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Abstract

Abstract

The objective of this work is to introduce techniques for the computation of

optimal and near-optimal inventory control policy parameters for the stochastic

inventory control problem under Scarf’s setting. A common aspect of the

solutions presented herein is the usage of stochastic dynamic programming

approaches, a mathematical programming technique introduced by Bellman.

Stochastic dynamic programming is hybridised with branch-and-bound, binary

search, constraint programming and other computational techniques to develop

innovative and competitive solutions.

In this work, the classic single-item, single location-inventory control with

penalty cost under the independent stochastic demand is extended to model

a fixed review cost. This cost is charged when the inventory level is assessed

at the beginning of a period. This operation is costly in practice and including

it can lead to significant savings. This makes it possible to model an order

cancellation penalty charge.

The first contribution hereby presented is the first stochastic dynamic program-

ming that captures Bookbinder and Tan’s static-dynamic uncertainty control

policy with penalty cost. Numerous techniques are available in the literature

to compute such parameters; however, they all make assumptions on the de-

mand probability distribution. This technique has many similarities to Scarf’s

stochastic dynamic programming formulation, and it does not require any ex-

ternal solver to be deployed. Memoisation and binary search techniques are

deployed to improve computational performances. Extensive computational

studies show that this new model has a tighter optimality gap compared to the

state of the art.

The second contribution is to introduce the first procedure to compute cost-

optimal parameters for the well-known (R, s, S) policy. Practitioners widely use

such a policy; however, the determination of its parameters is considered com-

putationally prohibitive. A technique that hybridises stochastic dynamic pro-

gramming and branch-and-bound is presented, alongside with computational

enhancements. Computing the optimal policy allows the determination of op-

timality gaps for future heuristics. This approach can solve instances of consid-

erable size, making it usable by practitioners. The computational study shows

the reduction of the cost that such a system can provide.
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Abstract

Thirdly, this work presents the first heuristics for determining the near-optimal

parameters for the (R, s, S) policy. The first is an algorithm that formally

models the (R, s, S) policy computation in the form of a functional equation.

The second is a heuristic formed by a hybridisation of (R, S) and (s, S) policy

parameters solvers. These heuristics can compute near-optimal parameters in a

fraction of time compared to the exact methods. They can be used to speed up

the optimal branch-and-bound technique.

The last contribution is the introduction of a technique to encode dynamic

programming in constraint programming. Constraint programming provides

the user with an expressive modelling language and delegates the search for

the solution to a specific solver. The possibility to seamlessly encode dynamic

programming provides new modelling options, e.g. the computation of optimal

(R, s, S) policy parameters. The performances in this specific application are

not competitive with the other techniques proposed herein; however, this

encoding opens up new connections between constraint programming and

dynamic programming. The encoding allows deploying DP based constraints

in modelling languages such as MiniZinc. The computational study shows

how this technique can outperform a similar encoding for mixed-integer

programming.
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Chapter 1

Introduction

In this chapter, we briefly describe the goal and scope of this thesis. Section

1.1 presents the motivations behind this work. We briefly introduce inventory

control and we describe its importance for practitioners. We present the

contributions of this work in Section 1.2. Section 1.3 lists the publications.

Finally, the thesis structure is presented in Section 1.4.

1.1 Motivation

An inventory control system is used to control the number of products in the

inventory to satisfy the demand adequately. These systems are used to decide

the timing and size of the replenishments. They can be in an autonomous

way or as a support decision tool. Optimising these decisions can lead to

important savings, and their impact is increasing nowadays thanks to advances

in information, communication and transport technologies. More data are

available to process, and their accuracy increased as well. These innovations

allow companies to cope with an evolving situation, characterised by shortened

product life cycles, globalised supply chain, and eCommerce market [EL13].

Recent statistics confirm the growing interest in inventory management. The

number of warehouses in the U.S. is continuously increasing. More than 3000

new warehouses opened in the country in the last seven years. The annual

increase is rising since 2009, regardless of the economic crisis (U.S. Bureau of

Labor Statistics, 2019).

These data are consistent with the Motorola Warehouse Vision Survey, where

1



1. INTRODUCTION 1.1 Motivation

more than one-quarter of the surveyed professionals claimed that their distribu-

tion centres are viewed as an asset that can drive the growth for the business,

and 35% of them plan to increase the number of warehouses they operate. The

companies are increasing their investments in inventory operations technolo-

gies. In particular, approximately two-thirds of the retailers plan to increas-

ingly automate the process by deploying new technology solutions. A 100%

increase of the digitisation of cycle counting and validation will provide more

reliable information for the techniques proposed herein. These warehouses re-

duce shipping costs and cut down potential border tariffs, a critical discussion

topic in modern politics. Moreover, having them closer to the demand allows

for dealing with demand changes faster.

Inventory control is one of the most successful branches of Operational Re-

search. The first work in this area is considered to be [Har13]. Harris in-

troduces the well known Economic Order Quantity (EOQ) model. This model

answers the problem of determining when an order should be placed and its

size. While this pioneering work is a fundamental part of the inventory control

field, it is limited by its strong assumptions. Harris assumptions are:

• The demand is constant and deterministic.

• The order quantity can be non-integer.

• There are no restrictions on the order size (min/max).

• The purchasing unit cost is not affected by the order size; no quantity

discounts are allowed.

• The cost factors are constant over the planning horizon.

• Items are treated independently, no joint review/shipping and no substi-

tute items.

• There is no lead time, i.e. orders are delivered instantaneously when

placed, all the items are delivered at the same time.

• Shortages are not allowed.

• The planning horizon is very long, and the conditions stay the same for

all of it.

A wide part of inventory control literature provides techniques to answer the

two research questions when these assumptions are relaxed or changed.

Computing Policy Parameters for Stochastic
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1. INTRODUCTION 1.1 Motivation

In this work, we focus on methods that relax the first assumption. In real-

world inventory systems, the demand is hardly known in advance, especially

in business-to-consumer applications. This is due to the inherent qualities of

the business and its customer base. Moreover, demand can change over time.

Many products are affected by seasonality, by a shorter life-cycle or by customer

preference shift. Modelling this uncertainty can lead to more robust and better-

performing inventory planning. For example, a drop in the demand can cause

a high amount of leftovers that consume physical space and block capital that

could be invested otherwise. The leftovers can expire, become outdated, get

damaged or stolen. On the other hand, an unexpected spike in demand can

lead to a shortage, and this can cause lost sales and lower customer service.

[TKTE11] conducts a comparison study on the cost of adopting stationary

policies in a non-stationary demand situation.

A well-developed branch of inventory control focuses on techniques tackling

these particular issues: the non-stationary stochastic lot sizing. In this setting,

the demand is a set of stochastic variables of which we know the probability

distributions. These variables are generally considered independent and can

be different in each period. Modelling these possibilities allows to better cope

with the uncertainty of the demand and the seasonality or life cycle of some

products. [AHM51] is the first known work in stochastic inventory models.

An important class of these problems is the single-item single-location non-

stationary stochastic lot sizing under linear holding costs, penalty costs and

both linear and fixed ordering costs. Different policies can be used to determine

the size and timing of the orders on such setting [Sil81].

In his seminal work [Sca59], Scarf characterises the structure of the optimal

policy for such problem. The framework proposed by Bookbinder and Tan

[BT88] divides the policies into three classes: static uncertainty, dynamic

uncertainty and static-dynamic uncertainty. These classes differ on the moment

in which the decisions are taken. A policy is static uncertainty if the fixing of

the ordering moments and sizes happens at the beginning of the time horizon.

If these decisions are taken after observing the demand for previous periods,

the strategy is dynamic uncertainty. Otherwise, if the two parameters are

fixed at different times, the policy is static-dynamic. This research motivated

several following works, including this thesis. Different comparison studies

have been conducted recently to benchmark different aspects of these policies:

Kilic et al. [KT11] extends a measure of planning instability for the non-
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stationary stochastic lot sizing; Dural et al. [DSRKT19] compares different

policies performances in the receding horizon. A broad picture of the state-of-

the-art in lot sizing can be found in a recent review of papers reviews [BGJK15].

The approaches available in the stochastic lot sizing literature present several

drawbacks. To the best of our knowledge, no work in the literature considers

an inventory review cost factor. This cost is charged when the inventory level

is assessed at the beginning of a period. Inventory review (also known as

stock-taking) is costly in practice, and its modelisation can lead to significantly

savings. No inventory strategy has been proved cost-optimal for this extension.

This cost can be used to model order cancellations as well. If the demand

observed is less than expected, the management can cancel a previously

scheduled order. Order cancellation is usually associated with a penalty cost.

To the best of our knowledge, stochastic lot sizing literature does not include

works including the possibility of cancelling an order.

The (R, s, S) is a type of inventory control policy that we describe in Chapter

3. A stronger interest towards it is a direct consequence of the introduction

of the review cost factor. This inventory control policy is known since the

"golden age" of inventory research of the 1950s, and it has a strong value for

practitioners. The inventory is reviewed at review intervals R. If the inventory

level is lower than an order level s, an order is placed to raise it to an order-up-

to-level S. In the absence of a review cost, it is equivalent to the cost-optimal

(s, S) policy with a periodic planning horizon. Including this cost factor, the

policy outperforms the (s, S) one. Computing optimal, or near-optimal, (R, s, S)
parameters has been considered too computationally expensive. It is one of the

most general and frequently used inventory policies; however as pointed out

by [Sil81], "the determination of the exact best values of the three parameters
is extremely difficult". To the best of our knowledge, no heuristic or optimal

approach to computing them has been presented in the literature surveyed in

Section 3.4.5.

Another problem that has been widely tackled in the literature is the compu-

tation of parameters for the (R, S) policy, also known as the static-dynamic

strategy. This policy can outperform the (s, S) one in the presence of a review

cost. However, no pure stochastic dynamic programming formulation is avail-

able for the computation of such parameters under the assumption of a linear

penalty cost in case of a stockout. Furthermore, as Section 3.4.4 shows, most

of the techniques available make strong assumptions on the demand type.
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This thesis aims to cover these unsolved research shortfalls. To do so, we model

the review cost and adapt existing methods to it. We adapt existing techniques

to compute optimal (R, s, S) policy parameters. We introduce new optimal

techniques and heuristics for the same problem, all based on stochastic dynamic

programming (SDP).

Bellman [Bel66] has originally introduced SDP. It is a technique used to model

and solve problems of decision making involving uncertainty. Some of the

parameters of the problem are random variables of which the probability

distribution is known. SDP involves aspects of stochastic programming and

dynamic programming (DP). Scarf’s SDP [Sca59] is the most famous stochastic

lot sizing algorithm, and it is widely used to compute the expected value of the

cost-optimal policy, e.g. [RTHP11,DSRKT19].

In this work, we combine SDP with different techniques to achieve competitive

algorithms. The most important are: branch-and-bound (BnB), DP and

constraint programming (CP). BnB is an algorithm design paradigm based on a

rooted search tree. The algorithm explores the branches of the tree, computing

partial solutions. This partial assignment of the decision variables is compared

with bounds to check if it can produce a better solution than the best so far. If

a partial solution is proved to be non-optimal, a pruning of the branch occurs.

The bounds are computed using a DP solution. The DP approach builds an

optimal solution by breaking the problem down into sub-problems and solving

each to optimality in a recursive manner, achieving great efficiency by solving

each sub-problem only once.

CP is one of the most active fields in artificial intelligence. Designed to

solve optimisation and decision problems, it provides expressive modelling

languages, development tools and global constraints. CP has already been used

successfully in lot sizing, e.g. [RTHP08, RTHP12]. An overview of the current

status of CP and its challenges can be found in [Fre18].

Thesis

The review cost is an important cost factor of an inventory control system.

Its introduction makes the (R, s, S) and the (R, S) policies more cost-efficient

compared to the (s, S) one. SDP based techniques can be used to compute

(near-)optimal (R, s, S) policy parameters in single-item, single-location, non-

stationary stochastic lot sizing with review cost. The resulting solutions
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outperform cost-wise the state-of-the-art approaches.

The work herein fully support this thesis; the next chapters present algorithms

that are:

• Innovative in the problem configuration. The stochastic lot sizing problem

with non-stationary demand and review cost has not been tackled in the

literature. The introduction of the review cost allows deploying more

accurate models of real-world applications.

• Innovative in terms of the policy used. The (R, s, S) policy has many

advantages in terms of flexibility and robustness to unexpected demand.

For these reasons, it is widely used by practitioners. No algorithm

to compute a (near-)optimal set of its parameters is available in the

literature. The reason is the high computational effort required to

compute them.

• Computable in reasonable time. The techniques we propose herein

outperform a naive solution by orders of magnitude, making them usable

by practitioners.

• Novel in terms of hybridisation of techniques. A hybridisation of SDP and

BnB is a novel approach in lot sizing. To speed it up, we introduce

novel DP bounds. We present the first modelling approach to encode DP

and SDP into a CP model, this encoding open new possible integrations

between these two fields.

• Optimal or near-optimal. We present the first cost-optimal solution for

the problem of computing (R, s, S) policy parameters. We describe novel

heuristics that exhibit a close optimality gap and that are competitive in

terms of computational performances.

The complexity of supply chains has increased significantly over the past years.

This is due to an increase in the number of items to be managed and a globalised

production. In this environment, optimised management of the stock provides

important saves for a business. The closer the mathematical model of the real

problem is, the higher are the potential savings. The work presented in this

thesis aims to extend the current modelling of stochastic non-stationary lot

sizing and present a (near-)optimal algorithms to compute its parameters.
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1.2 Contributions

The contributions of this thesis are:

• The modelling of a new cost factor in the lot sizing formulation.

• An SDP compact formulation for the (R, S) policy under penalty cost.

• An extension of the well known SDP solution for the (s, S) policy [Sca59]

that allows it to compute optimal parameters for the (R, s, S) policy.

• The first algorithm to compute the optimal parameters of an (R, s, S)
policy under the stochastic non-stationary assumption. This solution is

based on SDP and BnB.

• A set of techniques to strongly improve the performances of the previous

solution, including a state space reduction and bounds computed with

dynamic programming.

• An SDP designed to compute the parameters for the (R, s, S) policy.

This formulation is a combination of the (s, S) and the (R, S) SDP

formulations.

• The introduction of a heuristic for the (R, s, S) policy that is based on the

combination of (R, S) and (s, S) algorithms. This heuristic can be used to

improve the performances of the BnB solution.

• A new technique that allows to model dynamic programming formula-

tions in constraint programming. This modelling technique can be used

to solve to optimality the problem of computing (R, s, S) policy parame-

ters. The solution based on this formulation is not competitive compared

to the others proposed herein. However, the modelling technique has an

intrinsic value and many possible applications, e.g. in network interdic-

tion problems [IW02].

1.3 Publications

We have published the work described in this thesis in international journals,

conferences, their workshops and poster sessions. These publications are listed

as follows:
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• Andrea Visentin and Steven Prestwich and Roberto Rossi and S Armagan

Tarim: Computing Optimal (R, s, S) Policy Parameters by a Hybrid of
Branch-and-Bound and Stochastic Dynamic Programming, in European

Journal of Operational Research, Under review.

• Andrea Visentin and Steven Prestwich and Roberto Rossi and S Armagan

Tarim : Modelling Dynamic Programming-Based Global Constraints in
Constraint Programming, in proceedings of the 6th World Congress on

Global Optimization, Optimisation of Complex Systems: Theory, Models,

Algorithms and Applications.

• Steven Prestwich and Roberto Rossi and S Armagan Tarim and Andrea

Visentin: Towards a Closer Integration of Dynamic Programming and
Constraint Programming, in proceedings of the 4th Global Conference on

Artificial Intelligence 55, 202.

• Andrea Visentin: Optimal (R, s, S) policy for single-item inventory lot sizing
problem with stochastic non-stationary demand: in 10th International

Workshop on Lot Sizing.

Unrelated to our work on inventory control, we also published the following:

• Andrea Visentin and Alessia Nardotto and Barry O’Sullivan: Predicting
Judicial Decisions: A Statistically Rigorous Approach and a New Ensemble
Classifier, in Proceedings of 31st International Conference on Tools with

Artificial Intelligence.

• Andrea Visentin and Steven Prestwich and S Armagan Tarim: Robust
principal component analysis by reverse iterative linear programming, in

Proceedings of Joint European Conference on Machine Learning and

Knowledge Discovery in Databases

1.4 Thesis Structure

• In Chapter 1, we present the motivation behind our work and its goals.

Finally, we summarise the contributions and the thesis’ structure.

• In Chapter 2, we describe the lot sizing problem and the settings used

in this work. Then, we extend the existing mathematical model to

incorporate the review cost.
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• In Chapter 3, we introduce the key techniques used in this work, and

we describe the inventory control policies used. Then, we position our

problem settings in the lot sizing literature, and we survey the existing

techniques to compute the policy parameters for the non-stationary

stochastic lot sizing.

• In Chapter 4, we describe Scarf’s SDP and the K-convexity property.

Then, we present the first computable formulation of the (R, S) policy

computation into an SDP functional equation. This formulation shares

the same settings of Scarf’s one, with no assumption on the demand type.

We then present a series of computational enhancements that strongly

reduce the computational time without compromising the optimality of

the technique. Extensive computational experiments prove the quality of

the technique that holds a better optimality gap compared to the state-of-

the-art approach.

• In Chapter 5, firstly, we present a naive approach based on Scarf’s work

that we use as a comparison. Then, we present the first algorithm to

compute cost-optimal parameters for the (R, s, S) policy. This technique is

a hybridisation of SDP and BnB, improved by tight bounds computed with

DP. It outperforms the baseline by several orders of magnitude, making

it usable by practitioners. An extensive computational study proves the

quality of the solution.

• In Chapter 6, we present a pure SDP formulation for the computation of

the (R, s, S) policy parameters. This formulation inherits aspects from

Scarf’s SDP, like the K-convexity property, and some from the (R, S)
SDP model of Chapter 4. We present a new heuristic based on a two-

step approach: firstly the replenishment cycles length is determined

using the (R, S) policy, then the order levels and the order-up-to-levels

are computed using the resulting (s, S) policy. This approach offers

a quick heuristic to compute cost-efficient parameters faster than the

other solutions. The near-optimal solution can be used to speed up the

technique proposed in 6.

• In Chapter 7, we present the dynamic programming encoding, a novel

approach to model DP and SDP in constraint programming. This can

be used to model the computation of policy parameters as a monolithic

CP model. This technique offers higher flexibility in terms of additional

constraints. We then show the potential of this application in the
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development of DP based constraints in CP.

• In Chapter 8, we draw the conclusions of this thesis, and we analyse

possible future works.
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Chapter 2

Inventory Control Concepts

This chapter aims to describe all the aspects of the problem tackled in this

work. Inventory control problems can arise in a wide variety of real-world

situations, each with its peculiarities. These aspects of the practical problem can

be modelled in different ways; a model closer to reality can lead to significant

savings.

Section 2.1 gives a description of an inventory control system and define the

problem type tackled herein. We describe the different modelling alternatives,

focusing on the one used. The mathematical formulation is presented in Section

2.2.

2.1 Problem setting

In this section, we aim to give an extensive problem definition. We describe

the aspects of an inventory control system and the different settings that can

be used, this allows us to position our work in the lot sizing literature and to

explain the connections with the real-world problem. This Section is mainly

based on [SPT16].

We classify the problem type according to the framework proposed in [SPT16].

They propose six functional decision categories for controlling inventories:

cycle stock, congestion stock, safety stock, anticipation inventories, pipeline

inventories, and decoupling stock. Our problem is classified as cycle stock.

Cycle inventories order or produce in batches instead of one unit at a time.

The amount of inventory on-hand, at any point, that results from these

11



2. INVENTORY CONTROL CONCEPTS 2.1 Problem setting

batches is called cycle stock, we will refer at it merely as stock from now

on. The reasons for batch replenishments include economies of scale (because

of substantial setup/ordering costs), quantity discounts in the purchase price,

and technological restrictions such as the fixed size of a processing tank in a

chemical process. We are considering the case in which there is a considerable

setup/ordering cost. The frequency of the orders affects the amount of cycle

stock on-hand at any time.

The literature refers to this problem configuration as Scarf’s setting [Sca59].

We decided to tackle it because it is a widely studied configuration that can

be easily extended to accommodate different practical problem. Moreover, the

literature offers numerous algorithms that we can use as comparison.

In the next sections, we describe the configuration of the problem. Section2.1.1

gives a brief introduction to the goals of an inventory control system. In Section

2.1.2, we describe the stochastic part of the problem and its connection with

real-world applications. Section 2.1.4 contains the different type of costs that

an inventory control system can face. Section 2.1.3 classifies how our problem

is positioned in a supply chain plan. Section 2.1.5 presents the lead time, the

time that occurs between the decision of placing the order and having the items

ready to satisfy the demand. Section 2.1.6 introduces the way we deal with

stockouts. In Section 2.1.7, we give the inventories definitions we use herein.

The ways to make a model avoid stockouts are presented in Section 2.1.9.

Section 2.1.10 explains which decisions an inventory control system has to take.

Finally, Section 2.1.11 describes what an inventory control policy is.

2.1.1 Measures of Effectiveness

Analysts in the inventory area have tended to concentrate on a single measure

of effectiveness, the expected cost of a policy. Other objectives are usually

modelled through constraints, such as limited space, desired customer service,

the nervousness of the inventory. The system nervousness is a complication

of unforeseen demand that often occurs in supply chain networks, where

the decision maker continually change the size and timing of scheduled

replacements. The lot-sizing literature defines two type of nervousness: the

setup-oriented involves a cancellation of reschedule of a planned order, the

quantity oriented refers to revision in replenishment quantities.

In a practical situation, the impact of a policy is not restricted to a single
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measure of effectiveness. [SPT16] lists other objectives that are difficult to

quantify:

1. Minimising the political conflicts within the organisation.

2. Maintaining a high level of flexibility to cope with an uncertain future.

3. Maximising the chance of survival of the firm or the individual manager’s

position within the organisation.

4. Keeping at an acceptable level the amount of human effort expended in

the planning and operation of a decision system.

While the expected cost is the most used measure in the literature, alternatives

objective have been considered as well. For example, Azaron et al. [ABTM08]

consider the minimisation of the sum of current investment costs, the minimisa-

tion of the variance of the total cost and the minimisation of the financial risk or

the probability of not meeting a specific budget. As in most of the literature, we

focus on the objective that is easier measurable, the cost. The optimal inventory

control system is the one that provides the minimum cost.

2.1.2 Non-stationary stochastic demand

The demand to satisfy can change over time. The time-varying demand

situations allow modelling a broader range of practical situations, including:

• Life cycle products. Where the demand rapidly increases in the early

phases, stabilising during the central part and slowly reduces with

obsolescence.

• Production to contract, where the contract requires that certain quantities

have to be delivered to the customer on specified dates.

• Items having a seasonal demand pattern.

• Multiechelon assembly operations.

• Replacement part for an item out of production.

This type of demand makes the usage of the same order quantity generally not

economically competitive. We consider the demand information over a finite

period. This period is known as the planning horizon, and its length can have a

substantial effect on the total relevant costs of the selected strategy. Usually, it
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is preferred to have the planning horizon as short as possible; the farther into

the future we look for demand information, the less accurate it is likely to be.

Stochastic demand allows us to better cope with the uncertainties of practical

applications. In the case of stochastic demand, the variation is represented

by different stochastic variables that represent the demand of each period.

We assume that we have perfect knowledge of the probability distribution

of these variables. This is a more general case of the deterministic one, all

the stochastic solution work also for the deterministic problem. In the case

of non-deterministic demand, the complexity of computing the optimal policy

strongly increases. Stockouts can happen if unexpectedly high demand arrives,

or high level of unsold inventory in case of low demand. Maintaining a

minimum customer service level is particularly challenging. This problem is

known as non-stationary stochastic or time-varying probabilistic demand. In

this situation, the policy’s cost is represented by the expected cost of the policy

over the time horizon.

A wider variety of problem parameters can involve stochasticity. However, the

uncertainty of the demand is the most frequent in a real-world problem, and

its modelling leads to more significant saves. Since we present algorithms for

policies previously unused in a stochastic lot sizing setting, we prefer to use the

most common problem configuration. We consider treating other parameters as

stochastic as an extension of this work; we present some of them in Section 8.1.

The non-stationarity can involve other parameters as well. All the algorithms

that this thesis introduces can deal with non-stationary cost parameters.

2.1.3 Single-echelon, single-item, single-location

The configuration analysed in this work is the single-echelon, single-item and

single-location one. In single-echelon problems, we need to deal with an

individual part of the supply chain. The inventory control system manages the

transportation of the items only from the supplier, the customer (or entity that

provides the demand) is directly collecting the item or managing the shipping

part. For example, in a retail environment, this can be used to model a shop.

In the multi-echelon problems, the inventory control system determines the cor-

rect levels of inventory across different nodes of the supply chain, considering

their interaction. Following the previous example, the problem of managing
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the inventory level of both a distribution centre and the shops supplied by it is

a two-echelon problem, see [SR91,SRK95].

In inventory control, items are generally divided in a minimum of three

different classes (generally called A, B and C). These classes divide the items

based on how much they individually contribute to the total annual monetary

usage. Depending on the type of product, the individual procurement and sale

of the products can be managed individually or in batches. We consider single

item inventory policies.

Even when dealing with a single-item single-echelon problem, there is the

possibility of dealing with multiple warehouses. Herein we analyse the single-

location non-capacitated setting, a single storage location for the items with

virtually infinite capacity.

2.1.4 Cost factors

In this section, we briefly describe the cost factors modelled in our problem.

These are not all the factors that affect the total cost of an inventory system.

However, they are generally considered the most relevant in real-world applica-

tions. In this work, we do not analyse techniques to estimate these cost factors.

We consider their values as parameters provided by the management.

These costs are:

• The unit variable cost: this cost ideally should measure the actual amount

of money that has been spent on the item to make it available for usage.

It is commonly called "book value". For a merchant, it is the price paid for

the item to the supplier, plus any cost incurred to handle it and making

it ready to sell. In the case of production management, it is generally the

cost occurred to manufacture the single item; this takes into account the

costs of labour, rent, instruments, R&D, etc. For a producer, this value is

usually more difficult to determine.

• The cost of carrying items in inventory: this cost represents the cost

of the money invested, the expenses incurred in running a warehouse,

the costs of special storage requirements, handling and counting costs,

deterioration of stock, damage, theft, obsolescence, insurance, and taxes.

The cost is usually defined for the single item and for a specific amount
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of time; for example, the cost of keeping one item in the inventory for a

month.

• The ordering or setup cost: it models the fixed cost associated with a

replenishment. In the case of a buyer, it is called an ordering cost.

This includes the cost of placing the order, shipping cost, managing the

reception of the order, inspection of the items, follow up on unexpected

situations and handling of vendor invoices. For a production system, it

is called setup cost. It represents the cost of starting the production

of a particular item. It can include the wages of a technician who

has to reconfigure the machine, the cost to gather the material for the

production and the cost of a period of time during which the facility is

producing at a slower speed while the equipment is fine-tuned and the

operator adjusts to the new item ("learning effect"). Notice that during

the setup and learning period, opportunity costs are, in effect, incurred

because production time on the equipment is being lost during which

some other item could be manufactured. The ordering cost includes all

these components because they are the result of a decision to place an

order.

• The cost of insufficient capacity in the short run: this represents the costs

relative to a stockout, a stockout is when the inventory on-hand can

not satisfy the demand. They can also consider the costs of avoiding a

stockout. For a merchant, they include emergency shipments substitution

of a less-profitable item, lost of sales, cost of the reduction the customer

service and loss of reputation. Some of these costs can be estimated

reasonably well; others are more nebulous. In a production situation,

they include the expenses that result from changing over equipment to

run emergency orders and the attendant costs of expediting, rescheduling,

split lots.

