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Abstract 

 

Lactococcus lactis has been exploited for thousands of years for the 

production of fermented dairy products, and from an economic perspective has 

become one of the most valuable bacteria. L. lactis is used predominantly as a starter 

culture for the production of various hard and soft cheeses. The constant threat of 

(bacterio)phage infection combined with consumer-driven diversification of product 

ranges have created an increased need to improve technologies for the rational 

selection of novel starter culture blends. Whole genome sequencing, spurred on by 

recent advances in next-generation sequencing (NGS) platforms, is a promising 

approach to facilitate the rapid identification and selection of such strains based on 

gene-trait matching. In this thesis the most up-to-date sequencing methodologies 

were applied to sequence sixteen L. lactis isolates to facilitate an in depth 

comparative and functional genomic analysis of the taxon with particular emphasis 

placed on dairy traits. 

A selection of lactococcal strains were first functionally characterised based 

on their phenotypic traits and assessed for industrial robustness and flavour 

formation using a functional approach. The behaviour of the strains under simulated 

cheese production conditions was monitored, and employed to assess their 

temperature-induced autolytic properties. This analysis was followed by the 

determination of activity profiles of enzymes related to key flavour formation 

pathways, in order to explore proteolytic and lipolytic abilities of each strain. 

Comparative analysis between our selection of L. lactis strains and of four starter 

cultures currently employed in the Irish dairy industry for the production of half-fat 
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Cheddar cheese facilitated the identification of potentially novel starter cultures. In 

total twenty strains were assessed for the activity of twelve separate enzymes related 

to cheese production. From these strains, eleven were selected for whole genome 

shotgun sequencing to further investigate their genetic composition, and to explore 

the possibility of linking genotype to phenotype (also called gene-trait matching).  

The genomes of sixteen L. lactis subsp. lactis and L. lactis subsp. cremoris 

dairy strains were sequenced to completion, doubling the number of fully sequenced 

L. lactis genomes currently available from the public National Centre for 

Biotechnology Information (NCBI) data base. These newly sequenced genomes 

along with available whole genome sequences were used to perform the largest 

comparative and functional genomic study to date on the L. lactis taxon. Their 

chromosomal features were assessed with particular emphasis on discerning the L. 

lactis subspecies division, evolution and niche adaptation. This analysis clearly 

identified a phylogenetic division between subspecies lactis and cremoris strains, 

which was further corroborated by hierarchical clustering based on carbohydrate and 

amino acid metabolic pathways. The pan and core genomes of L. lactis were shown 

to be comprised of 5906 and 1129 genes, respectively. Both were found to be in a 

closed state, indicating that the representative data sets employed for this analysis are 

sufficient to fully describe the genetic diversity of the taxon. Niche adaptation 

appears to play a significant role in governing the genetic content of each L. lactis 

subspecies, while (differential) genome decay and redundancy in the dairy niche was 

also highlighted. The description of chromosomal adaptations in L. lactis has not 

received the same level of attention compared to plasmid-mediated characteristics 

due to the perceived biotechnological importance of the latter. Our comparative 

analysis revealed that the division between plasmid- and chromosome-based traits is 
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less clear as multiple integration events within the lactococcal chromosome suggests 

a more fluid genome than previously thought. 

The complete genome sequence analysis of sixteen L. lactis strains revealed 

the presence of a total of sixty-seven plasmids, including two megaplasmids 

representing the first megaplasmids identified in lactococcal strains. Megaplasmids 

are large autonomous self-replicating extrachromosomal genetic elements greater 

than 100 Kb. While megaplasmids are not essential for the growth of their host, they 

may encode additional metabolic capabilities. Comparative genome analysis of these 

sequences combined with those of publicly available plasmids (eighty one publicly 

available) allowed the definition of the lactococcal plasmidome based on one 

hundred and forty eight complete plasmid sequences, and facilitated an investigation 

into technologically important plasmid-encoded traits. In contrast to the lactococcal 

chromosomes, the lactococcal pan-plasmidome was found to be in a fluid state 

implying that continued sequencing efforts will likely expand the diversity of this 

data set and lead to an increase in the identification of novel plasmid features. In the 

present study, lactococcal gut adhesion was also investigated identifying potential 

gut adhesion factors within the lactococcal plasmidome. It is envisioned that this 

may provide further insights for the application of L. lactis as a vector for vaccine 

and biomolecule delivery. Finally, the frequency of plasmid-encoded phage 

resistance mechanisms was assessed with particular emphasis on abortive infection 

(Abi) systems. In total fourteen plasmid-encoded Abi systems were identified, while 

further analysis also identified frequent occurrences of these systems within the 

lactococcal chromosomes. 

Single molecule real time sequencing (SMRT) was used for the elucidation 

of finished quality genome sequences in this study, which is the first and only 
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sequencing technology to allow concomitant detection of base modifications with 

primary sequence analysis. Here, SMRT technology was applied to determine the 

methylome of sixteen L. lactis strains, which revealed fifty two methylation motifs 

consisting of N6-methyladenine base modifications. Five of these motifs were 

validated as they prevented site-specific cleavage by commercially available 

restriction enzymes. The sixteen strains were predicted to encode a number of unique 

Type I, II, III and IV restriction-modification (R-M) systems. These systems are of 

particular interest in lactococcal strains in terms of the associated bacteriophage-

resistance. Sequence analysis and annotation revealed the presence of a conserved 

type I R-M shufflon system in each of the two identified megaplasmids, consisting 

of multiple hsdS genes arranged around a recombinase gene, thus allowing for the 

generation of multiple specificity targets. The presumed genetic rearrangement 

activity of this system was corroborated by the presence of a number of associated 

type I methylase motifs containing N6-methyladenine base modifications, while the 

predicted shuffling patterns were confirmed by qPCR and analysis of the raw 

sequencing reads. It is envisioned that these systems provide the host with a 

mechanism of adaptive phage defence in response to infection. 

The presence of prophages in lactococcal genomes is widely reported, 

however only a small number of studies pertaining to the stability of the prophages 

in the genomes have been performed. In the concluding part of this study, the 

genomes of thirty lactococcal strains were explored for the presence of potentially 

intact prophages, so as to assess their genomic diversity and the associated risk (or 

benefit) of harbouring such prophages. In total we identified fifty nine (potentially) 

intact prophages, of which most were shown to belong to the so-called P335 phage 

group, while various (presumed) phage remnants (106) bear similarity to members of 
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the 936 phage group. The P335 phage group was recently shown to encompass four 

distinct genetic lineages. In this study a fifth additional lineage was identified, thus 

expanding the diversity of this industrially significant phage group. Furthermore, the 

genomic predictions partnered with chemical induction trials revealed that just four 

strains consistently produced intact phage particles, thus indicating a low risk 

associated with prophage induction in the fermentation setting. The analysis also 

revealed the widespread presence of phage-resistance systems encoded by 

lactococcal prophages including seventeen superinfection exclusion (Sie) systems 

and twelve phage-encoded Abi systems, highlighting the potential benefits for host 

fitness. It was found that prophages may represent a relatively low direct risk to 

cheese production processes but their potential to expedite the evolution of virulent 

phages and the fitness of the host are key features that should be considered when 

selecting starter cultures. 

The research presented in this thesis has significantly advanced our 

understanding of L. lactis in several ways. Firstly, it has significantly expanded the 

number of complete lactococcal genomes available for comparative and functional 

genome analyses, while it has thoroughly scrutinized chromosomal versus plasmid 

diversity, including the elucidation of both the pan/core genome and the pan-

plasmidome. Secondly, the identification of the first lactococcal megaplasmids and 

undertaking of the first methylome analysis of the L. lactis taxon has greatly 

increased our understanding of host-encoded phage defence systems. The frequency 

of lactococcal prophages within the chromosomes of L. lactis has been thoroughly 

investigated concomitantly with the risk of prophage excision. 

Finally, from the inception of this project, the primary goal was to establish a 

methodology for the selection of novel dairy starter cultures applicable to low fat 
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Cheddar cheese fermentations. Phenotypic profile comparisons with four industrial 

isolates, L. lactis JM1-JM4, permitted the selection of similarly performing strains. 

To test this methodology the closest performing strain L. lactis subsp. cremoris 158 

was selected for large scale cheese trials, with professional cheese grading later 

applied. The results of these trials indicated a Cheddar cheese with smooth texture 

reported as “good” overall. The taste was found to be similar to that of a traditional 

table Cheddar with acidic notes, and most notably it would not be apparent to a 

consumer that it represented a Cheddar which was low in fat and salt. This one 

example is encouraging and may pave the way for further explorations using similar 

genome-based approaches. 
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1.1 Introduction – Lactococcus lactis 

 

Lactic acid bacteria (LAB) encompass a diverse group of organisms which 

are Gram-positive, acid-tolerant, non-sporulating, microaerophilic cocci and rods 

capable of producing lactic acid from the degradation of hexose sugars [1]. LAB 

may employ one of two pathways for the metabolism of hexose sugars, making them 

either heterofermentative if they utilise the pentose phosphate pathway, or 

homofermentative if they employ the Embden-Meyerhof-Parnas pathway [2]. As 

such, these organisms include a variety of genera; Aerococcus, Carnobacterium, 

Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, 

Sporolactobacillus, Streptococcus, Tetragenococcus, Vagococcus and Weissella 

species of the order Lactobacillales (Fig. 1.1A) [1]. Many LAB have been granted 

so-called “GRAS” (generally regarded as safe) status by the American Food and 

Drug Administration (FDA) due to a long history of safe use in the production of an 

extensive array of fermented food products [3], although it is also noteworthy that 

some pathogenic bacteria such as Streptococcus pneumonia and Streptococcus 

pyogenes are closely related to this grouping [4]. LAB are commonly associated with 

the production of fermented dairy products such as cheese and yogurt where 

members of the lactococci and S. thermophilus are typically employed as starter 

cultures, while lactobacilli are typically used as adjunct cultures [5]. However, 

lactobacilli are also employed in the production of fermented meats [6], vegetables 

[7] and wines [8]. The success of LAB in the production of fermented foodstuffs is 

due to the rheological and organoleptic properties they impart, in conjunction with 

their preservative qualities through reduced pH and the production of antimicrobial 

compounds, which inhibit spoilage organisms [9-11]. In recent years the role of LAB 
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in functional foods and probiotics has also garnered increasing attention [12], while 

certain LAB including lactococci are now being assessed as delivery vehicles for 

oral drugs, bioactive molecules and vaccines [13-15]. Their extensive application in 

the production of fermented foods, their potential for drug delivery, and their 

extensive laboratory use in cloning and expression studies have rendered lactococci 

as one of the best studied and most valuable genera of bacteria used today. To 

explore the potential novelty of L. lactis in the genomics era this review will focus 

on the applications, genomic studies and phage-host interactions of this species 

while also assessing future prospects for research in this area. 

 

1.1.2 Taxonomy of Lactococcus 

Lactococcus lactis is a Gram-positive, catalase-negative, non-motile and 

coccoid bacterium [16] of the phylum Firmicutes; low G+C bacteria, class Bacilli 

order Lactobacillales, family Streptococcaceae of which Lactococcus represents the 

lactic streptococci. Originally classed as Streptococcus lactis, it was reclassified as a 

separate genus in 1985 [17]. L. lactis is one of several lactococcal species including; 

Lactococcus chungangensis, Lactococcus formosensis, Lactococcus fujiensis, 

Lactococcus garvieae, Lactococcus hircilactis, Lactococcus laudensis, Lactococcus 

nasutitermitis, Lactococcus piscium, Lactococcus plantarum, Lactococcus 

raffinolactis and Lactococcus taiwanensis (Fig. 1.1B). L. lactis species are further 

defined as one of four subspecies; subsp. cremoris, subsp. lactis [which includes a 

biovariant; subsp. lactis biovar diacetylactis capable of (plasmid encoded) citrate 

metabolism], subsp. hordniae isolated from the leafhopper Hordnia circellata [18], 

and subsp. tructae isolated from the brown trout, Salmo trutta [19], both identified as 

lactis species on the basis of 16S rRNA gene sequence similarity [18, 19]. L. lactis 
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subsp. hordniae and subsp. tructae are underrepresented in genomics studies in 

comparison to their dairy counterparts and will largely be excluded from the 

remainder of this review, as the core focus will be on the industrially important 

subsp. cremoris and subsp. lactis (Fig. 1.1C). 

The taxonomic classification of L. lactis has been somewhat controversial in 

recent years for a number of reasons. Firstly, after the reassignment of the dairy 

streptococci, Streptococcus cremoris and Streptococcus lactis, to L. lactis subsp. 

cremoris and subsp. lactis, respectively, the classification of the subspecies was 

based singularly on industrially relevant phenotypic traits [17]. Namely, members of 

the subsp. lactis can typically tolerate 4 % salt, pH 9.2 and temperatures of up to 40 

°C, while growth of subsp. cremoris is typically inhibited under these conditions 

[17]. Additionally, subsp. lactis can metabolise arginine and maltose, whereas subsp. 

lactis biovar. diacetylactis can metabolise citrate [20]. However, genome analysis 

has shed some uncertainty on these divisions wherein specific cases the phenotypes 

and genotypes of atypical strains do not conform, such as L. lactis subsp. cremoris 

MG1363 which displays a cremoris genotype but has a characteristic lactis 

phenotype [3], and various other strains [21]. Furthermore, it should be noted that 

the designation of the biovariant diacetylactis is based on a plasmid-encoded trait 

which may easily be transferred from strain to strain and indeed between subspecies 

by horizontal gene transfer [20, 22]. Finally, while previous studies have challenged 

the taxonomic lactis and cremoris subspecies division [23], the most recent in-depth 

genotypic analysis of the taxon suggests that based on the ANI (average nucleotide 

identity) and TETRA (tetranucleotide frequency correlation coefficients) of the two 

subspecies, a re-evaluation of the taxonomic group separating L. lactis into two 

distinct species Lactococcus lactis and Lactococcus cremoris is required [24]. It is 
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likely that an increasing number of atypical strain variants will be encountered as the 

rate of lactococcal genome sequencing efforts has accelerated in recent years and as 

such the taxonomic groupings are likely to evolve further.  
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Figure 1: Molecular Phylogenetic analysis by Maximum Likelihood method 

[A] 16S rRNA-based phylogenetic analysis of LAB. [B] 16S rRNA-based 

phylogenetic analysis of Lactococcus. [C] 16S rRNA-based phylogenetic analysis of 

the L. lactis taxon. The evolutionary history was inferred by using the Maximum 

Likelihood method based on the Tamura-Nei model [25]. The trees are drawn to 

scale, with branch lengths measured in the number of substitutions per site. All 

positions with less than 95 % site coverage were eliminated. Evolutionary analyses 

were conducted in MEGA6 [26].  
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1.2 Current sequencing strategies 

 Lactococcal genomes typically possess a GC content of 35 - 36 %, range in 

size from 2.2 – 2.6 Mbp, and are frequently accompanied by a rich plasmid 

complement [27, 28]. There are currently eighty five genome assemblies available 

for the L. lactis taxon (correct as of November 2016) from the National Centre for 

Biotechnology Information (NCBI). These assemblies consist of fifteen finished 

quality (i.e. gapless) genomes (Table 1) and a further seventy unfinished or draft 

quality genomes in contigs and scaffolds. The finished quality genomes consist of 

six subsp. cremoris strains and nine subsp. lactis strains. The majority (all but two) 

of the sequenced subsp. cremoris strains were isolated from the dairy niche, with the 

exception of L. lactis MG1363 and its derivative NZ9000, which are employed as 

laboratory strains, although their parent strain NCDO712 was originally isolated 

from the dairy niche [29]. Conversely, greater diversity is observed within the lactis 

subspecies which are frequently isolated from plant-based niches (Table 1). 

Lactococcal isolates of plant origin generally possess a broader carbohydrate 

utilization profile in comparison to their dairy counterparts, and are frequently 

capable of metabolising raffinose, sucrose, xylose and arabinose [30, 31]. The extra 

metabolic abilities of plant-derived strains are reflected in their respective genome 

sequences. For example, L. lactis KF147 is predicted to encode gene complements 

for the degradation and metabolism of xylan, arabinan, glucans and fructans, which 

represent plant-associated sugars [31]. The isolation of strains from these non-dairy 

sources may provide novel cultures for dairy fermentations and deliver desirable 

capabilities in terms of flavour production and industrial robustness [32, 34]. The 

application of next-generation sequencing for the screening of such strains offers a 

valuable avenue of research. 
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Table 1: Current complete lactococcal sequences (correct as of November 2016) 
 

Strain 
Genbank 

accession 
Ecological niche Sequencing technology Year Citation 

ssp. lactis IL1403 AE005176 Dairy isolate Sanger 2001 [33] 

ssp. cremoris SK11 CP000425 Dairy isolate Sanger 2006 [1] 

ssp. cremoris MG1363 AM406671 
Laboratory derivative 

of a dairy strain 
Sanger 2007 [3] 

ssp. lactis KF147 CP001834 Plant isolate 
Combined 454-pyrosequencing & 

Illumina 
2009 [35] 

ssp. cremoris NZ9000 CP002094 
Laboratory derivative 

of a dairy strain 
Illumina 2010 [29] 

ssp. cremoris A76 CP003132 Dairy isolate Sanger 2011 [36] 

ssp. lactis CV56 CP002365 Human isolate 454-pyrosequencing 2011 [37] 

ssp. lactis IO-1 AP012281 Drain water Sanger 2012 [38] 

ssp. cremoris UC509.9 CP003157 Dairy isolate 
Combined 454-pyrosequencing & 

Illumina 
2012 [39] 

ssp. cremoris KW2 CP004884 Dairy isolate 454-pyrosequencing 2013 [40] 

ssp. lactis KLDS 4.0325 CP006766 Koumiss Illumina 2013 [41] 

ssp. lactis NCDO 2118 CP009054 Frozen peas SOLiD, Ion PGM & Ion Torrent PGM 2014 [42] 

ssp. lactis SO CP010050 Dairy isolate Ion Torrent PGM 2014 [43] 

ssp. lactis AI06 CP009472 Açaí palm 454-pyrosequencing 2014 [44] 

ssp. lactis A12 LT599049 Wheat sourdough 454 GS FLX platform 2016 [45] 
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1.2.2 Comparison of NGS approaches 

There are a number of next-generation techniques available with associated 

advantages and disadvantages to each technique depending on the desired 

application (Table 1.2). For the study of lactococcal starter cultures, any of the 

sequencing techniques mentioned in Table 1.2 may be applied to obtain finished 

genome sequences due to the small genome size of these species: strains of L. lactis 

typically possess a ~2.5 Mb chromosome. 

454-pyrosequencing is a next generation high throughput sequencing method 

based on the “sequence by synthesis” approach and is useful due to its longer read 

length compared to read lengths generated by the Illumina or Ion-torrent platforms: 

700 bp compared to 300 and 400 bp, respectively. While 454-pyrosequncing has 

been used extensively over the last 10 years, it was announced in 2013 that Roche 

will begin phasing out the technology by mid-2016. The discontinuation of 454-

pyrosequencing is primarily due to the advent of lower cost, high(er) through-put 

sequencing technologies, along with increasing read-lengths of the alternative NGS 

technologies [46]. Errors in homopolymer sequence tracts have also been reported 

with the 454-pyrosequencing method [47] and Ion torrent technology [48].  

The Ion-Torrent PGM “Personal Genome Machine” represents a low-cost 

and rapid sequencing methodology generating approximately 80 million sequence 

reads in a single run of ninety minutes. The Illumina system is one of the most 

widely used sequencing approaches in recent years and can generate a large volume 

of sequencing data [49], although, the average read length is relatively low, in 

particular when compared to the newer PacBio SMRT platform. Current Illumina 

sequencing-by-synthesis (SBS) instruments are capable of generating over 1 

terrabase of data in a single run and can sequence bacterial genomes in a matter of 
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hours. These properties, combined with low sequencing costs, have underpinned the 

success and current dominance of the Illumina sequencing technology. 

The PacBio SMRT sequencing approach has the advantage of the longest 

read lengths of any sequencing technology currently in use [50], with Pacific 

Biosciences reporting N50 read lengths of > 14,000 bp and maximum read lengths of 

> 40,000 bp, which is extremely useful for covering repetitive regions of genomes, 

particularly so in lactococcal genomes where a large number of insertion sequence 

(IS) elements cause problems during sequence read assembly [51-53]. The SMRT 

sequencing approach also moves beyond traditional detection of the four DNA bases 

as it is the first high-throughput approach to directly detect DNA base modifications 

[54]. This allows SMRT sequencing to differentiate between unmodified bases and 

those with m6A, m4C or m5C base modifications [55]. One drawback of the PacBio 

SMRT platform which should be considered is the higher single read error rate 

compared to other NGS platforms. Since launching the SMRT platform, Pacific 

Biosciences have addressed this issue by incorporating circular consensus 

sequencing (CCS), which has led to greatly reduced error rates [56] and a consensus 

accuracy, currently reported at 99.999 %. While some early studies reported 

sequencing inaccuracy of ~13-18 % [57, 58], more recent studies are reporting a 

large reduction in these rates [59]. As mentioned, PacBio sequencing offers longer 

read lengths and faster runs than other methods but it also has a lower throughput 

and higher cost per base. The advantages of PacBio sequencing and other 

technologies such as Illumina are complementary, and pairing these technologies 

may be a useful approach for whole genome sequencing. 
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Table 1.2: Comparison of next-generation sequencing technologies adapted from [49] 

Platform Library 

Preparation 

Chemistry Consensus 

Accuracy 

Average 

Read Length 

(bp) 

Reads per 

Run 

Run time  Pros Cons Application References 

Roche 454 GS 

FLX 

Titanium+ 

Fragment, Mate 

Pair/ emPCR 

Pyrosequencing 99.997% ~700, 

maximum 

1000 

~1,000,000 23 hours Long read length High reagent 

cost, 

homopolymer 

repeat errors 

De novo assemblies, 

metagenomics 

http://454.com/pro

ducts/gs-flx-

system/index.asp   

           

Illumina- 

Solexa MiSeq 

Fragment, Mate 

Pair/ Solid 

phase 

Reversible 

terminator 

98% 2 x 300 ~25,000,000 ~55 hours 

300bp 

reads 

Widely used 

platform 

Short read 

length 

Small genomes, 16s 

amplicon, improving 

coverage 

http://systems.illu

mina.com/systems

/miseq.html  

           

Life 

Technologies 

SOLiD  5500 

Series  

Fragment, Mate 

Pair/ emPCR 

Sequencing by 

ligation 

(Cleavable 

probe) 

99.99% Mate-paired 2 

x 60, Paired-

end 75x 35 

Fragment 75 

1.2-1.4 billion 1-2 weeks Low-cost Slow, issues 

with 

palindromic 

sequences 

reported 

Whole genome re-

sequencing, variant 

analysis 

http://www.lifetec

hnologies.com/ 

[60] 

           

Life 

Technologies 

Ion Torrent 

Fragment, Mate 

Pair/ emPCR 

Sequential ion 

detection 

98% 35-400 80,000,000 90 minutes Fast and inexpensive Reported 

homopolymer 

errors 

Small genomes, gene 

expression, ChiP-SEQ 

http://www.lifetec

hnologies.com/  

           

Pacific 

Biosciences 

SMRT RS II 

Fragment only/ 

Single molecule 

Real-time 99.999%  N50 14,000, 

maximum 

>40,000  

~50,000 30mins - 4 

hours 

Longest read length, 

detects base 

modifications, fast 

Low single 

sequence 

accuracy 87% 

De novo assemblies, 

Base modification 

detection, Transcriptome 

sequencing 

[50, 61] 

http://www.pacifi

cbiosciences.com/ 
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As discussed, the PacBio SMRT platform currently possesses a number of 

unique advantages over other NGS methods. However, a noteworthy new single 

molecule sequencing method currently in development is Nanopore sequencing 

which may challenge PacBio’s dominance in this area. Nanopore sequencing is 

predicted to deliver long read lengths and base modification data, while the simple 

sample preparation and possibility of label-free DNA sequencing is expected to 

reduce sequencing costs dramatically [62].  

Genotypes of lactococcal strains derived from genomics (Table 1.1) can 

provide significant information about industrially important traits. There is an 

impressive array of tools available for post-sequencing and comparative genomic 

analysis (readers requiring more information should refer to [63]). Here we discuss 

some of the key genetic markers derived from genomic analysis with particular 

emphasis on their respective industrial applications. 
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1.3 Comparative genomics of L. lactis 

 

1.3.1 Dairy industry 

L. lactis is one of the dominant starter cultures employed globally by the 

dairy industry [64], particularly for the production of soft and hard cheeses, making 

it one of the most economically important bacteria today [65]. Consequently, 

genomic research in this area is skewed towards dairy-derived strains [51]. It is 

widely accepted that the original niche environment of L. lactis is plant-based [32, 

66, 67] and that the majority of dairy strains in use today are derived from a small 

number of closely related lineages. Therefore, extensive redundancies are thought to 

exist in strain collections throughout the world [20]. One of the prominent findings 

from previous work in lactococcal genomics is the extent of genome decay and 

reductive evolution in dairy lactococci particularly within the cremoris subspecies 

[1, 28, 68], as is obvious from a substantial number of deletions and pseudogenes. 

Dairy strains are relatively auxotrophic and have significantly diminished 

carbohydrate metabolic abilities in comparison to plant-derived isolates which is 

attributed to continuous passage in rich growth media (milk) [31, 69, 70]. While 

adaptation to the dairy environment has resulted in significant decay within the 

chromosomes of dairy lactococci, it has also resulted in the acquisition of a number 

of novel features (primarily associated with plasmids) within these strains, including 

the ability to metabolise lactose, citrate and casein. 
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1.3.1.1 Lactose metabolism 

The gene products of the lac operon facilitate and govern lactose utilisation 

in LAB and provide dairy strains with the ability to rapidly ferment lactose required 

for growth in milk. In L. lactis the plasmid-borne lac operon consists of the genes 

lacABCDEFGX and is regulated by a repressor, encoded by the adjacent lacR gene 

[71]. Loss of the lac operon has been reported due to the instability of the large 

extra-chromosomal element on which it is located [72], resulting in spontaneous 

mutants that are incapable of growth in milk. Interestingly, the plasmid-cured 

laboratory strain L. lactis MG1363, which does not harbour the lac operon, is 

capable of growth on lactose-supplemented media following prolonged adaptation 

due to the activity of a cellobiose-specific phosphotransferase system (PTS), which 

can act as an alternative lactose utilisation pathway [73]. Another example of an 

alternative lactose metabolic pathway is found in the slow lactose fermenter L. lactis 

NCDO2054 which metabolises lactose via the Leloir pathway [74]. This occurs as a 

result of lacA, which encodes a galactoside acetyltransferase, and lacZ, which 

encodes a β-galactosidase, being integrated into the gal (galactose) operon [75]. 

Such data suggests that phenotypic growth on lactose may not be an absolutely 

reliable indicator for the presence of the lac operon within lactococcal strains. 

Further studies have suggested that certain PCR-based techniques may be unreliable 

in indicating the lactose utilisation phenotype. 

