
Title Adversarial command detection using parallel Speech
Recognition systems

Authors Cheng, Peng;Sankar, M. S. Arun;Bagci, Ibrahim Ethem;Roedig,
Utz

Publication date 2021-10

Original Citation Cheng, P., Sankar M. S., A., Bagci, I. E. and Roedig,U. (2021)
'Adversarial command detection using parallel Speech
Recognition systems’, ESORICS 2021, 26th European Symposium
on Research in Computer Security, Lecture Notes in Computer
Science, 13106, pp. 238-255. doi: 10.1007/978-3-030-95484-0_15

Type of publication Conference item

Link to publisher's
version

https://link.springer.com/chapter/10.1007/978-3-030-95484-0_15
- 10.1007/978-3-030-95484-0_15

Rights For the purpose of Open Access, the author has applied a CC
BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. Copyright Published
Article: © Springer Nature Switzerland AG 2022 - https://
creativecommons.org/licenses/by/4.0/

Download date 2024-03-28 09:01:56

Item downloaded
from

https://hdl.handle.net/10468/11931

https://hdl.handle.net/10468/11931


Adversarial Command Detection Using Parallel
Speech Recognition Systems

Peng Cheng1, Arun Sankar M S2, Ibrahim Ethem Bagci3, and Utz Roedig2

1 School of Cyber Science and Technology, Zhejiang University, Hangzhou, China
Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province

peng cheng@zju.edu.cn
2 School of Computer Science and Information Technology, University College Cork,

Cork, Ireland
a.sankar@cs.ucc.ie,u.roedig@ucc.ie

3 VMware Inc., London, United Kingdom
bagcie@vmware.com

Abstract. Personal Voice Assistants (PVAs) such as Apple’s Siri, Ama-
zon’s Alexa and Google Home are now commonplace. PVAs are suscep-
tible to adversarial commands; an attacker is able to modify an audio
signal such that humans do not notice this modification but the Speech
Recognition (SR) will recognise a command of the attacker’s choice. In
this paper we describe a defence method against such adversarial com-
mands. By using a second SR in parallel to the main SR of the PVA it
is possible to detect adversarial commands. It is difficult for an attacker
to craft an adversarial command that is able to force two different SR
into recognising the adversarial command while ensuring inaudibility.
We demonstrate the feasibility of this defence mechanism for practical
setups. For instance, our evaluation shows that such system can be tuned
to detect 50% of adversarial commands while not impacting on normal
PVA use.

1 Introduction

Personal Voice Assistants (PVAs) such as Apple’s Siri, Amazon’s Alexa and
Google Home are now commonplace. A PVA can be integrated as functionality in
other devices such as smart phones or TVs or may be implemented as dedicated
device referred to as smart speaker. We use PVAs to interact with infrastructures
such as our smart home and services such as e-mails and news.

There are a number of PVA security and privacy concerns and research has
investigated a large variety of attacks on these systems. One prominent attack
example is the so called hidden command injection. The aim of such attack is
to supply a specially crafted voice signal, referred to as adversarial command,
to the PVA which is interpreted differently by the PVA than it is by humans.
For example, the supplied adversarial command may be interpreted by humans
as ’Alexa, tell me what the weather is like’ while the SR of the PVA interprets
this signal as ’Alexa, open the front door’. An adversarial command is created by



2 Peng Cheng et al.

adding small perturbations to an audio recording until the PVA’s SR recognises
the intended command of the attacker instead of the command contained in the
original audio recording. If the perturbations are small and added carefully, a
human will not notice the modification of the audio signal while the SR algo-
rithms recognise different words. How to create adversarial commands has been
studied in detail [4] [11]. However, less effort has been put into devising defence
methods against this serious attack form.

In this paper we describe a low complex defence method against adversarial
attacks based on the weak transferability of adversarial commands. The genera-
tion of an adversarial command that can successfully target multiple SR systems
is still an open question [15]. Our method makes use of a second SR, we call it
the protection SR, within a PVA which analyses the supplied voice sample in
parallel to the main SR. The speech transcription output of the protection SR is
compared with the transcription output of the main SR and only if both outputs
are a close enough match the transcription output is accepted and the command
is executed. The protection SR may use different training data or even an entire
different SR architecture compared to the main SR.

The protection SR does not have to produce the same transcription quality
as the main SR. Voice recognition of this component must only be sufficiently
accurate to provide protection, transcription accuracy is delivered by the main
SR. Thus, the protection SR can be simpler and can also be based on much
smaller training data. It is possible to implement the protection SR without much
resource requirements and it is possible to use frequent re-training. Frequent re-
training adds additional complexity for a potential attacker that may try to craft
an adversarial command targeting main and protection SR jointly. It is assumed
to be infeasible for an attacker to add unnoticeable perturbations to the original
audio such that two entirely different SR are tricked into producing the same
transcriptions. The main contributions of this paper are:

– Adversarial Command Detection (ACD): We describe a novel protection
mechanism against adversarial commands using parallel SR systems.

– Demonstration of ACD: We demonstrate the effectiveness of ACD using 20
adversarial commands and show that our ACD using Pocketsphinx [7] and
Kaldi can detect all adversarial commands. We also show that the ACD does
not prevent normal PVA operations due to false positives.

– ACD Complexity: We show that the protection SR can be significantly less
complex than the main SR in terms of architecture and training data. Thus,
frequent retraining of the protection SR is feasible, providing a ACD as
moving target defence.