• System control cost: this represents the cost of the operation of the

particular decision system selected. These include the costs of data

acquisition, data storage and maintenance, and computation. In many

real-world applications, there is no real-time tracking of the inventory

level. An inventory review (also known as stock-taking) has to be carried

out to assess the inventory level. The cancellation costs are included in

this category. For a merchant, these are the cost of cancelling a contract

or a scheduled order. For a producer, it is the cost to cancel a scheduled
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production. Besides, there are less-tangible costs of human interpretation

of results, training, alienation of employees, and so on.

The model used in this work takes into account a cost parameter for each of

the five cost factors presented in this Section. An order’s cost comprises a fixed

ordering cost, that is charged regardless of the order size, and a linear ordering

cost charged for each item in the order. A linear holding cost is charged for

every item in the inventory at the end of each period. The cost of insufficient

capacity is represented by a penalty cost of having a stockout; this cost is

linearly dependent on the size of the stockout. Finally, a fixed cost for assessing

the inventory level is charged. The reduction of the expected cost is the goal of

all the techniques presented in this thesis.

2.1.5 Lead time

From [Sil81]:

We define the replenishment lead time, as the time that elapses from

the moment at which it is decided to place an order until it is

physically on the shelf ready to satisfy customers’ demands.

From a merchant perspective, the lead time is composed of five different

components: administrative time at the stocking point, transit time to the

supplier, time at the supplier, transit time back to the stocking point and the

time that elapses from the receipt until the items are available on the shelf.

Herein, without loss of generality, we assume a null lead time. So that the

inventory level updates instantly after the order is placed. This is a common

assumption in the lot sizing literature [Sca59,BM99,TK04].

2.1.6 Demand backlogging vs lost sales

Define what happens when the inventory level is lower than the demand is

crucial in an inventory control system. There are two main ways to model this

situation:

• Backordering: the part of the demand that cannot be satisfied is carried on

to the next period; this process continues until an adequate order arrives.

The backlogging of the demand is generally associated with a penalty

cost or with a service level to satisfy; we introduce these concepts in the
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next section. Complete backordering is a common assumption in classic

inventory control [SPT16, Zip00, Sca59] and in the lot sizing literature,

e.g. [RTHP08, Tar96, DSKTR16]. We can find this situation in a quasi-

monopoly market; for example, government organisation and exclusive

dealerships.

• Lost sales: all the demand that can not be satisfied with the inventory on-

hand is lost. The customer satisfies his/her needs from another supplier or

buys a substitute product. This model is most common in the retail sector.

Lost sales models have been studied in the literature with combinations of

different settings, e.g. [Zip08,BV12b,HJMR09]. For a complete literature

survey on such systems, we refer to [BV12a].

Most of the inventory systems model only one of these two extremes. However,

in practical situations, there is a combination of these two approaches. Gruen

et al. [GCB02] show that, in case of a stock out, 24% of the customers delay

the purchase, 15% of them wait for the item to be in the shelf again and 9% do

not buy the product at all. The remaining 76% of them either buy a different

product (45%) or visit a different store (31%). These values are strongly

dependent by the type of product, but they give an idea of the variability in

the demand behaviour. Nevertheless, most of the models are a reasonable

approximation, and they do not vary much using the two systems. This is due to

the high customer service level that is generally considered. Most of the models

try to make the stockout events as infrequent as reasonably possible.

In this thesis, we consider the complete backordering of the exceeding demand.

This assumption is more frequently used in the literature.

2.1.7 Stock levels

According to [SPT16], we define the on-hand stock (or on-hand inventory) as

the stock that is physically on the shelf. This value can never be negative. This

inventory is used to satisfy the demand when the demand is higher than the

on-hand inventory a stockout occurs.

The net stock (or net inventory) is the on-hand stock minus the backorders. It

can become negative in the case of stockouts. Finally, the inventory position
(or inventory level) is the net stock plus the quantity ordered and minus the

committed demand. In this thesis, due to the null lead time and the absence
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of delayed demand, the net stock is equivalent to the inventory position and we

use them interchangeably.

2.1.8 Reviews

The inventory control systems that we analyse herein operates with a finite

time horizon. The horizon is divided into periods; all the decisions have to be

taken at the beginning of each period. This is a normal assumption in many

practical applications. For example, in a retail shop, the inventory assessment

or the decision of placing an order can be made every evening after the closing.

Alternatively, even if the order can be placed at any point of the day, they will be

processed by the supplier together the next morning. Most of the literature in

time-varying stochastic demand follow the periodic finite time horizon model.

The review interval is the period of time that occurs between two inventory

assessments (or review moments). The literature presents two alternatives :

• Continuous review: the status of the inventory is always known. The

system updates the inventory level immediately at every transaction

(supplier delivery, receipt, use, demand, etc.). It is possible to place an

order at every moment. Most of the time, it is not possible to know

the exact level of the inventory. Even with the new technologies (POS

data collection systems, RFID), many unpredictable factors affect the

inventory level in an unpredictable way; for example, faulty or expired

products, shoplifting, products damaged during the stockage. The main

disadvantage of a continuous review system is that is generally more

expensive in terms of reviewing costs. However, since the uncertainty

on the inventory level is lower, it generally leads to the same level of

customer service with less safety stock. In case of a discrete periodic time

horizon, we consider as continuous review policies the ones that assess

the inventory level at the beginning (or end) of each period. Section

3.4.3 presents a policy with continuous review in a periodic time horizon.

• Periodic review: the inventory on-hand is determined only at fixed periods.

This can be due to different reasons; for example, the possibility of

reviewing the inventory only at fixed time slots (for a soda vending

machine is when the operator visit it) or due to the high review costs.

An early schedule of the replenishments moments offers an advantage

since the transportation mode can be planned more efficiently and better
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prices can be dealt with the suppliers. A rhythmic, rather than a random,

pattern is usually preferred. However, the flexibility of the review interval

is important in the management of items with time-varying demand. A

clear example is seasonal items, in periods in which the demand of an

item is low or almost deterministic, the interval between reviews can be

longer and lead to savings; e.g. it might be non-convenient to check the

inventory of ski boots weekly during the summer. When the demand has a

higher variability, it is important to assess it more often since the inventory

level change faster. In Sections 3.4.4 and 3.4.5 we will show two polices

with periodic review.

2.1.9 Penalty cost vs Service level

An inventory management system has to avoid stockouts. As seen in Section

2.1.6, they lead to lost sales, reputation damage and penalties for not fulfilling

supply contracts. While modelling a real-world problem, there are two main

ways to avoid stockouts:

• Service level: the probability of satisfying the demand with the on-

hand inventory has to be higher than the service level in every period.

This can be seen as the probability of not having a stockout; it is a

conventional service level measure used in practice. This limitation is

used particularly in situations in which the stockouts are costly regardless

of their magnitude or duration; for example, in production systems that

face costly stoppages due to stockouts. The traditional way to model

it is to add a constraint to satisfy. The service level generally assumes

a high value, > 95%. This has been widely studied in the literature

[TK04, TDÖR11, RTHP11] and is popular in practice [PSS10, TBS10]. A

recent comparison of this type of inventory control policy is available

in [Bij14].

• Penalty cost: not satisfying the demand of a customer is costly for a

company. In this case, a penalty cost occurs with every stockout. The cost

is generally dependent on the size and length of a stockout. This model

is preferred in retail applications. The models using the penalty costs are

also known as full-cost models since the model’s objective includes the

penalty cost. The main drawback of this is that these shortage costs are

usually difficult to asses. In particular, the cost of losing customer goodwill

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

20 Andrea Visentin



2. INVENTORY CONTROL CONCEPTS 2.1 Problem setting

that will lead to future lost sales. However, this is a common assumption

in most of the classic inventory control literature [Sca59,ZF91,BM99] and

it is widely used [ÖDT12, XRMBT18]. A comparison of some techniques

and their behaviour with receding horizon can be found in [DSRKT19].

There is a strong relationship between the two of them. In the newsvendor

problem, a single period stochastic inventory control problem, the penalty cost

divided by the penalty plus holding cost is equal to the service level. As in

Scarf’s setting, we use a per unit penalty cost.

2.1.10 Decisions

Decisions in an organisation are a hierarchy. Starting from a long-range

strategic planning down to short-range operational control decisions. In

inventory management the hierarchy can be conceptualized as:

• At the highest level, one chooses a particular type of control system

settings. For example, the definition of the stock level, continuous or

period review, backorders or lost sales.

• At the middle level, one selects the values of the specific parameters; e.g.

fixing the value of the service level.

• Finally, one operationalises the system, including data collection, calcula-

tions, reporting of results, and so on [Bro82].

The solutions presented in this work are designed to be implemented in

scheduling software. These decision helping tools are considered a type of

physical aid for the management. The computer can handle vast amount of

data faster than the manager could ever dream of doing manually. There are

three types of strategies that involve modellings. They differ on the different

level of abstraction and mathematical formulation

• Detailed modelling and analytic selection of the values of a limited

number of decision variables.

• Broader-scope modelling, with less attempt at optimisation.

• Minimisation of inventories with very little in the way of associated

mathematical models.

We focus on the first one. The strategy here is to develop a mathematical
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model that permits the selection of the values of a limited set of variables so

that some reasonable measure of effectiveness can be optimised. In general, a

mathematical model may permit a deductive solution, an iterative solution,

or a solution by some form of trial-and-error procedure. In this work, we

propose different algorithms of the last two categories; one of them is a hybrid

between these two. The goal stochastic inventory control system is to address

the following three points:

• When the inventory should be reviewed to assess the net stock.

• When an order should be placed.

• The size of each order.

These issues are particularly relevant under the assumption of stochastic

demand. The first two are trivial in conditions of deterministic demand,

the inventory level is always known, and the order can be placed when the

inventory level goes under a safety stock level. While the third can be addressed

with well-known techniques presented in [SPT16]. In the case of probabilistic

demand, the first issue is crucial because assessing the inventory level is costly.

On the other hand, the longer is the period between reviews, the higher the

uncertainty of the inventory level is. The system has to protect itself from the

consequences of unforeseen demand to provide the desired customer service.

The second problem involves trade-offs between multiple factors. Frequently

orders are more resilient to demand uncertainty, but costly due to fixed ordering

charges. Moreover, less frequent orders implicate bigger orders and a higher

average net stock, which increases the cost of carrying extra stock. The orders’

sizes strongly depend on their frequency and on the type on service level or

penalty cost that occurs in the case of a stockout.

2.1.11 Inventory Control Policy

An inventory control policy aims to determine replenishment quantities and

their timing to minimise the total inventory cost. We define as review moment,

or review period, a period in which a stock-taking occurs and the order can

be placed. Inventory items can be organised in three classes according to an

inventory categorization called ABC analysis. This technique is widely used

out materials management. Each type of element in an inventory is classified

as A, B or C depending on their contribution to the total sales and the sale
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frequency. The policies presented in this work are generally used for the so-

called B items, which comprise the majority of items in a typical inventory

situation. The use of a reasonably sophisticated control system usually leads to

relevant savings. On the other hand, these savings are not as high as those for A

items, items with the highest amount of sales. This allows the deployment of a

management-by-exception control system; a tool reasonably sophisticated that

requires human intervention on a relatively infrequent basis. Alternatively, the

system can simply provide decision support to the management. The algorithms

proposed in this work are the basis of such software and they can be modified

to represent the real problem with higher fidelity. In the previous sections, we

presented how the different modelling techniques can be combine to represent

a wide variety of problems encountered by practitioners.

Example of real-world systems that can be modelled with the setting similar to

the one presented in this chapter are: the management of liquefied natural gas

[ABKV20], inventory management in a hospital for medical equipment [BV12a]

and for blood supply [GC15] or dealing with demand seasonality in a retail

environment [EHVW14].

2.2 Mathematical model

In this section, we introduce the notation, and we provide a mathematical

description of the problem. Bookbinder and Tan [BT88] introduce the original

stochastic programming formulation for the non-stationary stochastic lot-sizing

problem. We consider the inventory control problem over a T -period planning

horizon. Demands dt in each period t are independent random variables with

known probability distributions gt(·) and cumulative distribution function Gt(·).
Backlogging of excess demand is assumed, so if the demand in a period exceeds

on-hand inventory, the rest of the demand is carried to the next period; a linear

penalty cost b is charged for each unit of back-ordered demand at the end of a

period.

We define as Qt the discrete quantity of the order placed in period t, negative

orders (returns) are not allowed. Without loss of generality, we assume that

orders are placed at the beginning of each period and that the lead time is zero.

Binary variable δt takes value 1 if an order is placed on period t. These two sets

represent the decision variables of the problem.
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Ordering costs are represented by a fixed value K and a per unit cost c. At

the end of each period, a linear holding cost h is charged for every unit carried

from one period to the next. All the cost factors are represented by continuous

parameters.

We denote the closing inventory level for each period by It, and the given initial

inventory level by I0. When a stockout occurs, all the demand is backlogged

(negative inventory level) and satisfied as soon as an adequate supply arrives.

The original model is not considering a penalty cost for unsatisfied demand.

However, there is a service level constraint enforcing a non-stockout probability

of at least α at the end of each period. We assume a high value of α (generally

over 90%) in order to incorporate management’s perception of the stockout

costs and ignore possible penalty costs. The objective of the model is to

minimise the expected total cost E[TC].

The mathematical formulation of the problem proposed in [BT88]:

min
E[TC]

=
∫
d1

∫
d2
· · ·

∫
dT

T∑
t=1

Kδt + hmax(It, 0) + cQt × g1(d1)g2(d2) . . . gT (dT )
(2.1a)

s.t. for t = 1, . . . T

It = I0 +
t∑
i=1

(Qi − di) (2.1b)

δt =

1 if Qt > 0
0 otherwise

(2.1c)

Pr{It ≥ 0} ≥ α (2.1d)

Qt ≥ 0, δt ∈ {0, 1} (2.1e)

where Equation 2.1a models the total inventory cost for the planning horizon,

Equation 2.1b fixes the closing inventory levels and Equation 2.1c guarantees

that the order quantity is null if an order is not placed. Finally, Equation 2.1d is

known in the literature as "α service level" constraint.

This model can be adapted to use the penalty cost scheme instead of the service

level. If the demand in a period exceeds on-hand inventory, the rest of the

demand is carried to the next period; a linear penalty cost b is charged for

any back-ordered unit at the end of a period. As done in [TK06], we need

to remove the service level constraint 2.1d and add the penalty cost to the
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objective function. The resulting model is:

min
E[TC]

=
∫
d1

∫
d2
· · ·

∫
dT

T∑
t=1

Kδt + hmax(It, 0) + bmax(−It, 0) + cQt×

g1(d1)g2(d2) . . . gT (dT )
(2.2a)

s.t. for t = 1, . . . T

It = I0 +
t∑
i=1

(Qi − di) (2.2b)

δt =

1 if Qt > 0
0 otherwise

(2.2c)

Qt ≥ 0, δt ∈ {0, 1} (2.2d)

a peculiarity of this work is the modelling of an inventory review cost. This can

represent the physical cost of assessing the inventory level, or a penalty cost

faced in case of an order cancellation. We consider an inventory review cost W .

Binary variable γt takes value 1 if the inventory is reviewed at period t. Before

an order is placed, an inventory review must occur. The resulting model is:

min
E[TC]

=
∫
d1

∫
d2
· · ·

∫
dT

T∑
t=1

Kδt +Wγt + hmax(It, 0) + bmax(−It, 0) + cQt×

g1(d1)g2(d2) . . . gT (dT )
(2.3a)

s.t. for t = 1, . . . T

It = I0 +
t∑
i=1

(Qi − di) (2.3b)

δt =

1 if Qt > 0
0 otherwise

(2.3c)

γt ≥ δt (2.3d)

Qt ≥ 0, δt ∈ {0, 1} (2.3e)

Equation 2.3d ensures that an order is placed only after reviewing the inventory.

The decision variables are, for every period t:

• γt: if the inventory has to be assessed.

• δt: if an order has to be placed.

• Qt: the quantity of the order.
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An inventory control policy aims to fix the values of these variables. This is in

agreement with Section 2.1.10. Model 2.3 is the mathematical representation

of the problem tackled in this thesis. We use this notation and symbols for the

rest of this work; a full list of symbols is available in Appendix 8.1.
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Chapter 3

Related Work

In this chapter, we define the basic concepts and policies used in this thesis, and

we survey the relevant literature. The goal is to provide a common notation

and a picture of the state-of-the-art in lot sizing with non-stationary stochastic

demand.

In Section 3.1, we introduce dynamic programming; a successful algorithm

design approach used in a lot of different fields. All the algorithms that

we introduce in this work use stochastic dynamic programming algorithms;

the branch of DP that deals with problems involving uncertainty. Section

3.2 presents the branch and bound approach. The solution presented in

Chapter 6 uses a BnB technique to explore the search space. Constraint

programming, a paradigm that offers higher expressivity compared to mixed-

integer programming, is introduced in Section 3.3.

In Section 3.4, we define an inventory control policy, we present some possible

applications, and we briefly survey reviews covering aspects of inventory

control not tackled in this work. We illustrate a widely use inventory control

strategy classification in Section 3.4.1, and we extend it to consider the review

cost. In the rest of the chapter, the different policies are presented, and we

survey the relevant literature. This survey focuses on techniques to solve the

stochastic lot sizing problem presented in the previous chapter.

Finally, Section 3.5 summarises the chapter and highlights the shortcomings in

the literature that we aim to cover in this thesis.
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3.1 Dynamic Programming

In this section, we introduce dynamic programming (DP) and stochastic

dynamic programming (SDP). We aim to define a structured way to describe

a DP algorithm. This section is inspired by [Whi69,Pow07,Put14].

DP is a widely used optimisation procedure originated by the extensive work

of Richard Bellman, e.g. [Bel66]. DP approaches solve problems by breaking

them down into smaller sub-problems recursively. The optimal solution can

be computed using the optimal solutions of the sub-problems in a recursive

way; this is called optimal substructure. The sub-problems’ solutions are

stored to avoid their recomputation. DP has a great variety of possible

implementations and applications. It is used in DNA sequence alignment,

scheduling of maintenance, knapsack and packing problems and parsing of

context-free languages. Inventory control frequently uses DP, the lot sizing

problem is a standard example in DP books, and innovative DP techniques are

part of the state-of-the-art algorithms, e.g. [Sca59, Igl61,Tar96,Xia19].

DP is generally presented by examples; lot sizing is one of the most used for

this purpose. This problem is one of the numerous examples of a sequential

decision-making model. Such a model is characterised by the following key

elements:

• A set of decision stages.

• A set of system states.

• A set of available actions.

• A set of immediate cost dependent on a state and action.

• A set of transaction that connects a couple state and action to a different

state.

In the case of a stochastic problem, the last element is replaced by a set of

transaction probabilities. We assume that all these elements are known by

the decision-maker. At each decision stage, the system state contains all the

necessary information for selecting an action from the set of available actions.

Each pair of state and action is associated with a cost and a probability of the

system to be transferred to a different state. The new state has to be part of

a future decision stage. The decision-maker accumulates a sequence of costs

through time.
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A policy determines which action has to choose at each future stage. Deploying

a policy generates a set of costs, each associated with a decision. The sum of all

of them is the total cost associated with the policy. A policy with the minimum

cost (or maximum reward) is defined to be an optimal policy; the set of optimal

policies might not be a singleton.

DP approaches can be deployed in a variety of ways. However, a common

structure is present in most of the algorithms. In line with [XRMBT19], we

describe the DP algorithms according to the following structure:

1. Stage. Decisions are taken in moments referred to as decision epochs.

This thesis’ algorithms deal with discrete-time problems; i.e. the time

horizon is divided into stages or periods. The stage concept guarantees a

hierarchy of the decisions. In this setting, decisions are taken in all the

stages.

2. States. At each stage, the system is represented by a state. A state denotes

a sub-problem of the overall problem. The states can be continuous or

discrete; herein we deal with discrete states. The state contains all the

information necessary to make future decisions. An optimal cost can be

associated with a state, that is the minimum cost of the optimal policy for

a system starting from that state. Each state is associated with a set of

possible actions. The initial state is a particular state that represents the

system at the beginning of the time horizon before any decision occurs.

3. Action. At a decision epoch, the decision-maker observes the state of

the system and s/he chooses an action form a set of allowable actions.

The set of allowable actions depends on the state of the system. Actions

can be chosen deterministically or randomly, according to a probability

distribution. The action can involve multiple decision variables at the

same time. An immediate cost and a transition probability are associated

to a pair action, state. A policy defines which action is selected at each

stage. In inventory control is generally associated with the decision of

placing an order.

4. Immediate cost. As a result of choosing an action in a state:

• an immediate cost is charged to the decision-maker. In a maximisa-

tion problem, this amount is called reward or profit.

• the system evolves into a different state. The state must be part of
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a later stage of the problem. The transition can be deterministic or

stochastic. In the first one, the decision-maker knows in which state

the system will evolve after his/her decision. In the stochastic one,

the future state is determined by a probability distribution.

The immediate cost is a real function of the state and the action. It

represents the cost of making that decision; in a stochastic problem, it

is the expected cost. This function estimates the costs that occur until

the next decision epoch. In our mathematical formulation, the immediate

cost comprises a set of practical cost factors.

5. Objective function. Also known as the functional equation, see [Bel54].

It is a recursive function that computes the expected cost of a specific

state considering the cost of future stages. It incorporates the transition

probability of moving to a new state given the current state and the

possible action. This function evaluates the possible actions, and it selects

the optimal one. For a minimisation problem the functional equation C

for the state xt on stage t can be modelled as:

C(xt) = min
at

(f(xt, at) + αC(xt+1)) (3.1)

where at is a possible action of state xt, f(xt, at) is the immediate cost

of choosing action at in xt. We denote as T the transformation operator,

xt+1 = T (xt, at) where xt+1 is the state in which the system evolves if the

action at is chosen at state xt. The fundamental characteristic of DP is

the use of the functional equation to relate the expected cost of a stage

to the cost of the successive ones. The value of the functional equation

computed in the intial state represents the expected cost of the policy over

the planning horizon.

A prerequisite for the application of DP is that the Principle of Optimality should

hold. Bellman states his principle as follows:

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first

decision.

It perfectly describes the principle of solving a problem by breaking it into

subproblems and solving them to optimality recursively. This does not mean

that past events do not influence future decisions at any stage; past decisions
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lead to a specific system represented by the state description.

DP’s algorithms performances strongly depend on: the optimisation of the

implementation, the programming language used, the data structure used for

the memoisation. The implementation of the recursion plays an important role

in the computing-efficiency, removing a single instruction on a block that is

repeated a high amount of times can lead to measurable improvement. We

developed all our solutions using the same programming language (Python),

using the same data structures, and we optimised them to the best of our

capacities. For this reason, we believe that the scalability experiments available

in the next chapters measure the differences in the complexity of the algorithms

and not differences in the implementation.

3.1.1 Examples

In this section, we present some of DP’s possible applications. An exhaustive

definition of DP that covers all its possible applications is complex to achieve.

DP books describe the approach alongside with many examples for the sake of

clarity, e.g. [Bel66,Whi69]. We aim to do the same in this section.

Fibonacci numbers

A clear example of DP memoisation is the computation of the Fibonacci

numbers. Even if it is a straightforward example, it has been used many times.

To find the nth Fibonacci number we use the following approach:

X1 = 1 (3.2)

x2 = 1 (3.3)

and the recursive equation:

xi = xi−1 + xi−2i = 3, . . . , n (3.4)

A simple recursive solution has an exponential complexity; the same compu-

tations are repeated multiple times. However, storing the values of xi in an

array and using the recursive equation as a functional equation avoids all the

recomputations.
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Change problem

A widely used and less obvious example for DP is the change problem. This

problem’s goal is to find the minimum number of coins adding up to a given

total of Y . The set if available coin denominations is c1 . . . cD. The problem can

be modelled in CP using the following mathematical formulation:

min
∑
i

xi (3.5)

s.t.
∑
i

xici = Y (3.6)

where the xi are finite domain variables denoting the number of coins from

denomination i. This formulation is solved through search on the xi domains.

However, the problem can be solved in pseudo-polynomial time by DP. We can

describe the algorithm with the structure presented before:

1. Stage. A stage represent a given total i for which a set of coins that adds

up to has to be computed. The total number of stages is Y + 1.

2. States. This problem has a single state for each stage, since i is the only

information needed to define the system status.

3. Action. An action is represented by the using of a coin of denomination

ci when the change left to give is i.

4. Immediate cost. Each action has an immediate cost of 1.

5. Objective function. Let Ni be the minimum number of coins of which the

sum is i. The functional equation can be defined as:

Ni = min
ci

(Ni−ci
+ 1) (3.7)

where, the boundary condition is N0 = 0. The recurrence relation refers

to states N−1 . . . n1−M . We need to add further base cases:

ni = Y i = −1, . . . , 1−M (3.8)

where M = maxi(ci). Y is used here as a large value that will never be

chosen by the DP min function.
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3.2 Branch and bound

Branch and bound (BnB) [Cla99] is a paradigm used to solve discrete and

combinatorial problems. It is an implicit method that organises the state space

as a rooted search tree. Each leaf of the tree represents a possible assignment

of the problem variables. An internal node represents a partial solution of the

problem; the sub-tree rooted in it contains all the solutions that have that partial

assignment. The technique is based on the computation of upper and lower

bounds for a partial solution. A common structure of a BnB algorithm comprises

three steps:

• Branching. A variable is fixed to a value. The problem is divided into

two subproblems. In the first, the variable is considered a fixed parameter

with the value mentioned above. In the second, the value is removed

from the possible assignments of the variable. The two subproblems are

analysed sequentially.

• Bounding. A lower/upper bound of the objective function is computed

for the subproblem.

• Pruning. If the bounds prove the non-optimality (or the unfeasibility) of

the solutions containing that value assignement, the branch of the tree is

pruned. The of the tree proceeds with a different subproblem.

We use BnB in Chapter 5 to explore different possible replenishment plans,

this allows to avoid recomputations and to prune a consistent number of non-

optimal plans without computing them.

3.3 Constraint programming

Constraint Programming (CP) is a paradigm for solving combinatorial search

problems. We aim to give a brief introduction to this paradigm. This section is

inspired by [RVBW06].

The basic idea of CP is that the user states the constraints of a problem and a

general-purpose solver is used to solve it. According to Freuder [Fre97]:

Constraint programming represents one of the closest approaches

computer science has yet made to the Holy Grail of programming:

the user states the problem, the computer solves it.
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This approach has some similarities to integer linear programming. However,

CP offers a higher expressivity and variety of constraints. CP relies on a wide

range of techniques from artificial intelligence, computer science, databases and

operations research. It is applied to many domains; e.g. shift and production

scheduling, vehicle routing, facility location and inventory control.

A constraint satisfaction problem (CSP) consists of decision variables and

constraints. A domain set is associated with every decision variable. The

goal of a solver is to find an assignment of all the variables that satisfy all

the constraints. A constraint solver searches this assignment in the solution

space created by the domains of the variable. The search can be systematic,

where backtracking and branch and bound solutions are used or rely on

forms of local search. In the systematic search, the solver branches by

assigning to a decision variable a value from its domain. The solver then uses

constraint propagation; an inference technique that consists in propagating the

information to neighbouring constraints to reduce the domain of the decision

variables not yet fixed. Its goal is it to reduce the part of the search space

that needs to be visited. If due to propagation, the domain of a non-fixed

variable becomes empty, it means that the partial assignment is unfeasible and

a backtrack occurs. If the problem involves the optimisation of an objective

function, it is classified as a constraint optimisation problem.

To deal with uncertainty, Walsh [Wal02] introduces stochastic constraint pro-

gramming, a combination of CP, stochastic integer programming and stochastic

satisfiability. An analysis of CP’s state of the art can be found in [Fre18]. For a

more in-depth discussion on the topic, we refer the reader to [RVBW06].

In Chapter 7, we present a technique to encode DP into a CP model seamlessly.

Using this encoding is possible to delegate the search of the optimal replenish-

ment plan to the CP solver.

3.3.1 Constraint Programming and Dynamic Programming

In this thesis, we use a hybridisation of CP and DP. In the literature, there are

several interesting connections between them. For example:

• DP is used to implement several global constraints within CP solvers.

