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ABSTRACT 21 

Moulting is a biological process shared by aquatic macroinvertebrates, but while the exoskeleton 22 

is believed to be a major sink of metal pollutants, the contribution of the moulting of the 23 

crustacean exoskeleton to total accumulated metal concentrations is insufficiently considered. 24 

We present a conceptual, qualitative model that illustrates the impact of moulting on the whole-25 

body burden of an unspecified metal analyte in a hypothetical moulting invertebrate. The model 26 
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demonstrates that moult stage is a contributor to the whole-body pollutant concentration, and that 27 

this introduces a temporal component even in steady-state exposure conditions. The applicability 28 

of this model is illustrated by comparison to published results of pre- and post-moult 29 

accumulations. A solution for reducing this variability in the measurement of whole-body metal 30 

concentrations is presented, and its potential application to both ex-situ and in-situ studies of 31 

biomonitor species is discussed. 32 

 33 

Key Words: aquatic environment, bioaccumulation, body burden, crustaceans, ecdysis, 34 

measurement errors, exoskeleton, macroinvertebrates, metal pollution 35 

 36 

INTRODUCTION 37 

Biomonitoring is defined as the use of an organism, whether whole, in part, or communal, to 38 

determine the quality of the environment, and it is commonly used as a method of detecting and 39 

quantifying contaminants present in the environment (Markert, 2007). Biomonitoring is 40 

generally employed for the quantification of environmental pollutants, wherein a measurable 41 

parameter may be the abundance of an identified biomonitor species in a geographical area, or 42 

under a defined set of conditions (Ketelaars & Frantzen, 1995; Bonada et al., 2006;).  43 

A primary application of an aquatic biomonitor is the measurement of bioavailability and 44 

uptake of trace metals in the environment, and hence an indication of environmental 45 

concentrations (Johnson et al., 1993; Flessas et al., 2000). Trace metals may enter the aquatic 46 

environment by means of natural processes, such as metals leaching into rivers following a forest 47 

fire in an adjacent location, or through anthropogenic disturbance (Richardson et al., 2001). In 48 

many instances, there is a higher ratio of metals entering the hydrosphere as a result of 49 



3 
 

anthropogenic activities than of metals from natural sources entering waterways (Callender, 50 

2003).  51 

A distinction must be made between total and bioavailable pollutant concentrations in 52 

order to appreciate the advantage of biomonitoring over direct measurement of the pollutants. 53 

Various physico-chemical processes can render a pollutant biologically inert. These can be 54 

divided into environmental processes, that influence the “environmental availability,” and 55 

internal biological processes within an organism, that influence the “toxicological 56 

bioavailability” of the pollutant (Peijnenburg et al., 1997). While total pollutant concentrations 57 

can be determined directly through chemical analysis, accounting for the concept of 58 

bioavailability requires either the application of measured environmental parameters to a model 59 

of the environmental processes (the a priori approach, often the application of partition 60 

coefficients to measured total pollutant concentrations), or direct measurement of accumulated 61 

concentrations within the organism of interest (the a posteriori approach). The classification of 62 

pollutants according to their bioavailability and toxicity, such as the Priority Substances List of 63 

the Water Framework Directive and subsequent amendments (European Commission, 2000, 64 

2008), is a similar approach to the former. Biomonitors exemplify the latter, as the measured 65 

biological concentrations are the result of both the environmental availability and toxicological 66 

bioavailability processes, and, therefore, offer an insight into the results of these processes 67 

without requiring knowledge of the processes themselves. This approach avoids the need to 68 

simplify such processes, so long as the biomonitor is chosen such that the toxicological 69 

bioavailability encountered is representative for the ecosystem under study.  70 

The biomonitoring of bioavailable pollutant concentrations using biomonitor organisms 71 

also presents another advantage. Metal pollutants are often concentrated within the organism of 72 
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interest, which can allow for the observation of concentrations of contaminants that would 73 

otherwise be difficult to detect at background concentrations, especially at a high spatial or 74 

temporal frequency that would otherwise be difficult and prohibitively expensive to carry out 75 

using analytical methods (Bryan & Darracott, 1979). This concentration behaviour relaxes the 76 

limits of detection and allows the quantification in the organism what would rarely be detected in 77 

the water (Phillips, 1977).  78 

There is still some debate around the extent to which crustaceans uptake and 79 

bioaccumulate trace metals, and reproducibility of measured metal concentrations appears to be 80 

the exception, rather than the norm (Depledge & Rainbow, 1990; O’Callaghan et al., 2019). This 81 

is compounded by the uncertainty regarding the most likely sources, uptake pathways or sites of 82 

bioaccumulation within the organism of interest (Fleming & Richards, 1982; Elangovan et al., 83 

