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Abstract: 

IL-33 is a member of the IL-1 family of cytokines. IL-33 is predominantly located within the nucleus 

of cells where it plays a role in gene regulation. Given the right combination of signals and cellular 

damage, stored IL-33 is released from the cell where it can interact with its receptor ST2, triggering 

danger-associated responses and act as a cellular “alarmin”. Whilst IL-33/ST2 signalling has been 

shown to induce potent pro-inflammatory responses that can be detrimental in certain disease states, a 

dichotomous, protective role of IL-33 in promoting wound healing has also emerged in multiple 

tissues types. This review will explore the current literature concerning this homeostatic role of IL-

33/ST2 in tissue repair and also review its role in uncontrolled wound responses as seen in both 

fibrosis and tumorigenesis.  
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Introduction: IL-33/ST2 –  an „Alarmin‟ function in tissue damage  

Wound healing, whether initiated by trauma, microbes or foreign materials, is a normal homeostatic 

process required for the resolution of tissue damage. It comprises multiple consecutive, overlapping 

phases including inflammation, epithelialization, angiogenesis and matrix deposition. A critical aspect 

of tissue repair is the deposition of key connective tissue proteins, however in situations of chronic 

inflammation, impaired tissue repair mechanisms, including continuous myofibroblast differentiation 

and dysregulated collagen deposition can lead to fibrosis and impaired organ function [1]. IL-1 family 

members cytokines (notably IL-1 and IL-18) are already implicated in the regulation of wound 

healing and tissue repair [2]. Herein we examine the role of a more recently described member of the 

IL-1 family, IL-33 and its receptor ST2L, in tissue repair highlighting its role in several of the 

mechanisms underpinning wound repair fibrosis and tumorigenesis. 

Biological Properties of the IL-33/ST2 axis 

IL-33 

In 2005, IL-33 was identified as a member of the IL-1 family of cytokines [3]. The IL-33 N-terminus 

includes a nuclear localization signal and a homeodomain-like helix-turn helix DNA-binding domain 

as well as a chromatin-binding domain [4]. IL-33 mRNA is expressed in many organs - high levels of 

IL-33 mRNA are detectable in stomach, lung, spinal cord, brain and skin. It is expressed by a diverse 

range of cells with strongest expression observed in non-haematopoietic cells including endothelial 

cells, epithelial cells, keratinocytes, fibroblasts, fibrocytes and smooth muscle cells [5, 6]. Lower 

expression is reported in some activated leukocytes especially innate immune cells e.g. mast cells, 

macrophages and DCs. IL-33 can be induced by a variety of immune stimuli, for example pro-

inflammatory TLR ligands, cytokines and immune complexes [7] [8]. Different IL-33 splice variants 

have been observed in human tissues. Moreover, IL-33 is generated as a precursor and as a full-length 

protein, the latter being bioactive, similar to IL-1α [9]. Unlike other IL-1 family members, IL-33 is 

deactivated by cleavage with caspase-3 or -7. Processing by these apoptotic caspases results in 

inactive fragments [10] [11] [12].  

In terms of subcellular localisation, under homeostatic conditions, IL-33 is predominantly located in 

the nucleus of the cell [9]. Nuclear IL-33 regulates gene expression in numerous ways. Nuclear IL-33 

binds to histones and regulates chromatin structure and by default, gene expression [4] [13].  IL-33 

has also been reported to activate histone deacetylase-3 (HDAC3) activity, indicating a potential role 

for IL-33 in modulating epigenetic regulation [14]. Nuclear IL-33 has been reported to directly bind to 

NF-κB, suppressing NF-B regulated gene expression [15]. However, upon cellular damage, such as 

necrosis, IL-33 is quickly released from the nucleus and exported from the cell leading to its 

definition as an “alarmin” and also to its categorisation as a danger-associated molecular pattern 



(DAMP).  As IL-33 lacks a traditional signal sequence, it seems that cell death by either necrosis or 

necroptosis may be the predominant mechanisms by which IL-33 is liberated to the extracellular 

space [16]. This release of IL-33 from the cell facilitates its interaction with its cognate receptor ST2 

and the subsequent initiation of signalling cascades. Localisation of IL-33 is tightly regulated. Recent 

studies utilising a murine transgenic model in which the nuclear localisation of IL-33 was abolished, 

demonstrate that such mice succumb to lethal inflammation characterised by eosinophil-dominated 

immune cell infiltration of multiple organs [17], highlighting the highly pro-inflammatory role of 

extracellular IL-33. 

The IL-33 Receptor – ST2 

The IL-33 receptor (ST2) was first described in advance of the detection of IL-33 hence the 

potentially confusing terminology. Suppression of tumourigenicity 2 (ST2), also known as T1, DER4 

and FIT-1, was originally cloned as an oncogene-induced gene from murine fibroblasts.  A second 

similar ST2 mRNA transcript was also detected and predicted to code for a receptor, now known as 

the transmembrane bound ST2L receptor [9]. The originally identified protein is now known to be a 

secreted soluble form or “decoy receptor” of ST2, termed sST2. Both of these proteins contain three 

identical Ig extracellular domains, although sST2 lacks the transmembrane sequence it contains an 

additional 9 amino acids at the C terminus. Both ST2 isoforms are members of the Ig superfamily and 

ST2L specifically belongs to the Toll/IL-1R (TIR) superfamily, as it shows ~29% homology to the 

IL-1R, and contains the three distinctive extracellular Ig domains and homology to the intracellular 

domain of IL-1R1 [18]. Furthermore, a third variant isoform, termed ST2V, has also been identified 

[19] (Figure1). 

