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Abstract: Specific patient cohorts are at increased risk of vascular calcification. Functional matrix-gla
protein (MGP), a tissue-derived vitamin K dependent protein, is reported to be an important
inhibitor of vascular calcification and may have clinical potential to modify the progression of
vascular calcification through regulation of functional MGP fractions. This systematic review
examines twenty-eight studies which assess the relationship between circulating protein expressions
of MGP species and vascular calcification in different arterial beds. The included studies examined
participants with atherosclerosis, chronic kidney disease (CKD), diabetes, healthy participants,
vitamin K supplementation, measured plasma vitamin K levels and vitamin K antagonist usage.
The current review reports conflicting results regarding MGP fractions with respect to local
calcification development indicating that a multifaceted relationship exists between the MGP and
calcification. A primary concern regarding the studies in this review is the large degree of variability
in the calcification location assessed and the fraction of MGP measured. This review suggests that
different underlying molecular mechanisms can accelerate local disease progression within the
vasculature, and specific circulating fractions of MGP may be influenced differently depending on
the local disease states related to vascular calcification development. Further studies examining the
influence of non-functional MGP levels, with respect to specific calcified arterial beds, are warranted.

Keywords: matrix-Gla-Protein; vascular calcification; vitamin K; cardiovascular disease; atherosclerosis;
chronic kidney disease; diabetes; healthy participants

1. Introduction

Abating fatal cardiovascular disease (CVD) events among patients with atherosclerosis, chronic
kidney disease, diabetes and the aging population remains an imperative clinical challenge.
CVD induces major arterial occlusions and stiffening, which can be largely driven by the development
of vascular calcification, and the associated hemodynamic consequences cause high rates of
hypertension, myocardial infarction, stroke and lower-limb ischemia [1,2]. The mortality rate of
patients with chronic kidney disease (CKD) alone accounts for 50% of premature deaths while
additionally patients with peripheral arterial disease are predisposed to lower limb amputations [3,4].
A prognosticator of vascular calcification development is a prerequisite for identifying high risk
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patients and may have predictive power for either prevention or progression, thereby potentially
reducing these catastrophic complications.

Vitamin K plays an integral role in the regulation of proteins associated with the inhibition of
cardiovascular disease related complications [5]. It acts as a cofactor for the enzyme γ-glutamyl
carboxylase in the post-translational conversion of glutamic acid (Glu) to γ-carboxyglutamic acid
(Gla) residues. This conversion is necessary for the functionality of all vitamin K-dependent proteins
(VKDPs) including, matrix-Gla-Protein (MGP), a 14 kDa VKDP, which is secreted primarily by vascular
smooth muscle cells (VSMCs) in the arterial medial layer [6] and is considered a potent inhibitor of
vascular calcification. Cell culture evidence suggests MGP is also strongly expressed in endothelial
cells, from where it is most likely to end up in the circulation since the endothelium has direct contact
with the blood. Endothelial cell derived MGP is also thought to play an important role in preventing
endothelial mesenchymal transitions that can contribute to the calcification of cells [7], while a lack of
MGP also causes arteriovenous malformations (AVMs) [8]. MGP contains five Glu residues and three
serine residues, requiring glutamate carboxylation and serine phosphorylation, respectively, to become
fully functional [9], and therefore inhibiting arterial calcification development. The identification of
the circulating MPG levels may have the clinical potential to attenuate the progression of vascular
calcification [10] and provide incremental prognostic information for a cardiovascular related clinical
event beyond traditional risk factors [11]. Furthermore, early detection in high risk patients prone to
calcification development may act as a useful adjunctive criterion, therefore allowing for early clinical
intervention [12].

Notwithstanding, there are conflicting reports regarding the exact role of MGP in patients with
atherosclerotic disease, CKD and patients taking anticoagulants. It is thought that only functional
(γ-carboxylated and serine phosphorylated) MGP can inhibit vascular calcification as low levels
of functional MGP have indicated higher levels of vascular calcification in specific patient groups
including those suffering from stable ischemic disease [13], diabetes [14,15], long-term oral
anticoagulant therapy users [16] and CKD patients [17,18]. Conversely, studies have also demonstrated
the potential utility of the non-functional MGP measurements to indicate vascular vitamin K status,
cardiovascular disease risk and disease state, including calcification levels, in specific patient cohorts.
The measurement of various species of non-functional MGP fractions may act as cardiovascular disease
risk and disease markers correlating with future cardiovascular morbidity and mortality [13,19] and
also with the extent of prevalent vascular calcification [17,20].

As a consequence of the conflicting evidence, the pathophysiological mechanisms which result in
diverse morphological manifestations of disease progression in terms of calcification development in
the respective patient cohorts, remain unclear. Therefore, the primary aim of this systematic review
was to determine the relationship between MGP and the presence of vascular calcification.

