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Abstract. Evaluation of an esterase annotated as 26D 
isolated from a marine metagenomic library is 
described. Esterase 26D was found to have a unique 
substrate scope, including synthetic transformations 
which could not be readily effected in a synthetically 
useful manner using commercially available enzymes. 
Esterase 26D was more selective towards substrates 
which had larger, more sterically demanding 
substituents (i.e. iso-propyl or tert-butyl groups) on the 
β-carbon, which is in contrast to previously tested 
commercially available enzymes which displayed a 
preference for substrates with sterically less demanding 
substituents (i.e. methyl group) at the β-carbon.  

Keywords: Esterase; Metagenomic Library; 
Stereochemistry; Biocatalyst; Enantiopurity 

Introduction 

Due to the importance of stereochemistry in drug 
discovery and the associated clinical and regulatory 
implications, the capability of producing 
enantiomerically pure synthons and Active 

Pharmaceutical Ingredients (APIs) in an efficient, 
highly stereoselective manner has never been more 
important.[1] Moreover, with increasing focus on 
“green” synthetic routes, a requirement exists for 
technologies which operate under milder conditions 
and minimise waste generation. Biocatalysis has 
emerged as a very favourable solution to these 
challenges.[2]  
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Biocatalysts are inherently stereoselective and many 
can outperform alternative methods prevalent in 
asymmetric synthesis, such as transition metal 
catalysis or chiral auxiliary chemistry.[3] In addition 
to the aforementioned advantages for enantioselective 
synthesis, biocatalysts are also obtained from 
renewable resources, can operate at neutral pH and 
wide ranges of temperatures, and are safe for both 
humans and the environment. Hence, there are 
significant advantages to this enabling technology 
when compared to “traditional” organic synthesis, 
which often relies on harsh reaction conditions or 
heavy metal catalysts.[2a, 4] 
Hydrolytic biocatalysts are very important to 
pharmaceutical, chemical and food industries.[5] 
These enzymes can be used to effect achiral 
transformations, however their primary use in 
synthetic chemistry is in asymmetric synthesis, where 
they can lead to enantioselective (dynamic) kinetic 
resolutions of esters and related compounds.[6] 
Esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3) are 
sub-groups of hydrolases. Esterases and lipases 
catalyse the hydrolysis of short chain and long chain 
glycerol esters, respectively.[6a, 7] 
A common strategy employed for the discovery of 
novel biocatalysts is through functional metagenomic 
screening to discover proteins with novel 
sequences.[8]  
There exists a requirement for new enzyme 
discovery, not least from the point of view of 
investigation of new activities and functionality,[9] as 
well as from the perspective of novel substrate 
specificity. The dereplication of functionally active 
clones is a vital step in the identification of novel 
biocatalysts. The DNA sequencing of the novel 
biocatalysts can be searched against large sequence 
databases such as NCBI, which currently contains 
over 125 million sequences of different proteins. [10] 
This step of bioinformatic dereplication of positive 
clones at an early stage of the process, saves much 
time and cost on downstream analysis. Furthermore, 
these newly discovered biocatalysts can act as 
templates for further evolution, starting from a point 
at which the enzyme displays some activity for the 
target transformation. 
 
The marine environment is an unexploited resource 
for the mining of hydrolases such as esterases and 
lipases. [11] This niche environment harbours a wide 
range of enzymes that tolerate varying reaction 
conditions such as high salt concentration, high 
pressure and pH tolerance, as well as functioning in 
extreme temperatures, which enable their use in 
diverse applications including industrial scale 
transformation. [12] In the past when using traditional 
microbiology techniques, only a minority of the 
bacteria were culturable from a given environment 
and therefore a vast array of important enzymes could 
have been overlooked. [13] To combat this challenge, 

culture-independent techniques have now been 
successfully employed. The construction and 
functional screening of large metagenomic libraries 
have successfully uncovered many novel biocatalysts. 
[14] Furthermore the screening of these libraries can be 
adapted to high-throughput (103 to 105 variants/day) 
or ultrahigh-throughput (106 to 109 variants/day) 
functional screening assays. [15]  
Previously, our group [11] and others have had success 
with enzyme mining in niche environments as a 
biocatalyst source.[16] The marine environment, which 
has bestowed upon us many pharmaceutically 
interesting natural products, has proven to be a rich 
source of protein diversity.[11, 17]  
 