A recent study by Ferrario and colleagues [76] reported on the screening for 

isolates of L. garvieae in the dairy environment using primers targeting the lacG 

gene. They found that lacG is variably present among L. garvieae isolates from meat 

and is not limited to dairy isolates, demonstrating the need for complete genome 

sequences for the correct identification of dairy isolates. 
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1.3.1.2 Citrate metabolism 

Citrate metabolism in dairy fermentations conducted by citrate-positive (Cit+) 

lactococci and Leuconostoc spp. is important as it leads to the production of a 

number of volatile flavour compounds [77]. Citrate uptake and subsequent diacetyl 

production is governed by the plasmid-encoded citQRP operon in lactococcal species 

[78]. It has been demonstrated that the citP gene is well conserved amongst LAB 

with approximately 98 % amino acid identity making it a useful screening target for 

Cit+ starters [78]. Lactococci capable of metabolising citrate are classified as L. lactis 

subsp. lactis biovar diacetylactis [20], a classification that has led to confusion since 

plasmid-encoded characteristics such as citrate and arginine metabolism can be 

transferred to subsp. cremoris strains leading to incorrect characterisation based on 

phenotype [20]. It is also noteworthy that recent studies have indicated potential 

adverse health effects associated with diacetyl production, which may lead to the 

removal of diacetyl-producing LAB from starter cultures [79]. These adverse effects 

are predoimantly associated with the exposure of factory workers to vapour-phase 

diacetyl while diacetyl in dairy products is still considered safe at levels of 6 – 9 ug / 

g [79]. 

 

1.3.1.3 Proteolysis and casein metabolism 

Proteolysis and the degradation of casein from milk is one of the most 

important contributors to flavour development in cheese [80]. Lactococcal strains 

contribute to proteolysis through the hydrolysis of casein by peptidases and 

proteases, and the catabolism of peptides and amino acids from casein breakdown 

[81]. There are a number of genes which contribute to this function, including (i) 

various (and mostly) chromosomally-specified peptidase-encoding genes (e.g. pepC, 
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pepN, pepX, pepP, pepA, pepF2, pepDA1, pepDA2, pepQ, pepT, pepM, and pepO1), 

(ii) the plasmid-encoded opp operon, which specifies an oligopeptide-uptake system, 

and (iii) the plasmid-borne gene that specifies the L. lactis cell wall-associated 

protease PrtP, required for the proteolytic phenotype [82]. The majority of the genes 

mentioned above are monocistronic elements (e.g. pepC, pepN and prtP) or co-

transcribed, such as opp and pepO1, while pepF2, pepM and pepT are transcribed 

with genes that are (apparently) unrelated to proteolysis [83]. There are also a 

number of uncharacterised proteins which contain peptidase-associated domains, 

many of which are strain-specific and their roles may become more clear as more 

genome sequences become available [84].  

As discussed, proteolysis contributes greatly to cheese flavour development, 

however, high levels of proteolysis can also cause bitterness defects in cheese [85]. 

The L. lactis extracellular cell wall proteinase (lactocepin) is directly involved in 

bitterness flavour defects in Cheddar cheese varieties, specifically starters which 

produce group a, e, or h lactocepin [85]. Broadbent et al. [85] concluded that the 

bitterness defect in cheese could be altered through gene exchange or replacement in 

the starter culture. These findings highlight the benefits of subsp. cremoris strains in 

lactococcal starter cultures in comparison to subsp. lactis. A recent study by Liu et 

al. [86] demonstrated that our knowledge of the proteolytic system in LAB can be 

enhanced by systematic genome-wide studies of the regions encoding proteins 

involved in proteolysis. They indicated that comparative genomics can be used to 

distinguish various sub-groups within protein superfamilies involved in proteolysis 

where the generated information predicts the proteolytic ability of LAB strains. A 

major finding from this study was the confirmation of proteolytic diversity among 

ssp. lactis and ssp. cremoris strains and the provision of a genetic basis for this 
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diversity, linked to distinct patterns in the presence or absence of genes encoding 

proteolytic functions [86]. 

 

1.3.1.4 Lipolysis 

Lipolysis involves the breakdown of milk fats and hydrolysis of triglycerides 

into lipids and fatty acids, activities that are considered to be crucial for flavour 

development in cheese production, particularly in the production of Cheddar cheese 

varieties [77]. Lipolytic enzymes produced by LAB are mainly represented by 

esterases and lipases that belong to a class of enzymes called the carboxylic ester 

hydrolases [87]. Apparently, estA is the only esterase-encoding gene in L. lactis, 

being capable of hydrolysing short chain fatty acid esters [88]. However, this 

research area of cheese flavour development remains considerably under-represented 

in lactococcal studies compared to those related to proteolysis [77]. Therefore, a 

genomics approach may prove to be beneficial in broadening our scope of 

knowledge on lipolysis in lactococcal strains. 

 

1.3.1.5 Matrix formation 

Exopolysaccharides (EPS) produced by LAB are secreted polysaccharides 

which may remain attached to the cell envelope as capsular EPS (CPS) or released in 

the surrounding medium [89]. Producing strains are generally described as “ropy” or 

“non-ropy”, a term which describes the threads drawn with a needle from the surface 

of the colonies or fermented liquid [90]. The EPS produced by certain dairy LAB 

can impact on the protein matrix of fermented dairy products by affecting the casein 

gel structure and acting as a filler [91]. A common assay for the differentiation of 

ropy and non-ropy colonies utilises ruthenium red stain in milk agar plates. 
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Ruthenium red stains the cell walls, thereby producing red colonies in case of non-

ropy, non-EPS producing cells, yet is unable to stain cell walls of ropy, EPS 

producers, which therefore remain white [92]. 

 EPS production by L. lactis is a characteristic trait of strains isolated from 

viscous Scandinavian fermented milk products and is widely reported as a plasmid-

encoded trait [93-96]. EPS production by L. lactis strains is of particular importance 

for fermented dairy products, as EPS is considered to be a food-grade additive, and 

contributes significantly to properties such as mouth-feel and texture [97].  

L. lactis strains may produce two types of EPS: homo-polysaccharides and 

hetero-polysaccharides, being comprised of a repeating monosaccharide, or a 

repeating oligosaccharide, respectively [98, 99]. EPS biosynthesis of the hetero-

polysaccharide type in L. lactis takes place by the Wzy-dependent mechanism [99], 

beginning with the transfer of a sugar-1-phosphate from a Uridine diphosphate-sugar 

to a lipid undecaprenyl-phosphate acceptor via a priming glycosyltransferase [100]. 

Subsequent sugars are then incorporated by additional glycosyltransferases, typically 

encoded downstream of the gene that specifies the priming glycosyltransferase 

[101]. The oligosaccharide repeating units are then transported across the 

cytoplasmic membrane by a flippase, and undergo polymerization by the Wzy 

polymerase [101]. A number of studies have reported on EPS production by L. lactis 

strains, and in each case the EPS produced was (predicted to be) a plasmid-encoded, 

hetero-polysaccharide whose biosynthesis occurred according to a Wzy-dependent 

mechanism [98, 99, 102].   
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1.3.2 Biotechnology 

 To date a number of bacteria have been exploited for the production and 

expression of recombinant proteins, both in research and industry. Escherichia coli is 

the most intensively used bacterium for this purpose and this bacterium allows the 

highest levels of production for certain proteins [103], however E. coli has a number 

of downstream processing issues associated with its use. E. coli produces the vast 

majority of proteins in the cytoplasm or periplasm, which requires cell harvesting, 

lysis and purification, E. coli furthermore produces endotoxins which can cause 

issues for proteins which are to be administered to people as biopharmaceuticals 

[104]. Bacillus species have also been widely used with the advantages of “GRAS” 

status and the option of extracellular secretion of the desired protein [105]. However, 

heterologous proteins produced by Bacillus are frequently degraded by its complex 

extracellular proteolytic system [106]. L. lactis is becoming an increasingly 

employed alternative to the aforementioned species as it also has “GRAS” status, 

secretes extracellularly, has a relatively simple metabolism [33] and secretes only 

one extracellular protein, Usp45, at significant levels [107], simplifying downstream 

processing [104]. 

 

1.3.2.1 Expression systems 

 A number of different expression systems are currently described in L. lactis 

for heterologous protein expression and have been reviewed thoroughly [104, 108, 

109]. One of the most successful and extensively employed expression systems is the 

nisin-inducible controlled gene expression (NICE) system [110] (extensively 

reviewed in [111]). Briefly, the NICE system is derived from the lactococcal nisin-

producing operon (nisABTCIPRKEFG) [112] and utilises the regulatory elements of 



32 

 

the operon for controlled expression, PnisA (promoter) and nisRK (regulator-sensor) 

(Fig. 1.1) [104]. The advantages of such a system are the ease of use, tight control 

and suitability for large scale production [111]. While extremely useful for research 

interests, there are however some disadvantages for industrial application of the 

NICE system, primarily associated with the cost and downstream removal of the 

nisin for certain applications [104, 111]. 

 

 

 

 

 

 

 

Fig 1.1: NICE system in L. lactis (Image taken from [111]) 

Nisin-controlled gene expression; nisK (encodes nisin-responsive histidine–protein 

kinase), nisR (encodes response regulator), Gene X (cloned target gene to be 

expressed) and nisA (promoter, indicated here as P) [111]. 
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1.3.2.2 Delivery systems and vectors 

L. lactis used as cell factories for the production of heterologous proteins 

have a number of industrial and clinical applications with many of those focused on 

utilising L. lactis as a vector for the delivery of specific proteins either directly to a 

fermentation process or in clinical situations. L. lactis strains with increased 

proteolytic capabilities have previously been used in dairy fermentations by 

heterologous expression of the peptidases; PepN, PepC, PepX and PepI from 

Lactobacillus helveticus [113] and PepI, PepL, PepW and PepG from Lactobacillus 

delbrueckii [114] for improved cheese ripening. In addition, food fermentations 

employing L. lactis strains that are engineered to (over)produce riboflavin (vitamin 

B2), acetaldehyde, diacetyl or folate (vitamin B11) have also been developed [115].  

 Applications in health and medicine are an emerging area of interest for L. 

lactis and a number of studies have demonstrated the potential of L. lactis for the 

production and/or delivery of such pharmaceutical products. Hyaluronic acid, used in 

medicines, drug delivery systems and vaccine aids, was produced in L. lactis by 

incorporating the hyaluronic acid biosynthesis operon, NICE system and the lacF 

selective marker through chromosomal integration [116]. L. lactis has also been 

engineered to produce Interleukin 10, used as a treatment for inflammation in mouse 

colitis models [117], and has since been approved for small-scale clinical trials in 

humans with inflammatory bowel disease [118]. One of the major advantages of 

using lactococcal strains in human health, particularly for the delivery of vaccines is 

that L. lactis does not belong to the normal human microbiota making oral and gut 

colonisation unlikely [119]. This is beneficial as mucosal vaccination with gut-

colonizing bacteria could lead to increased antigen tolerance [119]. Consequently, a 
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number of studies are currently investigating lactococcal strains as mucosal delivery 

vectors for both therapeutic proteins and DNA vaccines [120-124]. 
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1.4 Lactococcal Plasmids 

 Plasmids are semi-autonomously replicating extrachromosomal genetic 

elements, which are typically not essential for growth [125], but which may encode 

traits that confer important niche-specific phenotypes to their respective host [66]. 

Large plasmid complements are frequently carried by lactococcal strains, particularly 

those isolated from the dairy niches, these appeared to have acquired such an 

elaborate plasmid complement in order to adapt to the nutrient-rich environment, 

milk [20, 27, 34]. Many of the conferred phenotypic traits include industrially 

important adaptations such as stress tolerance, (bacterio)phage-resistance 

mechanisms, and enhanced proteolytic and carbohydrate metabolic capabilities [65, 

126, 127].  

 Current sequencing efforts have resulted in the availability of 86 lactococcal 

plasmids from the NCBI (correct as of December 2016) detailed in Table 1.3. 

Lactococcal plasmids range in size from 1 – 72 Kbp (the latter being pCIS8 of 

UC509.9), with various sequenced complements containing up to eight individual 

plasmids [27], while it has been estimated that some strains may contain up to 

fourteen [20]. The majority of the current data set has been obtained from the dairy 

niche (64/86); dairy strains typically contain four or five plasmids, while their plant 

equivalents generally harbour just one or two, or none at all [40, 128]. The 

persistence of larger plasmid complements in dairy strains is due to a number of 

factors; the lac and cit operon as discussed previously [71, 78] are predominantly 

plasmid-encoded, as is the opp operon and a number of casein specific peptidases 

[82, 83], as well as a host of phage defence mechanisms [65, 129]. Many of these 

traits are mobilisable and transmissible by horizontal gene transfer via conjugation or 

transduction [126].  
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Table 1.3: Lactococcal plasmids sequenced to date*  
Name Accession Size 

(Kbp) 

GC 

(%) 

Genes Niche Replication 

mode 

Citation 

KLDS 4.0325 

p1 

CP006767 4.094 30.02 4 Fermented 

food 

RCR [41] 

KLDS 4.0325 

p2 

CP007042 0.870 32.64 2 Fermented 

food 

Undetermined [41] 

KLDS 4.0325 

p3 

CP007043 1.278 32.63 4 Fermented 

food 

Undetermined [41] 

pAF04 JQ821353 3.801 32.02 4 Dairy Theta [225] 

pAF07 JQ821354.1 7.435 36.44 6 Dairy Theta [225] 

pAF12 JQ821355.1 12.067 33.30 11 Dairy Theta [225] 

pAF14 JQ821356.1 14.419 34.07 11 Dairy Theta [225] 

pAF22 JQ821357.1 22.388 34.95 23 Dairy Theta [225] 

pAG6 AB198069 8.663 33.70 8 Unknown Theta - 

pAH33 AF207855 6.159 35.85 7 Dairy Theta [183] 

pAH82 AF243383 20.331 34.44 17 Dairy Theta [226] 

pAR141 DQ288662 1.594 36.14 2 Dairy RCR [227] 

pAW153 HQ646604.1 7.122 31.35 8 Unknown Theta [228] 

pAW601 AJ132009.2 4.752 31.42 1 Unknown Theta - 

pBL1 AF242367 10.899 32.62 8 Dairy Theta [229] 

pBM02 AY026767 3.854 35.73 6 Dairy RCR [230] 

pCD4 AF306799 6.094 33.43 5 Dairy Theta [134] 

pCI305 AF179848 8.694 32.41 8 Dairy Theta [231] 

pCIS1 CP003165 4.263 31.97 2 Dairy Theta [39] 

pCIS2 CP003164 5.461 30.07 4 Dairy Theta [39] 

pCIS3 CP003163 6.159 35.85 5 Dairy Theta [39] 

pCIS4 CP003162 7.045 38.42 10 Dairy Theta [39] 

pCIS5 CP003161 11.676 34.06 10 Dairy Theta [39] 

pCIS6 CP003160 38.673 37.12 30 Dairy Theta [39] 

pCIS7 CP003159 53.051 32.40 48 Dairy Theta [39] 

pCIS8 CP003158 80.592 33.97 72 Dairy Theta [39] 

pCL2.1 U26594 2.047 33.95 2 Unknown RCR [232] 

pCRL1127 AF409136 8.278 34.82 7 Unknown Theta - 

pCRL291.1 AF380336 4.640 33.51 3 Unknown Theta - 

pCV56A CP002366 44.098 32.08 41 Human Theta [37] 

pCV56B CP002367 35.934 34.54 31 Human Theta [37] 

pCV56C CP002368 31.442 32.49 27 Human Theta [37] 

pCV56D CP002369 5.543 32.24 6 Human Theta [37] 

pCV56E CP002370 2.262 33.82 4 Human Theta [37] 

pDBORO DQ089807 16.404 35.16 15 Unknown Theta - 

pDR1-1 AB079381 7.412 33.70 6 Dairy Theta - 

pDR1-1B AB079380 7.344 33.74 6 Dairy Theta [233] 

pFI430 DQ011112.1 59.474 34.63 57 Dairy Theta [234] 

pGdh442 AY849557 68.319 35.11 63 Plant Theta [235] 
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pHP003 AF247159 13.433 40.05 6 Dairy Theta [236] 

pIL1 HM021326 6.382 32.28 7 Dairy Theta [237] 

pIL105 AF116286 8.506 29.79 7 Dairy Theta [238] 

pIL2 HM021327 8.277 34.82 10 Dairy Theta [237] 

pIL3 HM021328 19.244 35.11 20 Dairy Theta [237] 

pIL4 HM021329 48.978 35.11 47 Dairy Theta [237] 

pIL5 HM021330 23.395 34.49 22 Dairy Theta [237] 

pIL6 HM021331 28.434 33.64 25 Dairy Theta [237] 

pIL7 HM197723 28.546 34.10 26 Dairy Theta [237] 

pK214 X92946 29.871 32.45 29 Unknown Theta [239] 

pKF147A CP001835 37.510 32.38 32 Plant Theta [35] 

pKL001 EU289287 6.068 32.86 4 Unknown Theta - 

pKP1 FR872378 16.181 35.94 7 Dairy Theta [240] 

pL2 DQ917780 5.299 32.46 5 Dairy Theta [241] 

pLP712 FJ649478.1 55.395 37.39 44 Dairy Theta [135] 

pMN5 AF056207 5.670 30.26 4 Dairy RCR [242] 

pMRC01 AE001272 60.232 30.11 63 Dairy Theta [243] 

pNCDO2118 CP009055 37.571 32.33 32 Plant Theta [42] 

pND324 U44843 3.602 33.37 3 Unknown Theta - 

pNP40 DQ534432 64.980 32.33 62 Dairy Theta [137] 

pNZ4000 AF036485 42.810 33.31 45 Dairy Theta [93] 

pQA504 CP003136 3.978 37.83 3 Dairy Undetermined [36] 

pQA518 CP003135 17.661 37.40 13 Dairy Theta [36] 

pQA549 CP003134 49.219 35.14 44 Dairy Theta [36] 

pQA554 CP003133 53.630 34.86 54 Dairy Theta [36] 

pS7a AJ550509 7.302 33.43 5 Dairy Theta [244] 

pS7b AJ550510 7.264 33.65 5 Dairy Theta [244] 

pSRQ700 U16027 7.784 34.19 9 Dairy Theta [245] 

pSRQ800 U35629 7.858 31.33 7 Dairy Theta [245] 

pSRQ900 AF001314 10.836 31.13 11 Dairy Theta [245] 

pVF18 JN172910 18.977 33.90 21 Dairy Theta [246] 

pVF21 JN172911 21.728 33.59 14 Dairy Theta [246] 

pVF22 JN172912 22.166 35.14 19 Dairy Theta [246] 

pVF50 JN225497 53.876 34.50 41 Dairy Theta [246] 

pWC1 L75827 2.846 29.48 1 Dairy RCR - 

pWV01 X56954 2.178 33.43 4 Dairy RCR [130] 

pWVO2 NC_002193.1 3.826 31.34 1 Unknown Theta [131] 

SK11 p1 CP000426 14.041 34.37 13 Dairy Theta [1] 

SK11 p2 CP000427 9.554 30.44 10 Dairy Theta [1] 

SK11 p3 CP000428 74.750 35.41 69 Dairy Theta [1] 

SK11 p4 CP000429 47.208 34.84 42 Dairy Theta [1] 

SK11 p5 CP000430 14.206 33.55 10 Dairy Theta [1] 

pIBB477a CM007354 66.364 33.18 66 Dairy Theta [247] 

pIBB477b CM007355 64.760 35.99 56 Dairy Theta [247] 



38 

 

pIBB477c CM007356 48.496 32.97 42 Dairy Theta [247] 

pIBB477d CM007357 16.577 31.78 17 Dairy Theta [247] 

pIBB477e CM007358 11.987 39.60 15 Dairy Theta [247] 

*(Correct as of November 2016) 

 

1.4.1 Plasmid replication 

 Most of the lactococcal plasmids that have been isolated to date replicate by 

the theta mechanism, while in a small number of cases the rolling-circle replication 

(RCR) mechanism of replication is used (Table 1.3) [130, 131]. RCR replication 

relies on a replication protein and a double-stranded origin of replication (dso), 

which contains a nic site composed of one or more inverted repeats, and a Rep-

binding site consisting of two to three direct repeats or an inverted repeat [127, 132]. 

Replication initiates when a single-stranded break is introduced to the nic site of the 

dso by the replication protein, which results in a free 3′ single strand DNA used in 

leading strand synthesis [133]. The parental strand is then displaced by the 

replicating strand until the new dso is reached. Lagging-strand replication occurs on 

the displaced parental strand from a non-coding region, which generates a stem loop 

structure, termed the single-stranded origin (sso) [133]. Just seven plasmids in the 

current data set are predicted to utilise RCR (Table 1.3). The finding that only a 

relatively small number of plasmids utilise RCR may be due to a number of factors, 

such as the limited replicon size (<10 Kb), incompatibility with other RCR type 

plasmids [130], and/or intrinsic structural and segregational instability [65]. 

Replication via the theta method requires a replication (initiation) protein 

(encoded by rep), an origin of replication (ori) comprised of an AT-rich region with 

(typically) three and a half iterons of 22 bp in length and two inverted repeats 

overlapping the -35 site of the rep promoter. Replication in theta plasmids may be 

uni- or bi-directional from multiple origins [127, 132]. Theta type replicons have a 
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limited host range but are significantly more stable in comparison to RCR plasmids 

[134] and perhaps for this reason represent the majority of sequenced lactococcal 

plasmids (76 out of 86 known plasmids) (Table 1.3). 

 

1.4.2 Plasmid transfer 

 Conjugation and transduction are believed to be the dominant mechanisms of 

plasmid transfer in L. lactis [65]. Transduction is a phage-mediated method of DNA 

transfer, where the plasmid DNA is packaged (instead of phage DNA) into the phage 

head and transferred to a new host upon infection, the size of the transduced plasmid 

is limited by the internal capacity of the capsid of the transducing phage [135, 136]. 

Previous studies have observed high frequency transduction in L. lactis NCDO712, 

where small (< 5 kb) plasmids were transduced at a frequency of 2.1 × 10−3 to 2 × 

10−4 transductants per plaque-forming unit (PFU) [135]. 

Particular emphasis has been placed on conjugation as it is considered a 

naturally occurring DNA transfer process without the issues of host specificity 

associated with phages and for this reason may be used in food-grade applications to 

confer beneficial traits to industrial strains [127]. During conjugation, plasmid DNA 

is passed from a donor cell to a recipient through the formation of a conjugative 

channel or pilus [126]. Generally, during conjugation the AT-rich, so-called ‘origin 

of transfer’ or oriT of the conjugative plasmid is nicked by a nickase, and the 

resulting ssDNA strand is passed on to a recipient cell [126], though the precise 

mechanistic details of the conjugation process in L. lactis remain unclear. The tra 

(transfer) locus is believed to be responsible for the donor-to-recipient DNA transfer 

process of conjugation [137]. Previous studies have identified traF as encoding a 

membrane-spanning protein involved in channel formation and membrane fusion 
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[22, 137]. In addition, traE and traG have been proposed to encode proteins 

involved in the formation of the conjugal pilus similar to type IV secretion systems 

[22, 137]. Typically, the three tra genes (i.e. traE, traF and traG) are part of a larger 

gene cluster (consisting of up to fifteen genes), including traA, which encodes a 

relaxase. However, precise functions for the remainder of the genes in the tra gene 

cluster have yet to be elucidated. 

While the tra operon is believed to be involved in the formation of the 

conjugative apparatus and physical transfer of plasmid DNA, another set of 

mobilisable genes termed mob are thought to be responsible for the mobilisation of 

other (non-conjugatable) plasmids in L. lactis [127, 137, 138]. Variants of four main 

mob genes are distributed throughout the lactococcal plasmidome; mobA and mobD 

encode nickases, and mobB and mobC, whose protein products are thought to form a 

relaxosome with an associated nickase (mobA or mobD) at the origin of transfer 

(oriT); usually in the genetic conformation mobABC or mobDC [139]. Although 

many lactococcal plasmids appear to be non-conjugatable, mob genes appear in high 

frequency throughout the plasmidome and may be a reflection of plasmid 

acquisition/transfer events by mobilisation in the past [129]. 

 

1.4.3 Bacteriocin Production 

Bacteriocins are a diverse group of ribosomally synthesized peptides, 

produced by some bacteria and archaea, which have a bactericidal or bacteriostatic 

effect on other bacteria when secreted [140]. Bacteriocin production is a double-

edged and important consideration in selecting starter cultures, as producing strains 

may inhibit other desirable strains in mixed starter cultures or adjunct cultures added 

later in the fermentation process; however, they also offer the benefit of inhibiting 

the growth of spoilage bacteria in food products. Traditionally, a range of culture-
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based methods have been used in screening for bacteriocin producers, most 

commonly based on the principles of diffusion in agar plates and cell-free 

supernatants [141-143]. In recent years, sequence-based analysis tools have become 

a valuable aid in the identification of novel bacteriocins with the availability of 

databases and search-tools such as the BAGEL3 web-based bacteriocin mining tool 

[144]. 
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1.5 Phages and host resistance systems 

 While the technological attributes of dairy starter cultures are essential to 

achieve the desired flavours and characteristics in the final product, the phage 

robustness of these strains is also an important consideration. Since the discovery of 

lactococcal phages (i.e. viruses that infect bacterial cells) by Whitehead and Cox in 

1935, phage infection has been recognized as the main cause of commercial 

fermentation problems with concomitant economic impact [145]. The selection of a 

suitable starter culture would normally include the assessment of susceptibility to 

phage infection (and of course acidification and flavour/texture formation), but with 

the advent of modern sequencing technologies, starter culture suppliers can now also 

screen strains for the presence of prophages as well as the arsenal of plasmid- and/or 

chromosomally-encoded phage-resistance mechanisms [27, 146, 147].  

Phages may follow one of two possible life cycles, i.e. the lytic or 

temperate/lysogenic life cycle, depending on the phage and the environmental 

circumstances. Phages entering the lytic cycle subvert the host DNA/protein 

synthesising machinery in order to multiply themselves intracellularly, which is then 

followed by host cell lysis and consequent release of progeny phages. However, 

conditions may not favour the lytic life cycle and as a result some phages engage in a 

lysogenic life cycle by incorporating their genomes within the chromosome of their 

host, thereby allowing phage genome replication in situ with that of the host’s 

chromosome. This process allows the phage to replicate ‘silently’ each time the 

bacterium undergoes cell division by binary fission. Under certain (stress) conditions 

the lysogenic phage will excise from the host chromosome and enter the lytic cycle. 
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1.5.1 Lactococcal phage taxonomy 

 Lactococcal phages belong to the order Caudovirales which encompasses 

over 95 % of all known phages into an extremely large, genetically and 

morphologically diverse group [148]. The order Caudovirales is composed of three 

major phage families, namely the Myoviridae, Siphoviridae and Podoviridae. 

Lactococcal phages belong to one of two of these phage families, i.e. the 

Siphoviridae and Podoviridae [149]. Most lactococcal phages belong to the 

Siphoviridae family, and in fact eight of the ten known lactococcal phage 

groups/species (i.e. 936, P335, c2, 1358, Q54, P087, 1706, and 949), while the two 

remaining groups/species, P034 and KSY1, represent members of the Podoviridae 

family and are rarely encountered in dairy facilities [149]. The Siphoviridae are 

recognised by their characteristic long non-contractile tail, while the Podoviridae 

have short tails (Fig. 1.3). 

