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Abstract 

In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface 

via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. 

These chemical reactions take place on the surface and in many cases also in the gas phase. To fully 

understand the chemistry in the process and thereby also have the best starting point for optimizing 

the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale detail on 

surface and gas phase chemistry. This overview briefly introduces to the non-expert the main 

concepts, history and application of CVD, including the pulsed CVD variant known as atomic layer 

deposition (ALD), and put into perspective the use of theoretical chemistry in modeling these 

processes. 
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1. An introduction to vapor-phase deposition techniques 

Thin films are layers of materials with thicknesses ranging from less than one nanometer (a few 

atomic layers) to hundreds of micrometers (for reference, a human hair is about 75 µm thick) [1]. The 

importance of thin films in today’s society is enormous and thin films can be found everywhere; from 

low friction coatings in a car engine to the anti-reflecting coating on the lenses of spectacles, as well 

as the decorative coating on their frames. Most metal objects around us have been machined by 

cutting tools that are coated with a hard, wear-resistant thin film.  Replacement parts for the human 

body, such as hip-joints, are often coated with a thin film to make them more bio-compatible. 

Furthermore, today’s nanoelectronic devices are built up very precisely from stacks of thin films of 

various materials with different electrical properties, with some of the films as thin as one atomic 

layer. Technologically important thin films can be amorphous, polycrystalline or epitaxially-grown 

single crystals and the properties of the materials can often be tuned with great precision to suit 

various applications.  

To coat an object (the “substrate”) with a thin film, it is often preferred to start from atoms or 

molecules in a vapor phase and place the object(s) to be coated in that vapor, letting atoms and/or 

molecules from the vapor build up a thin film on the surface of the object.  These vapor-based thin 

film synthesis methods are classified as either physical vapor deposition (PVD) or chemical vapor 

deposition (CVD), depending on whether the film deposition process is driven by physical impacts or 

by chemical reactions, respectively. Generating the vapor in the reactor is of course straightforward 

when the desired element is available in gaseous form, e.g. O2, but this is not the case for most 

elements. Therefore, in PVD, a solid sample containing the target elements is subjected to substantial 

energy, often in the form of a plasma or an electric discharge, thereby ejecting atoms and producing 

a vapor, which can then condense onto the substrate [2]. In CVD, target elements are delivered in 

the form of volatile molecules, denoted as precursors, and the film is built up via a series of chemical 

reactions between precursors, precursor fragments and the substrate.  In the general case, such 
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reactions can take place both in the gas phase and on the substrate surface. However, a form of CVD 

named atomic layer deposition (ALD) uses only surface chemical reactions to build up thin films with 

great precision [3,4].  

The precursor molecules are often diluted in a carrier gas that makes up the main part of the gas 

volume in the process, analogous to the solvent in liquid-phase chemical reactions.  The carrier gas in 

CVD is most often hydrogen, nitrogen or argon, or mixtures of these.  The majority of CVD processes 

are thermally activated by applying temperatures typically in the range 200-2000°C, although there 

are examples of CVD and ALD processes at lower temperatures, even down to room temperature, 

and at higher temperatures up to 2500°C. There are also CVD and ALD processes that use a plasma to 

activate the chemistry by opening up new reaction pathways, by electron impact collisions [5] and by 

the generation of ions and radicals, and these processes are referred to as Plasma Enhanced CVD 

(PECVD) or alternatively Plasma Assisted CVD (PACVD). The gas phase chemistry can also be activated 

by photons from a laser, referred to as Laser Enhanced CVD (LECVD) or Photo Assisted CVD [6]. 