Exploring the potential of the novel biocatalysts in 
enantioselective synthesis 
 
Via the culture-independent sampling of the marine 
environment, a number of enzymes were identified in 
our laboratory as having hydrolytic activity through 
use of a tributyrin screen. The hydrolase family of 
enzymes  make up approximately 55% of all enzymes 
used in biocatalytic processes, with only 8% of these 
being esterases.[18] Following a screen of target 
substrates with these biocatalysts, esterase 26D was 
identified as an active and selective enzyme when 
tested, showing an altered substrate preference to 
previously tested commercial hydrolases.[1b, 19] 
Esterase 26D shows greater selectivity when the 
substituent on the β-carbon is a tert-butyl group 
(sterically bulky) versus a methyl group.  

Results and Discussion 

The novel esterase 26D was identified in a functional 
screen of an Axinella dissimilis marine sponge 
metagenomic library (n = 20,352 clones) constructed 
in E. coli EPI300 cells using the fosmid vector 
pCCFOS1.  Comparative analysis of the gene 
sequence encoding the 26D esterase revealed 
sequence identity (71%) with hydrolase 
WP_108845108.1 from a Phyllobacteriaceae 
bacterium and a hypothetical protein (70%) 
OUW21162.1 from a Rhizobiales bacterium. The 
clustering tree demonstrated that the 26D sequence 
branched on the same node as the aforementioned 
proteins, (WP_108845108.1 (■) and OUW21162.1 
(●)) however importantly the 26D esterase was on a 
distinct branching point to these (Figure 1). The 
percentage identity of the sequences in the tree, range 
from 44-71% compared to 26D. We theorized that 
this novel sequence could give rise to a novel 
functioning esterase with a unique substrate profile 
when compared with existing esterase activities. 
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Figure 1. Clustering Tree to define the uniqueness of the esterase positive clone 26D  

 

 

Table 1. Commercial enzymes used in the kinetic resolution of 3-arylalkanoic acids.[19] 

 
Entry 

R 
No. of enzymes which gave  

 >10% conversion 

No. of enzymes which furnished  

acid product in 90% ee 

1 Me 15 7 

2 Et 5 1[a] 

3 i

Pr 5 1 

4 t

Bu 2[b] 1 

(a) Use of co-solvent required  (b) Heating to 40 C required 

 
Previous work in our group investigated the kinetic 
resolution of 3-arylalkanoic acids. Using a systematic 
approach with commercial enzymes and by varying 

the co-solvent, a range of compounds were resolved 
with excellent enantiopurity (Table 1).[1b, 19] One of 
the features of these compounds is that the chiral 
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centre is not adjacent to the reacting site (i.e. at the α-
carbon) but at the β-carbon, which brings about 
significant challenges in terms of selectivity and 
activity.[1b, 19-20] 
Notably, from this previously completed screen the 

number of enzymes which processed the substrate 

decreased as the steric bulk of the β-substituent 

increased, Table 1.[19] Concurrently the number of 

enzymes exhibiting enantiodiscrimination also 

decreased. In particular, enzymatic hydrolysis of 

substrate 5 bearing a t-butyl substituent was 

extremely challenging, with only two of the 

previously screened commercial hydrolases showing 

activity. After considerable optimisation of the 

conditions for the biotransformation (immobilised 

Candida Antarctica Lipase B as the biocatalyst), the 

optimum outcome achieved led to the acid product in 

excellent enantiopurity (98% ee) with moderate 

conversion (23%) in 72 hours at 40 °C (Scheme 1). 