 

1.5.2 Industrially relevant phage; 936, c2 and P335 groups 

 The 936 group of lactococcal phages represents the most prevalent of the ten 

groups of lactococcal phages found in commercial dairy environments [150-152]. 

Phages belonging to the 936 group possess a double-stranded (ds) DNA genome 

with a size of ~26 - 32 Kb, and a modular genetic structure similar to other 

Siphoviridae phages composed of late-, early- and middle-expressed gene modules 

[151, 153]. To date, a total of ninety 936 group phages have been fully sequenced 

and both the core and pan genomes of this group have been resolved [150]. This 

latter work suggested that a link exists between gene complement/phylogeny and 

geographical origin of the isolated 936 phages, and that the distribution of the non-

core genome can also be linked to these groups [150]. Infection by 936 phages 
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constitutes the single most significant risk for dairy fermentations and these phages 

have consequently received significant research attention [150, 151, 154-156], 

resulting in the identification of a number of adaptive genetic features including 

(orphan) methyltransferases [157].  

 

 

Fig 1.3: Overview of lactococcal phage morphology and biodiversity. 

Electron micrograph images of representative phages from each of the known 

species/groups of lactococcal phages. Phage family is also indicated; Siphoviridae or 

Podoviridae. Adapted from [149].  
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The c2 group of lactococcal phages is represented by two subgroups based on 

their host receptor preference, i.e. the c2- and bIL67-like subgroups, with a total of 

ten isolates sequenced to date: two isolates that belong to the c2-like subgroup and 

eight isolates that are members of the bIL67-like subgroup [158]. They are 

characterised by highly conserved genome sequences of approximately 22 Kb, which 

share 80 % nucleotide identity across their genome length. The c2 phages have a 

highly diverse host range believed to be determined by the structural region of the 

phage which is one of the few regions with relatively low sequence conservation 

[159]. The open reading frames (ORFs) involved were identified by Millen and 

colleagues who demonstrated that swapping ORF14–15–16 (found in the c2-like 

subgroup) and ORF34–35–36 (found in the bIL67-like subgroup) resulted in phage 

recombinants with an altered host range [158]. 

 The P335 group of lactococcal phages is an extremely diverse group of both 

temperate [160] and lytic phages [161], and is characterised by its extreme genome 

plasticity [162]. There is no single gene conserved within the entire P335 population 

and current subgroupings are based in part on the level of amino acid identity in the 

structural region [162]. The P335 baseplate is a large heteropolymeric organelle 

located at the tip of the tail used for host recognition [163]. There are currently ten 

sequenced members of this group (4268, BK5-T, LC3, P335, r1t, TP901-1, Tuc2009, 

ul36, Q33 and BM13) alongside a plethora of integrated P335-like phage present 

within host genome sequences [162]. Lysogenic P335 phages are of particular 

concern to fermentations as they may pose the risk of becoming activated during the 

fermentation process leading to partial or complete culture lysis [53]. When selecting 

appropriate starter cultures for the production of various dairy products the presence 

of prophages can be determined by phage induction assays whereby the bacterium is 
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exposed to chemical, thermal or environmental treatments or conditions (chemical 

treatment or exposure to UV-light) to stimulate the excision and transcriptional 

activation of the integrated phage, which may ultimately cause lysis of the host cell 

[53]. However, such approaches are time-consuming and require the assessment of 

large collections of strains. In addition, ‘true’ prophage induction can only be 

determined using additional methods such as confirmation of the presence of 

prophages by performing phage sensitivity assays (upon identification of a sensitive 

host strain), PCR or flow cytometry [164]. Whole genome sequencing can readily 

identify the presence of temperate phages within the host genome, although it cannot 

with absolute certainty determine if a phage is genuinely inducible and thus a threat 

during fermentation. Furthermore, the availability of programmes such as 

Phage_Finder as well as gene annotation tools, aid in the determination of the 

presence of intact or cryptic prophage elements [165], which is important as the 

presence of prophages is common in L. lactis with some strains harbouring up to six 

prophages [3, 53]. 

 

1.5.3 Host defence mechanisms–adsorption inhibition 

 Strains of L. lactis may encode multiple phage resistance mechanisms which 

target specific steps in the phage life cycle. The initial step of phage infection that 

can be targeted is phage adsorption, which may be blocked by as yet uncharacterised 

host cell surface modifications. After attachment DNA entry occurs via an injection 

process which is targeted by so-called Superinfection exclusion (Sie) systems. The 

injected DNA may be targeted for cutting after entry by restriction modification (R-

M) systems or Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) systems. The final step of phage infection that can be targeted by host 
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defence is represented by the phage DNA replication and transcription, and phage 

protein production and assembly processes, which can be disrupted by so-called 

abortive infection (Abi) systems that cause programmed cell death [166]. 

 Bacteria can take a multifaceted approach to adsorption inhibition either by 

blocking/modifying phage receptors, or by producing extracellular matrices or 

compounds which may act as competitive inhibitors [166]. In L. lactis the receptors 

for the three main groups of infecting phages have received substantial attention. The 

c2 group of lactococcal phage follow conventional reversible saccharide binding 

prior to irreversible binding to the membrane protein termed Pip (phage infection 

protein) or its homologue YjaE [158, 167-170]. Members of both the 936 and P335 

phage groups possess complex multi-protein organelles, termed baseplates, at the 

distal end of their tails which bind to carbohydrates that are present in the surface-

exposed lactococcal cell wall-associated polysaccharide (CWPS) [154, 171]. To 

block adsorption of these phages, lactococcal strains employ a number of different 

native inhibition systems. The plasmids pSK112 and pCI528 have been shown to 

produce a galactosyl-containing lipoteichoic acid and a galactose/rhamnose-rich 

polymer, respectively, in both cases capable of inhibiting the attachment of phages 

[172-174], while plasmid pCI658 encodes the biosynthetic machinery for an EPS 

that is thought to mask phage receptor(s) [102]. 

 

1.5.4 Superinfection exclusion systems (Sie) 

The presence of prophages in commercial strains has generally been 

considered an undesirable trait due to the risk of phage excision, however, some 

prophage elements encode superinfection exclusion (Sie) systems [175-177]. Sie 

systems block the entry of phage DNA to the host cell, thus preventing infection 
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[166]. The best characterised Sie system in L. lactis is Sie2009 encoded by the 

temperate phage Tuc2009 which confers resistance against the 936 group of 

lactococcal phages [160, 166, 177]. These Sie proteins were found to be associated 

with the lactococcal cell membrane and to confer resistance by inhibiting DNA 

injection into the host cell [160, 177]. 

 

1.5.5 Restriction-Modification (R-M) Systems  

Genes encoding R-M systems are present on approximately 90 % of currently 

available bacterial and archaeal genome sequences [178]. These systems can be 

plasmid- or chromosomally-encoded, and their general role is to recognize and target 

invading foreign DNA with restriction enzymes, while simultaneously protecting the 

host DNA by methyltransferase (MTase) activity. Four types of R-M systems (I, II, 

III & IV) are currently recognized and have been extensively reviewed [178-181]. 

Briefly, Type I R‐M systems are multi-subunit proteins that function as a single 

protein complex, usually composed of one or two REase subunits (HsdR), one or 

two MTase subunits (HsdM) and (typically) one specificity (S) subunit (HsdS) [178, 

182]. However, instances of the intergenic shuffling of multiple HsdS-encoding 

genes belonging to a single Type I R-M system have been reported [183-185]. Type 

I R-M systems recognize long, (mostly) non-palindromic motifs [186]. Type II R-M 

systems are composed of separate REase and MTase activities. Type II REases act as 

homodimers to target specific DNA sequences and act independently of their 

cognate MTase [178]. Type II R-M systems are among the most thoroughly studied 

due to their importance in molecular biology [187, 188]. Type III R-M systems are 

composed of two subunits that function either in DNA recognition and modification 

(Mod) or restriction (Res) [189]. Type III systems require ATP hydrolysis to 
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function [178] and are frequently found in prokaryotic genomes [187, 190]. Type IV 

R-M systems are those which, unlike Types I-III, only target methylated DNA. Type 

IV systems are composed of two genes and their target motifs are not well defined 

[178]. 

The presence of various R-Ms in industrial starter cultures is an important 

technological property to help in phage defence, as invading phage DNA, if 

unmethylated (except in the case of type IV R-M systems), will be subject to 

endonuclease activity. The advent of accessible sequencing technologies allowing 

for the characterisation of chromosomal- and plasmid-encoded R-Ms, e.g. the L. 

lactis systems LlaJI, LldI and LlaI [191-193], has been helped by the availability of 

online resources such as the REBASE search platform [187, 188]. In recent years, 

the emergence of SMRT sequencing technology (as discussed above) has 

revolutionised the identification of whole genome modification and the 

functionalities of R-Ms. Combining whole genome sequencing and MTase motif 

analysis, the functions of one or more bacterially-encoded R-M can be predicted 

which can then be confirmed using heterologous gene expression coupled with 

restriction endonuclease assays. This approach has been applied to both bacteria and 

bacteriophages alike [155, 194], though it has not yet been applied to Lactococcus.  

 

1.5.6 Abortive infection (Abi) systems 

Abortive infection (Abi) systems are host-encoded resistance mechanisms 

that disrupt critical stages in the lytic phage life cycle such as transcription, 

translation, DNA replication or phage DNA packaging, and have been extensively 

studied in L. lactis [129, 195]. Abi-mediated resistance typically culminates in the 

death of the infected host cell in order to limit the release of progeny particles, thus 
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protecting the neighbouring bacterial population. Currently, twenty-three Abi 

systems (AbiA-AbiZ) are known for L. lactis, which, with the exception of AbiN 

and AbiV, are all plasmid-encoded [129, 195-197]. The presence of Abi systems was 

first identified due to the protective effect that certain lactococcal plasmids (such as 

pTR2030 and pIL105) have against phage infection, by causing a decreased burst 

size and an altered phage plaque morphology [198, 199]. Subsequently, plasmids 

that conferred such resistance to infecting phages were digested with restriction 

endonucleases and the fragments cloned into suitable shuttle vectors. The various 

recombinant derivatives were then screened to determine if a particular fragment 

provided phage resistance as observed for AbiE and AbiF encoded on the lactococcal 

plasmid pNP40 [200].  

 

1.5.7 CRISPR/Cas Systems 

 CRISPR and CRISPR associated genes (Cas) form an acquired adaptive 

immunity system against foreign genetic elements in prokaryotes [201-203]. 

CRISPR systems are composed of a series of conserved repeats which are separated 

by protospacers, variable sequences involved in target recognition, an A-T rich 

leader region located at the 5’ end of the CRISPR locus and cas genes [204]. 

CRISPR systems play an important role in phage-resistance in dairy starter strains 

[205] and furthermore, CRISPR systems can be used as a tool for the typing and 

comparative analyses of strains of S. thermophilus [201]. CRISPR typing of S. 

thermophilus performed by Horvath et al. [201], based on a combination of primers 

targeting conserved regions and Sanger sequencing resulted in the identification of 

CRISPR3 and demonstrated the diversity of CRISPR systems across 124 S. 

thermophilus strains. To date, there have been four different types of CRISPR loci 
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identified in S. thermophilus, CRISPR(1-4) [206]. In L. lactis only one CRISPR/Cas 

locus has been identified, being present on plasmid pKLM (though it is unable to 

incorporate new spacers) [201]. However, PCR-based screening of 400 lactococcal 

strains in this latter study also identified a further four strains with putative CRISPR 

systems indicating that continued genome sequencing is likely to result in future 

identification of CRISPRs in L. lactis [138]. 
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1.6 Phage-host interactions of lactococci 

 The infection of lactococcal strains by phages, whether temperate or lytic 

results in the co-evolution of both the phage and the host populations. One of the 

major drivers of this co-evolution is the presence of bacterial host defence 

mechanisms (discussed above), which forces the phage population to circumvent 

these systems, and which in turn promotes further innovations within the bacterial 

lineage [208 - 209]. The initial interaction between an infecting phage and the host 

strain involves the attachment of the phage to its cognate receptor on the host cell 

surface. As discussed previously for the c2 group, this is represented by either of two 

membrane proteins termed Pip and YjaE [167 - 170]. In contrast, the host receptors 

for the P335, 936, P087, 949, 1358 and P087 groups have all been identified as 

saccharides that are covalently bound to the lactococcal cell wall [154, 171, 210-213] 

and has led to significant research interest in the area of lactococcal CWPS 

biochemistry and genetics [154, 171]. 

 

1.6.1 L. lactis cell wall polysaccharide 

The LAB cell wall represents a complex structure comprised of a thick 

peptidoglycan layer, teichoic acids, cell wall polysaccharides (CWPS) and various 

surface carbohydrates [214]. L. lactis displays a smooth cell surface with CWPS 

homogeneously distributed across it, whereas mutants lacking CWPS show periodic 

bands of peptidoglycan running parallel to the short axis of the cell [215, 216]. The 

L. lactis genetic locus that encodes the CWPS biosynthetic machinery (called cwps) 

varies between strains and this diversity has allowed the classification of cwps and 

the associated strains into three types: A, B, and C [154] and a fourth class U 

composed of unknown CWPS types. Type C strains have been further classified into 
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five subtypes, C1-5, based on variability in the amino acid identity of encoded 

glycosyltransferases in the variable region of the cwps locus (Fig. 1.3) [171]. The 

three major CWPS types are differentiated based on genotype differences in the cwps 

locus [154]. The cwps locus in L. lactis is typically ~25-30 Kbp in length, and 

comprises a conserved region and a variable region, the latter governing the CWPS 

type. The variable region typically contains a number of genes encoding predicted 

glycosyltransferases, variations in which are believed to govern both the type of 

sugar to be incorporated and the glycosidic connection to preceding sugars, resulting 

in the glycan diversity [101, 217].  

As mentioned above lactococcal strains can be divided into three types based 

on their variability of their respective cwps locus (type A, B and C) [154]. Using a 

multiplex PCR, a collection of lactococcal strains can be classified to one of the 

three CWPS groups with primers based on the type-specific genetic elements 

including a glycosyltransferase-encoding gene (type A), NAD dependent epimerase-

encoding gene (type B) and a surface membrane protein-encoding gene (type C). 

This rapid approach is useful in classifying the CWPS biosynthesis cluster, in 

particular from a phage sensitivity prediction standpoint. It may also be used for the 

purpose of selecting a blend of strains of varying CWPS types so as to avoid phages 

infecting multiple strains of that blend. The biochemical CWPS structures of some 

strains have been characterised and show consistency with the genetic differentiation 

of the strains based on the predicted variable glycosyltransferase-encoding gene 

composition of the corresponding cwps locus [154]. 
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Figure 1.3: Comparison of the variable regions of the type C CWPS biosynthesis in L. lactis. (Taken from [171]). 

Variable regions from the type C CWPS biosynthesis cluster of lactococcal strains MG1363, JM1, 3107, JM2, SK11, JM3, W34, and 

IO-1. Shaded boxes indicate homology based on nucleotide identity. The five subtypes (C1 to C5) of the C genotype are also indicated. 
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1.6.2 Lactococcal prophage 

 As discussed in (Section 1.5.2), prophages are of particular concern to 

fermentations as these may pose the risk of becoming active during the fermentation 

process leading to partial or complete culture lysis [53]. These phages integrate and 

silently replicate within the host’s chromosome, posing the risk of excision. 

Prophage induction can culminate in both positive and negative effects within 

fermentations: it may cause unwanted/premature lysis leading to poor quality or loss 

of product, or, conversely, it may provoke phage-mediated cell lysis at specific 

points in the ripening process that can be favourable due to the release of 

intracellular enzymes involved in flavour development [218].  

Prophages are widespread within the currently sequenced lactococcal 

genomes. For example, strains MG1363 and IL1403 each possess six prophage-

encoding regions [3, 33, 219]. Previous work has indicated variable prophage 

induction profiles for L. lactis MG1363 [33, 219, 220] and positive induction of two 

prophage elements from L. lactis IL1403 [221]. Induction of the lactococcal strains 

ASCC890310 and ASCC890049 resulted in the release of phages with similarity to 

P335 sub-group I (BK5-T-like) and sub-group II (TP901-1-like) phages, 

respectively, among others [220]. 

While prophages are considered a threat to the dairy production process, their 

presence may also confer some competitive advantages on the host. The provision of 

prophage-encoded phage resistance systems is one of the best examples, with 

systems such as Sie2009 identified in the temperate phage Tuc2009 conferring 

resistance against certain members of the 936 group of lactococcal phages [160, 166, 

177]. However, the opposite may also be true with previous studies demonstrating 

that the presence of prophages may lead to a competitive advantage for infecting 
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lytic phage. The P335 phage ul36 was previously observed to circumvent two Abi 

systems resident on the genome of L. lactis SMQ86, AbiK and AbiT, by 

recombining with a resident prophage to produce progeny with altered receptor 

binding proteins and baseplate components [222]. Genome sequencing of starter 

cultures will allow us to readily identify prophages and assess potential risks, so as to 

provide a rational basis for starter culture selection. 
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1.7 Future Directions 

 Metagenomics is a useful tool to assess the diversity of complex microbial 

communities and functional properties of their dominant populations [223]. In dairy 

applications such as the production of cheeses, these populations are often complex 

and not well characterized [224]. While metagenomics has previously been applied 

to all manner of niches (human microbiota, soil, water) it has played a limited role in 

dairy fermentations with a small number of studies published to date [223]. Future 

work with these technologies should expand our knowledge of the complex 

communities of bacterial hosts, phages and prophages within dairy fermentations. 

While it is likely that “omics”-based technologies will never completely 

replace traditional culture-based methods, there is a vast array of knowledge to be 

gained from integrating these disciplines. Small-scale trial fermentations will 

continue to be the only genuine test to determine the performance of starter cultures 

within an industrial setting, though it is an impractical technique for screening large 

culture banks. Recent advances in NGS technologies have ensured that sequencing is 

a suitable approach in order to limit the number of potential candidates for such 

trials, and to reduce screening times and labour intensive cultivation techniques.  

Genome decay and redundancy, as highlighted in dairy lactococcal isolates 

[1, 28, 68], coupled to cremoris type strains which are believed to be descended from 

a few closely related lineages [20], are factors likely to limit the selection of novel 

starter strains in the future. This is exacerbated by the likelihood of large 

redundancies in culture collections and the differentiation of many of these strains. 

Additionally, the possibility of incorrect phenotype/genotype association, such as the 

plasmid-encoded citrate metabolism trait, can only be resolved by complete genome 

sequencing. 
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1.8 Summary of thesis contents 

 In this thesis the so-called SMRT sequencing methodology was applied to 

sequence sixteen L. lactis isolates in order to facilitate an in depth comparative and 

functional genomic analysis of this LAB taxon with particular emphasis placed on 

dairy traits. 

Chapter II describes the phenotypic characterisation of twenty dairy L. lactis 

strains in terms of their contribution to flavour development in cheese fermentations. 

Chapter III describes whole genome sequencing of sixteen L. lactis strains on which 

all subsequent chapters are based and details a comparative genomics analysis of 

these newly sequenced chromosomes combined with fourteen publicly available L. 

lactis genomes. Chapter IV describes the lactococcal plasmidome including sixty 

seven newly sequenced plasmids and investigates the technologically relevant traits 

encoded by this plasmidome. Chapter V describes the base modifications and 

restriction-modification systems of the sixteen newly sequenced L. lactis genomes. 

Chapter VI describes the analysis of predicted prophages of thirty lactococcal strains 

and investigates the potential risk of phage excision. 

 

1.8.1 Aims and objectives 

 Determine the genome sequences of representative lactococcal strains and 

their plasmid complements 

 Conduct a comparative genomic study of various dairy lactococcal starter 

culture strains, some of which are used for the production of reduced fat 

Cheddar cheese 
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 Functional analysis of these strains with particular reference to flavour 

development, enzymatic activity and growth during the cheese production 

cycle 

 Identify links to the phenotypic characteristics of low fat Cheddar starter 

cultures with the genomic composition of such lactococcal strains 

 Investigate L. lactis genomes for the presence of prophages and restriction-

modification systems 
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2 Abstract 

In the current study we describe the characterisation of a selection of 

lactococcal strains in terms of industrial robustness and flavour formation using a 

functional genomics approach. Comparison with four starter cultures currently 

employed in the Irish dairy industry for the production of half fat Cheddar cheese 

facilitated the identification of potentially applicable novel starter cultures within the 

assessed collection. In principle, this methodology represents a useful tool to expand 

the biodiversity of starter cultures in a rational manner. 
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2.1 Introduction 

Lactic acid bacteria (LAB) represent a diverse group of Gram-positive 

organisms which produce lactic acid from the degradation of hexose sugars, and 

which for this reason are widely used in food fermentations. A typical LAB member 

is Lactococcus lactis, a Gram-positive, catalase-negative, non-motile and coccoid 

bacterium [1]. The L. lactis species can be further divided into subspecies (subsp.) 

cremoris, subsp. lactis or subsp. lactis biovar diacetylactis, the latter having the 

distinctive characteristic of being capable of metabolising citrate. L. lactis is 

extensively employed as a starter culture for the manufacture of various fermented 

dairy products, such as sour cream and many cheese varieties [2]. 

Lactococcal starter cultures, used in commercial food fermentations, are 

frequently composed of defined strains, selected for their desirable traits in relation 

to industrial robustness and flavour development [3]. Industrial robustness is 

generally focused on the stresses encountered by strains during manufacture, such as 

oxidative, temperature-mediated (e.g. due to spray- and freeze-drying), osmotic 

and/or solvent stress [4]. In addition, starter performance qualities such as growth 

rate [5, 6], acidification rate [7] and phage insensitivity [8] are equally important 

technological traits. 

Cheese flavour development occurs predominantly during ripening, and in 

many cheese types is mainly due to the addition of adjunct cultures [9]. Starter 

cultures significantly impact on cheese flavour development through the proteolytic 

breakdown of caseins [10]. Casein proteolysis is the most complex and possibly the 

most important process in terms of primary flavour development in cheese. 

Proteolysis is responsible for the liberation of peptides and subsequently their 

component amino acids, thereby supplying substrates for various secondary 



97 

 

pathways of amino acid catabolism [9]. A balance between proteolysis and 

peptidolysis is desirable as it helps to prevent the formation of bitterness and off-

flavours in cheese [10]. L. lactis strains produce aroma compounds through amino 

acid catabolism, which further contributes to cheese flavour development [11]. 

Amino acid transamination is catalysed by aminotransferases which transfer the 

amino group of an amino acid to an α-ketoacid, with α-ketoglutarate representing the 

α-ketoacid acceptor in LAB [11]. Parallel quantification of activity levels of 

peptidases and aminotransferases may help to generate a detailed biochemical profile 

of the flavour-forming abilities of a particular strain. 

Degradation of milk fats and hydrolysis of triglycerides into lipids and fatty 

acids by lipolysis is also an important contributor to cheese flavour development 

[12]. In lactococci the dominant lipolytic enzymes involved in lipolysis belong to a 

class of enzymes called the carboxylic ester hydrolases, mainly represented by 

esterase and lipase activities [13]. Lipolysis is of particular concern in low-fat 

cheeses made from skimmed milk, as the reduced fat content can lead to incorrect 

flavour development. 

In the current work we assessed the performance and flavour production 

capabilities of a selection of lactococcal strains, and compared these quantitative 

parameters to a number of commercially employed starter cultures. This indirect 

flavour profile analysis was performed so as to establish if a correlation exists 

between genome content and measured flavour production abilities.  
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2.2 Materials & Methods 

 

2.2.1 Strain growth conditions and media 

Bacterial strains used in this study are detailed in Table 2.2. L. lactis strains 

were routinely cultured at 30 °C in 10 % RSM (reconstituted skimmed milk) at 30 

°C without agitation. Cells were prepared via a 1.5 % inoculum into 10 % RSM and 

grown overnight (16 hours) at 30 °C. Cells were then plated on M17 (Oxoid) agarose 

supplemented with 0.5 % lactose to determine a viable plate count in cfu/ml. 

 

2.2.2 Nessler’s arginine broth assay 

Phenotypic sub-speciation of lactococcal cultures was performed by the 

arginine broth assay [14]. 1 ml of overnight culture was added to 5 ml of arginine 

broth; 1 % tryptone, 0.5 % yeast extract, 0.1 % glucose, 0.4 % potassium hydrogen 

phosphate, 0.6 % L-arginine. 1 ml of Nessler’s reagent [15] (14.3 % sodium 

hydroxide, 5 % mercuric iodide and 4 % potassium iodide) was added after 

incubation overnight at 30 °C. A colour change from yellow to red indicates the 

production of ammonia due to arginine hydrolysis. Strain identification was based on 

a colour change following incubation, with red colour development being 

characteristic of subspecies lactis, while yellow being characteristic of subsp. 

cremoris. 

 

2.2.3 Growth profile analysis by (a modification of) the Pearce activity test 

A modification of the Pearce activity test was performed to evaluate growth 

profiles of lactococcal strains under simulated cheese production conditions [16]. 

This was carried out in order to assess the effect of the Cheddar cheese cooking 
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temperature regime on growth and intracellular enzyme release. Cultures were 

prepared from stocks stored at -80 °C in 10 % RSM, which were thawed and 

incubated at 21 °C until coagulation (~16 hours). The coagulated culture was used to 

make a 1.5 % inoculum into 100 ml of 10 % RSM (~16 hours). This culture was 

used to prepare 500 ml of 10 % RSM with a 1.5 % inoculum for the Pearce activity 

test. The test was performed according to the temperature cycle displayed in Figure 

2.1. Samples were taken at 60 min intervals throughout the incubation and plated on 

M17 (Oxoid) agarose supplemented with 0.5 % lactose to determine a viable plate 

count (expressed as cfu/ml). The point of temperature induced autolysis was assessed 

from a decrease in viable plate counts. 

 

 

Figure 2.1: Temperature cycle for Pearce activity test 

Blue line indicates temperature profile, red markers indicate sampling points. 
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2.2.4 Enzymatic assays 

Assays to measure lactate dehydrogenase, amino acid transferase, peptidase 

and esterase activities were performed in triplicate, dH2O was used as a blank unless 

otherwise indicated. Reagents were from Sigma-Aldrich (MO, USA), except in the 

case of fluorescent coupled peptidase substrates (Bachem AG, Switzerland). 

 

2.2.5 Determination of lactate dehydrogenase activity (LDH) 

A 0.2 M Tris-Maleate buffer was prepared and adjusted to pH 7.0 with the 

addition of 0.2 M NaOH. A solution, containing 45 mM NADH, 30 mM fructose 

1,6-bis-phosphate (FBP) and 300 mM Na-pyruvate, was prepared in 10 ml aliquots 

and stored at 4 °C, wrapped in aluminium foil for maximum of 1 week. All reagents 

were sourced from Sigma-Aldrich, MO, USA. 

A mixture of 2.7 ml of Tris-maleate (pH 7.5), 0.1 ml of NADH (4.5 mM), 0.1 

ml of FBP (30 mM) and 0.1 ml of sample was added to a cuvette and the absorbance 

recorded at 340 nm for 30 sec on a DU Series 730 spectrophotometer (Beckman 

Coulter). 0.1 ml of 300 mM pyruvate was then added and the decrease in A340 was 

monitored for 90 sec. LDH activity was calculated using the following equation: 

 

Units per 0.1 ml sample =
∆ ABS@340 Nm x 3 x Dilution factor x 1000

6270 x 0.1 x 1
 

 

The change in absorbance per minute (∆340/min) was calculated from the 

spectrophotometer readings, 3 ml final volume in the cuvette, 1000 converts NADH 

from nM to µM, 6270 is the extinction co-efficient for NADH, 0.1 ml of sample in 

solution and 1 cm is the path length. Activity was then expressed as unit per ml of 
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extract, where one 1 unit was defined as the amount of enzyme that is required to 

catalyse the oxidation of 1 µM of NADH/min. 

