
Title Preference inference through rescaling preference learning

Authors Wilson, Nic;Montazery, Mojtaba

Publication date 2016

Original Citation Wilson, N. and Montazery, M. (2016) ‘Preference inference
through rescaling preference learning’, in Proceedings of the
25th International Joint Conference on Artificial Intelligence, New
York City, 9-15 July. International Joint Conferences on Artificial
Intelligence Organization, pp. 2203-2209.

Type of publication Conference item

Rights © 2016, International Joint Conferences on Artificial Intelligence.
All rights reserved. - https://www.ijcai.org/contact

Download date 2024-05-14 20:51:38

Item downloaded
from

https://hdl.handle.net/10468/3950

https://hdl.handle.net/10468/3950

Preference Inference Through Rescaling Preference Learning

Nic Wilson and Mojtaba Montazery
Insight Centre for Data Analytics

School of Computer Science and IT
University College Cork, Ireland

{nic.wilson,mojtaba.montazery}@insight-centre.org

Abstract
One approach to preference learning, based on
linear support vector machines, involves choosing
a weight vector whose associated hyperplane has
maximum margin with respect to an input set of
preference vectors, and using this to compare fea-
ture vectors. However, as is well known, the re-
sult can be sensitive to how each feature is scaled,
so that rescaling can lead to an essentially different
vector. This gives rise to a set of possible weight
vectors—which we call the rescale-optimal ones—
considering all possible rescalings. From this set
one can define a more cautious preference relation,
in which one vector is preferred to another if it is
preferred for all rescale-optimal weight vectors. In
this paper, we analyse which vectors are rescale-
optimal, and when there is a unique rescale-optimal
vector, and we consider how to compute the in-
duced preference relation.

1 Introduction
In many contemporary application domains, for example, in-
formation retrieval from large databases or the web, or plan-
ning in complex domains, the user has little knowledge about
the set of possible solutions or feasible items, and what they
generally seek is the best that’s out there. But since the
user does not know what is the best achievable, they typi-
cally cannot characterize it or its properties specifically [Braf-
man, 2008]. So, it is desirable for the system to learn the
user’s preferences over alternative choices (that is, docu-
ments, movies, products and so on) [Brafman and Domshlak,
2009].

Generally, a preference learning task consists of some set
of items for which preferences are known, and the task is
to learn a function which predicts preferences for a new set
of items. An established approach to modeling preferences
makes use of the concept of a utility function. Such a function
assigns an abstract degree of utility to each alternative under
consideration [Fürnkranz and Hüllermeier, 2010]. Learning
a utility function from a given set of training data could be
viewed from a machine learning perspective. However, train-
ing data is not necessarily given in the form of input/output
pairs, but may consist of qualitative feedback in the form of

pairwise comparisons, stating that one alternative is preferred
to another one and therefore has a higher utility degree. Sup-
port Vector Machine (SVM) approaches [Burges, 1998] are
popular in machine learning, and have inspired the develop-
ment of several methods for preference learning, such as Or-
derSVM [Kazawa et al., 2005], SVOR [Herbrich et al., 1999]
and SVMRank [Joachims, 2002]. Essentially, SVM-based
methods are built under this assumption that the utility func-
tion is a linear weighted sum of the features. Despite the fact
that a linear structure for the preference function may sound
too restrictive, incorporating the kernel trick [Aizerman et al.,
1964] alleviates this by providing more flexibility, to model
non-linear functions as well.

Feature spaces normalization (scaling) is an essential re-
quirement for any SVM-based method because they are not
invariant to the scale of their input feature spaces: multi-
plying a feature dimension by a fixed constant > 1 gives
that dimension more weight in the value of the SVM ob-
jective function and, therefore, in the choice of the weight
vector in the preferences function [Stolcke et al., 2008;
Ben-Hur and Weston, 2010]. If we base the scalings on the
input instances, then it can make the induced preference rela-
tion sometimes highly sensitive to precisely which instances
are received. There can thus be subjective, and even rather
arbitrary, choices in the scaling of the feature spaces; differ-
ent ways lead to different preference relations. This suggests
defining a more cautious preference relation, consisting of all
pairs that are inferred for all choices of scalings.

Thus, one alternative is preferred to another if it is pre-
ferred for all rescale-optimal weight vectors, where the
rescale-optimal vectors are those that can be made opti-
mal for some rescaling. This is a form of preference in-
ference; a related form is when we only keep preferences
that are supported by all compatible weight vectors, which
corresponds to the kind of preference inference considered
in [Marinescu et al., 2013]. Other forms of preference
inference, based on more qualitative, lexicographic, mod-
els are considered in [Trabelsi et al., 2011; Wilson, 2014;
Wilson et al., 2015]. Other preference reasoning techniques
based on a family of utility functions include e.g., [Greco et
al., 2010].

In this paper we analyse the new preference relation, deriv-
ing results regarding rescale-optimality that entail when scal-
ing makes a difference, and that lead to a characterisation that

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2203

allows computation of preference.
Section 2 defines the preference relation, and the notion

of rescale-optimality, and gives some basic properties. It can
happen that rescaling makes no difference; we show how to
determine this in Section 3. In Sections 4 and 5 we give
characterisations for rescale-optimality, that lead to a way of
computing the relation, which we test out with benchmarks
derived from a real ride-sharing dataset in Section 6.

2 Rescaled Maximum Margin Preference
Learning

In this section we define, and give some properties of, a pref-
erence relation based on rescaling maximum margin prefer-
ence learning.