2. Methodology

2.1. Search Strategy

This review was registered on the PROSPERO database (CRD 42017084544) and has been reported
in accordance with the MOOSE [21] and PRISMA [22] statements. All relevant studies meeting
the inclusion criteria were identified by a computer-aided search of Academic Search Complete,
AMED, Biomedical Reference Collection, CINAHL, MEDLINE (via EBSCO), and the Web of Science
databases during July 2017 from the period of inception (Figure 1). The reference lists of the included
manuscripts were searched for additional papers. The search was restricted to include trials that
involved humans and were published in English. Two reviewers (H.B. and M.O.) conducted the
electronic searches independently. The strategy had two components which were combined: (1) MGP
AND (2) calcification. The exact search strings utilized ‘Matrix Gla Protein’ or ‘Matrix Gla-Protein’ or
‘Matrix γ-Carboxyglutamic Acid’ or ‘Matrix Gamma’ or MGP (Abstract) and calcifi* or calcification or
calcium or calcified or calcific or ‘coronary artery calcium’ or CAC or mineralization (abstract).
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Figure 1. Flow diagram of identification, screening and selection process for included articles in
accordance with meta-analysis of observational studies in epidemiology (MOOSE) and preferred
reporting items for systematic reviews and meta-analyses (PRISMA). (CINAHL = Cumulative Index to
Nursing and Allied Health Literature; AMED = Allied and Complementary Medicine).

2.2. Selection of Studies

Only reports of completed cross sectional, prospective cohort, randomised controlled trials or
case control studies in both ex vivo and in vitro conditions published in peer-reviewed journals
were included. Studies examining both healthy human subjects and specific human patient cohorts
were both included. No restriction was applied to the participant’s age or sex in this analysis.
Studies had to report the measurement of a fraction of MGP. Specifically, studies that reported the
functional MGP (carboxylated), non-functional MGP (desphosphorylated and carboxylated) and
(or) total non-carboxylated were included for review. No restriction was made to the type of MGP
measurements performed including both serum/plasma samples through the use of enzyme linked
immune assay tests and in the case of the ex vivo studies, performed in the atherosclerosis cohort,
immunohistochemistry methods were used. In terms of clinical outcome, the studies had to report
results from an outcome measure in the domain of vascular calcification. Studies were not required to
have a certain follow-up period.

2.3. Study Selection and Data Extraction

A standard protocol was followed for study selection and data extraction. After the removal of
duplicates, two authors (H.B. and M.O.) independently screened the titles and abstracts from among
the articles found and excluded articles not meeting the eligibility criteria. If no abstract was available,
or when it was not clear if the study should be included, full-text articles were retrieved in order to
determine inclusion or exclusion. Both reviewers kept a record of their reasons for the inclusion or the
exclusion of articles. The full text version of an article was obtained if the title and abstract seemed to
fulfil the inclusion criteria or if the eligibility of the study was unclear.

2.4. Risk of Bias Assessment

The methodological quality of included studies was assessed under five domains recommended
by the Cochrane Collaboration for assessing risk of bias. The following five domains were considered:
(1) study participation and sample size, (2) measurement of risk factor (MGP), (3) measurement of
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outcome (vascular calcification), (4) statistical analysis and reporting and (5) measurement of and
controlling for confounding variables. These domains were chosen to allow for the heterogeneity in
study design in this review and due to the lack of an established specific tool for measuring the risk
of bias in studies of different designs. Each domain was assessed as having high, moderate or low
risk of bias. The overall risk of bias was also assessed. We considered a study to be of low risk of bias
when the risk of bias was rated low on at least three of the five domains and was rated low for study
confounding. The methodological quality of the included studies was rated independently by two
assessors (H.B. and M.O.). The quality assessment scores for all studies are shown in Table 1.

Table 1. Risk of bias analysis classified as low, moderate or high grouped according to patient cohort of
specific disease state.

Study Study Participation
and Sample Size

Risk Factor
Measure

Outcome
Measure

Statistical Analyses
and Reporting Confounding Overall Risk of Bias

Athero

[21] High Low Low Moderate High High
[23] Low Low Low High High High
[24] Low Low Low low Low Low
[18] High Low Low High High High
[25] Low Low Low low Moderate Moderate
[22] Moderate Low Low High High High

CKD

[26] High Low Low High High High
[27] Low Low Low Low Low Low
[28] Low Low Low High High High
[29] High Low Low High High High
[30] Low Low Low Low Low Low
[16] Low Low Low low Low Low
[15] Low Low Low Low Low Low
[31] High Low Low Low Low Low
[32] Low Low Low High High High
[33] High Low Low High High High

VKA [34] High Moderate Low Low Low Moderate

Diabetes
[12] Low Low Low Low Low Low
[13] Low Low Low Low Low Low

Healthy

[35] Low Low Low Low Low Low
[36] Low Low Low Low Low Low
[37] High Moderate Low Low Low Moderate
[38] Low Low Low Low Low Low

VK sup

[39] Low Low Low High High High
[40] Low Low Low High High High
[41] Low Low Low High High High
[42] Low Low Low Low Low Low
[43] Low Low Low High High High

Athero = atherosclerosis; CKD = chronic kidney disease; VKA; vitamin K Antagonist; and VK supp = vitamin K
supplementation. A study was considered to be low risk of bias when the risk of bias was rated low on at least three
of the five domains and was rated low for study confounding.

