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Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion
of GeTe near the ferroelectric phase transition
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GeTe is a well-known ferroelectric and thermoelectric material that undergoes a structural phase transition
from a rhombohedral to the rocksalt structure at ∼600–700 K. We present a first-principles approach to calculate
the thermal expansion of GeTe in the rhombohedral phase up to the Curie temperature. We find the minimum of
the Helmholtz free energy with respect to the structural parameters, including the internal atomic displacement,
in a manner similar to the traditional Grüneisen theory, explicitly accounting for the variation of the static elastic
energy with respect to all structural parameters. We obtain the temperature dependence of the structural parameters
of rhombohedral GeTe in very good agreement with experiments. In particular, we correctly reproduce a negative
volumetric thermal expansion of GeTe near the phase transition. We show that the negative thermal expansion is
induced by the coupling between acoustic and soft transverse optical phonons, which is also responsible for the
low lattice thermal conductivity of GeTe.

DOI: 10.1103/PhysRevB.97.224106

I. INTRODUCTION

Most materials expand upon heating, while those that shrink
are much less common. Recent interest in these materials with
negative thermal expansion (NTE) is also driven by techno-
logical applications that require materials with zero thermal
expansion across a desired temperature range [1–3]. Even
though NTE is an unusual phenomenon, it is relatively common
for materials near structural phase transitions, and is typically
associated with soft phonons and strong anharmonicity [1–3].

The Grüneisen theory [4–9] is the standard approach to
calculate thermal expansion from first principles, using density
functional theory. In this method, anharmonicity of the crystal
potential is described via mode Grüneisen parameters (GP’s),
which represent the changes of phonon frequencies with
volume [4–9]. Negative GP’s of certain phonon modes are
commonly identified as the source of NTE [9–12]. Phonon fre-
quencies and mode GP’s are usually calculated using the har-
monic approximation. First-principles methods that describe
phonon frequency renormalization due to anharmonicity have
been recently developed, such as the self-consistent harmonic
approximation (SCHA) [13] and temperature-dependent ef-
fective potentials (TDEP) [14]. These and related approaches
were recently used to describe the negative thermal expansion
of ScF3 [15] and Si [16]. In principle, these methods are
capable of modeling thermal expansion of materials near phase
transitions. However, to the best of our knowledge, no previous
work has investigated this possibility.

GeTe is the simplest ferroelectric material that exhibits
NTE near the phase transition [17–20]. This makes it an ideal
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test case for identifying the physical effects leading to NTE.
At low temperatures, GeTe crystallizes in a rhombohedral
structure [17,18,21], characterized by the Te internal atomic
displacement along the [111] direction from its high-symmetry
position in the rocksalt phase, (0.5,0.5,0.5) in reduced coor-
dinates (see Fig. 1). The angle between the primitive lattice
vectors of the rhombohedral structure also differs from 60◦
for the rocksalt phase. GeTe experiences a structural phase
transition from a rhombohedral to the rocksalt structure at
∼600–700 K depending on the carrier concentration [20]. This
phase transition is mediated by softening of the zone center
transverse optical (TO) mode [22,23], which corresponds to
the frozen-in Te internal atomic displacement along the [111]
axis.

The proximity to the ferroelectric phase transition also
makes GeTe a very good thermoelectric material, either in
the pure [25–31] or alloyed form [32–40]. Its soft TO modes
interact strongly with acoustic modes which carry most heat,
thus leading to the low lattice thermal conductivity [40] and
the high thermoelectric figure of merit. The same mechanism
is responsible for the exceptionally low lattice thermal conduc-
tivity of PbTe [41–44]. GeTe can be driven closer to the soft TO
mode phase transition not only by changing the temperature,
but also by alloying with PbTe [45]. We have recently shown
that the acoustic-TO coupling is strongest for those (Pb,Ge)Te
alloy compositions that are very near the phase transition, and
leads to the minimal lattice thermal conductivity when mass
disorder is neglected [40].