1999; Van Hattum et al., 1999; Robinson et al., 2003; Santoro et al., 2009). Several models have 84 

been proposed for the processes of uptake, bioaccumulation, and excretion of various pollutants 85 

in freshwater macroinvertebrates (Rainbow & Luoma, 2011; Awrahman et al., 2015), a task 86 

made more complicated by the varying behaviour of different metal analytes and potential 87 

interactions between said metals (O’Callaghan et al., 2019). A survey of these models, however, 88 

indicates that periodic moulting of the exoskeleton, a process common to many invertebrate 89 

species (Lebrun et al., 2011), may not have been adequately accounted for in regard to trace 90 

metals loss from the whole organism upon renewal of the exoskeleton.  91 

Failing to take into account exoskeletons could therefore be a substantial source of 92 

variability in measurement of the bioavailability of trace metals or in biomonitoring programs. 93 

Previous studies have shown that the moulted exoskeleton may contain sizable concentrations of 94 

bioaccumulated pollutants, pointing to ecdysis as being a possible pathway through which 95 
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significant portions of the accumulated substance may be shed or lost from the organism 96 

(Miramand et al., 1981; Hall, 1982; Topcuoǧlu et al., 1987; Rauch & Morrison, 1999). Moulting 97 

may ultimately influence survival of an organism, as periodic moulting may reduce or maintain 98 

pollutant concentrations below critical concentrations for the organism (Bryan & Darracott, 99 

1979; Bergey & Weis, 2007). Furthermore, in the context of quantifying the accumulated 100 

concentrations, accuracy and applicability of existing pollutant uptake and release models could 101 

be improved by consistently including moult stage as a variable.  102 

We present a generalized description of the flow of an unspecified metal pollution in a 103 

moulting aquatic macroinvertebrate, such as a crustacean. This conceptual description offers an 104 

illustrative, non-specific picture of the potential impact of moulting on measured accumulations, 105 

equivalent to a repeating, discontinuous depletion of total accumulated metal concentrations. We 106 

demonstrate the applicability of this conceptual model by comparing to previously published pre- 107 

and post-moult measurements of overall body concentrations of crustaceans, and discuss the 108 

relevance of this conceptual model to the study of accumulation in biomonitor species. We also 109 

present a possible technique for reducing this variability, and discuss the potential application of 110 

this technique both in the field and the laboratory. 111 

 112 

CONCEPTUALIZING THE IMPACT OF MOULTING 113 

Existing models 114 

Common types of models used to describe the accumulation of metals in aquatic invertebrates 115 

include bioconcentration, bioaccumulation, and accumulation factors (BCF/BAF/ACF), the 116 

biotic ligand model (BLM), the free ion activity model (FIAM), and biodynamic models (Wang 117 

& Tan, 2019).  118 
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BCF, BAF, and ACF factors provide an intuitive and relatively uncomplicated way of 119 

estimating accumulation rates, but rely on the assumption that equilibrium will be reached across 120 

the organism-environment interface (McGeer et al., 2003; van den Brink et al., 2019). Moulting 121 

consists of dynamic changes in the organism, which violates this key assumption, reducing the 122 

contribution of moulting to a static correction term rather than a time-varying process. 123 

BLM, as well as the related FIAM and extensions thereof, are commonly applied to 124 

studies of the total accumulated concentration ionic metals in aquatic macroinvertebrates (Brown 125 