Human and murine ST2 genes contain two promoters, a distal and a proximal promoter. Both ST2L 

and sST2 isoforms can be transcribed from either promoter with promoter usage governed by the cell 

type. For example, while both the human leukaemic cell line, UT-7 and mast cells can transcribe ST2 

isotypes using either the distal or proximal promoter, the distal promoter is predominantly used in this 

cell line for expression of both sST2 and ST2L [20]. Conversely, almost all transcription is initiated 

from the proximal promoter in fibroblasts [21].  Unlike other IL-1 family members, there is no known 

antagonistic ligand for ST2.  High levels of sST2 and ST2L mRNA are expressed by the kidney, lung, 

placenta, and stomach. In humans, ST2L expression is higher in the spleen, heart, testis and colon 

than sST2, while the brain and liver express higher levels of sST2, than ST2L [22]. Many endothelial 

cells from lung, bronchus, coronary artery and umbilical cord express both ST2L and sST2 mRNA 

[23]. ST2L is strongly expressed on the surface of fibroblasts and hematopoietic cells such as T helper 

type 2 (Th2) lymphocytes, ILC2s and mast cells [24, 25]. Whilst not found constitutively expressed 

on Th1 cells and several other immune populations, some recent reports indicate that expression of 

ST2 can be induced in Th1 [26] and CD8+ T cells [27].   



IL-33/ST2 signalling 

IL-33 has two mechanisms of action. Firstly, as a nuclear factor binding directly to chromatin in the 

nucleus, discussed previously, and secondly as a cytokine binding to ST2L. Biologically active full 

length IL-33 can be released in the extracellular space after cell damage or mechanical injury [10] 

whereas nuclear IL-33 is passively released upon cell death. [6]. Both of these mechanisms of cellular 

release facilitate the interaction of IL-33 with its receptor ST2.  Upon binding of the extracellular IL-

33 to ST2L; the receptor undergoes conformational change, which enables the recruitment of IL-1 

Receptor Accessory Protein (IL-1RAcP). Heterodimerization of the two transmembrane molecules 

brings the two intracellular TIR domains together, and successive receptor adaptor proteins are 

recruited through protein-protein interactions. Once the IL-33/ST2L receptor complex is established 

the signal is transmitted by the MyD88-IRAK1/4-TRAF6 signalling pathway with resulting 

degradation of the inhibitory protein IB and subsequent activation of the NFB transcription factor 

[28]. MAP kinases, p38, JNK and ERK are also activated with activation of downstream transcription 

factors such as AP-1 (Figure 1). Activation of these transcription factors enables transcription of 

cytokines and chemokines in a cell-type restricted manner. For example activation of this pathway in 

Th2 cells leads to production of Th2 cytokines (i.e. IL-4, IL-5, IL-13) [3] whereas in epithelial cells, 

ST2 activation by IL-33 results predominantly in chemokine activation [29]. Multiple self-activated 

down-regulatory mechanisms of this pathway exist. Activation of ST2L by IL-33 results in activation 

of focal adhesion kinase (FAK) and glycogen synthase kinas 3β (GSK-3β) [30].  Once activated, 

GSK-3β binds to and phosphorylates ST2L resulting in the swift internalization of ST2L. Once 

internalized ST2L is polyubiquitinated by the E3 ubiquitin ligase FBXL19 and subsequently degraded 

by the proteasome [31]. As sST2 functions as a decoy receptor for IL-33 it negatively regulates ST2 

signalling by sequestering IL-33 and has been shown to down regulate Th2 cell-mediated 

immunologic responses [32]. 

Epithelial barrier repair: A role for IL-33 in mucosal wound healing 

Mammalian barrier surfaces including skin, lung and gastrointestinal tract are exposed to a plethora of 

potentially harmful agents deriving from external sources such as microbial or environmental as well 

as from intrinsic physical damage. The ability of these tissues to initiate effective repair processes is 

critical for their role in host defence. An absence of, or ineffective, wound healing and tissue repair 

processes can lead to chronic inflammatory states and the development of fibrotic disease. IL-33 is 

constitutively expressed by tissues involved in the maintenance of mechanical barriers, including 

keratinocytes, lung and gut epithelial cells, fibroblasts, fibrocytes and smooth muscle cells [33]. 

Emerging evidence is supportive of a critical role for the IL-33/ST2 axis in the initiation and 

maintenance of wound healing responses at these surfaces; a role that is somewhat divergent to its 



well-characterised function in promoting especially type II inflammatory responses.  We will now 

consider the diverse wound repair properties of IL-33 across a range of tissues. 

IL-33 in intestinal wound healing 

The original report identifying IL-33 in 2005 described a putative role in epithelial repair, as IL-33 

stimulation was shown to promote both epithelial proliferation and mucus production [33]. 