CVD may indeed be regarded as a chemical process that spans many traditional disciplines: chemical 

physics of gases and plasmas, surface science, solid-state chemistry of inorganic materials and 

organometallic or organic chemistry for precursor synthesis. The field of CVD has been the subject of 

a number of books and book chapters [7, 8, 9, 10, 11] and several review articles on CVD [12, 13, 14, 

15, 16, 17] and ALD [3, 4, 18, 19, 20, 21, 22] have been published over the last years, providing both a 

detailed background to the processes and overviews of the current research frontier. The scope of 

this paper is limited to a brief overview of CVD, so as to put into perspective the use of theoretical 

studies, including those featured in this special collection of papers on theoretical chemistry for CVD.  
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2. A brief history of CVD 

In the history of CVD, J.M. Blocher is often mentioned as a father of modern CVD, since he suggested 

that thin film deposition processes based on chemical reactions should be distinguished from those 

based on physical processes. He proposed this at the symposium of the Electrochemical Society (ECS) 

1960 in Houston and since then the terms CVD and PVD are used [23]. Blocher also significantly 

developed the understanding of CVD, notably by summarizing the factors for 

structure/property/process relationships for CVD films [24]. Refs. 23, 25 and 26 provide a more 

complete account of the history of CVD. 

The first CVD processes were reported and patented in the late 19th century and were used for the 

production of carbon powder for color pigment and of carbon fibers for filaments in early versions of 

the electrical lamp. CVD of metals was also reported in the mid and late 19th century; one of the 

earliest examples is the deposition of tungsten from WCl6 in a hydrogen atmosphere reported by 

Wöhler in 1855 [27]. Some years later, the famous Mond process for deposition of Ni was reported 

[28,29].  This process was developed to purify nickel ore by transforming it to nickel tetracarbonyl 

(Ni(CO)4) at low temperatures and from this molecule deposit a film of nickel on a substrate at a 

higher temperature.  

As early as 1909, CVD of silicon was reported from SiCl4 in hydrogen [30].  This process is still used to 

produce pure silicon for industry, although somewhat refined to allow for greater control in the 

process. This is the first example of CVD being used to deposit a film of a semiconducting material 

and looking back in time it is clear that the microelectronics industry and CVD processes have 

developed hand-in-hand.  The electronics boom, and associated drive towards miniaturization, has 

been pushing the development of CVD processes towards higher quality films over larger areas with 

better run-to-run reproducibility and uniformity. An important advance for the CVD of electronic 

materials was the development in the late 1960s of metal-organic CVD (MOCVD), where a metal is 

rendered volatile by surrounding it with organic ligands.  The first MOCVD process was used to 
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deposit GaAs and was reported in 1968 [31].  The use of metal-organic precursors such as 

trimethylgallium (Ga(CH3)3, also known as TMG) has thus been a key factor in the development of 

GaAs and other III-V based electronics, and forms today a cornerstone of III-nitride technology. 

The latest major breakthrough in the field of CVD is the development of ALD, which was first 

patented by Suntola in 1977 [32], although it should be pointed out that significant work was done 

prior to this in the former USSR (for more details on ALD history see ref 20). The first commercial 

application of ALD was in thin film electroluminescent displays (TFELs), where ALD was shown to 

produce films for the luminescent and protective layers with superior quality compared to the state 

of the art thin film synthesis techniques of the 1970’s [33]. Nevertheless, research into ALD remained 

at a low level until the late 1990’s, when it was identified as a possible process solution for high-

permittivity (“high-k”) thin films in the electronics industry, specifically in memory devices and 

transistors.  Recently, Intel stated that the use of ALD was a key factor for the successful 

development of the high-k metal gate transistors that allowed further downscaling of the size of 

integrated circuit chips [34]. Spurred on by this success, ALD is now becoming a widespread 

nanofabrication technique and being applied in a wide variety of industrial sectors. 

 

3. Some applications of CVD 

The applications of CVD are numerous and their impact on today’s society is enormous. Here a few 

important examples of CVD applications are described to provide a flavor of the impact of CVD on 

our everyday lives.   
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Hard coatings 

Metal objects can be found everywhere and most of them are machined by some cutting operation 

e.g. turning, milling or drilling. As an example, if one considers the amount of machined parts in an 

ordinary car and then considers how many cars are produced worldwide, it is obvious that metal 

cutting is of great importance for our society. Almost all cutting tools use exchangeable edges, 

referred to as inserts, made of cemented carbide.  The great majority of inserts are coated with a 

hard, wear-resistant thin film that prolongs their lifetime by several orders of magnitude. Although 