The remaining paper is structured as follows. Section 2 provides a very brief
introduction to Automatic Speech Recognition (ASR) and describes adversarial
command generation. Section 3 discusses related work and Section 4 introduces
our novel Adversarial Command Detection (ACD) method. In Section 5, Sec-
tion 6 and Section 7 we describe our evaluation setup, experimental results and
discussion. Section 8 concludes the paper.



Adversarial Command Detection Using Parallel Speech Recognition Systems 3

2 Preliminaries

In this section we give a brief definition of a PVA as considered in this work. We
also provide a definition of adversarial commands and provide a description on
how these are crafted.

2.1 Personal Voice Assistant (PVA)

A PVA is a service which understands voice commands and is able to take
corresponding actions. A PVA may reuse hardware of existing devices such as
mobile phones or TVs or may use dedicated hardware such as a smart speaker.

The acoustic signal (i.e. human voice) is captured by microphones. Usually,
the signal is processed locally to identify a wake word (e.g., ’Alexa’ or ’Hey
Google’). For wake word recognition a simple SR system is sufficient. After
the wake word is recognised the following audio recording is transported to a
back-end where a more sophisticated SR system analyses the audio sample to
extract the command. After command extraction the back end system initiates
the required action (interact with a system or query a service). User feedback in
form of audio may be generated and transported to the local device where it is
played back via speakers.

In this work we assume one local SR component is used to implement a PVA
and we do not distinguish wake word recognition SR and back-end SR. However,
our work can be applied to systems that distribute SR.

2.2 Hidden Commands

Hidden voice command injection aims to inject voice commands into a PVA
without users noticing this injection. The injected command is ’hidden’ from
users present in the vicinity of the PVA. In order to conceal this interaction
existing work has looked at various techniques ensuring that a person is unable
to hear the submitted command while the PVA’s ASR is able to understand
it. While these techniques are the essential component to enable hidden voice
commands it is also often necessary for an attacker to modify other elements of
PVA interaction. After submitting a command, the PVA usually responds with
a confirmation via it’s speakers. For example, the voice command for a home
automation system ’Alexa, open the front door’ would result in a response ’Front
door opened’ which an attacker would need to suppress too in order to achieve a
fully hidden interaction. However, it has to be noted that not all services provide
a user with feedback and in some cases a user may simply ignore unexpected
feedback.

Three types of hidden commands have to be distinguished: Hardware Non-
Linearity, Obfuscated Commands and Adversarial Commands.

Work in the first category targets the analogue signal processing path of a
PVA and makes use of the fact that humans are unable to hear in the high
frequency range (typically above 18kHz). The voice command is submitted in



4 Peng Cheng et al.

the frequency space unnoticeable to users while non-linear behaviours of the
analogue signal processing path ensures that the signal is processed by SR.

The second class of work aims at submission of an audio signal which humans
perceive as noise, the command is understood by PVAs but not by humans. For
this purpose, the attacker starts with the target command and this audio signal
is gradually changed until it becomes unintelligible for a human but the PVA
still decodes the command. The resulting audio signal is called the obfuscated
command.

The third class is similar to the second. The original audio signal (original
command) is gradually modified until the PVA recognises the target command
while a human still hears the original command. The resulting audio signal is
called the adversarial command.

In this paper we focus on methods for hidden command detection of the third
type: adversarial commands. We focus on this specific type as it is considered the
most effective attack and consequently attracts currently most research effort.
However, our proposed defence method may also protect against the other two
types but we have not verified this in our experimentation.

2.3 Obfuscated and Adversarial Commands

The purpose of ASR is to transcribe speech to corresponding text. This process
can be defined as:

y = arg max
ỹ

p(ỹ|x) (1)

x here is the audio input, and ỹ are all possible transcription candidates. The
ASR aims to find the most likely transcription y given the audio input x. Once
the ASR has been trained it’s function is y = f(x).

A human listening to the audio signal x also interprets the signal and nor-
mally would conclude that the same transcription y recognised by the ASR is
the meaning of the command. This process can be described as y = fH(x) with
fH describing the human’s processing capability.

An adversary can modify an input signal x by adding perturbation δ, re-
sulting in x′ = x + δ. The following situation may arise when an ASR decodes
x′:

y = f(x′) and ∅ = fH(x′) (2)

y here is the obfuscated command transcription which remains the same as
the one decoded from unperturbed input x. However, a human may not perceive
the same transcription y this time from the audio signal x′ (it is perceived as
noise; fH(x′) = ∅ which means the human transcription is empty). In this case,
the audio input x′ is called the obfuscated command.

There is as well the other situation where y = fH(x′) and ∅ = f(x′) which
means the ASR is unable to transcribe the input while a human is understanding
the command well. There is work in this direction (such as work by Abdullah et
al. [3]) which aims to prevent machines listening into conversations.



Adversarial Command Detection Using Parallel Speech Recognition Systems 5

∅ = f(x′) and y = fH(x′) (3)

The situation of interest in this paper is where y = fH(x′) and y′ = f(x′)
which means the ASR transcription and human transcription are different. In
this case x′ is called an adversarial command :

y′ = f(x′) and y = fH(x′) (4)

In case of the adversarial command, even with the added perturbation, a
human still perceives the adversarial audio input x′ as original benign command
transcription y, while an ASR recognises the audio input x′ as the adversarial
command transcription y′.

We distinguish so called targeted and non-targeted adversarial commands. In
case of a targeted adversarial command the attacker is interested in one specific
command transcription T which is carefully selected (y′ = T ). In case of a non-
targeted adversarial command the attacker does not care about what specific
command would be decoded by the ASR; the attacker only wants to ensure that
human and machine transcription are not the same.