2.1 Some Terminology
We first list some terminology that we’ll be using throughout
the paper. Consider arbitrary u, v, w 2 IRn. We say that v is
non-zero if v is not equal to the zero vector 0 = (0, . . . , 0) 2
IRn. Also, v is said to be strictly positive if v(j) > 0 for all
j = 1, . . . , n; let IRn

+ be the set of strictly positive elements
in IRn.

The dot product u · v is equal to
Pn

j=1 u(j)v(j). The (Eu-
clidean) norm |u| of u is given by |u|2 =

Pn
j=1(u(j))

2,
which equals u · u. We also define u � v to be the vec-
tor in IRn given by pointwise multiplication, and thus, for
all j = 1, . . . , n, (u � v)(j) = u(j)v(j). Operation � is
commutative, associative and distributes over addition of vec-
tors. An important property is that for any u, v, w 2 IRn

(u � v) · w = v · (u � w), since they are both equal toPn
j=1 u(j)v(j)w(j).
For ⇤ ✓ IRn, define sets ⇤⇤, ⇤> and ⇤�1 by
⇤⇤ = {w 2 IRn : 8� 2 ⇤, w · � � 0};
⇤> = {w 2 IRn : 8� 2 ⇤, w · � > 0}; and
⇤�1 = {w 2 IRn : 8� 2 ⇤, w · � � 1}.

For finite ⇤ ✓ IRn, we define co(⇤) to be the convex cone
generated by ⇤, i.e., the set of all vectors in IRn that can be
written as

P
v2⇤ rvv, where rv are arbitrary non-negative re-

als. Then co(⇤) is finitely generated (by ⇤). Elements of
co(⇤) are said to be positive linear combinations of elements
of ⇤. A polyhedron is the intersection of a finite number of
closed half-spaces, so is topologically closed and convex and
can be written as {w 2 IRn : 8i 2 I, w · �i � ai}, for finite
I , where each �i 2 IRn and ai 2 IR.

2.2 Maximum Margin Preference Relation
We first describe a simple linear SVM-based preference re-
lation, based on Ranking SVM [Joachims, 2002], but only
considering consistent inputs. Let ⇤ and ⇥ be finite sub-
sets of IRn. We call ⇤, the preference inputs, and we call
⇥ the constraints. Each input preference � 2 ⇤ expresses
a linear restriction � · w > 0 on an unknown user weight
vector w 2 IRn. For instance, if there are n-features, and
the user has told us that they prefer feature vector ↵ to �
(where ↵,� 2 IRn, each representing the values of the al-
ternative over the n features), then we induce from this that

↵ · w > � · w, i.e., (↵ � �) · w > 0, so we include ↵ � � in
⇤. (This linear weighting assumption is less restrictive than it
sounds; for instance, we could form additional features repre-
senting e.g., pairwise products of the basic features, enabling
a richer representation of the utility function.) The constraints
set ⇥ is used for placing general restrictions on w; in partic-
ular, for expressing a restriction that higher values of the jth
feature are at least as good; this translates to a constraint of
the form w(j) � 0, represented by including ej in ⇥, where
ej is the jth unit vector, with ej(j) = 1, and ej(k) = 0 for
j 6= k.

The feasible set C(⇤,⇥) is defined to be ⇤> \ ⇥⇤. We
also define G(⇤,⇥) to be ⇤�1 \ ⇥⇤. If ⇥ is empty, we may
abbreviate G(⇤,⇥) to G(⇤) (and similarly, for other defini-
tions).

The margin function marg⇤ : C(⇤,⇥) ! IR is given
by marg⇤(w) = min�2⇤

w·�
|w| . This is equal to the dis-

tance between hyperplane Hw = {µ 2 IRn : µ · w = 0} and
the closest element of ⇤ to Hw. The definition implies that
marg⇤(w) > 0 for all w 2 C(⇤,⇥), since w · � > 0 for
any w 2 ⇤> and � 2 ⇤. One might view w·�

|w| as the degree
to which w satisfies the preference �, with the best w being
those that satisfy each � to the greatest degree, i.e., those that
maximise marg⇤(w).

For w 2 IRn we define the associated relation >w by, for
↵,� 2 IRn, ↵ >w � if and only if w · ↵ > w · �. Note that
for any real r > 0, the relation >rw is equal to >w.

Define the preference relation >mm
⇤,⇥ by, for ↵,� 2 IRn,

↵ >mm
⇤,⇥ � if and only if there exists w with maximum mar-

gin in C(⇤,⇥) such that ↵ >w �. Theorem 1 implies that
↵ >mm

⇤,⇥ � if and only if ↵ >w(⇤,⇥) �, where w(⇤,⇥) is
the element in G(⇤,⇥) with minimum norm.1 Thus, >mm

⇤,⇥ is
close to being a total order, since for any ↵,� 2 IRn we have
either ↵ >mm

⇤,⇥ � or � >mm
⇤,⇥ ↵ or w(⇤,⇥) · (↵� �) = 0.

Theorem 1 For finite ⇤,⇥ ✓ IRn, if C(⇤,⇥) is non-empty
then G(⇤,⇥) is non-empty and there exists a unique ele-
ment w(⇤,⇥) in G(⇤,⇥) with minimum norm. Also, for
w 2 C(⇤,⇥), w maximises marg⇤ within C(⇤,⇥) if and
only if w is a strictly positive scalar multiple of w(⇤,⇥), i.e.,
there exists r 2 IR with r > 0 such that w = rw(⇤,⇥).