Subsequent human studies examining expression of both IL-33 and the different isoforms of ST2 

showed that both IL-33 mRNA and protein were found to be up regulated in inflamed UC and CD 

[34], [35], while other reports describe IL-33 to be only up regulated in UC [36].  In particular, IL-33 

was found to be increased in ulceration associated myofibroblasts in inflamed UC, although this was 

not observed in Crohns disease [37]. As the epithelium becomes damaged and mucosal lesions form 

in severe UC, IL-33 becomes increased in myofibroblasts indicating a potential involvement of IL-33 

in wound healing in intestinal tissues[38].  

Murine models, however, have revealed complex roles for IL-33 and ST2 in intestinal disease [39]. 

Similar to the changes seen in humans, increased expression of IL-33 was observed in the colons of 

mice challenged by both the trinitobenzene sulphonic acid (TNBS) and the dextran sodium sulphate 

(DSS) models [40]. Whilst certain murine models implicate a pro-inflammatory, pathogenic role for 

the IL-33/ST2 signalling axis in intestinal disease, several studies have shown that this signalling axis 

can promote a homeostatic wound healing response in the intestinal epithelium. These divergent roles 

are dependent on whether the acute or chronic inflammatory state is investigated.  Whilst mice 

deficient in ST2 demonstrate improved symptoms and reduced intestinal inflammation in the early 

stage of DSS colitis [41], a delay in the resolution of DSS dependent tissue damage in IL-33-/- mice 

was observed [42]. This dichotomous role of IL-33 in acute versus chronic IBD was also 

demonstrated using a different model, as whilst injection of IL-33 aggravated DSS-induced acute 

colitis [43], it alleviated DSS-induced chronic colitis [44-46]. Indeed, in the study of Duan et al, 

utilising the TNBS model of colitis and treatment with recombinant IL-33, it was noted that IL-33 

promotes the induction of Type 2 II cytokines and upregulated expression of FoxP3
+
 cells. In 

addition, the protective effect of IL-33 was diminished after depletion of T-regulatory (Treg) cells 

[46], which are known to facilitate wound healing [47]. Further evidence supporting a role of IL-33 in 

promoting intestinal Treg function has been provided. The IL-33 receptor ST2 is preferentially 

expressed on colonic Tregs with IL-33 signalling leading to Treg accumulation and maintenance in 

inflamed intestinal tissues. Importantly, IL-23, a potent pro-inflammatory cytokine which contributes 

to the pathogenesis if IBD, inhibits the ability of IL-33 to activate intestinal Treg [48].  In contrast IL-

33 has, also been shown to negatively regulate wound healing with both genetic ablation of ST2 and 

treatment with an ST2 blocking antibody shown to enhance wound healing. In this study, 

administration of IL-33 impaired epithelial barrier permeability both in vitro and in vivo [40].   



Whilst these lines of evidence, using the chronic model of DSS colitis, demonstrate a role for IL-33 in 

intestinal wound healing there is a relative paucity of mechanistic data associated with its role in 

epithelial repair and restoration.  IL-33 has been shown to directly affect epithelial barrier function as 

stimulation of T84 monolayers increase transepithelial resistance in an ERK-dependant manner [49].  

Hofmann et al demonstrated that IL-33-induced neutrophil influx during chronic intestinal 

inflammation was able to reduce the translocation of pathogenic bacteria across the damaged 

epithelium [45]. This reduction in bacterial load and concomitant reduction in inflammation may, 

therefore, indirectly facilitate epithelial repair.  More recently, evidence that the role of IL-33 in 

intestinal epithelial repair may be linked to its effect on group 2 innate lymphoid cells (ILC2) has 

been demonstrated. In recent years it has become evident that ILC2s express high levels of ST2 and 

are critical cellular targets of IL-33 in consequence [50]. IL-33 stimulation of ILC2 causes induction 

of high levels of IL-4, IL-5, IL-9 and IL-13, GM-CSF and amphiregulin (AREG) expression, 

promoting eosinophil expansion, mast cell recruitment and macrophage polarisation. High levels of 

amphiregulin can aid in rebuilding the intestinal barrier by stimulating growth of new epithelial cells 

and creating a protective layer of mucus that repels future attacks [51]. In the DSS model of intestinal 

colitis/intestinal repair, stimulation with IL-33 induces and activates AREG-producing ILC2s, 

resulting in restoration of epithelial barrier function and maintenance of tissue homeostasis [51].  

Given the dual roles of IL-33 in either promoting intestinal disease or in promoting intestinal wound 

healing, greater insight into the mechanistic basis underlying these is necessary to fully comprehend 

the function of IL-33/ST2 in intestinal health and disease.  

IL-33 in cutaneous wound healing 

In recent years, IL-33 has emerged as a key player in several dermatological diseases including 

psoriasis, atopic dermatitis and contact allergy [52, 53]. Recent attention has focussed on exploring 

the role of both IL-33 and ST2 in cutaneous wound healing. One of the first pieces of evidence in this 

field was shown by Sponheim et al who had previously identified recruitment of IL-33 positive 

fibroblasts and myofibroblasts to granulation tissue in the intestine [37]. In order to explore whether 

these may play a functional role in wound healing in organs other than the intestine, they investigated 

the role of these in a rat skin wound healing assay. Massive recruitment of cells with strong 

expression of IL-33 was observed in healing skin wounds in a rat model as early as 24h after 

wounding. These authors also observed activation of scattered tissue resident IL-33+, PDGFR+, 

SMA+ fibroblast-like cells at the site of wounding pointing to a role of these cells in mucosal healing 

and wound repair. Both mRNA and protein levels of IL-33 were also seen to be elevated in a murine 

model of cutaneous wound healing with the administration of exogenous IL-33 seen to accelerate 

wound healing and re-epithelialisation in the same model. The number of F480+, CD206+ cells was 

increased at the site of wounding in the IL-33 treated mice, suggesting that IL-33 promotes the 



development and/or recruitment of alternatively activated macrophages during wound healing [54]. 

