat content of untreated or HPP steam cooked MPC was higher compared 

to griddled untreated or MPC that were HPP which may be due to the lower (P<0.05) cook 

loss; however, these differences were not statistically significant. Similarly, Dreeling et al. 

(2000) reported that cooking method (griddling, grilling, frying, deep fat frying or roasting) 

did not significantly affect the protein or fat content in beef burgers. Conversely, the authors 

reported that griddled burgers had the lowest cook loss and highest moisture content.  

The results also showed that independent of the cooking method used no significant 

differences in the pH were observed on untreated MPC or MPC that were HPP (Table 7.1).  

It was reported that HPP causes an increase in pH in raw meat (Rodriguez-Calleja et al. 

2012; Wang et al., 2015; Cruz-Romero et al., 2007) which usually occurs due to the 

decrease in available acidic groups in the meat as a result of conformational changes 

associated with protein denaturation (McArdle et al., 2011) while the increase in pH due to 

cooking may be due to decreases in the number of acidic groups in muscle proteins as 

proteins unfold (Hamm and Deatherage, 1960). Regarding the increase of pH on cooked 

MPC that were HPP, apparently the combined effects of cooking (heat treatment) and HPP 

were not additive as the pH was not significantly different compared to the pH of cooked 

untreated MPC. This may be due to the increased severity of the cooking processes in 
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comparison to the milder non-thermal process (HPP). A similar effect on pH in cooked 

beef muscle was reported by Ma and Ledward, (2004) as the combined effects of cooking 

and HPP were not additive and the pH of the HPP beef meat was not significantly different 

compared to the pH of cooked untreated beef.  
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Table 7.1 Physicochemical characteristics of untreated and high pressure processed marinated pork chops cooked using steam cooking or 

griddle* 

*Values are Mean ± standard deviation. a,b Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.  **Analysis carried out before cooking.  

 

 

Treatment Cook Loss Marinade 

absorption** 

Moisture Protein Fat Ash pH 

Pressure (MPa)/cooking 

method 

(%) (%) (%) (%) (%) (%)  

0.1/steam 16.93 ± 0.97  a 1.88 ± 0.14 a 64.11 ± 1.80 a 29.08 ± 1.57 a 4.73 ± 0.66 a 1.39 ± 0.04 a 5.86 ± 0.11 a 

0.1/griddle 19.73 ± 0.94 b 1.95 ± 0.19 a 61.87 ± 1.54 b 29.37 ± 0.80 a 4.13 ± 0.20 a 1.43 ± 0.08 a 5.87 ± 0.05 a 

400/steam 16.67 ± 1.07 a 2.68 ± 0.23 b 65.23 ± 1.13 a 30.31 ± 1.52 a  4.63 ± 0.56 a 1.46 ± 0.08 a 5.91 ± 0.06 a 

400/griddle 18.88 ± 1.28  b 2.65 ± 0.27 b 61.90 ± 1.13 b 30.18 ± 1.36 a 4.07 ± 0.12 a 1.47 ± 0.06 a 5.90 ± 0.07 a 
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7.3.3 Colour  

The results showed that the untreated MPC or MPC that were HPP and steam cooked were 

significantly (P<0.05) redder and yellower compared to untreated MPC or MPC that were 

HPP and cooked using the griddle method which may be due to the presence of the highly 

pigmented piri-piri marinade (CIE L*, a* and b* values of 26.86, 17.68 and 54.28, 

respectively) on the surface of the meat (Table 7.2). In regards to lightness, griddle cooked 

MPC (untreated and HPP) were significantly darker (P<0.05) than steam cooked MPC 

(untreated and HPP) (Table 7.2). This increased darkness may be due to the fact that the in 

griddled MPC, Maillard reaction, a nonenzymatic chemical reaction between amino acids 

and reducing sugars which causes browning (Tamana and Mahood, 2015) has taken place. 

This reaction occur upon heating meat because meat, a proteinaceous material also contains 

a small amount of carbohydrates, primarily those originating from glycogen and 

nucleotides (Schmidt, 1988).  Humidity has been reported to influence colour development 

of cooked meat as high humidity will prevent Maillard reactions from taking place 

(Bejerholm and Aaslyng, 2004) and this may be the reason why steam cooked MPC were 

significantly lighter compared to griddled MPC. The results found in this study are in 

agreement with the findings of Chao et al. (2009), Delgado-Andrade et al. (2010) and Hull 

et al. (2012) who reported that dry heat cooking methods such as frying and grilling 

increased Maillard reaction compared to moist heat methods such as boiling. Colour 

changes due to cooking may be due to the denaturation of myoglobin as the cooked pigment 

is denatured metmyoglobin which is darker in colour (Boles and Pegg, 1999). Colour 

changes in muscle-based food products after HPP have been reported that may be related 

to the denaturation of the myofibrillar and sarcoplasmic proteins (Zhou et al., 2010; Ma 

and Ledward, 2013).  
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Interestingly, MPC that were HPP at 400 MPa and steam cooked resulted in lighter 

(P<0.05) MPC compared to steam cooked untreated MPC samples; however, this effect 

was not observed in the griddled MPC and no significant differences between griddled 

MPC that were HPP and griddled untreated MPC were found. This effect in steam cooked 

MPC may be due to the fact that when MPC were HPP, it may have increased lightness 

due to the denaturation of proteins before cooking and then the cooking process may have 

resulted in further protein denaturation compared to untreated MPC that were cooked but 

not HPP and apparently resulting in lesser degree of protein denaturation and therefore a 

lesser lightness change. The reason this effect was not evident in griddled MPC may be due 

to the severity of the griddling cooking process which employs direct contact heat at higher 

temperature for a longer duration to reach the required internal temperature inducing 

Maillard reaction, compared to a milder treatment such as steam cooking.  