2.5. Data Extraction and Data Analysis

Data regarding each study were extracted and cross-checked by two authors, H.B. and M.O.,
respectively. The following data were extracted from each study: (1) study type and time of
follow-up where applicable (2) characteristics of the study participants (sample size, sex, age, health
condition), (3) characteristics of the exposure factor (measure of MGP) (4) characteristics of the outcome
(calcification outcome measure) and (5) results summary. Due to substantial heterogeneity across
studies, in terms of exposure factors examined, outcome measures used and the length of follow-up,
the pooling of data in a meta-analysis was not possible. The findings of each study have been
synthesized narratively.

3. Results

3.1. Literature Search

Study identification is summarised in Figure 1. The literature search of databases yielded
1009 potentially relevant articles of which titles and abstracts were screened. Of this, 123 articles
were selected based on their relevance, a total of 30 duplicates were removed, and 93 full text articles
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were reviewed. From this, 28 full-text studies were retrieved, and 65 studies were excluded as they
did not meet the eligibility criteria. Searching the reference lists of these articles did not yield any
further articles. Nine authors were emailed regarding their study. No author replied; as a consequence,
these studies were considered ineligible.

3.2. Risk of Bias Assessment

In total, 13 studies were rated as having a high risk of bias [20,23–26,28,29,32,33,37,39–41,43].
Three studies were rated as having a moderate risk [30,31,34] of bias and 12 were rated as having a
low risk of bias [14,15,17,18,27,35,36,38,42,44,45]. A number of common methodological limitations
were identified across the studies: low sample size, inappropriate statistical analysis and poor
measurement and/or controlling for important confounding factors. Common strengths in the studies
were descriptions of the study participants, determinant measurement and outcome measurement.

3.3. Study Characteristics

3.3.1. Study Population

The studies reviewed were designed as randomised controlled trials (n = 3) [24,41,44], cross
sectional trials (n = 23) and longitudinal trials (n = 2) [42,43]. In 25 of the articles, the measures
of calcification were obtained from in vivo imaging techniques, and in the remaining three studies,
calcification was analysed in the arterial tissue in vitro [20,28,32]. Studies examined participants
with atherosclerosis (n = 6), CKD (n = 10), diabetes (n = 2), healthy participants (n = 4), vitamin K
supplementation (n = 4), measured plasma vitamin K levels (n = 1) and vitamin K antagonist usage
(n = 1). In the CKD subgroup, Shroff et al. included children on dialysis, and the remaining articles
reviewed examined adult patient populations [29].

3.3.2. Calcification Measurement

The calcification was measured in a number of different locations within the vasculature, including
the aortic valve (n = 5), aorta (n = 5), abdominal aorta (n = 3), coronary (n = 18), carotid (n = 3), peripheral
arteries (n = 4), radial and digital arteries (n = 1) and non-specified locations (n = 1). The majority of
studies quantified the vascular calcification from computed tomography (CT) scans (n = 24). Aortic
Calcification Severity (AC-24) scores (n = 1), Agatston score (n = 16), Adragao score (n = 2), extended
composite scores (n = 1), Kauppila scores (n = 2) and other total calcification scores (n = 2) were also
used. In the case of two of the in vitro studies, calcification was detected by Alizarin red von Kossa
staining [20,28].

3.3.3. MGP Measurement

The MGP in serum or plasma samples of the patients was measured in terms of four different fractions
of MGP, according to the phosphorylation and/or carboxylation processes. The MGP fractions that were
analysed included desphosphorylated uncarboxylated (dp-uc) MGP (n = 10), total uncarboxylated
(t-uc) MGP (n = 11), desphosphorylated carboxylated dp-(c) MGP (n = 2) and MGP (n = 12). The specific
MGP fraction concentrations were predominantly measured through the use of enzyme linked immune
assay tests. In three articles, the MGP was assessed using immuno-histochemical staining [28,32].

3.4. Summary of Study Cohorts

3.4.1. Atherosclerosis

Table 2 presents the six studies which evaluated the relationship between MGP levels and
calcification development in patients with atherosclerotic cardiovascular disease which were rated as
having high (n = 4), moderate (n = 1) and low (n = 1) risks of bias. Four identified a correlation between
MGP and calcification development [20,28,32,34]. In three of these studies, scientific research was
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performed ex vivo and reported co-localization of non-functional MGP fractions and micro-calcification
deposition [20,28,32]. Uncarboxylated MGP has been identified at sites of arterial calcification [20]
which has prompted the theory regarding a negative relationship.

3.4.2. Chronic Kidney Disease

Table 3 summarises the ten studies which have reported on the relationship between MGP levels
and calcification in CKD patients which were rated as having a high risk of bias (n = 5) and low risk of
bias (n = 5), respectively. Six studies [17,26,29,33,35,36] reported significant correlations between MGP
and calcification, while four studies [18,29,39,40] reported a non-significant relationship. For example,
Cranenburg et al. identified coronary calcification in end stage renal disease (ESRD) patients whereby
vasculature prone to calcify displayed a negative relationship with t-ucMGP levels [36].

3.4.3. Vitamin K Antagonists

Rennenberg et al. [30] is the only study included in this review reporting the influence of oral
anticoagulants on MGP concentration and calcification development which was rated as having a
moderate risk of bias (Table 4). In this study, the average dp-ucMGP levels were significantly higher in
coumarin users when compared to patient control levels. Multiple regression analysis further revealed
that the use of oral anticoagulants and dp-ucMGP levels were independently associated with the
presence of peripheral calcification.