These authors also utilised a murine model of Staphylococcus aureus-infected wound healing and 

demonstrated that exogenous administration of IL-33 inhibited MRSA-colonisation, whilst 

accelerating wound healing. It was noted that IL-33 administration promoted the proliferation of 

neutrophils and also of the chemokine receptor CXCR2, thereby facilitating neutrophil recruitment to 

the site of infection. In both these models an upregulation of both fibronectin and collagen IIIa was 

noted following IL-33 administration, indicating a role for IL-33 on matrix synthesis and re-

epitheliatisation  [54]. A direct link between ST2 and cutaneous wound healing has also been shown 

using standard skin wound healing models in ST2 knockout mice. Absence of ST2 results in impaired 

wound healing with reduced numbers of Ly6clo MHCII hi pro-repair macrophages observed within the 

wounds. Examination of expression of the pan-endothelial marker CD31, as a marker of angiogenesis, 

revealed a nearly 50% decrease in angiogenesis in the absence of ST2 within the granulation tissue 5 

days after wounding. Additionally, these studies highlight direct effects of IL-33 signaling on matrix 

synthesis, with reduced Col3 being apparent in St2−/− mice, whilst IL-33 treatment of wild type mice 

increased Col3 [54]. Although it seems from these reports that IL-33 signalling at the site of 

cutaneous damage may facilitate the transition of macrophages from a pro-inflammatory to a pro-

repair phenotype thereby promoting dermal wound healing, the underlying mechanism for IL-33 in 

skin wound healing remains unclear. Given the interesting observation that IL-33 expression both 

varies at a basal level and is also differentially regulated between mouse and human keratinocytes [8], 

it is clear that more detailed studies need to be performed on human tissues and human cell lines to 

fully elucidate the role of IL-33 in cutaneous wound healing in humans. 

Lessons from overuse – IL-33 and early tissue insult 

Tendinopathy is a term used to describe a complex multi-faceted pathology most commonly 

associated with overuse injury of the tendon [55]. Tendons are sites of high mechanical stressing with 

the resident stromal cells (tenocytes) and the associated extracellular matrix undergoing microtrauma 

form persistent use [56]. Importantly type III collagen is produced in the initial phases of tendon 

damage [57] as a conserved mechanism to provide a rapid 'patch' to the area of damage. Type III is 

laid down in a haphazard fashion contributing to the irregular alignment seen microscopically as well 

as translating to inferior biomechanical strength in damaged tendon [58]. Increasing evidence has 

shown that inflammatory mechanisms and the innate immune system are activated within the tendon 

matrix microenvironment during tissue injury and dysregulated homeostasis [59] [60]. Based on 

previous observations that IL-33 may directly regulate tissue remodelling, this model system was 

utilised in human and rodent disease to explore the potential role of the IL-33/ST2 axis in early tissue 

insult and the possible interactions between inflammation and matrix remodelling. IL-33/ST2/IL-

1RAcP message and protein expression was significantly increased in early human tendinopathy 

compared to both established tendinopathy and normal tendon suggesting that early „stressed‟ tendon 



had an IL-33 alarmin phenotype which may account for the associated matrix changes in collagen I/III 

ratio associated with disease [61]. Utilising in vitro human tenocyte cultures the addition of 

exogenous IL-33 resulted in increased expression of type I but particularly type III collagen 

mRNA/protein in keeping with animal studies on cutaneous wound healing. IL-33-induced collagen 

expression was abrogated by ERK and NFκB inhibition. rhIL-33 also significantly elevated the 

production of IL-6, IL-8 and CCL-2, which was abrogated by NF-κB inhibition suggesting that IL-33 

operates in tenocytes via its canonical IL-1R signaling pathway[61].  

This work was expanded to include an in vivo patellar tendon injury model [62]to understand the 

molecular events implicating IL-33 in a tissue injury model. IL-33 mRNA and protein were elevated 

in early post tendon injury (days 1&3 of 21 day model) in WT mice. This was significantly reduced in 

injured ST2−/− mice, suggesting autocrine regulation. No significant changes in either IL-33 or ST2 

transcript were found in WT mice at days 7 or 21 post injury, or for IL-33 expression in ST2−/− mice, 

suggesting that the impact of IL-33 expression is manifest early, in keeping with „alarmin‟ type 

activity in tendon injury/repair. Analysis of collagen kinetics revealed significantly greater expression 

of collagen 3 at all time points post injury in WT mice compared with uninjured controls or injured 

ST2−/− mice. Importantly, injury of WT mice tendons resulted in a significant decrease in 

biomechanical strength at day 1 post injury compared with that of the ST2−/− mice. These data suggest 

altered collagen matrix synthesis in ST2−/− mice implicating IL-33/ST2 as an early modulator of 

collagen changes in tendon injury that has biomechanical significance. Taken together these studies 

demonstrate a key functional role for IL-33/ST2 in early injury induced matrix dysregulation and 

subsequent cytokine feedback mechanisms (Figure 2) that have an ultimate biomechanical and 

clinical effect[61].   