 

7.3.4 Texture  

The results of the WBSF showed that griddled MPC were significantly harder (P<0.05) 

than steam cooked samples (Table 7.2) regardless of whether samples were HPP or not. 

Higher WBSF values for griddled MPC may be due to the higher cook loss and subsequent 

lower moisture and fat content (Table 7.1) as higher fat content has been directly linked to 

increased tenderness (Hand et al., 1987; Tobin et al., 2012; Fellendorf et al., 2015). The 

higher cook loss may have resulted from a longer cooking time due to the heat transfer by 

conduction used in the griddle method. Similarly, Yancey et al. (2011) reported that beef 

steaks which were griddle cooked were tougher compared to beef steaks which were grilled 

or oven cooked. Myofibrillar and connective tissue proteins (collagen and elastin) affect 

the toughness of muscle tissues and during heating, these proteins are denatured, causing 
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destruction of cell membranes, shrinkage of fibres, aggregation, and gelling of myofibrillar 

and sarcoplasmic proteins, and shrinkage and solubilisation of connective tissue (Tornberg 

2005; Yu et al., 2017). 

It was reported that HPP increased the hardness of muscle foods (Kruk et al., 2011; Zamri, 

et al., 2006; Rodrigues et al., 2016; Macfarlane et al., 1980). The increased toughness with 

pressure has been attributed to an increasing incidence of sarcomeres, in which thick 

filaments have been compressed onto the Z-line, thus removing the I-band as a zone of 

weakness (Macfarlane et al., 1980). However, in this study the significant differences 

(P<0.05) on hardness were observed in the cooking methods applied and the application of 

HPP apparently did not have an additive effect in terms of increasing hardness of the MPC. 

This may be due to the severity of the thermal cooking process and its increased ability to 

denature proteins compared to HPP which is a milder non-thermal process.  

 

 

 

 



279 
 

Table 7.2 Colour and textural analysis of untreated and high pressure processed marinated pork chops cooked using steam cooking or 

griddle*  

*Values are Mean ± standard deviation. a,b,c Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.  

 

 

 

 

 

Treatment Lightness Redness Yellowness WBSF 

Pressure (MPa)/cooking method (L*) (a*) (b*) (N) 

0.1/steam 52.41 ± 2.77 a 9.30 ± 0.92 a 33.78 ± 2.16 a 15.93 ± 1.87 a 

0.1/griddle 45.58 ± 2.58 c 7.45 ± 0.84 b 29.07 ± 1.88 b 21.52 ± 2.35 b 

400/steam 59.34 ± 3.43 b 9.33 ± 1.50 a 35.80 ± 3.59 a 16.44 ± 2.06 a  

400/griddle 47.64 ± 2.06 c 7.93 ± 0.59 b 29.74 ± 2.35 b 21.83 ± 2.51 b 
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7.3.5 Sensory analysis  

The sensory analysis results are shown in Table 7.3. Griddled MPC were significantly 

(P<0.05) more acceptable in terms of appearance compared to steam cooked samples which 

may be due to chargrilled effect and darker colour on the surface of the meat as a result of 

Maillard reaction. Similarly, Dreeling et al. (2000) reported that grilling and griddling were 

the most preferred cooking method in terms of appearance compared to roasting and frying.  

Steam cooked MPC (untreated and HPP) were preferred (P<0.05) in regards to texture, 

tenderness, juiciness and OSA compared to griddled MPC (untreated and HPP) which may 

be attributed to the lower cook loss and subsequent higher fat and moisture content. The 

results of the sensory analysis are also in agreement with the instrumental texture results 

(Table 7.2) which showed that steam cooked MPC (untreated or HPP) were tenderer 

(P<0.05) than griddled MPC (untreated or HPP). Barbanti and Pasquini. (2005) suggested 

that marination process followed by air-steam cooking was the best combination to obtain 

the most tender chicken breast slices. Although the differences were not statistically 

significant, griddled and steam cooked MPC which were HPP at 400 MPa had higher 

flavour acceptability than untreated MPC which may be due to higher (P<0.05) marinade 

absorption (Table 7.1). Similar to our results, Dreeling et al. (2000) concluded that the 

sensory characteristics of OSA, tenderness, appearance, texture and juiciness were 

significantly affected by the cooking method applied (grilling, frying, griddling, roasting 

or deep fat frying) and griddling was the most acceptable cooking method in terms of OSA; 

however, steam cooking was not investigated in this study.  

HPP can increase the toughness of post rigor meat (Ma and Ledward, 2004; Del Olmo et 

al., 2010; Jung et al., 2000; Grossi et al., 2014); however, our results indicated that cooking 

method of the MPC had a more significant effect on the textural and sensory characteristics 
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of MPC than HPP which may be due to the severity of the cooking process compared to 

HPP which is a non-thermal and milder process. Furthermore, the sensory results showed 

that steam cooking resulted in a more acceptable MPC in terms of texture and OSA 

compared to griddled MPC. Steam cooked MPC were also cooked in their final packaging 

resulting in a more convenient product for consumer use compared to griddled MPC. 
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Table 7.3 Sensory analysis of untreated and high pressure processed marinated pork chops cooked by steam cooking or griddle*  

 

*Values are Mean ± standard deviation. a, b. Different superscripts in the same column indicate significant difference (P<0.05) between 

treatments.  