2.4 Adversarial Command Generation

To create an adversarial command it is helpful for the attacker to have access
to the internal workings of the ASR. An attack relying on such internal knowl-
edge (e.g. such as the trained Deep Neural Network (DNN) model) is referred
to as a white-box attack. If the attacker is not able to access the internals and is
only able to obtain ASR decoding results the attack is classified as a black-box
attack. Generally, attacks assuming the ASR as a black-box are more difficult to
execute and have a lower attack performance (i.e. successfully generating adver-
sarial examples providing the desired transcription). It has to be noted that we
generally have to assume that an attacker has access to the ASR and a white-
box attack is likely. As in any other area of computer security we cannot provide
security by obscurity and assume that the ASR remains hidden.

The exact process of generating adversarial commands may vary depending
on the ASR model, black-box/white-box assumption and perturbation target
such as feature vectors or raw audio input. Recent work focuses on adding per-
turbations directly to the audio input rather than the result of the preprocessing
(e.g., FBANK) as this approach reduces the perceptible noise in adversarial ex-
amples [4].

We use the generation of adversarial commands for a Deep Neural Network
- Hidden Markov Model (DNN-HMM) ASR as example. Adversarial commands
are generated through an iterative process. In each iteration, the output of the
DNN (the acoustic model) is compared with the target using a loss function.
Then the gradient of the loss function with respect to the corresponding input is
calculated through back-propagation. By finding the perturbed input resulting in
the local/global minimum it is ensured that the input is transcribed as the target



6 Peng Cheng et al.

command. In addition, the perturbation value is constrained by a threshold,
ensuring that people cannot perceive the difference between the new signal and
the original audio input. There are variations in different studies in regard to
techniques on where to add the perturbations. For example, they can be added
to the feature vectors such as Mel-Frequency Cepstrum Coefficient (MFCC) or
directly to the raw audio input.

3 Related Work

Recent work has thoroughly investigated the construction and efficiency of ad-
versarial examples. Among the earlier works, adversarial attacks are generated
using tuned MFCC features [11] and inverse feature extraction [5] in the form of
obfuscated commands that are not intelligible to human listeners. By exploiting
the temporal and frequency masking property of the psychoacoustic model, the
voice commands are embedded in speech or music which is perceived by listen-
ers as speech or music but recognized by ASR as commands [14] [6] [10]. In this
work, we used the method proposed by Schönherr et al. [10] that hides voice
commands in audio locations which minimizes perceptual distortion.

Only a few works investigating the construction of adversarial examples for
ASR have also analysed in detail if the examples are transferable. Commander-
Song [14] that targets Kaldi ASR has found to be unsuccessful on DeepSpeech
but an improvement for this is obtained in [4] by generating a few adversarial ex-
amples that targets DeepSpeech using the adversarial commands for Kaldi ASRs.
Similarly, the adversarial examples that are successful on DeepSpeech2 with little
perceptual distortion generate invalid transcription for Google Voice [6]. Abdul-
lah et al. [3] obtained a reasonably good transferability for an evasion attack. A
systematic approach for the generation of transferable adversarial commands is
not yet achieved.

Some existing work has proposed defence mechanisms against adversarial ex-
amples. This includes a neural network-based classifier for detection of hidden
commands [5] and the use of audio pre-processing methods (addition of noise,
down sampling, audio compression, band-pass filtering, audio panning) in indi-
vidual or in combination to render adversarial examples ineffective [14] [9]. The
temporal consistency of speech signal is exploited in [13] for developing the coun-
termeasure due to the limited robustness shown by signal processing methods
towards adversarial attacks [12]. The narrow-band vocoder G.729 along with
Pulse-code Modulation (PCM) is used to eliminate the perturbations due to
adversarial commands [8]. The ASR outputs of this filtered audio signal and
the raw input signal are compared to detect adversarial commands when the
difference is greater than a threshold.

Closest to our work is work by Zeng et al. [15] which proposes a multiversion
programming inspired approach to detect audio adversarial examples. This work
also uses additional ASRs to detect adversarial examples. The proposed detection
mechanism consists of one main ASR system based on DeepSpeech and three
auxiliary ASR systems that comprise DeepSpeech, Long Short-Term Memory



Adversarial Command Detection Using Parallel Speech Recognition Systems 7

(LSTM) based Google Cloud Speech, and Amazon Transcribe with unknown
internal architecture. The detection accuracy of this approach is very high but it
drops with the similarity between the commands and transcribes. In addition to
the internal architecture, the type and volume of training data is also a significant
factor that makes any ASR system unique. However, our work differs as we
aim to minimise complexity of the defence mechanism. Reduced complexity is
essential to support implementation on resource constraint PVAs or to facilitate
deployment on scale when used in a cloud infrastructure. Our work also differs
as we investigate not only the effectiveness of different ASR architectures but
also the impact of using a reduced training data sets.

4 Adversarial Command Detection (ACD)

4.1 Threat Model

The attacker may have access to a PVA’s SR when crafting adversarial com-
mands. In addition, an attacker may also have access to the protection SR which
we propose as defence method.

A1: General Attacks: We assume the attacker is only able to inject commands
via the audio channel. There is no way for the attacker to bypass the SR entirely;
i.e. by a conventional hack of the PVA.

A2: Adversarial Command: We assume that the attacker is only able to
supply a rogue command as a hidden command constructed as adversarial com-
mand. We assume that the attacker must submit a command within an audio
sample such that a present user is not aware of this embedded threat. We do
not consider direct non-authorised interaction with the PVA or submission of
hidden commands using different techniques.