Even under the optimised conditions, the kinetic 

resolution of 5 is of limited synthetic utility as the 

enantiopurity of the recovered ester is, of necessity, 

compromised by the limited extent of reaction.[19] 

One possible explanation for this given by Müller et 

al is that, given the paucity of natural products 

featuring the t-butyl group, enzyme evolution in 

nature to accommodate this sterically demanding 

substituent is less likely.[21] 

 

 

Scheme 1: Previously screened hydrolysed-mediated kinetic resolution of (±)-ethyl 4,4-dimethyl-3-

phenylpentanoate (±)-5 at variable reaction times and temperature.[19] 

 

 

In this work identifying an enzyme which would 

hydrolyse substrate 5, the challenging substrate, in a 

synthetically useful manner would be very attractive. 

Accordingly, wild type esterase 26D was tested for 

activity against the challenging ester substrate 5. 

Gratifyingly, in the initial screens using whole cells 

expressing the wild type esterase 26D both activity 

and excellent enantioselectivity were seen with 

substrate 5. Whole cells expressing the esterase 

furnished the acid product in excellent enantiopurity 

(98% ee) with 21% conversion (Ecalc) (Table 2, entry 

5).   

In light of this result, screening this novel enzyme 

against the series of esters 1-4 was undertaken to 

probe the substrate scope of the enzyme by varying 

the alkyl substitution on the β-carbon (as summarised 

in Table 2). Interestingly, esterase 26D, while active 

across the series, displayed the opposite trend to all 

other enzymes screened against this similar series, 

with enantioselectivity increasing with increased 

steric demand at the β-substituent. Hydrolysis of the 

esters bearing ethyl (3) and isopropyl (4) substituents 

proceeded with good enantioselectivity, while 

decreased selectivity was seen with the smaller 

methyl substituent, even though resolution of this 

derivative was by far the most efficient in our earlier 

study.[1b, 19] 

Interestingly resolution of the trifluoromethyl 

substituted ester 2 was more efficient than that of the 

methyl derivative 1 under the same conditions. 

While the hydrolysis of ester 5 was promising (Table 

2, entry 5), to enhance its synthetic utility, process 

optimisation was undertaken (Table 2, entry 6) 

involving repeated additions of the biocatalyst at 0, 

12 and 24 hours, which led to recovery of the ester in 

73% ee albeit with a reduction in the enantiopurity of 

the acid (91% ee) under these more forcing 

conditions. This result demonstrates that with further 

optimisation, esterase 26D can lead to a synthetically 

feasible kinetic resolution, whereby both 

enantiomeric series can be accessed. Use of 

alternative co-solvents (1,4-dioxane, MTBE, EtOH), 

variation of pH (6 to 7.8) and extended reaction (72 

h) time were explored without significant impact. 
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Table 2. Kinetic resolution of 3-arylalkanoic acid ethyl esters 1-5 using esterase 26D 

 

Entry R1 Time 

(h) 

Conversion (%) % ee 

E[22] 

 

1H 

NMR[a] Ecalc
[b] [22]

 Ester Acid 
 

1 Me[c] 24 25 22 18 (S) 63 (R) 5  

2 CF3
[c] 24 60 42 64 88   

3 Et[d] 24 30 24 31(S) 96 (R) 66  

4 iPr[c] 24 -[g] 42 65 (R) 88 (S) 31  

5 tBu[c] 24 30 21 26 (R) 98 (S) 127  

6 tBu[e] 48 -[g] 45 73 (R) 91(S) 40  

7 tBu[f] 48 -[g] 37 55 (R) 93 (S) 47  

 

(a) Conversion was estimated using 1H NMR spectroscopy by integration of the signal for esters and 

alcohols; (b) Conversion (Ecalc) and the enantiomeric ratio (E) were calculated from enantiomeric 

excess of substrate ester (ees) and product acid (eep); (c) 50 mg/mL of whole cells expressing esterase 

26D; (d) 25 mg/mL of whole cells expressing esterase 26D; (e) 50 mg/mL of whole cells expressing 

esterase 26D was added in three portions, 0h, 12 h and 24 h; (f) 150 mg/mL of whole cells expressing 

esterase 26D; (g) percentage conversion of ester to acid could not be determined by 1H NMR 

spectroscopy analysis. 