Factors regulating the IL-33/ST2 axis continue to be elucidated. Caspases-3 and -7 inactivate IL-33 by 

cleaving its C-terminal IL-1 domain [63]. This inactivation event is believed to ensure specific roles 

of IL-33 in pathogenic situations such as parasitic infection, but not in non-inflammatory 

physiological situations, such as apoptosis. Invading pathogens mediate tissue damage leading to 

necrosis of barrier cells and this non- programmed cell death results in IL-33 release in the absence of 

inactivation by caspases-3 and -7. Others have found that the transcriptional regulators IRF4 and 

BATF cooperate at the Il1rl1 locus to induce the expression of ST2 [64]. Additionally, proteases 

mainly secreted by neutrophils seem to play an active role. Calpain, cathepsin G, elastase and 

proteinase cleave pro-IL-33 and remove the N-terminal domain, leaving the mature form of IL-33 

with a ten-fold higher affinity to its receptor [65] [33]. Emerging studies highlight miRNAs as key 

regulators of leukocyte function and the cytokine network while orchestrating proliferation and 

differentiation of stromal lineages that determine extracellular matrix composition [66]. Having 

established that IL-33 drives the differential regulation of collagen 1 and 3 in tenocytes, we postulated 

a mechanistic role for the miRNA network in this process. Previous studies have shown that the miR-



29 family directly targets numerous extracellular matrix genes [65] and is implicated in the regulation 

of innate and adaptive immunity [66]. All members of the miR-29 family were expressed in human 

tendon biopsies and explanted tenocytes with miR-29a showing the most altered expression in early 

tendinopathy biopsies. In tenocyte culture, IL-33 significantly reduced the expression of miR-29a, in 

an NF-κB, dependent manner [61]. miR-29a manipulation selectively regulated collagen 3 but not 

collagen 1 mRNA and protein expression in primary tenocytes. Moreover, miR-29a overexpression 

significantly decreased IL-33-induced collagen 3 mRNA and protein synthesis. In addition, miR-29a 

inhibition resulted in a significant increase in COL 3A1 expression, indicating that miR-29a is not 

only actively regulating these transcripts in human tenocytes but its loss can be an important factor in 

the increase of type 3 collagen production observed in tendinopathy [61]. In contrast, COL 1A1 and 

A2 transcript levels were relatively unchanged. Soluble ST2 message was significantly decreased by 

transfection with miR-29a mimic and increased by antagomir with a corresponding significant change 

in soluble ST2 protein confirming soluble ST2 as a target of miR-29a. Thus, IL-33-driven loss of 

miR-29a expression resulted in the simultaneous repression of collagen 3 and sST2, with a subsequent 

autoregulatory inhibition of IL-33 promoting the resolution of the immediate alarmin response [61]. 

The discovery of a single miRNA-dependent regulatory pathway in early tissue damage events 

highlights miR-29a replacement therapy as a promising therapeutic option for tendinopathy with 

implications for other human pathologies in which matrix dysregulation is implicated. The recent 

initiation of a Phase 1 clinical study of MRG-201, a synthetic microRNA mimic to microRNA-29b 

with possible extension to patients suffering from cutaneous scleroderma may therefore lead to future 

microRNA therapies in damage associated pathologies [67]. 

Given this role for IL-33 in tendons and the link between tendons and muscle it is interesting that a 

recent role for IL-33 in repair of skeletal muscle has also been shown. Normal repair of skeletal 

muscle requires expansion of local Treg cells. Using elegant studies in both aged and normal mice, 

Kuswanto and colleagues demonstrated that IL-33 regulates muscle Treg homeostasis in young mice 

and that a reduction of IL-33 in aged mice is associated with reduced skeletal muscle repair and 

regeneration. Administration of IL-33 in aged mice was associated with marked improvement in 

muscle Treg accumulation and muscle regeneration [68]. As defective muscle repair subsequent to 

injury and atrophy is a major health problem associated with aging populations, it is possible, 

therefore, that activation of the IL-33/ST2 axis is a potential therapeutic area in this field.   

The mechanics of wound healing: a role for IL-33 in angiogenesis  

Angiogenesis is critical to wound repair. Newly formed blood vessels participate in provisional 

granulation tissue formation and provide nutrition and oxygen to growing tissues. Angiogenesis, in 

response to tissue injury, is a dynamic process that is highly regulated by signals from both serum and 

the surrounding extracellular matrix (ECM) environment. Some cytokines implicated in inflammation 



have been shown to induce angiogenesis and increase vascular permeability and as such play a key 

role in regulating inflammatory angiogenesis. Given the role of IL-33 in promoting wound healing in 

response to both disease and trauma-induced tissue damage, it is therefore perhaps unsurprising that 

clear evidence has been presented to show that IL-33/ST2 can directly drive angiogenesis. IL-33 is 

strongly expressed in endothelial cells (EC), with IL-33 promoting proliferation, migration and 

morphological differentiation of EC [69]. In addition, IL-33 promotes angiogenesis, increases 

vascular permeability, and induces activation of endothelial cells toward an inflammatory phenotype 

through upregulation of IL-6, IL-8, monocyte chemoattractant protein-1, vascular cell 

adhesionmolecule-1, intercellular adhesion molecule-1, and endothelial selectin [70] [71, 72]. IL-33 

has also been shown to increase the production of urokinase-type plasminogen activator (u-PA) in EC 

[73]. u-PA has been implicated in a variety of angiogenesis-dependent physiological as well as 

pathological events such as wound healing. Furthermore, IL-33 drives upregulation of Tissue Factor 

(TF) in ECs [74].  As TF is the primary trigger of coagulation, this further highlights the importance 

of IL-33 in the early stages of wound healing.   