3.4.4. Diabetes

Table 5 summarises the two studies [12,13] which reported the relationship between MGP and
vascular calcification in diabetic patients which were both rated as having a low risk of bias. In one
study, dp-ucMGP was reported as a positive risk factor for elevated peripheral arterial calcification
while t-ucMGP fraction was reported as protective [14]. In the second study, there was a higher odds
ratio for the presence of calcification in diabetic patients compared to those without diabetes [15].

3.4.5. Healthy Participants

Table 6 summarises the four studies which examined the association between MGP and
calcification in healthy subjects and found no correlation in any of the cases. The studies were
both rated as having a low risk of bias (n = 3) and a moderate risk of bias (n = 3). Of these studies,
one study [38] reported an association between MGP fractions and calcification levels, whereby lower
t-ucMGP levels tended to be associated with lower coronary artery calcification (CAC). The remaining
three studies reported no associations between MGP and calcification [27,30,42].

3.4.6. Vitamin K Supplementation

Table 7 summarises the five studies [23–25,41,43]; of these, four reported on the influence
of vitamin K supplementation on MGP concentration and the vascular calcification progression.
The studies in this sub group were rated both as having a low risk of bias (n = 1) and a high
risk of bias (n = 4). Of these studies, three [24,41,43] examined vitamin K2 supplementation and
one [44] examined vitamin K1. No studies found an influence on the progression of vascular
calcification despite the reduced non-functional fraction of circulating MGP with respect to vitamin K2

supplementation. Shea et al. reported that vitamin K1 supplementation resulted in a reduction in the
rate of calcification progression, as determined by 3-year follow-up imaging to be independent of the
total MGP concentration [44]. Within this subgroup, one study reported the levels of both vitamin K1

and K2 with respect to MGP and calcification and found an association between lower t-ucMGP and
CAC [23].
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Table 2. Association between MGP fractions and vascular calcification in atherosclerotic cardiovascular disease patients.

Author

Study Population Outcome Measure

Study Design Cohort Age (Years) Sex Male %
Calcification

Measurement
Method

Calcification
Location MGP Fraction Main Findings

[32] Cross sectional
Human autopsy patients

(n = 6) from
non-cardiac causes

47–86 years NR
3-MeV proton micro
beam distribution of
micro-calcifications

Coronary
t-ucMGP

cMGP
Immuno-histochemistry

Micro-calcification correlated with
accumulation of t-ucMGP, but not cMGP.

[37] Cross sectional

Control (n = 725);
CAW (n = 585);
AW (n = 454);
CAP (n = 675)

Control 54.9 ± 7.6
CAW 56.8 ± 8.4

AW 57 ± 7.3
CAP 54.2 ± 6.7

Control 70.6%
CAW 70.4%
AW 70.9%
CAP 72.7%

MDCTA 64-slice
Agatston score

CAW
AW
CAP

MGP A lack of correlation between MGP levels
and calcification in any location.

[25] Cross sectional
Calcific aortic valve

disease (n = 191)
Control (n = 35)

71 ± 9 (39–89) 71%
Non-enhanced MSCT

16-slice Agatston
score

Aortic valve
Coronary t-ucMGP

No correlation was found between serum
t-ucMGP levels and Agatston aortic valve
calcification scores in the patient group.

[20] Cross sectional

Atherosclerotic carotid
arteries (n = 10),

non-diseased carotid
artery (n = 5) and lower

limb arteries (n = 6)

73.2 ± 31.47 62% Alizarin red/Von
Kossa staining

Carotid
peripheral

MGP
t-MGP

GluMGP
GlaMGP

Advanced carotid plaques (vesicular
structures) were present, at the interface of
calcium crystal and surrounding tissues
mainly co-localizing with GluMGP. In the
peripheral arteries, t-MGP was localized in
the non-calcified areas and GluMGP was
associated with areas of calcification.

[34] Cross sectional
Patients with stable chest
pain/signs of myocardial

infarction (n = 115)
64 ± 11 60% EBCT

Agatston score Coronary MGP

Serum MGP levels were inversely correlated
with the severity of coronary CAC scores
and found to be independently associated
with CAC scores.

[28] Cross sectional

Autopsy patients (n = 10)
Atheromatous aortic and
coronary artery (n = 45)
Normal artery (n = 4)

44–80 NR Von Kossa staining Coronary
Aorta

MGP
Immunohisto-chemistry

MGP was associated with calcified deposits
and sites of early calcification in
calciphylaxis and atherosclerosis, and was
not detected in normal vessels or in vessels
with fibrointimal proliferation.

MGP = matrix Gla protein; t-ucMGP = total uncarboxylated MGP; cMGP = carboxylated MGP; NR = not reported; MDCTA = multidetector computed tomography angiography;
EBCT = electron beam computed tomography; MSCT = multislice computed tomography; CAC = cCoronary artery calcification; CAW = coronary artery wall; AW = aortic wall;
CAP = coronary atherosclerotic plaque.
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Table 3. Association between MGP fractions and vascular calcification in chronic kidney disease patients.