In this paper, we present a first-principles method to
compute the thermal expansion of the rhombohedral phase of
GeTe up to the Curie temperature. We calculate the structural
parameters by minimizing the total free energy with respect
to each structural parameter in the spirit of the Grüneisen
theory. We explicitly include internal atomic position as an
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FIG. 1. Primitive unit cell of GeTe at (a) 0 K and (b) above
the Curie temperature, generated using VESTA software [24]. The
low-temperature rhombohedral structure becomes more similar to
the rocksalt structure as temperature increases: the angle between
the primitive lattice vectors θ becomes closer to 60◦ and the Te
internal atomic position (τ,τ,τ ) approaches (0.5,0.5,0.5) in reduced
coordinates.

independent variable in the minimization process. Although
this effect was included to some extent in previous calculations
of thermal expansion [4,6–9] by relaxing atomic positions due
to applied strain, this may not be sufficient for materials near
phase transitions. Our approach enables us to determine the
temperature dependence of the static elastic energy variations
with structural parameters, which we find is the key to correctly
describing the thermal expansion of GeTe near the phase
transition. We show that our calculated thermal evolution of the
structural parameters of GeTe agrees well with experiments.
Negative volumetric thermal expansion of GeTe near the phase
transition is also well described in our model. We find that
the coupling between acoustic and soft TO modes is the
dominant mechanism leading not only to the low lattice thermal
conductivity of GeTe, as shown previously, but also to its NTE.

II. METHOD

We model the thermal expansion of rhombohedral GeTe
using the ideas of the Grüneisen theory within the elastic
and harmonic approximations for the mechanical and vibra-
tional properties of solids, respectively. A rhombohedral unit
cell is defined with the primitive lattice vectors a(b,0,c),
a(− b

2 , b
√

3
2 ,c), and a(− b

2 , − b
√

3
2 ,c). Here, a is the lattice

constant, and b and c are defined as

b =
√

2

3
(1 − cos θ ),

c =
√

1

3
(1 + 2 cos θ ), (1)

where θ is the angle between the primitive lattice vectors.
The reduced atomic positions of GeTe within this unit cell are
(0,0,0) for Ge atom and (τ,τ,τ ) for Te atom. The temperature
dependence of these structural parameters is implicit. The
Helmholtz total free energy of a rhombohedral crystal per unit
cell is defined as [46]

F (a,θ,τ,T ) = Eel(a,θ,τ ) + Fvib(a,θ,τ,T ), (2)

where Eel(a,θ,τ ) and Fvib(a,θ,τ,T ) correspond to the static
elastic and vibrational free energy at temperature T , respec-
tively. The values of all the structural parameters at a certain
temperature can be found by minimizing the total free energy

with respect to each structural parameter u, u ∈ (a,θ,τ ):

∂F

∂u
= ∂Eel

∂u
+ ∂Fvib

∂u
= 0. (3)

Within the harmonic approximation, vibrational free energy
is given as [46]

Fvib =
∑
q,s

{
h̄ωs(q)

2
+ kBT ln

[
1 − exp

(
− h̄ωs(q)

kBT

)]}
, (4)

where ωs(q) is the phonon frequency of mode s and wave
vector q, and kB is the Boltzmann constant. The derivative of
vibrational free energy with respect to one of the structural
parameters u reads as

∂Fvib

∂u
= − 1

u

∑
q,s

h̄ωs(q)

(
n(ωs(q)) + 1

2

)
γ u

s (q), (5)

where n(ωs(q)) is the Bose-Einstein occupation factor at
temperature T for a phonon with frequency ωs(q). We define
the generalized Grüneisen parameters with respect to each
structural parameter as

γ u
s (q) = − u

ωs(q)

∂ωs(q)

∂u
. (6)

We note that the generalized GP’s γ u
s (q) are computed without

the relaxation of atomic positions with applied strain, in
contrast to previous GP calculations [4–8]. This difference
in the GP’s definitions will lead to differences between our
calculated GP values and those of prior work for GeTe [47].
Nonetheless, we account for the atomic relaxation effects via
the generalized GP’s γ τ

s (q). This separation of variables allows
us to explicitly track the coupling between the soft TO mode
and strain, as we will show.

Phonon frequencies and generalized Grüneisen parameters
can be computed either using the harmonic approximation,
or accounting for the phonon frequency renormalization due
to anharmonicity and the temperature variation of structural
parameters. Here, we calculate phonon frequencies and gen-
eralized GP’s for the values of the structural parameters a,
θ , and τ at 0 K. This is a reasonable approximation since
only the soft TO modes close to the zone center will have
a considerable temperature dependence in GeTe. We expect
that the temperature-induced renormalization of soft TO modes
will have a substantial effect on thermal expansion only very
close to the phase transition.