 

 

Treatment                                                            Sensory Attributes 

 

Pressure (MPa)/cooking 

method 

 

Appearance 

 

Texture 

 

Flavour 

 

Tenderness 

 

Juiciness 

 

   Off-flavour 

 

OSA 

 

0.1/steam 

 

5.93 ± 1.88 a 6.68 ± 1.47 a 6.31 ± 1.56 a 5.90 ± 1.28 a 5.93 ± 1.88 a 1.96 ± 1.78 a 

                 

7.05 ± 1.34 a 

 

0.1/griddle 

 

6.68 ± 1.23 b 5.13 ± 1.27 b 6.68 ± 1.40 a 4.41 ± 0.94 b 4.87 ± 1.23 b 2.23 ± 1.84 a 

 

6.12 ± 1.09 b  

 

400/steam 

 

5.65 ± 1.07 a 6.41 ± 1.29 a 6.83 ± 1.14 a 5.82 ± 1.44 a 5.94 ± 1.52 a 1.73 ± 1.30 a 

 

6.99 ± 1.02 a 

 

400/griddle 

 

7.14 ± 1.17 b 5.67 ± 1.32 b 7.03 ± 1.45 a 4.17 ± 1.12 b 5.00 ± 1.19 b 2.43 ± 1.89 a 

 

6.02 ± 1.25 b 
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7.3.6 Fatty acid composition  

The fatty acid composition of the untreated MPC, MPC that were HPP and the piri-piri 

marinade is presented in Table 7.4. The results showed that in the piri-piri marinade 15 

fatty acid were present and in the untreated and MPC that were HPP 28 fatty acids were 

present. The main fatty acids detected in marinade were C16 (Palmitic acid- SFA), C18:1c 

(Oleic acid- MUFA) and C18:2c (Linoleic acid- PUFA) which accounted for 83% of the 

total fatty acid composition. In the MPC, the main fatty acids present were typical for pork 

and consisted of C16 (Palmitic acid- SFA), C18 (Stearic acid - SFA), C18:1 (Oleic acid - 

MUFA), C18:2 (Linoleic acid- PUFA) which accounted for ~85% of the total fatty acids 

in all MPC. Fatty acid composition of meat is of major importance for consumers due to 

their importance for meat quality and nutritional value (Wood et al., 2004). 

HPP is a very mild process in terms of its effect on fatty acids (Yagiz et al., 2009). 

Independent of the cooking methods used, the results showed that in general, there were no 

significant differences in SFA and PUFA in MPC that were HPP compared to untreated 

marinated samples; however, the MPC that were HPP had significantly (P<0.05) higher 

C18:1c (Oleic acid – MUFA) which may be due to the higher marinade absorption by the 

pork chops as Oleic acid is the main fatty acid present in the piri-piri marinade. Similarly, 

previous studies have indicated that HPP of salmon, beef, goat and oysters up to 800 MPa 

had no significant effect on their overall fatty acid composition (Cruz-Romero et al., 2008; 

McArdle et al., 2010, 2011; Yagiz et al., 2009; He et al., 2012); however, these studies did 

not include the addition of marinade. Kruk et al. (2014) reported that HPP at 300 MPa did 

not affect the fatty acid composition of chicken breast meat; however, the addition of olive 

oil and soya sauce in combination with HPP at 300 MPa significantly changed the fatty 

acid composition which may be due to composition of these marinades. Interestingly, when 

olive oil was added to chicken breast fillets and HPP at 600 MPa, the fatty acid composition 
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was modified further and increased MUFA’s obtained which may have been due to the 

ability of HPP to increase marinade absorption; however, the authors did not determine 

marinade absorption nor did they determine the fatty acid composition of the marinades.  

 It was reported that cooking methods such as frying or deep fat frying can affect the fatty 

acid composition due to the addition of oils or fats (Broncano et al., 2009). The cooking 

methods applied in this study did not change significantly the fatty acid composition; 

however, the MPC that were steam cooked had a lower (P<0.05) n-6/n-3 ratio compared to 

griddled samples. Typical n-6:n-3 PUFA ratios in pork meat were reported to be 6.30 

(Shortle, 2016) which is similar to the results found for griddled MPC. A lower n-6/n-3 

ratio was reported to increase the ratio of these groups of fatty acids and have increased 

health benefits including the prevention of cardiovascular, cardiometabolic, and other 

chronic diseases as well as the reduction of inflammation (Siscovick et al., 2017; Chen et 

al., 2015; Sanders, 2014). The health attributes of n-3 PUFA is due to the direct effects of 

α-linolenic acid (ALA), which cannot be synthesized by humans, or the conversion of ALA 

to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and/or the decrease in 

the n-6:n-3 PUFA ratio (Domenichiello et al., 2015).  
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Table 7.4 Fatty acid composition of untreated and high pressure processed marinated pork chops cooked by steam cooking or griddle* 