PVD processes, especially for depositing hard nitride compounds, are emerging, CVD still is the work-

horse for coating cutting tools. A typical CVD coating for a cutting tool is a multilayer structure 

consisting mainly of some of the following materials: TiN, TiC, TiC1-xNx, α-Al2O3 and κ-Al2O3. These film 

stacks are deposited in a single deposition process, typically at around 50 mbar and 1000°C, and a 

coating batch consists of several thousands of cutting inserts.  Importantly, the properties of the 

individual films can be controlled with great precision [35].  

 

Functional coatings on glass 

Considering total area of deposited film, the largest application of CVD is to coat window glass. One 

of the most important reasons for coating a window is to prevent heat passing through, reducing the 

need for cooling down or warming up buildings, and thus reducing energy consumption.  Typically 

films of transparent SnO2:F are used for this application. To alter the darkness of the window via 

electrochromism or thermochromism, films of WO3 or VO2 respectively are used. The coating can 

also reflect some of the incoming light and for this, TiN films are employed. These films are deposited 

on the glass as a final production step by an atmospheric pressure CVD technique mounted on the 

float glass production line. The technique was developed by Pilkington in the mid 1980’s. A recent 

development is to coat window glass with transparent TiO2, making the window self-cleaning by 

breaking down dirt via photocatalysis with sunlight. [36] 
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Microelectronics 

It is fair to say that without CVD we would not have the electronics that we take for granted today. 

All sorts of electronic devices are constructed from stacks of thin layers with highly controlled 

electrical properties and CVD is often the method of choice for depositing these thin layers. High 

process temperature is often not an issue for Si or III-V materials that form the bedrock of most of 

our everyday electronics devices, as well as for the emerging high frequency and high power 

electronics and light-emitting diodes based on SiC and III-nitrides. Therefore CVD processes with 

process temperatures above 1000°C can be used; these processes are carried out close to 

thermodynamic equilibrium and do not suffer from particle bombardment. The film quality is 

therefore generally very high, with few defects in the films. The alternative to CVD would be PVD 

which is done further from thermodynamic equilibrium and often with a substantial amount of 

particle bombardment which gives rise to crystal defects. As mentioned above, ALD-grown high-k 

dielectric films have proven to be vital for a new generation of nanometer-scale transistors [34], 

where standard CVD is unable to deliver the required quality and uniformity at the thickness scale of 

just a few nanometers. Now that the utility of ALD in the semiconductor industry has been proven, it 

is being targeted for the deposition of a variety of materials in ultra-thin layers, particularly as 

interface control and three-dimensional structures become more important with continued down-

scaling.  

 

Gas-permeation barriers 

Amongst all deposition techniques, ALD is unique in enabling nanometer-thin, pinhole-free films that 

are conformal over features at all length scales.  By a happy coincidence, one of the most successful 

ALD processes across a wide temperature range is that of Al2O3, which is highly impermeable to 
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oxygen gas and water vapor.  It is therefore possible to use ALD to coat a variety of objects with an 

Al2O3 coating that is impermeable to these gases, while also being so thin (on the order of 10 

nanometers) that the optical and mechanical properties of the object are almost unaffected. 

Examples include reduced CO2 permeability through ALD-coated PET bottles [37] and 

moisture/oxygen diffusion barriers for organic light-emitting diodes in flexible display technology 

[38]. 

 

4. Chemical processes in CVD 

Thin film growth by CVD is the result of a complex sequence of chemical reactions. All CVD processes 

involve surface chemical processes and most CVD processes, with the exception of pure ALD 

processes, involve also gas phase chemical reactions. The types of chemical reactions that have been 

recognized as playing a role in CVD are schematically summarized in Fig. 1.  Such a conceptual 

scheme is generally the starting point for building theoretical models of the process.  It is therefore 

important to test the relative importance of these chemical processes in the deposition of a given 

material system. 