A3: Main SR Access: We assume that the attacker has access to the main
ASR; i.e. we consider a white-box attack. The attacker has full access to the
main ASR when crafting the attack signal. This is a reasonable assumption as
it is not feasible to keep an ASR used for millions of devices a secret.

A4: Protection SR Access: We assume that the attacker does not have access
to the protection ASR; i.e. we assume a black-box attack by considering the
protection ASR as a moving target. As we will show, it is possible to frequently
retrain the protection ASR which ensures that an attacker is not able to obtain
a copy of the used protection ASR. It has to be noted that there is currently no
study showing that it is feasible to construct an adversarial command targeting
multiple ASR in parallel under either white or black-box assumption. However,
making the assumption that the protection ASR is black-box will make this
problem significantly harder as the attacker would need to craft an adversarial
command working with all possible ASR configurations at the same time.

4.2 ACD Approach

The ACD approach is shown in Figure 1. The main ASR of the PVA is accom-
panied by a protection ASR and both process the incoming audio signal. Both



8 Peng Cheng et al.

ASR may share the same front-end (Microphone, filters, gain control, ...) and
both ASR produce a transcription of voice. The main ASR transcription is only
passed on to the PVA command execution if a comparison of both transcriptions
determines that no adversarial command is present.

MAIN ASR
(Kaldi)

Training 
Data 
(WSJ)

Fig. 5: Illustration of the spoofing attack in Zhang’18

Fig. 6: Illustration of the demodulation achieved by non-linearity

Fig. 7: Illustration of three obfuscated commands generation methods

Fig. 8: Illustration of the adversarial examples generation

Fig. 9: Illustration of the covert channel attack in Diao’14

Fig. 10: Illustration of the working mechanism of Voice Mask in the
Hidebehind paper

Fig. 11: Illustration of the working mechanism of Smart2 Speaker
Blocker

Fig. 12: Illustration of the working mechanism of acoustic tagging

Fig. 5: Illustration of the spoofing attack in Zhang’18

Fig. 6: Illustration of the demodulation achieved by non-linearity

Fig. 7: Illustration of three obfuscated commands generation methods

Fig. 8: Illustration of the adversarial examples generation

Fig. 9: Illustration of the covert channel attack in Diao’14

Fig. 10: Illustration of the working mechanism of Voice Mask in the
Hidebehind paper

Fig. 11: Illustration of the working mechanism of Smart2 Speaker
Blocker

Fig. 12: Illustration of the working mechanism of acoustic tagging

Text Text 
Text Text 
Text Text

Fig. 5: Illustration of the spoofing attack in Zhang’18

Fig. 6: Illustration of the demodulation achieved by non-linearity

Fig. 7: Illustration of three obfuscated commands generation methods

Fig. 8: Illustration of the adversarial examples generation

Fig. 9: Illustration of the covert channel attack in Diao’14

Fig. 10: Illustration of the working mechanism of Voice Mask in the
Hidebehind paper

Fig. 11: Illustration of the working mechanism of Smart2 Speaker
Blocker

Fig. 12: Illustration of the working mechanism of acoustic tagging

Fig.5:IllustrationofthespoofingattackinZhang’18

Fig.6:Illustrationofthedemodulationachievedbynon-linearity

Fig.7:Illustrationofthreeobfuscatedcommandsgenerationmethods

Fig.8:Illustrationoftheadversarialexamplesgeneration

Fig.9:IllustrationofthecovertchannelattackinDiao’14

Fig.10:IllustrationoftheworkingmechanismofVoiceMaskinthe
Hidebehindpaper

Fig.11:IllustrationoftheworkingmechanismofSmart2Speaker
Blocker

Fig.12:Illustrationoftheworkingmechanismofacoustictagging

Prot. ASR
(Kaldi)

Training 
Data 

Text XXX
Text Text 
Text Text =

1
Command
Execution
using y

2

3

4

5

Signal x

Transcription y

Transcription y'

Comparison of y
and y' using 
threshold t

6

7

Fig. 1: Adversarial Command Detection (ACD) - The audio signal is analysed by
the main ASR and the protection ASR in parallel. If both transcriptions differ
significantly, defined by a threshold, the command is rejected.

1. An input signal x is provided. Either the audio input signal is provided by
a human speaker or it may be supplied by an attacker via a loudspeaker. In
case of an attacker the supplied signal is the adversarial command.

2. The voice audio signal x is fed to the main ASR used to transcribe the voice
signal into text y.

3. The main ASR is a sophisticated ASR, using a complex structure and trained
with a large corpus to provide an accurate transcription y for a diverse set
of speakers. The transcription process is described as: y = fM (x).

4. A copy of the audio signal is also fed to a protection ASR which creates it’s
own text transcription y′.

5. The protection ASR is far less sophisticated than the main ASR and is also
trained with a much smaller data set. The transcription is less accurate
than that of the main ASR. The protection ASR produces the following
transcription output: y′ = fP (x).

6. The output of both ASRs y′ and y is compared using the metric Word Error
Rates (WER) (WER is introduced in Section 5) against an error threshold



Adversarial Command Detection Using Parallel Speech Recognition Systems 9

t. The WER difference between y′ and y should not be greater than t. If
the input is a legitimate voice command from a user, the difference between
the two transcription is assumed to not be greater than the threshold. The
threshold can be selected according to goals of the overall system.

7. Only if the recognition difference is below threshold t the transcribed com-
mand is considered valid and transcription y is passed to the PVA command
execution.