Example 1: Suppose that ⇤ = {(2,�1), (�1, 2), (15 ,
1
5)}

with ⇥ being empty. Then the feasible set C(⇤,⇥) = ⇤>

which equals the set of all w 2 IRn such that 2w(1) > w(2)
and 2w(2) > w(1). The set G(⇤,⇥) = ⇤�1 is shown in
Figure 1(a); it has two extremal points: (3, 2) (corresponding
to the intersection of the lines 2y�x = 1 and x+y = 5) and
(2, 3). The point in G(⇤) with minimum norm is (2.5, 2.5).
Theorem 1 implies that the elements in C(⇤,⇥) with max-
imum margin are w with w(1) = w(2). For instance, if
w = (1, 1) then marg⇤(w) = 1p

2
min(1, 1, 2

5) =
p
2
5 .

The relation >mm
⇤,⇥ equals >(2.5,2.5), which is the same as

>(1,1). Thus, ↵ >mm
⇤,⇥ �, i.e., ↵ � � >mm

⇤,⇥ 0, if and only

1Because of the space restrictions, not all the proofs could be
included. See [Wilson and Montazery, 2016] for missing proofs.

2204

x

y

G(⇤)
2
x

�
y

=
1

�x

+
2y

=
1

(3
, 2)

(2, 3)

(2.5
,

2.5
)

(1, 1)

(a)

3
x

+
2
y

=
0

2
x

+
3
y

=
0

x

+
y

=
0

(
1
5
,

1
5
)

(2
,�1)

(�
1
,

2
)

x

y

(b)

Figure 1: (a) The shaded region shows G(⇤) when ⇤ =
{(2,�1), (�1, 2), (15 ,

1
5)}, with every element of the line

segment between (3, 2) and (2, 3) being rescale-optimal in
G(⇤). (b) shows the boundaries of the preferred regions for
the relations >mm

⇤ , �⇤ and �⇤
⇤.

if (↵��) · (1, 1) > 0, i.e., ↵(1)+↵(2)� (�(1)+�(2)) > 0.
The set of � that are >mm

⇤,⇥-preferred to 0 is the region in Fig-
ure 1(b) to the right of the dotted line.

2.3 The Effect of Rescaling
Consider the effect of a rescaling ⌧ , i.e., ⌧ 2 IRn

+, where
an element v 2 IRn is transformed into v � ⌧ . An input
preference vector � becomes � � ⌧ , so ⇤ becomes ⇤ � ⌧ =
{�� ⌧ : � 2 ⇤}, and the constraints set ⇥ becomes ⇥ � ⌧ .
The feasible set becomes C(⇤ � ⌧,⇥ � ⌧). For example, if
⌧ is the rescaling (1, 2) and ⇤ = {(2,�1), (�1, 2), (15 ,

1
5)}

then ⇤ � ⌧ = {(2,�2), (�1, 4), (15 ,
2
5)}. Rescaling by ⌧

means that each ↵ 2 IRn becomes instead ↵ � ⌧ . Let us
say that ↵ is max-margin-preferred to � under rescaling ⌧
if ↵ � ⌧ >mm

⇤�⌧,⇥�⌧ � � ⌧ , i.e., if rescaled ↵ is preferred
to rescaled � under the max margin relation relation corre-
sponding to rescaled ⇤ and ⇥. Now, it can easily happen that
↵ is preferred to � under one rescaling, but not under another
(see e.g., the example in Section 2.5). Also, the choice of
how the features are scaled relative to each other can involve
somewhat arbitrary choices. It is therefore natural to consider
the relation given by ↵ being preferred to � for all rescalings
⌧ 2 IRn

+.

Definition 1 (�⇤,⇥) We define relation �⇤,⇥ by, for ↵,� 2
IRn, ↵ �⇤,⇥ � if and only if ↵ is max-margin-preferred to �
over all rescalings, i.e., if for all ⌧ 2 IRn

+, ↵ � ⌧ >mm
⇤�⌧,⇥�⌧

� � ⌧ .

Let w⇤
⌧ (⇤,⇥) (abbreviated to w⇤

⌧) be the element with min-
imum norm in G(⇤ � ⌧,⇥ � ⌧). Theorem 1 implies that
↵ � ⌧ >mm

⇤�⌧,⇥�⌧ � � ⌧ if and only if ↵ � ⌧ >w⇤
⌧
� � ⌧ ,

which can be rewritten as ↵ >w⇤
⌧�⌧ �.

Defining RO(⇤,⇥) to be {w⇤
⌧ � ⌧ : ⌧ 2 IRn

+}, we have:
↵ �⇤,⇥ � () for all w 2 RO(⇤,⇥), ↵ >w �.

For example, it can be shown that in Figure 1(a), RO(⇤,⇥)
is the closed line segment between (2, 3) and (3, 2). We show
below that RO(⇤,⇥) is equal the set of rescale-optimal ele-
ments in G(⇤,⇥), defined as follows.

Definition 2 (Rescale-optimal) For G ✓ IRn, and u 2 G,
let us say that u is rescale-optimal in G if there exists strictly
positive ⌧ 2 IRn

+ with |⌧ � w| � |⌧ � u| for all w 2 G.