& Markich, 2000; Di Toro et al., 2001; van den Brink et al., 2019). Both models, however, focus 126 

on the interface between the environment and the proposed receptor site, and ignore the internal 127 

mechanisms of translocation, transformation, and excretion (Vijver et al., 2004). The 128 

contribution of moulting is closely linked with the relative sequestration of metal pollutants in 129 

exoskeleton and soft tissue compartments, which relies on these internal mechanisms. 130 

Biodynamic models, commonly referred to as physiologically-based pharmacokinetic 131 

(PBPK), are better suited to modelling the dynamic potential contribution of moulting to the 132 

accumulated concentrations of contaminant (Ardestani et al., 2014; van den Brink et al., 2019). 133 

This approach models the processes of uptake, accumulation, translocation, transformation, and 134 

excretion across time, and does not rely on any steady-state assumptions. toxicokinetic-135 

toxicodynamic (TKTD) models, such as general unified threshold model of survival (GUTS) 136 

(Jager et al., 2011; EFSA Panel on PPR et al., 2018), are an example of a biodynamic approach 137 

applied to both contaminant accumulation and resultant biological effects. One of the most 138 

comprehensive static metal-accumulation biodynamic models in the literature arguably shows a 139 

relatively good correlation with observed results across a large number of studies (Luoma & 140 

Rainbow, 2005), and GUTS is considered sufficiently developed for use in risk assessment 141 
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applications (EFSA Panel on PPR et al., 2018). These models, however, have not yet been 142 

extended to include the contribution of moulting, a correction that would have to be separately 143 

determined for each organism-analyte pair. 144 

 145 

Choice of approach 146 

We take the approach of describing moulting using a non-specific model that is designed to 147 

capture the essence of the problem, while remaining broadly applicable to any moulting aquatic 148 

invertebrates such as crustaceans, whose exoskeleton may act as a significant sink for 149 

contaminants, and any transition metal, metalloid, or heavy metal species. Such approach should 150 

be contrasted with the common approach deriving a quantitative, predictive model described 151 

above. The aim of our model is instead to illustrate certain contributions of the moulting process 152 

to measured concentrations that are common to all moulting aquatic invertebrates and metal 153 

analytes, without offering a prediction for the significance of these contributions in any one 154 

scenario. 155 

We limit the applicability of the presented model to the transition, metalloid and heavy 156 

metals, as it has been observed that the accumulation of the alkali or alkaline earth metals in the 157 

exoskeleton of an aquatic crustacean may differ from that of the aforementioned elements. The 158 

accumulation of calcium, in particular, has been extensively investigated throughout the various 159 

moult stages, and has been found to undergo a series of storage and resorption processes. This is 160 

said to be linked to the use of calcium in the release of the exoskeleton and hardening of the 161 

newly developing cuticle (Greenaway, 1985). The chitinous nature of the exoskeleton, and, more 162 

specifically, the nitrogen groups therein, may play a role in the alternative behaviour of the 163 

transition metals, metalloids, and heavy metals, as it has been noted that chitinous materials 164 
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show a poorer affinity towards the alkali and alkaline earth metals (Rae & Gibb, 2003). For this 165 

reason, the assumptions made in the following section apply only to the accumulation of 166 

transition metals, heavy metals, and the metalloids. 167 

 168 

Assumptions 169 

For the purpose of creating a concise and simplified conceptual model, we must introduce a 170 

number of assumptions. These assumptions are chosen such that they adequately isolate the 171 

impact of moulting on trace metals concentrations, while removing internal processes that are not 172 

mediators of the moulting process.  173 

1) In order to reduce the process to a flow network, we make the assumption that all 174 

metal pathways are uni-directional from intake to depuration. This does not mean that there are 175 

no bi-directional pathways, but rather that bi-directional flows can be replaced by a long-term 176 

uni-directional approximation. 177 

2) While the process of moulting may be complex and irregular, we assume that each 178 

moulting event happens similarly and that the properties of each moulted exoskeleton are largely 179 

identical, in that each sequential exoskeleton is capable of accumulating metal contaminants at a 180 

fixed rate, after consideration of the growth factor. This is a simplifying assumption, and the 181 

impact of moulting is qualitatively similar under non-uniform moulting behaviour. 182 