4.3 ACD and Protection ASR Properties

To create an adversarial command the attacker executes an iterative process in
which the signal is modified by adding inaudible perturbations such that the
ASR recognizes the desired command. The signal is adapted taking into account
the ASR’s model which is defined by (i) ASR architecture and (ii) ASR training
data. We assume that if the protection ASR model differs from the main ASR
it is infeasible for an attacker to modify iterative the input signal such that
two entirely different ASR are forced to produce the same transcription while
ensuring that signal modifications remain inaudible.

Different Architectures Different ASR architectures may use different types of
features and may also extract different internal features. The adversarial example
generation is an iterative process which aims to find the optima for the loss
function with respect to the input by adding perturbation. It will be difficult for
an attacker to add perturbations with the aim of changing features important
for one architecture and also the other.

Different Training Data The details of the model parameters used by the ASRs
depend on the used training data. The parameter values keep being modified to
improve prediction results during the training process. Thus, when generating
an adversarial command the attacker needs to take into account not only the
ASR architecture but also the specific trained model. An adversarial command
generated for an ASR is only likely to work when the same trained model is
used.

5 Evaluation Setup

The ACD is evaluated using a number of different ASRs in the role of a protection
ASR. A number of benign and adversarial commands are used to evaluate ACD
detection capabilities and normal operation scenarios.

5.1 ASR Selection

Our selection of ASRs used for evaluation is summarised in Table 1. Each ASR
model (comprising architecture and model) is given a label which we use in the
remaining document for reference.



10 Peng Cheng et al.

ASR Label ASR Variant ASR Architecture Training Data

MASR1 Kaldi nnet2 DNN-HMM WSJ

PASR1 Pocketsphinx GMM-HMM Unknown1

PASR2 Kaldi nnet3 DNN-HMM Unknown2

PASR3 Kaldi GMM GMM-HMM WSJ

PASR4 Kaldi GMM GMM-HMM 50% of WSJ

Table 1: Kaldi using an nnet2 model is used as main ASR (MASR1). Three
different ASR are used as protection ASRs, labeled PASR1, PASR2, PASR3 and
PASR4. The protection ASRs are Pocketsphinx and different Kaldi variations.

MASR1 As main ASR (Label MASR1 ) we use an nnet2 Kaldi model which is
a DNN-HMM structure using the Wall Street Journal (WSJ) corpus as training
data. Note that the latest Kaldi is an nnet3 chain model. However, we use a
nnet2 Kaldi as the main ASR as we use adversarial command generation based
on work by Schönherr et al. [10] which relies on this ASR variant.

The nnet2 Kaldi used by Schönherr makes use of some modifications. The
feature extraction and the DNN acoustic model are combined. This integration
is for the convenience of adding perturbation directly to the input rather than
the intermediate features when generating adversarial commands. According to
Schönherr, this design modification does not affect the accuracy of the ASR sys-
tem. We treat this modified nnet2 Kaldi model and the standard one as equiva-
lent in this work. When evaluating adversarial commands we use this modified
nnet2 Kaldi ASR; when evaluating benign commands we use the standard nnet2
Kaldi ASR.

PASR1 The first candidate of a protection ASR (Label PASR1 ) is the Pock-
etsphinx for a standard Raspberry Pi 3 Model B+. Pocketsphinx is using a
Gaussian Mixture Model - Hidden Markov Model (GMM-HMM) model, while
the the main ASR MASR1 is using DNN-HMM model. These two models have
completely different acoustic model architectures. Although it is not clear what
corpus is used to train Pocketsphinx, it is safe to assume Pocketsphinx is trained
with different training corpus than the main ASR (Pocketshinx is provided with
the already trained model and a clear description of the used training data is
not provided). GMM-HMM training requires less resources and is considered to
be an older fashion of ASR compared to DNN-HMM model. However, as the
protection component can handle a lower transcription accuracy for the benefit
of less complexity Pocketsphinx is a suitable choice.

PASR2 The second candidate (Label PASR2 ) is from an open-source project
called Zamia Speech [2] which provides pre-built Kaldi ASR packages for Rasp-
bian (A commonly used Operating System (OS) for Raspberry Pi) complete
with pre-trained models for English. It uses Kaldi nnet3 chain audio models.
nnet3 and nnet2 are both DNN, but nnet3 supports more general networks.
Therefore, we treat nnet3 as a variation of the Kaldi DNN. Specifically, we use



Adversarial Command Detection Using Parallel Speech Recognition Systems 11

kaldi− generic− en− tdnn f which is a pre-trained nnet3 chain model trained
on 1200 hours of audio. We treat it as an ASR with different architecture and
trained with different training dataset compared to the main ASR.

PASR3 The third candidate (Label PASR3 ) is the standard GMM-HMM model
from Kaldi trained using the the Wall Street Journal (WSJ) Corpus. Note that
although the principal architecture of this ASR is the same as for Pocketsphinx,
but the specific parameters are different. Note this candidate is trained using
the same dataset as the main one, but it has a completely different architecture.

PASR4 The fourth candidate (Label PASR4 ) is identical to PASR3 except the
used training data. Only 50% of the Wall Street Journal (WSJ) Corpus are used
for training the ASR.

In summary, MASR1 uses a DNN-HMM architecture using the WSJ corpus
as training data. PASR1 uses a different architecture and different training data
compared to MASR1. PASR2 shares the architecture with MASR1 but uses
different training data. PASR3 shares the training data with MASR1 but uses
a different architecture. PASR4 uses a less complex training data set compared
to PASR3.