Fatty acid 
Piri-piri 

Marinade 

0.1MPa/ 

griddle 

0.1 MPa/ 

steam 

400 MPa/ 

griddle 

400 MPa/ 

steam 

Lauric acid (C12:0) ND 0.14 ± 0.02 a 0.16 ± 0.03 a 0.12 ± 0.04 a 0.10 ± 0.00 a 

Myristic acid (C14:0) 0.14 ± 0.01 1.36 ± 0.03 ab 1.57 ± 0.24  b 1.08 ± 0.07 a 1.14 ± 0.04 a 

Palmitic acid (C16:0) 6.73 ± 0.16 24.54 ± 0.66  a 25.30 ± 3.33 a 23.34 ± 0.69 a 22.31± 0.49 a 

Heptadecanoic acid (C17:0) ND 0.32 ± 0.01 a 0.45 ± 0.11 a 0.34 ± 0.02 a 0.31 ± 0.02 a 

Stearic acid (C18:0) 1.07 ± 0.37 13.05 ± 0.92 a 13.27 ± 2.33 a 12.62 ± 0.97 a 12.73 ± 0.67 a 

Arachidic acid (C20:0) 0.50 ± 0.02 ND ND ND ND 

Heneicosanoic acid (C21:0) ND 0.17 ± 0.03 a 0.18 ± 0.06 a 0.28 ± 0.03 b 0.19 ± 0.02 ab 

Behenic acid (C22:0) ND 0.68 ± 0.26 a 0.59 ± 0.22 a 0.35 ± 0.02 a 0.78 ± 0.08 a 

Tricosanoic acid (C23:0) ND 0.55 ± 0.31 a 0.42 ± 0.20 a 0.46 ± 0.03 a 0.63 ± 0.14 a 

Lignoceric acid (C24:0) ND 0.81 ± 0.08 a 0.50 ± 0.22 a 0.34 ± 0.03 a 0.62 ± 0.32 a 

      

Palmitoleic acid (C16:1 (n-7)) 0.25 ± 0.02 1.42 ± 0.10 a 1.70 ± 0.26 a 1.38 ± 0.13 a 1.16 ± 0.31 a 

Cis-10 Heptadecenoic acid (C17:1c (n-7)) ND 0.13 ± 0.01 a 0.19 ± 0.02 b 0.15 ± 0.03 ab 0.12 ± 0.03 a 

Elaidic acid (C18:1t (n-7)) 0.16 ± 0.05 3.38 ± 1.10 a 1.18 ± 1.12 b 1.46 ± 0.11 b 2.24 ± 0.08 ab 

Oleic acid (C18:1c (n-9)) 56.32 ± 0.94 29.58 ± 0.38 a 31.00 ± 2.12 ab 34.85 ± 1.20 c 33.20 ± 0.75 bc 

Cis-11 Eicosenoic acid (C20:1c (n-9)) 8.27 ± 0.20 1.51 ± 0.05 a 1.49 ± 0.05 a 1.29 ± 0.34 a 0.99 ± 0.29 a 

Erucic acid (C22:1c (n-9)) 0.26 ± 0.09 0.34 ± 0.03 a 0.32 ± 0.07 a 0.40 ± 0.08 a 0.35 ± 0.04 a 

Nervonic acid (C24:1c (n-9)) ND 0.27 ± 0.02 a 0.41 ± 0.17 a 0.44 ± 0.11 a 0.46 ± 0.15 a 

      

Linoelaidic acid (C18:2t (n-6)) ND 1.00 ± 0.07 a 1.27 ± 0.40 a 1.11 ± 0.02 a 1.10 ± 0.28 a 

Linoleic acid (C18:2c (n-6)) 19.15 ± 0.56 14.94 ± 0.50 a 13.93 ± 3.04 a 15.58 ± 0.63 a 15.14 ± 1.01 a 
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 *Values are mean ± standard deviation a, b, c. Different superscripts in the same row indicate significant difference (P<0.05) between treatments. 

    Fatty acids are % of total. ND = Not detected.  

 

 

 

G - Linolenic acid (C18:3c (n-3)) 1.25 ± 0.07 0.60 ± 0.02 a 0.55 ± 0.03 a 0.61 ± 0.08 a 0.47 ± 0.09 a 

A - Linolenic acid (C18:3c (n-6)) 0.39 ± 0.07 0.36 ± 0.02 a 0.34 ± 0.04 a 0.30 ± 0.02 a 0.32 ± 0.01 a 

Cis-11,14 Eicosenoic acid (C20:2 (n-6)) 0.09 ± 0.01 0.68 ± 0.06 a 0.63 ± 0.10 a 0.87 ± 0.10 a 0.64 ±  0.18 a 

Cis-8,11,14 Eicosatrienoic acid (C20:3c (n-3)) 0.13 ± 0.03 1.70 ± 0.47 a 2.38 ± 1.07 a 1.75 ± 0.60 a 1.72 ± 0.18 a 

Cis-11,14,17  Eicosatrienoic acid (C20:3c (n-6)) 0.31 ± 0.02 0.63 ± 0.19 a 0.51 ± 0.28 a 0.57 ± 0.02 a 0.71 ± 0.18 a 

Arachidonic acid (C20:4 (n-6)) ND 0.43 ± 0.12 a 0.36 ± 0.13 a 0.34 ± 0.03 a 0.36 ± 0.16 a 

Eicosapentaenoic acid (C20:5 (n-3)) ND 0.19 ± 0.10 a 0.24 ± 0.04 a 0.15 ± 0.11 a 0.42 ± 0.18 a 