 

2.2.6 Determination of amino acid transferase activity (Phenylalanine and 

Methionine) 

The reaction mixture for L-phenylalanine (L-Phe) contained the following 

solutes: 50 μM pyridoxal phosphate, 5 mM α-keto glutaric acid and 5 mM L-Phe, 0.5 

mM sodium arsenate and 500 mM EDTA prepared in 50 mM sodium tetra-borate 

buffer, pH 8.5. The reaction mixture for methionine (Met) contained the following 

chemical ingredients: 50 μM pyridoxal phosphate, 5 mM α-keto glutaric acid, 5 mM 

Met, 0.5 mM sodium arsenate and 500 mM EDTA prepared in 50 mM sodium tetra-

borate buffer, pH 8.5. α-ketoacid standards; phenylpyruvate and α-

ketomethylthiobutyrate were prepared in dH2O to final concentrations; 100, 200, 

300, 400, 500 & 1000 mM. dH2O was used as a blank. 

100 μl of sample and 1 ml of reaction mixture were incubated at 30 °C. After 30 min 

the reaction was stopped by the addition of 1 ml of 10 % Trichloroacetic acid (TCA) 

solution. The reaction mixture was centrifuged at 10,000 rpm for 2 min to remove 

precipitated proteins and the absorbance was read at a wave length of 300 nm. The 

specific activity of amino acid transferase was expressed as μM/min/mg of protein. 

 

2.2.7 Determination of specific peptidase activities by fluorescence 

Specific peptidase activities were assessed by detection of fluorescence 

release using 7-amino-4-methyl coumarin (AMC)-coupled substrates (Table 2.1). 

Peptidase substrates were sourced from Bachem AG, Switzerland. 0.111 mM (X)-

AMC substrates were prepared by dissolving the particular substrate in 100 µl of 
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DMF (dimethylformamide), and then adding 50 mM Tris-HCl (pH 7) to a final 

volume of 50 ml. 0.5 mM AMC standards were prepared using the same procedure. 

An AMC standard curve was obtained across the concentration range 0-1 µM, while 

50 mM Tris-HCl (pH 7) was used as a blank. The protocol was as previously 

described [17], except when using reduced volumes for high throughput screening in 

96-well plates. Released fluorescence was measured on a SpectraMax M3 Multi-

Mode Microplate Reader (Molecular Devices). Enzyme activity was calculated in 

RFU PPDA (1 RFU = the amount of µM of AMC released min-1 by 1 mg of protein). 

 

Table 2.1: AMC-coupled peptidase substrates 

Substrate Target peptidase 

H-Lys-AMC.acetate (Lys-AMC) PepN and PepC 

H-Asp (AMC)-OH (Asp-AMC) PepA 

H-Pro-AMC.HBr (Pro-AMC) Proline imino peptidase 

H-Gly-Pro-AMC. HBr (Gly-Pro-AMC) PepX 

CBZ-Gly-Pro-AMC (Z-Gly-Pro-AMC) Carboxypeptidase 

 

N-Suc-Gly-Pro-Leu-Gly-Pro-AMC 

(Gly-Pro-Leu-Gly-Pro-AMC) 

Endopeptidase 

 

2.2.8 Determination of short chain esterase activity 

Short chain esterase activity was detected via a previously described 

spectrophotometric assay [18], utilising p-nitrophenyl butyrate as a substrate. 

Absorbance was measured on a DU Series 730 spectrophotometer (Beckman 

Coulter).   
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2.3 Results 

 

2.3.1 Strain differentiation 

The phenotypic characteristics and enzymatic abilities of 20 lactococcal 

strains from the UCC culture collection were assessed, in order to ascertain their 

potential performance as starter cultures for the production of Cheddar type cheeses. 

Firstly, we wanted to assign each of these 20 strains to either subsp. lactis or subsp. 

cremoris by means of the arginine broth assay, which allows subspecies 

identification based on the strain’s (in)ability to release ammonia from arginine via 

the arginine deanimase pathway (ADI) [19]. L. lactis subsp. lactis strains utilise this 

pathway for arginine metabolism resulting in ammonia release, while L. lactis subsp. 

cremoris strains are unable to use this pathway [19]. This allows for strain 

differentiation based on an indicator colour change due to the presence/absence of 

ammonia (see Materials and Methods). The assay resulted in the identification of 

twelve subsp. cremoris and eight subsp. lactis strains out of the 20 strains tested 

(Table 2.2), and where possible this was confirmed by genotypic analysis of the 16S 

rRNA-encoding gene if a corresponding genome sequence was available from the 

National Centre for Biotechnology Information (NCBI). 
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Table 2.2: Lactococcal strains used in this study 

Strain$ Species 

(Arginine Broth) 

Genome sequenced (Accession 

Number) 

JM1 * cremoris CP015899 

JM2 * cremoris CP015900 

JM3 * cremoris CP015901 

JM4 * cremoris CP015909 

158 * cremoris CP015894 

Bu260 lactis - 

303 lactis - 

SK11 * cremoris CP000425 

3107 * cremoris (Unpublished) 

UC23 cremoris - 

HP * cremoris Draft assembly (JAUH00000000) 

F7/2 lactis - 

UC109 * cremoris CP015907 

UC77 * lactis CP015906 

275 * lactis CP015897 

AM2 cremoris - 

R1 cremoris - 

UC063 * lactis CP015905 

184 * lactis CP015895 

229 * lactis CP015896 

*Indicates strains whose subspeciation was confirmed via genotypic analysis 
$All strains are dairy isolates from the UCC culture collection  
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2.3.2 Performance testing 

An important aspect of strain selection for starter culture use is performance 

testing, during which growth rate, acid production and responses to temperature and 

salt are assessed as an indication as to how strains behave in a fermentation process 

[20]. The Pearce activity test is commonly employed in the dairy industry as an 

indicator for growth and temperature-induced autolysis of starter strains [16]. This 

test mimicks the temperature cycles used in the relevant (i.e. Cheddar-type) cheese 

production process and allows the point of temperature-induced autolysis to be 

determined. The lactococcal strains used in this study were assessed by (a 

modification of; see Materials and Methods) the Pearce activity test to determine the 

point of autolysis for each strain and to assess release of intracellular peptidase and 

aminotransferase activities (Fig. 2.2[A]-[S]). 

The main observation made during the Pearce activity test was the higher cell 

viability obtained for strains belonging to subsp. lactis compared to their subsp. 

cremoris counterparts. The L. lactis subsp. lactis controls grown at 30 °C for the 

duration of the test (Fig. 2.2[E], [G], [J-L], [P] & [R-S]) regularly reached ~9 log 

cfu/ml, while their cremoris couterparts displayed a comparably lower viable count 

at ~7-8 log cfu/ml. The point of induced autolysis was also more prominent in the 

subsp. cremoris strains. This is unsurprising as these strains are generally more 

temperature sensitive than their lactis counterparts which can grow at temperatures 

up to 40 °C [21]. The largest observed reductions in cell viability were for L. lactis 

subsp. cremoris UC23 and 158, strains that exhibited more than a log reduction in 

cell counts when the temperature was increased from 32 to 38 °C. A substantial 

reduction in cell viability and consequent cell lysis during the cheese cooking 

process can lead to a significant increase in available intracellular peptidases for the 
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degradation of milk proteins, although enhanced proteolytic activity may also lead to 

a bitter taste in certain cheese types [22]. 

To test the significance of the observed levels of lysis between the subspecies 

cremoris and subspecies lactis strains used in the analysis, a paired t-test was 

applied. The hypothesis used for the test was; is there sufficient evidence to sugest 

that greater cell lysis occurs during the Pearce activity test than during controlled 

growth at 30 ℃? This was represented mathematically as HO : µd = 0 while the 

alternative hypothesis was HA : µd > 0, with a significance p-value cut-off of α = 

0.05. The analysis indicated a p-value of 0.987 for the subspecies cremoris strains 

indicating that the hypothesis should be accepted and a significant level of lysis has 

occurred during the Pearce activity test. In the case of the subspecies lactis strains 

the p-value was calculated to be 0.00018 indicating that the hypothesis should be 

rejected and no significant lysis has occurred. This demonstrates that subspecies 

cremoris strains are better suited to these fermentation conditions where autolysis is 

desirable, then the equivalent subspecies lactis strains.   
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Figure 2.2: Modified Pearce activity test growth curves 

Control growth profiles of cultures grown at 30 °C are indicated as a black line. 

Strains grown under Pearce assay conditions are indicated as a red (subsp. cremoris) 

or blue (subsp. lactis) line. Strains were plated in triplicate. 
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Table 2.3: Paired t-test analysis of [A] subspecies cremoris and [B] subspecies lactis 

[A] Final cell count (cfu/ml) after 300 minute incubation 

 

Control (µ1) Pearce assay  (µ2) Difference (µd) 

JM1 2.07E+08 3.39E+07 1.73E+08 

JM4 7.00E+07 9.50E+06 6.05E+07 

JM3 2.00E+08 1.13E+07 1.89E+08 

JM2 2.93E+08 1.80E+07 2.75E+08 

HP 6.90E+07 1.40E+07 5.50E+07 

UC23 2.13E+08 3.40E+06 2.10E+08 

3107 7.53E+08 6.45E+07 6.89E+08 

SK11 1.70E+08 6.93E+06 1.63E+08 

UC109 2.33E+07 3.83E+06 1.95E+07 

158 1.60E+08 1.66E+07 1.43E+08 

R1 1.43E+09 1.15E+07 1.42E+09 

 

Sample mean (xbar) 3.09E+08 

Sample standard deviation (s) 3.91E+08 

Sample size (n) 11 

Degrees of freedom (df) 10 

T-test statistic (t) 2.62132 

P-value (p) 0.98723 

*Accept hypothesis (> 0.05) 

[B] Final cell count (cfu/ml) after 300 minute incubation 

 

Control (µ1) Pearce assay  (µ2) Difference (µd) 

303 9.50E+08 9.43E+07 8.56E+08 

229 6.87E+08 4.91E+07 6.38E+08 

F7/2 4.10E+08 2.76E+08 1.34E+08 

UC063 5.47E+08 5.75E+07 4.89E+08 

Bu260 6.03E+08 1.82E+08 4.21E+08 

UC17 5.07E+08 9.40E+07 4.13E+08 

275 9.37E+08 6.77E+07 8.69E+08 

184 9.63E+08 2.80E+07 9.35E+08 

 

Sample mean (xbar) 

 

5.94E+08 

Sample standard deviation (s) 

 

2.62E+08 

Sample size (n) 

  

8 

Degrees of freedom (df) 

 

7 

T-test statistic (t) 

  

6.42648 

P-value (p) 

  

0.00018 

*Reject hypothesis (< 0.05) 

 

*Hypothesis; is there sufficient evidence to suggest that greater cell lysis occurs 

during the Pearce activity test than during controlled growth at 30 ℃ for the 

respective subspecies? 

Hypothesis statement uses µ1 - µ2 and a significance level = 0.05: 

HO: µd = 0 => µ1 - µ2 = 0 

HA: µd > 0 => µ1 - µ2 ≠ 0  α = 0.05  



111 

 

2.3.3 Performance testing - Lactate dehydrogenase (LDH) 

LDH is an intracellular enzyme found in LAB which converts lactate to 

pyruvate in the presence of NAD+, via a reversible reaction. LDH cannot be 

measured directly therefore the activity of LDH is measured by the decrease in 

NADH (NADH is a stoichiometric equivalent to LDH). The enzyme in lactococcal 

strains requires fructose 1,6 bis-phosphate for activation and can be used as an 

indicator of autolysis in dairy starter strains [23]. 

 

 

 

Analysis of the LDH released from strains grown under Pearce activity test 

conditions compared to strains grown under standard culture conditions, did not 

show a significant increase in the level of LDH released (Table 2.4). A paired t-test 

was applied to the data (as in section 2.3.2),  using the hypothesis; is there sufficient 

evidence to suggest an increase in released LDH during the Pearce activity test 

compared to during controlled growth at 30 ℃? In this case there was found to be no 

significant increase in the levels of LDH activity detected in strains of either 

subspecies which underwent the Pearce activity test, suggesting that this method 

may not be suitable for monitoring autolysis in cheese starter cultures.  
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Table 2.4: Lactate dehydrogenase activity expressed by lactococcal strains 

 

 
Activity (enzyme units)* 

 

Pearce assay  (µ1) Control (µ2) Difference (µd) 

JM1 0.542213333 0.541776167 0.00043717 

JM4 0.5421198 0.5419124 0.0002074 

JM3 0.542532567 0.541971367 0.0005612 

JM2 0.543024633 0.542994133 3.05E-05 

158 0.5419795 0.541641967 0.00033753 

Bu260 0.542428867 0.541959167 0.0004697 

303 0.542079133 0.542428867 -0.0003497 

229 0.5419978 0.5425712 -0.0005734 

SK11 0.5429494 0.541888 0.0010614 

3107 0.542201133 0.542209267 -8.133E-06 

UC23 0.5417294 0.541792433 -6.303E-05 

HP 0.5433398 0.5419551 0.0013847 

F7/2 0.541959167 0.5420893 -0.0001301 

UC109 0.541989667 0.541831067 0.0001586 

UC77 0.541719233 0.5416562 6.3033E-05 

184 0.541707033 0.541690767 1.6267E-05 

275 0.5416501 0.541774133 -0.000124 

AM2 0.543219833 0.542182833 0.001037 

R1 0.542361767 0.5417599 0.00060187 

UC063 0.5419246 0.5419612 -3.66E-05 

 

Sample mean (xbar) 

 

0.000254065 

Sample standard deviation (s) 

 

0.000479236 

Sample size (n) 

  

20 

Degrees of freedom (df) 

 

19 

T-test statistic (t) 

  

2.3108 

P-value (p) 

  

0.0161 

**Reject hypothesis (< 0.05) 

 

 

* 1 enzyme unit = amount of enzyme required to catalyse the oxidation of 1 µmole 

of NADH/min 

**Hypothesis; is there sufficient evidence to suggest an increase in released LDH 

during the Pearce activity test compared to during controlled growth at 30 ℃? 

Hypothesis statement uses µ1 - µ2 and a significance level = 0.05: 

HO: µd = 0 => µ1 - µ2 = 0 

HA: µd > 0 => µ1 - µ2 ≠ 0  α = 0.05  
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2.3.4 Flavour Capabilities – Aminotransferase activity 

Proteolysis is a very complex and possibly the most important process in 

terms of primary flavour development in cheese, being responsible for the liberation 

of peptides and amino acids, which in turn represent substrates for secondary 

pathways of amino acid catabolism [9]. Proteolysis also indirectly contributes to 

cheese flavour and aroma formation via transamination, dehydrogenation, 

decarboxylation and reduction of amino acids giving rise to a wide range of aromatic 

compounds [9]. A number of different amino acid transferase activities have been 

identified in different LAB that work on various aromatic, branched and sulphur-

containing amino acids. In the current analysis we quantified the activity towards L-

phenylalanine (L-Phe; an aromatic amino acid) and methionine (Met; a sulphur-

containing amino acid), both of which are common in milk and important in terms of 

cheese production [24]. 

All strains demonstrated aminotransferase activity using methionine as a 

substrate (Fig. 2.4[A]), while a considerably lower level of activity was obtained 

when phenylalanine was used as a substrate (Fig. 2.4[B]). The subsp. lactis strains 

Bu260, 303 and 229 expressed a high level of aminotransferase activity suggesting 

that these strains are promising candidates for milk fermentations, in particular 

Bu260, which also performed well in terms of LDH production. Combined, the 

analysis indicates that Bu260 has starter culture potential both in terms of industrial 

robustness (LDH), and flavour and aroma development. 
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Figure 2.4: Aminotransferase activity expressed by lactococcal strains 

Aminotransferase activity expressed by lactococcal strains against [A] methionine and [B] phenylalanine after growth at 30 °C for 5 hours, 

(black bars, names marked with ‘C’) or following the Pearce Activity test (subsp. cremoris and subsp. lactis indicated in red and blue, 

respectively, names marked with ‘P’). 



115 

 

2.3.5 Flavour capabilities – Peptidase activity 

The main peptidase categories that contribute to proteolysis in L. lactis are 

aminopeptidases, endopeptidases, di/tri-peptidases, proline peptidases, 

endopeptidases and carboxypeptidases [9]. To assess the level of peptidase activity 

within L. lactis, a number of enzymatic analyses were undertaken. Quantitative 

assays utilising fluorescently labelled substrates (see Materials and Methods section) 

were used to determine the activity levels of PepN/C, PepA, PepX, PepI, 

carboxypeptidase and endopeptidase produced by each strain (Fig. 2.5[A-H]). 

The dominant peptidase activities expressed by the analysed strains were the proline 

peptidase PepX (Fig. 2.5[A]) and the aminopeptidase PepA (Fig. 2.5[B]). PepX is of 

particular importance in milk fermentations due to the high proline content of β-

casein [25] and has been reported to influence proteolysis in cheese ripening [26]. 

PepX activity was also observed to be higher for subsp. cremoris strains isolated 

from the dairy environment as compared to PepX levels observed for subsp. lactis 

strains. The other assessed peptidase activity levels appear to be similar across all 

strains in the analysis, except in the cases of PepN and PepC (Fig. 2.5[F-H]). The 

expressed levels of PepN and PepC activity appears to be lower in strains which 

have high levels of PepX activity, indicating that strains may have a preference 

towards either the X-prolyldipeptidyl aminopeptidase (PepX), or general 

aminopeptidases such as PepN or PepC. 
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Figure 2.5: Peptidase activity expressed by lactococcal strains 

 
Figure 2.5: Peptidase activity expressed by lactococcal strains 

Peptidase activity expressed by lactococcal strains against; [A] PepX, [B] PepA, [C] proline imino peptidase, [D] endopeptidase, [E] carboxy-

peptidase, [F] PepN/C, [G] PepC and [H] PepN after growth at 30 °C for 5 hours (black, names marked with ‘C’), and following the Pearce 

Activity test (red (cremoris) and blue (lactis), names marked with ‘P’) 
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2.3.6 Flavour Capabilities – Esterase activity (lipolysis) 

Lipolysis involves the breakdown of milk fats and hydrolysis of triglycerides 

into lipids and fatty acids, activities that are considered to be crucial for flavour 

development in cheese production [12]. Lipolytic assays utilizing p-nitrophenyl-

butyrate for the detection of short chain esterase activity revealed a trend showing 

higher levels of esterase activity in strains used routinely in cheese fermentations, 

compared to their counterparts (Fig. 2.6). A marked increase in the level of esterase 

activity expressed by each of the strains was also observed between the cultures 

grown at 30 °C and those which underwent the Pearce assay, indicating that esterase 

activity is predominantly expressed intracellularly, therefore autolysis of the starter 

culture would appear to be a necessary prerequisite for these strains to contribute to 

lipolysis in cheese. Strains JM3, JM1 and AM2 were shown to exhibit the highest 

levels of activity, while the remaining strains appear to express this activity at a far 

lower level. 
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Figure 2.6: Short chain esterase activity 

Standard curve for 4-nitrophenol and the deduced mathematical function used to 

calculate esterase activity for each of the starter cultures. Histogram of esterase 

activity; expressed by each strain grown under standard culture conditions at 30 °C 

(black) and after the Pearce activity test red (cremoris) and blue (lactis). 
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2.4 Discussion 

The contribution of lactococcal starter strains to cheese flavour development 

is predominantly through the major flavour pathways of lactose, lactate and citrate 

utilisation, lipolysis, proteolysis and the catabolism of free amino acids [9]. The 

current report assessed the levels of key enzymes, including LDH, amino acid 

transferase, peptidases (PepX, PepN, PepC, PepA, endopeptidase, carboxypeptidase 

and PepI) and esterase for twenty strains which were quantified for extracellular 

activity and enzyme released through temperature-induced autolysis. This was used 

to produce a biochemical profile of these strains to be used in conjunction with the 

Pearce activity test data for the selection of strains to be sequenced for functional 

genomic analysis. Included in this study were four lactococcal starter cultures used 

in the Irish dairy industry for the production of low-fat Cheddar cheese, namely L. 

lactis subsp. cremoris JM1, JM2, JM3 and JM4. These strains are useful for this type 

of fermentation due to their relatively slow-growth rate, prominent autolysis and 

strong flavour performance. Comparative analysis of these starter cultures with a 

selection of strains was envisioned to be a practical method for the selection of novel 

starter cultures to be used for low-fat Cheddar cheese production. 

The Pearce activity test was conducted to assess how these strains would 

behave under fermentation conditions; this test can be employed to assess the level 

of autolysis, as previously described for two dairy starter strains, L. lactis subsp. 

cremoris HP and L. lactis subsp. cremoris AM2 [6]. The level of induced autolysis 

was found to be greater in subsp. cremoris strains indicating that strains from this 

subspecies are potentailly more useful for Chedder-type fermentations. Higher cell 

viability was observed for subsp. lactis strains in comparison to their cremoris 

counterparts due to the higher temperature tolerance of lactis strains [14]. The Pearce 
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assay is used to simulate cheese making conditions which vary substantially with 

cheese type. The conditions used here were designed to replicate those of a Cheddar 

type cheese cooking cycle which is generally associated with subspecies cremoris 

strains. Further modifications of this assay would therefore appear to be necessary to 

improve its suitability for subspecies lactis strains. Furthermore, the intracellular 

enzyme LDH has been used as an indicator of autolysis in dairy starter strains [5, 

27]. However, for the strains which underwent the Pearce activity test no significant 

increase in LDH was observed as compared to corresponding control cultures, which 

did not undergo temperature-induced autolysis. As such monitoring of viable cell 

counts via plating appears to be a more reliable method of estimating autolysis. 

To assess the contribution of lactococcal strains to cheese flavour 

development, these strains were assayed for aminotransferase and peptidase 

activities. All strains were shown to exhibit aminotransferase activity against 

phenylalanine and methionine (in the latter case reaching a considerably higher 

specific activity level). Subspecies cremoris strains proved to demonstrate the 

highest activity levels, while three subsp. lactis strains Bu2-60, 303 and 229 also 

expressed a high level of aminotransferase activity indicating that these represent 

good candidates as starter cultures for commercial milk fermentations. Strains were 

assessed for peptidase activity utilising AMC substrates as previously demonstrated 

for lactococci [28-30]. The dominant peptidase activities expressed by each strain 

were those represented by the aminopeptidases PepA and the proline peptidase PepX 

which is of particular importance due to the high proline content of β-casein [25]. 

PepX activity was also observed to be higher for subsp. cremoris strains. Expressed 

levels of PepN/C activity were found to be lower in strains which had high levels of 

PepX activity, indicating that strains may exhibit a preference towards either the X-
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prolyl dipeptidyl aminopeptidase PepX, or general aminopeptidases PepN/C. 

Significant increases in the level of esterase activity expressed by each of the strains 

were observed between the cultures grown at 30 °C and those which underwent the 

Pearce assay. This finding indicates that esterase activity is predominantly expressed 

intracellularly and that autolysis of the starter culture is therefore necessary for these 

strains to contribute to lipolysis in cheese. 

While a number of useful parameters are explored in this chapter particularly 

related to cheese flavour development, these should be considered in parallel with 

several other properties related to dairy fermentation. For instance, L. lactis subsp. 

cremoris AM2, which was one of the strongest performing strains in this analysis in 

terms of flavour development, has been excluded from dairy fermentations in recent 

years due to its bacteriophage sensitivity. Therefore, further sequence-based analysis 

in the subsequent chapters will attempt to assess these factors and determine an 

overall genetic/genomic blueprint for starter culture selection. 

 

  



125 

 

2.5 Conclusion 

In conclusion, the phenotypic analysis of four lactococcal starter cultures 

used in the Irish dairy industry for the production of low-fat Cheddar cheese allowed 

for the selection of potential novel starter cultures from the UCC starter culture 

collection which may be useful for the same type of fermentation. The L. lactis 

subsp. cremoris strains were found to perform in a similar manner to the industrial 

isolates JM1-JM4. Therefore, strains 158 and UC109 were selected for whole 

genome sequencing in addition to the industrial strains JM1-JM4, to further 

investigate their genetic composition. Furthermore, these data may permit genotype–

phenotype links to be derived. In addition, five L. lactis subsp. lactis strains, namely 

UC77, 275, 229, 184 and UC063 were also selected for sequencing to increase the 

genetic diversity of the analysis.  
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3 Abstract 

Lactococcus lactis is among the most widely studied lactic acid bacterial 

species due to its long history of safe use and economic importance to the dairy 

industry, where it is exploited as a starter culture in cheese production. In the current 

study, we report on the complete sequencing of sixteen L. lactis subsp. lactis and L. 

lactis subsp. cremoris genomes. The chromosomal features of these sixteen L. lactis 

strains were assessed with particular emphasis on discerning the L. lactis subspecies 

division, evolution and niche adaptation. The deduced pan-genome of L. lactis was 

found to be closed, indicating that the representative data sets employed for this 

analysis are sufficient to fully describe the chromosomal diversity of the taxon. 

Niche adaptation appears to play a significant role in governing the genetic content 

of each L. lactis subspecies, while (differential) genome decay and redundancy in the 

dairy niche is also highlighted.  
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3.1 Introduction 

Lactococcus lactis is a Gram positive, catalase-negative, non-motile and 

coccoid bacterium [1]. L. lactis has a long history of safe use in the fermented food 

industry and as such enjoys a so-called “GRAS” (Generally Regarded as Safe) 

status. Lactococcal strains are particularly important to the dairy industry, where 

they are employed as starter cultures for cheese production. L. lactis has four 

component subspecies, two of which are routinely employed in the dairy 

fermentation sector, i.e. subspecies (subsp.) cremoris and subsp. lactis (and a 

biovariant; subsp. lactis biovar diacetylactis, which distinguishes itself based on 

citrate metabolism, see also below). The two remaining L. lactis subspecies, i.e. L. 

lactis subsp. hordniae isolated from the leafhopper Hordnia circellata [2], and L. 

lactis subsp. tructae isolated from brown trout, Salmo trutta [3], are considerably 

under-represented in both biological and genomic studies compared to their dairy-

associated counterparts.  

Genetically, a typical L. lactis chromosome ranges in size from ~2.2 to 2.6 

Mb, often accompanied by a rich plasmid complement [4] and multiple integrated 

(remnant) prophages [5]. Reductive evolution and genome decay have previously 

been reported in ‘domesticated’, dairy L. lactis strains, particularly those belonging 

to subsp. cremoris [6, 7]. Niche adaptation by lactococcal strains has been 

investigated most thoroughly in relation to the dairy environment. In this particular 

niche, host adaptations appear to be mainly plasmid-encoded and two examples of 

this are lactose and citrate utilisation. Lactose utilisation in L. lactis is performed via 

the lac operon, which consists of the lacABCDEFGX genes and which is regulated 

by the repressor lacR [8, 9]. Citrate metabolism by citrate-positive (Cit+) lactococci 

is mediated by the citQRP operon [10]. The classification of Cit+ lactococci as L. 
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lactis subsp. lactis biovar diacetylactis has led to confusion as plasmid-encoded 

characteristics can be transferred from one strain to another and may lead to 

incorrect classification based on phenotype [11], highlighting the importance of 

genome sequencing for the correct characterisation of members of this taxon. 