Trick [Tri03] uses DP to propagate a constraint. For example, DP can

be found in grammar constraints [QW06,KS08] and knapsack constraints
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[MSVH08]. Quimper [QW07] uses it to decompose a grammar constraint

into AND/OR clauses and solve it with a SAT solver. The global constraint

catalogue includes a specific tag for DP approaches [BCR12].

• Focacci and Milano [FM01] use CP to model a DP relaxed version of the

TSP after a state space reduction.

• The DP feature of solving each subproblem once only is used in CP

[CS09], in Constraint Logic Programming languages including Picat

[ZKF15] and PRISM [ZKS10]. In logic programming [War92] uses

it to remember the results of sub-tree searches using memoisation.

These techniques can strongly improve search performances. Pruning

on the search tree can be achieved by analysing the dominance between

subproblems [CDLBS12].

• DP approaches are widely used in binary decision diagrams and multi-

value decision diagrams. Bergman et al. [BCVHH16] use them to

exploit recursive structure on relaxed binary decision diagrams. Other

approaches use these techniques to develop CP constraints, with a focus

on their propagation [HVHH10].

Many DP solutions can be modelled from the prototypical viewpoint of finding

the shortest paths in a rooted direct acyclic graph. The vertices of the DAG

represent the states of the search space. The edges represent the decisions, and

their weights are the cost of taking the corresponding decisions. For example,

this is the case of the knapsack problem [Mar90] or the deterministic lot sizing

problem [EM87].

Martin [Mar87] introduces a variable redefinition technique that encodes these

DP solutions in MIP. In this encoding, binary variable model the edges of

the graph. The variables take value 1 if the corresponding decision is taken.

Each node is represented by a constraint that balances its flow; the number

of entering arcs with value 1 is equal to the number leaving arcs with the

same value. The sum of the arcs leaving the source has to be one; the same

is valid for the arcs entering in the sink. This encoding can be deployed in CP

as well since CP provides a higher expressivity compared to MIP. Martin and

Eppen [EM87] deploy the new technique to solve the multi-item capacitated

lot-sizing problem.

This formulation is inadequate for more complex discrete optimisation prob-

lems, where a decision involves composing two or more partial solution ele-
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ment into a single one. It is extended in [MRC90] to overcome that problem,

allowing it to encode all DPs that can be modelled as directed acyclic hyper-

graphs.

In many problems, the resulting formulations are more compact and with

better bounds than a model based on the problem description; e.g. [MM10,

BSH18]. Raffensperger [Raf99] presents an interesting tutorial with practical

applications. This technique is also known as the flow formulation of DP into

MIP. A similar flow formulation is present in MiniZinc in [BBB+08] to solve the

shortest path problem.

Quimper and Walsh [QW07] use a similar approach in their decomposition of

the grammar constraint. They consider the CYK parser, a popular DP-based

algorithm used for the parsing of context-free grammars. They remodel the

problem as a rooted DAG and decompose it into clausal normal form. This

work differs from the DPE because: they transform the path into SAT instead of

CP; it is an implementation of a global constraint, not a general technique for

DP in CP; their variables represent DAG edges, not DP states.

Another successful combination of DP and CP is in Binary Decision Diagrams

[Ake78]. In this case, DP is used here to speed up the computations by reducing

the state space and obtaining an approximate one. There are many examples

of this being used to develop constraints and propagators [BCvH14] or as part

of the solution [HOOS09].

3.4 Stochastic Lot Sizing Problem and Uncertainty

Strategies

The newsvendor problem [Edg88] is the simplest case of single-period single-

item stochastic lot sizing. The problem aims to find the quantity of an item

to order to satisfy a single demand of which the probability distribution is

known. Wagner and Whitin’s work [WW58] is considered to be the first work in

multiperiod stochastic lot sizing. They present a heuristic to solve the problem.

Their paper has been included in the ten most influential articles in the first

50 years of Management Science [Hop04]. Scarf [Sca59] proves the optimality

of the (s, S) policy under the assumption that ordering and holding costs are

linear.
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As described in the previous chapter, this work focuses on the non-stationary

single-item single-location inventory control under stochastic demand. In this

section, we survey the relevant literature with a focus on algorithms for the

computation of replenishment policy parameters based on Bookbinder and

Tan model [BT88]. A recent literature review on this problem is available

in [MRA19]. Stochastic non-stationary demand is more common than its

stationary deterministic version in real-world settings. This is due to seasonal

patterns, life cycles and trend. Yet, stationary policies are still widely used in

industrial applications. Tunc et al. [TKTE11] estimate the cost of applying a

stationary policy when the demand is stochastic and varies over time. They

compare the optimal (s, S) policy with the best possible stationary policy. The

approximation is efficient only when the uncertainty of the demand and the fix

ordering cost are high, and the penalty one is low.

Inventory control policy literature is wide; we restrict this survey to the

stochastic inventory control problem. For a broader view of the inventory

lot sizing problem, [Sil08] includes an overview of inventory management.

Bijvank [BV11] surveys the literature that assumes that the excess of demand

is lost in case of a stockout. Glock et al. [GGR14] provides a recent generic

literature review on the field. A survey on the deterministic single-item lot

sizing problem is available in [BDPNN06]. The same authors in [BADPN17]

present an updated survey that involves some stochastic solutions. Finally, a

review of review papers on the topic is available in [BGJK15].

These algorithms can be applied to a wide range of theoretical and real-world

problems. The mathematical formulation of the lot sizing problem can be easily

adapted to solve other practical logistic applications. Bruno et al. [BGP14]

describe adaptation processes to model bus terminal schedule optimisation,

cross-docking operations and check-in service as lot sizing problems.

3.4.1 Bookbinder and Tan classification

In the traditional lot sizing problem, the review cost is not included; the

decisions involve only the order timing and size. For this configuration,

Bookbinder and Tan [BT88] discuss three main control strategies that can be

adopted:

• Static uncertainty: the decision-maker fixes the timing and size of each

order at the beginning of the time horizon before any demand is observed.
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In this policy, the values of δt and Qt are fixed at the beginning of the time

horizon. This approach is also called (R,Q) policy, see Section 3.4.2.

• Dynamic uncertainty: the decision-maker observes the current inventory

position at the beginning of each time period. After the observation, s/he

decides if to place an order and its size. The values of δt and Qt are fixed

at the beginning of period t. This approach is also called (s, S) policy,

Section 3.4.3.

• Static-Dynamic uncertainty: the decision-maker fixes the complete replen-

ishment schedule at the beginning of the time horizon; whereas order

quantities are determined at the moment the order is placed. The val-

ues of δt are fixed before observing the demand. The order quantity Qt

is fixed at the beginning of period t. This approach is also called (R, S)
policy, Section 3.4.4.

For the stochastic lot sizing model with no review cost, Scarf [Sca59] proves

the optimality of the dynamic uncertainty strategy. Tunc et al. [TKTE11]

provide a numerical analysis of the cost performances of these strategies. The

authors show that the static-dynamic strategy is very competitive, while the

static one performs poorly. The static strategies have the advantage of a fixed

replenishment schedule, that is appealing from the management point of view.

A recent study [DSRKT19] compares these strategies and their receding horizon

versions [KH06].

All these works do not model the review cost. The introduction of the review

costs makes the dynamic uncertainty strategy non-cost-optimal since it has

to review the inventory at every period. For example, in a situation with a

low holding cost, low demand and high review cost the (s, S) policy is hardly

optimal.

We can extend the same classification framework to fit the review cost.

The decision-maker has three sets of variables to fix: review moments,

replenishments times and their size. The difference between dynamic and static

is when the decision-making occurs; if a decision is taken before observing any

demand is static, otherwise is dynamic. Extending the Bookbinder and Tan

classification to the review planning:

• Static uncertainty: the decision-maker fixes all the decision variables at

the beginning of the planning horizon before any demand is observed.

Intuitively, this approach is equivalent to the (R,Q) policy. Since no de-

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

38 Andrea Visentin



3. RELATED WORK

3.4 Stochastic Lot Sizing Problem and
Uncertainty Strategies

cision can be taken after observing the demand, and the order quantities

are fixed the review of the inventory level is useless.

• Dynamic uncertainty: the decision-maker decides at the beginning of

each period if reviewing the inventory or not. If a stock-taking occurs,

the decision-maker can decide to place an order and its size. Decision

variables γt are determined at the beginning of period t, the values of δt
and Qt are decided after the review. In classical inventory control, no

policy models this strategy.

• Static-Dynamic uncertainty: the decision-maker fixes the complete review

schedule at the beginning of the time horizon; whereas order quantities

are determined at the moment the order is placed. The values of γt
are fixed before the demand’s observation. At the beginning of a review

period t (γt = 1) δt and Qt are set. This approach is known as (R, s, S)
policy, Section 3.4.5.

No strategy is proved to be optimal for this cost configuration. The next sections

describe these policies, along with a brief discussion on their advantages and

disadvantages. We then survey the respective literature. These policies take

their name from their parameters fixed at the beginning of the time horizon.

3.4.2 Periodic-Review, Order-Quantity (R,Q) System

A decision-maker adopting this policy takes all the decisions before observing

the realisations of the demand. It is customary in the literature to denote

as R the timing, where R is the number of periods between consecutive

replenishments. While Q denotes the quantity of the order. For this reason,

the policy is denoted as (R,Q) policy. Neither time nor quantity of the orders

is decided in response to the observed demand. Figure 3.4.2 shows an example

of inventory system managed with a (R,Q) policy.

Being unable to react to additional information obtained by the observation

of the demand makes this policy less cost-efficient compared to the more

dynamic ones [TKTE11]. However, this strategy has organisational advantages

when considerable preparation time is needed to place an order. It provides

a completely stable production environment, that is appealing in an industrial

environment with a low degree of flexibility, and it generally allows to negotiate

better prices with suppliers. When the demand is non-stationary, the values of
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Figure 3.1: The expected inventory level under the (R,Q) policy

R and Q can change across the time horizon. In this case, the policy assumes

the form (Rt, Qt) where Rt is the length of the replenishment cycle starting in

period t by placing an order of size Qt.

Literature review

Sox [Sox97] introduces the first mixed-integer non-linear program formulation.

His solution is based on [WW58] deterministic work with the addition of

feasibility constraints. In their setting, the cost factors can change over time.

The algorithm transforms the objective cost function into a series of multi-

period newsvendor problems with various constraints by decomposition. A

forward DP recursion is used to find the minimum cost setup sequence.

They derive two properties of the optimal (R,Q) policy. The first one is used

to speed up the computations; the second one demonstrates that the lot sizes

computed are an upper bound of the ones computed by the well-known SDP

formulation. [Var09] shows that the same SDP is equivalent to the shortest path

problem in a specific acyclic network. The algorithm proceeds in two stages:

in the first one the replenishment quantities for any replenishment epoch are

computed, in the second the optimal sequence of replenishment epochs is

computed as the shortest path. The assumptions are the same as [WW58] with

the addition of a backlogging penalty cost. In the same article, they present

a solution to the normally distributed demand case. The idea of modelling
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Figure 3.2: The expected inventory level under the (s, S) policy

the computation of the policy parameters as a shortest path problem has been

widely used later on in the inventory control literature, e.g. [RTHP11]. In this

case, the replenishment epochs are considered independently as edges of the

graphs.

3.4.3 Order-Point, Order-Up-to-Level (s, S) System

This system assumes a continuous review. The inventory level is assessed at

the beginning of each period. An order is placed whenever the inventory drops

to (or under) the order-point (or reorder level) s. When an order is placed,

the inventory level is raised to S, also known as the order-up-to-level. So, the

quantity of the order is Q = S − I, where I is the current inventory level. The

optimal policy determines the values s and S that minimise the total expected

cost; for this reason, it is known in the literature as (s, S) policy. Figure 3.4.3

gives an example of this policy. This policy classifies as dynamic uncertainty

strategy since orders’ timing and size are decided at the beginning of each

period.

When the demand is non-stationary, the parameters can change and the policy

assumes the form (st, St).

As mentioned previously, [Sca59] proves that this strategy is the optimal policy.

However, the computation of its parameters is a computationally intensive task.
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The policy is often associated with a "just-in-time" production or a supplier with

high stock levels able to dispatch orders with short notice. A disadvantage of

this policy is the variable order quantity. Suppliers prefer the predictability

of fixed order quantity, especially if the lot size is convenient for packing or

shipping. This policy has been widely used in practice. It constitutes the heart

of many material management modules in most of the Enterprise Resource

Planning (ERP) packages. However, in most of the practical software, the

levels s and S are set manually despite the considerable improvements with

an optimal algorithmic determination [SK97].

Literature review

The literature regarding this policy is particularly broad. An SDP formulation

for the problem is used as an example in Bellman’s work [Bel66]. The seminal

work of Scarf proves the optimality of the (s, S) policy for the finite horizon

inventory system with convex holding and penalty cost, and fixed linear and

ordering cost. To prove it, Scarf introduces the K-convexity property. This

property considerably reduces the computational effort of the SDP, as Section

4.4.1 shows.

His work inspired a series of extensions. Iglehart [Igl63] provides bounds for

the sequence of st and St parameters, and it proves the optimality of the (s, S)
policy for the infinite horizon problem. Veinott [VJ66] proves the optimality

under different assumptions: in Scarf’s setting the one period expected costs

are convex while in his work their negative must be unimodal, this is a weaker

assumption. However, Veinott assumes that the absolute minima of the one

period expected costs are rising over time. Finally, Aneja and Noori [AN87]

extend the K-convexity property to the case in which a fixed penalty cost is

charged together with the linear one. These early works focus on the optimality

and the properties of the (s, S) policy; however, they do not provide any

computational study.

The first heuristics for computing the (s, S) policy parameters are extensions

of the Silver and Meal algorithm [Sil73] for the non-stationary deterministic

problem. The algorithm in [Sil78] uses a greedy approach. The model uses

a three-stage procedure to decide: when to order, how many periods the

order should cover and order quantity. The safety stock for each cycle is

determined considering two variants of the service level: a specified probability
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of no stockout per replenishment cycle or a specified fraction of demand to be

satisfied from stock.

Askin [Ask81] proposes a different heuristic, where the cost effect of proba-

bilistic demand is taken into account when deciding the ordering times. The

model uses a least period cost approach to determine the optimal order-up-to-

level for the specific cycle length. Several modifications of the basic model to

include a fixed shortage cost, simplify the computations or include an every-

period-review approach. These two heuristics can be used to compute (R, S)
parameters as well. His solution requires the convolution of the demand, so

it requires higher computational effort for demand distributions different than

the normal one.

A simulation-based procedure that tackles the (s, S) inventory control problem

with service level constraint and random lead time is available in [BF98]. This

particular setting is not widely tackled in the literature, and their approach

achieves a 5% optimality gap in the vast majority of the cases.

A simple myopic heuristic that does not require the convolution is presented

in [BM99]. This solution comprises two steps. The first one is based on the

stationary approximation of an order cycle. Reorder level, order-up-to-level,

length of the cycle and total expected demand are solved considering the cycles

as stationary problems. The results are tabulated for all the possible mean

demand of the cycles. The technique proposed in [ZF91] is used to populate

the stationary table. The second step consists in reading the parameters from

the table by averaging the non-stationary parameters between ordering periods.

This approach has the advantage of needing only the probability distribution of

a few periods into the future, while other approaches need the demands of

all the planning horizon. However, this stationary approximation assumes that

the mean is the only demand parameter that changes across different periods.

If the number of parameters increases the dimension of the table increases

exponentially with them, leading to higher computational complexity.

The most recent heuristic for this policy is [XRMBT18]. They propose a

mixed-integer non-linear programming model that uses the piecewise linear

approximation of the period cost function proposed in [RTPH14]. This creates

models that can be solved by off-the-shelf solvers. They introduce a heuristic

based on the previous MIP formulations that uses binary search to improve

the computational performances. In the computational study, they compare

the solutions optimality gap with the ones of [Ask81] and [BM99] computed
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Figure 3.3: The expected inventory level under the (R, S) policy

in [DSRKT19] since the same dataset is used. The new heuristics outperform

the existing ones.

3.4.4 Periodic-Review, Order-Up-to-Level (R, S) System

This policy is the one originally classified as static-dynamic in [BT88]. It

provides a stable replenishment plan by determining the timing of future orders

at the beginning of the planning horizon. The order quantities are decided after

observing the actual inventory level, so after observing the demand for previous

periods. This policy uses the order-up-to-level model. This means that at every

order, the inventory is raised at level S; so, as in the previous policy, the order

quantity is Q = S − I. For this reason, this system is known in the literature as

(R, S) policy. See Figure 3.4.4 for an example of this policy.

This policy can handle uncertainty in a better way compared to a static pol-

icy. Even without considering the review cost is competitive compared to the

dynamic strategy [DSRKT19]. Moreover, the (s, S) policy presents a high de-

gree of nervousness. This is due to the variation of the original replenishments

schedule, which frequently changes after the demand realisation. De Kok and

Inderfurth [DKI97] reveal that in terms of nervousness, the dynamic strategy

exhibits the worst performance among the policies considered. Heisig [Hei98]

studies the planning stability of the policy and shows that the nervousness is

affected by the demand uncertainty and the minimum lot size. In his later
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work [Hei01], he founds similar results for the rolling horizon problem.

Because of the fixed order schedule, the (R, S) policy is much preferred in terms

of coordinating the replenishment of related items and in material requirement

planning [SPP+98]. For example, when ordering from overseas, it is often

necessary to fill a container to reduce the shipping cost per item. However,

it offers a good cost performance even in systems with stochastic demand since

the order quantities are decided after realising the previous demands.

When the demand is non-stationary, the parameters can change and the policy

assumes the form (Rt, St).

Literature review

In this section, we survey the literature regarding the problem of computing

policy parameters for the (R, S) policy. With few exceptions, the policies

analysed here use Scarf’s setting with backlogging of the excessive demand

and penalty costs or service level constraints.

Bookbinder and Tan [BT88] is considered the first algorithm to compute (R, S)
parameters. They propose a heuristic structured in two-stages for the dynamic

uncertainty strategy with α service level constraint. The first stage consists in

fixing the replenishment cycles, by using [WW58] technique. The second part

is a linear programming model that computes the optimal order-up-to-levels for

the fixed replenishment plan.

Tarim and Kingsman [TK04] present a MIP formulation of the same problem.

Their model computes replenishment plan and order-up-to-level jointly, taking

into account also a linear holding cost previously neglected in [BT88].

The same authors [TK06] provide another MIP formulation that computes the

parameters for the linear penalty cost setting. This version of the problem

is significantly more complicated than the service level one due to the non-

linearity of the cycle cost function. The cycle cost function computes the

expected holding and penalty cost that occurs in the periods between two

replenishments. They adopt a piecewise linear approximation of the cost

function. A series of linear segments approximate the cost function, each

additional segment adds a constraint to the model. The explicit formulation

assumes that the demand is normally distributed; however the linearization

parameters are the same for every normally distributed demand. To the best of
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our knowledge, this is the first paper of the static-dynamic approach to present

a computational study.

The early work of Rossi et al. [RTHP08] introduces the first optimal solution

for the problem with normally distributed demand. They propose a stochastic

constraint programming model for computing (R, S) policy parameters. This

model is based on a novel concept, global chance constraint. The work of

[CC59] inspires this constraint as a means of handling uncertainty. They specify

a confidence level at which it is desired that the stochastic constraint holds.

The model’s scalability is limited since the number of binary variables increases

polynomially with respect to the planning length.

Tarim et al. [TS08] present a different CP approach for the same problem. This

formulation has the advantage of having fewer decision variables compared

to [RTHP08]. Their work comprises a computational study in which the new

approach shows to be more solvable compared to [TK04] MIP formulation.

The paper also proposes two domain reduction techniques to improve the

computational performance of the MIP and CP formulations.

If we relax the constraint that enforces the non-negativity of the orders,

the replenishment cycles can be considered independently. This allows the

restitution of unsold items to the supplier. Under this assumption, the problem

can be model as a shortest path problem. However, for limited cases, the

solution found is unfeasible for the service level settings. Rossi et al. [RTHP11]

propose a DP approach for solving the relaxed problem. They introduce a

filtering procedure to rule out sub-optimal replenishment cycles and a state

augmentation technique to extend the relaxed graph to solve instances with

negative orders.

In [TDÖR11] a MIP solution for the relaxed graph is presented. This solution

is computationally efficient and exhaustive numerical experiments prove that it

provides the optimal solution most of the time. When the solution is unfeasible,

it provides a tight lower bound to the cost of the optimal policy. An unfeasible

solution can be modified to obtain a solution, which yields an upper bound of

the optimal cost. These approaches are not computationally affected by the

magnitude of the demand. However, they use the convolution of the demand.

Özen et al. [ÖDT12] prove the optimality of the base stock policy (R, S) for the

static uncertainty strategy. The proof is valid for both penalty cost and service

level configuration. They propose an optimal formulation of the problem;
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however, the complexity of this formulation is too high to make them usable

on problems of reasonable size. They propose two heuristics to compute the

policy parameters: a mathematical model and a DP based one. The algorithms

and the optimality proof are then extended to three variants of the problem:

the capacitated version where the inventory stock can not exceed the storage

capacity, the minimum order quantity and purchase cost per unit.

In many real-life industrial settings, the lead time can not be considered null.

Approximations that ignore this aspect can lead to a significant increase in

the inventory cost. Some of the methods presented so far can be extended to

model a deterministic lead time. Hua et al. [HYHX09] present a rolling horizon

approach to solving the (R, S) policy computation problem with fixed lead time

and linear penalty cost. In some situations, the uncertainty regards the lead

time as well.

Rossi et al. [RTHP10] present the first approach in the literature that tackles

the problem with non-stationary stochastic lead time. They use the same global

chance constraint presented in [RTHP08]. The same authors, in [RTHP12],

adapt this work to the more complex shortage penalty cost settings. The exact

CP formulation provided uses a cost-based filtering technique to improve search

performances.

A linear reformulation of the Tarim and Kingsman MIP model [TK04] is

presented in [TKTE14]. Tunc et al. reformulate the previous work into a

deterministic equivalent MIP model by means of alternative decision variables

which provides a stronger linear relaxation. A stronger relaxation leads

to a more effective pruning of the search tree, so better computational

performances.

Rossi et al. [RKT15] generalise the MIP discussion regarding the stochastic

dynamic strategy. They present a unified MIP formulation that can be used

to model a variety of situations. The model can cover both backlogged and

lost demand in case of a stockout; to avoid stockouts linear penalty cost or

three different service levels can be considered. To linearize the cycle cost

function, [RTPH14] is used. This approach provides a lower and upper bound

of the expected cost. This work enables the modelling for several variants of

the stochastic lot sizing with a fully linear formulation. When the demand is

normally distributed, the model can be simplified and [RTPH14] provides the

linearisation parameters up to 11 segments.
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Figure 3.4: The expected inventory level under the (R, s, S) policy

Tunc et al. [TKTR18] extend the MIP formulations just presented. They blend

the work of [TKTE14] and [RKT15] by replacing the linear approximation of the

cycle cost with a dynamic cut generation approach, achieving the computational

efficiency of the first and the modelling variety of the second.

3.4.5 (R, s, S) System

This policy is a combination of the previous two. In an (R, s, S) system, the

inventory level is checked only at review moments fixed at the beginning of the

planning horizon. If the inventory level is at or below the reorder point s, an

order is placed to raise the inventory level to S. Figure 3.4.5 shows an example

of an inventory system managed with a (R, s, S) policy.

(s, S) and (R, S) are two special cases of this policy. If we review the inventory

in each period the (R, s, S) is reduced to an (s, S) policy. This is common when

no costs are charged for reviewing the inventory. Part of the literature in lot

sizing use it with a fixed R = 1, that makes the policy equivalent to a periodic

version of the (s, S) policy widely studied. The (R, S) policy can be seen as

a particular version of the (R, s, S) one in which s = S − 1 so that all the

review period lead to an order; this is based on the assumption that the current

inventory level exceed S only on very rare occasions that can be ignored.

The computational effort to determine the best values of these parameters is

much greater than the other policies. Therefore, in many practical applications,
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simpler techniques are deployed even if less cost-efficient.

When the demand is non-stationary, the parameters can change and the policy

assumes the form (Rt, st, St).

Literature review

In this section, we first survey the literature addressing the (R, s, S) policy

with the review cycle length fixed across the time horizon. We then survey

techniques developed to compute policy parameters for different problem

configurations, e.g. two-echelon or multi-items. Finally, we survey real-world

applications using the (R, s, S) policy. Determining the optimal value of the

policy parameters is considered computationally prohibitive in the literature

[BST10]. To the best of our knowledge, there are currently neither simple

procedures nor algorithms to give the optimal values of s and S in any particular

practical situations [BST10].

The work of this thesis differs from the ongoing research by considering

(Rt, st, St) policy under non-stationary stochastic demand. Due to its complex-

ity, the surveyed papers consider the value R to be constant across the time

horizon. This reduces the policy into a periodic (s, S) policy, also referred

to as (T, s, S) in the literature. Even with the constant review cycle length,

most of the solutions rely on heuristics [SRK95, MY08] and simulation tech-

niques [GBDG15,SM+02]. To the best of our knowledge, [SK97,BST10] are the

only two empirical comparative studies on the performances of periodic (s, S)
heuristics. In [XRMBT18] we can find a mixed-integer non-linear programming

formulation for determining near-optimal parameters and an updated literature

review for this problem.

These policies have been studied for different problem configurations as

well. Here we survey some of the related research. Two heuristics to

compute periodic (s, S) policy parameters with periodic review in a two-

echelon inventory system with one warehouse and multiple retailers have

been introduced in [SR91, SRK95]. [SM+02] proposes a technique to simulate

an (R, s, S) inventory system where the parameters stay constant across the

periods. It can be used to compute fill rates or to find parameters values

to achieve a prescribed service level. Chen and Lin [CL09] adopt a hedge

based (R, s, S) policy portfolio with constant parameters in the short term for a

multi-product inventory control problem. [GBDG15] addresses an optimisation
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via simulation technique to determine optimal (R, s, S) policy for distribution

centres in a two-echelon inventory system with lost sales.

The (R, s, S) policy is widely used in the literature, usually not independently

but as a component of complex supply chains. Here we analyse some recent

models involving this policy. In [BV12a] is described as an inventory control

system for point-of-use location. They compare the performance of (R, s,Q)
policies (where the order quantities are fixed) against the (R, s, S) in the

presence of stochastic stationary demand. Since they consider stationary

demand, the parameters of the policy are constant through the time horizon.

[AMP18] and [MY08] tackle a capacitated two-echelon inventory system with

one warehouse and multiple retailers. They use a heuristic based on [SRK95],

for the (R, sn, Sn) policy. Cabrera et al. [CMC+13] consider a similar two-

level supply chain in which a single plant serves a set of warehouses, which

in turn serve a set of end customers or retailers. They develop a heuristic

to solve an inventory location model on this configuration. The warehouses

model is based on (R, s, S). The same problem has been tackled by Araya-Sassi

et al. [ASMPB18] using Lagrangian relaxation and the subgradient method.

In [BV12b], we can find an analysis of lost-sales inventory control policies with

a service level constraint. They define an optimal policy solved starting from

the (s, S) SDP introduced by Scarf. They present a value-iteration algorithm

to find the (R, s, S) parameters that minimise the inventory cost subjected to

service constraints. They compute fixed parameters for the policy; this makes

their solution non-suitable for a non-stationary problem.

3.4.6 Receding horizon deployment

The receding horizon [KH06] (or rolling horizon) is a way to deploy the policies

that this chapter presents. Receding horizon control proceeds as follows:

1. The policy parameters are computed for the entire planning horizon,

2. Only the decisions relevant to the current period are implemented,

3. The policy parameters for the remaining of the time horizon are recom-

puted at the beginning of each period.

Receding horizon is widely used in the lot sizing literature, e.g. [KT11].

In a recent computational study [DSRKT19], Dural et al. show that when

an inventory control policy is used in a receding horizon framework, the
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cost performances improve considerably, and the differences between policies

become insignificant. However, this approach increases the nervousness of the

system since the timing of the orders can change multiple times.