Cis-13,16 Docosadienoic acid (C22:2 (n-6)) ND 0.45 ± 0.20 a 0.45 ± 0.18 a 0.41 ± 0.10 a 0.50 ± 0.07 a 

Docosahexaenoic acid (C22:6 (n-3)) ND 0.50 ± 0.19 a 0.42 ± 0.13 a 0.43 ± 0.10 a 0.78 ± 0.18 a 

      

ΣSFA 8.44 41.62 ± 1.49 a 42.61 ± 2.64 a 38.73 ± 1.09 a 39.31 ± 1.87 a 

ΣMUFA 65.26 36.63 ± 3.16 a 36.29 ± 1.71 a 39.97 ± 2.87 a 38.52 ± 2.14 a 

ΣPUFA 21.32 21.48 ± 1.36 a 21.08 ± 1.35 a 22.12 ± 1.27 a 22.16 ± 1.84 a 

      

Σn-3 1.38 2.99 ± 1.07 ab 3.59 ± 0.44 a 2.77 ± 0.64 b 3.39 ± 0.49  a 

Σn-6 19.94 18.49 ± 0.80 a 17.49 ± 0.78 b 19.18 ± 1.25 a 17.44 ± 1.24 b 

n-6/n-3 14.45 6.18 ± 0.82 a 4.87 ± 1.12 b 6.92 ± 1.34 a 5.14 ± 0.74 b 
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7.4 Conclusion  

While HPP at 400 MPa accelerated (P<0.05) marinade absorption in raw MPC, it had 

minimal effects on the quality of the cooked MPC. The acceleration of marinade absorption 

on the pork chops by HPP apparently modified the fatty acid composition of the MPC and 

significantly (P<0.05) increased the level of oleic acid which was the main fatty acid 

present in the piri-piri marinade.  

The cooking methods applied (Steam or griddle cooking) had a significant effect on the 

physicochemical and sensory quality of cooked MPC. Griddled MPC were preferred in 

terms of appearance; however, steam cooking resulted in better quality MPC in terms of 

physicochemical (cook loss, moisture content, WBSF and n-6: n-3 PUFA ratio) and sensory 

(texture, tenderness, juiciness and OSA) characteristics. 

Overall, the results showed that from the cooking methods assessed steam cooking was the 

best cooking method for MPC that were HPP and provided an advantage as it can be cooked 

vacuum-packed resulting in a convenient product for consumer use and extended shelf life 

of the MPC due to the hurdle approach used (combined effect of HPP and antimicrobial 

InbacTM) found in our previous study.  
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CHAPTER 8 - General Discussion, Conclusion and Future Work.  
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8.1 General Discussion 

Concerns associated with processed meat consumption and human health has prompted 

much research into the development of healthier processed meat products specifically in 

regards to salt reduction (Doyle and Glass, 2010; Pietrasik and Gaudette, 2014). The link 

between high salt intake and cardiovascular disease has been well established and as a result 

regulatory agencies such as the FSAI have set national targets for salt reduction in meat 

products. (Aburto et al., 2013; Morgan et al., 2001; Desmond, 2006).  

In Chapter 1, assessment of the literature was carried out, a full background of this area of 

research was provided and ultimately the potential of salt replacers and high pressure 

processing (HPP) for salt reduction and enhancement of safety and shelf life with minimum 

effects on food quality was highlighted. In the initial experimental part of this study 

(Chapters 2 and 3), a novel approach which showed great potential for optimising salt 

reduction (NaCl) in frankfurters and cooked ham was used. Response surface methodology 

was applied in order to determine the best combination of Salt replacer ArtisaltTM, HPP and 

a mix of organic acid InbacTM to produce frankfurters and cooked ham with significantly 

low-salt content without compromising the physiochemical characteristics and sensory 

acceptability. When NaCl was partially replaced (50%) with salt replacer ArtisaltTM; 

quality parameters such as pH, cook loss, emulsion stability, colour, texture or sensory 

attributes of frankfurters were not significantly affected compared to full salt control 

samples, while quality parameters such as pH, cook loss, sliceability, expressible moisture, 

colour, texture or sensory attributes of cooked ham were not significantly affected 

compared to full salt control cooked ham. However, in both products when added NaCl 

was fully replaced (100%) with salt replacer ArtisaltTM all physicochemical quality 

parameters were significantly (P<0.05) affected and the obtained frankfurters and cooked 

ham were significantly less acceptable by the sensory panel. The non-significant effect on 
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the quality parameters of the processed meat products when 50% of NaCl was replaced 

with salt replacer Artisalt™ was attributed to the calculated ionic strength (IS) of a 50/50 

combination of ArtisaltTM /Sodium Chloride (NaCl) (0.31M) which was similar to that the 

IS of 2 % NaCl (0.34M) and the use of salt replacer Artisalt ™ resulted in the development 

of optimised low-salt products without compromising the physiochemical characteristics 

and sensory acceptability associated with these type of products. Due to the fact that the 

salt replacer ArtisaltTM also contained flavour enhancers the saltiness perception was 

increased.  