 

Having established that 26D could be used for a 

transformation which was not readily achieved with 

existing biocatalysts, its substrate scope was further 

investigated. We had previously examined a panel of 

hydrolase enzymes in the kinetic resolution of 2-

phenylalkanols.[23] Excellent enantiopurities were 

obtained for a number of alcohol products when 

CAL-B was used as the biocatalyst. In contrast, 

esterase 26D was a poor biocatalyst for the resolution 

of 2-phenylalkanols. A range of ester substrates was 

screened, with the substituent on the β-carbon (R1) as 

well as the substituent (R2) on the carboxylic acid 

moiety of the ester being varied (Table 3). Product ee 

was poor to moderate, although in some instances 

hydrolysis was seen for substrates (14 and 15) which 

were not processed by CAL-B [23] (Table 3, entries 4 

and 5), further highlighting the different profile in 

terms of the enzyme’s substrate scope.  
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Table 3. Kinetic resolution of 2-phenylalkanols using esterase 26D 

 

Entry Compound R1 R2 
Conversion (%) % ee 

E[22] 
1H NMR [a] Ecalc

[b] [22] Ester Alcohol 

1 11 Me Ph 81 67 36 (R) 18 (S) 2 

2 12 Me tBu 56 15 3 (R) 19 (S) 2 

3 13 Et Ph 55 48 37 40 3 

4 14 Et tBu 55 34 40 77 11 

5 15 iPr iPr 55 49 29 30 2 

6 16 iPr
 

Ph 25 19 14 61 5 

7 17 iPr tBu -[c] 15 16 91 25 

8 18 Me Bn 22 21 10 38 2 

 

(a) Conversion was estimated using 1H NMR spectroscopy by integration of the signal for esters and 

alcohols; (b) conversion (Ecalc) and enantiomeric ratio (E) were calculated from enantiomeric excess of 

substrate ester (ees) and alcohol product (eep); (c) percentage conversion of ester to alcohol could not be 

determined by 1H NMR spectroscopy analysis   

 

 

We then turned our attention to applying the atypical 

substrate acceptance of esterase 26D to a 

pharmaceutical intermediate, since assimilation of a 

novel biocatalyst into an industrially relevant 

synthetic route would underline its value.  

This work was initially extended to cyclic substrates 

27-29, as summarised in Table 4. Esterase 26D 

hydrolyses acetates of α- and β-tetralols (27 & 28) 

and 1-indanol (29), affording high conversion to the 

alcohols 31 & 32 but with very poor 

enantiodiscrimination. 

Following on from this work, the novel acetates 25 

and 26 were prepared by acetylation of the 

corresponding tetralols 23 and 24, which were 

accessed by reduction of the tetralone 22 (Scheme 2). 

An intermediate in the synthesis of the Pfizer 

antidepressant sertraline, racemic tetralone 22 was 

obtained from the condensation of 1-napthol and 1,2-

dichlorobenzene in the presence of a strong Lewis 

acid. Enantiopure (4S)-tetralone 22 was also reduced 

and acetylated. The tetralin core (α- or β- substituted) 

is in itself a privileged moiety in drug discovery, 

being present in a number of drugs and bioactive 

compounds.[24] 

 

 

 

 
Scheme 2. Synthesis of acetates 25 and 26 

 

When the trans- and cis- acetates 25 and 26 were 

exposed to esterase 26D, hydrolysis of the trans-

acetate 25 is more rapid than that of the cis-acetate 26 

(Table 4 entry 4 and 5). Excellent enantioselectivity 

was observed in the formation of the cis-tetralol 24 

(93% ee). As the cis-tetralol 24 product has been used 
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as a synthetic intermediate for sertraline,[25] this 

observation is particularly interesting and highlights 

the potential of the novel biocatalyst to be utilised for 

the resolution of pharmaceutically related 

compounds. Absolute stereochemistries of the 

biotransformation products were deduced by 

comparing the HPLC traces with that of the (4S)-

tetralol and the corresponding acetates. 