The static elastic part of total free energy can be expanded
in a Taylor series as

Eel = E0 +
∑

u

Ku�u +
∑
u,v

Kuv�u�v. (7)

�u and �v represent the small deviations of the structural
parameters u and v from their equilibrium values for tem-
perature T (u,v ∈ {a,θ,τ }, u � v). We define the first- and
second-order coefficients as the changes of Eel with respect
to the changes of structural parameters: Ku = ∂Eel

∂u
and Kuv =

(1 − 1
2δuv) ∂2Eel

∂u∂v
. The relationship between these coefficients

and elastic constants is discussed in Appendix A. The final
form for the derivative of static elastic energy with respect to
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one of the structural parameters reads as

∂Eel

∂u
= Ku +

∑
v

(1 + δvu)Kvu�v. (8)

Coefficients K change with temperature due to the contri-
bution of the higher-order terms in the Taylor expansion of
static elastic energy. If we label the changes of the structural
parameters at temperature T with respect to their values at 0 K
as

δa = a − a0,

δθ = θ − θ0,

δτ = τ − τ0, (9)

we can expand static elastic energy as

Eel =
∑
u,v

K0
uv(�u + δu)(�v + δv)

+
∑
u,v,w

K0
uvw(�u + δu)(�v + δv)(�w + δw)

+
∑

u,v,w,t

K0
uvwt (�u + δu)(�v + δv)

× (�w + δw)(�t + δt). (10)

K0
uv , K0

uvw, and K0
uvwt are the second-, third-, and fourth-order

coefficients defined for the changes of structural parameters
calculated at 0 K, and δu ∈ {δa,δθ,δτ } (u � v � w � t).
From Eqs. (7) and (10), we obtain coefficients Ku and Kuv

that depend on the changes δu from the 0 K values, e.g.,

Ka = 2K0
aaδa + K0

aτ δτ + K0
aθ δθ + 3K0

aaaδa
2

+ 2(K0
aaτ δτ + K0

aaθ δθ )δa + K0
aττ δτ

2

+K0
aθθ δθ

2 + K0
aθτ δθδτ + terms with fourth order K0,

Kaa = K0
aa + 3K0

aaaδa + K0
aaθ δθ + K0

aaτ δτ

+ 6K0
aaaaδa

2 + 3(K0
aaaθ δθ + K0

aaaτ δτ )δa + K0
aaθθ δθ

2

+K0
aaττ δτ

2 + K0
aaθτ δθδτ. (11)

The temperature dependence of elastic coefficients Kuv

described by Eq. (11) is directly related to the strength
of anharmonic interactions involving very long-wavelength
acoustic and optical phonons. We thus effectively capture the
anharmonic coupling between different zone center phonon
modes up to the second order, including that between acoustic
and soft transverse optical modes. Anharmonicity of the gen-
eralized GP’s is taken into account only in the lowest order. We
will show that this treatment of anharmonic effects is sufficient
to describe the NTE of GeTe near the phase transition.

Substituting Eqs. (5) and (8) into Eq. (3), we obtain

�u =
∑

v

Svu

[∑
q,s

h̄ωs(q)

(
n(ωs(q)) + 1

2

)
γ v

s (q)

v
− Kv

]
.

(12)

Svu are the elements of the matrix defined as an inverse of the
matrix of coefficients K̂:

K̂ =
⎡
⎣2Kaa Kaθ Kaτ

Kaθ 2Kθθ Kθτ

Kaτ Kθτ 2Kττ

⎤
⎦. (13)

The matrix Ŝ is related to the compliance matrix which
represents an inverse of the elastic constants matrix. We note
that coefficients Ku and Kuv are functions of the structural
parameter changes δa, δθ , and δτ [see Eq. (11)]. We solve
Eq. (12) for δa, δθ , and δτ at each temperature by requiring
that �u = 0, which gives the thermal equilibrium structure.
To do this, we construct an iterative solution as δui+1 =
δui + �ui(δai,δθi,δτi), where �ui is given by Eq. (12). This
is iterated until �ui ≈ 0.

We note that the presented method to calculate thermal
expansion is inexpensive and straightforward to implement.
Its implementation requires: (i) the density functional theory
(DFT) calculations of the phonon frequencies and generalized
Grüneisen parameters for the 0-K values of the structural
parameters, (ii) the calculation of the DFT energy surface
for a range of structural parameter values, whose fitting gives
coefficients K0 [Eq. (10)], and (iii) the iterative solution for
δa, δθ , and δτ in Eq. (12) until �a, �θ , and �τ become zero
for a range of temperatures.