 An important feature of CVD is that a boundary layer develops above the substrate surface, also 

known as stagnant boundary layer.  The development of this layer is a consequence of the fluid 

dynamics when flowing a gas mixture above the surface [11]. In the boundary layer the velocity of 

species in the flow direction is significantly lower than that in the main gas stream and the 

concentration of species differs substantially compared to the main body of the gas stream. It is 

generally considered that all chemistry of importance to the CVD process takes place in the boundary 

layer and on the substrate surface.  

In most, but not all, CVD processes the precursors undergo gas phase chemical reactions that result 

in the formation of more reactive species. The reactions may be activated thermally or by an external 
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source of energy, e.g. application of a plasma.  Generally these more reactive species are smaller 

fragments of the original molecule and when a plasma is used to activate the chemistry the 

molecular fragments can even be radicals or ions. One should bear in mind here that many CVD 

processes are done at low pressures and high temperatures, allowing a significant lifetime of very 

reactive species, compared to many other chemical reaction environments in e.g. a liquid solution. It 

should be mentioned that for some CVD chemistries, the gas phase chemistry produces larger 

complexes of several precursor molecules that after some molecular re-arrangements are the species 

active in film deposition [39]. When hydrogen is used as carrier gas it often takes part in the gas 

phase reactions, but even relatively inert nitrogen gas can in some thermally activated CVD processes 

function as both carrier gas and film precursor.  A mixture of hydrogen and nitrogen is then used as 

carrier gas and only a very small fraction of the nitrogen molecules react to form the film.  

The use of a plasma to activate the gas phase chemistry, as in PECVD, opens up several new reaction 

paths at significantly lower temperatures, mainly by electron impact collisions but also by collisions 

between plasma ions and precursor molecules, and by ions or radicals reaching the surface [5]. The 

effect of the plasma is therefore often controlled by the distance between plasma and substrate in 

the reactor; if the substrate is placed in the plasma or very close to the plasma (“direct PECVD”), ionic 

species will significantly contribute to the chemistry, both in the gas phase and on the surface. A 

longer distance between plasma and substrate (“remote PECVD”) leads to more significant 

contribution from radical species rather than ions. It should be noted also that the power supplied to 

the plasma discharge will change the amount of ions in the plasma and thereby also the ionic 

contribution to the film growth chemistry [40]. In PECVD, dinitrogen gas is often used as nitrogen 

precursor since the molecule rather easily dissociates in the plasma.      
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Fig 1 Schematic summary of the most important chemical reactions involved in thin film synthesis by 

CVD, after [41]. It should be noted that not all types of chemical reactions are desired in all types of 

CVD processes.  

 

The precursor molecules or the more reactive fragments of the precursor molecules are transported 

via gas diffusion through the boundary layer to the substrate surface. The adsorption mode depends 

critically on the chemical properties of the incident precursor or fragment and of the surface. All 

precursor molecules can be expected to weakly physisorb at least for a short time, followed by 

desorption, since CVD reagents are volatile by design.  If there is sufficient chemical complementarity 

between precursor or reactive fragment and surface, stronger chemisorption is possible, leading to 

longer lifetimes of the adsorbate.  Some adsorbates react rapidly on the surface (e.g. dissociative 

chemisorption), either because bonds within the adsorbate are weakened or because of co-reagents 

on the surface.  ALD is based on the elimination of ligands from the adsorbate through reaction with 

co-adsorbed remnants from a prior co-reagent pulse.   



12 
 

Adsorbate molecules or fragments may be mobile on the surface and may sample a variety of surface 

sites via diffusion, which again may lead to reactions. In general, surface diffusion is the process that 

leads ultimately to formation of a film of the target material.  Finding the optimum adsorption site 

via diffusion is particularly important in the growth of epitaxial thin films for electronics since the 

crystalline quality of the film determines the performance of the final device. Finding optimum sites 

is facilitated by a strong energetic driving force towards forming the target material from the 

reagents.  In ALD this has been described as ‘densification’, whereby the coordination number of the 

constituent atoms increases from the low value of molecular precursors to the high value of the solid 

product [42, 43]. 