5.2 Adversarial and Benign Command Generation

Adversarial Commands We generate the adversarial commands based on work
by Schönherr et al. [10]. 20 adversarial commands are generated; the commands
are hidden in 20 music segments as provided on the GitHub repository [1].

Benign Commands To show how the main ASR and the defence ASRs perform
in a normal setting we also generate benign commands. We generate 20 benign
commands based on the transcriptions of the 20 adversarial commands using the
Google online Text-to-Speech (TTS).

5.3 Experiment Setup

We conduct three sets of experiments. For each set we used the main ASR
MASR1 and one of the three protection ASRs PASR1 to PASR3. In each ex-
perimental set we evaluate how the 20 adversarial commands and the 20 benign
commands are classified by the ACD. The audio commands are directly fed into
the main ASR and the protection ASR candidates.

For each adversarial and benign command, we compare the decoding results
between the main ASR and the protection ASR using the WER metric. The
ACD decision in dependency of WER threshold t is recorded. Based on the
ground truth we record if this was a true positive (TP ), false positive (FP ),
true negative (TN) or false negative (FN) decision.

True positive means that we decide the command is an adversarial one and
the decision is correct; false positive means we decide the command is an ad-
versarial one and it turns out the command is benign; true negative means we



12 Peng Cheng et al.

decide the command is a benign one and this decision is correct; false negative
means we decide the command is a benign one but actually it turns out to be
adversarial.

5.4 Evaluation Metrics

Word Error Rates (WER) WER is defined as

WER = ((Nsub +Nins +Ndel))/Nref (5)

where Nsub is the number of words which are incorrectly transcribed, Nins is the
number of words which appear in the current transcription but are not present
in the reference, and Ndel is the number of words in the reference that do not
appear in the transcription. Note that WER can be greater than 100% as the
transcription can be longer than the reference.

Receiver Operating Characteristic (ROC) We draw ROC curves for the ACD
with the False Positive Rate (FPR) as the x-axis and the True Positive Rate
(TPR) as the y-axis. Each ROC curves shows FPR versus TPR for all possible
ACD decision thresholds t. TPR is defined as:

TPR(t) = TP (t)/(TP (t) + FN(t)) (6)

FPR is defined as:

FPR(t) = FP (t)/(FP (t) + TN(t)) (7)

For each ROC curve, the area under the curve (AUC) is calculated and the
ACD has a better prediction skill the greater the AUC value is. An ACD with
no skill has an AUC of 0.5 and a useful ACD mut provide an AUC value above
0.5.

6 Evaluation Results

We first present a performance evaluation of the five different ASR used
(MASR1, PASR1, PASR2, PASR3, PASR4 as shown in Table 1). Each of the
ASR are used to decode 20 benign and 20 adversarial commands. Then we
evaluate the ACD performance where different combinations of main ASR and
protection ASR are used.

6.1 Decoding Results of Normal Speech

The 20 benign commands are fed to the different ASR; the results are shown in
Table 2 and there exists always a certain amount of WER. From a speech recog-
nition perspective, the WER has to be minimized and there exists various meth-
ods for doing it. This include the following Natural Language Processing (NLP)



Adversarial Command Detection Using Parallel Speech Recognition Systems 13

ASR
ASR

Variants
ASR

Architecture
WER

Begnin
WER

Adverserial

MASR1 Kaldi nnet2 DNN-HMM 39.73% 12.33%

PASR1 Pocketsphinx GMM-HMM 63.01% 139.73%

PASR2 Kaldi nnet3 DNN-HMM 73.28% 98.63%

PASR3 Kaldi GMM GMM-HMM 44.52% 97.26%

PASR4 Kaldi GMM GMM-HMM 47.94% 100%

Table 2: The effect of the 20 benign TTS and 20 adversarial commands on
variations of ASR systems. The benign commands are best recognised by MASR1
which is based on kaldi nnet2 model. The adversarial commands are only effective
on MASR1, the ASR for which the commands were generated. For all other ASR
the WER is high, indicating an unsuccessful transcription.

component to analyse intents and semantics of the ASR transcription which can
mitigate some errors generated in the ASR decoding step. Since our goal is not
to optimize parameters of ASR to achieve high performance but to verify the
proposed defence method, the main concern is in the relative variation of WER
with benign and adversarial commands. Also the reasons for the performance
variations for the ASR models are analysed in Section 7. MASR1 based on the
advanced DNN-HMM architecture shows the best transcription results for be-
nign TTS commands. Even with same architecture used in PASR3 and PASR4,
the transcription performance of PASR4 is lower than PASR3 as it uses only half
the training data. The worst performance in decoding commands is shown by
PASR2 followed by PASR1 that uses different corpus from WSJ which is used
for training the rest of ASRs.

MASR1 First we use the nnet2 Kaldi (main ASR). Using this ASR results in
WER of 39.73% with 31 insertions, 17 deletions and 87 substitutions.

PASR1 The Pocketsphinx decoding results of these 20 human spoken commands
result in a WER of 63.01% with 48 insertions, 12 deletions and 62 substitutions.

PASR2 The decoding results from Kaldi nnet3 compared to the ground truth
transcription result in a WER of 73.28% with 3 insertions, 50 deletions and 41
substitutions.

PASR3 Feeding these commands to the Kaldi GMM-HMM model results in
WER of 44.52% with 11 insertions, 11 deletions and 55 substitutions.

PASR4 The decoding results for the 20 human spoken commands are 47.94%
with 20 insertions, 8 deletions and 5 substitutions.