Author

Study Population Outcome Measure
Main Findings

Study Design Cohort Age (Years) Sex Male % Calc Measure
Method

Calcification
Location MGP Fraction

[39] Cross sectional

Stage V CKD pre
dialysis—Balkan endemic
nephropathy as primary
kidney disease (n = 15)

and other kidney
diseases (n = 17)

BEN: 71.7 ± 6.1
Other: 54.7 ± 11.1

BEN: 73%
Other: 53%

Radio graphic film
Adrago calc score

Iliac
Femoral Radial

Digital

MGP
Immunohistochemistry

No significant difference was found between patients
with vascular calcification scores of <4 and ≥4 in the
expression of MGP in the wall of the radial artery.

[45] Cross sectional ESRD patients (n = 97) 45.1 ± 14 64%
MDCT 64-slice

scans
Agatston score

Coronary t-ucMGP
dp-ucMGP

t-ucMGP and dp-ucMGP levels were not associated
with CAC scores.

[26] Cross sectional
Patient on hemodialysis

(n = 160) (23 VKA;
137 no VKA)

72 59–81 46%
Lateral X-ray
radiography

(Kauppila method)
Not specified dp-ucMGP

dp-ucMGP levels were much higher in patients being
treated with VKA, and little overlap was found with
those not being treated.
dp-ucMGP significantly correlated with
calcification score.

[33] Cross sectional Patient on hemodialysis
(n = 64) 60.6 ± 11.3 46.87% 64-slice spiral CT

Agatston score Coronary MGP
CAC scores were classified into tertiles which
revealed a significant positive relationship between
increasing CAC and MGP levels.

[35] Cross sectional
Patient on hemodialysis

(n = 104);
healthy controls (n = 14)

Pt. 50.3–56.9
Ctrl. 45.1–64.1 54% 64-row MSCT

Agatston score
Coronary

Abdominal aorta MGP CAC score was significantly associated with MGP but
the AAC score was not associated with MGP levels.

[18] Prospective
analysis

Patient on hemodialysis
(warfarin excluded)

(n = 188)
Control group (n = 98)

Pts. 59 ± 11
Ctrl. 58 ± 15 54%

X-ray/ultrasound
Adragao score

Extended
composite score

Pelvis
Hands

Av-fistula Carotid
mitral aortic valve

dp-ucMGP
dp-cMGP

Dp-cMGP levels were not associated with vascular or
valvular calcifications at single sites.
Using calcification scores, lower dp-cMGP levels
correlated with extensive calcification compared with
patients with fewer calcifications.
Dp-ucMGP levels did not correlate with the extent of
vascular calcifications.

[17] Cross sectional Caucasian CKD patients
(n = 107) 67 ± 13 60% Multi slice spiral CT

Kauppila score Aorta dp-ucMGP
A positive, statistically significant association was
found between the aortic calcium score and plasma
dp-ucMGP level.

[36] Cross sectional ESRD [CKD stage V]
(n = 40) 36–87 42.50%

MSCT 16-slice
MSCT

Agatston score

Coronary aortic
valve t-ucMGP

T-ucMGP levels had a significant association with
CAC scores. T-ucMGP levels were significantly lower
in patients in the intermediate and high CAC groups
in comparison with patients with low CAC scores.

[29] Cross sectional Children on dialysis for
≥3 months (n = 61) 13.4 ± 4.1 60.60% 16-slice spiral CT

Agatston score

Epicardial coronary
cardiac valves

Aorta
t-ucMGP

T-ucMGP levels in children on dialysis were
significantly lower compared to healthy controls but
no significant associations were found between
t-ucMGP and calcification scores.

[40] Cross sectional
Patients on hemodialysis

(n = 30)
Renal transplant (n = 38)

NR NR

Quad-slice
technique CT total

coronary artery
calcification score

Coronary aorta MGP

No correlation was found between MGP levels and
calcification of the coronary arteries or aorta.
No difference was found in MGP levels between
patients with and without calcification.

MGP = matrix Gla protein; t-ucMGP = total uncarboxylated MGP; cMGP = carboxylated MGP; dp-ucMGP = desphosphorylated uncarboxylated; dp-cMGP = desphosphorylated
carboxylated; CAC = coronary artery calcification and AAC = abdominal aorta calcification NR = not reported BEN = Balkan endemic nephropathy; ESRD = end stage renal disease;
MSCT = multislice computed tomography; VKA = vitamin K antagonist; CKD = chronic kidney disease.
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Table 4. Association between MGP fractions and vascular calcification in patients taking vitamin K antagonists.

Author

Study Population Outcome Measure
Main Findings

Study Design Cohort Age (Years) Sex Male % Calc Measure
Method Calc Location MGP Fraction

[34] Cross sectional Patients on coumarins (n = 19)
Control (n = 18)

Patients 48
(33–56)

Control46
(36–53)

64.8%
Soft-tissue 50-kV
X-ray based on

visibility
Femoral dp-ucMGP

Coumarin use and dp-ucMGP
were associated with femoral
artery calcification.

MGP = matrix Gla protein; dp-ucMGP = desphosphorylated uncarboxylated MGP.

Table 5. Association between MGP fractions and vascular calcification in diabetic patients.