The optimisation process was initially carried out based on maximising the texture 

(hardness) and the sensory attributes (flavour, saltiness and overall sensory acceptability 

(OSA)). While the attributes of hardness, flavour and saltiness were predicted by the 

models; a higher level of salt replacement and HPP was achieved when product 

optimisation was carried out based on OSA which subsequently produced a product with 

lower salt content and increased safety due to the use of a higher level of HPP in 

combination with the antimicrobial organic acids; therefore, production of the optimised 

processed meat products was carried out based on maximising the OSA. The results of the 

optimisation process based on the OSA showed that in frankfurters it was possible to reduce 

48% of the added salt (NaCl) in combination with HPP at 580 MPa and 0.3% InbacTM, and 

in cooked ham it was possible to reduce 53% of the added salt (NaCl) in combination with 

HPP at 535 MPa and 0.3% InbacTM.  

The resulting total salt contents in the optimised low salt frankfurters or cooked ham were 

1.3% or 1.4%, respectively, therefore salt reduction below the national target levels set by 

Food Safety Authority of Ireland (FSAI) in 2017 for cooked ham (1.6%) and frankfurters 

(1.5%) was achieved using the salt replacer Artisalt™, HPP and a mix of organic acids 

Inbac™ without compromising on OSA. It was expected that the hurdle technology (HPP 
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and InbacTM) applied in the manufacture of frankfurters or cooked ham through product 

optimisation process would compensate the safety and shelf life due to the significant salt 

reduction and decreased preservative effect of NaCl.  

When salt is significantly reduced, the preservative effects of salt can also be reduced and 

as a result processed meat manufacturers are constantly looking for new ways to reduce 

salt levels without compromising food safety and shelf-life. In Chapter 4, the efficacy of a 

combination of optimum levels of HPP and InbacTM as hurdles to extend the shelf life of 

previously optimised sensory accepted frankfurters and cooked ham with significantly 

(P<0.05) lower salt content was assessed. Throughout storage, physicochemical (colour, 

texture, pH, lipid oxidation), microbiological (Total viable count (TVC), Lactic acid 

bacteria (LAB) E. Coli and Salmonella) and sensory analysis was carried out. The 

following recommended microbiological limits are applied for cook-chill products 

examined at the point of consumption before reheating or cooking is applied: Aerobic plate 

counts < 5x105 CFU/g of product; E. coli< 10 CFU/g of product; LAB < 109 CFU/g of 

product, Salmonella: absent in 25 g of product (FSAI, 2014). For this study, the 

recommended microbiological limits of acceptability for the frankfurters and cooked ham 

were set as above with reference to TVC, E. coli and Salmonella. While most of the 

physicochemical characteristics of frankfurters or cooked ham changed significantly 

(P<0.05) during storage time; however, the OSA of the frankfurters or cooked ham was not 

reduced over storage time and TBARS values were below the acceptability limits therefore 

the end of shelf life for all frankfurter and cooked ham formulations was determined based 

on the recommended microbiological limits for cook-chill product in terms of TVC. 

The results showed that the optimum levels of hurdles (HPP and Inbac™) applied in the 

manufacture of low-salt processed meat products extended (P<0.05) the shelf-life by 51% 

or 97% of low-salt frankfurters or low-salt cooked ham, respectively, compared to control 
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samples which contained full salt content and the preservative effects of salt. These results 

highlighted the potential of the hurdle strategy for extending the safety and shelf-life of 

low-salt processed meat products. To the best of our knowledge, the application of hurdle 

technology (a combination of HPP and a mix of organic acids) to compensate the 

microbiological stability, safety and shelf-life in processed meat products due to significant 

salt reduction is novel and has not been previously reported in the literature. This opens the 

opportunity to apply this technology for shelf life and safety enhancement in salt reduced 

processed meat products.      

In Chapter 5, a comparative study of commercial products and research optimised low-salt 

frankfurters and cooked ham was carried out in order to confirm acceptance and consumer 

(n=100) appeal of these low-salt processed meat products with enhanced safety and shelf 

life in comparison to gold standard commercially available products. The results showed 

that the commercial brand frankfurter was the most preferred in terms of flavour and 

juiciness; however, the firmness and saltiness of the research optimised low salt and 

research control frankfurters was preferred. Overall, the research optimised low-salt 

frankfurter was liked just as much as the commercial brand frankfurter. For cooked ham, 

while the research optimised low-salt and research control cooked ham was preferred to 

the commercial brand cooked ham in terms of appearance and firmness, the commercial 

brand cooked ham was preferred in terms of juiciness. Furthermore, there were no 

significant differences in flavour or saltiness between any of the cooked ham samples. 

Overall, the research optimised low-salt cooked ham was liked just as much as the 

commercial brand cooked ham. Consumers also did not detect differences in saltiness 

between the research optimised low-salt and research control products despite the 

significant salt reduction which was due to the inclusion of the salt replacer ArtisaltTM 

which contains flavour enhancers such as yeast extract, onion and celery. These results 
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indicated that the low-salt processed meat products were just as acceptable or better than 

the gold standard commercially available products in the Irish market confirming the 

potential of the use of the salt replacer ArtisaltTM and the combined hurdles (HPP and 

organic acids) to produce consumer accepted low-salt processed meat products with 

enhanced safety and shelf life.  

The novel approach used showed great potential for significantly reducing salt in 

frankfurters and cooked ham without compromising the safety and shelf life. The results 

presented in Chapters 2-5 resulted in the successful development of consumer accepted 

ready to eat convenience processed meat products which not only contained significantly 

lower salt content and enhanced safety and shelf-life but also with similar physicochemical 

and sensory characteristics to control samples which contained significantly higher amount 

of salt.  