3) The frequency of moulting is taken to be constant, for the purposes of illustration. 183 

Again, non-constant frequency of moulting would produce qualitatively similar results.  184 

4) Contaminant intake occurs solely through the processes of respiration, ingestion, and 185 

adsorption. The inclusion of these three pathways is intended to make the model as general as 186 

possible, and the results still hold if uptake through either ingestion or respiration does not occur, 187 
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and/or if uptake through adsorption does not occur. Adsorption is defined as the uptake of metal 188 

contaminants directly from the overlying and interstitial waters in direct contact with the surface 189 

of the exoskeleton, and results in uptake of the contaminant directly into the pre-moult 190 

exoskeleton; absorption through the exoskeleton and into the body is not directly considered for 191 

the reasons explained in Assumption 1. 192 

5) The only process of depuration included in the model is moulting. Gut contents are not 193 

taken into account, and, therefore, excretion from the alimentary tract does not reduce 194 

accumulated concentrations in the model; metal pollutants are taken to enter the system when 195 

they are assimilated from the alimentary tract into the biological tissues. 196 

6) This model only considers the movement of trace metals and assumes that no internal 197 

processes of biotransformation are taking place. This is true regardless when considering the 198 

elemental concentrations, but a more complex model would be required to account for change in 199 

speciation or complexation of metals due to biological processes. 200 

7) In this conceptual system, we make the assumption that the rate of translocation 201 

between the body and pre-moult exoskeleton is driven towards equilibrium by the presence of 202 

open binding sites in the destination and high concentrations at the source. The flow of 203 

translocation can therefore be approximated as proportional to the source concentrations. Other 204 

models of translocation could be considered and would result in qualitatively similar results. 205 

8) We assume that the described processes are not influenced by any biological damage 206 

that may occur, and we do not account for the possibility of mortality as part of the model. 207 

 208 

The conceptual model 209 
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Based on the above assumptions, we present a simplified three-input, two-compartment model of 210 

metal accumulation in a hypothetical moulting aquatic invertebrate (Fig. 1). The corresponding 211 

rate diagram is shown in Figure 2. The model compartmentalizes metal concentrations 212 

accumulated within (and on) the pre-moult exoskeleton (Compartment E in Figure 2), which is 213 

defined as the part of the body that is removed entirely during the moulting process, and 214 

concentrations accumulated in the remainder of the body (Compartment B in Figure 2). For the 215 

purposes of simplifying the model, the body is inclusive of all non-moulting parts (gills, legs, 216 

hepatopancreas, and other organs), but not the gut contents as explained in Assumption 5.  217 

          <Figs. 1 & 2> 218 

Contaminants may enter Compartment B through ingestion or standard respiration, where 219 

i denotes the concentration of contaminant present in the ingestate, r the concentration of 220 

contaminant in the water overlying the gill regions, and ki and kr the rate constants of the 221 

respective processes. Contaminants may enter Compartment E through surface adsorption 222 

directly from overlying and interstitial waters in contact with the exoskeleton, where a denotes 223 

the concentration of contaminant present in these waters, and ka the corresponding rate constant. 224 

Contaminants may also flow from Compartment B to Compartment E through the process of 225 

internal translocation or sequestration, where B is the concentration of contaminant in 226 

Compartment B, and kt the rate constant of translocation. The features of this flow are 227 

summarized in Assumption 7.  228 

Moulting, or ecdysis, refers to the regular removal of the outer exoskeleton. As the 229 

exoskeleton is shed, a new exoskeleton develops beneath it (see Drach, 1967). The loss of the 230 

moulted exoskeleton cannot be modelled as a continuous flow of contaminants as it occurs 231 

suddenly and periodically, and, therefore, it is not included in the process diagram in Figure 2. 232 
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Instead, the diagram describes the inter-moult movement of contaminants, and moulting is 233 

implemented externally as a periodic discontinuous removal of the contaminants within 234 

Compartment E. The moult period, or the rate at which an organism moults, will vary greatly 235 

with species and other factors. It should be noted that occasional consumption of the organism’s 236 

own moulted exoskeleton has been observed in some macroinvertebrate species (Elangovan et 237 

al., 1999), although there is consensus that metals bound within a chitinous exoskeleton are less 238 

bioavailable than other forms of analyte (Khan et al., 2010). The possibility of such an 239 

occurrence is not considered in this model but would result in qualitatively similar results. 240 