The advent of modern sequencing technologies has made whole genome 

analysis more accessible, and as a result there are now eighty-four lactococcal 

assemblies publicly available in the NCBI (National Centre for Biotechnology 

Information) database, fourteen of which represent complete genome sequences 

including the two prototypical stains L. lactis subsp. lactis IL1403 [12] and L. lactis 

subsp. cremoris MG1363 [13]. To date a number of comparative genomic studies 

have been conducted and have provided novel insights into the lipolysis [14], 

prophage [5, 6], proteolysis [15], taxonomy [16] and niche adaptation functions of 

these strains [17]. 

In the current study we applied one of the latest sequencing technologies, Single-

Molecule-Real-Time (SMRT) sequencing developed by Pacific Biosciences [18, 19] 

to contribute a further sixteen complete lactococcal genomes to the public database. 

The increased dataset of complete lactococcal genomic sequences allows for the 

investigation of the corresponding pan-genome, which when closed defines the total 

number of genes encoded in the L. lactis taxon [20-22]. In the current study, the 

phylogeny, core and non-core genes, metabolism and niche-specific adaptations in 

terms of the total genetic content of the taxon were examined.  
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3.2 Materials & Methods 

 

3.2.1 Genome sequencing 

All genomes sequenced in this study are dairy isolates of L. lactis subsp. 

lactis and subsp. cremoris, with the exception of L. lactis subsp. lactis UC08 and 

UC11, which were isolated from fermented meat products (Table 3.1). Chromosomal 

DNA from L. lactis subsp. cremoris JM1, JM2, JM3 and JM4 was isolated as 

previously described [42]. Chromosomal DNA extraction from L. lactis subsp. 

cremoris 158, UC109, L. lactis subsp. lactis UC11, C10, UL8 UC08, 275, UC063, 

UC06 184, 229 and UC77 was performed by commercial sequencing service 

providers GATC Biotech Ltd. (Germany). 

SMRT sequencing was performed on a Pacific Biosciences RS II sequencing 

platform (executed by GATC Biotech Ltd., Germany). De novo genome assemblies 

were performed using the Pacific Biosciences SMRTPortal analysis platform 

(version 2.3.1), utilizing the RS_HGAP_Assembly.2 protocol. Remaining low 

quality regions or sequencing conflicts were resolved by primer walking and Sanger 

sequencing of PCR products (through sequence service provider Eurofins MWG 

Operon, (Germany)). 
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Table 3.1: Lactococcal representative strains used in this study 

Strain name Genbank 

accession 

Ecological niche Sequencing 

technology 

Year Citation 

subsp. lactis      

Il1403 AE005176 Dairy isolate Sanger 2001 [12] 

KF147 CP001834 Plant isolate 454-pyrosequencing 

& Illumina 

2009 [57] 

CV56 CP002365 Human isolate 454-pyrosequencing 2011 [58] 

IO-1 AP012281 Drain water Sanger 2012 [59] 

KLDS 4.0325 CP006766 Koumiss Illumina 2013 [60] 

NCDO 2118 CP009054 Frozen peas SOLiD, Ion PGM & 

Ion Torrent PGM 

2014 [61] 

SO CP010050 Dairy isolate Ion Torrent PGM 2014 [62] 

AI06 CP009472 Açaí palm 454-pyrosequencing 2014 [26] 

184 CP015895 Dairy isolate PacBio SMRT 2016 ** 

229 CP015896 Dairy isolate PacBio SMRT 2016 ** 

275 CP015897 Dairy isolate PacBio SMRT 2016 ** 

UC06 CP015902 Dairy isolate PacBio SMRT 2016 ** 

UC08 CP015903 Fermented meat  PacBio SMRT 2016 ** 

UC11 CP015904 Fermented meat  PacBio SMRT 2016 ** 

UC063 CP015905 Dairy isolate PacBio SMRT 2016 ** 

UC77 CP015906 Dairy isolate PacBio SMRT 2016 ** 

UL8 CP015908 Dairy isolate PacBio SMRT 2016 ** 

C10 CP015898 Dairy isolate PacBio SMRT 2016 ** 

subsp. cremoris     

SK11 CP000425 Dairy isolate Sanger 2006 [7] 

MG1363 AM406671 Dairy isolate Sanger 2007 [13] 

NZ9000 CP002094 Laboratory strain Illumina 2010 [63] 

A76 CP003132 Dairy isolate Sanger 2011 [64] 

UC509.9 CP003157 Dairy isolate 454-pyrosequencing 

& Illumina 

2012 [6] 

KW2 CP004884 Dairy isolate 454-pyrosequencing 2013 [65] 

158 CP015894 Dairy isolate PacBio SMRT 2016 ** 

UC109 CP015907 Dairy isolate PacBio SMRT 2016 ** 

JM1 CP015899 Dairy isolate PacBio SMRT 2016 ** 

JM2 CP015900 Dairy isolate PacBio SMRT 2016 ** 

JM3 CP015901 Dairy isolate PacBio SMRT 2016 ** 

JM4 CP015909 Dairy isolate PacBio SMRT 2016 ** 

** Sequenced in the framework of this study. 
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3.2.2 General feature predictions  

Following final genome assembly, Open Reading Frame (ORF) prediction 

was performed employing Prodigal v2.5 prediction software 

(http://prodigal.ornl.gov) and confirmed using BLASTX v2.2.26 alignments [28]. 

ORFs were automatically annotated using BLASTP v2.2.26 [28] analysis against the 

non-redundant protein databases curated by the National Centre for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nig.gov/). Following automatic 

annotation, ORFs were manually curated using Artemis v16 genome browser and 

annotation tool (http://www.sanger.ac.uk/science/tools/artemis). This latter software 

tool was used for the combination and inspection of ORF-identification results, for 

adjustment of start codons (where necessary), and for the identification of 

pseudogenes. Finally ORF annotations were refined further where required using 

alternative functional searches using Pfam [43], HHpred [44], PHAST [45] and 

Uniprot/EMBL (http://www.uniprot.org/). 

Transfer RNA (tRNA) and ribosomal RNA (rRNA) genes were predicted 

using tRNA-scan-SE v1.4 (http://lowelab.ucsc.edu/tRNAscan-SE/) and RNAmmer 

v1.2 (http://www.cbs.dtu.dk/services/RNAmmer/), respectively. Predicted RNA-

specifying loci were manually added to each genome using Artemis v16. 

 

3.2.3 Comparative genomics 

The Mauve alignment tool was employed in order to perform whole genome 

alignments at the nucleotide level, and to explore synteny within the genomes and 

identify potential integration sites [46]. Genome synteny was explored and dotplots 

generated using Geopard v1.40 [47]. All sequence comparisons at the protein level 

were performed via all-against-all, bi-directional BLAST alignments [28]. An 

http://prodigal.ornl.gov/
http://www.ncbi.nlm.nig.gov/
http://www.sanger.ac.uk/science/tools/artemis
http://www.uniprot.org/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.cbs.dtu.dk/services/RNAmmer/
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alignment cut-off value of E-value 0.0001, > 30 % amino acid identity across 80 % 

of the sequence length was used. For analysis and clustering of these results, the 

Markov Clustering Algorithm (MCL) was implemented in the mclblastline pipeline 

v12-0678 [29]. To further analyse genomic functions, the deduced protein 

complement was categorised based on COG (clusters of orthologous groups) 

assignments [48]. Metabolic pathways encoded by L. lactis strains were predicted 

and mapped using KEGG (Kyoto Encyclopaedia of Genes and Genomes)[49, 50]. 

Logo motifs were produced using WebLogo 3 [51]. 

 

3.2.4 Phylogenetic analysis 

The lactococcal supertree computation was performed by the BLAST-based 

comparative approach outlined above to identify a subset of 596 orthologous 

proteins. The subset was concatenated for each strain and an ungapped alignment 

was performed using MUSCLE v3.8.31 [52] with Streptococcus thermophilus LMG 

18311 (Accession: CP000023) used as an outgroup. The phylogenetic tree was 

computed by the maximum-likelihood method in PhyML v3.0 and bootstrapped 

employing 1000 replicates [53]. The final tree file was visualised using ITOL 

(Interactive Tree of Life) (http://itol.embl.de/index.shtml). 16S rRNA trees were 

prepared in MEGA6. Alignments were performed using MUSCLE. The evolutionary 

history was inferred by the Neighbour-joining method [54]. 

 

3.2.5 Pan- and core-genome analysis 

For the 30 available lactococcal genomes in this study, PGAP v1.0 [27] was 

used to perform the pan-genome analysis according to Heaps law pan-genome model 

[20]. The ORF content of each genome is organised in functional gene clusters via 

http://itol.embl.de/index.shtml
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the Gene Family method. ORFs which produce an alignment with a minimum of 50 

% sequence identity across 50 % of the gene/protein length are clustered and a 

pan/core genome profile was subsequently generated. 

 

3.2.6 Growth conditions and media  

Bacterial strains used in this study are detailed in Table 3.1. L. lactis strains 

were routinely cultured at 30 °C in M17 broth (Oxoid) supplemented with 0.5 % 

glucose/lactose without agitation. Alternatively, and where indicated, strains were 

grown in 10 % RSM (reconstituted skimmed milk) at 30 °C without agitation. 

 

3.2.7 Intracellular enzyme assays 

Cells were prepared via a 1.5 % inoculum into 10 % RSM and grown 

overnight (16 hours) at 30 °C. Cells were then plated on M17 agarose supplemented 

with lactose to determine a viable plate count in cfu/ml. 50 ml of an overnight 

culture was added to 450 ml of borate buffer (0.05 M EDTA and 0.5 M borate pH8 

with NaOH) and cells were collected by centrifugation (7000 rpm for 9 min). Cells 

were then washed in imidazole buffer (50 mmol/l imidazole and 10 mmol/l calcium 

chloride pH6.5) and pelleted by centrifugation (7000 rpm for 9 min). Cell pellet was 

re-suspended in 5 ml of lysis buffer (10 mM Tris-HCL, 50 mM CaCl2, 300 mM 

NaCl, 10 mM imidazole, 25 mg/ml of lysozyme, pH 7.5). Cells were then sonicated 

five times (30 seconds each) with 30 seconds on ice in between each sonication, after 

which cell debris was removed by centrifugation (15,000 rpm for 25 minutes at 4°C). 

The resulting supernatant was then quantified for peptide/aminotransferase/esterase 

activity. 
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Detection of specific peptidase activities was conducted by fluorescence 

using 7-amino-4-methyl coumarin (AMC) coupled peptidase substrates; H-Lys-

AMC.acetate (Lys-AMC) PepN and PepC, H-Asp (AMC)-OH (Asp-AMC) PepA, 

H-Pro-AMC.HBr (Pro-AMC) Proline imino peptidase, H-Gly-Pro-AMC. HBr (Gly-

Pro-AMC) PepX, N-Suc-Gly-Pro-Leu-Gly-Pro-AMC (Gly-Pro-Leu-Gly-Pro-AMC) 

Endopeptidase and CBZ-Gly-Pro-AMC (Z-Gly-Pro-AMC) Carboxypeptidase, 

sourced from Bachem AG through VWR Ireland. The protocol was performed as 

described by Kato and colleagues [55], with the exception of reduced volumes for 

high throughput screening in 96-well plates. Released fluorescence was measured on 

a SpectraMax M3 Multi-Mode Microplate Reader from Molecular Devices. Enzyme 

activity was calculated in RFU PPDA (1 RFU = the amount of uM of AMC released 

min-1 by 1 mg of protein). 

Amino acid transferase activity was determined (for Phe and Met) as 

previously described by Cavanagh and colleagues [16]. The final absorbance was 

read at wavelength, 300 nm in triplicate on a DU Series 730 spectrophotometer from 

Beckman Coulter, blanking the machine between each measurement. Standard 

curves were prepared for phenylalanine and methionine using phenylpyruvate and α-

ketomethylthiobutyrate, respectively. Amino acid transferase activity was then 

expressed as micromoles per minute per milligram of protein. 

Detection of short chain esterase activity was conducted via a 

spectrophotometric assay as previously described [56], utilising p-nitrophenyl 

butyrate as a substrate. Absorbance was measured on a DU Series 730 

spectrophotometer from Beckman Coulter. All activities measured were normalised 

for each strain based on cell count. 
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3.2.8 Nucleotide sequence accession numbers 

L. lactis subsp. lactis Il1403 AE005176, L. lactis subsp. lactis KF147 CP001834, L. 

lactis subsp. lactis CV56 CP002365, L. lactis subsp. lactis IO-1 AP012281, L. lactis 

subsp. lactis KLDS 4.0325 CP006766, L. lactis subsp. lactis NCDO 2118 

CP009054, L. lactis subsp. lactis SO CP010050, L. lactis subsp. lactis AI06 

CP009472, L. lactis subsp. lactis 184 CP015895, L. lactis subsp. lactis 229 

CP015896, L. lactis subsp. lactis 275 CP015897, L. lactis subsp. lactis UC06 

CP015902, L. lactis subsp. lactis UC08 CP015903, L. lactis subsp. lactis UC11 

CP015904, L. lactis subsp. lactis UC063 CP015905, L. lactis subsp. lactis UC77 

CP015906, L. lactis subsp. lactis UL8 CP015908, L. lactis subsp. lactis C10 

CP015898, L. lactis subsp. cremoris SK11 CP000425, L. lactis subsp. cremoris 

MG1363 AM406671, L. lactis subsp. cremoris NZ9000 CP002094, L. lactis subsp. 

cremoris A76 CP003132, L. lactis subsp. cremoris UC509.9 CP003157, L. lactis 

subsp. cremoris KW2 CP004884, L. lactis subsp. cremoris 158 CP015894, L. lactis 

subsp. cremoris UC109 CP015907, L. lactis subsp. cremoris JM1 CP015899, L. 

lactis subsp. cremoris JM2 CP015900, L. lactis subsp. cremoris JM3 CP015901, L. 

lactis subsp. cremoris JM4 CP015909 and S. thermophilus LMG 18311 CP000023. 
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3.3 Results 

 

3.3.1 General genome features 

In this study, the chromosomal features of thirty L. lactis strains were 

assessed, eighteen of which belong to subspecies lactis and a further twelve to 

subspecies cremoris based on phylogenetic analysis of 16S RNA. For all selected 

strains, complete genome assemblies were available, of which fourteen were 

obtained from the NCBI (National Centre for Biotechnology Information) database, 

while the remaining sixteen were sequenced as part of the current study using the 

SMRT sequencing approach (Table 3.1). Although the NCBI database contains in 

total eighty four L. lactis genome assemblies only those, which are fully finished (i.e. 

present in the data base as a single chromosomal contig), were selected for this 

project due to the inherent limitations of draft assemblies. Briefly, the order and 

orientation of contigs of such draft assemblies remains unresolved and the 

differentiation between traits, which are verified to be chromosomally-encoded 

versus plasmid-encoded, is not possible particularly when one considers plasmid 

integration events. Most notably, however it is the finite nature of a finished genome 

which facilitates the comparison of the full genetic content of a strain rather than 

most of the genetic content, whereas in the case of a draft genome the likelihood of 

error from missing genes or incorrect copy number is significantly higher [23, 24]. 

The thirty L. lactis strains included in this study encompass isolates from six 

different ecological niches; dairy, plant, meat, fermented foods, human isolate (this 

is a vaginal isolate of a healthy woman) and a strain isolated from a sink drain, with 

the vast majority obtained from the dairy environment, most notably for the 

production of cheese (Table 3.1). Comparison of the thirty lactococcal genomes 
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established an average chromosome length of 2.428 Mbp, where it should be noted 

that generally the genomes of subsp. lactis are larger than their subsp. cremoris 

counterparts (Table 3.2). Genomes belonging to the subsp. cremoris contain a higher 

proportion of pseudogenes and insertion sequence (IS) elements/transposons, 

indicative of transpositions and (associated) genome decay within the subsp. 

cremoris genome. A defining characteristic of both subspecies is evident in the 

number of plasmids within each strain. L. lactis carries many niche-specific 

adaptations within its plasmid complement, particularly for the dairy environment, 

such as lactose utilisation and casein utilisation, and this is evident in the larger 

plasmid complement observed for subsp. cremoris strains predominantly isolated 

from the dairy niche (a detailed functional and comparative analysis of the plasmid 

complement will be presented in Chapter IV). A substantial proportion of the 

observed genomic diversity is due to a variable number of integrated prophage 

elements (Table 3.2). 

General feature extractions conducted on each of the chromosomes generated 

an overall average of 2344 predicted CDS (Coding Sequences) per chromosome of 

which 77.6 % can be functionally assigned using BLAST (Basic Local Alignment 

Search Tool) based on in silico predictions, while the remaining 22.4 % are assigned 

as hypothetical proteins (Table 3.2). 
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Table 3.2: General genome features of thirty representative L. lactis genomes 

Strain Genome 

length 

(Kbp) 

CDS tRNA 

features 

rRNA 

features 

Hypothetical 

proteins % 

Assigned 

function 

% 

Pseudo 

genes 

IS elements/ 

transposases 

Prophage  Plasmids GC % 

L. lactis subsp. lactis           

184 2343 2312 51 15 19.6 80.4 15 59 2 In* 6 Re# 3 35.16 

229 2455 2541 56 15 20.2 79.8 15 94 4 In 3 Re 5 35.19 

275 2496 2418 58 18 20.2 79.8 14 43 3 In 6 Re 4 35.49 

UC06 2571 2472 61 18 21.7 78.3 8 35 2 In 3 Re 3 35.26 

UC08 2382 2246 62 18 20.0 80.0 14 18 2 Re 3 35.00 

UC11 2382 2237 60 19 20.0 80.0 16 17 2 Re 6 35.00 

UC063 2393 2361 59 18 19.2 80.8 14 59 3 In 5 Re 5 35.32 

UC77 2538 2541 66 21 19.0 81.0 12 96 5 In 3 Re 2 35.26 

UL8 2422 2405 59 17 18.5 81.5 13 56 3 In 7 Re 3 35.29 

C10 2336 2294 50 15 17.7 82.3 21 53 5 In 3 Re 1 35.30 

IL1403 2366 2267 62 18 21.0 79.0 43 43 3 In 3 Re - 35.33 

KLDS 4.0325 2589 2587 64 19 34.0 66.0 56 39 4 In 7 Re - 35.36 

NCDO 2118 2555 2334 66 19 28.0 72.0 52 16 2 In 3 Re 1 34.91 

KF147 2598 2537 68 19 19.5 80.5 93 29 2 In 4 Re 1 34.91 

SO 2489 2281 64 19 21.5 78.5 126 45 3 In 3 Re - 35.23 

AI06 2398 2197 61 19 22.9 77.1 2 5 1 In 1 Re - 35.04 

CV56 2399 2301 62 19 23.7 76.3 51 31 2 In 4 Re 5 35.24 
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IO-1 2422 2233 65 18 23.1 76.9 8 13 1 In 1 Re - 35.10 

Average: 

(lactis) 

2451 2364 60 18 21.6 78.4 31 41 3 In 4 Re 2.3 35.18 

L. lactis subsp. cremoris          

158 2250 2078 60 19 17.9 81.1 106 150 2 Re 6 35.88 

UC109 2248 2081 60 19 20.0 80.0 98 149 2 Re 6 35.91 

JM1 2397 2308 60 19 20.5 79.5 74 243 1 In 6 Re 7 36.01 

JM2 2374 2316 58 19 19.6 80.4 68 167 1 In 3 Re 4 35.80 

JM3 2454 2411 59 19 23.7 76.3 60 163 2 In 3 Re 5 35.87 

JM4 2380 2293 60 19 20.9 79.1 88 181 1 In 4 Re 5 35.83 

UC509.9 2250 1947 60 19 18.5 81.5 182 125 1 Re 8 35.88 

SK11 2439 2390 61 20 26.2 73.8 144 159 2 In 3 Re 5 35.86 

A76 2453 2643 57 19 25.8 74.2 193 198 2 In 7 Re 4 35.88 

KW2 2427 2268 61 19 20.8 79.2 - 3 1 In - 35.74 

MG1363 2530 2516 62 7 30.8 69.2 81 60 2 In 4 Re 1 35.75 

NZ9000 2530 2514 65 19 35.3 64.7 99 66 2 In 5 Re - 35.74 

Average: 

(cremoris) 

2394 2323 60 18 23.3 76.6 100 138 1 In 3 Re 4.25 35.84 

Average: 

(lactis & 

cremoris ) 

2428 2344 60 18 22.3 77.6 59 80 2 In 4 Re 3.1 35.45 

*In: Complete intact prophage #Re: Partial/remnant prophage 



146 

 

3.3.2 Phylogenetic analysis and genome synteny 

To investigate the phylogenetic relationship between the selected lactococcal 

isolates, a multifaceted approach was employed. Firstly, the 30 genomes were 

aligned based on 16S rRNA sequences with Streptococcus thermophilus used as an 

out-group to root the phylogenetic tree, resulting in a clear division into two major 

clades that correspond to the subsp. lactis and subsp. cremoris division (Fig. 3.1A). 

In order to improve the phylogenetic resolution of the analysis, a second approach 

was employed by constructing a phylogenetic supertree of 596 conserved 

orthologous proteins using an approach that has previously also been applied to other 

species [22, 25]. The conserved orthologues were selected based on all-against-all 

reciprocal BLASTP analysis with an e-value cut-off of 0.0001 and MCL (Markov 

Clustering) in order to identify single-copy genes conserved across all 31 (30 L. 

lactis plus S. thermophilus out-group) genomes in the phylogenetic analysis. The 

generated supertree displays the same bifurcation observed for the 16S rRNA 

analysis, substantiating this clear genomic differentiation between the two 

subspecies. This is also indicative of a unique allelic type for genes from subsp. 

lactis isolates in comparison to those from subsp. cremoris isolates, and is in 

agreement with the described differences in average nucleotide identity and 

tetranucleotide frequency correlation coefficients between the two subspecies [16]. 

To investigate a subspecies-specific allelic type, a subset of individual housekeeping 

genes from each of the genomes were aligned (involving the following genes: radC 

(Supp. Fig S3.1), groEL, grpE, recX, ssbA, recA, recQ, rimM, radA, and hsp10 (Data 

not shown)), again resulting in each instance in a clear divide between 

representatives of each subspecies thus adding further evidence for an evolution-

driven speciation event. 
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The lactococcal supertree revealed also a number of subclades of which 

members seem to be ordered based on niche specificity. Dairy isolates of subsp. 

cremoris cluster together into one clade, distinct from L. lactis KW2 isolated from 

fermented corn, while L. lactis NZ9000 and its parent strain L. lactis MG1363, 

which originated from the dairy niche formed their own clade. Dairy isolates of 

subsp. lactis also grouped together, with the exception of L. lactis UC06 and L. lactis 

SO. Furthermore, subsp. lactis isolates from meat and fermented foods each formed 

separate clades (Fig. 3.1B) 
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Figure 3.1: Phylogenetic analysis of L. lactis taxon 

A) 16S neighbour-joining (NJ) tree, resulting from the alignment of the 16S rRNA-encoding genes of 30 L. lactis isolates. The corresponding 

16S rRNA-specifying sequence of S. thermophilus LMG 18311 was used as to root the tree. B) Multilocus supertree resulting from the 

alignment of 596 orthologous genes selected from the core genome. Ecological niche of representative clades is also indicated. 
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To assess the synteny of the lactococcal genomes, whole genome nucleotide 

alignments were performed and represented as a dotplot matrix (Fig. 3.2). L. lactis 

subsp. lactis 184 was used as a representative strain for the subspecies, first aligned 

against itself and then against the remaining seventeen subsp. lactis genomes. This 

approach was also employed for the subsp. cremoris genomes using L. lactis subsp. 

cremoris 158 as the representative strain. Genome synteny was conserved in the 

lactis subspecies with the exception of the L. lactis subsp. lactis AI06 chromosome, 

which revealed a large inversion between coordinates 900 Kbp and 1633 Kbp as 

previously reported [26]. 

Genome synteny was significantly less conserved among the subsp. cremoris 

strains, with in particular L. lactis subsp. cremoris strains A76, JM1, JM2, MG1363 

and NZ9000 presenting with multiple chromosomal inversions. In the case of 

genomes sequenced within the scope of this study (by SMRT sequencing, which 

generates long individual reads; average ~8 Kbp), these inversions are assumed to be 

genuine inversions rather than assembly errors. Visual inspection of the SMRT 

assembly at points intersecting these inversions indeed identified reads that in each 

case comfortably bridge the inversion points. The increased incidence of 

chromosomal inversions within these genomes is in accordance with the observed 

high number of transposons and other mobile elements (Table 3.2). The suspected 

role of mobile genetic elements in promoting chromosomal inversions was 

corroborated by sequence inspection of the borders of each of the identified inverted 

regions, which revealed in all incidences the presence of multiple transposable 

elements or integrated prophage(s). 
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Figure 3.2: Whole genome nucleotide dotplots 
Whole genome nucleotide alignments of thirty fully sequenced L. lactis genomes. 

Alignments 1(red)-18 represent subsp. lactis genomes. Alignments 19(black)-30 

represent subsp. cremoris genomes. 

 



151 

 

3.3.3 Pan/core-genome analysis 

To evaluate current sequencing efforts of the L. lactis taxon and to determine 

if additional genome sequencing is necessary to provide a complete overview of the 

chromosomal diversity of this taxon, pan-genome analysis was applied using the 

PGAP v1.0 pipeline [27]. The analysis was applied to the chromosomes of L. lactis 

only and excluded plasmid sequences. The resulting graph (Fig. 3.3) reveals an 

asymptotic curve increasing at an average rate of 209.44 genes for the first eleven 

chromosomes analysed. Beyond this point, the rate of pan-genome increase slows to 

an average of 86 genes per genome added for the remaining nineteen strains in the 

analysis resulting in a pan-genome constituted by 5906 genes. The majority of new 

genes added at this point in the analysis are short hypothetical CDSs which do not 

contribute greatly to our current understanding of the genetic diversity of these 

strains. The deduced mathematical function is also displayed (Fig. 3.3) and the 

exponential value (<0.5) indicates that the pan-genome is in a closed state [20]. 

Using the approach outlined above, it was also possible to deduce that the 

core genome of L. lactis consists of 1129 genes (Fig. 3.3). Conversely, when the 

subspecies are separated and the analysis repeated, the core genome size increases to 

1406 genes for subsp. cremoris and 1413 genes for subsp. lactis, revealing that 277 

and 284 core genes, respectively, are uniquely conserved for each subspecies. 