An important aspect of thin film deposition is the growth mode of the film on a given substrate.  

Fragments may aggregate into nuclei or islands, or may attach to an atomic step, or may favor a 

uniform coating. Roughness will increase if subsequent growth is favored at islands.  By contrast, 

well-behaved ALD processes give conformal films that exactly follow the roughness of the substrate. 

Ultimately the growth processes combine and dictate the larger-scale morphology of the as-grown 

film (epitaxial crystal, polycrystalline or amorphous) but the factors determining this are not in 

general well understood [4]. 

The parts of the precursor molecule (e.g. the ligands) that do not constitute the target material 

should then desorb from the film surface as by-products. These by-products can be simple molecules 

formed by the chemical reactions on the surface, e.g. H2, CO2 or Cl2, or can be large molecules 

derived from the ligands.  For example, a protonated ligand is the by-product in thermal ALD of metal 

oxides using H2O as co-reagent.  In any case it is of great importance to all CVD processes that these 

by-products desorb cleanly from the film surface and are not incorporated as impurities in the film.       
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5. The use of theoretical studies development and understanding of CVD processes 

The main motivation for theoretical chemical studies of CVD processes is obtaining a detailed 

understanding of the chemical reactions summarized in Fig. 1. There are various outcomes from 

obtaining this understanding, as shown in the following examples.  

 

A better understanding of established CVD processes 

Thermochemical modeling of the gas phase chemistry in CVD is a convenient approach for 

understanding the gas chemistry, given that not many experimental techniques are available. 

Spectroscopic technique e.g. Raman or FT-IR spectroscopy could in principle be used but this requires 

that all molecules in the gas phase can be detected by these techniques and that the CVD reactor can 

be fitted with viewports of a material that is both transparent for the excitation light and at the same 

time not affected by the CVD gases and process temperatures. A mass spectrometer measuring the 

gas flow could also be used to study the process chemistry; the problem with this is that only the 

stable molecules are detected while all unstable intermediates are lost. An example of a CVD process 

where much understanding has been provided by thermochemical modeling is CVD of electronic 

grade SiC. Significant effort has been directed towards understanding the process and a gas-phase 

and surface reaction model has been proposed [44]. By using this model, the CVD process can be 

discussed based on the gas phase and surface chemistry, rather than susceptor design and gas flow 

patterns. Modeling can then be used to predict growth rate, etching rate, surface morphology and 

doping, all key aspects when doing CVD of electronic device structures. Detailed gas phase chemistry 

models can also be obtained by quantum chemical calculations, an example is the gas chemistry 

model for CVD of boron carbide from BCl3 and C3H8 involving 16 intermediates presented in ref 45. 

Consider the CVD of Al2O3 from AlCl3 and CO2, which has mainly been developed by research 

departments in the hard coatings industry. CO2 forms H2O and CO together with the hydrogen carrier 
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gas in a gas phase reaction in the reactor and H2O then acts as the oxygen precursor in the formation 

of Al2O3. The catalytic effect of H2S in this process has been known for many years. The addition of 

H2S leads to a higher deposition rate and more surface controlled deposition process as evidenced by 

more uniform coating thickness on complex substrate geometries [46]. But since this process was 

mainly developed in industry, where detailed understanding often has low priority, it was only lately 

that a surface chemical model supported by careful theoretical chemistry modeling could be 

presented [47]. It was suggested that H2S acts as a true surface catalyst by facilitating first the 

removal of adsorbed chlorine from the surface and then the adsorption of H2O. Another example 

where modeling has been able to explain details in CVD of hard coatings is the observation that thin 

films of titanium carbide grow along the (111) direction when aromatic hydrocarbons such as 

benzene are used, while aliphatic hydrocarbons, e.g. methane, produce growth in the (100) direction. 