3.5 Conclusions

This chapter gives a brief introduction to the main concepts used herein and

provides a clear picture of the state-of-the-art regarding the problems tackled

in this thesis. This chapter highlights the literature’s shortfalls that we aim to

fill. An approach common to the solutions presented is SDP; this shows the

great variety and flexibility of this technique.

• No functional equation full formulation is available for the static-dynamic

strategy under linear penalty cost. This formulation is harder to tackle

compared to the service level one due to the non-linearity of the period

cost function. A similar formulation is the most well known and used

approach for the (s, S) policy. The majority of the algorithms available

make assumptions on the type of random variable representing the

demand. Many solutions rely on commercial MIP solvers, which licence

for non-academic usage is expensive. This can limit the deployability

of the solutions. Chapter 4 presents the first pure SDP formulation

to compute the optimal parameters for the (R, S) policy. Extensive

computational results compare it with the state-of-the-art, proving it to

be efficient from the computational point of view and for the quality of

the solution.

• The (R, s, S) policy has substantial practical importance. However,

the computation of its parameters is considered too computationally

expensive, especially in the non-stationary stochastic case. For this reason,

it is generally approximated to a (s, S) policy with periodic reviews.

In Chapter 5 we fill this gap by introducing the first algorithm for the

computation of the optimal parameters; this solution is a hybridisation of

SDP and BnB with ad-hoc bounds computed in a DP way. The optimal

policy allows computing optimality gaps for the heuristics presented in

the following chapter.

• A set of heuristics are presented in Chapter 6, these approaches allow to

compute near-optimal parameters of large instances in a reasonable time.
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• To model a DP solution in CP, the well-known flow formulation needs to

be used. However, this variable redefinition technique performs poorly in

CP solvers. In Chapter 7, we present the dynamic programming encoding

(DPE) technique, a novel approach to model some DP and SDP solutions

in CP. This allows formulating the problem as a CP model that does not

require any tailor-made global constraint. While this approach is not

computationally competitive with the algorithm presented in Chapter 5,

the encoding can be used successfully in other situations. An example is

the designing of non-solver specific DP based constraints.

‘
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Chapter 4

Stochastic Dynamic Programming
for the (R, S) policy

In this chapter, we present a novel approach to compute the static-dynamic

policy parameters. The (R, S) policy has strong practical value, since the stable

replenishment plan reduces the nervousness of the system; while the policy

deals efficaciously with unexpected demand and has a good cost performance.

In the literature surveyed in Section 3.4.4, no method can find the optimal solu-

tion dealing with a generic demand; most of them work with normal or symmet-

ric distributions. No formulation to compute the optimal parameters using SDP

is available. Scarf’s SDP solution for the (s, S) parameters computation is prob-

ably the most famous and used algorithm in stochastic lot sizing, and it is widely

used to compute the optimality gap in many works, e.g. [XRMBT18,DSRKT19].

We present his algorithm and the K-convexity property in Section 4.1. We use

this algorithm and property through the rest of this thesis, so it is essential to

have a complete definition of this approach. Another important reason to de-

scribe in detail the algorithm is that not in all the literature, the approach is

deployed using the K-convexity property. This property has a crucial impact on

the algorithm’s performances.

The algorithm presented in this chapter is the first formulation of the (R, S)
policy with penalty cost as a functional equation. A series of optimisation

techniques greatly reduce the computation effort required by this solution. No

assumptions on the demand type are necessary. The policies computed have a

lower cost, a more accurate expected cost and a lower optimality gap compared

to the state-of-the-art.
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FOR THE (R, S) POLICY

4.1 Stochastic Dynamic Program for (s, S)
policy

In Section 4.2, we present the SDP formulation for the (R, S) problem and

we provide the algorithm’s pseudocode. Then, we introduce three different

techniques to improve the computational performances of the SDP model: a

memoisation technique that avoids recomputation (Section 4.2.4), a filtering

technique to prune the state space without compromising the optimality

(Section 4.2.5 and a binary search approach to speed up the search for the

optimal order-up-to-level (Section4.2.6). In the following section, we present

the MIP model of Rossi et al. [RKT15]. We use it as a competitor since it is the

best algorithm for the static-dynamic policy analysed in the recent comparison

of Dural et al. [DSRKT19]. Section 4.4 shows the results of an extensive

experimental analysis of the approaches. Finally, Section 4.5 concludes the

chapter.

4.1 Stochastic Dynamic Program for (s, S) policy

Scarf’s seminal paper [Sca59] addressed the computation of the (s, S) policy

parameters over a finite planning horizon. Its setting is characterised by

discrete time periods, non-stationary stochastic demands, a fixed ordering

cost, and linear holding and shortage costs. Scarf proves that the (s, S)
policy (more precisely the (st, St) policy) is cost-optimal for this particular

configuration. However, it ignores the operational cost generated by the stock-

taking. Considering the review cost makes the (s, S) policy non-cost-optimal. In

a situation where the review cost is high compared to the ordering and holding

cost is not convenient to review the inventory at every period. The same is true

in the case in which the demand is deterministic, that is a special case of the

stochastic version.

4.1.1 Model

Without loss of generality, we consider the proportional ordering cost to

be zero. The extension of our solution to the case of a non-zero unit

production/purchasing is straightforward; as this cost can be reduced to a

function of the expected closing inventory level at the very last period [TK04].

The problem can be formulated as SDP as:
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4.1 Stochastic Dynamic Program for (s, S)
policy

1. Stage. A stage represents a time period t = 1, . . . , T for a T-period

stochastic lot-sizing problem.

2. State. We define Nt as the state of the system at the beginning of period

t before replenishment. State Nt = It−1 includes the opening inventory

level of period t.

3. Action. An action is represented by the scheduling of an order with

quantity Qt at the beginning of period t.

4. Immediate cost. Let ft(It−1, Qt) be the expected immediate cost compro-

mising ordering, holding and penalty cost, given the state Nt = It−1 and

action Qt.

ft(It−1, Qt) = K1{Qt > 0}+ E[hmax(It−1 +Qt − dt, 0)+

bmax(dt − It−1 −Qt, 0)] (4.1)

where E denotes the expected value with respect to the random variable

dt and 1 is the indicator function.

5. Objective function. Let Ct(It−1) denote the expected total cost of an

optimal policy over periods t, . . . , T associated with state Nt = It−1. Then,

Ct(It−1) can be written as:

Ct(It−1) = min
Qt

(ft(It−1, Qt) + E[Ct+1(It−1 +Qt − dt)]) (4.2)

The boundary condition is:

CT+1(IT ) = 0 (4.3)

C1(I0), where I0 is the initial inventory, contains the expected cost for the

optimal (s,S) policy.

It is possible to extend this solution to consider the review cost W as well. The

expected cost of the policy is:

C1(I0) +WT (4.4)
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4.1.2 Pseudocode

Algorithm 1 shows the procedure to compute the SDP backwards. Lines 1-2

contains the boundary condition. Line 4 search through all the possible starting

inventory levels and line 6 through all the possible order quantities.

Algorithm 1 sS-SDP()
1: for i from min_inventory to max_inventory do
2: CT+1(i) = 0
3: for t from T down to 1 do
4: for i from min_inventory to max_inventory do
5: Ct(i)←∞
6: for q from 0 to max_order do
7: expected_cost← ft(i, q) + E[Ct+1(i+ q − dt)]
8: if expected_cost < Ct(i) then
9: Ct(i)← expected_cost

4.1.3 Time complexity

The complexity analysis is based on [CLRS09]. In most of the DP solutions,

the time complexity is the number of states multiplied by the number of

possible action multiplied by the complexity of evaluating the action. Let D

be the maximum demand dt with non-zero probability and T the length of the

planning horizon. The maximum possible inventory level can be bounded to

DT , the situation in which we place an order in the first period that guarantees

to satisfy the maximum possible demand. Similarly, we can calculate the

minimum possible inventory. Starting from the initial inventory, we realise the

maximum demand in all the periods without placing any order; the minimum

inventory is −DT . All the possible inventory levels evaluated in line 5 of

Algorithm 1 are 2DT . The total number of DP states is 2DT 2.

We can consider the maximum order size to beDT , an order placed at the initial

inventory level used to reach the maximum. So, the cycle in line 6 iterates

DT times. The computational effort of each cycle depends on the immediate

cost and the expected cost of future periods, both of them are expected values

depending on the random discrete positive variable dt, the computation of each

requires O(D) operations. So, the complexity of the computation of each SDP

state is

O(D2T ) (4.5)
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So, the overall complexity is:

O(D3T 3) (4.6)

4.1.4 K-convexity

We can exploit the property of K-convexity presented in [Sca59] in solving the

dynamic program.

The property is defined as:

Definition 4.1.1. Let K ≥ 0, then function f(x) is K-convex if:

K + f(a+ x)− f(x)− a{f(x)− f(x− b)
b

} ≥ 0

for all positive a, b and x.

Using this property, Scarf proves the optimality of the (st, St) policy under non-

stationary stochastic demand. Moreover, he shows that considering s∗
t and S∗

t

the optimal reorder level and order up-to level for period t:

Ct(It−1) =

 f(It−1, 0) + E[Ct+1(It−1 − dt)] s∗
t ≤ It−1 ≤ S∗

t

f(It−1, 0) + E[Ct+1(S∗
t − dt)] +K 0 ≤ It−1 < s∗

t

(4.7)

This is done by computing the Ct(y) for different values of y starting from a high

value that is an upper bound of St. The value y is then decremented by a unit

each time, and the lowest value of Ct is remembered. The search terminates

when the cost is greater than the lowest value so far added to K, the fixed

ordering cost. St is the inventory level in which the cost assumes the minimum

value, st is the one in which we stop the search. This approach greatly speeds

up the computation of the SDP.

The reason for the improvement is clear in Algorithm 2. There is no need to

search for the best order quantity Qt. Moreover, when the order level st is

determined all the lower inventory levels assumes the same expected cost. In

Section 4.4, we quantify the improvement provided by this property.

The worse case complexity is strongly reduced in this case. Each state requires

a single computation of the immediate cost and the expected cost of future

periods, so its worse case complexity become O(D). For all the inventory

levels lower than the optimal st the complexity of computing them is constant;

however, it strongly depends on the instance type. The overall complexity is
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Algorithm 2 sS-SDP-KConvex()
1: for i from min_inventory to max_inventory do
2: CT+1(i) = 0
3: for t from T down to 1 do
4: best_cost←∞
5: for i from max_inventory down to min_inventory do
6: Ct(i)← ft(i, 0) + E[Ct+1(It−1 +Qt − dt)]
7: if Ct(i) < best_cost then
8: best_cost← Ct(i)
9: St ← i

10: if Ct(i) > best_cost+K then
11: st ← i
12: break for
13: for i from min_inventory to st do
14: Ct(i)← Ct(st)

reduced to:

O(D2T 2) (4.8)

4.1.5 Demand over consecutive periods

To simplify the notation of the next models, we introduce a new random

variable that represents the demands faced over consecutive periods. We define

it as di,j, where i is the initial period and j the final one.

di,j =
j−1∑
k=i

dk (4.9)

by definition dt and dt,t+1 are equal.

4.2 Stochastic Dynamic Program for (R, S) policy

This section introduces an optimal SDP solution for the dynamic uncertainty

strategy.

We consider the individual ordering cost, as mentioned before the extension to

a non-zero ordering cost is straightforward. In [XRMBT19], we can find the

first attempt to derive the (R, S) policy in the form of a functional equation.
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4.2 Stochastic Dynamic Program for (R, S)
policy

However, their formulation differs to Scarf’s only by the functional equation,

while herein, we have a different state space and action. Moreover, their

formulation requires to compute the whole state space for all the possible

replenishment plans, a brute force evaluation. For this reason, they do not

implement the technique in their experimental analysis.

4.2.1 Model

The formulation presented herein differs with Scarf’s. Stages are equivalent;

however, it uses a different state structure. In the (s, S) SDP, each state is

associated with a period and an inventory level. Since we have a null per unit

ordering cost, we can neglect the inventory level at the beginning of a period

in which an order is placed and focus only on the order-up-to-level. Action

introduces a new dimension. We are not only searching the best order-up-to-

level St but also how many periods demand the order should cover Rt. The

immediate cost regards all the periods covered by the order. The review W

and ordering cost K are always charged together since there is no distinction

between them in the dynamic uncertainty policy.

Let Rt be the length of the review period starting in period t, and St be the

order-up-to-level in period t. If the inventory level It−1 is higher than the order-

up-to-level St in an order instant, an empty order is placed. The problem can

be formulated as SDP as:

1. Stage. A stage represents a time period t = 1, . . . , T for a T-period

stochastic lot-sizing problem.

2. State. We define Nt as the state of the system at the beginning of period

t before replenishment.

3. Action. An action is represented by the pair (St, Rt). They represents the

scheduling of an order that raise the inventory level to St at the beginning

of period t that aims to cover the demand of the next Rt periods. So, the

next review moment is in period t+Rt.

4. Immediate cost. Let ft(St, Rt) be the expected immediate cost compro-

mising ordering, holding and penalty cost for periods t, . . . , t + Rt − 1,
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given the state Nt = It−1 and action St, Rt.

ft(St, Rt) = K +W +
Rt∑
i=1

E[hmax(max(St, It−1)− dt,t+i, 0)

+bmax(−max(St, It−1) + dt,t+i, 0)] (4.10)

where E denotes the expected value with respect to the random variable

dt,t+i.

5. Objective function. Let Ct denote the expected total cost of an optimal

policy over periods t, . . . , T that places an order in period t and associated

with state Nt. Then, Ct can be written as:

Ct = min
Rt

(min
St

(ft(St, Rt) + Ct+Rt)) (4.11)

The boundary condition is:

CT+1 = 0 (4.12)

C1 contains the expected cost for the optimal parameters.

4.2.2 Pseudocode

Algorithm 3 shows the pseudocode of the SDP. At the end of RS − SDP (), the

variables Rt and St will contain the optimal parameters for the (R, S) policy.

Line 1 represent the boundary condition. Lines 4-6 represent the functional

Equation 4.11.

Algorithm 3 RS-SDP()
1: CT+1 = 0
2: for t from T down to 1 do
3: Ct ←∞
4: for r from 1 to T − t+ 1 do
5: for s from 0 to max_inventory do
6: expected_cost← ft(s, r) + Ct+1
7: if expected_cost < Ct then
8: Ct ← expected_cost
9: St ← s

10: Rt ← r

For clarity and for the sake of the future enhancements, we separate the

computation of the immediate cost. Let ζt,t+j be a value of the random variable
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dt,t+j and P (ζt,t+j) be the probability of assuming that value. Algorithm 4

summarises the computation of Equation 4.10.

Algorithm 4 ft(s, r)
1: cost← W +K
2: for j from 1 to r do
3: for each ζt,t+j value of dt,t+j do
4: close_inv ← s− ζt,t+j
5: if close_inv ≥ 0 then
6: cost← cost+ h close_inv P (ζt,t+j)
7: else
8: cost← cost− b close_inv P (ζt,t+j)

return cost

4.2.3 Time complexity

We use the same notation and reasoning presented in Section 4.1.3. The

number of states is T . The iteration over all the possible replenishment cycles

(line 4 of Algorithm 4) cycle on average T/2 times, so O(T ). The range of

possible values for St is from 0 to the maximum inventory level, consequently

the cycle in line 5 iterates DT times. The computation’s complexity of the

immediate cost can be derived from Algorithm ??. The for cycles in lines 2 and

3 iterate respectively a maximum of T and D times. The overall complexity of

the algorithm becomes:

O(D2T 4) (4.13)

4.2.4 Immediate Cost Memoisation

The calculation of the immediate cost is particularly time demanding. There is

a summation of expected costs over multiple periods. However, it is possible to

identify situations in which the same computations occur multiple times. Let

lt(It, Rt) be the function that computes the holding and penalty expected cost

of starting at the end of period t with closing inventory It and with the next

review moment in Rt periods. This new function can be defined as:

lt(It, Rt) =
Rt∑
i=1

E[hmax(It − dt+1,t+i, 0) + bmax(−It + dt+1,t+i, 0)] (4.14)
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4.2 Stochastic Dynamic Program for (R, S)
policy

considering di,j = 0 when i = j. Equation 4.10 can be rewritten as:

ft(St, Rt) = K +W + E[lt(St − dt, Rt)] (4.15)

The lt(It, Rt) function can be computed in a recursive way:

lt(It, Rt) = hmax(It, 0) + bmax(−It, 0) + E[lt+1(It − dt+1, Rt − 1)] (4.16)

this can be considered as the functional equation of an SDP, where the

holding/penalty cost of period t is the immediate cost. There are two boundary

conditions:

lT+1(IT + 1, Rt) = 0 (4.17)

lt(It, 0) = 0 (4.18)

The states are represented by the tuple (t, It, Rt) and are computed in a forward

manner. We store the computed tuples in a dictionary with constant access time

to avoid recomputations.

Algorithm 5 lt(i, r)
Data: memo is the data structure that contains the solutions of the states.
memo(t, i, r) contains the solution of lt(i, r)

1: if (t, i, r) in memo then return memo(t, i, r)
2: cost← 0
3: for each ζt,t+j value of dt,t+j do
4: close_inv ← i− ζt,t+j
5: if r not 0 then
6: cost← cost+ lt+1(close_inv, r − 1) P (ζt)
7: if close_inv ≥ 0 then
8: cost← cost+ h close_inv P (ζt)
9: else

10: cost← cost− b close_inv P (ζt)
return cost

Complexity wise, it is hard to assess the performances of the memoisation

since they are strongly case dependent. The experimental section analyses the

empirical impact.
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4.2.5 Replenishment Cycle Length Filtering

In the previous section, we presented a memoisation technique to avoid

recomputations. We now aim to reduce a priori the number of calls to that

function. We exploit a reduction procedure based on the structure of the

function.

Property 4.2.1. Let C+
t be an upper bound of Ct and Ra

t a fixed possible review
cycle for period t. If:

C+
t ≤ min

St

(ft(St, Ra
t )) (4.19)

The optimal replenishment cycle for period t is smaller than Ra
t .

Property 4.2.1 is derived by:

Property 4.2.2.

min
St

(ft(St, R)) ≤ min
St

(ft(St, R + 1)) (4.20)

the minimum holding/penalty cost increase if the cycle length increases since

the demand is non-negative.

For a fixed Ra
t , the expected cost Ca

t is, according to the functional equation:

Ca
t = min

St

(ft(St, Ra
t ) + Ct+Ra

t
) = Ct+Ra

t
+ min

St

(ft(St, Ra
t )) (4.21)

finally for Equations 4.19, 4.20 and 4.21:

C+
t ≤ min

St

(ft(St, Ra
t )) ≤ Ct+Ra

t
+ min

St

(ft(St, Ra
t )) = Ca

t (4.22)

We can consider as cost upper bound C+
t the best Ct computed so far. This

property allows to stop the search for the optimal replenishment cycle earlier

and save computations. Line 4 of Algorithm 3 iterates over all the possible cycle

length Rt, we can use Property 4.2.1 to break this cycle earlier.

4.2.6 Binary Search of the Order-Up-To-Level

The K-convexity property can not be exploited in the solving of this SDP model.

However, we can adopt a similar approach with standard convexity and limit

the search of the optimal St thanks to the convexity of ft(St, Rt).
Definition 4.2.3. (Convex function). A function f is convex, if for every x, y and
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0 ≤ δ ≤ 1 the next inequality holds:

f(δx+ (1− δ)y) ≤ δf(x) + (1− δ)f(y) (4.23)

A convex function shows the following properties:

Property 4.2.4. • Every linear function is convex.

• The non-negative weighted sum of convex functions is convex.
If w1, . . . , wn ≥ 0 and f1, . . . , fn are all convex, then w1f1 + · · · + wnfn

is convex. This property extends to infinite sums and integrals.

• The maximum of convex functions is convex. If f1, . . . , fn are all convex, then
max{f1 + · · ·+ fn} is convex.

Thanks to these properties, it is possible to prove by induction the convexity of

ft(St, Rt) for a fixed Rt.

Considering Rt constant, the immediate cost is depends only on the St variable.

Theorem 4.2.5. Function ft(St, Rt) is convex with respect to variable St.

To prove it we need first to prove that lt presented in Section 4.2.4 is convex for

a fixed Rt. It can be proved by mathematical induction:

• Base case. lT+1(It, Rt) is a constant function, so it is convex.

• Induction step. Let lt+1 be convex, considering 4.16, E[lt+1(x,Rt − 1)] is

convex for Property 4.2.4 since it is a weighted sum of convex functions.

hmax(It, 0) is convex as well since it is the maximum of two linear

functions, same goes for bmax(−It, 0). If lT+1(It, Rt) is convex, so is

lt(It, Rt).

Finally, if lt(It, Rt) is convex also Equation 4.15 is convex since it is a weighted

sum of convex functions.

Considering the functional Equation 4.11, for a fixed Rt the the right hand

function is convex. We are looking for the global minimum of this function

since the function is convex there are no local minimums.

To find the global minimum, we can use binary search. Line 5 of Algorithm 3 is

replaced by a binary search in the same interval. The binary search reduces the

complexity, since the block of code inside the cycle in line 5 is iterated log(DT )
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times instead of DT . The worse case complexity becomes:

O(DT 3 log(DT ) (4.24)

4.2.7 Extension to unit cost

The algorithm can be extended to model the per unit ordering cost. There

are two options, reducing it to a function of the expected closing inventory,

e.g. [TK04]; or including it in the immediate cost function. To do so, we need

to modify the boundary condition for the computation of the lt(It, Rt) function.

Let v be the per unit ordering/production cost, Equation 4.18 is replaced by:

lt(It, 0) = v max(St − It, 0) (4.25)

This adds the cost to increase the inventory level from It to St.

4.3 Rossi et al. MIP formulation

A unified MIP modelling approach to compute near-optimal parameters for the

(R, S) policy is introduced in [RKT15]. This solution has the best optimality

gap according to the recent computational study of [DSRKT19]. We use it as

a comparison in the experimental section of this chapter. We describe only the

modelisation of the problem with backorders and penalty cost since it is the

setting tackled in this work.

Rossi et al. approach can model a variety of settings: backorder or lost sales for

the unmet demand; backorder per unit penalty cost, non-stockout probability

and fill rate constraint for assuring the quality of service. The model can work

by approximating the first-order loss function with an upper or a lower bound.

Considering a random variable ω and a scalar variable x, the first order loss

function is defined as L(x, ω) = E[max(ω−x, 0), where E denotes the expected

value. The complementary function is defined as L̂(x, ω) = E[max(x − ω, 0)].
These two functions are used to compute the expected cost of a replenishment

cycle. Their model is similar to Tarim and Kingsman’s [TK04]. However, their

linearization approach is based on [RTPH14]. In this method, the support

(Ω) of the random variable ω is divided in Y regions, Ω1, . . . ,ΩY . For each
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compact region two parameters are computed: pi that is the probability of ω

to get a value in Ωi (pi = Pr{ω ∈ Ωi}) and the conditional expectation of ω

in Ωi (E[ω|Ωi]). When the demand is normally distributed, the linearization

parameters that minimise the error depend only on the expected value and the

standard deviation. In their paper, Rossi et al. provide these parameters up to

11 segments.

The MIP model to compute the lower bound for the cost of optimal plan in case

of a normal distributed demand is:

min
E[TC]

= −vI0 + v
T∑
t=1

d̃+
T∑
t=1

(Kδt + hĨ lbt + bĨ lbt ) + vĨT (4.26a)

s.t. for t = 1, . . . , T

Ĩt + d̃t − Ĩt−1 ≥ 0 (4.26b)

Ĩt + d̃t − Ĩt−1 ≤Mδt (4.26c)
t∑

j=1
Pjt = 1 j = 1, . . . , t (4.26d)

Pjt ≥ δj −
t∑

k=j+1
δk (4.26e)

Ĩ lbt ≥ Ĩt
i∑

k=1
pk −

t∑
j=1

(
i∑

k=1
pkE[Z|Ωk])Pjtσdjt

i = 1, . . . , Y (4.26f)

B̃lb
t ≥ −Ĩt + Ĩt +

i∑
k=1

pk −
t∑

j=1
(
i∑

k=1
pkE[Z|Ωk])Pjtσdjt

i = 1, . . . , Y (4.26g)

δt ∈ {0, 1} (4.26h)

Pjt ∈ {0, 1} j = 1, . . . , t (4.26i)

(4.26j)

the model uses the same notation used in Section 2.2, with the addition of Ĩt is

the expected closing inventory level in period t, Pjt is a binary variable which

is set to one if and only if the most recent inventory review before period t was

carried out in period j, Z is a standard normal variable, and σdjt that is the

standard deviation of the random variable dtj. Ĩ lbt and B̃lb
t are lower bounds

respectively for the true value of E[max(It, 0)] and E[−min(It, 0)]. Appendix

8.1 contains a list of all the symbols used.

This model computes the policy parameters and a lower bound of the expected

cost. They provide a model to compute an upper bound of the policy expected
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cost as well. Equations 4.26f has to be replaced with:

Ĩubt ≥ Ĩt
i∑

k=1
pk +

t∑
j=1

(eY −
i∑

k=1
pkE[Z|Ωk])Pjtσdjt

i = 1, . . . , Y
t = 1, . . . , T

(4.27)

and Equation 4.26g with:

B̃ub
t ≥ Ĩt +

i∑
k=1

pk +
t∑

j=1
(eY −

i∑
k=1

pkE[Z|Ωk])Pjtσdjt

i = 1, . . . , Y
t = 1, . . . , T

(4.28)

where eY is the maximum approximation error associated with the piecewise

linearization of the standard normal function in Y regions. These two equations

are the upper bounds respectively for the first order loss function and for its

complementary.

4.4 Experimental results

In this section, we evaluate empirically the algorithms presented in this chapter.

This section focuses on:

• Understanding the impact of K-convexity on the computational perfor-

mances of the (s, S) policy computation. This property is well-known

since the 1960s; however, no computational study is present in the liter-

ature that assesses its computational contribution. In some recent works,

the algorithm is deployed without using it, e.g. [XRMBT18]. The au-

thors of that study decided not to use K-convexity because it makes the

DP model not solvable by general purpose SDP libraries such as the

Java Stochastic Dynamic Programming Library1. As the experiments here

shows, the impact of this property is a game-changer for the computa-

tional effort required.

• Evaluating the scalability of the method proposed in Section 4.2 and the

impact of the techniques introduced to speed up its performances. Being

able to solve real-world instances in a reasonable time is a key factor for

the applicability of a technique.

• Compare the quality of the policy computed by the new method with

the one computed by the MIP formulation of Section 4.3. We assess the

1https://gwr3n.github.io/jsdp/
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policies by comparing their optimality gap with respect to the cost-optimal

policy.

• Compare the accuracy of the expected cost of the presented methods. The

accuracy is evaluated by comparing the expected cost to the simulated

one.

The algorithms compared herein are:

• sS-SDP, the SDP technique described in Section 4.1.

• sS-SDP-Kconv, the SDP technique deployed using the K-convexity prop-

erty. We consider this algorithm to be the current state-of-the-art in com-

puting optimal (s, S) policy parameters.

• RS-SDP, the SDP technique described in Section 4.2.

• RS-SDP-Opt, the previous technique enhanced with memoisation, filter-

ing and binary search of the optimal order-up-to-level.

• RS-MIP-LB6 and RS-MIP-LB10, the MIP model of Section 4.26 that

computes a lower bound of the optimal cost. The linearization of the

first order loss function is done respectively with 6 and 10 breakpoints

that minimise the approximation error.

• RS-MIP-UB6 and RS-MIP-UB10, the upper bound model with 6 and 10
breakpoints.

All the experiments are computed on Intel®Xeon®CPU E5620 @ 2.40GHz.

The methods are coded in Python 3.6, and Gurobi Optimizer 9.0 is used as MIP

solver.