Our approach for obtaining the thermal expansion of rhom-
bohedral materials near soft optical mode phase transitions
can be linked to the standard method based on the Grüneisen
theory [4,5], as shown in Appendix A. The standard approach
finds the minimum of the total free energy of the system
with respect to strain, rather than structural parameters. It
includes the influence of atomic positions on total free energy
by accounting for their relaxation due to applied strain. Far
from the phase transition, our method fully corresponds to
the standard one. However, the standard approach does not
track the temperature dependence of internal atomic position
and the corresponding static elastic energy changes, which are
important for the accurate description of thermal expansion
near the phase transition. More details about these differences
can be found in Appendix A. On the other hand, establishing
the precise relationship between our method and statistical
mechanics approaches [48–50] is less straightforward and
requires further study.

III. COMPUTATIONAL DETAILS

DFT calculations were performed using the plane-wave
basis set, the generalized gradient approximation with
Perdew-Burke-Ernzerhof [51] parametrization (GGA-PBE)
for the exchange-correlation potential, and the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials [52] as imple-
mented in ABINIT code [53]. For the ground state and static
elastic energy calculations, we used a 32-Hartree energy
cutoff for plane waves and a four-shifted 12 × 12 × 12 k-
point grid for Brillouin zone sampling of electronic states.
Harmonic interatomic force constants at zero temperature were
calculated from Hellmann-Feynman forces obtained by the
finite-difference supercell approach using PHONOPY code [54].
Forces were computed using 128-atom supercells (4 × 4 × 4
rhombohedral unit cells) with a 24-Hartree cutoff and a
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TABLE I. Lattice parameters of GeTe at 0 K, calculated using
LDA and GGA-PBE functionals, and compared with experimental
results [17]. a stands for lattice constant, θ for angle, and τ for internal
atomic coordinate.

a (Å) θ (deg) τ V0 (Å3)

LDA 4.207 58.788 0.524 51.193
GGA-PBE 4.381 57.776 0.530 56.420
Experiment (295 K) 4.299 57.931 0.525 53.513

four-shifted 3 × 3 × 3 k-point grid. Phonon frequencies were
calculated using a 20 × 20 × 20 q-point grid for vibrational
modes. We obtained generalized Grüneisen parameters using
a finite-difference method, taking the finite displacement to be
smaller than 1% for a, and smaller than 1% of the difference
between the 0-K rhombohedral and high-temperature rocksalt
structures for θ and τ . For the calculation of coefficients K0 in
Eq. (10), we parametrized the energy surface on uniform grids
for the values of structural parameters a, θ , and τ from the
0-K rhombohedral structure to the high-temperature rocksalt
structure.

IV. RESULTS AND DISCUSSION

We calculated the structural parameters of GeTe at 0 K
using DFT and two different exchange-correlation functionals,
local density approximation (LDA) [52] and GGA-PBE (see
Table I). To our knowledge, the measured values of the
structural parameters at zero temperature are not available.
Nevertheless, it is likely that, as the temperature is reduced
from 295 to 0 K, the angle and internal atomic position would
deviate further from the high-symmetry (rocksalt) values,
and would agree better with the GGA-PBE calculation than
with the LDA. Since our goal is to describe the temperature
dependence of structural parameters near the phase transition,
where internal atomic position plays a crucial role, we use the
GGA-PBE functional in all further calculations. Our values of
structural parameters are also in good agreement with previous
DFT calculations [23,55].

The phonon dispersion of GeTe at 0 K is given in Fig. 2(a),
together with the experimental results for the frequencies of
the Raman-active zone center modes [22,56]. Large intrin-
sic concentrations of charge carriers in real GeTe samples
(1–20 × 1020 cm−1 [29]) completely screen long-range in-
teractions [22]. We roughly estimate this effect by setting
Born effective charges to zero in the calculation of phonon
frequencies [see dashed red lines in Fig. 2(a)]. To evaluate
the importance of screening, we also neglect this effect in
the phonon calculation by using Born effective charge values
obtained using density functional perturbation theory (DFPT)
[solid black lines in Fig. 2(a)]. Using both approaches, our
calculated phonon frequencies at the zone center agree very
well with experimental results [22,56]. Figure 2(b) illustrates
that our computed phonon densities of states (DOS) of GeTe at
0 K compare fairly well with experiments [23,57]. Since there
are no appreciable differences in the calculated phonon DOS
if we exclude or roughly include screening effects, we neglect
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FIG. 2. (a) Phonon dispersion of GeTe calculated using GGA-
PBE exchange-correlation functional neglecting and accounting for
screening (solid black lines and dashed red lines, respectively). The
frequencies of the zone center Raman-active modes were taken from
the measurements of Refs. [22] (red circles) and [56] (green squares).
(b) Phonon density of states of GeTe calculated neglecting and
including screening (solid black line and dashed red line, respectively)
and measured by Refs. [23] (blue circles and red squares) and [57]
(green triangles). The integral of the density of states over frequency
is normalized to unity.

screening in all further calculations.1 Our phonon dispersions
of GeTe also agree well with a previous DFPT calculation [55].