Overall, both analyses show that L. lactis contains an essentially closed pan-genome 

(excluding the plasmid complement) and that a sufficient number of strains have 

been included to describe the complete genetic repertoire of the taxon. 
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Figure 3.3: Pan-genome and core-genome analysis of lactococcal chromosomes 
Pan-genome profile displays accumulated number of new genes in the L. lactis pan-genome plotted against the number of genomes 

added and the accumulated number of genes attributed to the core-genome plotted against the number of added genomes. The deduced 

mathematical functions are also indicated. 
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3.3.4 Comparative analysis of orthologous genes 

To assess the level of (functional) diversity within the lactococcal core and 

dispensable genomes, comparative analysis was performed via all-against-all, bi-

directional BLASTP alignment, and clustering implemented in the MCL pipeline 

[28, 29]. The core genome of 1129 genes, as defined above, was found to comprise 

904 orthologous (single copy) gene families and 225 paralogous (multi-copy) gene 

families. Gene families unique to each chromosome were also calculated (Fig. 3.4A) 

and totalled 757 unique gene families across the 30 assessed L. lactis isolates. 

BLASTP analysis showed that 65 % of these unique or dispensable gene families 

encode proteins of unknown function, while a further 16 % encode phage proteins 

acquired through the integration of a particular prophage-like element. The 

remaining unique gene families were predominantly found to be representing 

plasmid integration events encoding proteins involved in mobilisation and 

conjugation, integrated mobile elements such as transposases and IS elements, or 

systems that provide specific benefit to the bacterium such as restriction-

modification systems, bacteriocin production, and sugar transport and metabolism.  

Cluster of Orthologous Group (COG) analysis was employed to further classify both 

the core and dispensable genome of L. lactis. The thirty lactococcal chromosomes 

analyzed in this study were classified using COG analysis. The core genome was 

predominantly composed of genes involved in housekeeping functions, fundamental 

to growth and survival, while 24 % of the genes contained in the core genome were 

assigned to COG groups [R] and [S] representing genes, for which a general function 

was predicted or which are of unknown function (Fig. 3.4B).  
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Figure 3.4: Comparative genomics of orthologous protein groups 

A) Venn diagram displaying core gene families obtained by MCL clustering, and 

unique genes of 30 L. lactis isolates. B) Cluster of Orthologous Groups (COGs) 

classification of L. lactis. Circles from inner to outer represent: L. lactis 158, L. lactis 

184, L. lactis 229, L. lactis 275, L. lactis C10, L. lactis JM1, L. lactis JM2, L. lactis 

JM3, L. lactis JM4, L. lactis KF147, L. lactis KLDS 4.0325, L. lactis KW2, L. lactis 

MG1363, L. lactis NCDO 2118, L. lactis NZ9000, L. lactis SK11, L. lactis SO, L. 

lactis UC06, L. lactis UC08, L. lactis UC11, L. lactis UC063, L. lactis UC77, L. 

lactis UC109, L. lactis UC509.9, L. lactis A76, L. lactis AI06, L. lactis CV56, L. 

lactis IL1403, L. lactis IO-1 and L. lactis core genome. 
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COG classification was also performed on the non-overlapping parts of the 

core genomes of subsp. cremoris and subsp. lactis, thus focusing on conserved 

features that differentiate the two subspecies (Table 3.3). This analysis identified 

CDSs predicted to be involved in metabolism, particularly carbohydrate transport 

and metabolism (Table 3.3) as the major discerning factor between the two 

subspecies. Further examination of these subspecies-specific, conserved gene set 

demonstrates that subsp. lactis conserved more unique genes than subsp. cremoris, 

particularly related to metabolism, 124 compared to 68, respectively. The reduced 

number of CDSs encoding products related to metabolism in subsp. cremoris strains 

is noteworthy as it is in agreement with the generally observed reduced metabolic 

capabilities of subsp. cremoris strains, and highlights the reductive pressure and 

genome decay imposed on these strains predominantly isolated from the dairy niche. 
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Table 3.3: COG classifications of the core genomes of L. lactis, L. lactis 

subsp. lactis and L. lactis subsp. cremoris 

COG classification 

 Unique core genomes 

L. lactis core 

genome 

L. lactis subsp. 

lactis 

L. lactis subsp. 

cremoris 

Translation, ribosomal 

structure and biogenesis 

10 % <1 % 5 % 

Transcription 8 % 11 % 9 % 

Replication, recombination 

and repair 

6 % 3 % 6 % 

Cell cycle control, cell 

division, chromosome 

partitioning 

1 % <1 % <1 % 

Defence mechanisms 1 % 4 % 3 % 

Signal transduction 

mechanisms 

2 % 2 % 2 % 

Cell wall/membrane/envelope 

biogenesis 

5 % 4 % 4 % 

Cell motility <1 % 1 % 1 % 

Intracellular trafficking, 

secretion, and vesicular 

transport 

1 % <1 % 2 % 

Posttranslational modification, 

protein turnover, chaperones 

4 % 1 % <1 % 

Energy production and 

conversion 

4 % 4 % 3 % 

Carbohydrate transport and 

metabolism 

7 % 14 % 10 % 

Amino acid transport and 

metabolism 

9 % 15 % 5 % 

Nucleotide transport and 

metabolism 

5 % 1 % 1 % 

Coenzyme transport and 

metabolism 

4 % 2 % 2 % 

Lipid transport and 

metabolism 

3 % 3 % 3 % 

Inorganic ion transport and 

metabolism 

6 % 4 % 3 % 

Secondary metabolites 

biosynthesis, transport and 

catabolism 

2 % 1 % 2 % 

General function prediction 

only 

14 % 6 % 10 % 

Function unknown 10 % 23 % 27 % 

* Highlighted rows indicate those were a significant difference exists within the 

unique core genomes 
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3.3.5 Metabolism and niche adaptation 

To explore the divide between the subspecies in terms of their metabolic 

capabilities and to highlight particular niche adaptations within the strains, MCL 

analysis was employed to compare the COG groupings based on function, i.e. [G] 

carbohydrate transport and metabolism, [E] amino acid transport and metabolism 

and [I] lipid transport and metabolism. These COG groups are fundamental to niche 

adaptation as they provide an overview of a strain’s ability to metabolise different 

energy sources. They may also include key technological traits sought in strains 

utilised in the dairy niche where the majority of sequenced strains have been 

isolated. Until now, the focus of this study has been on chromosome-specific traits, 

however, in order to gain an overall view of the total metabolic capabilities of a 

strain it is necessary to also consider extra-chromosomal encoded traits. Therefore, 

both chromosomally- and plasmid-encoded features were considered for the 

remainder of the comparative analysis. 

MCL analysis of COG [G] functions (genes involved in carbohydrate 

transport and metabolism) across all 30 isolates resulted in a gene presence/absence 

matrix displaying groupings specific to niche environments (Fig. 3.5). The majority 

of analysed lactococcal genome sequences are derived from isolates from the dairy 

niche, where the most important adaptation is the ability to ferment lactose, 

facilitated by the products of the plasmid-borne lac operon, which consists of the 

lacABCDEFGX genes [8, 9]. The complete lac operon was identified in all subsp. 

cremoris strains isolated from the dairy niche except for the plasmid-free strains 

MG1363 and its derivative NZ9000. However, MG1363 has previously been shown 

to metabolise lactose due to the activity of a cellobiose-specific phosphotransferase 

system (PTS), which can act as an alternative lactose utilisation pathway under 
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glucose starvation conditions [30]. The complete lac operon was also identified in 

six of the eleven subsp. lactis dairy isolates, yet not in the remaining five (strains 

184, C10, UL8 and IL1403), of which L. lactis IL1403 is known to be a plasmid-

cured strain [31]. When strains C10 and UL8 were inoculated in 10 % RSM 

(reconstituted skimmed milk), they displayed no signs of growth or acidification, 

which is consistent with the observed absence of the lac operon. However, in the 

case of strain 184, growth on lactose is still observed, which can be explained by the 

presence of the cellobiose-specific phosphotransferase system (PTS), similar to the 

situation in MG1363 [30]. Interestingly, while all dairy-derived cremoris strains 

form a single cluster based on genes involved in carbohydrate metabolism, all dairy-

derived lactis strains with the exception of strains SO and UC06 form a single 

separate cluster to their cremoris counterparts based on carbohydrate utilisation. The 

only human isolate of L. lactis included in our analysis is also contained within this 

cluster. Differentiating factors, such as the clusters responsible for maltose utilisation 

found in all lactis strains and non-dairy cremoris strains, and for xylose metabolism 

as observed in all cremoris strains (with the exception of JM1), yet not present in 

lactis strains, contribute to this division. 
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Figure 3.5: Carbohydrate utilisation and niche adaptation 

Hierarchical clustering analysis representing the presence/absence of gene families 

from COG group [G], carbohydrate transport and metabolism. Colour indications 

refer to the particular niche from which the L. lactis strain had been isolated. 
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The genomes of L. lactis UC08 and UC11 represent the only two complete 

lactococcal genome sequences isolated from fermented meat. In this analysis, these 

strains clustered closely with those derived from non-dairy sources, particularly 

plant-derived strains based on carbohydrate metabolism. Genes encoding functions 

involved in pentose and glucuronate interconversions are found exclusively in strains 

isolated from plant and meat niches, and thus are not present in any other lactococcal 

strain. These sugars are generally not found in milk where the primary sugar source 

is lactose with only trace amounts of monosaccharides and oligosaccharides. The 

majority of strains examined in this study are dairy isolates and so it is plausible that 

these functions have been lost through reductive evolution in strains adapted to (the 

rich growth media provided by) the dairy environment.  

Supplementing COG analysis with information obtained from KEGG (Kyoto 

encyclopaedia of genes and genomes) analysis, a full assessment of all major 

metabolic pathways present in L. lactis was undertaken. In this case complete 

pathways for D-galacturonate degradation (KEGG accession: M00631) and beta-

oxidation, acyl-CoA synthesis (KEGG accession: M00086) were exclusively 

identified in the plant-derived strains NCDO2118 and KF147. 

It has previously been demonstrated that both L. lactis subsp. cremoris and 

subsp. lactis are capable of folate biosynthesis [32]. Interestingly, KEGG analysis 

showed all analysed subsp. lactis strains to lack a complete pathway for 

tetrahydrofolate biosynthesis (KEGG accession: M00126) which was found to be 

complete in all subsp. cremoris strains. In cremoris strains the pathway was found to 

consist of nine genes responsible for conversions from purine metabolism to folate, 

whereas in subsp. lactis strains, the phoA gene that encodes an alkaline phosphatase 

(E3.1.3.1), responsible for the conversion of 7,8-dihydroneopterin 3-triphosphate to 
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dihyroneopterin, appears to be absent. This may indicate that this step in 

tetrahydrofolate biosynthesis in subsp. lactis may be performed by an alternative and 

as yet unidentified enzyme (in comparison to their cremoris counterparts). 

 

3.3.6 Amino acid transport and metabolism 

Proteolysis (of casein) performed by L. lactis has been widely studied as it is 

considered to be an important technological trait in dairy lactococci due to its 

contribution to flavour in fermented dairy products such as cheese, as outlined by a 

number of reviews that detail this process [33-35]. The main categories of peptidases 

contributing to proteolysis in L. lactis are aminopeptidases, endopeptidases, di/tri-

peptidases, proline peptidases, endopeptidases and carboxypeptidases. The majority 

of described peptidase-encoding genes represent monocistronic elements (e.g. pepC, 

pepN and prtP), while others are transcribed with genes apparently unrelated to 

proteolysis [36]. To assess the level of peptidase activity within L. lactis, both 

functional and genomic analyses were undertaken. Quantitative assays utilising 

fluorescently labelled substrates (see Materials and Methods section) were used to 

determine the activity levels of PepN/C, PepA, PepX, proline imino peptidase, 

carboxypeptidase and endopeptidase produced by each strain (Fig. 3.6A) and 

expressed as a percentage of their total proteolytic capability (Fig. 3.6B). The 

dominant peptidase activities expressed by each strain was that represented by the 

proline peptidase PepX and the aminopeptidases PepA and PepN/C. Interestingly, all 

of these peptidases are present in single-copy in each of the chromosomes, though 

the measured activity levels do vary considerably between strains. To ascertain a 

broader perspective on peptidase or amino acid digestion, an MCL analysis of COG 

group [E] amino acid transport and metabolism was performed (Fig. 3.6C). 
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Figure 3.6: Peptide metabolism in L. lactis 

A) Level of PepX, PepA, PepN/C, Proline imino peptidase, endopeptidase and 

carboxypeptidase activity, expressed by L. lactis in log(RFU PPDA) where (1 RFU 

= the amount of µM of AMC released min-1 by 1 mg of protein). Strains are 

clustered based on activity red-blue indicating increased activity. B) Histogram 

representing the percentage of total peptidase activity contributed by each peptidase 

for each strain. C) Hierarchical clustering analysis representing the presence/absence 

of gene families from COG group [E] amino acid transport and metabolism. 
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Clustering based on the presence or absence of genes involved in amino acid 

transport and metabolism resulted in two major groupings: the first composed of 

subsp. lactis strains and the second composed of cremoris strains indicating that the 

proteolytic system of these bacteria is distinct between and relatively well conserved 

within each subspecies. 

Another important factor in assessing the proteolytic system of Lactococcus 

is the effect of amino acid transferases, which convert free amino acids to α-

ketoacids. This is of particular importance when considering strains which may be 

used within the fermented food industry for the production of cheeses where 

aminotransferases contribute to flavour and aroma development [37]. As a high 

proportion of the available lactococcal dataset is currently composed of strains from 

the dairy niche, we assayed the strains for amino acid transferase activity against 

phenylalanine (aromatic amino acid) and methionine (sulphur amino acid), which are 

both common in milk and important in terms of cheese production. All strains 

demonstrated aminotransferase activity with phenylalanine as a substrate (Fig. 3.7A), 

and a considerably higher level of activity when methionine acted as a substrate (Fig. 

3.7B). With the exception of L. lactis subsp. cremoris JM4, strains of the cremoris 

subspecies were shown to display significantly higher levels of aminotransferase 

activity compared to their lactis counterparts.  

Markov clustering of aminotransferases in L. lactis strains was also carried 

out and resulted in clades, which closely resemble the level of activity expressed by 

the constituent strains (Fig. 3.7C). Interestingly, strains SK11, JM2, and KW2, 

which exhibited the highest level of aminotransferase activity using either 

phenylalanine or methionine as substrates, did not encode the highest number of 

aminotransferases, and none of these strains specify a histidinol-phosphate/aromatic 
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aminotransferase. Overall, both the peptidase and aminotransferase analyses revealed 

a very divergent proteolytic system between the two subspecies. 

 

Figure 3.7: Aminotransferase activity in L. lactis 
Amino acid transferase activities for (A) phenylalanine and (B) methionine. C) 

Hierarchical clustering analysis representing the presence/absence of genes involved 

in aminotransferase activities. Copy number is indicated by colour; red (x3), green 

(x2), blue (single-copy) and black (absent). 
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3.3.7 Lipid transport and metabolism 

MCL analysis combined with hierarchical clustering of COG group [I] (lipid 

transport and metabolism) revealed two main groups based on predicted lipolytic 

activity; the first was composed of both subsp. lactis and cremoris strains from 

mixed sources, while the second was composed exclusively of dairy cremoris 

strains, namely strains JM1, JM2, JM3, JM4, 158, UC109 and UC509.9. These 

strains encode a well-conserved lipolytic system, while lipolytic assays utilizing p-

nitrophenyl-butyrate for the detection of short chain esterase activity revealed a trend 

showing higher expression of esterase activity by these strains compared to their 

subsp. lactis and non-dairy subsp. cremoris counterparts (Fig. 3.8).  
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Figure 3.8: Lipid metabolism in L. lactis 

Upper panel displays hierarchical clustering analysis representing the 

presence/absence of gene families from COG group [I] lipid transport and 

metabolism. Lower panel displays a histogram indicating level of short chain 

esterase activity of each constituent strain in n/moles. 
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3.3.8 Plasmid Integration 

Bacterial adaptation relies heavily on the metabolic capabilities of the cell. In 

the case of L. lactis the most studied adaptations are those related to the dairy 

environment where reductive evolution or genome decay is observed among strains, 

a phenomenon which is believed to be due to repeated passaging in the nutrient-rich 

growth medium, milk [6, 7, 38]. As well as streamlining a bacterium’s metabolic 

activities to reduce energy–demanding, unnecessary systems in such a niche, the 

acquisition of new genetic information encoding traits that are advantageous to the 

host (in the particular niche) is often necessary. In L. lactis, the most notable 

example is adaptation to the dairy environment via the plasmid-encoded lac operon, 

which allows for lactose utilisation as the primary sugar source, and the prtP-

encoded protease and opp operon responsible for amino acid/nitrogen acquisition 

from the milk protein casein. However, in some instances integration of such genetic 

features into the host’s chromosome may take place.  

In silico based analysis of the chromosomes of thirty lactococcal isolates 

resulted in the identification of (1-6) integrated regions with significant (>90 %) 

nucleotide identity to previously sequenced lactococcal plasmids . The most notable 

of these putative integrations was the presence of the opp operon, originally 

identified as a plasmid-encoded trait in dairy L. lactis [39], conserved in the 

chromosomes of twenty-four out of thirty strains. The region shares (>90 %) 

nucleotide identity with lactococcal plasmids pIL4, pQA549, pCIS8, pSK11L /SK11 

plasmid 4, pVF50 and pGdh442. L. lactis MG1363 and its derivative L. lactis 

NZ9000 also harbour prtP in the same integration site; however, it is integrated at 

approximately 680-690 Kbp on the chromosome. In one instance, for L. lactis SO, 

the associated lac operon, which controls lactose utilisation in the dairy niche, was 
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detected on the chromosome, 20 Kbp downstream of the integrated opp operon and 

sharing significant homology with plasmids pCV56B, pSK08, pKF147A and 

pNCDO2118.  

A number of other (apparent) integrations were detected containing typical 

lactococcal plasmid features, such as genes encoding restriction-modification 

systems, conjugal transfer and mobilisation or mob genes, a partial lactococcin 

production gene cluster (four instances) and a partial (exo)polysaccharide 

biosynthesis gene cluster (nine instances). The frequency of these integrations 

suggests that the total genetic complement of L. lactis is in a state of flux, yet is also 

indicative of adaptations that are more permanent, particularly in the dairy niche 

where plasmid-encoded traits appear to become incorporated into the chromosomes 

of dairy strains. 
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3.4 Discussion 

Recent advances in NGS technologies have made it easier to sequence a far 

greater number of high-quality bacterial genomes than ever before. In this study 

SMRT sequencing was applied for the complete sequencing of sixteen lactococcal 

genomes, more than doubling the existing number of publicly available, fully 

sequenced lactococcal genomes. The chromosomal features of L. lactis were 

assessed with particular emphasis on discerning the subspecies classification and 

niche adaptation of L. lactis. 

Our analysis clearly identified a phylogenetic division between subspecies 

lactis and cremoris. This subspecies division was corroborated by hierarchical 

clustering based on both carbohydrate and amino acid metabolism, which indicates 

two main subgroups that correspond to each subspecies. Furthermore, for a number 

of conserved genes investigated in this study, a unique allelic type was observed for 

strains belonging to subsp. lactis and a separate allelic variant observed for strains 

belonging to subsp. cremoris. These observations support those made by Cavanagh 

and colleagues, who recently proposed a re-evaluation of the taxonomic group 

separating L. lactis into two distinct species L. lactis and L. cremoris based on ANI 

(average nucleotide identity) and TETRA (tetranucleotide frequency correlation 

coefficients) [16]. 

The genomes of L. lactis subsp. cremoris were found to contain a higher 

number of pseudogenes in comparison to their L. lactis subsp. lactis counterparts, on 

average 100 per strain compared to 31 per strain, respectively. The vast majority of 

these strains are isolated from the dairy niche where genome decay and redundancy 

is widely reported [6, 38, 40], and believed to be due to continuous growth in milk. 

These genomes were also shown to contain a high number of prophages and 



170 

 

transposable elements in agreement with Chopin and colleagues [5], and assumed to 

be the result of continued industrial pressures. Such prophages represent a risk 

factor, which warrants thorough assessment before introducing such strains into 

industrial fermentations. Conversely, the genomes of lactococcal strains isolated 

from both meat or plant environments displayed greater genetic variation and encode 

a higher number of metabolic pathways for the utilisation of a broader range of 

substrates compared to dairy-associated lactococci. The isolation of strains from 

these non-dairy sources may provide novel cultures for food fermentations and 

deliver desirable capabilities in terms of flavour and industrial robustness as dairy 

starter cultures. 

COG analysis of L. lactis subsp. cremoris and subsp. lactis showed a higher 

proportion of genes involved in information processing and storage in cremoris 

strains, and in metabolism in lactis strains, in the specific portions of the core 

genome the two subspecies do not share. This is in agreement with the generally 

observed reduced metabolic capabilities of subsp. cremoris strains, and highlights 

the reductive pressure through genome decay imposed on these (mostly) dairy-

derived strains. This may also be conducive to the observed faster growth rate of 

lactis strains compared to their cremoris counterparts under milk fermentation 

conditions. COG analysis was also utilised as a mechanism for functional genomic 

analysis in examining both peptide and lipid metabolism. It was determined that 

although strains can be genotypically clustered based on their subspecies and 

common niche, in agreement with a previous study [36], many of the peptidases for 

which functional assays are available exist in single copy in the majority of 

lactococcal genomes. Therefore, it may not always be possible to make genotype-

phenotype links without the involvement of transcriptome and/or metabolome-based 
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studies to support the data. Interestingly, both peptidase and aminotransferase 

analyses indicated a very divergent proteolytic system between the two subspecies, 

yet being relatively well conserved within each subspecies.  

Niche adaptation also relies heavily on the acquisition of new metabolic 

capabilities as well as the loss of unnecessary functions. The introduction of niche-

specific adaptations via plasmid acquisition, such as lactose and citrate metabolism 

has been extensively studied in L. lactis in view of their role in dairy niche 

adaptation [4, 8-10, 41], however, chromosomal adaptations are largely under-

represented by comparison. Interestingly, the division between plasmid- and 

chromosome-based traits is becoming less clear as multiple integration events within 

the lactococcal chromosome suggests a more fluid genome than previously thought 

[4]. 
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3.5 Conclusions 

In conclusion, the sequencing of 16 novel lactococcal isolates has doubled 

the number of complete finished quality lactococcal genomes available and allowed 

for large-scale comparative analysis of the complete metabolic systems of the taxon. 

Analysis of the two lactococcal subspecies revealed unique allelic subtypes for many 

of the conserved genes within each subspecies raising the question of their 

taxonomic placement and whether or not the two subspecies should be redefined as 

separate species. Niche adaptation appears to play a significant part in governing the 

genetic content of each constituent strain, while genome decay and redundancy in 

the dairy niche is also widely observed. The deduced pan-genome of L. lactis 

appears to be closed, indicating that the representatives of this analysis are sufficient 

to fully describe the genetic diversity of the taxon. 
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Supplementary Figure S3.1: Phylogenetic analysis of radC 

Maximum likelihood tree, resulting from the alignment of the radC genes of 30 L. 

lactis isolates resulting in a clear division between L. lactis subsp. lactis and subsp. 

cremoris strains.  
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4 Abstract 

Plasmids are autonomous, self-replicating, extrachromosomal genetic 

elements that are typically not essential for growth of their host. They may encode 

additional metabolic capabilities which promote the maintenance of these genetic 

elements and may enhance the adaptation of bacterial strains to specific ecological 

niches. Genome sequencing of sixteen Lactococcus lactis strains revealed the 

presence of a total of sixty-seven plasmids, including two megaplasmids. 

Comparative genome analysis of these sequences combined with eighty one publicly 

available plasmids allowed the definition of the lactococcal plasmidome, and 

facilitated an investigation into technologically important plasmid-encoded traits 

such as conjugation, bacteriocin production, EPS production and (bacterio)phage 

resistance. 
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4.1 Introduction 

Lactococcus lactis is globally applied as a starter culture for dairy-based food 

fermentations, such as those involved in the production of Cheddar, Colby, Gouda 

and blue cheeses, and from an economic and (food) biotechnological perspective 

represents one of the most important bacteria [1]. It is widely accepted that L. lactis 

originated from a plant-associated niche [2] and, whilst the majority of sequenced 

lactococcal representatives are isolated from the dairy environment, this is not 

representative of the presumed diversity of the taxon. It is evident from genome 

analyses of L. lactis strains isolated from the dairy niche that genome decay (due to 

functional redundancy) [3-6], in parallel with the acquisition of novel plasmid-

encoded traits played a significant role in their adaptation to the nutrient-rich 

environment of milk. Analysis of the plasmid complement has revealed a relatively 

low abundance of plasmids among lactococcal strains isolated from non-dairy niches 

[1, 3, 5, 7]. Since various dairy-associated phenotypes are encoded by plasmids, 

horizontal acquisition to adapt to the dairy environment is likely to be one of the 

major drivers of plasmid transfer in L. lactis [1]. Plasmid transfer in L. lactis is 

believed to be predominantly governed by conjugation and transduction [1]. Plasmid 

transduction is a process in which plasmid transfer is carried out by a (bacterio) 

phage (i.e. a virus that infects a bacterium) due to accidental packaging of plasmid 

DNA, and has previously been observed in L. lactis [8, 9]. Conjugation involves the 

transfer of plasmid material via a conjugative apparatus [10] and is of particular 

importance as it represents a natural biological phenomenon that is suitable for the 

transfer of traits such as phage resistance systems in food grade processes [11]. 

Extensive research into the technological traits of L. lactis has been carried 

out in the past with a significant focus on lactose utilisation [12, 13], casein 
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metabolism [14], citrate metabolism [15], flavour formation [16, 17], and phage 

resistance mechanisms, all of which represent properties that are commonly plasmid-

encoded. Lactose utilisation in L. lactis is governed by the lac operon, which 

provides dairy strains with the ability to rapidly ferment lactose and grow in milk. 

The L. lactis lac operon, which consists of the genes lacABCDEFGX, is generally 

plasmid-borne (see Chapter III) and is regulated by a repressor, encoded by the 

adjacent lacR gene [12, 18]. Citrate metabolism is conducted by citrate-positive 

(Cit+) lactococci and is important as it leads to the production of a number of volatile 

flavour compounds [16]. Citrate uptake and subsequent diacetyl production is 

governed by the plasmid-encoded citQRP operon in lactococcal species [15]. 

Proteolysis also significantly contributes to flavour production in fermented dairy 

products, although high levels of proteolysis may cause bitterness in cheese [19]. 

The plasmid-encoded extracellular cell wall proteinase (lactocepin) has been shown 

to be directly involved in the bitter flavour defect in Cheddar cheese varieties, 

specifically involving starters which produce lactocepin of the so-called a, e, or h 

groups, and its characterisation is of particular importance when selecting novel 

starter cultures [19]. 

Lactococcal phages are recognized as the main cause of fermentation 

problems within the dairy industry with concomitant economic problems. 

Lactococcal strains possess an arsenal of phage defence mechanisms, such as 

restriction modification (R-M) systems and abortive infection (Abi) systems, many 

of which are plasmid-encoded. 