4.4.1 SDP comparison analysis

In the experimental studies of this thesis, we use adaptations of the set of

instances originally proposed by [Ber72]. These instances widely used in the

literature, e.g. [RTHP08,DSKTR16,XRMBT18].

In this experiment, we assume a Poisson distributed demand. Poisson demand

has been widely used in the literature to model stochastic demand rates, e.g.

[Duc93]. We decide to use this instead of a normally distributed demand to

avoid negative demand values and errors in the discretisation process.
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Figure 4.1: Computational time over the number of periods. Time limit 20 min.

In the first part, we use a set of parameters randomly generated, and we

increase the number of periods progressively. We fix the holding cost per unit

h = 1. The other cost parameters are drawn from uniform random variables;

the ordering cost is in the range K ∈ [80, 320] and penalty cost per unit

b ∈ [4, 16]. The average demands per period are drawn by a uniform random

variable with range 30 to 70. We generate 100 different instances. We replicate

the experiments for periods in range 4 to 70. The values of the cost parameters

are consistent with the relevant literature surveyed in the previous chapter and

provide a challenging benchmark for the algorithms presented.

Figure 4.1 shows the logarithm of computational time of the four SDP algo-

rithms. Between the two basic SDP the (R, S) one slightly outperform the (s, S).
This is due to a smaller state space to explore; even if the computation of the

immediate cost for the first model is more complex. We can see that the impact

of the K-convexity property is crucial to compute (s, S) policy parameters in a

reasonable time. The standard SDP grows exponentially, exceeding the time

limit at instances with 12 periods, while the optimised one can solve instances

up to 70 periods in less than a minute. The computational time seems to grow

linearly with the instance size. A similar effect can be seen in the (R, S) SDP,

where the basic version can solve only instances up to 17 periods. The impact of

the optimisation techniques greatly affect the performances of the solution. For
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the sake of brevity, we grouped all the optimisation techniques for the (R, S)
SDP in a single solution. We tested the contribution of each of them individually

and in pairs: the binary search has the strongest and less instance dependent

impact, the memoisation follows with a considerable impact especially in larger

instances, the impact of the cycle length filtering is neglectable for smaller in-

stances, but it provides a good speedup for longer planning horizons. All the

techniques (individually and in pairs) contribute to the improvement of the

computational performances.

In the second part, we aim to evaluate the quality of the computed policy and

check the accuracy of the expected cost. The metrics we consider in this section

are two ratios: the optimality gap and the expected cost error. The optimality

gap is the estimated extra-cost of using the computed policy instead of the cost-

optimal one for a particular problem. It is computed as:

Optimality gap = Policy cost− Optimal cost
Optimal cost

(4.29)

A better policy exhibits a lower optimality gap. It can be used as an estimate

of the inventory cost of deploying a non-optimal system. The optimal policy for

the setting with zero review cost is the (s, S) as Scarf proves in [Sca59]. The

policy cost is computed by simulating the inventory control 100 000 times and

averaging the cost; all the policies are simulated on the same instances. We can

consider the simulated cost as a close approximation to the real one. This is

a normal practice in the literature(e.g. [DSRKT19]) also because some of the

techniques do not provide an expected cost. An accurate expected cost can be

used to compute the optimality gap as well.

The expected cost error measures the accuracy of the expected cost. It can be

computed as:

ecost = |Expected cost− Policy cost|
Policy cost

(4.30)

A low expected cost error means that the algorithm computes better estimations

of the real cost of the policy.

The results of the comparisons are shown in Figure 4.2 and 4.3. The first plot

shows the optimality gap of the (R, S) SDP compared to the optimal policy for

both the expected and simulated cost. We can see that the extra inventory cost

of deploying an (R, S) policy instead of an (s, S) one increases with the number

of periods for instances up to 20 periods. It then becomes more or less stable
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Figure 4.2: Optimality gap of the expected cost and simulated cost for the (R, S)
SDP over the number of periods.

on values lower than a half per cent. This value is particularly low, especially

considering the reduction of nervousness of the inventory provided by the usage

of an (R, S) policy. In the next section, we compare it with the state-of-the-art

in (R, S) policy parameters computation.

Figure 4.3 shows that the accuracy of the expected cost is similar for both

approaches. The fluctuations are caused by a few simulated instances that

exhibit extreme demands. This is why both solutions present similar gaps.

When the number of periods increases, the effect of unexpected demand is

mitigated, and the overall accuracy is stable between 0.017% and 0.03%. It

is interesting to see how the estimate for the (R, S) policy is slightly more

inaccurate than Scarf’s SDP. The reason is that the (R, S) SDP considers possible

negative orders in the estimation of the expected cost. While this is highly

unlikely, it still has a small measurable impact on the expected cost estimation.

4.4.2 Comparison with Rossi et al. Model

In this experiment, we consider a normally distributed demand to use [RKT15]

models with the linearization parameters available in [RTPH14]. We repeated
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Figure 4.3: Expected cost error for the (s, S) SDP and the (R, S) SDP

the same experiments of the previous section for three standard deviations of

the demand, σ ∈ [0.1, 0.2, 0.3]. These values are the most used in the literature

when dealing with normally distributed demand, e.g. [TK04,TS08,DSRKT19].

Using normal demand introduces discretisation and bounding errors since we

need a non-negative integer demand. Nevertheless, it allows analysing the

performances with a higher level of uncertainty. For the sake of readability,

we present only the most significant plots. All the remaining ones are available

in Appendix A.

Figures 4.4, 4.5 and 4.6 show the optimality gap computed using the simulated

cost for the three standard deviation. The first clear observation is that the

MIP model with upper bounds computes worse policies compared to the lower

bound model. For this reason, we exclude them from the next plots to focus on

the best competitors. The SDP algorithm outperforms the MIP formulation in all

the situations, and its optimality gap is more stable. For all the algorithms, the

optimality gap increases when the uncertainty increases. This is an intuitive

result, the (s, S) policy reviews the inventory in every period; it can react

in a faster way to unexpectedly high demand, that is more likely when the

standard deviation is higher. Another piece of information we can gain from

these experiments is that the optimality gap of the SDP has smaller fluctuations

compared to the other techniques. This can be seen in Figure 4.7, where we

analyse the variance of the optimality gap for σ = 0.3. The variance of the
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Figure 4.4: Optimality gap of the simulated cost over the number of periods for
σ = 0.1

optimality gap of the SDP is considerably smaller compared to the MIP solution.

Not only does the SDP technique have a lower optimality gap, but also its

expected cost is more accurate compared to the state-of-the-art. As we can

see in Figure 4.8, the expected cost of the SDP is comparable with the Scarf’s

solution and clearly outperforms the competitors.

Finally, we compare the computational time. We restrict the solvers to use

a single thread, so all the techniques can use the same hardware resources.

Figure 4.9 and Figure 4.10 show the average computational time for instances

with different coefficient of variation of the demand, respectively σ = 0.1 and

σ = 0.3. The MIP based algorithms are faster for small-medium instances and

with a smaller uncertainty of the demand; while the SDP outperforms them for

longer time horizons. This is an indicative comparison since the SDP algorithm,

and the solvers are developed in different languages. Moreover, MIP solvers are

optimised to use multithreading, while in the SDP it has to be manually coded.

The MIP based techniques are marginally affected by the increase of the average

demand since they only consider the distribution parameters; while this has an

impact on the size of the state space in SDP solutions.
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Figure 4.5: Optimality gap of the simulated cost over the number of periods for
σ = 0.2
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Figure 4.7: Variance of the simulated cost optimality gap over the number of
periods for σ = 0.3
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Figure 4.8: Expected cost error over the number of periods for σ = 0.3
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Figure 4.9: Computational time in seconds for σ = 0.1

5 10 15 20 25 30 35 40

0

50

100

150

200

250

300

Number of periods

C
om

pu
ta

ti
on

al
Ti

m
e

sS-SDP-KConv
RS-SDP-Opt

RS-MIP-LB-10
RS-MIP-LB-6

RS-MIP-UB-10
RS-MIP-UB-6

Figure 4.10: Computational time in seconds for σ = 0.3
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4.5 Conclusions

In this chapter, we describe the widely known SDP for computing the optimal

(s, S) policy parameters under Scarf’s setting, widely used in the next chapters.

We introduce the K-convexity property, and we provide instructions for its

deployment. We then present the main contribution of this chapter, the first

purely SDP algorithm to compute optimal (R, S) policy parameters. Three

different approaches are deployed to improve its performances: a memoisation

approach used to avoid recomputations, a filtering technique to prune the sub-

optimal search space and a binary search on the optimal order-up-to-level.

This approach strongly differs from the extensive literature on the topic that

Section 3.4.4 surveys. The approach is optimal, and it does not make any

assumption on the demand type. We provide the algorithm’s pseudocode to

ease the implementation of the solution; in Python, it can be coded in less than

50 lines of code.

Interesting findings are presented in the extensive computational study, two of

them regarding techniques already available in the literature:

• We quantify the improvement that the K-convexity brings to the SDP

computational time. To the best of our knowledge, this analysis is not

present in the literature, and some recent works deploy the technique

without using the K-convexity property.

• The MIP models presented by [RKT15] performs considerably better using

the lower bound approximation compared to the upper bound one.

Regards our technique and the optimal static-dynamic policy, we discovered

that:

• The computational complexity of the technique is particularly high. It

can solve only small-medium instances in a reasonable time. However,

the optimisation techniques deployed reduce the computational effort

considerably, making it able to solve real-world size instances.

• The approach has performances similar to Scarf’s SDP. The optimality gap

is stable, and it seems to converge for larger size instances.

• The expected cost computed by the policy is particularly small. The

expected cost error is minimally higher than the (s, S) one. We justify

this difference by considering the extra holding cost not considered when
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the order-up-to-level is smaller than the current inventory during a review

period.

• Compared to the best algorithm for the determination of (R, S) analysed

in the recent computational study of [DSRKT19], the policies computed

by the solution presented herein have a lower cost, a more accurate

expected cost and a stable optimality gap.

• The SDP solution is competitive with the state-of-the-art in terms of

computational effort required to compute a solution. Additionally, with

memoisation, the SDP does not require the convolution of the demand of

the replenishment cycles.

Overall, the performances and the easy implementation of this new technique

mean that it fills a gap in the literature.
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Chapter 5

Branch-and-Bound solution for
(R, s, S)

In this chapter, we propose an efficient BnB approach for computing optimal

(R, s, S) policy parameters for the stochastic lot sizing with non-stationary

demand, backlogging of excessive demand, linear holding and penalty cost,

fixed ordering and review cost.

The (R, s, S) policy is a generalisation of the (s, S) and (R, S). In absence of a

review cost, the policy is equivalent to the (s, S) one. If we fix s = S − 1 an

order is placed at every review moment, so it becomes equivalent to the (R, S)
policy.

According to [SPT16], this policy is widely used in practice. However, the

computational effort for determining its optimal parameters is considered

prohibitive. Therefore, in many practical applications, simpler techniques

are deployed even if less cost performing. This policy becomes particularly

interesting when we take into account a system cost associated with reviewing

the inventory. In this case, the (s, S) policy is not cost-optimal anymore. The

literature surveyed in Section 3.4.5 does not contain any ad hoc method to

compute (R, s, S) parameters for such problem setting.

We present a first algorithm that extends Scarf’s SDP presented in Section 4.1

to compute optimal (R, s, S) parameters. This approach is a simple brute force

application of the SDP for all the possible replenishment cycles. We consider it

as the baseline and as the current state-of-the-art.

The main solution proposed in this chapter is based on a hybrid approach; it
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exploits tree search to compute the optimal replenishment cycles and stochastic

dynamic programming to compute s and S levels for a given replenishment

cycle. To speed up the computations, we applied a BnB technique. Bounds,

computed using DP, are generated via an efficient dynamic programming

algorithm; these bounds allow the BnB to prune of up to 99.5% of the search

tree without compromising optimality.

The next section describes the baseline technique. The core technique of

this chapter is presented in Section 5.2. Section 5.3 contains an extensive

computational study of the techniques introduced in this chapter. Finally,

Section 5.4 concludes.

5.1 Baseline

In this section, we provide a simple technique to compute the optimal (R, s, S)
policy parameters. Since no technique to compute optimal parameters in the

presence of stochastic non-stationary demand is available in the literature, it

can be considered state-of-the-art. Moreover, it constitutes the basis of the BnB

technique presented in the next section. This approach is based on the SDP

used to compute optimal parameters of the (s, S) policy described in Section

4.1.

If the review cycles are fixed, the (R, s, S) is reduced to the well known (s, S)
policy. It is possible to model this problem as the SDP formulation and solve it

to optimality. The idea behind this approach is to compute the optimal (s, S)
policy for all the possible review plans; a brute force application of the SDP.

Consistently with the models presented in Section 2.2, we represent the

replenishment moments with the binary variables γt, for t = 1, . . . , T , which

takes value 1 if a review is placed in period t and 0 otherwise. Rt is the number

of periods before the next review moment. So,

Rt = min({l|t < l ≤ T, γl = 1})− t (5.1)

To be consistent with this formulation, we assume Si = −∞ and si = −∞ if

γi = 0. We assume Qt = 0 if γi = 0. Therefore, no order will be placed outside a

review moment. The optimal (R, s, S) policy for our problem is represented by

the parameters γt, st, St that minimize the expected total cost. The values of δt,
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Figure 5.1: Example of a (R, s, S) policy.

the binary variable that takes value 1 if an order is placed on period t, are not

fixed a priori since in this policy the decision of placing an order is taken after

observing the previous demand. Figure 5.1 shows an example application of

this policy. A review is scheduled at period 5 (γ5 = 1), since the inventory level

is higher than s5 the order is not placed(δ5 = 0). All the non-specified values of

δi and γi are equal to zero.

We consider an arbitrary review cycle plan. Therefore, γt is used as parameter

and not as a decision variable. Each stage of the dynamic programming

formulation represents a period of the planning horizon.

The structure of the SDP is equivalent to the one presented in the previous

chapter. The only difference is in the functional equation. Let Ct(It−1) denote

the expected total cost of an optimal policy over periods t, . . . , T associated with

state Nt = It−1. Then, Ct(It−1) can be written as:

Ct(It−1) = min
0≤Qt≤Mγt

(ft(It−1, Qt) + E[Ct+1(It−1 +Qt − dt)]) (5.2)

where M is a sufficiently large number. The constraint 0 ≤ Qt ≤Mγt forces the

order quantity to 0 when the period is not a review moment.

C1(I0), where I0 is the initial inventory, contains the expected cost for the

optimal (s, S) policy associated with the γ assignment.

Let Ĉ1(I0) represent the expected total cost of the optimal (R, s, S) policy, given
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the initial inventory level I0 at period 1. We can define it as:

Ĉ1(I0) = min
γ1,...,γT

(C1(I0)) (5.3)

evaluating the optimal (s, S) policy for all the possible assignments of γ1, . . . , γT

leads to the optimal (R, s, S) policy.

5.1.1 Time complexity

The time complexity of the K-convexity (s, S) SDP is O(D2T 2), as states Section

4.1.4. The baseline computes it for all the possible review plans. A review plan

is an assignment of the γt binary variables. All the possible assignments of T

binary variables are 2T . The overall complexity of the algorithm is:

O(2TD2T 2) (5.4)

Due to the exponential complexity, the algorithm can solve only small instances.

Example

We shall consider a simple example in detail, to show how, in practice, it is

possible to apply the procedures described herein. A single problem over a 3-

periods planning horizon is considered. We assume an initial null inventory

level and a Poisson distributed demand for each period with averages d =
[20, 30, 40]. We consider an ordering cost value K = 30, a review cost W = 10,

holding cost and penalty cost respectively h = 1 and b = 10 per unit per period.

The algorithm’s goal is to compute the replenishment moments γ = [γ1, γ2, γ3]
that minimise the expected cost of the policy. Table 5.1 shows the expected

cost of each (s, S) policy computed with different review periods. The optimal

solution is γ = [1, 0, 1] with expected cost 142.7.

5.2 Branch-and-Bound

In this section, we present a branch-and-bound technique used to compute cost-

optimal parameters for the (R, s, S) policy. The search tree is defined in Section

5.2.1. The subproblems associated to the nodes are defined in Section 5.2.2.
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Table 5.1: Expected cost for the 3-periods numerical example for each possible
replenishment plan.

γ1 γ2 γ3 Expected cost
0 0 0 1600.0
0 0 1 751.8
0 1 0 304.7
0 1 1 302.0
1 0 0 185.0
1 0 1 142.7
1 1 0 153.1
1 1 1 150.4

Section 5.2.3 introduces the pruning condition and lower bound computed with

dynamic programming. Finally, Section 5.2.4 presents the nodes resolution

process.

5.2.1 Search tree

The approach previously presented repeats multiple times the same computa-

tions. Consider two assignments of γ: γa and γb. Let Ca
t and Cb

t be the respective

expected costs computed with SDP.

Proposition 1. If there exists a period j for which:

γa = γb ∀t ∈ [j, n] (5.5)

then:
Ca
t (I) = Cb

t (I) ∀t ∈ [j, n],∀I (5.6)

Since the SDP is computed backwards, the cost of each period t depends on

the periods j with j > t. If two different review plans share a common final

part of length l, then the last l periods have the same expected costs. In the

baseline approach presented above, these computations are repeated multiple

times since the SDP state space is computed entirely for all the assignments.

The BnB goal is to avoid these recomputations and to find the review plan with

the minimum expected cost. In the branching, a γt value is fixed to 1 or 0. The

search tree has T + 1 levels, the branching in the root fix the value of γT . At

level l the branching involves the variable γT−l+1. The path from the root to

a node in level l represents a fixed assignment of the suffix [γT−l+2, . . . , γT ]. A
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Figure 5.2: Search tree associated with a 3-periods instance, the nodes contains
the level number.

leaf node represents a complete assignment of the γ values. The search tree is

visited in a depth-first search (DFS).

The baseline computes all the periods for all the possible combinations; the total

number of replenishment cycles is 2T . The total number of computed periods is

T × 2T . The number of nodes in a complete binary tree is 2 × 2T − 1. So, the

binary tree restructuring should reduce the computational effort by a factor of

T/2, reducing the overall complexity to:

O(2TD2T ) (5.7)

Example

Figure 5.2 shows the search tree of a 3-periods problem, like the example

presented in the previous section.

5.2.2 Subproblems

Given the period t and the partial assignment of a suffix of the review moments

[γt, . . . , γT ], the problem at a node is to find the [γ1, . . . γt−1] that minimize

the expected cost of the optimal policy. We denote this problem as BnB-

SDP(t,[γt, . . . , γT ]). For each subproblem, using Equation 4.2, we can compute

the expected cost of the optimal policy starting at period t with inventory level

i; this is possible because all the review moments that take place after period t
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are fixed and thanks to the dynamic programming stage structure presented in

Section 4.1.

5.2.3 Bounds and pruning

If it is possible to prove that all the solutions present in the subtree rooted

in a node are not optimal, we can prune the tree without compromising the

optimality.

Proposition 2. Given a fixed assignment of γ:

min
I

(Ct(I)) ≥ min
I

(Ct−1(I)) (5.8)

Considering the functional equation (Equation 5.2), Ct is equal to the expected

value of Ct+1 plus some non-negative costs. Then, the minimum cost in each

stage is monotonically increasing while descending the tree.

Let C̄ be an upper bound on the expected cost of the optimal policy. We store

in C̄ the expected cost of the best policy computed so far, the minimum C1(I0)
among all the leaves already computed.

Considering the subproblem BnB-SDP(t,[γt, . . . , γT ]), with the associated Ct(i)
expected costs:

Proposition 3. If
min
i

(Ct(i)) ≥ C̄ (5.9)

then, due to the monotonicity of the cost function (5.8):

min
i

(C1(i)) ≥ C̄ (5.10)

finally, since the expected cost associated with a policy (C1(I0)) is part of C1:

C1(I0) ≥ C̄ (5.11)

If (5.9) is true the subproblem BnB-SDP(t,[γt, . . . , γT ]) is not part of an optimal

solution and the search tree can be pruned.

However, this pruning condition does not consider the costs faced on periods

1, . . . , t − 1. A lower bound on the costs faced in those periods leads to a more
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effective pruning.

Let MCt(It) represent a lower bound of the cost faced in periods 1, . . . , t with a

closing inventory of It in period t. The pruning condition (5.9) can be updated

as:

min
It

(Ct(It−1) +MCt−1(It−1)) ≥ C̄ (5.12)

Having a bound independent from the review plan allows to compute it only

once before the BnB algorithm.

The bounds can be computed with a dynamic program with stages and states

equivalent to the one presented in Section 4.1 and functional equation:

MCt(It) = min


ft(It, 1) + min

j<It

(MCt−1(j))

ft(It, 0) + min
j≥It

(MCt−1(j))
(5.13)

where It is the current inventory level, and ft(It, Qt) is the ordering-holding-

penalty cost. The bound takes the minimum value between placing an order

in t − 1 or not. In the first case, if an order has been placed then the previous

period inventory level was lower or equal to the current one. In the second

case, an order has not been placed on the period t, therefore the inventory level

had to be higher or equal than the current one. The boundary condition is:

MC1(I1) =

W +K + f1(I1) if I1 > I0

f1(I1) if I1 ≤ I0
(5.14)

where I0 is the initial inventory. This dynamic program can compute the bounds

in polynomial time.

5.2.4 Nodes computation

The pseudocode for the BnB procedure is presented in Algorithm 6. The

resolution of each search tree node (RsS-BnB(t,[γt, . . . , γT ])) involves three

phases:

• Preprocessing - in line 1, the stochastic dynamic programming stage t is

solved.

• Pruning - the pruning condition is evaluated in line 7; if a pruning occurs

the branching phase is skipped.
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• Branching - in lines 8 and 9, the algorithm continues with the depth first

search of the tree.

Lines 3-6 involve leaf nodes. If the policy represented by the leaf is better than

the best so far, the value of C̄ is updated. The solving starts by invoking RsS-

BnB(T + 1,∅). At the end of the computations, the expected cost of the optimal

policy is contained in C̄.

The performance of the algorithm can be improved with randomisation. The

algorithm always branches by assigning first γt = 0. If during each branching

phase, we decide the order of lines 8-9 randomly, we can obtain a better

solution earlier. This leads to a stronger pruning of the search tree. We evaluate

the effect of randomisation in Section 5.3.1.

A more informed heuristic for selecting which branch to explore finds a near-

optimal solution faster than a randomised search. The heuristic needs to

decide if, given the replenishment plan for future periods, a review should be

scheduled in the current period. Due to the backward computation of the SDP

the expected level position at a given period is hard to estimate during the tree

search. In Chapter 6, we use a (R, s, S) heuristic to precompute a near-optimal

review plan. Then, we use this plan to guide the first descend of the tree. A

tight upper bound on the policy cost is found at the first descend of the tree,

and the search continues in similar review plans.

Algorithm 6 RsS-BnB(t,[γt, . . . , γT ])
Data: the current upper bound C̄, the Ct+1(i) computed at the parent node, the
bounds MC(i).

1: Compute Ct using Equation 5.2
2: if t = 1 then
3: if C1(I0) < C̄ then
4: C̄ ← C1(I0)
5: Save [γ1, . . . , γT ] as best so far review plan
6: else
7: if min(Ct(i) +MCt−1(i)) ≥ C̄ then return
8: BnB-SDP(t− 1,[0, γt, . . . , γT ])
9: BnB-SDP(t− 1,[1, γt, . . . , γT ])

To calculate the impact on the problem complexity, we need to evaluate the

portion of the state space pruned. The computation of an average-case value

requires an indicator random variable [CLRS09]. This variable represents the

probability of a pruning occurring at a specific node. This is strongly dependent
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Figure 5.3: BnB technique applied to the toy problem

on the instance parameters (cost factors, demand average and type, instance

size). To the best of our knowledge, it is not possible to compute such an

estimate, and its computation is beyond the scope of this thesis. However,

we measure it empirically in the experimental section. We define as pruning

percentage the percentage of nodes that are proved to be not optimal by the

pruning condition during the tree visit. Knowing the pruning percentage allows

estimating the computational time. The empirical analysis of it enables us to

understand the impact of the pruning on the state space.

Example

The search tree with the DP bounds for the example is represented in Figure

5.3. Each internal node contains the value of the pruning condition with

the dynamic programming bounds (5.12). An internal node is underlined if

the pruning occurs in that node. Each leaf is emboldened if it contains an

improvement compared to the previous best solution, C̄. Prune nodes are

represented by an asterisk ’*’.

In this example, the number of computed nodes is 10, and 4 nodes have been

pruned, so the pruning percentage is 4/14 = 28.57%.
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5.3 Experimental results

In this section, we evaluate empirically the new methods introduced in this

chapter, including an assessment of the effects of branching randomisation and

problem parameters (costs). We conduct two sets of experiments as follows. In

Section 5.3.1, we analyse the scalability of the new approaches by increasing

the number of periods until no method is able to solve the problem within a 10

hours time limit consistently. In Section 5.3.2, we fix the planning horizon to

10 and 20 periods and vary the cost parameters. For the experiments, we use

three (R, s, S) policy solvers:

• RsS-Base, the application of the SDP technique for all the possible

replenishment cycles described in Section 5.1 which we consider is the

current state-of-the-art.

• RsS-BT, the binary tree restructure of the computations.

• RsS-BnB, the BnB solution introduced in Section 5.2.

• RsS-BnB-Rand, BnB with randomised branching.

We compare these in terms of computational time, pruning percentage and

the average number of review periods. Since all the techniques presented in

this chapter compute the optimal (R, s, S) policy with the same expected and

simulated cost, our investigation does not involve analysis on the cost metrics.

All experiments are executed on an Intel(R) Xeon E5640 Processor (2.66GHz)

with 12 Gb RAM.

5.3.1 Scalability

This test aims to assess how scalable are the approaches proposed herein.

The testbed is similar to the one used in Section 4.4.1, we add the review

cost modelled as a random uniform variable W ∈ [80, 320], the other cost

parameters and the demand are the same. We extend the planning horizon

until no technique can solve all the instances in less than one hour. For each

length, we generate 100 different instances.

Figure 5.4 and Figure 5.5 show the results of this test, in the second one the

y-axis is scaled logarithmically. The exponential behaviour of the solutions is

evident. However, the new solution is able to solve instances almost twice as
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Figure 5.4: Computational time over the number of periods. Time limit 1 hour.
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Figure 5.6: Pruning percentage over the number of periods.

big in a reasonable time. Even if the new solution has an exponential behaviour,

its slope on the logarithmically scaled plot is considerably smaller than the SDP

one.

Figure 5.6 shows the pruning percentage of the BnB with and without random

descent of the tree. The pruning becomes more effective for longer planning

horizons. Using randomness, a better solution is found earlier in the search;

this allows a stronger pruning of the search tree.

5.3.2 Instance type analysis

The second set of experiments aims to investigate how the instance parameters

affect the performances. For the instance type analysis, we consider a testbed

which includes 324 instances. To generate the average demand values, we use

seasonal data with different trends:

• (STA) stationary case: d̃t = 50

• (INC) positive trend case: d̃t = d100t/(n− 1)e

• (DEC) negative trend case: d̃t = d100− 100t/(n− 1)e

• (LCY1) life-cycle trend 1 case: this pattern is a combination of the first
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3 trends. The first third of positive trend up to an average demand of

75, a central stationary one and the last negative third. If the number of

periods is not a multiple of 3, the central period is extended.

• (LCY2) life-cycle trend 2 case: this pattern is a combination of INC and

DEC trends. Positive trend for the first half of the planning horizon and

negative trend for the second half.

• (RAND) erratic: d̃t = dU(0, 100)e

all the patterns have an average demand of 50 per period. These patterns

have been originally proposed in [Ber72] and are widely used in the literature,

e.g. [RTHP08,DSKTR16,XRMBT18].

For the cost parameters, we use all the possible combinations of ordering cost

values K ∈ {80, 160, 320}, review costs W ∈ {80, 160, 320}, holding cost fixed

h = 1, penalty costs b ∈ {4, 8, 16}. We tested all the combinations of cost

parameters and the six patterns presented above. We analyse the results for

10-periods and 20-periods instances.