The temperature dependence of all structural parameters
of rhombohedral GeTe (lattice constant, angle, and internal
atomic coordinate τ ) are illustrated in Fig. 3. Solid lines
represent our calculations, while symbols show the mea-
surements of Refs. [17,18]. The experimental values were
transformed from the pseudocubic to the rhombohedral unit
cell for comparison with our results. The computed temper-
ature variation of structural parameters is in good agreement
with experiments, despite the small discrepancy between the
GGA-PBE and the room-temperature experimental structural
parameters (see Table I). Dashed lines in Fig. 3 represent

1We verified explicitly that our treatment of screening produces
a very small effect on the values of structural parameters with
respect to the unscreened case. We expect that a more sophisticated
treatment of screening will change these values more substantially,
as observed experimentally in GeTe samples with different carrier
concentrations [19,20].
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FIG. 3. Structural parameters of GeTe as a function of temper-
ature: (a) lattice constant a, (b) angle θ , and (c) internal atomic
coordinate τ . Solid black lines represent our calculations. Red circles
and blue squares correspond to the measurements of Refs. [17,18],
respectively. Dashed black lines represent our calculations shifted by
the difference between our calculated values and the experimental
values of Ref. [17] at 300 K.

our calculations shifted by the difference between our values
and the experimental values of Ref. [17] at 300 K. The
calculated temperature dependence of the zone center TO mode
frequency (see Appendix B) is also in very good agreement
with experiment [22]. We highlight that all these agreements
are obtained fully from first principles, without any empirical
parameters.

Our calculated structural parameters of rhombohedral GeTe
show clear indications of the ferroelectric phase transition near
700 K (see Fig. 3). As temperature increases, the angle θ and
the internal atomic coordinate τ tend to their high-symmetry
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FIG. 4. Structural parameters of GeTe as a function of tempera-
ture: (a) lattice constant, (b) angle, and (c) internal atomic coordinate.
Solid black lines represent the results obtained using our approach,
while dashed red lines correspond to the standard method (see text
for full explanation).

values 600 and 0.5, respectively. Moreover, the temperature
dependence of all structural parameters diverges from a linear
behavior at high temperatures (500–700 K), which signals the
proximity to the phase transition.

The thermal evolution of the structural parameters of GeTe
is correctly captured only when the total free energy is mini-
mized with respect to all structural parameters, and the temper-
ature dependence of coefficients Ku and Kuv defined in Eq. (8)
is taken into account. Figure 4 shows the comparison between
the calculations obtained using our approach and the standard
approach [4,5], where the free energy is not minimized with
respect to the internal atomic coordinate τ and elastic constants
do not vary with temperature. Even though internal atomic
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FIG. 5. (a) Volumetric thermal expansion of GeTe: our calculation
(solid black line), experiment [17] (red circles), and our calculation
shifted by the difference between our and the experimental value at
300 K (dashed black line). (b) Computed volumetric thermal expan-
sion including and neglecting acoustic soft optical mode coupling,
shown in solid black and dashed red lines, respectively.

position is relaxed as strain is applied in the standard method,
this approach gives qualitatively very different trends com-
pared to our model and experiments [17,18]. These results
highlight the importance of improving the standard method,
to include the critical physical effects occurring near the phase
transition, as shown here.

Most interestingly, GeTe exhibits negative volumetric ther-
mal expansion near the phase transition at ∼700 K, which has
been observed experimentally [17–20] and reproduced in our
calculations [see Fig. 5(a)]. In contrast, the standard approach
gives a positive volume expansion of GeTe in the whole temper-
ature range considered. The volumetric contraction close to the
phase transition is due to the NTE of the lattice constant shown
in Fig. 3(a). We note that the sign of the volumetric thermal ex-
pansion depends strongly on the exact composition of samples,
as does the Curie temperature. Positive volumetric thermal
expansion occurs in samples with more than 50.6% Te, as
measured in Refs. [19,20]. Samples with less than 50.6% of Te
exhibit NTE at the phase transition [19,20], which is in agree-
ment with our calculation for stoichiometric GeTe (50% Te).