If 0 2 G then it is the unique element that is rescale-optimal
in G. For ⌧ 2 IRn

+, we define ⌧�1 to be the element of IRn
+

given by ⌧�1(j) = 1/⌧(j) for all j 2 {1, . . . , n}.

Lemma 1 Consider any v 2 IRn and any ⌧ 2 IRn
+. Then,

v 2 G(⇤,⇥) if and only if v � ⌧ 2 G(⇤ � ⌧�1,⇥ � ⌧�1).
Also, v = w minimises |w� ⌧ | over w 2 G(⇤,⇥) if and only
if v = ⌧�1 � w⇤

⌧�1(⇤,⇥).

Proposition 1 RO(⇤,⇥) is the set of all rescale-optimal el-
ements of G(⇤,⇥). Thus, for ↵,� 2 IRn, ↵ �⇤,⇥ � if and
only if ↵ >w � for all rescale-optimal elements of G(⇤,⇥),
which is if and only if ↵� � 2 (RO(⇤,⇥))>.

Proof: Consider any v 2 IRn. Then, v is rescale-optimal in
G(⇤,⇥) if and only if there exists ⌧ 2 IRn

+ such that v = w
minimises |w � ⌧ | over w 2 G(⇤,⇥), which, by Lemma 1,
is if and only if there exists ⌧ 2 IRn

+ such that v = ⌧�1 �
w⇤

⌧�1(⇤,⇥), which is if and only if v 2 RO(⇤,⇥). The last
part follows immediately from the definitions. 2

Another natural preference relation �⇤
⇤,⇥, which is very

closely related to the one explored in [Marinescu et al., 2012;
2013], is given by ↵ �⇤

⇤,⇥ � if and only if for all w 2
C(⇤,⇥), w · (↵ � �) > 0, i.e., iff ↵ is preferred to � for
all compatible weight vectors. This holds if and only if for
all w 2 G(⇤,⇥), w · (↵ � �) > 0. Thus, ↵ �⇤

⇤,⇥ �

if and only if ↵ � � 2 (G(⇤,⇥))>. (When ⇥ is empty,
(G(⇤,⇥))> is equal to co(⇤), the smallest convex cone con-
taining ⇤.) This implies that if ↵ �⇤

⇤,⇥ � then ↵ �⇤,⇥ �.
The three defined preference relations are therefore nested:
�⇤

⇤,⇥ ✓�⇤,⇥ ✓>mm
⇤,⇥. The three relations are all irreflexive

and transitive, and thus strict partial orders (with >mm
⇤,⇥ close

to being a total order). Also, if � is any of the three relations,
� � 0, for any � 2 ⇤, and for ↵,�, � 2 IRn and r 2 IR with
r > 0, if ↵ � � then ↵+ � � � + � and r↵ > r�.

2.4 Pointwise Undominated Vectors

For u 2 G(⇤,⇥), if there exists v 2 G(⇤,⇥) such that for
all j, v(j) is between u(j) and 0 then it is easy to see that u is
not rescale-optimal. This is the idea behind being pointwise
undominated.

Definition 3 (pointwise dominance) For u, v 2 IRn, v
pointwise dominates u if u 6= v and for all j 2 {1, . . . , n},
either 0  v(j)  u(j) or 0 � v(j) � u(j). u is point-
wise undominated in G ✓ IRn if there exists no v 2 G that
pointwise dominates u.

The definition easily implies that rescale-optimality im-
plies being pointwise undominated.

Proposition 2 Let G ✓ IRn. If u is rescale-optimal in G then
u is pointwise undominated in G.

2205

2.5 Example 1 Continued
Since (2.5, 2.5) has minimum norm in G(⇤), it is rescale-
optimal. The only pointwise undominated elements in G(⇤)
are (3, 2), (2, 3), and the line segment joining them, and, it
turns out that all these are rescale-optimal. If we set ⌧ =

(r, 1) then r 
p

2/3 will lead to the point (3, 2) having
minimum value of |(x, y)� ⌧ |.

Figure 1(b) illustrates the strength of the three relations,
>mm

⇤ , �⇤ and �⇤
⇤, by showing the regions of all � 2 IR2

that are preferred to 0. For �⇤
⇤, this is the convex cone

generated by the three input vectors ⇤, i.e., all positive lin-
ear combinations of them. For �⇤, the preferred set is
the intersection of the halfspaces {� : � · (3, 2) > 0} and
{� : � · (2, 3) > 0}. The largest preference region is associ-
ated with >mm

⇤ , with � >mm
⇤,⇥ 0 if and only if �(x) + �(y) >

0. Since �⇤ is not equal to >mm
⇤ , the scaling makes a dif-

ference. E.g., (5, 0) >mm
⇤ (0, 4), which is the same as (5, 0)

being preferred to (0, 4) under rescaling (1, 1). However, it
can be shown that (0, 4) is preferred to (5, 0) under rescal-
ing ⌧ = (1, 2), with w⇤

⌧ � ⌧ being equal to (2, 3) (which
minimises |v � ⌧�1| over v 2 G(⇤)) and (0, 4) · (2, 3) >
(5, 0) · (2, 3).