14 Peng Cheng et al.

6.2 Decoding Results of Adversarial Commands

The 20 adversarial commands are fed to the different ASR. As shown in Table 2,
it is clear that the crafted adversarial commands are only effective against the
ASR used in the adversarial command generation. Any other ASR, differing in
architecture, training data or both does not transcribe the commands usefully.
The detailed results are as follows:

MASR1 The adversarial commands are successful resulting in the best overall
WER of 12.33%. Specifically, 2 word insertions, 9 word deletions and 7 word
substitutions are recorded when comparing the transcription with the reference.
The accuracy is 35% which means 7 sentences out of 20 are exactly the same
as the target transcription (all words in the sentence are correct). This proves
the white-box attack is successful as expected. The adversarial commands are
crafted specifically for MASR1.

PASR1 The decoding results from Pocketsphinx is far from the target, resulting
in WER of 139.73% when compared with the reference text. Specifically, 64 word
insertions, 11 word deletions and 129 word substitutions.

PASR2 When feeding the adversarial commands to the Kaldi nnet3 chain model
runnig on a raspberry Pi, none of the target sentences are correctly transcribed.
Specifically, WER is 98.63% with 0 insertion, 129 deletions and 15 substitutions.

PASR3 None of the target sentences are correctly transcribed. Specifically, WER
is 97.26% with 3 insertions, 101 deletions and 38 substitutions.

PASR4 The results are similar to PASR3 with a reduced training data. Specifi-
cally, WER is 100% with 1 insertion, 118 deletions and 27 substitutions.

6.3 Adversarial Command Detection (ACD)

We evaluate the ACD ASR combinations. The benign commands and adversarial
commands are fed to the system. For each combination, we evaluate the WER
threshold and draw the ROC curve (Figure 2).

A good ACD should produce a ROC curve passing close to the top left
corner (i.e. from (0,0) via point (0,1) to (1,1)). A curve following a diagonal (i.e
from (0,0) to (1,1) would represent a bad ACD that cannot discriminate and
represents a random guess. A good ACD would have an AUC value close to 1
while a bad ACD would have an AUC value close to 0.5.

As shown in Figure 2, the four pairs of ASR do not differ significantly in
terms of detection performance. However, the ACD using PASR1 (Pocketsphinx)
provides the best ROC curve. The AUC value for PASR1 is AUCPASR1 = 0.898
which is the highest among the four (AUCPASR2 = 0.833, AUCPASR3 = 0.889,
and AUCPASR4 = 0.773).



Adversarial Command Detection Using Parallel Speech Recognition Systems 15

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

MASR and PASR1
MASR and PASR2
MASR and PASR3
MASR and PASR4

Fig. 2: ROC curves for all protection ASR options. Pocketsphinx (PASR1) pro-
vides the best option for the ACD with an AUC value of AUCPASR1 = 0.898.

PASR1 We see that Pocketsphinx (PASR1) tends to transcribe our 20 music
based adversarial commands to longer sentences than the original command
transcription, which results in WER values above 100%. This makes it easier to
select a threshold with higher TPR and lower FPR.

PASR2 The Kaldi nnet3 (PASR2) model often only transcribes a few words
or even nothing when fed with our 20 adversarial commands. This results in a
WER value of 98.63% which is greater than the WER in recognizing the normal
TTS generated commands by a value of only 25.35. This smaller WER difference
is due to the worst decoding performance shown by Kaldi nnet3 in recognising
spoken commands which makes it not an optimal choice when coupled with the
main ASR here in our setup.

PASR3 and PASR4 The Kaldi GMM-HMM (PASR4) uses half the training
data than the Kaldi GMM-HMM (PASR3). These two models have similar per-
formances in decoding the 20 adversarial commands. The decoding results for
most samples are either shorter than the target transcriptions or nothing can be
decoded. There are only two WER results beyond 100% for both PASR3 and
PASR4. Overall, the WERs for both PASR3 and PASR4 decoding 20 adversar-
ial commands are high and around 100%, so the true positive value for both



16 Peng Cheng et al.

of these reach 100% easily. When decoding TTS generated benign commands,
the performance of PASR3 is slightly better than PASR4 as shown in Table 2.
There are more high WER values for PASR4 than PASR3, so as the threshold
varies, the false positive rate of PASR4 is greater than that of PASR3, which is
presented in Figure 2.

7 Discussion

7.1 Observations

The experiments show that any ASR that differs in architecture and/or training
data is usable as protection ASR. In our experimentation setup, Pocketsphinx
(PASR1) turned out to be most effective but the other candidates are usable
too. Depending on the application scenario, different thresholds might be used.
For example, an FPR = 0 can be chosen while still obtaining an TPR = 0.5
in case of PASR1. For such setting 50% of the time an attack will be detected
while not preventing normal use of the system.

Different Architectures As the ACD mechanism should be integrated in a PVA
ecosystem it is important to consider resource requirements of the protection
mechanism. Using this protection, voice is analysed by two ASR components
instead of one. The ACD implementation may run on a dedicated device (e.g.
a smart speaker or phone) or within a cloud-based back-end infrastructure. In
either case, additional resource use of the ACD should be limited. Hence, it would
be desirable to use a much less resource intensive ASR as protection ASR. The
experiments show that this approach is feasible. For example, Pocketsphinx is
an ASR designed for systems with limited resources and is less complex than
Kaldi which we used as main ASR.

Different Training Data In order to increase difficulty for an attacker to by-
pass the ACD it should not be possible for the attacker to obtain knowledge
on the internal workings of the protection ASR. This can be achieved by fre-
quently changing the configuration of the ASR by using a different training data
set. Thus, the protection ASR becomes a moving target. However, frequent re-
training requires resources and such effort should be limited. The effort can be
limited by reducing the training effort by reduction of the used training data.
PASR4 uses half the training data compared to PASR3 producing comparable
ACD protection results. In our setup this 50% reduction in training data led to
a training time reduction of 22%.