 241 

Impact of moulting 242 

The conceptual two-compartment model of Figure 1 can be converted into a causal diagram 243 

describing the relationship between the variable of interest, namely the environmental 244 

concentration of bioavailable metal, and the measured metal concentration. This diagram is 245 

shown in Figure 3. The effect of environmental concentration on measured concentration occurs 246 

through the mediation variables of body and exoskeleton concentration. The hypothesis that the 247 

measured whole-body concentration is an accurate estimator for the bioavailable environmental 248 

concentration, given an acceptable measurement error, is, therefore, weakened by the direct 249 

effect of moult stage on exoskeleton concentration.  250 

           <Fig. 3> 251 

It can be directly observed from Figure 3 that the effect of the moult event on the overall 252 

accumulated metal concentration depends greatly on the ratio of exoskeleton metal concentration 253 

to body metal concentration. If a simplifying assumption is made that the moult stage of different 254 
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organisms is uncorrelated, then sampling more organisms should reduce, but not eliminate, the 255 

influence of moulting. 256 

 257 

DERIVATION OF KEY EQUATIONS 258 

Differential rate equations 259 

The key aspects of the model are described by the following pair of differential rate equations, 260 

which describe the change in inter-moult concentrations of metal contaminant in each 261 

compartment.  262 

         (1) 263 

 264 

              (2) 265 

 266 

 267 

Growth factor 268 

The growth aspect is one of significant variability, as growth may indicate linear growth, lateral 269 

growth, or increasing thickness of the exoskeleton. Growth rate will vary considerably with 270 

species, as well as with the life stage of the organism. In order to account for the growth 271 

uncertainty, we use a growth factor, G. Equations 1 and 2 can, hence, be extended to account for 272 

growth by dividing each kx term by G.  273 

 274 

Closed-form expressions 275 
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Equations 1 and 2 can be solved for instantaneous compartment concentrations, assuming all 276 

concentrations are 0 at time t = 0 and ignoring the effects of moulting. This produces the 277 

following closed-form expressions:  278 

             (3) 279 

       (4) 280 

where the uptake rate is given by U = ki [i] + kr [r], and the process time constant is τ = G/kt.  281 

Note that the concentrations in Compartment B can be modelled as a first-order 282 

underdamped system, where the concentration approaches an equilibrium value of U/kt, while 283 

the concentration in Compartment E increases indefinitely as the loss due to moulting is not yet 284 

accounted for.  285 

 286 

Steady-state equations 287 

Steady-state is reached when t ≫ τ in all the above equations. This results in expressions for the 288 

final, steady-state accumulated concentration in Compartment B in an environmental 289 

equilibrium.  290 

(5) 291 

As moulting happens periodically, the steady-state equivalent in the case of the Compartment E 292 

has the appearance of a sawtooth pattern, rather than a fixed value. The period of the 293 

concentration in Compartment E is equal to the moulting period, TM, while the peak 294 

concentration is given by:  295 

               (6) 296 

The variance of the corresponding error due to moulting is therefore given by:  297 

                    (7) 298 
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More explicit derivation of the above equations is presented in Supplementary material File S11. 299 

 300 

SIMULATION 301 

Objectives 302 

The conceptual model is designed to offer insights into the contribution of moulting to whole-303 

body concentrations in the general case. The following simulation is intended to provide an 304 

example of how the model can describe the impact of moulting in an existing experimental 305 

study. Its specificity to a particular organism and metal pollutant should not be taken to be a 306 

statement about the limitations of the conceptual model, but rather an indication of how the 307 

generalized model can be applied to a specific case. The implementation of the model employed 308 

in the following sections is described in full in Supplementary material File S12. 309 

 310 

Simulation parameters 311 

The simulation parameters shown in Table 1 were derived from studies of the uptake of 312 

vanadium by the caridean shrimp Lysmata seticaudata (Risso, 1816) (Miramand et al., 1981). 313 