Now consider if ⇤ instead equals {(2,�1), (�1, 2)}. Then
G(⇤) has a single extremal point (1, 1), being the intersec-
tion of the lines 2x � y = 1 and 2y � x = 1. Since
(1, 1) is the element in G(⇤) with minimum norm, we have
w(⇤,⇥) = (1, 1), and (1, 1) is rescale-optimal. Thus, >mm

⇤
equals >(1,1). In fact, (1, 1) pointwise dominates every other
element in G(⇤), so, by Proposition 2, is the only rescale-
optimal vector in G(⇤). Then, �⇤ is just >(1,1), so that
↵ �⇤ � if and only if ↵(x) + ↵(y) > �(x) + �(y). This
example shows that allowing rescaling can sometimes make
no difference. In Section 3 we show a general result that u is
a unique rescale-optimal element in closed convex G if and
only if u pointwise dominates every other element of G.

3 Determining Uniquely Rescale-Optimal
Vectors

Here we characterise the situations when rescaling makes no
difference, i.e., when there is a unique rescale-optimal vector.

For convex closed G ✓ IRn, and for ⌧ 2 IRn
+ we write

w⌧ (G) for the unique vector w 2 G with minimum value of
|w � ⌧ |, which makes sense because of the following result.
Thus, u is rescale-optimal in convex closed G if and only if
there exists ⌧ 2 IRn

+ such that u = w⌧ (G).

Lemma 2 Let G be a convex and (topologically) closed sub-
set of IRn. For each strictly positive vector ⌧ 2 IRn

+, there
exists a unique w 2 G with minimum value of |w � ⌧ |.

Theorem 2 below states that u is the only rescale-optimal
element in convex closed G if and only if u pointwise dom-
inates every other element of G. The proof uses a pair of
lemmas.

Lemma 3 Let u, v 2 IRn. There exists k 2 {1, . . . , n} such
that |u(k)| < |v(k)| if and only if there exists ⌧ 2 IRn

+ such
that |u� ⌧ | < |v� ⌧ |. Thus, for all j 2 {1, . . . , n}, |u(j)| �
|v(j)| if and only if for all ⌧ 2 IRn

+, |u� ⌧ | � |v � ⌧ |.

Lemma 4 Let G be a convex subset of IRn, and let j be any
element of {1, . . . , n}. Then either (i) there exists w 2 G
such that w(j) = 0; or (ii) for all w 2 G, w(j) > 0; or (iii)
for all w 2 G, w(j) < 0.
Theorem 2 Let G be a convex and closed subset of IRn, and
let u be an element of G. Then the following conditions are
equivalent.

(i) u is uniquely rescale-optimal in G, i.e., u is the unique
element of G that is rescale-optimal;

(ii) for all v 2 G, for all j 2 {1, . . . , n}, |v(j)| � |u(j)|;
(iii) u pointwise dominates every element in G� {u}.

The equivalence between (i) and (ii) is proved using Lem-
mas 2 and 3, and the equivalence between (ii) and (iii) follows
using Lemma 4.
Corollary 1 For finite ⇤,⇥ ✓ IRn, let G = G(⇤,⇥).
Define y 2 IRn as follows. Choose an arbitrary ele-
ment z 2 G. For each j 2 {1, . . . , n}: If z(j) = 0
then define y(j) = 0. If z(j) > 0 then define y(j) =
inf {w(j) : w 2 G,w(j) � 0}. If z(j) < 0 then define
y(j) = sup {w(j) : w 2 G,w(j)  0}. If y 2 G then y is
uniquely rescale-optimal in G. Also, there exists a uniquely
rescale-optimal element in G if and only if y 2 G.

Corollary 1 leads immediately to an algorithm for deter-
mining if G(⇤,⇥) has a uniquely rescale-optimal element,
and finding it, if it exists. The algorithm involves at most
n+1 runs of a linear programming solver, and thus determin-
ing and finding a uniquely rescale-optimal element u can be
performed in polynomial time. If it succeeds in finding such a
u then the induced preferences can be efficiently tested using:
↵ �⇤,⇥ � if and only if u · (↵� �) > 0.

4 Zm-Pointwise Undominated Vectors
Proposition 2 states that being pointwise undominated is a
necessary condition for being rescale-optimal. The example
below shows that the two conditions are not equivalent. In
this section we define a stronger version of pointwise undom-
inated called zm-pointwise undominated, where ‘zm’ stands
for zeros-modified (the essential difference being in the treat-
ment of j such that u(j) = 0). We show that this is still a nec-
essary condition for rescale-optimality, and is in fact equiva-
lent to rescale-optimality (for polyhedra).

Example 2: Let G ✓ IR2 be given by all pairs (x, y) such
that x + y � 1. It can be seen that the set of points that
are pointwise undominated is {(x, 1� x) : x 2 [0, 1]}. On
the other hand, the set of points that are rescale-optimal is
{(x, 1� x) : x 2 (0, 1)}: neither (1, 0) nor (0, 1) is rescale-
optimal. This is because if rescaling ⌧ 2 IR2 is such that
⌧(x)/⌧(y) = r, for r 2 (0,1), then the associated rescale-
optimal w⌧ (G) is equal to 1

1+r2 (1, r
2), which is never equal

to (1, 0) or (0, 1).
Definition 4 (zm-pointwise undominated) We say that u is
zm-pointwise undominated in G if for all v 2 G, either (a)
v(j) = u(j) for all j 2 {1, . . . , n} such that u(j) 6= 0; or (b)
there exists k 2 {1, . . . , n} such that either 0 < u(k) < v(k)
or 0 > u(k) > v(k).