This is of interest since (111) TiC performs better in cutting operations [48] and since control of the 

preferred TiC growth direction enables control of the preferred growth direction of alumina 

deposited on top of the TiC layer [49]. The explanation for the change in preferred growth direction 

with aromatic hydrocarbons, provided by quantum chemical calculations, was that benzene 

chemisorbs significantly more strongly on the (111) surface compared to the (100) surface and 

reduces the surface energy of the (111) surface. [50] Methane did not show any significant 

preference for either surface, so the lower surface energy of the (100) surface controls the growth 

direction when aliphatic hydrocarbons are used. Although these findings on the surface chemistry 

are not likely to change the well-established and optimized CVD process for industrially-used hard 

coatings, such deeper understanding of the chemistry can serve as a guide for design of future CVD 

processes. 
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Using modelling for designing new CVD processes 

Theoretical studies of CVD surface chemistry that is more directed towards designing a new CVD 

process for a material are the theoretical studies of CVD of cubic boron nitride (c-BN) onto diamond 

surfaces. Models are developed of both the initial growth stage onto a diamond surface [51], and of 

the subsequent growth of c-BN onto c-BN [52, 53], including surface reconstructions induced by 

adsorption of precursor molecules onto c-BN [54,55]. The authors of these studies boil down their 

results to a suggested ALD chemistry for deposition of c-BN [52], although it remains to be seen if it 

will be tested given the large amount of HF produced as by-product.      

When developing precursors for new CVD processes, modeling can give a better understanding of 

the behavior of the molecules.  It is especially important to understand how the molecules behave 

upon vaporization and in the vapor phase. One such example is the development of CVD precursors 

for metal boride films of the actinides and lanthanides [56, 57], where DFT modeling provided a 

better understanding of why the same type of organometallic molecule works as CVD precursor for 

Sm, Pr and Er but decomposes instead of subliming for U. [58]  

Approaches exist for the simulation of gas-liquid equilibria for small molecules [59], which allow the 

vapor pressure to be predicted. Extending these to metalorganic molecules requires accurate 

estimation of both metal-ligand bonding and intermolecular interaction, and therefore requires an 

approach beyond standard density functional theory. Simulating hundreds of molecules at such a 

high level is currently beyond routine computational capacity.  

 

ALD development and understanding 

Given its great importance for the electronics industry, ALD is today the field of CVD where perhaps 

the largest amount of effort is being directed towards increased understanding of the process 

chemistry. Research on ALD is somewhat simplified by the surface controlled nature of the process – 
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at least in the ideal case – so that growth should be independent of other factors such as gas phase 

chemistry and gas flow in the reactor.  However the stringent and partially contradictory 

requirements for achieving ALD make it very difficult to design a new process, even when theory and 

experiment work closely together. 

Since the earliest days of ALD research, atomic-scale models have been made of the underlying 

chemistry. Pioneering calculations were carried out on the zinc sulfide system by T. Pakkanen and M. 

Lindblad in the 1980’s [60,61]. Over 150 publications modelling ALD have followed since then, mostly 

carrying out quantum chemistry on the reactions of precursors with model substrates and many of 

these concerned with high-permittivity dielectrics on silicon. The state of the art to 2012 is 

summarized in ref 62. Since then, our most recent atomic-scale simulations have revealed new 

details of the mechanism of oxide ALD [43], have accounted for the stoichiometry of ternary oxides 

[63], have assessed precursor ligands for alkaline earth metal oxides [64] and for copper metal [65] 

and have developed kinetic Monte Carlo models of film growth [66]. 

The ALD process is manifest across many length scales. The pulsed flow of gases into meter-scale 

reactors, around millimetre-scaled geometries, leads to chemical reactions between atoms, which 

grow into nanometre-thick films and coat micron-scaled pores or particles.  It is clearly impossible to 

describe explicitly all of these length scales in one model, and most simulations are ‘multi-scale’ 

insofar as they involve coupling between selected length scales according to the property of interest.  

The problem of timescale in ALD is perhaps even more acute than that of length scale, since a 

combination of fast (ps-ns) and slow reactions (s-ms) contribute to film growth, and gases are 

pulsed and purged over second-long timescales. Well-behaved ALD processes are independent of 

reactor conditions, and so modelling ALD chemistry exclusively at the atomic scale can in fact explain 

many features of film growth, without reference to reactor conditions.  Nevertheless, explaining 

ALD’s unique selling point – conformal and uniform growth regardless of the size and shape of the 
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substrate – requires modelling at higher length scales, ideally incorporating information about the 

reaction chemistry from the atomic scale. 