The findings above on the role of IL-33 in angiogenesis focus on the presence of extracellular IL-33 

in tissues, and therefore on IL-33 functioning in its capacity as an alarmin. IL-33, however, is 

abundantly expressed in the nuclei of endothelial cells in most healthy human tissues with nuclear IL-

33 observed to disappear rapidly from blood vessels on tissue injury and in lesions of acute 

inflammation [5].  In the context of wound-healing and wounding, it was noted that nuclear IL-33 was 

lost from all vessels close to the wound as early as 24 hours after injury with nuclear IL-33 remaining 

absent during wound-healing angiogenesis.  Endothelial nuclear IL-33 expression was shown to be 

regulated by Notch signalling [75]. Thus, release of IL-33 appears to be a feature of activated 

endothelial cells, whereas nuclear IL-33 expression is related to a state of vascular quiescence with 

nuclear IL-33 potentially repressing angiogenesis and therefore supressing wound healing. The 

complexity of IL-33 biology is such that further examining the transcriptional repressor activity and 

other nuclear functions of IL-33 in endothelial cells is of high importance to fully understand the role 

of this protein in wound-healing angiogenesis. 

Uncontrolled wound healing responses: The role of IL-33 in fibrosis 

Chronic inflammation and uncontrolled wound repair mechanisms, including unrestrained 

myofibroblast differentiation, fibroblast activation and excessive collagen deposition can lead to 

fibrosis. The associated, often irreversible, impaired organ function is classified as fibrotic disease, a 

leading cause of human mortality and morbidity. Identifying key underlying mechanisms of fibrosis is 

of the utmost importance for the development of novel therapies to treat this wide-ranging disease. 

Recently, the IL-33/ST2 pathway has been implicated in a plethora of fibrotic diseases with beneficial 



effects being reported in some, whilst adverse effects have been noted in other systems, with these 

being recently reviewed in some detail [76] [77].  

Pro-fibrotic roles for IL-33 and ST2 have been reported in the liver, GI, lung, skin and kidney [76]. 

IL-33 is elevated in patients with idiopathic pulmonary fibrosis (IPF) as well as in the bleomycin-

induced murine model of lung injury and fibrosis. This was observed to be predominantly full-length 

intra-nuclear IL-33 (flIL-33). Combined flIL-33 and bleomycin exerted a synergistic effect on 

pulmonary fibrosis. Interestingly, this effect was still observed in ST2 knockout mice, implying that 

this response may be mediated by nuclear located flIL-33 effecting gene expression [78]. In contrast 

Li et al demonstrated that both ST2 deficiency and administration of a blocking IL-33 antibody was 

able to attenuate bleomycin-induced pulmonary fibrosis [79]. Furthermore, intranasal administration 

of lentiviral expressing soluble ST2 significantly attenuated pulmonary fibrotic change and improved 

survival rate [80]. A variety of studies have revealed that IL-33 overexpression is implicated in the 

development of cutaneous fibrotic diseases, such as cutaneous fibrosis [81], psoriasis [82], and 

progressive systemic sclerosis [83]. To model chronic IL-33 release caused by sustained tissue 

damage, repeated administration of rhIL-33 revealed that it induces ST2- dependent cutaneous 

fibrosis and inflammation. Moreover it was noted that IL-13 is a critical downstream mediator of IL-

33-induced cutaneous fibrosis requiring eosinophils and RAG-dependent lymphocytes [81]. A direct 

correlation between both IL-33 and ST2 levels has been observed in both mouse and human liver 

fibrosis correlating closely with collagen expression, again highlighting a role for IL-33/ST2 in 

regulation of matrix proteins [84]. IL-33 has been shown to directly promote hepatic fibrosis, at least 

in part, through its ability to recruit and activate liver-resident ILC2s [85]. IL-33 has also been shown 

to be elevated in biliary atresia patient serum and in the livers and bile ducts of mice with 

experimental biliary atresia. Injury to the biliary epithelium triggers inflammation and can result in 

both intra- and extra- hepatic fibrosis. Administration of IL-33 markedly increased cholangiocyte 

proliferation and promoted sustained cell growth, resulting in dramatic and rapid enlargement of 

extrahepatic bile ducts. This increased proliferation was mediated by an increase in the ILC2 

population [86]. 