Analyzing all the physical quantities that determine
the structural parameters [coefficients K and generalized
Grüneisen parameters entering Eq. (3)], we found that only
Kaτ , Kθτ , and Kττ change substantially near the phase

6060

FIG. 6. Temperature dependence of (a) average generalized
Grüneisen parameters defined for each structural parameter (a, lattice
constant; θ , angle; τ , internal atomic coordinate), and (b) normalized
compliance matrix elements (see text for full explanation).

transition. (Elastic constants also vary considerably close to
the transition, see Appendix C). Kaτ and Kθτ reflect static
elastic energy variations with respect to simultaneous changes
of the structural parameters related to acoustic strain (a and
θ ) and the TO mode (τ ). Consequently, Kaτ and Kθτ quantify
acoustic-TO coupling, and indicate its large variation close to
the phase transition.

Acoustic-soft TO mode coupling that increases
considerably near the phase transition causes the negative
thermal expansion of GeTe. In our computational method,
we can artificially turn off this coupling by setting Kaτ and
Kθτ to zero, as shown in Fig. 5(b). The volume calculated by
neglecting acoustic-TO coupling does not exhibit a negative
thermal expansion. We thus conclude that strong acoustic-TO
phonon coupling is the origin of the NTE of GeTe at the phase
transition.

The most commonly cited cause of negative thermal ex-
pansion in the literature is a negative mode Grüneisen param-
eter [10–12,58]. Here, we investigate the role of generalized
Grüneisen parameters in establishing the NTE of GeTe. We de-
fine average generalized Grüneisen parameters for u ∈ {a,θ,τ }
as

〈γ u〉 = 1

h̄ωD

∑
q,s

h̄ωs(q)

(
n(ωs(q)) + 1

2

)
γ u

s (q), (14)

where ωD is the Debye frequency [59]. The temperature
dependence of 〈γ u〉 is shown in Fig. 6(a). Figure 6(b) illustrates
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the compliance elements that determine the value of lattice
constant in Eq. (12), normalized as S∗

aa = Saa/a
2, S∗

aτ =
Saθ/aθ , and S∗

aτ = Saτ /aτ . The linear temperature depen-
dence of the average generalized Grüneisen parameters stems
from the Bose-Einstein occupation factor. In contrast, the
compliance elements change dramatically with temperature
near the phase transition, due to large temperature variations
of Kaτ , Kθτ , and Kττ . Since the lattice constant expansion
is proportional to Saa〈γ a〉 + Saθ 〈γ θ 〉 + Saτ 〈γ τ 〉 [Eq. (12)],
its negative sign is partially due to negative 〈γ τ 〉, which
physically corresponds to the anharmonicity of the TO mode.
Nevertheless, negative 〈γ τ 〉 is not the main reason for NTE:
it has to be accompanied by a large change of Saτ , i.e.,
large acoustic-TO coupling so that the expansion becomes
negative. Furthermore, Saθ is also negative and its absolute
value increases more rapidly at the phase transition, resulting
in an additional negative contribution to thermal expansion.
This analysis confirms the dominant role of acoustic-TO
coupling in establishing the NTE of GeTe near the phase
transition. We expect that this conclusion will remain valid
even when the temperature dependence of phonon frequencies
and generalized Grüneisen parameters γ u

s (q) is accounted for.
This would make the temperature changes of 〈γ τ 〉 near the
phase transition somewhat larger than those calculated here,
due to the temperature variations of the frequencies of soft TO
modes close to the zone center.

There is an ongoing debate in the literature about the
true nature of the phase transition in GeTe (displacive vs
order-disorder). Our method directly applies only to displacive
phase transition. The experimental support for the displacive
transition in GeTe was reported in Refs. [17,18,23]. This is
challenged by recent works of Fons et al. [56] and Matsunaga
et al. [60], whose findings support the order-disorder picture.
Our calculations show that the thermal expansion near the
phase transition in GeTe can be well described with a purely
displacive model. However, further investigation of order-
disorder effects is needed for the complete description of the
phase transition of GeTe.