Since the baseline is too computationally expensive, it takes approximately 45

days to solve a 20 periods instance; we replace it with an estimate in the 20-

periods instances. The estimate is computed by solving 100 times the stochastic

dynamic programming for different γ assignments and averaging it over all the

possible assignments.

Table 5.2 and Table 5.3 give an overview of the computational time, the pruning

percentage and the average number of reviews of the methods discussed in

this study, respectively related to the 10 and 20-periods experiments. The

computational time of the BnB solutions depends on the complexity of the SDP

and the pruning efficacy.

The SDP is not strongly affected by the cost parameters. The patterns make the

main difference. This is due to the maximum average demand per period being

lower for the patterns STA, LCY1 and RAND. The stationary is faster to compute

since its maximum is 50, the second one is the first life cycle with a maximum

of 75, finally the erratic pattern. All the other patterns have a maximum of 100.

The pruning percentage gives an indication of the efficacy of the BnB. The

algorithms proposed herein perform particularly well for high review costs. For

instance, with 20 periods and W = 320 the pruning percentage reached an

impressive average of 99.57% for the BnB with randomised visit of the tree,
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solving one of these instances in half an hour; while the baseline is expected

to solve them in a month and a half. Without randomisation, the percentage

is 99.27%, so it has to compute twice the nodes compared to the randomised

version. We can notice that the penalty cost affects the performances as well.

In this case, a higher penalty cost leads to a weaker pruning.

We also assess the average number of review moments of the optimal policy.

The results show that these reduce when the ordering and the review increase.

Additionally, a higher penalty cost leads to more frequent reviews; this reduces

the probability of having an excess of demand and mitigate the uncertainty

of the inventory level. We observe that the decreasing pattern requires fewer

review periods than the others, due to its decreasing final tail that reduces the

number of orders needed.

On average, the best solution proposed herein outperforms the baseline by 40

and 820 times, respectively on 10 and 20-periods instances.

5.4 Conclusion

In this chapter, we present the first algorithm to compute optimal (R, s, S) policy

parameters. This policy has a high practical value, but the computation of

optimal or near-optimal parameters has been considered extremely difficult.

The technique described herein is a hybridisation of branch-and-bound and

stochastic dynamic programming, enhanced by ad-hoc bounds computed with

dynamic programming. We improve the method using a randomised depth-first

visit of the search tree.

We conduct an extensive numerical study. We first investigate the scalability

of the technique at increasing time horizon, analysing both computational time

and the efficacy of the pruning technique. We then test the performances of the

method for different cost parameters. Our technique performs better for low

penalty cost and high review cost. On 20 periods instances, our approach beats

the baseline by three orders of magnitude.

This technique opens up multiple research directions on the determination of

(R, s, S) policy parameters. It can lead to new optimal solutions for the same

problem, and it can be improved with tighter bounds. It is also useful for

computing optimality gaps of new heuristics. The next chapter explores some

of these possible directions and improves the pruning performances by using

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

93 Andrea Visentin



5. BRANCH-AND-BOUND SOLUTION FOR

(R, s, S) 5.4 Conclusion

Table 5.2: Computational times (in minutes), pruning percentage and number
of reviews for 10-periods instances

Computational time Pruning %

Base BnB BnB-Rand BnB BnB-rand Nr. reviews

K values 80 14.62 0.55 0.36 82.15 88.7 3.0

160 14.83 0.56 0.36 81.79 88.9 2.56

320 14.97 0.61 0.39 80.31 87.94 2.06

W values 80 14.83 0.68 0.51 78.36 84.45 3.0

160 14.79 0.56 0.35 81.94 89.13 2.56

320 14.8 0.48 0.25 83.96 91.97 2.06

b values 4 14.89 0.57 0.36 81.48 88.97 2.39

8 14.81 0.57 0.37 81.69 88.71 2.56

16 14.71 0.58 0.39 81.09 87.85 2.67

Pattern STA 10.76 0.37 0.25 82.87 89.46 2.63

INC 17.3 0.69 0.47 81.27 87.79 2.7

DEC 17.39 0.66 0.41 81.5 89.07 2.33

LCY1 15.03 0.65 0.43 78.61 86.45 2.59

LCY2 16.56 0.71 0.49 78.99 86.07 2.48

RAND 11.79 0.35 0.19 85.27 92.24 2.48

Average 14.81 0.57 0.37 81.42 88.51 2.54

a heuristic to guide the tree search. As future work, we plan to investigate

different heuristics for the search.
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Table 5.3: Computational times (in minutes), pruning percentage and number
of reviews for 20-periods instances

Computational time Pruning %

Base BnB BnB-Rand BnB BnB-rand Nr. reviews

K values 80 65366.67 105.12 76.69 98.56 98.96 6.04

160 65470.02 109.35 80.25 98.53 98.93 5.17

320 66070.17 115.98 84.1 98.47 98.89 4.13

W values 80 66737.03 181.66 142.66 97.61 98.12 6.04

160 64772.93 96.12 66.74 98.68 99.09 5.17

320 65396.9 52.67 31.64 99.27 99.57 4.13

b values 4 65851.88 96.59 67.47 98.7 99.1 4.78

8 65847.45 108.37 80.13 98.56 98.94 5.2

16 65207.52 125.49 93.45 98.3 98.74 5.35

Pattern STA 43447.11 73.24 56.66 98.51 98.85 5.3

INC 72449.66 110.73 86.29 98.69 98.98 5.41

DEC 72706.98 141.49 95.02 98.29 98.86 4.7

LCY1 62607.87 139.2 101.02 98.05 98.59 5.19

LCY2 69243.25 141.35 100.81 98.22 98.74 5.04

RAND 73358.85 54.88 42.29 99.36 99.51 5.04

Average 65635.62 110.15 80.35 98.52 98.92 5.11
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Chapter 6

Stochastic Dynamic Programming
Based Heuristics for the (R, s, S)
policy parameters computation

In this chapter, we introduce two new algorithms to compute the (R, s, S)
policy parameters for the non-stationary stochastic lot sizing problem with

backlogging of the excessive demand, fixed order and review cost, linear

holding and penalty cost. The SDP formulations of inventory problems are

particularly important. They allow a better understanding of the problem

structure, and they do not require any external software for their deployment.

Scarf’s SDP model for computing the (s, S) policy is the most used and cited

stochastic lot sizing technique. It is the first solution to efficiently compute the

optimal parameters for the (s, S) policy. We present the first formulation of the

(R, s, S) problem as functional equation of an SDP model. This formulation is a

hybridisation of Scarf’s (s, S) SDP and the (R, S) SDP presented in Chapter 4. A

simple implementation of the model requires a prohibitive computational effort

to compute the parameters, worse than the baseline introduced in Section 5.1.

However, we can speed up the computations by using K-convexity property and

memoisation techniques. The resulting algorithm is considerably faster for big

instances. However, this algorithm is sub-optimal. In a few instance types, there

is a low probability of computing a near-optimal policy. In the experimental

section, we had to create ad-hoc testbed to have a non-optimal policy.

The second contribution, presented in Section 6.2, is the introduction of a

simple heuristic for the same problem. This heuristic deploys sequentially an
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(R, S) and an (s, S) algorithms to compute the (R, s, S) policy parameters.

Depending on the technique used, this approach can be considerably faster

than the other techniques, keeping a high quality of the computed policies. This

approach can be used as bound for the BnB solution, leading to an improvement

of the computational time.

In Section 6.3, we conduct an extensive computational analysis of these

techniques. We assess the time required to compute the parameters and the

optimality gap of these parameters. In Section 6.3.3, we analyse the impact of

the heuristics on the pruning percentage of the BnB algorithm.

Finally, Section 6.4 concludes the chapter.

6.1 Stochastic Dynamic Program for the (R, s, S)
policy

This section introduces the SDP formulation for the (R, s, S) policy. The (R, s, S)
policy is a generalization of the (s, S) and the (R, S) one. It is possible to

merge ideas from the SDP models for (s, S) and (R, S) presented in Chapter 4

to provide a pure SDP formulation to the problem of computing (R, s, S) policy

parameters. The model herein follows the same structure used in the previous

chapters.

6.1.1 Model

The SDP formulation, consistent with the ones of Chapter 4, is:

1. Stage. A stage represents a time period t = 1, . . . , T for a T-period

stochastic lot-sizing problem.

2. State. We define Nt as the state of the system at the beginning of period

t before replenishment. State Nt = It−1 includes the opening inventory

level of period t.

3. Action. An action is represented by the pair (Qt, Rt). They represents the

scheduling of an order with quantity Qt at the beginning of period t that

aims to cover the demand of the next Rt periods.
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4. Immediate cost. Let ft(It−1, Qt, Rt) be the expected immediate cost

compromising ordering, holding and penalty cost for periods t, . . . , t+j−1,

given the state Nt = It−1 and action (Qt, Rt).

ft(It−1, Qt, Rt) = K1{Qt > 0}+W +
Rt∑
i=1

E[hmax(It−1 − dt,t+i +Qt, 0)

+bmax(−It−1 −Qt + dt,t+i, 0)]
(6.1)

where E denotes the expected value with respect to the random variable

dt,t+i and 1 is the indicator function.

5. Objective function. Let Ct(It−1) denote the expected total cost of an

optimal policy over periods t, . . . , T associated with state Nt = It−1. Then,

Ct(It−1) can be written as:

Ct(It−1) = min
Rt

(min
Qt

(ft(It−1, Qt, Rt) +E[Ct+Rt(It−1 +Qt− dt,t+Rt)])) (6.2)

The boundary condition is:

CT+1(IT ) = 0 (6.3)

As in the previous SDP formulations, C1(I0) contains the expected cost for the

optimal parameters. For a list of all the symbols used we refer to 8.1.

The formulation shares the stages with the previous ones. The state space

is the same as the (s, S) SDP; a state is represented by the period and

the closing inventory level. The action involves the order quantity and the

replenishment(review) cycle length as respectively the (s, S) and the (R, S)
formulation. The functional equation resembles the (R, S) one, where the state

space is explored testing the possible length of the replenishment cycle and

order-up-to-level.

This formulation is more complex compared to the ones of Chapter 4, making

the computational effort required to solve it prohibitive. This is mainly due

to the immediate cost structure; its computation involves three variables in

each period: current inventory, order size and length of the replenishment

cycle. The deployment of search reduction and memoisation techniques has a

crucial impact on the applicability of this model. These two enhancements are

inherited from the (R, S) SDP. Section 6.1.3 applies the K-convexity property
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and Section 6.1.4 adapt the memoisation presented in Section 4.2.4.

This SDP does not compute the optimal policy for all the instances. The

optimal order-levels and order-up-to-levels can not be computed considering

the replenishment cycles independently. However, as the experimental part

of this chapter shows, the algorithm computes near-optimal policies only for

sporadic cases.

6.1.2 Pseudocode

Algorithm 7 shows the procedure to compute the SDP backwards. Lines 1-2

contains the boundary condition. Line 4 search through all the possible starting

inventory levels, line 6 through all the possible replenishment cycles and line 7

through all the possible order quantities.

Algorithm 7 RsS-SDP()
1: for i from min_inventory to max_inventory do
2: CT+1(i) = 0
3: for t from T down to 1 do
4: for i from min_inventory to max_inventory do
5: Ct(i)←∞
6: for r from 1 to T − t+ 1 do
7: for q from 0 to max_order do
8: expected_cost← ft(i, q, r) + E[Ct+r(i+ q − dt,t+r)]
9: if expected_cost < Ct(i) then

10: Ct(i)← expected_cost

For clarity and for the sake of the future enhancements, we separate the

computation of the immediate cost. Let ζt,t+j be a value of the random variable

dt,t+j and P (ζt,t+j) be the probability of assuming that value. Algorithm 8

computes Equation 4.10.

6.1.3 K-convexity

Similarly to the computation of the (s, S) policy, we can use the K-convexity

property described in Section 4.1.4. Considering the functional equation

(Equation 6.2), for a fixed Rt the problem is reduced to an (s, S) one with

the next Rt − 1 periods in which an order can not be placed.
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Algorithm 8 ft(i, q, r)
1: cost← W
2: if q > 0 then
3: cost← cost+K

4: for j from 1 to r do
5: for each ζt,t+j value of dt,t+j do
6: close_inv ← i+ q − ζt,t+j
7: if close_inv ≥ 0 then
8: cost← cost+ h close_inv P (ζt,t+j)
9: else

10: cost← cost− b close_inv P (ζt,t+j)
return cost

The application is equivalent, it strongly reduces the computational time since

it removes the search for the optimal Qt for a fixed Rt. Algorithm 9 shows the

pseudocode of the enhanced SDP. It is equivalent to Algorithm 2 nested inside

the search for the optimal replenishment cycle.

Algorithm 9 RsS-SDP-KConv()
1: for i from min_inventory to max_inventory do
2: CT+1(i) = 0
3: for t from T down to 1 do
4: best_cost←∞
5: for j from 1 to r do
6: best_cost_cycle←∞
7: for i from max_inventory down to min_inventory do
8: Ccycle

t (i)← ft(i, 0, r) + E[Ct+1(It−1 +Qt − dt)]
9: if Ccycle

t (i) < best_cost_cycle then
10: best_cost_cycle← Ct(i)
11: Scyclet ← i

12: if Ccycle
t (i) > best_cost_cycle+K then

13: scyclet ← i
14: break for
15: for i from min_inventory to scyclet do
16: Ccycle

t (i)← Ccycle
t (st)

17: if best_cost_cycle < best_cost then
18: best_cost← best_cost_cycle
19: Ct ← Ccycle

t
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6.1.4 Immediate Cost Memoisation

To speed up the computation of the immediate cost, we can deploy a technique

similar to the one presented in Section 4.2.4. Let lt(It, Rt) be the function

defined in Equation 4.14 that computes the holding and penalty expected cost

of starting at the end of period t with closing inventory It and with the next

review moment in Rt periods. Equation 6.1 can be rewritten as:

ft(It−1, Qt, Rt) = K1{Qt > 0}+W + lt(It−1 − dt,t+i +Qt, Rt) (6.4)

The lt(It, Rt) function can be computed in a recursive way following the same

SDP described in Section 4.2.4. The pseudocode of Algorithm 5 can be applied

to the (R, s, S) problem as well.

6.1.5 Time complexity

The number of states is 2DT 2, the same of the (s, S) SDP in Section 4.1.3. For

each state, we need to evaluate all the possible replenishment cycle lengths

T (line 6 of Algorithm 7) and order quantity DT (line 7). The immediate

cost is computed using Algorithm 8 and has complexity of O(DT ), while the

expected cost of future periods requires O(D). The upper bound of the worse

case complexity is:

O(D3T 5) (6.5)

The complexity is considerably higher compared to the SDP solutions of Chapter

4. In the experimental section, we show that without using computational

enhancements, the algorithm can solve only minimal instances.

With the K-convexity property, we avoid the search for the optimal order

quantity. This reduces the complexity in Algorithm 9 to:

O(D2T 4) (6.6)

we are not able to quantify the worse case impact of the memoisation since it

strongly depends on the instance type.

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

101 Andrea Visentin



6. STOCHASTIC DYNAMIC PROGRAMMING

BASED HEURISTICS FOR THE (R, s, S)
POLICY PARAMETERS COMPUTATION

6.2 Heuristic based on the combination of
(s, S) and (R, S) algorithms

6.2 Heuristic based on the combination of (s, S)
and (R, S) algorithms

In this section, we present a new heuristic that uses an (R, S) algorithm

to compute the replenishment plan and then compute the optimal (s, S)
parameters for that fixed plan. The algorithm presented in Chapter 5 has

some similarities with this approach since it uses an SDP to compute the order-

levels and order-up-to-levels while using BnB to find the optimal replenishment

schedule. The approach used herein can be seen as a heuristic to find a near-

optimal leaf of the search tree.

The approach of fixing replenishment cycles and then computing the rest

of the policy parameters is widely used in inventory control heuristics. For

example, it has been using in algorithms for computing (s, S) policy parameters

by [Ask81,BM99] and for the (R, S) policy by [WW58].

All the (R, S) solutions can compute a replenishment plan; however, not all the

(s, S) algorithms can compute the s and S parameters for a fixed replenishment

schedule. The dynamic solution algorithm needs to be able to have some

periods in which the orders are forbidden. For this task, the SDP presented

in Section 4.1 is an ideal candidate. It quickly computes the optimal policy,

and it offers the possibility of considering a fixed replenishment plan, e.g. the

baseline for (R, s, S).

Regarding the replenishment plan, we decided to deploy two alternatives:

• The SPD algorithm presented in Section 4.2. This solution offers an

optimal policy with a low degree of uncertainty on the optimality gap.

• The shortest path solution presented in [RTHP11]. While this algorithm

is designed for the service level problem, the computational effort needed

to compute it is negligible compared to the SDP one. In the next section,

we briefly describe this algorithm.

A heuristic allows computing a near-optimal policy. We can use the expected

cost of this policy as upper bound for the pruning condition of the BnB

technique presented in the previous chapter. A tighter bound allows a higher

pruning percentage and a lower computational time.
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6.2.1 Dynamic Programming for static-dynamic inventory

In this section, we describe the Rossi et al. [RTHP11] DP algorithm used to

compute the static-dynamic uncertainty policy parameters under service level

constraint. The literature review in Section 3.4.4 present their work. The goal

of this section is to give an insight into the algorithm to understand better and

justify the finding of the experimental section. While this algorithm focuses

on the α service level (see Section 2.2), it computes a good policy almost

instantly, even for big instances. It provides a faster solution for the (R, s, S)
policy computation.

They extend the state space relaxation concept presented by [Tar96]. Their

contribution is a filtering procedure and an augmentation procedure for the

state space graph. This approach achieves a significant computational efficiency,

solving any relevant size instance in trivial time. This approach has some

similarities with the (R, S) SDP. In this section, we briefly explain the technique.

We suggest the original work for a more detailed description.

The approach is designed for a α service level constraint, so that the non-

stockout probability has to be at least α. Solving the problem under penalty

cost is more complicated since the cost function for each cycle is non-convex.

This is a different approach compared to the penalty cost used in this thesis;

however, it is possible to connect these two models through an approximation.

The so-called critical ratio can be used to compute an approximate service level,

starting from holding and penalty cost.

αapprox = b

b+ h
(6.7)

The two models are not equivalent; an optimal penalty cost model is not able

to compute an optimal service level policy using the critical ratio. However,

the solution deployed with the critical ratio can produce a reasonable policy in

trivial time. Moreover, we use only the replenishment plan and not the order-

up-to-levels.

They define as cycle buffer stock b(i, j) the minimum expected buffer stock level

required to satisfy the required non-stockout probability for a replenishment

cycle starting in period i and finishing in period j + 1, j ≥ i. They define b(i, j)
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as:

b(i, j) = G−1
dij

(α)− diji = 1, . . . , T for j = i, . . . , T (6.8)

where Gdij
is the cumulative probability distribution function of dij. It is

assumed that G is strictly increasing, like in our case, so that G−1 is uniquely

defined. Considering the cycle buffering cost is possible to compute the cycle

cost c(i, j). It can be expressed as:

c(i, j) = K + h(j − i+ 1)b(i, j) + h
j∑
t=i

(t− i)d̃ (6.9)

the cycle cost is divided in three components: the fixed ordering cost, the

holding cost for the buffer stock charged all the periods and the holding cost

for the items used to satisfy the expected demand.

The DP algorithm shares the same stages and states structures of the one

presented in 4.2.1. They assume that the cycles are independent. Each state Ct
contains the expected cost of the optimal policy that satisfies the service level

constraint starting from period t. The functional equation is:

Ct = min
j≥t

(c(t, j) + Cj)) (6.10)

The boundary condition is:

CT+1 = 0 (6.11)

It can be seen as a graph where the states are the nodes, and the length of the

edges is represented by the cycle buffering cost.

They introduce a filtering technique to remove sub-optimal edges and a state

augmentation procedure to provide feasible scheduling when a negative order

is planned.

6.3 Experimental Results

In this section, we conduct an extensive computational study of the heuristics

presented in this chapter. In Section 6.3.1, we assess the computational effort

they require to compute a policy and the quality of the policy itself under an

increasing time horizon. An analysis of the heuristics behaviour under different
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demand patterns and cost parameters is presented in Section 6.3.2. Finally, we

evaluate the impact of the heuristics on the BnB algorithm in Section 6.3.3.

For the experiments, we use the solvers presented in the previous chapter as a

comparison and to compute the optimality gap. The new solvers described in

this chapter are:

• RsS-SDP, the basic implementation of the SDP model presented in

Algorithm 7. We include this to appreciate the impact of the optimisation

techniques deployed.

• RsS-SDP-Opt, the SDP implementation deployed using the K-convexity

property (Algorithm 9) and the immediate cost memoisation.

• RsS-Comb-SDP, the heuristic that combines (R, S) and (s, S) algorithms

to compute an (R, s, S) policy. The SDP algorithm presented in Algorithm

3 is used for computing the replenishment cycle.

• RsS-Comb-SP, similar to the previous approach, the difference is that the

replenishment cycle is computed using Rossi et al. [RTHP11] shortest path

approach.

All experiments are executed on an Intel(R) Xeon E5640 Processor (2.66GHz)

with 12 Gb RAM.

6.3.1 Scalability and quality of the solution

The testbed used in this section is equivalent to the one used in Section 5.3.1.

A fixed holding cost per unit h = 1. The other cost factors are sampled from

uniform random variables: fixed ordering cost K ∈ [80, 320], fixed review cost

W ∈ [80, 320] and linear penalty cost b ∈ [4, 16]. The demand is modelled as

a series of Poisson random variables. A uniform random variable draws the

average demands per period with range 30 to 70. We generate 100 different

instances. We replicate the experiments for increasing values of the number of

periods.

Figure 6.1 and Figure 6.2 show the average computational time over the 100

instances in comparison with the fastest technique from the previous chapter.

The simple implementation of the SDP is barely able to solve tiny instances

before the time limit, making it useless for every practical use. Its performances

are considerably worse than the baseline presented in Section 5.1. The
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Figure 6.1: Computational time of the (R, s, S) heuristics over the number of
periods, time limit 1 hour

reduction of computational effort provided by K-convexity and memoisation is

massive. The randomised BnB slightly outperforms the optimised SDP for small

instances up to 7 periods, then the gap between the two strongly increases;

making it able to solve instances more than twice as big in the same amount

of time. The K-convexity performances improvement is more significant than

the memoisation one. The K-convexity reduces the complexity considerably.

Moreover, it generally avoids the computation of all the DP states associated

with a negative inventory (line 13 of Algorithm 9 since the occurrence of a

negative optimal st is really rare. The memoisation offers a great speed up in

the computational times, that is more significant in bigger instances. For bigger

instances, the physical memory needed grows to require the usage of memory

swap and a slow down in performances.

The two heuristics based on the sequential deployment of different algorithms

are considerably faster than the other approaches. From the computational

effort point of view, RsS-Comb-SP requires the same amount as Scarf’s SDP

since the time required to compute the replenishment plan with the shortest

path is negligible in comparison; while RsS-Comb-SDP is the sum of the two

SDP techniques from Chapter 4.

The analysis of the optimality gap computed using Equation 4.29 is displayed in
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Figure 6.2: Computational time of the (R, s, S) heuristics over the number of
periods, time limit 1 hour

Figure 6.3. We can compute the optimality gap only for the instances solved by

the BnB technique as well. RsS-SDP and RsS-Comb-SDP calculate the optimal

policy for all the instances of this experiment, with a null optimality gap. The

solution based on the shortest path displays a rather stable optimality gap.

In the next section, we design instances with a higher level of uncertainty to

understand where these heuristics fail to compute the optimal policy.

6.3.2 Instance type analysis

These experiments aim to analyse the performances of the heuristics under

different instance parameters. In the first part, we use a testbed equivalent

to the one presented in Section 5.3.2. Since one heuristic solved to optimality

all the instances with Poisson distributed demand, we evaluate a similar setting

but with normally distributed demand in the second part.

We consider six different demand patterns: stationary (STA), positive trend

(INC), negative trend (DEC), two life-cycle trends (LCY1, LCY2) and an erratic

one (RAND). For the cost parameters, we use all the possible combinations

of ordering cost values K ∈ {80, 160, 320}, review costs W ∈ {80, 160, 320},
holding cost fixed h = 1, penalty costs b ∈ {4, 8, 16}. Finally, the length
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Figure 6.3: Optimality gap over the number of periods.

of the planning horizon T ∈ {10, 20}. We test all the combinations of these

parameters, for a total of 324 instances. We assess the computational time and

the simulated optimality gap for all the techniques, and we assess the effect on

the BnB pruning percentage provided by the faster heuristics.

Table 6.1 and Table 6.2 shows the results for the 10 and 20-period instances.

For this instance setting, the SDP and Comb-SDP solutions always compute the

optimal policy. The heuristic-based on [RTHP11] display a higher optimality

gap; the differences are due to different review plans.

Using the heuristics’ results as upper bound for the BnB algorithm further

improves the pruning percentage. On average, the best bound can reduce

the total number of nodes to compute almost by half, reaching the 99.86% on

instances with a high review cost. In the 10-period instances, the two best

heuristics have a small optimality gap. They minimally outperform the optimal

solution in a single instance, where they compute a different policy but with the

same expected cost. In the simulation, the heuristic policy has a slightly lower

cost due to the randomness.

We created a different testbed to appreciate the differences between heuristics.

We use normally distributed demand. In the normally distributed demand, we

can increase the value of the standard deviation (σ) to have a higher uncertainty
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Table 6.1: Optimality gap and pruning percentage for the techniques for 10-
period instances

Optimality gap % BnB Pruning %

SDP Comb-SDP Comb-SP BnB-Rand Comb-SDP Comb-SP

K values 80 0.0 0.0 1.96 88.7 92.24 91.51

160 0.0 0.0 1.75 88.9 92.78 92.06

320 0.0 0.0 2.7 87.94 92.43 91.06

W values 80 0.0 0.0 1.96 84.45 88.28 86.94

160 0.0 0.0 1.76 89.13 93.27 92.48

320 0.0 0.0 2.7 91.97 95.9 95.2

b values 4 0.0 0.0 3.41 88.97 93.25 92.06

8 0.0 0.0 1.64 88.71 92.65 91.89

16 0.0 0.0 1.61 87.85 91.56 90.68

Pattern STA 0.01 0.01 1.14 89.46 92.17 91.58

INC 0.0 0.0 3.37 87.79 89.73 88.67

DEC 0.0 0.0 0.78 89.07 94.06 93.7

LCY1 0.0 0.0 2.19 86.45 92.12 90.72

LCY2 0.0 0.0 3.92 86.07 92.48 90.57

RAND 0.0 0.0 1.56 92.24 94.35 94.01

Average 0.0 0.0 2.19 88.51 92.49 91.54

on the expected demand. We examine instances with σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
the maximum value used in the lot sizing literature that Chapter 3 surveys is

0.3. In this experiment, we fix the penalty cost to 10 and we extend the possible

values of review and ordering costs; K,W ∈ {20, 40, 80, 160, 320}. We also

include the (R, S) SDP algorithm to compare the heuristics with the optimal

static-dynamic policy; moreover, it shares the same replenishment plan with

RsS-Comb-SDP.

Table 6.3 shows the results for the 10-period instances. The patterns are clear.