 

Table 4. Hydrolysis of acetates 25-29 using esterase 26D.  

 

 

Entry Substrate Time 

(h) 

Conversion % ee 
E[22] 

1H NMR Ecalc
[a] [22] Ester Alcohol 

1 27 4 -[b] 5 30 10 2 

2 28 1 -[b] 86 32 5 1 

3 29 2 22 50 4 4 1 

4 25 24 38 36 ~31[c] 55 (1R,4S) 5 

5 26 24 20 18 21 93 (1R,4R) 39 

(a) Conversion (Ecalc) and the enantiomeric ratio (E) were calculated from enantiomeric excess of 

substrate ester (ees) and product alcohol (eep); (b) percentage conversion of ester to alcohol could not be 

determined by 1H NMR spectroscopy analysis; (c) full resolution of signals in the HPLC was not 

possible 

 

Conclusion 

In conclusion, the novel esterase 26D acts as a 

synthetically valuable biocatalyst displaying a unique 

substrate scope, at least within the range of 

biocatalysts which we have explored, and to date is 

the optimum biocatalyst for the resolution of the 

challenging ester substrate 5, highlighting the 

importance of metagenomic screening as a valuable 

approach for the discovery of novel biocatalysts. The 

success in resolving an ester substrate where the 

chirality lies in the acid portion (6-10) relative to the 

other substrates explored where the chirality lies in 

the alcohol (e.g. compounds 11-18 and 25-29) moiety 

is unsurprising in an esterase.[26] Furthermore, a 

potential intermediate in the synthesis of sertraline 

(compound 26) was resolved in excellent 

enantiopurity, suggesting the potential of this 

biocatalyst to be used in the synthetic route of a 

pharmaceutical compound. 

Experimental Section 

General 

Solvents were distilled prior to use as follows: 

dichloromethane was distilled from phosphorus 

pentoxide, ethyl acetate was distilled from potassium 

carbonate. Hexane was distilled prior to use. Organic 

phases were dried over anhydrous magnesium sulfate. 

Infrared spectra were recorded neat using a Perkin 

Elmer FTIR UATR2 spectrometer.1H (300 MHz) and 
13C (75.5 MHz) NMR spectra were recorded on a 
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Bruker Avance 300 MHz NMR spectrometer and all 

spectra were recorded at room temperature (̴ 20 °C) in 

deuterated chloroform (CDCl3), unless otherwise 

stated, using tetramethylsilane (TMS) as an internal 

standard and chemical shifts (δH and δC) are reported 

in parts per million (ppm) and coupling constants are 

expressed in Hertz (Hz). Low resolution mass spectra 

were recorded on a Waters Quattro Micro triple 

quadrupole spectrometer in electrospray ionisation 

(ESI) mode using 50% water/acetonitrile containing 

0.1% formic acid as eluent. High resolution mass 

spectra (HRMS) were recorded on a Waters LCT 

Premier Time of Flight spectrometer in electrospray 

ionisation mode (ESI) using 50% water/acetonitrile 

containing 0.1% formic acid as eluent. Wet flash 

chromatography was performed using Kieselgel 

Silica Gel 60, 0.040–0.063 mm (Merck). Thin layer 

chromatography (TLC) was carried out on precoated 

silica gel plates (Merck 60 PF254). Visualisation was 

achieved by UV (254 nm) light detection and KMnO4 

staining. Candida Antarctica lipase B (immobilised 

on ImmoBead 150) was purchased from Sigma-

Aldrich chemical company. All enzymatic reactions 

were performed on a VWR Incubating Mini Shaker 

4450. All reagents are analytical grade and purchased 

from Sigma-Aldrich, Acros Organics, Fluka or TCI. 