V. CONCLUSION

We developed a first-principles method that accurately
describes the temperature dependence of all structural param-
eters for the rhombohedral phase of GeTe up to the Curie
temperature of ∼700 K. The key features of our approach with
respect to the standard method based on the Grüneisen theory
are the minimization of free energy with respect to all structural
parameters, including internal atomic displacement, and the
temperature dependence of static elastic energy. Our computed
thermal expansion is in very good qualitative agreement with
experiment. We showed that the coupling between acoustic
and soft transverse optical modes is the main reason for the
negative volumetric thermal expansion of GeTe near the phase
transition.
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APPENDIX A: CONNECTION BETWEEN OUR APPROACH
AND STANDARD APPROACH TO THERMAL EXPANSION

Our approach for calculating the thermal expansion of
rhombohedral materials can be linked to the standard method
based on the Grüneisen theory [4,5]. In contrast to our ap-
proach, the standard method minimizes the total free energy
with respect to strain. Neglecting the contribution of internal
atomic coordinate τ , the elastic coefficients K defined as the
static elastic energy changes with respect to structural parame-
ters in our method can be transformed into elastic constants. In
the Voigt notation, the elastic matrix of a rhombohedral crystal
reads as

Ĉ =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14 C66

⎤
⎥⎥⎥⎥⎥⎦, (A1)

where C66 = 1
2 (C11 − C12). Our coefficients K can be con-

verted to elastic constants via

Kaa = C11 + C12 + 2C13 + C33/2,

Kθθ = Q2
1(C11 + C12) − 2Q1Q2C13 + Q2

2C33/2,

Kaθ = 2Q1(C11 + C12) + 2(Q1 − Q2)C13 − Q2C33. (A2)

The coefficients Q1 and Q2 represent the dilatation of the
hexagonal structure parameters (lattice constants perpendic-
ular and parallel to the [111] axis) for unit dilatation of angle:

Q1 = sin θ

2(1 − cos θ )
,

Q2 = sin θ

1 + 2 cos θ
. (A3)

We computed the elastic constant matrix Ĉ using density
functional perturbation theory (DFPT) and ABINIT code, and
transformed them into Kaa , Kaθ , and Kθθ using Eq. (A2). We
also calculated Kaa , Kaθ , and Kθθ using DFT and a finite-
difference method, and converted them into Ĉ by inverting
Eq. (A2). All elastic constants and coefficientsK obtained from
DFPT and DFT calculations are in very good agreement (see
Table II). To the best of our knowledge, there are no reported
experimental values for the elastic constants of GeTe. If we
use the Voigt average for calculating the bulk modulus as

9B = 2(C11 + C12) + 4C13 + C33 = 2Kaa, (A4)

we obtain the value of B = 45.92 GPa at 0 K, which is in a
good agreement with the experimental value of 49.9 GPa at
300 K [61].

We note that the elastic constants discussed above corre-
spond to the clamped-ion elastic tensor Ĉ, where the internal
atomic coordinate is not relaxed in the presence of strain.
We explicitly define the coefficients K that take into account
the relaxation of the internal atom: Kττ , Kaτ , and Kθτ . Kττ

represents the soft TO mode. Kaτ and Kθτ are related to the
elements of the force-response internal-strain tensor as defined
in Ref. [62], and physically correspond to acoustic-soft optical
mode coupling.
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TABLE II. Calculated elastic constants of GeTe using density functional perturbation theory (DFPT) and density functional theory (DFT)
combined with a finite-difference method. C11 + C12, C13, and C33 were calculated directly using DFPT, and transformed into Kaa , Kaθ , and
Kθθ using Eq. (A2). Kaa , Kaθ , and Kθθ were computed using DFT, and transformed into C11 + C12, C13, and C33 by inverting Eq. (A2).

C11 + C12 (GPa) C13 (GPa) C33 (GPa) Kaa (eV) Kaθ (eV) Kθθ (eV)

DFPT 114.756 29.962 63.899 72.764 74.514 27.243
Finite-difference DFT 116.555 29.942 60.543 72.789 76.133 27.667

Now, we identify the main differences between our ap-
proach and the standard approach to thermal expansion in the
case of materials near phase transitions. Mode GP’s in the
standard approach are computed as

dωλ(q)

dεde

= ∂ωλ(q)

∂εde

+ ∂ωλ(q)

∂τ

∂τ

∂εde

, (A5)

where εde is a component of the strain tensor [4,5]. We
consider a simplified expression for the total free energy of
a rhombohedral system:

Ftot = Kττ τ
2 + Kaτaτ + Kθτ θτ. (A6)

To find the value of τ at thermal equilibrium, we minimize this
function with respect to τ :

∂Ftot

∂τ
= 2Kττ τ + Kaτa + Kθτ θ = 0, (A7)

τ = −Kaτa + Kθτ θ

2Kττ

. (A8)