In this study we assess the genetic content of lactococcal plasmids, define the 

current pan-plasmidome of L. lactis, and investigate corresponding plasmid-encoded 

(technological) traits.  
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4.2 Materials & Methods 

 

4.2.1 Sequencing 

In total, 67 plasmids (65 plasmids and 2 megaplasmids) were sequenced in 

the context of this study (Table 4.1). Sequencing was performed utilising the SMRT 

sequencing approach on a Pacific Biosciences RS II sequencing platform (executed 

by GATC Biotech Ltd., Germany). De novo assemblies were performed on the 

Pacific Biosciences SMRTPortal analysis platform (version 2.3.1), utilizing the 

RS_HGAP_Assembly.2 protocol. Assemblies were then repeated with a reduced 

minimum coverage threshold adjusted to 15X to ensure all plasmid-associated 

contigs had been detected. Remaining low quality regions and sequence conflicts 

were resolved by primer walking and Sanger sequencing of PCR products 

(performed by Eurofins MWG Operon, Germany).  

 

4.2.2 General feature predictions  

Open Reading Frame (ORF) prediction, defined as a continuous stretch of 

codons that do not contain a stop codon was performed with Prodigal v2.5 prediction 

software (http://prodigal.ornl.gov) and confirmed using BLASTX v2.2.26 

alignments [20]. ORFs were automatically annotated using BLASTP v2.2.26 [20] 

analysis against the non-redundant protein databases curated by the National Centre 

for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nig.gov/). Artemis v16 

genome browser and annotation tool was used to manually curate identified ORFs 

(http://www.sanger.ac.uk/science/tools/artemis) and for the combination and 

inspection of ORF results. The final ORF annotations were refined where necessary 

http://prodigal.ornl.gov/
http://www.ncbi.nlm.nig.gov/
http://www.sanger.ac.uk/science/tools/artemis
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using additional software tools and database searches, such as Pfam [21], HHpred 

[22], Uniprot/EMBL (http://www.uniprot.org/) and Bagel3 [23]. 

 

4.2.3 Pan-plasmidome analysis 

Pan-plasmidome analysis was performed utilising the PGAP v1.0 pipeline 

[24] according to Heaps law pan-genome model [25]. The ORF content of each 

plasmid was organised into functional gene clusters via the Gene Family method. 

ORFs which produced an alignment with a minimum of 50 % sequence identity 

across 50 % of the gene or protein length were clustered and a pan-plasmidome 

profile was subsequently generated [25]. 

 

4.2.4 Comparative genomics 

All sequence comparisons at protein level were performed via all-against-all, 

bi-directional BLAST alignments [20]. An alignment cut-off value of E-value 

0.0001, >50 % amino acid identity across 50 % of the sequence length was used. For 

analysis and clustering of these results, the Markov Clustering Algorithm (MCL) 

was implemented in the mclblastline pipeline v12-0678 [26]. BlastGraph v0.1 was 

used to visualise BLAST results (https://github.com/bigwiv/BlastGraph). Logo 

motifs were produced using WebLogo 3 [27]. TM4 MeV, MultiExperiment Viewer 

v4.9 was used to view MCL clustering data, conduct hierarchal clustering and to plot 

relevance networks (http://www.tm4.org/mev.html).  

 

  

http://www.uniprot.org/
https://github.com/bigwiv/BlastGraph
http://www.tm4.org/mev.html
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4.2.5 Pulse field gel electrophoresis (PFGE) 

Lactococcal strains were cultured in M17 broth (Oxoid) supplemented with 

0.5 % (w/v) lactose at 30 °C without agitation overnight. PFGE plugs were then 

prepared and restricted with SI nuclease as previously described [28]. 

A 1 % (wt/vol) PFGE agarose gel was prepared in 0.5X TBE (89 mM Tris-

borate, 2 mM EDTA [pH 8.3]) buffer and the PFGE plugs were melted in and sealed 

with molten agarose in 0.5X TBE buffer. A CHEF-DR III pulsed-field system (Bio-

Rad Laboratories, Hercules, CA) was used to resolve the DNA fragments at 6 V/cm 

for 18 h in 0.5X TBE running buffer maintained at 14 °C with a linear ramped pulse 

time of 3 to 50 seconds. DNA ladder (Chef DNA lambda) was included in each gel 

(number 170-3635; Bio-Rad Laboratories). The gels were stained in ethidium 

bromide (10 mg/ml) (25 µl/500 ml dH2O) for 120 min under light-limited conditions 

and destained in distilled water for 60 min. Gels were visualised by UV 

transillumination. 

 

4.2.6 Bacteriocin assays 

Lactococcal strains were cultured in M17 broth (Oxoid) supplemented with 

0.5 % (w/v) lactose or glucose (strain-dependent) at 30 °C without agitation 

overnight. 3 µl of overnight culture was spotted on M17 agar supplemented with 0.5 

% (w/v) glucose and left at 30 °C overnight. Cells that had grown on the spotted 

areas were inactivated by exposure to UV light for 30 minutes. Plates were then 

overlaid with a semi-solid M17 agar (0.4 % agarose) containing indicator strain L. 

lactis HP. Zones of inhibition were visualised after 24 hours. 
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4.2.7 Genbank accession numbers of applied strains 

L. lactis subsp. lactis Il1403: AE005176; L. lactis subsp. lactis IO-1: 

AP012281; L. lactis subsp. lactis 184: CP015895; L. lactis subsp. lactis 229: 

CP015896; L. lactis subsp. lactis 275: CP015897; L. lactis subsp. lactis UC06: 

CP015902; L. lactis subsp. lactis UC08: CP015903; L. lactis subsp. lactis UC11: 

CP015904; L. lactis subsp. lactis UC063: CP015905; L. lactis subsp. lactis UC77: 

CP015906; L. lactis subsp. lactis UL8: CP015908; L. lactis subsp. lactis C10: 

CP015898; L. lactis subsp. cremoris SK11: CP000425; L. lactis subsp. cremoris 

MG1363: AM406671; L. lactis subsp. cremoris NZ9000: CP002094; L. lactis subsp. 

cremoris A76: CP003132; L. lactis subsp. cremoris UC509.9: CP003157; L. lactis 

subsp. cremoris KW2: CP004884; L. lactis subsp. cremoris 158: CP015894; L. lactis 

subsp. cremoris UC109: CP015907; L. lactis subsp. cremoris JM1: CP015899; L. 

lactis subsp. cremoris JM2: CP015900; L. lactis subsp. cremoris JM3: CP015901; L. 

lactis subsp. cremoris JM4: CP015909; and L. lactis subsp. cremoris HP: 

JAUH00000000.1. 
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4.3 Results 

 

4.3.1 General plasmid features 

In this study the sequences of sixty seven plasmids were elucidated utilising 

the PacBio SMRT sequencing approach, and represent the detected plasmid 

complement of the sixteen genomes sequenced in Chapter III (Tables 3.1 & 3.2). 

These plasmids were combined with a further eighty one plasmids retrieved from the 

NCBI database (National Centre for Biotechnology Information) (Table 4.1). In 

total, the features of one hundred and forty eight plasmids derived from forty seven 

lactococcal strains in addition to seventeen lactococcal plasmids without an assigned 

strain were investigated. This extra-chromosomal DNA complement amounts to 

4,005 Kb of DNA and is predicted to represent four thousand and four CDSs (coding 

sequences; ORFs which encode protein products), thus contributing very 

substantially to the diversification of L. lactis. 

The vast majority of currently sequenced plasmids originate from strains that 

were isolated from the dairy niche (118 of 148). These dairy lactococci carry 

between one and nine plasmids (the latter in L. lactis UC509.9), which accounts for 

up to 355 Kbp of extra-chromosomal DNA in a given strain (as is the case for L. 

lactis JM1). The size of individual lactococcal plasmids varies widely from the 

smallest L. lactis KLDS4.0325 plasmid 2, with a size of 0.87 Kbp, to the two 

megaplasmids, each maintained by L. lactis JM1 and L. lactis JM2, with a size of 

193 and 113 Kbp, respectively. The GC content of lactococcal plasmids ranges from 

~30 - 38 %, whilst the average GC content of previously sequenced chromosomes is 

more constrained (34 – 36 %). Only three lactococcal plasmids deviate from this 

range; pWC1 29.48 %, pIL105 29.79 % and pHP003 40.05 %, where the latter is 
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closer in GC-content to Streptococcus thermophilus genomes, which ranges from 39 

to 40 % [29]. 

Lactococcal plasmids are known to replicate via two alternative methods, 

rolling circle replication (RCR) or theta-type replication [1, 11]. Based on predicted 

plasmid replication proteins/origins it appears that the majority of lactococcal 

plasmids replicates via the theta-type mechanism, while only a small proportion 

appears to utilise RCR (twelve of the current data-set). The relatively small number 

of plasmids utilising RCR may be attributed to a number of factors, such as the fact 

that RCR plasmids can only support a limited replicon size (<10 Kb), incompatibility 

with other RCR type plasmids [30], and/or intrinsic structural and segregationally 

instability [1]. The analysis also identified in three instances, plasmids for which 

replication modes could not be clearly determined as the origin of replication of 

these plasmids did not conform to the typical origin of replication associated with 

RCR or theta replication. 
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Table 4.1: Characteristics of the plasmids analysed in this study 

Name Accession Size 

(Kbp) 

GC 

(%) 

Genes Niche Replication 

mode 

KLDS 4.0325 p1 CP006767 4.094 30.02 4 Fermented 

food 

RCR 

KLDS 4.0325 p2 CP007042 0.870 32.64 2 Fermented 

food 

Undetermined 

KLDS 4.0325 p3 CP007043 1.278 32.63 4 Fermented 

food 

Undetermined 

p158A * CP016685 75.119 33.04 93 Dairy Theta 

p158B * CP016686 57.981 33.56 22 Dairy Theta 

p158C * CP016687 51.651 34.57 55 Dairy Theta 

p158D * CP016688 33.287 37.39 32 Dairy Theta 

p158E * CP016689 11.679 34.05 13 Dairy Theta 

p158F * CP016690 6.164 35.84 4 Dairy Theta 

p184A * CP016691 9.735 34.84 13 Dairy Theta 

p184B * CP016692 5.929 34.51 6 Dairy Theta 

p184C * CP016693 10.488 33.35 14 Dairy Theta 

p229A * CP016694 56.368 34.81 59 Dairy Theta 

p229B * CP016695 33.280 37.39 29 Dairy Theta 

p229C * CP016696 30.272 35.15 29 Dairy Theta 

p229D * CP016697 6.153 35.88 8 Dairy Theta 

p229E * CP016698 39.612 32.40 51 Dairy Theta 

p275A * CP016699 92.710 35.35 104 Dairy Theta 

p275B * CP016700 56.332 33.36 65 Dairy Theta 

p275C * CP016701 54.922 34.28 62 Dairy Theta 

p275D * CP016702 54.046 31.77 60 Dairy Theta 

pAF04 JQ821353 3.801 32.02 4 Dairy Theta 

pAF07 JQ821354.1 7.435 36.44 6 Dairy Theta 

pAF12 JQ821355.1 12.067 33.30 11 Dairy Theta 

pAF14 JQ821356.1 14.419 34.07 11 Dairy Theta 

pAF22 JQ821357.1 22.388 34.95 23 Dairy Theta 

pAG6 AB198069 8.663 33.70 8 Unknown Theta 
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pAH33 AF207855 6.159 35.85 7 Dairy Theta 

pAH82 AF243383 20.331 34.44 17 Dairy Theta 

pAR141 DQ288662 1.594 36.14 2 Dairy RCR 

pAW153 HQ646604.1 7.122 31.35 8 Unknown Theta 

pAW601 AJ132009.2 4.752 31.42 1 Unknown Theta 

pBL1 AF242367 10.899 32.62 8 Dairy Theta 

pBM02 AY026767 3.854 35.73 6 Dairy RCR 

pC10A * CP016703 2.120 34.10 4 Dairy RCR 

pCD4 AF306799 6.094 33.43 5 Dairy Theta 

pCI305 AF179848 8.694 32.41 8 Dairy Theta 

pCIS1 CP003165 4.263 31.97 2 Dairy Theta 

pCIS2 CP003164 5.461 30.07 4 Dairy Theta 

pCIS3 CP003163 6.159 35.85 5 Dairy Theta 

pCIS4 CP003162 7.045 38.42 10 Dairy Theta 

pCIS5 CP003161 11.676 34.06 10 Dairy Theta 

pCIS6 CP003160 38.673 37.12 30 Dairy Theta 

pCIS7 CP003159 53.051 32.40 48 Dairy Theta 

pCIS8 CP003158 80.592 33.97 72 Dairy Theta 

pCL2.1 U26594 2.047 33.95 2 Unknown RCR 

pCRL1127 AF409136 8.278 34.82 7 Unknown Theta 

pCRL291.1 AF380336 4.640 33.51 3 Unknown Theta 

pCV56A CP002366 44.098 32.08 41 Human Theta 

pCV56B CP002367 35.934 34.54 31 Human Theta 

pCV56C CP002368 31.442 32.49 27 Human Theta 

pCV56D CP002369 5.543 32.24 6 Human Theta 

pCV56E CP002370 2.262 33.82 4 Human Theta 

pDBORO DQ089807 16.404 35.16 15 Unknown Theta 

pDR1-1 AB079381 7.412 33.70 6 Dairy Theta 

pDR1-1B AB079380 7.344 33.74 6 Dairy Theta 

pFI430 DQ011112.1 59.474 34.63 57 Dairy Theta 

pGdh442 AY849557 68.319 35.11 63 Plant Theta 

pHP003 AF247159 13.433 40.05 6 Dairy Theta 
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pIL1 HM021326 6.382 32.28 7 Dairy Theta 

pIL105 AF116286 8.506 29.79 7 Dairy Theta 

pIL2 HM021327 8.277 34.82 10 Dairy Theta 

pIL3 HM021328 19.244 35.11 20 Dairy Theta 

pIL4 HM021329 48.978 35.11 47 Dairy Theta 

pIL5 HM021330 23.395 34.49 22 Dairy Theta 

pIL6 HM021331 28.434 33.64 25 Dairy Theta 

pIL7 HM197723 28.546 34.10 26 Dairy Theta 

pJM1A * CP016747 51.777 35.02 53 Dairy Theta 

pJM1B * CP016748 48.280 33.94 63 Dairy Theta 

pJM1C * CP016749 30.146 35.40 29 Dairy Theta 

pJM1D * CP016750 15.360 35.25 12 Dairy Theta 

pJM1E * CP016751 11.008 31.95 11 Dairy Theta 

pJM1F * CP016752 5.329 34.28 6 Dairy Theta 

pJM2A * CP016742 11.314 37.77 11 Dairy Theta 

pJM2B * CP016743 13.334 34.48 13 Dairy Theta 

pJM2C * CP016744 62.261 35.12 56 Dairy Theta 

pJM3A * CP016737 75.814 35.44 80 Dairy Theta 

pJM3B * CP016738 47.185 34.84 46 Dairy Theta 

pJM3C * CP016739 45.257 33.11 59 Dairy Theta 

pJM3D * CP016740 13.546 33.63 15 Dairy Theta 

pJM3E * CP016741 3.729 32.90 5 Dairy Theta 

pJM4A * CP016729 60.219 33.38 74 Dairy Theta 

pJM4B * CP016730 2.239 33.50 5 Dairy RCR 

pJM4C * CP016731 5.931 34.53 7 Dairy Theta 

pJM4D * CP016732 6.207 35.98 8 Dairy Theta 

pJM4E * CP016733 47.240 34.85 43 Dairy Theta 

pK214 X92946 29.871 32.45 29 Unknown Theta 

pKF147A CP001835 37.510 32.38 32 Plant Theta 

pKL001 EU289287 6.068 32.86 4 Unknown Theta 

pKP1 FR872378 16.181 35.94 7 Dairy Theta 

pL2 DQ917780 5.299 32.46 5 Dairy Theta 
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pLP712 FJ649478.1 55.395 37.39 44 Dairy Theta 

pMN5 AF056207 5.670 30.26 4 Dairy RCR 

pMPJM1 * CP016746 193.245 33.83 186 Dairy Theta 

pMPJM2 * CP016745 113.820 34.92 123 Dairy Theta 

pMRC01 AE001272 60.232 30.11 63 Dairy Theta 

pNCDO2118 CP009055 37.571 32.33 32 Plant Theta 

pND324 U44843 3.602 33.37 3 Unknown Theta 

pNP40 DQ534432 64.980 32.33 62 Dairy Theta 

pNZ4000 AF036485 42.810 33.31 45 Dairy Theta 

pQA504 CP003136 3.978 37.83 3 Dairy Undetermined 

pQA518 CP003135 17.661 37.40 13 Dairy Theta 

pQA549 CP003134 49.219 35.14 44 Dairy Theta 

pQA554 CP003133 53.630 34.86 54 Dairy Theta 

pS7a AJ550509 7.302 33.43 5 Dairy Theta 

pS7b AJ550510 7.264 33.65 5 Dairy Theta 

pSRQ700 U16027 7.784 34.19 9 Dairy Theta 

pSRQ800 U35629 7.858 31.33 7 Dairy Theta 

pSRQ900 AF001314 10.836 31.13 11 Dairy Theta 

pUC063A * CP016715 75.962 35.31 79 Dairy Theta 

pUC063B * CP016716 44.205 34.27 41 Dairy Theta 

pUC063C * CP016717 11.663 32.55 15 Dairy Theta 

pUC063D * CP016718 8.697 32.39 10 Dairy Theta 

pUC063E * CP016719 8.551 31.53 11 Dairy Theta 

pUC06A * CP016734 36.928 32.10 43 Dairy Theta 

pUC06B * CP016735 48.632 34.82 55 Dairy Theta 

pUC06C * CP016736 23.429 31.87 29 Dairy Theta 

pUC08A * CP016726 89.015 34.19 102 Meat Theta 

pUC08B * CP016727 49.037 34.22 52 Meat Theta 

pUC08C * CP016728 15.396 30.83 21 Meat Theta 

pUC109A * CP016707 64.175 33.17 83 Dairy Theta 

pUC109B * CP016708 48.261 34.63 51 Dairy Theta 

pUC109C * CP016709 11.868 32.20 14 Dairy Theta 
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pUC109D * CP016710 11.333 31.64 13 Dairy Theta 

pUC109E * CP016711 4.237 33.35 5 Dairy Theta 

pUC109F * CP016712 2.413 33.11 3 Dairy RCR 

pUC11A * CP016720 59.284 33.91 65 Meat Theta 

pUC11B * CP016721 49.307 34.22 53 Meat Theta 

pUC11C * CP016722 19.351 35.19 18 Meat Theta 

pUC11D * CP016723 15.393 30.82 17 Meat Theta 

pUC11F * CP016725 5.238 30.99 4 Meat RCR 

pUC77A * CP016713 6.083 35.75 7 Dairy Theta 

pUC77B * CP016714 63.462 34.86 66 Dairy Theta 

pUL8A * CP016704 7.652 33.95 6 Dairy Theta 

pUL8B * CP016705 27.296 35.31 30 Dairy Theta 

pUL8C * CP016706 2.119 34.07 3 Dairy RCR 

pVF18 JN172910 18.977 33.90 21 Dairy Theta 

pVF21 JN172911 21.728 33.59 14 Dairy Theta 

pVF22 JN172912 22.166 35.14 19 Dairy Theta 

pVF50 JN225497 53.876 34.50 41 Dairy Theta 

pWC1 L75827 2.846 29.48 1 Dairy RCR 

pWV01 X56954 2.178 33.43 4 Dairy RCR 

pWVO2 NC_002193.1 3.826 31.34 1 Unknown Theta 

SK11 p1 CP000426 14.041 34.37 13 Dairy Theta 

SK11 p2 CP000427 9.554 30.44 10 Dairy Theta 

SK11 p3 CP000428 74.750 35.41 69 Dairy Theta 

SK11 p4 CP000429 47.208 34.84 42 Dairy Theta 

SK11 p5 CP000430 14.206 33.55 10 Dairy Theta 

* Plasmids sequenced in the context of the current study 
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4.3.2 Pan-plasmidome calculation 

The pan-plasmidome calculation provides an overview of the overall genetic 

diversity of the L. lactis plasmidome, the latter representing the total plasmid content 

harboured by members of the L. lactis taxon. To calculate the pan-plasmidome, a 

pan-genome analysis approach was applied using the PGAP v1.0 pipeline [24]. The 

resultant pan-plasmidome graph (Fig. 4.1) displays an asymptotic curve rising 

steadily as each of the one hundred and forty eight plasmids included in the analysis 

is added until a total pan-plasmidome size of one thousand one hundred and twenty 

nine coding sequences (CDSs) was reached. The trend observed in the pan-genome 

indicates that the pan-plasmidome remains in a fluid or open state, therefore, 

continued plasmid sequencing efforts are expected to further expand the observed 

genetic diversity among lactococcal plasmids. The PGAP pipeline was also used to 

determine the core genome of the lactococcal plasmid sequence data set. 

Interestingly, no single CDS is conserved across all plasmids therefore resulting in 

an empty core genome. 

The L. lactis pan-genome, based on chromosomal sequences only, has 

previously been calculated to constitute 5906 CDSs (Chapter III). When compared 

with the calculated lactococcal plasmidome (1129 CDSs), it is obvious that the 

lactococcal plasmidome contributes very substantially to overall lactococcal genetic 

diversity. 
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Figure 4.1: Pan-plasmidome of L. lactis 

This represents accumulated number of new genes in the L. lactis pan-plasmidome plotted against the number of plasmids added. The 

deduced mathematical function is also indicated. 
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4.3.3 MCL analysis of the lactococcal plasmidome  

To explore the genetic content of the one hundred and forty eight plasmids in 

this study, all-against-all reciprocal BLASTP (Basic local alignment search tool) 

analysis and MCL (Markov clustering) was conducted [31, 32]. The plasmidome 

was determined to comprise seven hundred and forty protein families, of which three 

hundred and forty nine represented unique proteins, evidence of the divergent nature 

of the plasmid sequences. At present, three hundred and five of these families 

constitute hypothetical protein families, representing a total of eight hundred and 

seventy seven individual proteins. These hypothetical proteins encompass 21.9 % of 

the total CDSs in the lactococcal plasmidome. 

The largest constituent of the lactococcal plasmidome is that represented by 

transposable elements. Transposable elements encompass eight hundred and ninety 

two CDSs, or 22 % of the plasmidome, with members of the IS6, IS30, IS982 and 

ISL3 insertion families being among the most dominant genetic elements. These 

mobile elements are responsible for the transfer and recombination of DNA [33-35], 

and are likely to contribute to a fluid lactococcal plasmidome. 

 

4.3.4 Lactococcal megaplasmids 

Typically L. lactis plasmids range in size from 1-50 Kbp, and prior to this 

study the largest plasmid identified in L. lactis was pCIS8 (80.59 Kbp) from L. lactis 

UC509.9 [36]. In the current study, whole genome sequencing efforts resulted in the 

identification of two plasmids that were larger than 100 Kbp, namely pMPJM1 (193 

Kbp) and pMPJM2 (113 Kbp) from L. lactis JM1 and L. lactis JM2, respectively, 

and owing to their size are defined as megaplasmids (Fig. 4.2A & B). Pulse field gel 

electrophoresis also identified bands which would be consistent with plasmids of that 
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size, although unambiguous validation will require Southern hybridization (Fig. 

4.2C). 

The larger of the two megaplasmids, pMPJM1, encompasses 186 CDSs and 

is presumed to replicate (as expected for such a large replicon) via the theta-type 

replication mechanism [based on the identification of the origin of replication (ori), 

comprised of an AT-rich region plus three and a half iterons of 22 bp in length] [37]. 

pMPJM1 encompasses, among others, gene clusters predicted to be responsible for 

(exo)polysaccharide biosynthesis, conjugation and nisin resistance, while it also 

specifies an apparently novel type I RM shufflon system (as well as a high 

proportion of unique/hypothetical CDSs). The overall sequence of the plasmid shows 

little homology to previously sequenced plasmids in the NCBI databases, however, it 

shares 24 % sequence coverage with 99 % nucleotide identity to the other identified 

megaplasmid pMPJM2, which indicates that they share a common ancestor. 

pMPJM2 encodes 123 CDSs and BLAST analysis identified sequence identity to a 

number of different lactococcal plasmids indicating a mosaic genetic structure 

commonly seen in large lactococcal plasmids [1]. pMPJM2 also encodes a putative 

conjugation operon and a very close homolog of the type I RM shufflon system of 

pMPJM1.  
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Figure 4.2: Megaplasmids pMPJM1 and pMPJM2 general features 

[A] Circular maps of pMPJM1 and [B] pMPJM2. CDS of interest are highlighted in 

colour.  [C] PFGE image of pMPJM1 (lane 2) and pMPJM2 (lane 3), the possible 

position of each of the two megaplasmids is indicated by a red arrow. CHEF lambda 

(Bio-Rad Laboratories, Hercules, CA) DNA ladder is also indicated (lane 1).   
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4.3.5 Technological properties 

Strains of L. lactis are commonly used as starter cultures employed by the 

dairy industry [38], and their dairy adaptations such as citrate metabolism and 

lactose utilisation are frequently plasmid-encoded. In L. lactis, citrate uptake and 

subsequent diacetyl production is governed by the plasmid-encoded citQRP operon 

[15]. In the current data set, only two plasmids encompass the citQRP operon, L. 

lactis CRL1127 plasmid pCRL1127 and L. lactis IL594 plasmid pIL2 [39]. Lactose 

metabolism is controlled by the lac operon consisting of the genes lacABCDEFGX 

and is regulated by a repressor, encoded by the adjacent lacR gene [40], both citrate 

and lactose utilisation have previously been described in detail [15, 40].  

In this study the lac operon was found to be present on twenty plasmids (in 

twenty different strains) (Table 4.2). The plasmids analysed were derived from forty 

seven lactococcal strains in addition to seventeen lactococcal plasmids unassigned to 

a particular strain, and represented the total plasmid complement of twenty five such 

strains. In all cases bar one, the strains were isolated from the dairy environment 

with the exception of L. lactis NCDO1867 isolated from peas (Table 4.1). 

Alternative lactose metabolism methods have previously been observed in L. lactis 

(Chapter 1). For example, L. lactis MG1363 does not harbour the lac operon, yet is 

capable of growth on lactose-supplemented media due to the activity of a cellobiose-

specific phosphotransferase system (PTS), which can act as an alternative lactose 

utilisation pathway [41]. Another example of an alternative lactose metabolic 

pathway is found in the slow lactose fermenter L. lactis NCDO2054 which 

metabolises lactose via the Leloir pathway [42]. Plasmid integration events discussed 

in Chapter III have also resulted in the integration of the lac operon in the 

chromosome of L. lactis SO, where it is located 20 Kbp downstream of an integrated 
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opp operon, sharing significant homology with (the lac operons of) plasmids 

pCV56B, pSK08, pKF147A and pNCDO2118. Due to the lack of complete 

sequencing projects, defining the true frequency of lactose utilisation is problematic. 

However of those strains for which complete genome sequencing projects have been 

described (thirty strains in Chapter III) twenty two were found to be capable of 

metabolizing lactose based on growth in lactose supplemented broth, nineteen via 

plasmid-encoded lac operons, one via a chromosomally-encoded lac operon and two 

by an alternative pathway. This analysis included twelve subsp. cremoris strains, of 

which all but one possessed genes for a lactose utilisation mechanism, the exception 

being strain KW2, which lacks a plasmid complement. 