The measurements extracted from Miramand et al. (1981) is available in Supplementary material 314 

Table S1. Further details of how these parameters were derived are presented in Supplementary 315 

material File S13 and compared with the cited measurements in Supplementary material Fig. S8. 316 

           <Table 1> 317 

 318 

Simulation results 319 
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Figure 4 shows the bioaccumulated concentrations of metal contaminant in Compartment B, 320 

when the environmental conditions are in equilibrium. The black dashed lines indicate the 321 

steady-state values.  322 

           <Fig. 4> 323 

As expected of a first-order system, the concentration in Compartment B reaches steady-324 

state at a speed dictated by the rate of internal translocation of the contaminant. Once the internal 325 

concentration reaches steady-state, there is no significant change in contaminant concentration 326 

without a corresponding change in the environmental conditions.  327 

Figure 5 shows the bioaccumulated concentration of the contaminant in Compartment E. 328 

Moulting forces the pre-moult exoskeleton concentration to 0 every TM days. This produces a 329 

periodic pattern with increasing amplitude, approaching a sawtooth pattern as Compartment B 330 

reaches steady-state.  331 

           <Fig. 5> 332 

The total concentration of contaminant in the organism as a whole is shown in Figure 6. 333 

The lower black dashed line shows the steady-state concentration for Compartment B, whereas 334 

the upper black dashed line includes the peak concentration for Compartment E. Despite the 335 

concentration in Compartment B reaching steady-state, the influence of moulting is still 336 

significant. This results in a time variation in the overall concentration.  337 

           <Fig. 6> 338 

 339 

DISCUSSION 340 

Contribution of moulting 341 
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Studies measuring the bioaccumulation of trace metals in freshwater macroinvertebrates 342 

typically rely on the assumption that the accumulated concentrations of metals are relatively 343 

time-invariant. Many models of pollutant uptake likewise rely on the steady-state assumption. In 344 

both cases, individual measurements of total accumulated pollutant concentrations provide an 345 

accurate quantification of the time-averaged accumulation flux.  346 

The contribution of the conceptual model presented herein is to explain how periodic 347 

processes, exemplified by moulting, can produce fluctuations in the total accumulated whole-348 

body concentrations. The L. seticaudata example demonstrates the significant effect this can 349 

have on the measured whole-body concentration. Seeing as discontinuous loss occurs during 350 

each moult, steady-state is not reached; the internal concentrations settle into a periodic 351 

oscillation, with the total concentration varying between minimum and maximum values. The 352 

error introduced by the continuous approximation is described in Supplementary material File 353 

S14, and illustrated by Supplementary material Figs. S9, S10. From an experimental perspective, 354 

this introduces a source of variability in the measurements, as the measured value depends not 355 

only on the mean total concentration, but also on the moult stage at the time at which the 356 

measurement is taken.  357 

 358 

Validity of simulated example 359 

Example parameters, listed in Table 1, were used for the purposes of demonstrating the effects of 360 

moulting on the measured whole-body concentration. This raises the question of whether the 361 

chosen parameters produce results that fairly represent realistic pollutant accumulations. This can 362 

only be answered through comparison with measured concentrations. 363 
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The model predicts that approximately 74% of the accumulated metal contaminant concentration 364 

is lost during the process of moulting. Table 2 presents published measurements of analyte 365 

concentrations accumulated within the exoskeleton of various species, expressed as a percentage 366 

of whole-body accumulated concentrations. In cases where data extraction and/or post-367 

processing was required to obtain the values given in Table 2, further details are given in 368 