Extensive research has detailed an increase in expression of sST2 as early as 1 day after myocardial 

infarction (MI) and with this increase correlating with the ongoing process of cardiac inflammation, 

and fibrosis. Indeed, levels of sST2 are a good predictor of clinical outcome following MI, with high 

levels correlating with a poor prediction and lower levels correlating with a more favorable prognosis 

[87]. As sST2 is a negative regulator of IL-33 signaling, it is not surprising therefore, that a critical 

role of IL-33 in regulating cardiac myocyte activities and a protective role for IL-33 in cardiac fibrotic 

diseases have been suggested. It was demonstrated that IL-33 inhibits cardiomyocyte apoptosis both 

in vitro and in vivo and that IL-33 improved cardiac contractile function after ischemia/reperfusion 

myocardial injury in rats [88].  In addition, in vivo administration of IL-33 significantly decreased 



cardiac interstitial fibrosis in wild type mice that had undergone transaortic constriction surgery to 

increase cardiovascular load [89]. Cardiac fibroblasts, themselves, express ST2 and respond to IL-33 

by inducing pro-inflammatory cytokines and chemokines IL-6 and MCP-1[90]. A similar protective 

function for IL-33 and ST2 has also been observed in atherosclerosis, a fibrosing disease of the 

arteries.  Indeed, it is proposed that low levels of IL-33 may predispose to the development of 

atherosclerotic plaques [91]. Clearly, therefore this important signaling pathway exerts notably 

divergent effects in varying types of fibrosis and as such further work is required to fully understand 

these roles before the therapeutic potential of this pathway can be fully exploited.  

“Wounds that do not heal” – Understanding the role of IL-33 in tumorigenesis 

Wound healing and cancer progression have striking similarities. In 1986, Harold Dvorak suggested 

that “tumours are wounds that do not heal” [92].  His observations were that the mechanisms of 

wound healing and the formation of tumour stroma had similar connective tissue components, 

including fibroblasts, blood and lymphatic vessels, inflammatory cells, and extracellular matrix. In 

contrast to healing wounds, chronicity of the inflammatory phase results in uncontrolled cell 

proliferation, invasion, and metastasis. As outlined above, the IL-33/ST2 pathway participates in 

many of these processes, demonstrating clear direct effects on angiogenesis, production of matrix 

components, on fibrosis that can lead to tumour formation, and on modulation of immune populations 

which can therefore affect the tumor microenvironment. Unsurprisingly, therefore, links between the 

IL-33/ST2 signalling axis and tumorigenesis have recently been identified. In a parallel manner to the 

divergent roles of IL-33/ST2 reported in many of the processes associated with wound healing, both 

pro- and anti-tumorigenic roles have been reported for IL-33 and ST2 in cancer. 

Initially the link between IL-33/ST2 and cancer was identified in breast cancer. Early studies utilising 

ST2-/- mice demonstrated that ST2 deletion inhibited breast cancer progression and increased the 

intra-tumoral accumulation of both innate (NK cell) and acquired immunity (CD8+ T-cells) and 

Th1/Th17 cytokines, indicating that a lack of IL-33 signalling through ST2L promotes a Th1 response 

21484786. In addition, suppressing sST2 reduced ErbB2-induced cell motility in breast cancer cells. 

Furthermore, breast cancer patients with metastatic disease showed increased levels of circulating 

sST2 compared to patients with primary tumours [93]. Further studies in breast cancer also showed 

significantly higher levels of both IL-33 and sST2 in the serum of patients with ER positive breast 

cancer relative to healthy controls [94]. In a subsequent study, administration of IL-33 to breast 

cancer-bearing mice accelerates tumour growth and increased metastasis. The proposed mechanism 

responsible for the enhanced tumour growth was the increase in the number of infiltrating 

immunosuppressive immune cells and innate lymphoid cells, providing further evidence of the role of 

IL-33 in driving carcinogenesis [95]. Consistent with a role for IL-33 and ST2 in promoting tumour 

metastasis and invasion, inhibition of IL-33 and ST2 in glioma cells resulted in reduced tumour 



growth and colony formation in vitro, and reduced tumour size in vivo [96]. In head and neck 

squamous cell carcinoma (HNSCC), it has been shown that administration of IL-33 promoted cancer 

cell migration and invasion through induction of epithelial-mesenchymal transition [97]. Recently, it 

has been suggested that IL-33 can promote gastric cancer cell invasion and migration, which was 

suggested to be mediated by activation of ERK1/2 [98]. In this study, ST2-/- mice showed attenuated 

IL-33-mediated invasion and migration of cancer cells. In squamous cell carcinoma of the tongue, IL-

33 and ST2 were shown to be expressed in cancerous cells in 100% of cases examined and cases with 

higher protein expression of IL-33 and ST2 showed poor overall survival [99]. More recently elegant 

work by Akimoto et al, investigating the role of IL-33 and ST2 in lung demonstrated that IL-33 

enhanced the cell death of ST2L-positive low-metastatic cells, but not of ST2L-negative high-

metastatic cells. These authors concluded that IL-33 enhances lung cancer progression by selecting 

for more malignant cells in the tumour microenvironment [100].  Finally several recent reports have 

reported a pro-tumorigenic role for IL-33 in colon cancer [101, 102] [103, 104]. These studies 

reported an increase in IL-33 in colorectal cancer as compared to adjacent normal tissue and healthy 

volunteers, with IL-33 having a protective anti-tumourigenic effect in colorectal cancer. Inhibition of 

IL-33 in colon cancer cells resulted in reduced tumour growth, migration and colony formation in 

vitro, and smaller tumours in vivo [102]. IL-33 was also shown to activate tumour stroma and 

promote polyposis in APC(Min/+) mice [103]. 