Author

Study Population Outcome Measure
Main Findings

Study Design Cohort Age (Years) Sex Male % Calc Measure
Method Calc Location MGP Fraction

[14] Cross sectional Type 2 diabetics
(n = 198) 64 ± 8 80% MSCT 128-slice

Agatston score
Popliteal Tibial

Peroneal
dp-ucMGP
t-ucMGP

dp-ucMGP levels were a positive risk factor for
an elevated calcification score and independent
predictor of peripheral arterial calcification.
t-ucMGP appeared to protect against
calcification development.

[15] Cross sectional
Outpatients

with stable CVD
(n = 839)

68 ± 11 81%
Echocardiography

Echo-dense
structure

Mitral annular t-ucMGP

A higher concentration of t-ucMGP was
associated with lower odds of MAC in persons
without diabetes. A higher concentration of
t-ucMGP was associated with higher odds of
MAC in persons with diabetes for patients with
stable CVD.

MGP = matrix Gla protein; dp-ucMGP = desphosphorylated uncarboxylated MGP; t-ucMGP = total uncarboxylated MGP; MAC = mitral annular calcification; MSCT = multislice
computed tomography.
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Table 6. Association between MGP fractions and vascular calcification in a healthy population cohort.

Author

Study Population Outcome Measure
Main Findings

Study Design Cohort Age (Years) Sex Male % Calcification
Measurement Method Calc Location MGP Fraction

[38] Cross sectional Post-menopausal
women (n = 200) 66.9 ± 5.5 0%

MDCT
Agatston score

Total volume score
Coronary

t-ucMGP
dp-cMGP

dp-ucMGP

High t-ucMGP levels were significantly
associated with lower CAC.
dp-cMGP was not associated with CAC.
Low vitamin K-status was associated with
high dp-ucMGP concentrations but
dp-ucMGP was not associated with CAC
in women.

[42] Cross sectional/
Longitudinal

Healthy participants
no clinical

cardiovascular
disease (n = 452)

68.25 (66–70) 41% MSCT 8 slice
Agatston score Coronary dp-ucMGP Plasma ucMGP was not associated with

CAC in healthy older adults.

[30] Cross sectional Hypertensive patients
(n = 36) 53 ± 10 52.7%

High-resolution CT
Agatston score

Z-score (total calcium)

Carotid
Abdominal

aorta Coronary
t-ucMGP

No significant correlation between ucMGP
and calc sub scores or total calc z-score.
A positive association was identified
between total arterial calcium score and
lower t-ucMGP.

[27] Cross sectional

Framingham
Offspring Study

A: (n = 2056)
B: (n = 452)

A: 57.5 ± 9
B: 68.5 ± 6

A: 51%
B: 41%

A: EBCT
B: MDCT

Agatston score
Coronary MGP

No association between MGP and CAC
after adjustment for CHD risk score in the
groups A or B.

MGP = matrix Gla protein; t-ucMGP = total uncarboxylated MGP; cMGP = carboxylated MGP; dp-ucMGP = desphosphorylated uncarboxylated; dp-cMGP = desphosphorylated
carboxylated; CAC = coronary artery calcification; EBCT = electron beam computed tomography; MDCT = multidetector computed tomography; MSCT = multislice computed tomography;
CHD = coronary heart disease.
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Table 7. Association between MGP fractions and vascular calcification in patients taking vitamin K supplementation.

Author

Study Population Outcome Measure
Main Findings

Study Design Cohort Supplement Age (Years) Sex Male % Calc Measure Method Calc Location MGP
Fraction

[41] Prospective, pre-post
intervention clinical trial

Hemodialysis
patients (n = 50)

360 µg of menaquinone
MK-7 once daily

71.50 (med 56.75;
IQR 79.25) 30%

X-ray Aortic
calcification Severity

score (AC-24)

Abdominal
aorta dp-ucMGP

At baseline, dp-ucMGP increased
linearly with the increasing calcification
score. No correlation between baseline
calcification scores and dp-ucMGP drop.

[43] Longitudinal Cardiovascular
disease (n = 26)

15 mg of menaquinone -4
(Vitmain K2) 3 times daily 69 ± 8 35% MSCT 64-slice scanner

Agatston score Coronary t-ucMGP CAC significantly increased despite the
MK-4 treatment

[24] Prospective, randomized,
and double-blind

Non-dialyzed
with CKD stages

3–5 (n = 42)

10 µg of cholecalciferol
(D n = 12)/90 µg

(menaquinone, MK-7) with
10 µg of cholecalciferol

(K + D n = 28)

D; 55.4 ± 15.2
K + D; 59.4 ± 9.6

D; 61.5%
K + D; 52% MSCT Agatston score Coronary MGP

dp-ucMGP

CAC significantly increased in both
groups at the end of treatment period.
Vitamin K2 does not significantly affect
the progression of calc but does
significantly change dp-ucMGP levels.

[44] Double-blind, randomized
controlled trial

Healthy men and
postmenopausal
women subjects

(n = 388):
treatment group

(n = 200),
control group

(n = 188)

500 µg phylloquinone
(Vitamin K1)/control group

received multivitamin
formulation without

phylloquinone once daily

68 ± 65 40% MSCT 8-slice
Agatston score Coronary MGP

No difference in CAC progression
between the phylloquinone group and
control group.
Neither baseline nor change in MGP
concentrations predicted the change
in CAC.
Phylloquinone supplementation slowed
CAC progression older adults with
pre-existing CAC, independent of its
effect on MGP concentrations.