7.2 Limitations

While our work shows the principle feasibility of ACD there are limitations which
we would like to address in future work: Adversarial Commands: The adversarial
commands are generated based on adding perturbations to music rather than



Adversarial Command Detection Using Parallel Speech Recognition Systems 17

normal speech. Benign Commands: We used the Google online TTS service to
generate the 20 benign commands. We would like to use human speakers for
further evaluation. Sample Size: The number of used samples was relatively
small.

8 Conclusion

We increasingly rely on PVA to interact with smart environments and services.
It is essential that security of these systems can be ensured. Adversarial com-
mands are a serious threat to PVAs. While it is well understood how adversarial
commands can be generated and used little work has been carried out to devise
defence methods.

In this paper we have shown that it is possible to use a parallel ASR (a
protection ASR) to defend against adversarial commands. In our experiments it
is shown that a less capable protection ASR is sufficient to achieve protection. It
is possible to implement the protection ASR without much resource requirements
and it is possible to use frequent re-training. Thus, an attacker needs to adapt
to an ever changing target.

The efficacy of our proposed protection mechanism has been shown for the
evaluated scenarios. However, it would be desirable to provide a formal proof
that it is impossible for an attacker to construct a hidden command that can
target two different ASR systems.

Acknowledgement

This publication has emanated from research conducted with the financial sup-
port of Science Foundation Ireland under Grant number 19/FFP/6775. For the
purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission.

References

1. Adversarial Attacks. https://github.com/rub-ksv/adversarialattacks, online; ac-
cessed 026-July-2020

2. Zamia Speech. https://github.com/gooofy/zamia-speech#asr-models, online; ac-
cessed 026-July-2020

3. Abdullah, H., Rahman, M.S., Garcia, W., Blue, L., Warren, K., Yadav, A.S.,
Shrimpton, T., Traynor, P.: Hear” no evil”, see” kenansville”: Efficient and trans-
ferable black-box attacks on speech recognition and voice identification systems.
arXiv preprint arXiv:1910.05262 (2019)

4. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted attacks on speech-
to-text. In: 2018 IEEE Security and Privacy Workshops (SPW). pp. 1–7 (May
2018). https://doi.org/10.1109/SPW.2018.00009



18 Peng Cheng et al.

5. Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner, D.,
Zhou, W.: Hidden voice commands. In: Proceedings of the 25th USENIX Security
Symposium (USENIX Security’16). pp. 513–530. USENIX Association, Austin,
TX (Aug 2016), https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/carlini

6. Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: Fooling deep structured
prediction models (2017)

7. Huggins-Daines, D., Kumar, M., Chan, A., Black, A.W., Ravishankar, M., Rud-
nicky, A.I.: Pocketsphinx: A free, real-time continuous speech recognition system
for hand-held devices. In: Acoustics, Speech and Signal Processing, 2006. ICASSP
2006 Proceedings. 2006 IEEE International Conference on. vol. 1, pp. I–I. IEEE
(2006)

8. Jiajie, Z., Zhang, B., Zhang, B.: Defending adversarial attacks on
cloud-aided automatic speech recognition systems. pp. 23–31 (07 2019).
https://doi.org/10.1145/3327962.3331456

9. Rajaratnam, K., Shah, K., Kalita, J.: Isolated and ensemble audio preprocess-
ing methods for detecting adversarial examples against automatic speech recog-
nition. In: Proceedings of the 30th Conference on Computational Linguistics and
Speech Processing (ROCLING 2018). pp. 16–30. The Association for Computa-
tional Linguistics and Chinese Language Processing (ACLCLP), Hsinchu, Taiwan
(Oct 2018), https://www.aclweb.org/anthology/O18-1002

10. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks
against automatic speech recognition systems via psychoacoustic hiding. In: Pro-
ceedings of the 2019 Network and Distributed System Security Symposium (NDSS
’19) (2019)

11. Vaidya, T., Zhang, Y., Sherr, M., Shields, C.: Cocaine noodles:
Exploiting the gap between human and machine speech recogni-
tion. In: Proceedings of the 9th USENIX Workshop on Offen-
sive Technologies (WOOT ’15). USENIX Association, Washington,
D.C. (Aug 2015), https://www.usenix.org/conference/woot15/workshop-
program/presentation/vaidya

12. Yang, Z., Li, B., Chen, P., Song, D.: Characterizing audio adversar-
ial examples using temporal dependency. CoRR abs/1809.10875 (2018),
http://arxiv.org/abs/1809.10875

13. Yang, Z., Li, B., Chen, P.Y., Song, D.: Towards mitigating audio adversarial per-
turbations (2018), https://openreview.net/forum?id=SyZ2nKJDz

14. Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., Zhang,
S., Huang, H., Wang, X., Gunter, C.A.: CommanderSong: A sys-
tematic approach for practical adversarial voice recognition. In: Pro-
ceedings of the 27th USENIX Security Symposium (USENIX Secu-
rity ’18). pp. 49–64. USENIX Association, Baltimore, MD (Aug 2018),
https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing

15. Zeng, Q., Su, J., Fu, C., Kayas, G., Luo, L., Du, X., Tan, C.C., Wu, J.: A multiver-
sion programming inspired approach to detecting audio adversarial examples. In:
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). pp. 39–51 (2019). https://doi.org/10.1109/DSN.2019.00019