2206

It is easily shown that if u is zm-pointwise undominated
in convex G then it is pointwise undominated in G. Propo-
sition 3 below shows that being zm-pointwise undominated
is a necessary condition for being rescale-optimal. The proof
uses the following lemma.
Lemma 5 Let u, v 2 IRn, with u 6= v, and let ⌧ 2 IRn

+. For
� 2 (0, 1] let v� = �v + (1� �)u. Then the following hold:

(i) For any � 2 IR, |v� � ⌧ |2 � |u � ⌧ |2 = �2|(v � u) �
⌧ |2 + 2�(⌧ � ⌧ � u) · (v � u).

(ii) (⌧ � ⌧ �u) · (v�u) � 0 if and only if for all � 2 (0, 1],
|v� � ⌧ | > |u� ⌧ |.

(iii) There exists ⌧ 2 IRn
+ such that (⌧�⌧�u)·(v�u) � 0 if

and only if either (a) v(j) = u(j) for all j 2 {1, . . . , n}
such that u(j) 6= 0; or (b) there exists k 2 {1, . . . , n}
such that either 0 < u(k) < v(k) or 0 > u(k) > v(k).

Proposition 3 Let u be an element of convex G ✓ IRn.
Then:

(i) u is rescale-optimal in G if and only if there exists ⌧ 2
IRn

+ such that for all v 2 G, (⌧ � ⌧ � u) · (v � u) � 0.
(ii) u is zm-pointwise undominated in G if and only if for all

v 2 G, there exists ⌧ 2 IRn
+ such that (⌧ � ⌧ � u) · (v�

u) � 0.
(iii) If u is rescale-optimal in G then u is zm-pointwise un-

dominated in G.

Proof: (i): Using Lemma 2, u is rescale-optimal in G if and
only if there exists ⌧ 2 IRn

+ such that for all v 2 G � {u},
|v � ⌧ | > |u� ⌧ |, which, since G is convex, is if and only if,
there exists ⌧ 2 IRn

+ such that for all v 2 G� {u} and for all
� 2 (0, 1], |v� � ⌧ | > |u� ⌧ |, where v� = �v+ (1� �)u. By
Lemma 5(ii), this is if and only if there exists ⌧ 2 IRn

+ such
that for all v 2 G � {u}, (⌧ � ⌧ � u) · (v � u) � 0, which
holds iff for all v 2 G, (⌧ � ⌧ � u) · (v � u) � 0.

(ii) By Lemma 5(iii), u is zm-pointwise undominated in G
if and only if for all v 2 G� {u}, there exists ⌧ 2 IRn

+ such
that (⌧ � ⌧ � u) · (v � u) � 0, from which (ii) follows.

(iii) follows immediately from (i) and (ii). 2

Definition 5 (agreeing on signs) For u, v 2 IRn, we say that
u and v agree on signs if for all j = 1, . . . , n, (i) u(j) = 0
() v(j) = 0; (ii) u(j) > 0 () v(j) > 0; and thus also:
(iii) u(j) < 0 () v(j) < 0.

Proposition 3(i) implies the following characterisation of
rescale-optimality, by letting µ0 = ⌧ � ⌧ � u and µ = µ0

µ0·u ;
for the converse, we use ⌧ such that µ = ⌧ � ⌧ � u, so that
⌧(j)2 = µ(j)/u(j) when u(j) 6= 0.
Theorem 3 Consider any u in convex G ✓ IRn. If u = 0
then it is the unique rescale-optimal element of G. Otherwise,
u is rescale-optimal in G if and only if there exists µ 2 IRn

agreeing on signs with u such that µ·u = 1 and for all w 2 G,
µ · w � 1.

It turns out that being zm-pointwise undominated is equiv-
alent to being rescale-optimal, for a polyhedron. (The proof
is quite technical, and makes use of classical results about
convex sets, see [Wilson and Montazery, 2016].)

Theorem 4 Let u be an element of polyhedron G ✓ IRn.
Then, u is rescale-optimal in G if and only if u is zm-
pointwise undominated in G.

5 Computational Characterisation of
Rescale-Optimal

Here we extend the characterisation of rescale-optimality
given in Theorem 4, leading to a computational method for
testing rescale-optimality, and thus to a method for testing if
↵ �⇤,⇥ �, for ↵,� 2 IRn.

5.1 Expressing Rescale-Optimality in Terms of
Positive Linear Combinations

Theorem 3 implies that non-zero u is rescale-optimal in
G(⇤,⇥) if and only if there exists a vector µ that agrees on
signs with u with µ ·w � µ ·u for all w 2 G. The main result
of this section is the following, that shows that µ is a positive
linear combination of certain vectors in ⇤ [⇥.

Theorem 5 Let G be a polyhedron, which we write as GI =
{w 2 IRn : 8i 2 I, w · �i � ai}, for finite I , and with each
�i 2 IRn and ai 2 IR. Consider any non-zero vector u in
GI . Then, u is rescale-optimal in GI if and only if there exists
µ 2 IRn that agrees on signs with u such that µ ·u = 1 and µ
is a positive linear combination of elements of {�i : i 2 Ju},
where Ju = {i 2 I : �i · u = ai}.

Note that this implies that if non-zero u is rescale-optimal
in GI then Ju is non-empty, since 0 is the only positive linear
combination of the empty set, and µ 6= 0.

The proof uses the following lemmas. We first give a prop-
erty that follows easily from standard results about convex
cones.

Lemma 6 Let ⇤ be a finite subset of IRn and let µ 2 IRn.
Then ⇤⇤ ✓ ({µ})⇤ if and only if µ 2 co(⇤).