Supplementary material Tables S4–S7. It must be emphasized, when interpreting these figures, 369 

that most of the cited studies do not account for the effects of moulting on overall concentrations 370 

we describe. Therefore, by assuming steady-state whole-body concentrations it would be 371 

expected that the measured values presented herein represent approximately half of the 372 

exoskeleton concentration at the time of moulting. Under these same assumptions, the 373 

exoskeleton would contribute approximately 37% of the whole-body concentration using the 374 

model parameters presented herein. 375 

As is to be expected and considering the wide range of biological species, analytes, and 376 

environmental or experimental conditions, there is a broad variation in reported exoskeleton 377 

concentrations. Despite this variation, it is clear that such concentrations are a significant fraction 378 

of the whole-body accumulated concentration. Our model would, therefore, be correct in 379 

attributing a significant role to the contribution of moulting to whole-body pollutant 380 

concentrations.  381 

           <Table 2> 382 

If the results of the model are valid, the question then arises as to whether the 383 

mechanisms described in the model are also valid. Hall (1982) presented measurements of the 384 

accumulated concentrations of nickel in the cladoceran Daphnia magna Straus, 1820, presented 385 

here in Supplementary material Tables S2, S3. Figure 7 shows the measured soft-tissue and 386 
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exoskeleton concentrations in individuals that have not moulted. It shows that the soft-tissue 387 

concentrations rapidly reach steady-state, while the exoskeleton concentrations continue to 388 

increase in the absence of moulting. A corresponding fit of the model is shown, with a value of P 389 

< 0.001 for both datasets. In-vivo measurements of whole-body nickel concentrations of one 390 

individual over time are shown in Figure 8. A moulting event occurred between t = 20 h and t = 391 

49 h, depleting the whole-body concentration. Our model correctly describes the effects due to 392 

this moulting behaviour. These results indicate that our description of the processes that result in 393 

depuration via moulting is likely valid. Further details of the derivation of these parameters is 394 

given in Supplementary material File S15. 395 

           <Figs. 7 & 8> 396 

 397 

Reducing variability due to moulting 398 

Figure 9 shows how accumulated concentrations can fluctuate through time. For most of the 399 

moult period it is unclear at what point in the period the organism lies. In the context of 400 

crustaceans, however, it is usually relatively easy to identify if the organism is immediately at a 401 

pre-moult or post-moult stage (Drach, 1967; Buchholz, 1982). The pre-moult stage is often, 402 

depending on the species, associated with visual changes to the exoskeleton, such as changing 403 

colour or texture (Drach, 1967). The post-moult stage is, at the very least, signalled by the 404 

appearance of a shed cuticle. Both these stages correspond to the maximum and minimum 405 

exoskeleton concentrations, respectively. In the context of bioaccumulation studies, we therefore 406 

propose that sampling could be undertaken synchronously with moulting (moult-synchronous 407 

sampling) to ensure the robustness of the measurement by reducing the variability due to 408 
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exoskeleton concentration fluctuations. This would take the form of ensuring only specimens 409 

which are immediately pre-moult or post-moult are sampled.  410 

          <Fig. 9> 411 

In the context of ex-situ studies, implementation of moult-synchronous sampling quite 412 

simply takes the form of delaying sampling until the desired moult stage has been reached for 413 

each organism. Implementation for in-situ studies, however, is less straightforward due to the 414 

requirement that samples be taken when the site is visited. In a case such as this, we propose 415 

acquiring the organisms as normal, but holding them in a suitable tank until the desired moult 416 

stage has been reached. This approach assumes that minimal depuration through other means 417 

occurs between acquisition and moulting. 418 

An argument could be put forward that the variability due to moulting could be reduced 419 

by sampling multiple specimens. This argument relies on the assumption that the moult stage of 420 

each specimen is uncorrelated; however, moulting can be induced or accelerated by 421 

environmental stressors (Fowler et al., 1971; Nugegoda & Rainbow, 1987), therefore, it could 422 

happen that specimens in similar conditions can moult together. For this reason, performing 423 

measurements on multiple specimens held in the same conditions may not be sufficient to 424 

overcome the effects of moulting on accumulated concentrations. 425 

Even ignoring the possibility of correlated moult stage within the population under study, 426 

moult-synchronous sampling can offer a more efficient approach to the determination of mean 427 

total bioaccumulated concentrations. Both increased sampling size and moult-synchronous 428 

sampling aim to reduce the measurement error in the overall measured accumulated 429 

concentration due to moulting. Equation 7 quantifies the variance of the measurement error due 430 

to moulting. In the example of Figure 6, this corresponds to a mean error variance of σ2 = 14 431 