Other studies, however, have shown divergent anti-tumorigenic effects of IL-33 and ST2 in cancer. 

Levels of IL-33 have been reported to be reduced in the plasma of non-small cell lung cancer patients 

relative to controls [105], and levels of IL-33 have also been shown to negatively correlate with 

tumour stage in multiple myeloma patients [106]. Interestingly, IL-33 has been observed to be 

increased in response to viral infection and to be important for the eradication of a viral insult, as it 

can differentiate CTLs into anti-viral CD8+ T cells [107]. IL-33 has also been shown to synergize with 

IL-12 to promote CD8+ T cell effector function [108]. In line with the ability of IL-33 to promote a 

CD8+ T cell response and the fact that CD8+ T cells mediate a vital role in the defence against cancer, 

over-expression of IL-33 potently inhibited tumour growth and metastasis in both B16 melanoma and 

4T1 breast cancer models with both CD8+ T cell and NK cell numbers seen to be increased [109]. 

Similarly, transgenic expression of IL-33 reduced tumour metastasis in a Lewis lung carcinoma and 

B16 melanoma model. Both the number and the cytotoxicity of CD8+ T cells and NK cells were 

increased in response to IL-33 expression [110]. In contrast to the above finding detailed concerning a 

pro-tumorigenic role for IL-33 in CRC, we recently demonstrated that the IL-33/ST2 axis plays an 

anti-tumorigenic role in colon cancer as ST2L expression is decreased in human colon cancer tissue as 

compared to adjacent non-tumour tissue, with lower ST2L expression correlating with poorer patient 

prognosis. Consistent with this, knockdown of ST2 in murine colon cancer cells, resulted in enhanced 



tumour growth (p<0.05) in vivo with reduced CD8+ T cell infiltration observed in the ST2L 

knockdown tumours as compared to the control tumours [29]. 

It appears therefore, that the role of both IL-33 and ST2 in tumorigeneisis may be defined by the 

tumour type and source of the tumour. However, the models utilised above often differ in terms of 

reducing expression of these proteins either within the tumour or within the tumour 

microenvironment. These differing approaches appear to be in part responsible for the seeming 

divergent roles of these proteins in tumorigenesis.  

Conclusions: 

In certain tissue microenvironments the IL-33/ST2 axis appears to have a role in the immediate tissue 

response to injury in keeping with its „alarmin‟ function while additionally regulating matrix 

homeostasis via immune cell crosstalk. It is equally clear, however, that divergent roles in wound 

healing, angiogenesis, fibrosis and tumorigenesis have also been ascribed to both IL-33 and ST2. 

Thus while manipulation of the IL-33/ST2 pathway represents a promising new therapeutic strategy 

for targeting damage associated tissue repair further mechanistic elucidation of its biology is required. 

Whilst some of these divergent roles can potentially be explained as a tissue/cell type specific 

function, it seems likely that a greater understanding of the biology and regulation of IL-33, in 

particular dissecting the conflicting roles of intracellular versus extracellular IL-33 may shed much 

needed light on the biological functions of the IL-33/ST2 axis and its role in wound healing, fibrosis 

and cancer.  
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Figure Legends 

Figure 1: The IL-33/ST2 signalling pathway. 

In humans three splice variants of ST2 exist: ST2L, sST2 and ST2V. sST2 is a soluble protein with no 

transmembrane sequence, it is excreted extracellularly and binds to IL-33. sST2 is thought to act as a 

decoy receptor sequestering IL-33 away from the transmembrane bound receptor ST2L. ST2V is a 

membrane-bound receptor that contains a hydrophobic tail. It contains two Ig domains and is 

expressed in the gut, the function of ST2V has not been fully elucidated. IL-33 binds to the ST2L 

receptor and once IL-1RAcP is recruited, the TIR  domain of IL-1RAcP interacts with the ST2L TIR 

domain. The heterodimeric complex acts as a scaffold for the recruitment of MyD88, IRAK-1 and 

IRAK4. This results in the phosphorylation of B which activates the transcription factor NF-𝜅B. 

AP-1 has also been shown to be activated through activation of the MAPK signalling pathway. This 

activates a pro-inflammatory response via the induction of cytokines and chemokines. 

 

 

Figure 2 

The role of the IL-33/ST2 axis in the immediate tissue response to injury – lessons from tendon 

Schematic depicting the IL-33/ST2 signaling in tendon disease, representing tissue microtrauma.  

Tissue injury/stress results in the release of IL-33 which acts to both promote immune cell recruitment 

/enhanced cytokine production (IL-6, IL-8, CCL-2) and matrix remodeling via the ST2/IL-1RaCP 

complex and subsequent repression of microRNA29a. The IL-33-driven loss of miR-29a expression 

results in the simultaneous repression of collagen 3 and sST2, with a subsequent autoregulatory 

inhibition of IL-33 promoting the resolution of the immediate alarmin response. The tissue 

microenvironment subsequently displays an inflammatory phenotype compared to the homeostatic 

tendon. The resultant crosstalk between IL-33/ST2 and matrix proteins determines resolution versus 

pro damage pathways reflecting in clinical disease. 
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