Optimality gap increases with high demand uncertainty, high fixed ordering

cost and low review cost. The reason behind these results is that the heuristics

have some similarities with the (R, S) policy computation. They perform poorly

where a (R, S) policy performs worse than a (R, s, S) one. Intuitively, the

(R, s, S) is suggested in situations with high uncertainty, low review cost and

high ordering cost. Reviewing the inventory more frequently allows it to damp
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Table 6.2: Optimality gap and pruning percentage for the techniques for 20-
period instances

Optimality gap % BnB Pruning %

SDP Comb-SDP Comb-SP BnB-Rand Comb-SDP Comb-SP

K values 80 0.0 0.0 1.27 98.96 99.42 99.34

160 0.0 0.0 1.38 98.93 99.43 99.33

320 0.0 0.0 1.45 98.89 99.46 99.32

W values 80 0.0 0.0 1.27 98.12 98.86 98.67

160 0.0 0.0 1.38 99.09 99.58 99.5

320 0.0 0.0 1.45 99.57 99.86 99.83

b values 4 0.0 0.0 2.05 99.1 99.57 99.45

8 0.0 0.0 1.36 98.94 99.46 99.35

16 0.0 0.0 0.77 98.74 99.28 99.21

Pattern STA 0.0 0.0 0.52 98.85 99.27 99.23

INC 0.0 0.0 2.23 98.98 99.33 99.18

DEC 0.0 0.0 1.0 98.86 99.49 99.43

LCY1 0.0 0.0 1.48 98.59 99.3 99.13

LCY2 0.0 0.0 2.01 98.74 99.44 99.3

RAND 0.0 0.0 1.02 99.51 99.77 99.74

Average 0.0 0.0 1.38 98.92 99.43 99.33

uncertainty. This justifies the bad performance for the heuristics in the DEC

pattern, where the higher demand occurs in the first periods, a higher average

leads to stronger outliers. On the other side, when the review cost is particularly

high, an order is placed almost in all the review moments, in this situations the

(R, S) policy is almost optimal. The RsS-SDP review plan computation has

some similarities with the (R, S) SDP formulation, and the other two heuristics

directly use a static-dynamic algorithm.

Non optimality of the (R, s, S) SDP

This empirical analysis allows us to understand better why the RsS-SDP is

not optimal in some particular situations. When computing the solution, it

considers only the expected demand for future periods. The BnB approach

behaves similarly; however, during the search process, it tests all the possible
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Table 6.3: Optimality gap and pruning percentage for the techniques for 10-
period instances

Optimality gap %

SDP Comb-SDP Comb-SP RS-SDP

K values 20 0.0 0.02 0.46 0.06

40 0.0 0.05 0.48 0.22

80 0.02 0.11 0.62 0.28

160 0.07 0.18 0.76 0.4

320 0.17 0.43 1.16 0.61

W values 20 0.36 0.72 1.11 1.23

40 0.08 0.3 0.71 0.63

80 0.01 0.13 0.65 0.28

160 0.0 0.04 0.65 0.08

320 0.0 0.0 0.74 0.01

σ values 0.1 0.0 0.0 0.14 0.0

0.2 0.01 0.02 0.32 0.02

0.3 0.05 0.14 0.51 0.23

0.4 0.12 0.33 0.93 0.62

0.5 0.19 0.52 1.08 1.02

Pattern STA 0.07 0.11 0.64 0.16

INC 0.0 0.01 1.3 0.03

DEC 0.19 0.38 0.88 0.61

LCY1 0.05 0.18 0.59 0.36

LCY2 0.04 0.3 0.72 0.49

RAND 0.07 0.18 0.35 0.54

Average 0.07 0.19 0.75 0.36

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

111 Andrea Visentin



6. STOCHASTIC DYNAMIC PROGRAMMING

BASED HEURISTICS FOR THE (R, s, S)
POLICY PARAMETERS COMPUTATION 6.3 Experimental Results

Table 6.4: (R, s, S) policy parameters for the K = 320, W = 20, σ = 0.5, DEC
pattern instance.

Period 1 2 3 4 5 6 7 8 9 10 Policy cost

γt 1 0 0 1 0 1 0 1 0 0

RsS-SDP St 335 - - 235 - 142 - 59 - - 1903

st 225 - - 96 - 66 - 26 - -

γt 1 0 1 1 1 1 0 1 0 0

RsS-BnB St 303 - 245 235 189 142 - 59 - - 1871

st 159 - 64 51 44 66 - 26 - -

replenishment combinations of the previous periods. Not considering the

previous demands means ignoring the possibility of having such a low demand

that at a period t the opening inventory level It is higher than St, an improbable

event. This difference makes the heuristics performances worsening for high

values of uncertainty and the decreasing pattern (DEC). In these instances, the

high demand with high uncertainty at the beginning of the time horizon makes

the occurrences of unexpected high inventory levels at a replenishment moment

more likely. In this situation, the BnB solution adds more review moments

(especially when the cost associated W is low) to assess the inventory level and

react to the uncertainty.

For example, considering the instance of Table 6.3 with K = 320, W = 20,

σ = 0.5 and decreasing demand pattern. The policies computed by the two

approaches are presented in Table 6.4. The BnB approach considers the higher

uncertainty at the beginning of the time horizon, and review the inventory level

at period 3 and period 5 as well. While these reviews add an extra cost and

in an almost deterministic system, they allow a better reaction to unexpected

demand. At the end of the time horizon, the uncertainty on the inventory level

is lower, and the two policies are identical from period 6 on.

The BnB policy has an expected cost of 32 (1871 against 1903) inferior

compared to the SDP one.

6.3.3 Using the heuristics as bound

Many BnB approaches use a heuristic to compute bounds, e.g. MIP solvers use

linear programming relaxation to compute bounds. In the BnB algorithm for

(R, s, S), we can use the expected cost of the policy computed by a heuristic

as the upper bound of Equation 5.12 (the pruning condition). A tighter bound

leads to a higher pruning percentage. In this experiment, we asses the impact
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Figure 6.4: Pruning percentage over the number of periods for the BnB
algorithms.

of the heuristics bounds on the performances of the RsS-BnB-Rand.

Figure 6.4 adds the new techniques to the results of Figure 5.6. The bounds

computed with the heuristics improve the pruning percentage considerably.

Since the combination of the two SDP generally provides a better policy,

the pruning percentage is slightly higher compared to the shortest path one.

However, the difference between the two is minimal. Compared to the

randomised version, the new bounds reduce the number of nodes that have

to be computed by more or less 1
3 .

Figures 6.5 shows the computational effort performances. For small instances,

the effort to compute the bounds is higher than the improvement provided

by a higher pruning percentage. This gap inverts for bigger instances. The

shortest path heuristic bound is more efficient than the SDP one for most of

the instances, since its computation takes considerably less time. For bigger

instances, the higher quality of the policy computed through SDP gives that

approach the upper hand.
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Figure 6.5: Computational time over the number of periods.
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Figure 6.6: Computational time over the number of periods. Time limit 1 hour.
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6.4 Conclusions

In this chapter, we present a set of heuristics for the (R, s, S) policy parameters

computation problem. The computation of such parameters has been consid-

ered extremely resource demanding.

The first solution is a pure SDP formulation for the (R, s, S) policy. It shares the

same state space of the (s, S) SDP and can be enhanced by the implementation

of the K-convexity property. The common features with the (R, S) SDP are the

way to compute the replenishment plan and the memoisation technique.

The second approach deploys an (R, S) and an (s, S) solver sequentially. The

first one fixes the replenishment periods; the second computes the order-levels

and order-up-to levels.

We conduct an extensive numerical study. We first investigate the scalability and

the quality of the computed policies for increasing planning horizons. We then

assess the performances under different types of instances. The new heuristics

perform better when there is less uncertainty on the demand, and for high

review, low fixed ordering cost instances. These performances are similar to the

(R, S) policy ones. Finally, we focus on the analysis of the impact on the pruning

percentage of using the faster heuristics as bound. The heuristics further reduce

the state space computed by the BnB algorithm.

The algorithms display very low optimality gaps. The pure SDP formulation

computes the optimal policy in all the situations in which the uncertainty over

the demand is low and in most of the other instances.
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Chapter 7

Model Dynamic Programming in
Constraint Programming

In this chapter, we introduce an innovative technique used to modelling

dynamic programming in constraint programming.

As seen in Chapters 5 and 6, the computation of (R, s, S) policy parameters can

be divided in two parts: fixing the review plan, and solving the remaining (s, S)
problem. In all the algorithms presented herein, an edited version of Scarf’s

SDP is used to compute the order levels and order-up-to-level. The difference

between the approaches is how to compute the replenishment plan:

• The baseline presented in Section 5.1 evaluates all replenishment plans.

A "brute force" application of Scarf’s SDP.

• In Section 5.2, we introduce a binary tree search that aims to reuse the

SDP state space. We then applied a BnB approach to prune the tree.

• In Section 6.2, we compute the replenishment plan using an (R, S)
algorithm.

The only method that computes all the parameters at the same time is the full

SDP formulation presented in Section 6.1.

In this chapter, we aim to use CP to compute the optimal review plan. Section

3.3 gives a brief introduction to this paradigm. CP has been previously used in

the computation of policy parameters, e.g. [RTHP08,TS08]. CP solvers use BnB

techniques to explore the search space. They use optimised techniques to infer

tight bounds to prune the search tree effectively. The constraint propagation
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might prove more efficient in pruning the search tree than the technique of

Chapter 5. Moreover, a CP model of the parameters’ computation allows

to deploy further constraints easily. Each solver provides a wide constraint

catalogue; these constraint can involve different problem variables and even

the states of the DP.

The main issue is to model the calculation of the st and St parameters. There is

no standard procedure to encode a DP model into CP. If part of a problem

requires a DP-based constraint that is not provided by the solver used, the

modeller has to either to write the global constraint or to change solver. Also,

a global constraint does not allow the interaction with the individual states of

the DP problem. These limitations restrict the usefulness of DP and SDP in CP.

We propose the first generic technique used to model some DP and SDP

algorithms in CP. This encoding can model the DP problems that can be

represented as a shortest path problem on a directed acyclic graph. This

class of problem is particularly wide, e.g. knapsack problem, longest common

subsequence, pattern matching.

We name this technique dynamic programming encoding (DPE). When the

underling solver propagator guarantees arc consistency, a DP model can be

solved by pure constraint propagation with the DPE. DPEs can form part of

a larger CP model, and provide a general way for CP users to implement DP-

based global constraints.

In this chapter, we provide a formalisation of the DPE that allows a one-to-one

correspondence with a generic DP approach. Section 3.1.1 contains examples

of DP solutions; we use these examples to show how the DPE can be deployed

on different problems. We encode one of the most famous DP solutions as

well, the knapsack problem. This problem is widely studied and used in many

real-world situations. We present an algorithm based on the DPE to compute

optimal parameters for the (s, S) and (R, s, S) policy. Section 7.2 presents a

widely known variable redefinition technique for modelling DP in MIP [Mar87]

called flow formulation. We use it as a competitor for our encoding. In

the experimental section, we show how to use the encoding in MiniZinc, a

successful application in the knapsack problem with a state reduction technique

and we analyse its application on the (s, S) policy computation.

The chapter differs from the previous ones; we added introductory material

to define DPE. We do not tackle only lot sizing problems for two reasons:
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the DPE can be applied to a wider variety of problems and examples help to

understand the encoding fully, and the computation of inventory policies has

some particularities that make it a negative case for DPE. We show how the

encoding can be valuable for other problems, such as the Knapsack one, and

we investigate why it is computationally too demanding in the inventory lot

sizing problem.

7.1 DPE Method

In this section, we define and formalise the DPE. The main idea is to model

each DP state as a CP variable and use constraints to describe the way the

functional equation connects them. In this way, we can implement a DP as

a constraint satisfaction problem (CSP), which we call a DPE. This model is

solved by constraint propagation, without backtracking. It can be part of a

larger constraint model, allowing DP to be seamlessly integrated within CP.

This technique can be used to model SDP as well.

To better describe the DPE, we decided to use the shortest path problem directly.

One of the most famous DP-like algorithms is used to solve this problem:

Dijkstra’s algorithm. Figure 7.1 helps the visualisation of the problem.

Figure 7.1: Graph relative to a generic shortest path problem.

We follow the same structure presented in Section 3.1 and used in the previous
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chapters to define DPs algorithms. Most DPs can be described by their five most

important elements: stages, states, actions, immediate cost and objective function.

These elements are modelled as:

1. Stage. The fundamental feature of the DP approach is the structuring

of optimisation problems in stages, which are solved sequentially. The

solution of each stage is used in the computation of the next stage

problem. In Figure 7.1, the stages are represented in grey. In the DPE

the stages are simply represented as groups of states. The solver discovers

the order of the stages by suspending the constraints involving variables

non-fixed values.

2. State. Each stage of the problem is associated with one or more states.

These contain enough information to make future decisions. In the DPE,

the states are represented by CP variables. They contain the optimal value

for the related subproblem. In the graphical representation, they are the

nodes of the graph. In Dijkstra’s algorithm, these variables contain the

length of the shortest path from that node to the sink. We can identify

two particular type of stages: the initial state that contains the optimal

solution for the whole problem and no other state uses its value. And the

boundary condition that is the cost of the smallest problems, their solution

does not depend on any other state. In Figure 7.1, they are represented

by the source and the sink of the graph.

3. Action. For every state, we have a set of feasible actions that can lead

to a state of the next stages, which in the graph are represented by the

edges leaving the associated node. If the edge is part of the shortest path,

it means that the action is taken. In the DPE, the possible actions of a

state are represented by the future stages states involved in its functional

equation.

4. Immediate cost. An immediate cost is associated with each action taken

from a state. In Figure 7.1 these costs are represented by the weights of

the involved edges.

5. Objective function. The last general characteristic of the DP approach

is the recursive optimisation procedure. The goal of this procedure is to

build the overall solution by solving one stage at the time. The procedure

has numerous components that are modelled as a functional equation.

The functional equation links the optimal solution to each state to the
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subsequent’s states solution. In the DPE the equation is applied to every

state via a constraint. This constraint binds the state’s optimal value to

the solution of the next stages involved. The constraint considers the

immediate cost associated with each decision action; which is the value

that is added to or subtracted from the next stage state variables. In

the shortest path problem, the constraint applied to each (non-sink) state

assigns to the node’s CP variable the minimum of the reachable with one

edge node’s CP variables, plus the edge cost.

The correctness of the DP formulation guarantees the optimality of the solution.

Modelling DP as CP also has a software development advantage: it makes

available for DP development a variety of CP tools for specification, tracing,

debugging and visualisation.

7.2 MIP flow formulation

We compare the new encoding against the well-known flow formulation

introduced in [Mar87]. The flow formulation can encode the shortest path

problem in Figure 7.1. Binary variables represent the edges of the DAG; the

variables assume value 1 if the edge is used. Each node is represented by a

constraint that balances its flow.

The difference between the encodings is the order in which the states are

explored and resolved. In DP, the state computations are ordered by the stage

structure. The computation of a state’s value occurs when all the information

need is available. The DPE preserves this structure; for this reason, it can solve

problems without search, only with constraint propagation. In the MIP flow

formulation, it is completely replaced by a search on the binary variables. The

DPE approach is more robust than search; which in the worst case, can spend

significant time exploring a subtree.

We should also note that our DPE can, in principle, be used in MIP. However,

this requires a large number of big-M constraints causing inefficiency. CP is a

much more suitable technology for the DPE because of its greater expressive-

ness.

The flow formulation without side constraints works particularly well in MIP

solvers because they can take advantage of the total unimodularity of the
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matrix. This allows the Simplex method to find an integer solution, and it

is highly exploited by modern MIP solvers.

7.3 Examples

In this section, we present some of DPE’s possible applications. DPE is a

paradigm, not a specific algorithm. An exhaustive definition of DP that covers

all its possible applications is complex to achieve. We start by encoding the

problems described in Section 3.1.1, then we apply the approach to the well-

known knapsack problem.

7.3.1 Fibonacci numbers

Suppose that as part of a CP model, we need to compute the nth Fibonacci

number.

To find the nth Fibonacci number we need n states x1, l . . . , xn. The boundary

conditions are:

x1 = 1 (7.1)

f2 = 1 (7.2)

and functional equation:

fi = fi−1 + fi−2i = 3, . . . , n (7.3)

We create a CP model with n variables xi in a CP system. The boundary

conditions are constants. If we post the functional equation as a series of

constraint that bounds the value of each variable to the previous ones, all the fi
values are computed through constraint propagation. There is no need to search

the solution space created by the cartesian product of the variables domains.

The resulting CSP is not recursive; it simply relates a set of variables by

constraints. Each value is computed only once. This is equivalent to solving a

DP by forward recursion. DPEs are not equivalent to memoisation in CP. In the

second one, recursive solutions are stored and reused in a DP-like way. In DPE,

the state variables can interact with other problem variables via constraints.
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7.3.2 Change problem

We have to find the minimum number of coins adding up to a given total

of Y . The problem can be modelled in CP using the following mathematical

formulation:

min
∑
i

xi (7.4)

s.t.
∑
i

xici = Y (7.5)

where the xi are finite domain variables denoting the number of coins from

denomination i. This formulation is solved through search on the xi domains.

However, the problem can be solved in pseudo-polynomial time by the DP

described in Section 3.1.1.

We now use the DPE to model this DP as a CSP, leading to a backtrack-free CP

model. First, create a CP variable for each DP state. Then the seed values and

recurrence relation can be written using arithmetic constraints:

N0 = 0
Ni = min{Ni−dk

+ 1 | k = 1, . . . , D}

The result of the DP computation is the value of NY . Depending on the solver,

additional variables might be needed. For example, it might be necessary to

create a variable j to store i− d1 to access Nj then.

7.3.3 Knapsack Problem

The knapsack problem is one of the most famous problems in combinatorial

optimisation. Variations of the knapsack problem are widely used in inventory

control. We consider the most common version in which every item can

be packed at most once, also known as the 0-1 knapsack problem [PN14].

Research on this problem is particularly active [MPT00] with many applications

and different approaches.

The problem consists of a set of items I with volumes vi and profits pi. The items

can be packed in a knapsack of capacity K. The objective is to maximize the

total profit of the packed items without exceeding the capacity of the knapsack.

The binary variables xi represent the packing scheme; xi is equal to 1 if the item
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is packed, 0 otherwise. The mathematical formulation is:

max
I∑
i=1

xipi (7.6a)

s.t.
I∑
i=1

xivi ≤ K (7.6b)

x ∈ {0, 1} (7.6c)

This model can be directly implemented in CP or in MIP. To solve the binary

knapsack problem, we use the well known DP-like algorithm described in

[Mar90].

The problem can be formulated as DP as:

1. Stage. There are I stages, each one is associated to an item. The items

have a defined order. In each stage, we decide if the associated item is

packed or not.

2. State. We define Si as the state of the system at stage i. State Si = {Vi}
includes Vi the unused volume of the knapsack.

3. Action. An action is represented by the packing of the item xi.

4. Immediate cost. Let fi(xi) be the immediate cost given the state Si and

action xi.

fi(xi) = xipi (7.7)

5. Objective function. Let Ci(Vi) denote the optimal profit for packing items

i, . . . , I in a knapsack of size Vi. Then, Ct(It−1) can be written as:

Ci(Vi) = max
xi

(fi(xi) + Ci+1(Vi − xivi)) (7.8)

with the condition that if Vi−xivi < 0 then xi = 0. The boundary condition

is:

CI+1(VI+1) = 0 (7.9)

C1(K) contains the profit of the optimal packing scheme.

A rooted DAG can represent this DP; in this case, a tree with state C1(K) as

root and nodes CI+1(VI+1) as leaves. For every internal node, Ci(Vi) the leaving

arcs represent the action of packing the item i, and their weight is the profit
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obtained by packing the i-th item. A path from the root to a leaf is equivalent

to a feasible packing. The longest path of this graph is the optimal solution. If

we encode this model using a DPE, creating all the CP variables representing

the nodes of the graph, then it is solved by pure constraint propagation with no

backtracking.

We use this problem to show the potential for speeding up computational times.

Some states can be removed by the state space a priori, if they are proved to

not be part of an optimal solution. With the DPE implementation, we can use

a well-known and straightforward technique to reduce the state space without

compromising the optimality. If at state Ci(Vi) volume Vi is enough to contain

all items from i to I (all the items we might pack in the next stages); then we

know that the optimal solution contains all of them, as their profit is a non-

negative number. This pruning can be made more effective by sorting the items

in decreasing order of size, so the pruning will occur closer to the root and

further reduce the size of the state space.

In the experimental section of this chapter, we use the knapsack problem as a

benchmark to compare the DPE with the flow formulation.

7.4 (R, s, S) policy computation

With DPE, we can create an equivalent CP model for the SDP algorithms

introduced in the previous chapters.

We can model Scarf’s (s, S) SDP in CP. The approach is not different from the

one used in the previous section for the knapsack problem. Then delegate to

the CP search the computation of the review plan. This leads to a monolithic

CP model for the computation of optimal (R, s, S) parameters.

The DPE associated uses CP variables to model the states of the SDP model

presented in Section 4.1, so one for every possible combination of inventory

level and period. Each variable contains the cost of the expected cost of the

optimal policy deployed in that period and using the inventory level as starting

stock. CP is generally working with variables with a finite domain; in this case,

discretisation is used to model these real variables. Another set of variables is

needed to represent the replenishment plan, each γt is represented by a binary

variable. Depending on the solver used, additional variables might be needed

to model the problem.
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In each state, the functional equation is deployed through a series of constraints

that implement Equation 5.2. The expected cost is modelled as a weighted sum

of next period state variables, the immediate cost can be easily computed, and

the min constraint is available in all the solvers.

Such a model can solve the problem by branching only on the γt variables and

obtaining the value of the state variables by constraint propagation. This is an

example of a parameterised SDP problem that can be solved through DPE.

DPE allows the deployment of side constraints from the CP solver catalogue.

It gives a considerable modelling advantage compared to a bespoke imple-

mentation. For example, limitations of order patterns are easy to deploy in

a DPE model; regular expressions can be used to force a minimum distance be-

tween orders or forcing a maximum number of orders per week/time horizon.

However, the added complexity makes it impossible for the DPE the solving

of small/medium instances in reasonable time; making it not usable in a real-

world case. The encoding of a problem into a general-purpose solver as a CP

one is generally less efficient compared to a bespoke implementation; due to

the variable creation overhead and the inference and search processes. A CP In

the experimental section, we analyse a DPE encoding of the (s, S) SDP that is

the base of the (R, s, S) policy computation. We show that it adds a consistent

overhead, and it does not allow the deployment of the K-convexity enhance-

ment; these and other reasons explained in the experimental section make the

policy computation a negative case for the DPE.

Complexity

We use the same notation available in Section 4.1.3. We consider D the

maximum demand per period and T the length of the planning horizon. The

maximum inventory level is DT and the minimum −DT . The CP model

generated by the DPE for the computation of the (s, S) policy requires O(D2T 4)
variables and O(D2T 3) constraints. The number of variables needed is higher

than the state space dimension because additional variables are needed to store

partial results of the expected cost computation.
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7.5 Experimental Results

This experimental section is more diversified that the previous chapters’ ones.

Since we introduced a new encoding, we aim to assess the general applicability

of the DPE, not only in the inventory control problem.

In Section 7.5.1, we compare the DPE and the flow formulation on the shortest

path problem. We implement the models in Minizinc; we solve them using a CP

and a MIP solver.

Experiments in Section 7.5.2 focus on the knapsack problem. We compare the

DPE solved by a CP solver with the flow formulation solved by different MIP

solvers. Moreover, we assess the impact of the state reduction technique.

Finally, Section 7.5.3 analyses the DPE solution for the (R, s, S) policy compu-

tation.

Environment

In the first experiment, we use MiniZincIDE 2.1.7, while the second part is

coded in Java 10. We used 3 CP solvers: Gecode 6.0.1, Google OR-Tools 6.7.2

and Choco Solver 4.0.8. We use as MIP solvers: COIN-OR branch and cut

solver, IBM ILOG CPLEX 12.8 and Gurobi 8.0. All experiments are executed on

an Ubuntu system with an Intel i7-3610QM, 8GB of RAM and 15GB of swap

memory.

7.5.1 Shortest path in MiniZinc

MiniZinc is a standard modelling language. It provides a set of standard

constraints, with ways of decomposing all of them to be interpreted by a

wide variety of solvers. To achieve standardisation, the MiniZinc constraints

catalogue is very limited. It includes only constraints that are available in all its

solvers, or that can be decomposed into simpler. The decomposition is generally

done in a naive way, causing poor performances. The DB-based constraints are

an example of this.

In this section, we focus on applications of the DPE in MiniZinc. We aim to

apply this new technique to the shortest path problem and solve it with the

DPE of the Dijkstra algorithm. The shortest path is one of the benchmarks of
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forall( i in 1..N ) (
if i = Start then

% outgoing flow
sum(e in Edges where Edge_Start[e] = i)(x[e]) -

% incoming flow
sum(e in Edges where Edge_End[e] = i)(x[e]) = 1

elseif i = End then
sum(e in Edges where Edge_Start[e] = i)(x[e]) -
sum(e in Edges where Edge_End[e] = i)(x[e])
= -1

else
sum(e in Edges where Edge_Start[e] = i)(x[e]) -
sum(e in Edges where Edge_End[e] = i)(x[e])
= 0

endif
);

Figure 7.2: Minizinc flow formulation of the shortest path.

forall( i in 1..N ) ( % for all the nodes
if i = End then

x[i] = 0 % special case for the sink
else

x[i] = min(e in Edges where Edge_Start[e] = i)
(x[Edge_End[e]] + L[e])

endif
);

Figure 7.3: Minizinc DPE of the shortest path.

one the past MiniZinc challenges [SFS+14]. Analyzing the model (see Figure

7.2) we can see that the current reduction is based on a flow formulation on

the nodes of the graph, which regulates the flow over each node and requires a

binary variable x for each edge indicating whether an edge is used or not. This

is the encoding proposed by Martin [Mar87].

Our implementation is based on Dijkstra’s algorithm: every decision variable

contains the shortest distance to the sink node. The formulation (Figure 7.3) is

shorter and more intuitive than the previous one.

We compare the methods on the ten available benchmark instances. We use the

MiniZincIDE and Gecode as the solver, with 20 minutes as a time limit. Table 7.1

shows the results of the computations. When the flow formulation finds a good

or optimal solution quickly, the DPE is approximately twice as fast. However,

the flow formulation requires search that can take exponential time, and it is
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Table 7.1: Time required to complete the computation of the 10 benchmark
instances in Gecode. ’-’ represents a timeout.

CP solver 0 1 2 3 4 5 6 7 8 9

Dijkstra 23 ms 19 ms 18 ms 17 ms 24 ms 20 ms 25 ms 23 ms 20 ms 29 ms

Flow formulation - 50 ms 60 ms 571 ms 46 ms - 47 ms 1 182 s 4 504 ms -

unable to find a solution before the timeout occurs. The most interesting result

is that, by using only constraint propagation, DPE performance is robust and

only marginally affected by the structure of the instances. In some cases, e.g.

instance 7, the flow formulation quickly finds an optimal solution but takes a

long time to prove optimality, in which case the DPE is more than four orders

of magnitude faster.

The DPE requires a smaller number of variables since it requires only one for

each node. On the contrary, the flow formulation requires a variable for each

edge. This is without taking into account the number of additional variables

created during the decomposition.

The DPE cannot rival a state-of-the-art shortest path solver in terms of perfor-

mance for standard problems. However, the DPE allows a more flexible model

than a specific global constraint and a more efficient model in MiniZinc. This

is useful in the case of parameterised shortest path problems, in which other

constraints influence the costs of the edges. An example of a parameterised

shortest path problem is the network interdiction problem [IW02] that can be

modelled using DPE.

We repeated the above experiment using a MIP solver instead of CP. Table

7.2 contains the results of the ten instances solved using COIN-OR branch

and cut solver. Interestingly, the situation is inverted: the flow formulation

performs efficiently while the DPE fails to find an optimal solution in many

cases. This is due to the high number of auxiliary discrete variables needed by

the MIP decomposition of the min constraint. The DPE loses one of its main

strengths: DP computation by pure constraint propagation. Moreover, the MIP

can take advantage of the unimodularity of the matrix, as mentioned before.

We, therefore, recommend the usual flow-based formulation for MIP and the

DPE for CP.
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Table 7.2: Time required to complete the computation of the 10 benchmark
instances in CBC COIN. ’-’ represents a timeout.