In Chapter 6, a novel approach was used which showed great potential for flavour 

enhancement of marinated fresh meat. It was reported that the demand for value added meat 

products continues to rise and an increase in the range of commercially available marinade 

products (Hall et al., 2008; Yusop et al., 2011), as a result flavour components such as 

barbeque and piri-piri marinade are in high consumer demand (Nachay, 2011). HPP has 

not been previously applied as a methodology to accelerate marinade absorption and 

improve flavour of value added meat products and is therefore a novel application. The 

ability of HPP and InbacTM to accelerate piri-piri marinade absorption and extend the shelf 

life of pork chops was examined in Chapter 6. Throughout storage, physicochemical 

(colour, texture, pH, lipid oxidation), microbiological (Total viable count (TVC), Lactic 

acid bacteria (LAB) E. Coli and Salmonella) and sensory analysis was carried out. The 

following recommended microbiological limits were applied for fresh meat products: 

Aerobic plate counts < 5x106 CFU/g of product; E. coli< 10 CFU/g of product; LAB < 109 
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CFU/g of product, Salmonella: absent in 25 g of product (FSAI, 2015). For this study, the 

recommended microbiological limits of acceptability for the raw marinated pork chops 

were set as above with reference to TVC, E. coli and Salmonella. The results showed that 

the various levels of pressure applied (300, 400 and 500 MPa) increased the pH, lipid 

oxidation, toughness and lightness proportionally; however, HPP ≥400 MPa also increased 

(P<0.05) the marinade absorption which enhanced the flavour perception of the marinated 

pork chops.  

A symbiotic effect between HPP and the piri-piri marinade was observed as HPP increased 

marinade absorption and in turn the marinade increased the flavour acceptability. The piri-

piri marinade increased the tenderness of the marinated pork chops over storage time and 

also masked the whitening effect caused by HPP. HPP can increase toughness of post rigor 

meat (Kruk et al., 2011; Zamri et al., 2006; McArdle et al., 2011; Ma and Ledward, 2004). 

Cheftel and Culioli (1997) also suggested that HPP of fresh meat causes drastic changes in 

colour and thus cannot be suitable of commercial applications as consumers' purchasing 

preferences are highly based on fresh meat colour (Souza et al., 2011); however, the results 

found in this study suggested that the use of marinades to mask discoloration and increase 

tenderness may overcome these issues resulting in marinated HPP meat products that are 

accepted by consumers.  

During storage, physiochemical changes occurred; however, the OSA did not change 

significantly; therefore, the end of shelf life for all marinated pork chop samples was 

determined based on the recommended microbiological limits in terms of TVC for raw 

meat products. From the microbiological point of view, (P<0.05) the shelf-life of marinated 

pork chops which contained Inbac™ (0.3%) was extended by 16, 22 and 29 days compared 

to untreated control samples when marinated pork chops were HPP at 300, 400 or 500 MPa, 

respectively. The results of this study highlighted the potential of a combined effect of HPP 
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and antimicrobial Inbac™ to accelerate flavour absorption and significantly extend the 

shelf life of marinated pork chops. 

Overall, in this study, we used a novel approach (a combination of HPP, marinade and a 

mix of organic acids InbacTM) which showed great potential not only for enhancing the 

yield of marinated pork chops but also enhancement of the sensory properties, safety and 

shelf life and particularly the piri-piri marinade masked the discoloration of raw pork meat 

caused by HPP and also increased the tenderness over storage time.  

Currently, very little attention has been given to the comparative physicochemical and 

sensory properties of cooked HPP meat products and as a result consumers do not have 

information available on how to best prepare HPP meat products to retain the maximum 

nutritional quality and physicochemical and sensory characteristics when cooking HPP 

meat products. Therefore, it was deemed important to determine the physicochemical 

changes in marinated pork chops that were HPP and cooked using common cooking 

methods (e.g. steam or griddle cooking).  In Chapter 7, the effects of these different cooking 

methods (griddle and steam cooking) on the physiochemical and sensory characteristics of 

marinated pork chops was investigated. According to the results found in Chapter 6, HPP 

at 400MPa was apparently the best pressure level at which significantly lower changes on 

the texture of marinated pork chops were obtained with a significantly enhanced safety and 

shelf life compared to untreated control samples or marinated pork chops that were HPP at 

300 or 500 MPa. Therefore, 400 MPa was the chosen pressure level to be applied in this 

subsequent study. The results showed that griddled marinated pork chops had higher 

(P<0.05) cook loss and lower moisture content and were significantly (P<0.05) darker, less 

red, less yellow, tougher compared to steam cooked samples. The sensory analysis 

indicated that the appearance of the griddled marinated pork chops was preferred while the 

texture, tenderness, juiciness and OSA were preferred in steam cooked marinated pork 
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chops. Apparently, the increased marinade absorption in HPP marinated pork chops 

modified the fatty acid composition resulting in increased (P<0.05) levels of Oleic acid 

(C18:1c) which was the main fatty acid present in the piri-piri marinade. Overall, the results 

showed that the cooking method applied significantly affected the physicochemical and 

sensory quality of marinated pork chops that were HPP. Steam cooking resulted in 

marinated pork chops with improved physicochemical characteristics, lower n-6: n-3 

PUFA ratio which indicates improved health benefits, and were also preferred by the 

sensory panel compared to griddled marinated pork chops. Another advantage was that 

when steam cooking was used the marinated pork chops were cooked in their final 

packaging resulting in an extremely convenient product for consumer use. Overall, from 

the cooking methods assessed steam cooking was the best cooking method for untreated 

and marinated pork chops that were HPP.  