Lemma 7 Consider non-zero u 2 GI (as defined above).
Then u is rescale-optimal in GI if and only if u is rescale-
optimal in GJu = {w 2 IRn : 8i 2 Ju, w · �i � ai}.

Lemma 8 GJu + {�u} is equal to {�i : i 2 Ju}⇤.

Proof of Theorem 5
First consider µ 2 IRn such that µ · u = 1. Then it can
be seen that {w : w · µ � 1} + {�u} = ({µ})⇤. Also,
GJu ✓ {w : w · µ � 1} if and only if GJu+{�u} ✓ ({µ})⇤
() {�i : i 2 Ju}⇤ ✓ ({µ})⇤, using Lemma 8, which, by
Lemma 6, is if and only if, µ 2 co({�i : i 2 Ju}).

By Lemma 7, u is rescale-optimal in GI if and only if u is
rescale-optimal in GJu , which, by Theorem 3, is if and only if
there exists µ 2 IRn agreeing on signs with u such that µ·u =
1 and GJu ✓ {w : w · µ � 1}, i.e., µ 2 co({�i : i 2 Ju}),
by the earlier argument. 2

We have the following corollary (using the same notation),
which shows that testing if u is rescale-optimal in GI can be
performed in polynomial time: by first checking that u 2 GI

(i.e., for all i 2 I , u · �i � ai), and then testing if a set of
inequalities has a solution, using a linear programming solver.

2207

Corollary 2 u is rescale-optimal in GI if and only if u 2 GI

and there exists non-negative reals ri for each i 2 Ju, (i.e.,
i 2 I such that �i · u = ai) and vector ⌧ 2 IRn with for all
j 2 {1, . . . , n}, ⌧(j) � 1, and ⌧(j)u(j) =

P
i2Ju

ri�i.

5.2 Computation of Inference
For finite subsets ⇤,⇥ of IRn, and arbitrary ↵,� 2 IRn,
we would like to be able to determine if ↵ �⇤,⇥ �. Now,
↵ 6�⇤,⇥ � if and only if there exists u that is rescale-optimal
in G(⇤,⇥) such that u · (� � ↵) � 0. Labelling ⇤ as
{�i : i 2 I} and ⇥ as {✓k : k 2 K}, it follows, using The-
orem 5, that ↵ 6�⇤,⇥ � if and only if there exists u 2 IRn

and µ 2 IRn, non-negative reals ri for each i 2 I and non-
negative reals sk for k 2 K, such that

• u · (� � ↵) � 0;
• 8i 2 I , u · �i � 1, and [u · �i = 1 or ri = 0];
• 8k 2 K, u · ✓k � 0, and [u · ✓k = 0 or sk = 0];
• 8j = 1, . . . , n, u(j) = 0 () µ(j) = 0, and u(j) >
0 () µ(j) > 0; and

• µ =
P

i2I ri�i +
P

k2K sk✓k.

6 Experimental Testing
The experiments make use of a subset of a year’s worth of
real ridesharing records, provided by a commercial rideshar-
ing system Carma (see http://carmacarpool.com/).
We base our experiments on 13 benchmarks derived from this
data-set. Each ridesharing alternative has 7 features, repre-
senting different aspects of a possible choice of match for a
given user. Each benchmark corresponds to the inferred pref-
erences of a different user. An input preference of alternative
↵i over �i leads to ↵i � �i being included in ⇤. However, a
pre-processing phase deletes some elements of ⇤, in order to
make it consistent (i.e., ⇤> 6= ;), since in this paper we as-
sume consistent preferences. (We assume no additional con-
straints, so ⇥ = ;.) More information about the data can be
found in [Montazery and Wilson, 2016].

We randomly generate 100 pairs of (↵,�), based on a uni-
form distribution for each feature. A pair (↵,�) is called deci-
sive for preference relation �⇤ if either ↵ �⇤ � or � �⇤ ↵
hold, i.e., if ↵ and � are comparable with respect to �⇤; sim-
ilarly, for �⇤

⇤. (All 100 pairs turn out to be decisive for >mm
⇤ ,

as one would expect.) Table 1 shows the percentage of deci-
sive pairs for �⇤ and �⇤

⇤, as well as the running time per
request. CPLEX 12.6.2 is used as the solver on a computer
facilitated by a Core i7 2.60 GHz processor and 8 GB RAM
memory. Testing ↵ �⇤ � is performed using quite a simple
CPLEX model based on the approach in Section 5.2. Deter-
mining ↵ �⇤

⇤ � is based on consistency of a set of linear
constraints, so is fast.

The results indicate that for these benchmarks, �⇤ is much
more decisive than �⇤

⇤. At the same time, �⇤ is not equal to
the maximum margin relation >mm

⇤ , so, in each case, rescal-
ing makes a difference. Testing preference with respect to
�⇤ can be performed in reasonable time, the slowest instance
being Benchmark 13, with a mean query time of around 5.3
seconds, based on 134 input preferences in ⇤.