We estimate the terms that correspond to the term ∂τ/∂εde in
Eq. (A5) by replacing εde with a (or θ ):

∂τ

∂a
= − Kaτ

2Kττ

. (A9)

The coefficient Kττ corresponds to the zone center soft
TO mode, and becomes zero at the phase transition. Our
calculations show that Kaτ is finite at the phase transition.
Consequently, the factor ∂τ/∂a diverges at the phase transition.
Our method captures the temperature dependence of elastic
coefficients Kuv , u,v ∈ {a,θ,τ }, and thus the temperature
dependence of the terms ∂τ/∂a and ∂τ/∂θ . In contrast, the
standard method gives the corresponding terms only at 0 K.
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FIG. 7. TO mode frequency versus temperature: our calculation
(solid black line) and experiment [22] (red circles).

Both methods ignore the temperature dependence of the terms
∂ωλ(q)/∂εde and ∂ωλ(q)/∂τ in Eq. (A5). We stress that the
temperature dependence of elastic coefficients is critical for the
description of the NTE of GeTe near the phase transition. This
can be obtained straightforwardly by explicitly accounting for
τ in the free-energy minimization, as done in our method.

APPENDIX B: SOFT OPTICAL MODE FREQUENCY

Since Kττ is the second derivative of total energy with
respect to internal atomic coordinate, we can calculate the TO
mode frequency using [46]

ω2
TO = 2Kττ

μa2
‖

, (B1)

where μ is reduced mass of the unit cell and a‖ is the length of
the unit cell in the [111] direction. The temperature-dependent
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224106-8



COUPLING BETWEEN ACOUSTIC AND SOFT TRANSVERSE … PHYSICAL REVIEW B 97, 224106 (2018)

elastic coefficient Kττ is computed as

Kττ = K0
ττ + 3K0

τττ δτ + K0
ττθ δθ + K0

ττaδa

+ 6K0
ττττ δτ

2 + 3(K0
τττθ δθ + K0

τττaδa)δτ

+K0
ττθθ δθ

2 + K0
ττaaδa

2 + K0
ττθaδθδa. (B2)

Consequently, the anharmonic contribution to the zone center
TO mode frequency is explicitly accounted for in our model up
to the second order. The coefficients K0

τττ and K0
ττττ describe

the anharmonicity of the soft TO mode energy potential.
The coefficients such as K0

ττa , K0
ττθ , K0

τττa , etc., describe
anharmonic acoustic-soft TO mode coupling. We also account
for the temperature dependence of a‖. As result, we can track
the softening of TO mode as a function of temperature and
compare it to measurements [22], as shown in Fig. 7. We find
a very good agreement between our calculated TO frequency
and experiment.

APPENDIX C: ELASTIC CONSTANTS NEAR THE
PHASE TRANSITION

In our calculations, the values of all elastic constants
have a steep change at the phase transition, which is in
agreement with experimental observations in SnxGe1−xTe [63]
and PbxGe1−xTe [64]. Figure 8 shows how C11 + C12, C13, and
C33 vary with temperature. C11 + C12 increases rapidly at the
phase transition, as observed in [63,64]. Experimental values

of C13 and C33 were not reported, but our calculations correctly
capture their expected behavior. At the high-symmetry rocksalt
phase, C33 and C11, as well as C12 and C13, should have the
same values. In the low-symmetry rhombohedral phase, C33

has lower value than C11 (Table I), so we would expect that
C33 will increase towards the phase transition to become equal
to C11. On the other hand, C13 is larger than C12, and it will
decrease towards the phase transition to become equal to C12.
Both of these trends are observed in our results.

We made an attempt to verify whether our calculated values
of elastic constants satisfy the Born criteria for mechanical
stability:

C11 − C12 > 0,

C44 > 0,

C11 + 2C12 > 0. (C1)

In our calculations, which are restricted to rhombohedral
symmetry structures, we cannot separately calculate the elastic
constants C11 and C12, and can only track their sum. Our
DFPT calculation at 0 K gives C11 � C12 (C11 = 93.33 GPa,
C12 = 21.43 GPa). SinceC11 + C12 does not vary substantially
with temperature [see Fig. 8(a)], it is likely that C11 and C12

individually exhibit a similar trend. This suggests that the
relations C11 � C12 > 0, C11 − C12 > 0, and C11 + 2C12 >

0 should remain valid up to the Curie temperature. We cannot
track the elastic coefficient C44 related to shear strain since we
do not allow symmetry-lowering types of strain.
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