20 
 

ppb. If measurements were only made within the first post-moult day, this would reduce the 432 

mean error variance of a single measurement to σ2 = 0.14 ppb. In lay terms, the resulting increase 433 

in statistical accuracy corresponds to that which would be obtained by increasing the number of 434 

specimens by a factor of 100. Figure 9 shows the reduction of measurement error variance due to 435 

moulting from restricting the sampling window. Moult-synchronous sampling is, therefore, a 436 

more efficient means of reducing the measurement error due to pollutant loss during moulting 437 

than simply increasing the sampling size.  438 
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 619 

FIGURE CAPTIONS 620 

Figure 1. Schematic representation of a general overview of the major pathways of trace metal 621 

pollutant uptake (via ingestion, respiration and adsorption), translocation, and loss (via moulting) 622 

in a moulting aquatic organism. The dashed arrow represents the elimination of accumulated 623 

pollutants at the time of moulting, which is modelled as a repeating instantaneous event, while 624 

the solid arrows represent the continuous pollutant flux. 625 

Figure 2. Rate diagram of pollutant flux into and out of the body (B) and moulting exoskeleton 626 

(E) compartments. Processes illustrated are respiration (r), ingestion (i), adsorption (a), and 627 

internal translocation (t); r, i, and a represent the concentrations from which respiration, 628 

ingestion and adsorption, respectively, occur, B the body compartment concentration. The kx 629 

parameters represent the respective rate constants. 630 

Figure 3. Causal diagram showing the connection between bioavailable environmental metal 631 

concentrations and measured whole-body metal concentrations, showing the influence of moult 632 

stage on the exoskeleton concentration mediator. 633 
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Figure 4. Simulation of theoretical concentration of a metal pollutant in Compartment B (the 634 

body of the organism, excluding the moulting exoskeleton) versus time, from application of the 635 

described parameters. The dashed black line represents the equilibrium value given by Equation 636 

5 (see text). The lighter lines represent the effects of different values of kt for the same 637 

equilibrium value. 638 

Figure 5. Simulation of concentration of a metal pollutant in Compartment E (the moulting 639 

exoskeleton of the organism) versus time, from application of the described parameters. Unlike 640 

with the concentration in the body compartment, B (see Fig. 2), the concentration does not reach 641 

an equilibrium state, but oscillates between 0 (complete absence, due to moulting) and a 642 

maximum value. The equilibrium maximum value is given by Equation 6 (see text), and is 643 

denoted here by the dashed black line. 644 

Figure 6. Simulation of overall concentration of a metal pollutant in the organism versus time. 645 

The overall concentration is a mass-weighted combination of the concentrations in the body and 646 

moulting exoskeleton compartments, B and E. This simulation represents the evolution of the 647 

actual measured whole-body concentration over time, where the variation in the concentration 648 

beyond day 200 is entirely due to contaminant loss through moulting. The equilibrium minimum 649 

and maximum are given by the dashed black lines, and are derived from Equations 5 and 6 (see 650 

text) after accounting for body mass. 651 

Figure 7. Accumulated concentrations of nickel in the soft-tissue (B) and exoskeleton (E) of 652 

multiple Daphnia magna individuals (from Hall, 1982). The corresponding fit of the model 653 

qualitatively matches the behaviour seen, where B saturates, but E continues to accumulate 654 

indefinitely in the absence of moulting. Hall (1982) also observed indefinite accumulation in the 655 
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filtering appendages, which contain parts of exoskeleton and soft tissue, so have not been 656 

included in this figure. 657 

Figure 8. Accumulated concentrations, across time, of nickel in an individual specimen of 658 

Daphnia magna (from Hall, 1982). A moulting event occurred between t = 20h and t = 49h. A fit 659 

of the model, accounting for a moulting event just before t = 49 h, accurately describes the 660 

observed behaviour, despite the relative simplicity of the model. 661 

Figure 9. Proportional decrease in moult-induced measurement error with increasing accuracy of 662 

moult-synchronous sampling, where a “100%” sampling window is equivalent to ignoring moult 663 

stage when sampling. Using a sampling window of 10% of the moult period, for example, would 664 

reduce the variance by a factor of 100, for the same sample size. 665 
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