In Chapter 6, the best combination of HPP and InbacTM to accelerate marinade absorption 

and extend the shelf life of added value raw meat products with minimal physicochemical 

changes was determined and in Chapter 7 the most suitable cooking method for marinated 

meat products that were HPP was determined. 

In all experimental chapters of this thesis, a commercially available salt replacer (Chapters 

2-5) and antimicrobial (Chapters 2-7) were used and in Chapters 4-7 an industrial scale 

HPP unit was used to treat meat products which has an advantage as the scaling up of the 

process can easily be achieved.  

The cost of the HPP at industrial scale was estimated and it varied for each different 

product. The cost of HPP was calculated using the formula;                                                                 

Cost of cycle / kg of product per cycle = cost per kg of product 
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For cooked ham, it was estimated that 200kg of product could be HPP in one cycle (€90). 

90/200 = 45 cent per kg. 

For frankfurters, it was estimated that 220kg could be HPP in one cycle (€90)                         

90/220 = 40 cent per kg. 

For marinated pork chops, it was estimated that 250kg could be HPP in one cycle (€90) 

90/250 = 36 cent per kg. 

Although HPP will slightly increase the cost of production, the ability of HPP to 

significantly increase the safety and shelf life of these meat products (as demonstrated in 

this thesis) can also reduce food waste of these products which will enhance sustainable 

food production and possibly reduce loss of company profits due to food waste reduction.  

As outlined above, the findings of this thesis are not just of commercial and food processing 

interest with potential benefits to meat processors, retail food service suppliers, caterers 

and consumers, but they are also of public health significance as processed meat products 

with significantly lower salt and enhanced safety and shelf life were manufactured.  
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8.2 General Conclusions  

 Response Surface Methodology is a powerful tool that can be successfully used to 

develop low-salt processed meat products. (Chapter 2 and 3). 

 The optimised formulation to obtain cooked ham with significantly lower salt 

content without compromising physicochemical or sensory quality; Salt replacer 

ArtisaltTM (53%), HPP (535 MPa) and Inbac™ (0.3%). (Chapter 2)  

 The optimised formulation to obtain frankfurters with significantly lower salt 

content without compromising physicochemical or sensory quality were: Salt 

replacer ArtisaltTM (48%), HPP (580 MPa) and Inbac™ (0.3%). (Chapter 3).  

 The total salt content of the optimised low-salt cooked ham and frankfurters were 

below the national salt reduction targets set by FSAI in 2017 for frankfurters and 

cooked ham which are 1.6% and 1.5% salt, respectively. (Chapter 2 and 3).  

 The hurdle technology (HPP and InbacTM) applied in the manufacture of 

frankfurters or cooked ham through the product optimisation process compensated 

in terms of safety and shelf life for the significant salt reduction and the preservative 

effects of salt (Chapter 4).   

 Consumers did not detect differences in saltiness between control and optimised 

low-salt frankfurters or cooked ham despite the significant salt reduction. The 

optimised low-salt processed meat products were liked just as much as the 

commercially available products. (Chapter 5).  

 Pressures higher than 400 MPa were required to significantly accelerate the piri-

piri marinade absorption in pork chops and improve the flavour acceptability of 

marinated pork chops. (Chapter 6). 

 Over storage time, the piri-piri marinade increased the tenderness of the marinated 

pork chops which were initially tougher due to HPP. (Chapter 6).  
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 The piri-piri marinade masked the whitening effect on raw pork due to HPP which 

can decrease consumer acceptability (Chapter 6).  

 The combination of HPP and InbacTM extended the shelf-life of marinated pork 

chops proportionally to the pressure level applied resulting in a maximum shelf life 

extension of 29 days compared to control marinated pork chops when HPP at 500 

MPa was applied (Chapter 6).  

 The acceleration of marinade absorption by HPP modified the fatty acid 

composition and increased the level of Oleic acid significantly as this was the main 

fatty acid present in the marinade. (Chapter 7).   

 Steam cooking was the best cooking method for untreated and marinated pork chops 

that were HPP (Chapter 7).  
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8.3 Future Work  

This thesis provides a framework upon which future research on the application of HPP in 

processed and fresh meat products can be based. Some studies which could be conducted 

in future are as follows;  

 The application of response surface methodology to reduce not only salt but also 

fat content in processed meat products.  

 Investigation of commercially available marinades to mask the discolouration 

caused by HPP in fresh meat products increasing consumer acceptability of HPP 

meat products.  

 Assessment of a wider range of commonly used household cooking methods (e.g. 

grilling, oven cooking, microwaving and frying) on the physicochemical and 

sensory quality of HPP meat products.  

 Investigation into various types of marinades and their ability to increase the 

tenderness of HPP meat during storage which is tougher immediately after HPP.  

 The application of response surface methodology to optimise salt replacer 

ArtisaltTM, HPP and InbacTM and significantly reduce salt in other processed meat 

products.  

 Investigate the use of HPP to accelerate a wide range of commercially available 

marinade flavours absorption, increase the yield and improve the flavour 

acceptability in marinated meat products.  

 Study of the growth of specific spoilage microorganisms during storage of HPP 

marinated meat products to understand the shelf life of these products. 

 Determination of kinetics of destruction of different pathogens present in raw meat 

products to ensure that marinated meat products that are HPP are safe for human 

consumption. 
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