 

6. An overview of the special collection of papers on CVD and ALD modelling 

This overview strives to aid readers with little or no experience in CVD and ALD and to put this special 

collection of papers on CVD and ALD modelling into a broader perspective. The special collection has 

been edited by the authors of this overview who also invited well known researchers in the field of 

CVD/ALD modelling to submit original research manuscripts for the special collection. The collection 

consists of nine papers on both CVD and ALD modelling, summarized below. 

Two papers strive to shine light on the CVD process for epitaxial film growth of silicon carbide (SiC) 

for manufacturing of high power electronic devices. The first paper by Danielsson et al. points to 

several weaknesses of the thermo chemical modelling of SiC CVD heavily used in process 

development today [67]. One of the main weaknesses is the suggested underestimation of the 

surface reactivity of hydrocarbons in today’s modelling. Also, the great influence the quality of the 

molecular data used has on the continuous flow dynamics (CFD) simulations is pointed out by using 

state of the art quantum chemical calculations to provide more accurate molecular data. The other 

paper on SiC CVD is a quantum chemical approach by Kalered et al. to better understand the effect of 

using a chlorinated growth chemistry in SiC CVD [68]. The use of chlorinated growth chemistry also 

for electronic grade SiC has enabled growth rates of 100 µm/h or higher [69], but the effect on the 

surface chemistry when adding the chlorine has not been investigated before. It is shown in the 

paper that SiCl2, the main Si species for a chlorinated chemistry, once chemisorbed has a higher 

energy barrier for desorption compared to SiH2, the main Si species for the standard chemistry. It is 

therefore suggested that the chlorinated chemistry can bring a more favorable surface chemistry to 

SiC CVD.    
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An industrial CVD process where chlorinated chemistry is well established is CVD of α-Al2O3 for hard 

coatings, C. Århammar et al. used a combination of thermochemistry and first principles modelling to 

study possible point defects incorporated in the α-alumina films from the CVD gas mixture [70]. 

Besides Al and O, the gas mixture for alumina CVD contains H, C, Cl and S, but little is known on the 

solubility of the possible point defects that can be created from these atoms. It is found that 

especially interstitial hydrogen and chlorine have the lowest formation energies and are thus likely to 

form, whereas sulfur from H2S, which act as catalyst in the process [47], is not likely to incorporate in 

α-alumina. 

R. Boichot et al. used thermochemical modelling to better understand a newly developed high 

temperature CVD process for aluminum nitride (AlN) [71]. Of especial interest to model where 

conditions in the boundary layer and close to the surface – parameters very hard to extract from 

experiments. The modelling results were used to design validation experiments presented in the 

paper. Even though the authors can deduce some experimental parameters needed for deposition of 

high quality AlN and further reactor development, they also state that the modelling used fail to give 

the whole picture since surface diffusion mechanisms are not included.   

CVD is the standard technique for synthesizing thin films of diamond, a topic studied by Z. Yiming et 

al. using DFT [72]. Particularly, the authors study the experimentally reported significant increase in 

growth rate of diamond when adding nitrogen to the CVD gas mixture, however, from experiments it 

is not clear if it is nitrogen incorporated into the diamond lattice or nitrogen, in the form of N, NH or 

NH2, chemisorbed to the diamond surface that leads to the higher growth rate. The authors 

conclude from their studies that nitrogen incorporated into the diamond lattice one or two atomic 

layers beneath the surface gives a higher surface reactivity leading to a higher growth rate. The 

authors estimate that the growth rate on the (100) surface of diamond will increase with a factor of 

3.7 which is well in agreement with experimental findings.  
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J.-M. Lin and A. V. Teplyakov used density functional theory to explore the reactions of two 

representative precursors with silicon surfaces terminated with various functionalities (Si-H, Si-N, Si-

O), yielding an impressive comparison across 32 reaction pathways [73]. The use of small Si clusters 

as substrate models is discussed. The results for the trimethylaluminum precursor illustrate how 

relatively simple C–Al and C–H dissociation processes are affected by the silicon termination. 