MIP solver 0 1 2 3 4 5 6 7 8 9
Dijkstra 375 s 64 ms - - - 20 667 ms 61 ms - 138 ms 303 ms

Flow formulation 31 ms 39 ms 34 ms 40 ms 46 ms 35ms 36 ms 40ms 37 ms 53ms

7.5.2 Knapsack Problem

We now apply the DPE to the knapsack problem [Mar90] because it is a widely

known NP-hard problem, it has numerous extensions and applications in supply

chain systems, there is a reduction in MiniZinc for this constraint, and it can be

modelled with the technique proposed by [Mar87]. Variations of the knapsack

problem are widely used in inventory control. We consider the model previously

presented in this chapter.

We compare the DPE’s performance with several other decompositions of the

constraint:

• Naive CP, a CP model that uses the simple scalar product of the model

(7.6a) - (7.6b). The MiniZinc encoding of the knapsack constraint uses

the same decomposition.

• Global constraint, the knapsack global constraint available in Choco.

This constraint is implemented with scalar products. The propagator uses

Dantzig-Wolfe relaxation [DW60].

• DPE, a CP formulation of the encoding proposed in this chapter solved

using Google OR tools.

• DPE-sr, the previous solution with the addition of a state space reduction

technique.

• DPE-sr-sorting, the previous solution with the items ordered for decreas-

ing volume.

• Flow model {Solver}, the MIP flow formulation solved by three different

MIP solvers: COIN CBC, CPLEX and Gurobi.

No restriction on the multithreading is imposed on the MIP solvers.

As a testbed, we use Pisinger’s instances [Pis97]. The volume of each item (vi)

is sampled from a uniform variable in the range [1, 100]. Four different types

of instances are defined, in decreasing correlation between items’ weight and

profit order:
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Figure 7.4: Average computational time for subsetsum instances

• Subsetsum, for all the items the profit is equivalent to the volume pi = vi.

• Strongly correlated, the profit of each item is equal of its volume plus ten,

pi = vi + 10.

• Strongly correlated, the profit of each item is equal of its volume plus ten,

pi = vi + 10.

• Weakly correlated, the profit of each item is in the close range of its

volume, pi is sampled from a uniform variable with range [vi−10, vi+10].

• Uncorrelated, the profit of each item is sampled from a uniform variable

with range [1, 100].

the capacity of the knapsack is the half of the volume of the sum of all items.

We increase the size of the instances (I) until all the DP encodings fail to find

the optimal solution before the time limit. A time limit of 10 minutes is imposed

on the MIP and CP solvers, including variable creation overhead.

Figures 7.4, 7.5, 7.6 and 7.7 shows the computational time in relation with the

instance size for respectively subsetsum, strongly correlated, weakly correlated

and uncorrelated instances.

We can see that DPE clearly outperforms the naive formulation in CP and the

flow formulation solved with an open-source tool, CBC. Basic DPE computed

by an open-source CP solver is computationally comparable to the flow formu-
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Figure 7.5: Average computational time for stronglycorrelated instances

0 50 100 150 200 250 300 350

0

200

400

600

800

Number of items

C
om

pu
ta

ti
on

al
ti

m
e Naive CP

Global Constraint
DPE

DPE-sr
DPE-sr-sorting

Flow model CPLEX
Flow model GUROBI

Figure 7.6: Average computational time for weaklycorrelated instances
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Figure 7.7: Average computational time for uncorrelated instances

lation implemented in CPLEX, and it outperforms the Gurobi’s one in instances

with low correlation between weight and profit of the items.

The DPE outperforms the variable redefinition technique in MIP, because of the

absence of search. It is also clearly better than a simple CP model of the problem

definition, which is equivalent to the Minizinc’s decomposition. The Choco

constraint with ad-hoc propagator outperforms the DPE in most of the cases,

confirming that a global constraint is faster than a DPE. An exception occurs in

the strongly correlated instances; in this case, the global constraint fails to find

the optimal solution in many test instances, even with a small number of items.

We assume that the search focuses on non-optimal branches of the search tree.

When the DPE constraint has to be called multiple times during the solving of a

bigger model, it can outperform a global constraint since the overhead to create

all the variables is not repeated.

The state reduction technique provides a considerable improvement. The basic

DPE can solve instances up to 200 items. Its limits are related to the memory

necessary to store the state space. A CP variable has an intrinsic overhead. The

state space grows so rapidly that heavy usage of the SWAP memory is needed.

However, this effect is less marked when a state reduction technique is applied.

On the contrary, it is stronger when the correlation between item profits and

volumes is high.
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Figure 7.8: Average computational time for subsetsum instances with a larger
knapsack

The reduction technique performance improves when we increase the number

of items needed to fill the knapsack since the pruning occurs earlier in the

search tree. Figure 7.8 shows the results for a knapsack with extended volume.

This experiment demonstrates the potential of DPE with state space reduction.

With a simple and intuitive reduction technique, we can solve instances ten

times bigger than with a simple CP model. We can see that the behaviour of DPE

is stable regardless of the type of the instance; on the contrary, the performance

of the space reduction technique strongly depends on the instance type and the

volume of the knapsack.

Clearly, we can not outperform a pure DP implementation. This is mainly due

to the time and space overhead of creating CP variables. The DPE requires more

time to create the CP variables than to propagate the constraints.

7.5.3 (s, S) policy computation

The performances of the DPE model of Section 7.4 solved using OR tools make

the (R, s, S) policy computation a negative case for the DPE.

In this section, we compare the DPE encoding of the (s, S) SDP with the
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Table 7.3: Time required to compute a policy in seconds.

Periods 3 4 5 6 7

(s, S) DPE 469 966 1863 2919 5454

(s, S) SDP 20 44 86 166 218

(s, S) SDP + K-Convexity 0.04 0.07 0.11 0.2 0.24

(R, s, S) Baseline 0.4 1.2 3.7 11 29

standard DPs and the (R, s, S) baseline brute force. We tested the policies on the

instances for testing the scalability of the solutions described in Section 4.4.1.

We use as CP solver Google OR Tools. Since CP solvers need discrete variables,

we discretised the variables containing costs by multiplying all the cost factors

by 100 and then scaling back the final policy cost.

Table 7.3 shows the results of the experiments. The first two lines of the table

compare the same algorithm, the first one encoded with DPE and the second

one directly coded in Python. Solving the DP with a CP solver takes 20 times

more computational effort than a bespoke implementation. A consistent part of

the computational time is required to create the variables and constraints; this

part takes more time than the solving of the model itself. This is to be expected,

a bespoke implementation of a particular algorithm is generally faster than an

equivalent model passed to a solver. A CP solver has to find in which order the

constraints have to be solved, and the updates of its variables are more time

demanding.

The K-convexity has a massive impact on the computational performances,

see Section 4.4. The time required to solve the (s, S) SDP through DPE is

considerably higher than the time needed for the baseline to compute the

optimal (R, s, S) policy. So, it is faster to calculate all the policies for all the

possible replenishment plans faster than the time that DPE solves one.

Understanding the reasons behind this poor performance is useful to under-

stand DPE better. These reasons are:

• Variables creation overhead. As for the knapsack problems, the variable

creation requires a considerable amount of time. The (s, S) SDP has a

large state space. A CP variable represents each state. It includes a domain

and the references to the constraints involving that variable. Creating a

CP variable requires more computational effort and memory compared to

a normal one. Moreover, additional variables are needed to store partial
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results of the cost computation.

• The discretisation of the costs.CP solvers work with variables with finite

domains. The cost stored in each state is a real number. CP solvers

generally include discretisation techniques to deal with floating-point

variables. Higher accuracy is associated with bigger domains and slower

performances.

• Constraint propagation. In SDP the costs associated with the states

are computed with the functional equation, in the DPE models through

constraint propagation. While constraint propagation is generally faster

than a search process, it is considerably slower than the computation of

the functional equation.

• K-convexity. The K-convexity considerably reduces the computational

effort required by the (s, S) SDP. However, it is not possible to model

it through DPE.

7.6 Conclusions

This chapter presents an innovative technique for mapping DP into CP, called

the dynamic program encoding. Through DPE, a DP algorithm can be seam-

lessly included in a CP model and solved by pure constraint propagation; with-

out search or backtracking.

We provide a standard way to model a DP into DPE and some examples

of its application. We demonstrate the potential of the DPE in constraint

modelling in several ways: we compare it with another DP-encoding technique

using CP and MIP solvers; we show how to use state reduction techniques

to improve its performance; we show that it outperforms a well-known DP

encoding technique, and greatly outperforms non-DP-based CP approaches to

the knapsack problem. We apply the DPE to MiniZinc benchmarks, showing

how its performance is faster and more robust than existing CP techniques.

The experimental results prove that DPE is unsuitable for use in MIP, where

standard methods are much better.

We design a new model that uses the DPE to compute optimal (R, s, S) policy

parameter by searching the replenishment plans solution space using CP. This

is a negative result for DPE; the main reasons are the large state space and the
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overhead introduced by discretisation.

To summarise, DPE can be used when:

• a DP-based constraint is needed, but also other constraints can affect

states inside the DP. For example, bilevel interdiction problems, see

[PRTV18];

• the respective DP global constraint is not implemented in the specific

solver;

• DP approaches are needed in MiniZinc as starting approach to decompose

more complex problems in simpler instructions.
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Chapter 8

Conclusion

Stochastic lot sizing is an active branch of operational research. This thesis

introduces a set of novel algorithms to compute policy parameters for the single-

item, single-location stochastic inventory control problem with backlogging of

excessive demand. These algorithms can compute optimal parameters for the

(R, S) policy and optimal and near-optimal parameter for the (R, s, S) one. No

restrictions on the demand type are needed. They can be easily implemented

without the need for external solvers. The common thread between the

elements of the set is the utilisation of Stochastic Dynamic Programming

approaches.

The (R, s, S) policy has a high practical value. It comprises the better cost

performances of the (s, S) policy and the reduced nervousness of the (R, S)
replenishment plan. However, its parameters’ computation is considered too

complex by the literature; especially in the presence of non-stationary stochastic

demand. Classical inventory control literature does not model a cost factor

related to stock taking or order cancellation.

Chapter 4 presents the first optimal SDP formulation for the (R, S) policy

computation with no assumption of the demand distribution type. To tackle

larger instances, we enhance the model computation with a memoisation

approach, a filtering technique and binary search. This algorithm can be

easily implemented without using external solvers. Extensive computational

experiments show that this new approach has a small optimality gap and an

accurate expected cost, outperforming the current state-of-the-art.

Chapter 5 introduces the first algorithm for the computation of optimal (R, s, S)
parameters. This solution is a hybrid of BnB and SDP. Ad-hoc bounds computed
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through DP strongly prune the search tree without compromising the optimality.

Having an optimal solution is fundamental for future research on this policy

since it allows to compute the optimality gap. In our experimental results, this

approach can prune up to 99.8% of the search tree. The algorithm can solve

real-world problems in a reasonable time.

Chapter 6 contributes by presenting a set of heuristics for the (R, s, S) problem.

These algorithms compute near-optimal policies in a fraction of the time

required by the optimal solution. The first one is a pure SDP formulation for the

(R, s, S) problem. We enhance this model using the K-convexity property and a

memoisation approach. The second is a sequential application of an (R, S) and

an (s, S) policy computation algorithms. The heuristics can be used as upper

bound for the optimal policy cost in the branch-and-bound solution, further

improving the pruning percentage. The experimental section shows that these

solutions have a low optimality gap and fail to compute the optimal policy in

rare cases. On average, the monolithic SDP has an optimality gap of 0.07 %.

Finally, Chapter 7 presents the dynamic programming encoding (DPE). A novel

technique to model DP in CP. We describe the correspondences between the

components of a DP algorithm and the elements of a CP model. A set of

examples illustrate the deployment of this technique. In the experimental

analysis, we compare this approach with a similar encoding designed for

MIP solvers. The results show that the DPE is more suitable for CP solvers

compared to the encoding available in the literature. This encoding allows

to monolithically model the computation of (R, s, S) policy parameters in CP,

without ad hoc global constraints. However, this is a negative example for the

DPE due to some intrinsic characteristics of the stochastic lot sizing problem,

making it uncompetitive with the approaches aforementioned.

In summary, this work contributes to the literature of stochastic inventory

control by providing novel approaches to compute optimal and near-optimal

policies for a range of widely known and used problems. This thesis covers

research questions that are unanswered in the literature, opening to more

research path that can be explored. In the next section, we present some of

these possible novel contributions to the literature.
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8.1 Future works

This thesis opens many different possible paths for future research. We hope

that this work will stimulate further investigation on techniques to compute

(R, s, S) parameters.

The algorithms presented herein can be used as a comparison to newly

developed techniques:

• The (R, S) SDP technique can be used to compute the optimality gap for

new (R, S) heuristics.

• The (R, s, S) BnB can be used to compute the optimality gap for new

(R, s, S) heuristics that can be compared to the existing heuristics pro-

posed in Chapter 7.

The problem frame can be modelled to consider different problem configura-

tions. Inventory control systems act in a wide variety of real-world settings. A

mathematical formulation that closely resembles reality can lead to consistent

savings. Possible variations on the problem settings are:

• Capacitated lot sizing. When some constraints limit the decisions.

For example, establishing a maximum inventory level. In real-world

applications, the warehouses have limited capacity. Alternatively, a fixed

extra cost is charged when the inventory level exceeds the capacity limit,

the cost of renting additional space. Another capacity constraint can

regard the order size. There might be a minimum order size; this is

common in many B2B environments. The ordering cost can involve a

fixed charge for exceeding a container capacity, e.g. [vNvdV05,MMDA16].

It can represent a truck size limitation, every time a truckload limit

is exceeded even by a single item another truck has to be used. For

example, Chen and Sarker [CS14] deploy a lot sizing solution alongside a

vehicle routing problem. A review of the relevant literature can be found

in [KGW03].

• Different cost structure. Include a quantity discount on the per unit

cost. Many businesses offer a lower per item price for bigger orders; since

the administrative and preparation costs do not grow linearly with the

order size, e.g. [LKL13]. The per unit ordering cost can be modelled

as a stochastic non-stationary variable as well. For example, a jewellery

producer has to acquire gold from the metal market where the prices
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change constantly. The holding cost can change over time. Part of it is

represented by the lost investment opportunity that is not constant.

• Lead time. Adapt the algorithms to model the lead time. To further

generalise the problem, the lead time can be modelled as a stochastic

variable, e.g. [RTHP10].

• Using service level constraints. No technique is currently available

to compute optimal (R, s, S) policy parameters with a service level

constraint.

• Inventory deterioration. We assume that the inventory can be held in

the inventory for an indefinitely amount of time. A false assumption for

perishable products. Other items with similar behaviour are goods with

quick obsolescence. An example of inventory deterioration is Gunpinar

and Centeno [GC15] work on blood supply. Surveys on this particular

type of inventory control system can be found in [Raa91,GG01].

• Remanufacturing. When the inventory control system manages the pro-

duction, many real-world settings include remanufacturing. Traditional

inventory control models do not take into consideration that the end-user

may return the goods. These items can be refurbished or can be disas-

sembled to reuse their components. Recovering these items is strongly

beneficial from the environmental point of view. An extensive literature

is available for the inventory control problem with remanufacturing, e.g.

Van der Lan et al. propose a heuristic to compute (s,Q) policy parameters

for such a problem.

• Multi-item. In most of the businesses, the warehouses store more than

one type of goods. When dealing with multiple products, a supplier can

provide more than one. In that case, placing orders that include multiple

products can lead to saving on shipping and ordering costs. The problem

of managing the inventory of a multi-item system with joint replenishment

is not novel in the literature; recent surveys of these efforts can be

found in [KG08, BMN+17]. Different policy computation algorithms are

available for such inventory system, e.g. [AI88, NL05, ÖGB06]. However,

the literature does not contain any (R, s, S) policy computation algorithm

considering joint replenishment.

• Multi-supplier. We can consider multiple suppliers for the same product.

Different suppliers can have different linear and fixed ordering cost. For
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example, Janssen and Kok [JdK99] consider a two suppliers situation in

which one is managed with a (R,Q) policy and the other with a (R, S)
one.

• Specific type of demand. The techniques presented in this thesis do

not assume the demand type. As showed in Chapter 3, most of the

techniques in the literature assume that the demand is normally or

Poisson distributed. This assumption limits their applicability. A problem

that practitioners often tackle includes a bimodally distributed demand.

Scenario analysis uses it. An example can be a company that export goods

from China to the US; the forecasted demand strongly depends on the

tariffs. If the tariffs are lifted, we expect a normal distributed demand

with higher mean compared to the situation with tariffs. We can estimate

the probability that the tariffs are lifted and consequentially modelled the

demand as a bimodal one.

• Correlated demand. Classical stochastic lot sizing models assume that

the variables representing the demand are independent. In real-world

situations, external factors can affect the demand for multiple periods.

Demand correlation can be taken into account in inventory control

systems. Various models that model this particular lot sizing are available

in the literature, e.g. [SZ93,CS99,DL03].

This is a limited set of examples of the many possible extensions for the

inventory control techniques presented in this work. Business challenges have

strong diversity and new variants of the problem will arise in the future.

The DPE approach opens a new set of entirely different research challenges. It

makes it possible to model some bilevel problems with a compact CP model.

Bilevel problems involve two decision-makers that act sequentially pursuing

different objectives. A pioneering work in this area is a bilevel scheduling

problem, [KK11]. They claim that "no direct encoding of discrete bilevel

problems into CP or MIP can be expected". In [PRTV18] we show that

the bilevel network interdiction problem [IW02] can be modelled through

DPE. This extends to more bilevel problems in which the second decision-

maker can be solved in DP; for example, the bilevel knapsack interdiction

problem. Another direction is to make available models of widely known

constraints solvable through DP, as the grammar constraint [QW07] or the

regular constraint [Pes04].
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[ÖDT12] Ulaş Özen, Mustafa K Doğru, and S Armagan Tarim. Static-

dynamic uncertainty strategy for a single-item stochastic inven-

tory control problem. Omega, 40(3):348–357, 2012.

[ÖGB06] Banu Yüksel Özkaya, Ülkü Gürler, and Emre Berk. The stochastic

joint replenishment problem: A new policy, analysis, and insights.

Naval Research Logistics (NRL), 53(6):525–546, 2006.

[OPL10] Efficient modeling with the IBM ILOG CPLEX optimization studio.

Technical report, IBM Corporation, 2010. White paper.

[Pes04] Gilles Pesant. A regular language membership constraint for finite

sequences of variables. In International conference on principles

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

152 Andrea Visentin



REFERENCES

and practice of constraint programming, pages 482–495. Springer,

2004.

[Pis97] David Pisinger. A minimal algorithm for the 0-1 knapsack

problem. Operations Research, 45(5):758–767, 1997.

[Pis99] David Pisinger. Core problems in knapsack algorithms. Operations
Research, 47(4):570–575, 1999.

[PN14] Gérard Plateau and Anass Nagih. 0–1 knapsack problems.

Paradigms of Combinatorial Optimization: Problems and New App-
roaches, pages 215–242, 2014.

[Pow07] Warren B Powell. Approximate Dynamic Programming: Solving the
curses of dimensionality, volume 703. John Wiley & Sons, 2007.

[PRTV18] Steven Prestwich, Roberto Rossi, S Armagan Tarim, and Andrea

Visentin. Towards a closer integration of dynamic programming

and constraint programming. In 4th Global Conference on Artificial
Intelligence, pages 202–214, 2018.

[PSS10] Margarita Protopappa-Sieke and Ralf W Seifert. Interrelating op-

erational and financial performance measurements in inventory

control. European Journal of Operational Research, 204(3):439–

448, 2010.

[PTR16] Steve Prestwich, S Armagan Tarim, and Roberto Rossi. Constraint

problem specification as compression. In Global Conference on
Artificial Intelligence, pages 280–292, 2016.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[QW06] Claude-Guy Quimper and Toby Walsh. Global grammar con-

straints. In International conference on principles and practice of
constraint programming, pages 751–755. Springer, 2006.

[QW07] Claude-Guy Quimper and Toby Walsh. Decomposing global

grammar constraints. In International Conference on Principles
and Practice of Constraint Programming, pages 590–604. Springer,

2007.

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

153 Andrea Visentin



REFERENCES

[RA05] Boualem Rabta and Djamil Aïssani. Strong stability in an (R, s, S)

inventory model. International Journal of Production Economics,
97(2):159–171, 2005.

[Raa91] Fred Raafat. Survey of literature on continuously deteriorating

inventory models. Journal of the Operational Research society,

42(1):27–37, 1991.

[Raf99] John F Raffensperger. The marriage of dynamic programming and

integer programming. In PIOCS. ORSNZ 34th Annual Conference,
Waikato, page 4, 1999.

[Rég11] Jean-Charles Régin. Global constraints: A survey. pages 63–134,

2011.

[RF] Asma Rakiz and Pierre Fenies. An integrated multi level lot

sizing problem with a single railway track transport problem. In

International Workshop on Lot-Sizing-IWLS’2019, page 30.

[RKT15] Roberto Rossi, Onur A Kilic, and S Armagan Tarim. Piecewise

linear approximations for the static–dynamic uncertainty strategy

in stochastic lot-sizing. Omega, 50:126–140, 2015.

[RR05] N R Srinivasa Raghavan and Debjit Roy. A stochastic petri net

approach for inventory rationing in multi-echelon supply chains.

Journal of Heuristics, 11(5-6):421–446, 2005.

[RTHP08] Roberto Rossi, S Armagan Tarim, Brahim Hnich, and Steven

Prestwich. A global chance-constraint for stochastic inventory

systems under service level constraints. Constraints, 13(4):490–

517, 2008.

[RTHP10] Roberto Rossi, S Armagan Tarim, Brahim Hnich, and Steven Prest-

wich. Computing the non-stationary replenishment cycle inven-

tory policy under stochastic supplier lead-times. International
Journal of Production Economics, 127(1):180–189, 2010.

[RTHP11] Roberto Rossi, S Armagan Tarim, Brahim Hnich, and Steven Prest-

wich. A state space augmentation algorithm for the replenish-

ment cycle inventory policy. International Journal of Production
Economics, 133(1):377–384, 2011.

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

154 Andrea Visentin



REFERENCES

[RTHP12] Roberto Rossi, S Armagan Tarim, Brahim Hnich, and Steven

Prestwich. Constraint programming for stochastic inventory

systems under shortage cost. Annals of Operations Research,

195(1):49–71, 2012.

[RTPH14] Roberto Rossi, S Armagan Tarim, Steven Prestwich, and Brahim

Hnich. Piecewise linear lower and upper bounds for the standard

normal first order loss function. Applied Mathematics and Compu-
tation, 231:489–502, 2014.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
constraint programming. Elsevier, 2006.

[SBF10] Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of

the MiniZinc challenge. Constraints, 15(3):307–316, 2010.

[Sca59] Herbert Scarf. The optimality of (s, S) policies in the dynamic

inventory problem. 1959.

[SFS+14] Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and

Julien Fischer. The MiniZinc challenge 2008–2013. AI Magazine,

35(2):55–60, 2014.

[Sil73] Edward A Silver. A heuristic for selecting lot size quantities for

the case of a deterministic time-varying demand rate and discrete

opportunities for replenishment. Production and inventory man-
agement, 2:64–74, 1973.

[Sil78] Edward A Silver. Inventory control under a probabilistic time-

varying, demand pattern. Aiie Transactions, 10(4):371–379,

1978.

[Sil81] Edward A Silver. Operations research in inventory management:

A review and critique. Operations Research, 29(4):628–645, 1981.

[Sil08] Edward A Silver. Inventory management: An overview, Canadian

publications, practical applications and suggestions for future

research. INFOR: Information Systems and Operational Research,

46(1):15–27, 2008.

[SK97] Babangida Sani and Brian G Kingsman. Selecting the best

periodic inventory control and demand forecasting methods for

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

155 Andrea Visentin



REFERENCES

low demand items. Journal of the Operational Research Society,

48(7):700–713, 1997.

[SM+02] Leonardus Wilhelmus Gerardus Strijbosch, Johannes Jose-

phus Antonius Moors, et al. Simulating an (R, s, S) inventory
system. Tilburg University, 2002.

[SMFD14] Ankur Sinha, Pekka Malo, Anton Frantsev, and Kalyanmoy Deb.

Finding optimal strategies in a multi-period multi-leader–follower

stackelberg game using an evolutionary algorithm. Computers &
Operations Research, 41:374–385, 2014.

[Sox97] Charles R Sox. Dynamic lot sizing with random demand and

non-stationary costs. Operations Research Letters, 20(4):155–164,

1997.

[SPP+98] Edward A Silver, David F Pyke, Rein Peterson, et al. Inventory
management and production planning and scheduling, volume 3.

Wiley New York, 1998.

[SPT16] Edward A Silver, David F Pyke, and Douglas J Thomas. Inventory
and production management in supply chains. CRC Press, 2016.

[SR91] Helmut Schneider and Dan B Rinks. Empirical study of a new

procedure for allocating safety stock in a wholesale inventory

system. International Journal of Production Economics, 24(1-

2):181–189, 1991.

[SRK95] Helmut Schneider, Dan B Rinks, and Peter Kelle. Power approxi-

mations for a two-echelon inventory system using service levels.

Production and Operations Management, 4(4):381–400, 1995.

[SSBJ11] Leo WG Strijbosch, Aris A Syntetos, John E Boylan, and Elleke

Janssen. On the interaction between forecasting and stock

control: The case of non-stationary demand. International
Journal of Production Economics, 133(1):470–480, 2011.

[SZ93] Jing-Sheng Song and Paul Zipkin. Inventory control in a fluctuat-

ing demand environment. Operations Research, 41(2):351–370,

1993.

[Tal13] El-Ghazali Talbi. Metaheuristics for bi-level optimization. Studies
in Computational Intelligence, 482, 2013.

Computing Policy Parameters for Stochastic
Inventory Control Using Stochastic Dynamic
Programming Approaches

156 Andrea Visentin



REFERENCES

[Tar96] S Armagan Tarim. Dynamic lotsizing models for stochastic demand
in single and multi-echelon inventory systems. PhD thesis, PhD

thesis, Lancaster University, 1996.

[TBS10] Ruud H Teunter, M Zied Babai, and Aris A Syntetos. ABC

classification: service levels and inventory costs. Production and
Operations Management, 19(3):343–352, 2010.

[TDÖR11] S Armagan Tarim, Mustafa K Dogru, Ulaş Özen, and Roberto
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List of Symbols

The next list describes several symbols used in the document

Knapsack Problem

Ci optimal profit for packing items i, . . . , I in a knapsack of size Vi

fi immediate cost for stage i

I number of items

K capacity of the knapsack

pi profit of item i

Si state of the system at stage i

Vi volume of the knapsack not utilised at stage i

vi volume of item i

xi binary variable which is set to one if an item i is packed

Lot Sizing

α service level percentage

δt binary variable which is set to one if an order is placed in period t

γt binary variable which is set to one if the inventory is reviewed in period

t

Ĉ upper bound of the expected cost of the optimal policy

ζt value of a random variable dt

ζtj value of a random variable dtj

b penalty cost per unit per period

Ct expected total cost of an optimal policy over periods t, . . . , T
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dt random variable representing the demand in period t

dtj random variable representing the demand over periods t, . . . , j. dtj =
dt + · · ·+ dj

ft immediate cost for period t

G(·) cumulative distribution function

g(·) probability density function

h holding cost per unit per period

K fixed ordering cost

MCt lower bound of the cost of the optimal policy over periods 1, . . . , t

Qt quantity of order placed in period t

Rt number of periods covered by an order placed in period t

St order-up-to-level of period t

St state of the system at the beginning in period t

T periods in the planning horizon

v ordering cost per unit

W fixed ordering cost
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Figure A.1: Variance of the simulated cost optimality gap for σ = 0.1
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Figure A.2: Variance of the simulated cost optimality gap for σ = 0.2
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Figure A.3: Expected cost error over the number of periods for σ = 0.1
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Figure A.4: Expected cost error over the number of periods for σ = 0.2
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Figure A.5: Computational time in seconds over the number of periods for
σ = 0.2
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