[23] Cross sectional Patients with
CVD (n = 103) NR 64 ± 13 57% MSCT 64-sliceAgatston

score Coronary t-ucMGP Coronary CAC score was inversely
related to t-ucMGP.

MGP = matrix Gla protein; t-ucMGP = total uncarboxylated MGP; cMGP = carboxylated MGP; dp-ucMGP = desphosphorylated uncarboxylated; CAC = Coronary artery calcification;
Calc = calcification; MSCT = multislice computed tomography; CHD = coronary heart disease; CKD = chronic kidney disease; MK = menaquinone NR = not reported.
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4. Discussion

This systematic literature review is the first of its kind to investigate the association between MGP
concentration and the presence of vascular calcification in a number of specific patient populations.
The review underscores the conflicting results regarding non-functional MGP fractions with respect
to local calcification development. From reviewing the current literature, which has evaluated a
number of MGP assays in different patient groups at high risk of vascular calcification, it highlights
the multifaceted relationship that exists between the two factors. It is not yet clear which MGP species
is the most suitable and robust predictor of specific vascular calcification subtypes in given locations
for a particular disease state.

4.1. MGP Species

Circulating concentrations and isoforms of vitamin K dependent MGP reaching the circulation
depend on the rate of local MGP synthesis, MGP activity in tissue and subsequent binding to calcified
areas [16]. In total, four fractions were analysed in the articles reviewed; however, no single MGP
species demonstrated a stronger association with vascular calcification. Of the eleven studies that
measured t-ucMGP fraction, 54% had a significant correlation with the calcification scores used.
This fraction represents the phosphorylated ucMGP containing 1, 2, or 3 phosphoserines as well as
a range of degradation products, and thus, it is hypothesised that the negative phospherines have
an affinity for binding to the present calcium available [46]. An inverse relationship between the
t-ucMGP fraction and calcification has been identified in a number of disease subtypes, including
hypertensive patients [30], diabetics [15] and CKD patients [29,36]. A possible explanation for the
low concentrations of the non-functional t-ucMGP isoform identified with respect to the presence of
calcification in a number of the reviewed studies [29,36] is that messenger-RNA expression does not
increase in this high risk cardiovascular disease subtype, resulting in a relative deficiency of MGP
secretion and subsequently, predisposing arteries to a high rate of calcification development [25,47].
Moreover, conflicting articles, in which low concentrations of t-ucMGP failed to significantly correlate
with calcification, for example, in aortic valve disease [25], underscore the importance of vessel
specific associations.

Dp-ucMGP represents the completely non-functional non-phosphorylated and uncarboxylated
form of MGP which has a low affinity for calcium and matrix vesicles and is thus set free into the
circulation [17]. Additionally, unlike t-ucMGP, which is not influenced by vitamin K supplementation,
high circulating dp-ucMGP levels can reflect a patient’s impaired vitamin K status [48]. Of the ten studies
which measured this non-functional MGP fraction, 40% identified an association between MGP and
calcification. Among these studies, a strong positive relationship between high levels of dp-ucMGP and
vascular calcification in CKD patients [26] was reported among coumarins users [31] and individuals
with diabetes [14].

The functional carboxylated MGP fraction forms a high molecular mass complex with calcium
phosphate and fetuin [49]. Fetuin is a complementary important circulatory protein that inhibits
calcium phosphate crystal precipitation through the presence of this complex, and a deficiency in
fetuin protein has been linked with the presence of soft tissue mineralization [50]. In addition to
the measurement of the non-functional fractions of MGP, which have been primarily focused on the
articles include in this review, it would be useful to isolate the fetuin from the serum in a similar
manner to previous approaches [51]. This would provide a complementary adjunct to assess the level
of calcification inhibitory action present.

4.2. Calcification Development

The complexities of the underlying molecular mechanisms that control calcification development
further complicate the interpretation of the relationship with MGP. MGP is synthesized in the tunica
media and primarily prevents medial calcification that is predominantly associated with CKD and
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diabetes [52], whereas atherosclerotic plaque formation and calcification in arteries is predominantly
formed at the intimal side, thus suggesting that the complexity of MGP functionality may be specific
to each arterial bed and also to each disease state. Multiple mechanisms have been hypothesised as
to how functional MGP can inhibit vascular calcification [53,54]. In this review, the calcification of
coronary arteries was predominantly assessed in all other vasculature. Coronary artery calcification
develops early in the pathogenesis of CVD and is a strong and independent predictor of CVD [55].
While the benefits of this are that it provides standardisation across the different measurements
incorporated, certain vasculatures are more prone to developing calcification with respect to the
underlying disease condition. For example, it has been reported that subclinical atherosclerosis in a
healthy, middle-aged male cohort is most likely identifiable in the femoral arteries [56]. The results of
this review imply that the role of MGP may differ between local vascular calcification developments
with respect to CVD subtypes. The in vivo calcification measurements were predominantly acquired
from CT based imaging and scored by the Agatston method. The ubiquitous use of semi-quantitative
metrics, including the Agatston scoring method, should be used with caution when interpreting
the level of calcification present, as such a scoring approach is very sensitive to overestimating
the calcification burden due to a false high score [57]. It has also been previously demonstrated
that the clinical CT resolution constraints partially impede accurate measurements of calcification
and delineation from surrounding diseased tissue [58]. Additionally, the fundamental relationships
associated with calcification and MGP at the molecular level cannot be truly assessed. As a consequence,
the pathophysiological mechanisms, which result in diverse morphological manifestations of disease
progression in terms of calcification development in the respective arterial beds, remain unknown [59].
The recent application of molecular imaging techniques in the assessment of arterial calcification have
shown promising results in detecting molecular-level metabolic processes association with calcification
development [60], and such an approach may help to leverage an improved understanding with
respect to MGP’s function.