Extending this to tetrakis(dimethylamido)titanium introduces more complex chemistry and provides 

an opportunity to decouple electronic and steric factors. Molecular adsorption is seen to depend 

strongly on the electron-donating properties of the substrate, consistent with frontier orbital 

analysis. For proton transfer from substrate to ligand (the dominant ALD reaction), all activation 

energies relative to molecular adsorption are computed to be greater than 50 kJ/mol, with the 

exception of three pathways involving the Ti precursor and an O-terminated silicon surface. 

The reaction kinetics of atomic layer deposition are described analytically and numerically in this 

issue by C. D. Travis and R. A. Adomaitis [74]. Taking alumina deposition from trimethylaluminum 

(TMA) as the sample system, a model describing the reaction kinetics and surface species dynamics 

for the TMA half-reaction is developed. Four TMA reactions are included, accounting for TMA 

adsorption and subsequent reaction on a range of growth surfaces spanning bare to fully 

hydroxylated states. Published reaction energetics for these reactions from quantum chemical 

studies are converted into kinetic parameters using statistical thermodynamics and absolute reaction 

rate theory. The cyclic nature of ALD can be exploited to determine the overall growth rate from the 

concentrations of surface species. Interestingly, the model reveals that substantial growth of alumina 

is possible regardless of the level of hydroxylation of the substrate, as there are two competing 

pathways with favourable kinetics. The reaction rate expressions developed here can be 

implemented into reactor-scale simulations, which can guide the optimization of commercial ALD 

processes. 
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An approach towards precursor design from first principles is outlined by G. Dey and S. D. Elliott in 

this issue [75]. The subject is the ALD of metallic copper, where of course the precursor combination 

must provide both copper cations and electrons for reduction to the metal. Here it is proposed that 

the electron source should also contain copper, thus removing the chance of contamination by other 

metals, but that this is pulsed alternately with a ‘standard’ copper source in 2-step or 3-step ALD. The 

hydride anion is proposed as the reducing agent, as this may provide both electrons for reduction 

and protons for elimination of ligands from the standard copper precursor. A copper carbene 

complex is computed to yield maximal activation of the hydride and lead to volatile by-products, and 

so the proposed precursor is 1,3-diphenyl-4,5-imidazolidinedithione copper hydride.  

The paper in this issue by Yangas-Gil and Elam [76]highlights that simple first-order Langmuir kinetics 

is sometimes insufficient to capture the complexities of ALD surface chemistry, especially when 

precursor exposure is high, but that understanding such non-ideal cases is crucial for optimization 

and reliability of commercial ALD processes. The authors’ approach is to cast gas transport inside 

nanostructures as a single particle discrete Markov chain process, decoupled from reaction 

mechanisms that can include branching and non-ideal surface kinetics as needed. This description of 

surface chemistry is applicable generally to all types of CVD, not just ALD. A link is established 

between ballistic models, kinetic Monte Carlo simulations, and continuous models based on the use 

of the diffusion equation under Knudsen conditions. The calculations confirm that ALD coverage 

depends solely on total exposure as long as reaction probabilities are pressure-independent. 

7. Concluding remarks 

There is substantial variation in our level of understanding of CVD and ALD processes: some 

processes are investigated in great detail and are well understood, while others have been tuned to 

perfection over many years of development and/or commercialization, without much understanding 

of the details. In this overview, we have tried to point out the effectiveness and versatility of 

theoretical chemistry as a tool to obtain a deeper understanding without experiments that require 
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highly complex equipment and conditions far from what is used in the actual deposition process. The 

importance of CVD and ALD processes for our everyday lives is enormous and the continuing 

development of e.g. electronics require constantly better CVD and ALD processes.Theoretical 

chemistry modeling will play a key part in this development.     
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