Enantiomeric excess values were measured by high 

performance liquid chromatography (HPLC) using a 

Chiralcel® OB-H column  (5 × 250 mm), Chiralcel® 

OD-H column (5 × 250 mm), Chiralcel® OJ-H 

column (5 × 250 mm) and Chiralpak® IB (5 × 250 

mm) purchased from Daicel Chemical Industries, 

Japan. Phenomenex Amylose 1 column (5 × 250 

mm), Phenomenex Amylose 2 column (5 × 250 mm), 

Phenomenex Cellulose 4 column (5 × 250 mm), 

purchased from Phenomenex Inc., UK. Mobile phase 

and flow rate are included where appropriate, and the 

detector wavelength was 209.5 nm. HPLC analysis 

was performed on a Waters alliance 2690 separations 

module with a PDA detector.  

 

Expression and purification of lipase/esterase  

His-tagged esterase 26D fusion proteins derived from 

a tributyrin screen of a pCC1FOS™ (Epicentre) 

metagenomic library transformed in EPI300™ 

Electrocompetent E. coli were prepared for 

recombinant protein expression. Single colonies were 

inoculated in LB (Luria-Bertani) medium 

supplemented with kanamycin (50 μg/ml), 

chloramphenicol (50 μg/ml) and streptomycin (75 

μg/ml) and incubated at 37°C with shaking at 180 

rpm overnight. Overnight cultures were transferred 

(1%) to fresh media with antibiotics and grown to an 

OD600nm of 0.8-1.0, at which point the medium was 

supplemented with 0.5 mM IPTG (Melford) to induce 

recombinant protein expression. After 4 hrs post-

induction, the culture was centrifuged at 12,000 rpm 

for 10 min at 4°C to harvest the cells. The cell pellet 

was stored at -80°C until ready for expression 

analysis. 

Bioinformatic Dereplication for Novel Activity 

The DNA sequences of the positive clone was 

bioinformatically aligned using Clustal Omega [27] 

and a consensus sequence was defined using Jalview 

Version 2 [28]. A Translated BLAST: blastx search 

was conducted against the NCBI Non-redundant 

protein sequence database [29]. The cluster 

relationship of 26D was inferred using the Neighbor-

Joining method. The distances were computed using 

the Poisson correction method and are in the units of 

the number of amino acid substitutions per site. The 

analysis involved 100 amino acid sequences of the 

top BLAST hits by sequence identity. All ambiguous 

positions were removed for each sequence pair. This 

analysis was conducted in MEGA X. 

 

Lipase-catalysed hydrolysis reactions 

In a typical experiment, 50 mg of whole cells 

expressing esterase 26D were added to a 15 mL 

centrifuge tube (unless otherwise stated) followed by 

0.1 M potassium phosphate buffer at pH 7.2 (900 

µL/1000 µL). Substrates 1 - 5, 11 - 18 and 25 - 29 (20 

mM) were dissolved in 100 µL DMSO (10% v/v) and 

then added to the centrifuge tube to make the total 

volume 1 mL. The reaction mixture was agitated at 

400-450 rpm and incubated at 30 °C for 24 h unless 

otherwise stated. Ethyl acetate (3mL) was added to 

the centrifuge tube and the reaction mixture was 

centrifuged at 5000 rpm for 10 minutes. The layers 

were separated, the aqueous layer was washed with 

ethyl acetate (2 × 3 mL), the combined organic 

extracts were filtered through Celite® and 

concentrated under reduced pressure. The entire 

reaction sample was analysed by 1H NMR 

spectroscopy, reconcentrated and dissolved in a 

mixture of iPrOH /hexane [10:90 (HPLC grade)] and 

enantiopurity determined by chiral HPLC analysis.  

 

Compounds 1, 3-5, 7-12, 15, 18, 21, 23-24 and 27-29 

were synthesised according to previously reported 

methods.[19, 23, 25, 30]  Details of novel compounds are 

given in the SI.  
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