4.3. Study Designs

The majority of articles included were designed as cross sectional studies, assessing the frequency
and distribution of vascular calcification with respect to the concentration of different MGP fractions in
specific patient cohorts. It is therefore not clear whether the calcification development is solely
a consequence of the exposure to non-functional fractions of MGP or whether the calcification
progression is derived from other factors that are manifesting concurrently with MGP. Notwithstanding,
the benefits of this review is that it highlights the lsrger variation in methods of measurement for both
the exposure factor (MGP) and the outcome factor (calcificaiton) and also explores the hypothesis
regarding the strength of MGP measurements as a biomarker for calcification and its molecular
capability to modify the progression of vascular calcification.

The clinical trials articles included in this review report on vitamin K supplementation with
respect to the progression of vascular calcification and changes in MGP levels have reported
conflicting outcomes. The levels of dp-ucMGP significantly decreased in response to vitamin K2

supplementation [61]; however, the progression of calcification was independent of the levels [61].
Interestingly, Aoun et al. found a positive correlation between dp-ucMGP and CAC scores at baseline,
yet no relationship was found between the decreasing dp-ucMGP levels [41]. It is known that vitamin
K2 supplementation is a critical cofactor for the carboxylase enzyme responsible for converting the
inactive ucMGP to its active form. However, whether vitamin K supplementation can influence
the progression of vascular calcification remains unknown. In the case of low vitamin K status,
carboxylation is prevented, and thus, vitamin K-dependent proteins, such as MGP, fail to form calcium
binding Gla residues. This triggers VSMCs to increase the production of MGP, reflected by an increase
in MGP messenger RNA [62]. Healthy reference populations indicate that they are sub-clinically
vitamin K deficient and are thus predisposed to vascular calcification due to the loss of calcification
inhibition [36].
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4.4. Future Research and Clinical Implications

While calcification is a significant prognosticator of cardiovascular disease risk, the current review
suggests that different underlying molecular mechanisms that accelerate local disease progression exist
within the vasculature and that specific circulating fractions of MGP may be influenced differently
depending on local disease states related to vascular calcification development. It has been shown that
the variation in MGP fractions and the measurement techniques employed preclude firm conclusions
and direct comparisons based on the reported data. Future studies need to follow a systematic
approach incorporating the established measurement protocols in order to interpret the true value in
MGP as a predictor of vascular calcification. Robust prospective studies and randomised controlled
trials incorporating multi-centres and a wide range of patients would be very useful to confirm if the
differences between patient groups can be similarly identified using the biomarkers described in the
current review. Future studies wishing to explore the potential of the vitamin K dependent biomarkers
described here should also consider the assessment of dietary vitamin K intake which would help to
elucidate the functionality of these biomarkers with respect to vitamin K deficiency and subsequent
CVD disease state. Furthermore, it is also very important that future studies control for potential
confounders, including age, co-morbidities and medications, which can influence the relationship
between MGP and calcification considerably.

4.5. Limitations

There are a number of inherent limitations that must be mentioned: (1) only studies published
in English were included, and thus relevant studies in other languages might have been excluded.
(2) A publication bias may have been introduced as a consequence of the search strategy employed
and thus may limit the inclusion of all existing relevant studies which, in some cases, did not meet the
predefined inclusion criteria. (3) The majority of studies examined were cross-sectional in nature; thus,
the cause of calcification development and progression cannot be inferred from the data presented in
these studies. (4) We performed a quality assessment of all studies using the Cochrane criteria, instead
of a distinct tool. We acknowledge that this modified approach may have limitations, notwithstanding
an established specific tool does not exist to incorporate the presence of various study designs.
(5) In the case of full text articles that were not available online, authors were contacted by email.
However, in the absence of a response to the request for full text, the study was excluded.

5. Conclusions

In summary, the data generated in this review is a fundamental first step for investigating the
association between MGP and vascular calcification. The quantification of the non-functional fractions
of MGP advocates their potential for identifying territory specific vascular calcification development
in a number of patient cohorts. Notwithstanding, a clear depiction of the associations between
MGP and calcification status is partially impeded by the lack of distinction between the function of
the different fractions of MGP with respect to the vessel specific calcification analysed in the CVD
subtypes. More robust studies with large sample sizes, different populations and thorough controlling
for possible confounders are needed. This systematic review therefore advocates the necessity for
further investigations into the clinical utility of measuring non-functional MGP to facilitate a better
understanding in the early detection of patients at high risk and the mechanisms involved in territory
specific arterial calcifications which can result in severe cardiovascular complications.
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