Table 1: A comparison, using 13 benchmarks, between pref-
erence relations �⇤ and �⇤

⇤.

|⇤| Decisive Pairs (%) Time (msec)

�⇤ �⇤
⇤ �⇤ �⇤

⇤

1. 24 19 2 248 9
2. 29 94 0 1554 7
3. 31 18 0 421 6
4. 36 83 27 2478 6
5. 38 35 2 2123 5
6. 41 63 14 3006 5
7. 53 41 15 873 3
8. 55 97 11 1347 5
9. 62 54 1 1218 4

10. 94 62 6 2810 4
11. 127 67 9 3495 5
12. 129 77 0 1652 3
13. 134 68 19 5330 4

Avg 66 60 8 2217 5

7 Discussion
We have described a novel way of inducing a preference
relation—by considering all possible rescalings when apply-
ing a linear SVM-based approach for preference learning—
and derived formal results that allow its computation. Our
experimental results indicate that the relation can be com-
puted in a reasonable time for significantly sized instances,
and that the relation can be considerably different from both
the maximum margin relation and a simple cone-based rela-
tion. The results are also very relevant for a more general sit-
uation where one had restrictions on a set of allowable rescal-
ings. There are a number of directions for further work, in-
cluding: extensions to the case of inconsistent input sets and
to the computation of which alternatives among a set can be
optimal with respect to some rescaling; analysis—along sim-
ilar lines as in this paper—to the other natural forms of in-
variance of feature spaces. Finally, it would be interesting to
consider the application and generalisation of our results to
other convex optimisation problems.

Acknowledgments
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) un-
der Grant Number SFI/12/RC/2289. We’re very grateful for
Carma for the use of their dataset. Thanks to the reviewers
for their comments, which helped improve the final version
of the paper.

References
[Aizerman et al., 1964] A. Aizerman, E. M. Braverman, and

L. I. Rozoner. Theoretical foundations of the potential
function method in pattern recognition learning. Automa-
tion and Remote Control, 25:821–837, 1964.

[Ben-Hur and Weston, 2010] Asa Ben-Hur and Jason We-
ston. A users guide to support vector machines. In Oliviero

2208

Carugo and Frank Eisenhaber, editors, Data Mining Tech-
niques for the Life Sciences, volume 609 of Methods in
Molecular Biology, pages 223–239. Humana Press, 2010.

[Brafman and Domshlak, 2009] Ronen I. Brafman and
Carmel Domshlak. Preference handling - an introductory
tutorial. AI Magazine, 30(1):58–86, 2009.

[Brafman, 2008] Ronen I Brafman. Preferences, planning
and control. In KR, pages 2–5, 2008.

[Burges, 1998] Christopher JC Burges. A tutorial on support
vector machines for pattern recognition. Data mining and
knowledge discovery, 2(2):121–167, 1998.

[Fürnkranz and Hüllermeier, 2010] Johannes Fürnkranz and
Eyke Hüllermeier. Preference learning. Springer, 2010.

[Greco et al., 2010] Salvatore Greco, Vincent Mousseau,
and Roman Slowinski. Multiple criteria sorting with a set
of additive value functions. European Journal of Opera-
tional Research, 207(3):1455–1470, 2010.

[Herbrich et al., 1999] Ralf Herbrich, Thore Graepel, and
Klaus Obermayer. Support vector learning for ordinal re-
gression. In Artificial Neural Networks, 1999. ICANN 99.
Ninth International Conference on (Conf. Publ. No. 470),
volume 1, pages 97–102. IET, 1999.

[Joachims, 2002] Thorsten Joachims. Optimizing search en-
gines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM, 2002.

[Kazawa et al., 2005] Hideto Kazawa, Tsutomu Hirao, and
Eisaku Maeda. Order svm: a kernel method for order
learning based on generalized order statistics. Systems and
Computers in Japan, 36(1):35–43, 2005.

[Marinescu et al., 2012] Radu Marinescu, Abdul Razak, and
Nic Wilson. Multi-objective influence diagrams. In Un-
certainty in Artificial Intelligence (UAI), pages 574–583,
2012.

[Marinescu et al., 2013] Radu Marinescu, Abdul Razak, and
Nic Wilson. Multi-objective constraint optimization with
tradeoffs. In Proc. CP-2013, pages 497–512, 2013.

[Montazery and Wilson, 2016] Mojtaba Montazery and Nic
Wilson. Learning user preferences in matching for
ridesharing. In Proceedings of the 8th International Con-
ference on Agents and Artificial Intelligence (ICAART
2016), volume 2, pages 63–73, 2016.

[Stolcke et al., 2008] Andreas Stolcke, Sachin Kajarekar,
and Luciana Ferrer. Nonparametric feature normalization
for svm-based speaker verification. In Acoustics, Speech
and Signal Processing, 2008. ICASSP 2008. IEEE Inter-
national Conference on, pages 1577–1580. IEEE, 2008.

[Trabelsi et al., 2011] Walid Trabelsi, Nic Wilson, Derek
Bridge, and Francesco Ricci. Preference dominance rea-
soning for conversational recommender systems: a com-
parison between a comparative preferences and a sum of
weights approach. International Journal on Artificial In-
telligence Tools, 20(4):591–616, 2011.

[Wilson and Montazery, 2016] Nic Wilson and Mojtaba
Montazery. Preference Inference Through Rescaling
Preference Learning (extended version of current pa-
per including proofs). Available at http://ucc.insight-
centre.org/nwilson/RescalingProofs.pdf, 2016.

[Wilson et al., 2015] Nic Wilson, Anne-Marie George, and
Barry O’Sullivan. Computation and complexity of pref-
erence inference based on hierarchical models. In Proc.
IJCAI-2015, 2015.

[Wilson, 2014] Nic Wilson. Preference inference based on
lexicographic models. In Proc. ECAI-2014, pages 921–
926, 2014.

2209