 

Table 4.2: Overview of presence of plasmid-encoded lac/opp operons  

Stain Subspecies Origin Plasmid 

SK11 cremoris Dairy pSK114 

158 cremoris Dairy p158C 

229 lactis Dairy p229A 

275 lactis Dairy p275C 

A76 cremoris Dairy pQA549 

JM1 cremoris Dairy pJM1A 

JM2 cremoris Dairy pJM2C 

JM3 cremoris Dairy pJM3B 

JM4 cremoris Dairy pJM4E 

UC063 lactis Dairy pUC063A 

UC06 lactis Dairy pUC06B 

UC109 cremoris Dairy pUC109B 

UC77 lactis Dairy pUC77B 

UC509.9 cremoris Dairy pCIS8 

DPC3901 lactis bv. diacetylactis Dairy pVF50 

IL594 lactis Dairy pIL4 

NCDO712 cremoris Dairy pLP712 

UC08 lactis Dairy pUC08A 

UC11 lactis Dairy pUC11A 

NCDO1867 lactis Plant pGdh442 
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4.3.6 Conjugation 

Conjugation and transduction are believed to be the dominant mechanisms of 

plasmid transfer in L. lactis [1]. Recently, particular emphasis has been placed on 

conjugation as it is considered a naturally occurring DNA transfer process and for 

this reason may be used in food-grade applications to confer beneficial traits to 

industrial strains [11]. Generally, during conjugation the AT-rich, so-called ‘origin 

of transfer’ or oriT of the conjugative plasmid is nicked by a nickase, and the 

resulting ssDNA strand is passed on to a recipient cell [10], though the precise 

mechanistic details of the conjugation process in L. lactis remain unclear. 

The tra (transfer) locus is believed to be responsible for the donor-to-

recipient DNA transfer process of conjugation. Previous studies have identified the 

role of traF as encoding a membrane-spanning protein involved in channel 

formation and membrane fusion. In addition, the traE and traG genes have been 

proposed to encode proteins involved in the formation of the conjugal pilus similar 

to type IV secretion systems [43, 44]. Typically, the three tra genes (i.e. traE, traF 

and traG) are part of a larger gene cluster (consisting of up to fifteen genes; Fig. 

4.3), including traA, which encodes a relaxase. However, precise functions for the 

remainder of the genes in the tra gene cluster have yet to be elucidated, though 

additional predicted tra genes were identified in a small number of cases, the 

majority based on homology to the trs operon in Staphylococcus [45]. For example, 

traJ and traL were identified on plasmids pAF22 and pMRC01, and traB, traC, 

traD, traF (mating channel formation) and traK (P-loop NTPase) on plasmids 

pUC08B, pUC11B, pAF22 and pMRC01. Plasmids pAF22, pMRC01 and pNP40 

have all previously been demonstrated to be capable of conjugation [43, 46-48], 

however, the annotation of the operons involved is not well defined and they are 
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currently poorly characterised. This is also amplified by both a lack of sequence 

conservation and synteny within these operons (Fig 4.3). 

While the tra operon is thought to be responsible for the formation of 

conjugal pilus, previous studies have identified a number of genes believed to play a 

role in the mobilisation of other (non-conjugatable) plasmids in L. lactis [11, 43, 49]; 

principal among these are the mob (mobilisation) genes. Mobilisation genes are 

responsible for nicking the plasmid’s dsDNA at a particular site and forming a 

relaxome which allows the transfer of a single stranded template to a recipient cell. 

Variants of four main mob genes are distributed throughout the lactococcal 

plasmidome; mobA and mobD encode nickases, and mobB and mobC, whose protein 

products are thought to form a relaxosome with an associated nickase (either mobA 

or mobD) are typically present in the genetic configuration mobABC or mobDC. 

Comparative analysis identified 372 occurrences of mob genes (and mob-associated 

genes) distributed on the 148 plasmids in this study, including thirteen occurrences 

of a predicted retron-type reverse transcriptase or maturase (located between mobD 

and mobC) believed to play a role in DNA recombination. The results indicate that 

69.6 % of plasmids in the lactococcal plasmidome carry at least one or more genes 

encoding mobilisation proteins. 

The lactococcal megaplasmids pMPJM1 and pMPJM2 harbour two (16 Kb) 

regions putatively involved in conjugation and/or mobilisation. In the case of 

pMPJM2 the predicted region was found to contain homologues of mobC and mobD, 

encoding a nickase and associated relaxase near a `possible secondary replication 

origin, although the presence of five transposase-encoding genes and the lack of 

predicted tra genes with conserved functions suggest that this putative conjugation 

system is unlikely to be functional.   
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Figure 4.3: BLAST map of active lactococcal conjugation operons  

The image describes the genetic organisation of the conjugation operons from 

plasmids; pAF22, pMRC01 and pNP40. All three plasmids have previously been 

shown to be conjugatable. Gene synteny is highly conserved between pAF22 and 

pMRC01, but amino acid identity is not, while pNP40 represents a more divergent 

system. Amino acid identity is indicated by the shaded boxes. Arrows coloured blue 

indicate predicted conjugative function, while arrows shaded mustard indicate 

hypothetical functions.  

 

Conversely, analysis of pMPJM1 identified a more divergent system to that 

typically found in lactococcal plasmids. Three hypothetical proteins were found to 

contain the PFAM domain (pfam12846) usually conserved in conjugation proteins, 

in addition to a homolog of virB11, whose deduced product acts as a type IV 

secretory pathway ATPase (pfam00437). Cellular localisation analysis of the operon 

using PsortB was also indicative of a transmembrane complex (Fig. 4.4). The 

divergence of both operons from typical lactococcal conjugative operons suggests 

that these two megaplasmids have lost their conjugative ability. 
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Figure 4.4: Genetic organisation of the putative conjugation operons in pMPJM1 and pMPJM2 
[A] Represents the putative conjugation locus in pMPJM1. [B] Represents the putative conjugation locus in pMPJM2. Colours indicate 

the predicted cellular localization of each product. The system in pMPJM1 appears to encode proteins involved in conjugal transfer, 

while the cellular localisation data is predictive of a transmembrane complex. Conversely, the conjugation locus in pMPJM2 appears to 

be involved in mobilisation rather than conjugation, and the presence of a number of insertion elements suggest it is unlikely to be 

functional. 

[A] 

[B] 
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4.3.7 Cell surface interactions (Adhesion & EPS)  

4.3.7.1 Adhesion 

Mucin-binding proteins, i.e. those which allow adhesion to the mucin layer of 

the gastrointestinal tract, are considered essential for stable and extended gut 

colonisation by LAB [50]. While lactococci are typically not associated with the 

human gut, instances of such proteins encoded by lactococcal plasmids have been 

reported [51-53]. Muco-adhesive proteins are considered of paramount importance 

for the efficacy of probiotic bacteria [50] and the presence of such elements in L. 

lactis may have significant commercial impact for their role in functional foods. 

Analysis of the plasmids in this study identified a number of strains with 

predicted novel muco-adhesive elements, similar to those found in pKP1 [52]. 

Plasmid pKP1 encodes two proteins, a mucin-binding domain-containing protein and 

an aggregation-promoting protein AggL, which promotes its binding to colonic 

mucosa [53]. While no direct homologue of AggL was detected, mucus-binding 

protein-encoding genes were identified on plasmids p275A, p275B, pUC08B and 

pUC11B, perhaps reflecting a potential for gastrointestinal persistence conferred to 

the strains that carry these plasmids. A number of additional proteins predicted to be 

host cell surface-associated, were detected during the analysis. For example, 

pUC11C encodes two class C sortases, which are commonly involved in pilus 

biosynthesis [50, 54], while p275A encodes a LPXTG anchor domain, cell surface-

associated protein. Interestingly each of these strains belongs to subspecies lactis and 

is capable of growth at 37 °C, which would impede the growth of their cremoris 

counterparts, which are generally less thermo-tolerant. L. lactis JM1 is the sole 

cremoris strain that is predicted to encode proteins directly involved in host cell 

surface alterations. This plasmid encodes five putative proteins containing a 26-
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residue repeat domain found in predicted surface proteins (often lipoproteins) and 

one collagen-binding domain protein.  

 

4.3.7.2 EPS production 

EPS production by L. lactis is a characteristic trait of strains isolated from 

viscous Scandinavian fermented milk products and is widely reported as a plasmid-

encoded trait [55-58]. EPS production by L. lactis strains is of particular importance 

for functional foods, as the EPS produced by these strains is considered to be a food-

grade additive that significantly contributes to properties such as mouth-feel and 

texture in fermented dairy products [59]. The L. lactis EPS biosynthesis gene cluster 

(eps) contained on pNZ4000 has previously been characterised [55] and consists of 

14 genes epsRXABCDEFGHIJK. Comparison of the eps gene cluster from pNZ4000 

with all sequenced plasmids in the current dataset identified a further four plasmids 

which harbour eps clusters, namely p229E, pJM3C, p275B and pMPJM1 (Fig. 4.5). 

In pNZ4000, EPS production is regulated by epsRX, EPS subunit polymerisation and 

export is believed to be executed by the encoded products of epsABIK, while the 

proteins encoded by epsDEFGH are responsible for the biosynthesis of the EPS 

subunit [55]. Homology-based analysis with the four newly identified gene clusters 

shows that in all cases epsRXABCD are conserved (except in pMPJM1 where epsR is 

absent), while the remainder of the gene cluster in each case consists of variable 

genes. These eps gene clusters consist of a highly conserved region at the proximal 

end of the cluster and a variable distal region, which is similar to other lactococcal 

polysaccharide biosynthesis clusters [60-62]. The conserved epsRX genes are 

responsible for transcriptional regulation, the products of epsAB are required for EPS 

export, while the deduced proteins of epsCD are putative glycosyltransferases of 
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which EpsD (priming glycosyltransferase) has previously been demonstrated to be 

essential for EPS subunit biosynthesis [55]. The variable region, epsEFGHIJKLP in 

pNZ4000, encodes the enzymatic machinery responsible for EPS subunit 

biosynthesis.  

In the case of p229E, the variable eps region is composed of CDSs predicted 

to encode products with functions similar to the CWPS operon in strain 229. Plasmid 

pJM3C contains genes predicted to encode a rhamnosyltransferase, UDP-glucose 

dehydrogenase, capsular biosynthesis protein and five glycosyltransferases. The 

p275B variable region is heavily rearranged due to the presence of nine transposase-

encoding genes. The megaplasmid pMPJM1 encodes a 9 Kb EPS region with well 

conserved synteny to pNZ4000, although with relatively low homology (Fig. 4.5). 

Further analysis of these plasmid-borne eps gene clusters revealed that in all cases 

mob elements are also present indicating that they may be mobilisable via 

conjugation. To assess if these plasmids had a common lineage, nucleotide 

homology based analysis was conducted utilising BLASTN [31]. This analysis 

however did not identify significant homology or common hits between the plasmids 

outside of the conserved region of the EPS gene cluster. 
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Figure 4.5: Linear BLAST map of the lactococcal EPS gene clusters 

Linear BLAST map of eps gene clusters from [1] p229E, [2] pJM3C, [3] p275B, [4] pNZ4000, [5] pMPJM1. Arrow colour indicates 

predicted product, while shaded region indicated percentage amino acid identity between BLAST hits. The highly conserved region of 

the gene cluster is apparent from EpsR to EpsD while the variable region is strain specific.
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4.3.8 Bacteriocins 

Bacteriocins are a diverse group of ribosomally synthesized bacterial 

peptides, which when secreted inhibit growth of other bacteria by interfering with 

cell wall biosynthesis or disrupting membrane integrity [63]. To investigate 

bacteriocin production in the lactococcal plasmidome, available strains were 

screened for bacteriocin production against an indicator strain L. lactis subsp. 

cremoris HP. In total six strains were found to produce clearly defined zones of 

inhibition, indicating bacteriocin production, namely L. lactis subsp. lactis IO-1, 

184, UC06, UC08, UC11 and L. lactis subsp. cremoris 158. Analysis of the plasmid 

complement of each of these strains indicated that strains 158, UC06 and UC08 each 

possess a plasmid-borne bacteriocin gene cluster, while IO-1, 184 and UC11 contain 

a bacteriocin gene cluster of chromosomal origin. In each case these were identified 

as lactococcin producers: p158A is predicted to be responsible for lactococcin A & B 

production, pUC08A for lactococcin A production, and pUC06C for lactococcin B 

biosynthesis. Lactococcin has a narrow spectrum of activity, targeting predominantly 

closely related lactococcal species [64] and as such is an important consideration 

when selecting strains for use in mixed starter cultures. 

Sequence analysis of the remaining plasmids in the current study (for which 

strains were not available for phenotypic analysis) identified additional putative 

bacteriocin-encoding gene clusters (Table 4.3), which were found to be responsible 

for the production of lactococcin A or B, and in one case (pMRC01) for the 

lantibiotic lacticin 3147 (Table 4.3) [65]. 
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Table 4.3: Plasmid-encoded antimicrobial peptides 

Plasmid Bacteriocin Activity detected 

pBL1 Lactococcin 972 N/A$ 

pCIS7 Lactococcin A N/A 

pMN5 Predicted/uncharacterised 

bacteriocin 

N/A 

pMRC01 Lacticin 3147 N/A 

SK11 plasmid 1 Lactococcin A No 

p158A Lactococcin A and B Yes 

pUC08C Lactococcin A Yes 

pUC06C Lactococcin B Yes 

$N/A, host strain unavailable to screen phenotypically 

 

4.3.9 Phage resistance systems 

Lactococcal strains possess an arsenal of phage defence mechanisms 

including Restriction Modification (R-M) systems, Superinfection exclusion systems 

(Sie) (encoded by integrated prophages) and Abortive infection systems (Abi). 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR 

associated (cas) genes form an acquired adaptive immunity system against foreign 

DNA in bacteria [66]. To date only one such system has been characterised in 

Lactococcus on a conjugation-transmissible plasmid, pKLM which encodes a novel 

type III CRISPR-Cas system (though it is unable to incorporate new spacers) [49]. 

Analysis of plasmid sequences in this study did not detect any further instances of 

CRISPR systems in lactococci.  

R-M systems are extremely diverse and widespread and are encoded by 

approximately 90 % of all currently available bacterial and archaeal genomes [67] 
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(NB. An in-depth analysis of lactococcal R-M systems is conducted in Chapter V). 

Similarly, Sie systems are a prophage-encoded defence mechanism [68, 69] and will 

be discussed in detail as part of an investigation into lactococcal prophages in 

Chapter VI. 

 

4.3.10 Abortive infection systems 

Abortive infection systems (Abi) represent an abundant phage defence 

mechanism in L. lactis [70] and are frequently plasmid-encoded [11]. To date, 

twenty three Abi systems have been identified in L. lactis of which, twenty one are 

plasmid-encoded [1]. They are single gene systems, with the exception of three 

multigene systems, AbiE [71], AbiR [72] and AbiT [73]. Analysis of the plasmids in 

this study identified fourteen Abi occurrences based on homology, namely AbiF, 

AbiC, AbiK, AbiQ and the two component system AbiEi/AbiEii, in addition to one 

predicted uncategorised Abi (Table 4.4). 
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Table 4.4: Lactococcal Abi systems detected 

Similar to Abi system Plasmid Locus tag 

AbiF p158B LL158_pB41 

AbiF pCIS8 UC509_RS11675 

AbiF pIL105 pIL105p7 

AbiF pNP40 pNP40_p16 

AbiC p275A LL275_pA087 

AbiEi-Eii p275A LL275_pA051-052 

AbiEi-Eii pNP40 pNP40_p19-20 

AbiK pSRQ800 pSRQ800_04 

AbiQ pCV56A CVCAS_RS12180 

AbiQ pSRQ900 pSRQ900_04 

Uncharacterised Abi * p158E LL158_pE13 

Uncharacterised Abi pUC063B LLUC063_pB07 

Uncharacterised Abi pCIS8 UC509_RS11625 

Uncharacterised Abi pCIS5 UC509_RS12350 

* Uncharacterised Abi, based on amino acid homology to unclassified Abi’s in the NCBI 

database 
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4.4 Discussion 

The advent of next generation sequencing technologies has made genome 

sequencing more accessible and has led to a dramatic rise in the number of available 

genome sequences. In this study one such technology, SMRT sequencing was 

applied for the elucidation of sixty seven novel lactococcal plasmids. The main 

advantage of SMRT technology is the long read length it achieves, which is 

particularly useful when assembling lactococcal plasmids due to the high frequency 

of repetitive transposable elements which can lead to incorrectly assemblies. This is 

also beneficial for assembling larger lactococcal plasmids which are frequently 

composed of a mosaic type structure and may encode multiple identical IS elements 

which may complicate assemblies with shorter read lengths [1]. However, during the 

course of the current study some cautionary notes also emerged. These were 

predominantly related to smaller plasmids and plasmids with lower average 

consensus coverage which could potentially be filtered out under standard assembly 

parameters. It was found that by repeating the assembly with a reduced minimum 

coverage cut-off to 15-fold coverage permitted the detection of these plasmids, 

although it may well be that some plasmids may still have been missed, particularly 

if they are very small (<3 Kbp).  

In the course of this study, the pan-plasmidome of L. lactis was calculated 

and found to be in a fluid state, making it likely that continued sequencing efforts 

will expand the diversity of this data set and lead to an increase in the identification 

of novel plasmid features. At present, the lactococcal plasmidome was found to 

consist of over 4000 Kbp of extra-chromosomal DNA encoding an arsenal of diverse 

features. Significantly, the current open plasmidome contributes the equivalent of 

19.11 % of the CDSs contained in the pan-genome of the L. lactis chromosomes 
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which is in a closed state (see Chapter III). BLAST-based analysis of these features 

identified 742 protein families, of which 393 represented unique families, evidence 

of the divergent nature of the plasmid sequences. There is, however, a skew in the 

data set towards the dairy niche which has arisen due to a number of factors. 

Primarily, the majority of strains sequenced to date have been sequenced due to their 

commercial value in the production of fermented dairy products. The impact of these 

strains on the overall data set is then further amplified as these strains generally carry 

a larger plasmid complement than their non-dairy counterparts (Chapter III, Table 

3.2) as many desirable dairy-associated traits are typically plasmid-encoded (e.g. lac 

operon). As such, these features account for a large proportion of the plasmidome. 

However, as efforts to isolate new diverse starter cultures for the dairy industry 

continue, screening of more diverse cultures particularly from the plant niche should 

lead to increased novelty in the lactococcal plasmidome. 

Megaplasmids have been found in LAB previously, in particular in members 

of the Lactobacillus genus [74-77]. In this study sequencing efforts resulted in the 

identification of the first examples of lactococcal megaplasmids (> 100 Kbp), 

substantially surpassing the size of any previously sequenced plasmids in this taxon, 

and providing further diversity within the plasmidome. While megaplasmids are not 

expected to be essential for the growth of their host, they can encode additional 

metabolic capabilities. The lactococcal megaplasmids were also examined for the 

presence of conjugation machinery. A novel gene cluster encoding a number of 

conjugation-related proteins located in pMPJM1 was predicted to be involved in the 

conjugal transfer of the plasmid based on the presence of conserved structural 

domains involved in conjugation. Further analysis of mob and tra genes across the 

plasmidome identified a number of genes predicted to encode proteins involved in 
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conjugal transfer. The frequency (484 genes across 148 plasmids) of these genes is 

indicative of the mobilisable nature of lactococcal plasmids. 

There has been limited research performed to date in the area of lactococcal 

gut adhesion as L. lactis is not commonly associated with the human gut. In this 

study, potential gut adhesion factors were identified within the lactococcal 

plasmidome, a key trait for persistence in the gastrointestinal tract. Similarly, this 

may offer further insights for the use of L. lactis as a vector for vaccine and 

biomolecule delivery, a rapidly growing area of research [78, 79]. Further 

technological properties of L. lactis were also investigated including EPS 

production. Analysis of a large dataset of newly sequenced plasmids facilitated the 

identification and comparison of a number of novel EPS gene clusters. The major 

outcome of this work was the definition of “conserved” and “variable” regions 

within these EPS clusters. The conserved region encodes the transcriptional 

regulation, export and biosynthesis initiation machinery, while the variable region 

contains various genes that are predicted to encode glycosyltransferases, which are 

believed to be responsible for the production of a diverse set of EPS subunits. 

Finally, phage resistance mechanisms were assessed with particular emphasis 

on Abi systems. Abi systems confer defence against phage infection and are 

commonly found in lactococcal strains where they are frequently plasmid encoded 

[11]. Analysis of the plasmids sequences identified fourteen plasmid-encoded Abi 

systems, while further analysis also identified frequent occurrences of these systems 

within the lactococcal chromosomes [70]. The presence of these systems and a range 

of R-M systems is evidence of the adaptation of these strains towards phage 

resistance. Discovery of the first lactococcal megaplasmids along with a host of 

novel features is evidence that the diversity of the lactococcal plasmidome represents 
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a relatively untapped resource, and suggests that continued future sequencing will 

increase the observed diversity carried by these elements, potentially leading to new 

avenues of research and applications. 
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Chapter V 

 

 

 

 

 

 

 

Base modification analysis of Lactococcus lactis 

strains and their corresponding restriction-

modification systems 

 

 

 

 

Note: REBASE analysis and assignment of methylation motifs and enzyme 

nomenclature was performed by Dr Richard J. Roberts of New England Biolabs, 

USA. 
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5 Abstract 

SMRT sequencing is the first and so far only sequencing technology to allow 

concomitant detection of base modifications with primary sequence analysis. In the 

present study, this technology was applied to determine the methylome of sixteen 

Lactococcus lactis strains, which revealed fifty two methylation motifs consisting of 

N6-methyladenine and N4-methylcytosine base modifications. Five of these motifs 

were validated as they prevented site-specific cleavage by commercially available 

restriction enzymes. The sixteen strains were predicted to encode a number of unique 

Type I, II, III and IV restriction-modification (R-M) systems, including a novel Type 

I R-M shufflon system, represented by multiple hsdS subunits arranged around a 

recombinase gene. The presumed genetic rearrangement activity of this system was 

corroborated by the presence of different hsdS subunit combinations in the raw 

sequence data and their subsequent confirmation within a heterogeneous population 

via qPCR. 
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5.1 Introduction 

Methylation of prokaryotic genomes by DNA methyltransferases (MTases) 

plays an important role in expanding the functionality of the four DNA bases [1]. 

MTases encoded by prokaryotes (and the base modifications they confer) are known 

to be involved in a variety of processes, such as cell cycle regulation, DNA repair 

and pathogenesis. MTases may also be involved in preventing invasion of foreign 

DNA, in which case the MTase is linked to a cognate restriction endonuclease 

(REase) activity to form a restriction-modification (R-M) system (where the MTase 

methylates ‘self’ DNA and the REase targets the invading, unmethylated DNA) [2-

5]. Three main MTase classes are identified in prokaryotes which function by methyl 

transfer from S-adenosyl-L-methionine (SAM) to a target nucleotide base [1]. Class I 

and II MTases target exocyclic nitrogens at position N6 in adenine and position N4 

in cytosine, to form N6-methyladenine (6mA) and N4-methylcytosine (4mC) 

modifications, respectively, while class III MTases target cytosine at position C5 to 

form C5-methylcytosine (5mC) [6]. 

R-M systems are generally classified in Types I-IV based on sub-unit 

composition, ATP (GTP) requirements and cleavage mechanisms [6]. Type I R‐M 

systems are multi-subunit proteins that function as a single protein complex, usually 

composed of one or two REase subunits (HsdR), one or two MTase subunits (HsdM) 

and one specificity (S) subunit (HsdS) [6]. Type I R-M systems recognize long, non-

palindromic motifs, typically composed of two components, the first of 3 or 4 bp and 

the second of 4 or 5 bp (the sequence of each specified by particular HsdS domains), 

separated by a non-specific spacer of 6 to 8 bp [7]. Type II R-M systems are 

composed of separate REase and MTase activities. Type II REases act as 

homodimers to target specific DNA sequences, usually represented by short (4-8 bp) 



237 

 

palindromic sequences, cleave at a specific position within the recognition sequence, 

and act independently of their cognate MTase [6]. Type II MTases act as monomers 

and transfer a methyl group from the donor SAM directly to double‐stranded DNA 

forming 4mC, 5mC or 6mA modifications. Type II R-M systems are among the most 

thoroughly studied due to their importance in molecular biology [8, 9]. Type III R-M 

systems are composed of two subunits that function either in DNA recognition and 

modification (Mod) or restriction (Res) [10]. These systems target a non‐palindromic 

recognition sequence, present on both strands in inverse orientation, and cut at a 

defined location (25 -27 bp) downstream of the associated recognition site [11]. 

Type III systems require ATP hydrolysis to function [6] and are frequently found in 

prokaryotic genomes [8, 11]. Type IV R-M systems are those which, unlike Types I-

III, only target methylated DNA. Type IV systems are composed of two genes and 

their target motifs are not well defined [6]. 

The development of single molecule real time (SMRT) sequencing by Pacific 

Biosciences has, for the first time, allowed the detection of DNA base modifications 

concomitantly with primary sequence analysis [12]. SMRT technology utilises a 

single polymerase molecule bound to a zero-mode waveguide (ZMW) nanostructure 

to incorporate fluorescently labelled nucleotides complementary to a DNA template 

strand [13, 14]. The incorporation of a nucleotide generates a specific fluorescent 

signal called a ‘pulse’ [15]. Distinct variations in pulse width (PW), which reflects 

the length of time the polymerase is bound to a particular base, and interpulse 

duration (IPD), representing the time it takes for the polymerase to move from one 

base to the next, are observed when the polymerase encounters a modified base in 

the DNA template. This signature allows SMRT sequencing to differentiate between 

unmodified bases and those with 6mA, 4mC or 5mC base modifications, allowing for 
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the determination of specific methylation motifs, which may be paired to specific R-

M systems [16]. However, the m5C kinetic signature is difficult to detect accurately 

and accurate detection of such modifications requires treatment of template DNA 

with Tet1 enzyme prior to sequencing [17]. 

In the current study, methylome analysis was performed on sixteen lactococcal 

strains sequenced utilising the SMRT approach. Comparative analysis of their 

predicted R-M systems was used in conjunction with the generated SMRT data in 

order to identify active R-M systems and resolve their target methylation motifs. 
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5.2 Methods 

5.2.1 Strain growth conditions and media  

Bacterial strains used in this study are detailed in Table 5.1. L. lactis strains 

were routinely cultured at 30 °C in M17 broth (Oxoid) supplemented with 0.5 % 

glucose/lactose without agitation.  

 

5.2.2 Sequencing 

In total, 16 Lactococcus lactis strains were sequenced (Table 5.1) and 

employed here for the purpose of methylome analysis. Sequencing was performed 

utilising the SMRT sequencing approach on a Pacific Biosciences RS II sequencing 

platform (executed by GATC Biotech Ltd., Germany). De novo assemblies were 

performed using the Pacific Biosciences SMRT Portal analysis platform (version 

2.3.1), utilizing the RS_HGAP_Assembly.2 protocol. 

 

5.2.3 Base modification analysis 

Identification of DNA base modifications was performed by means of SMRT 

sequencing, utilising the RS_Modification_and_Motif_Analysis.1 protocol and the 

finished genome assemblies as reference files. The identified methylation motifs 

were refined based on three criteria: (i) a mean modification QV cut-off of 40 %, 

equivalent to a P-value of <0.0005 was applied; (ii) secondly motifs of unknown 

type were removed; (iii) motifs methylated at less than 50 % of possible positions 

were removed. 
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Table 5.1: Strains used in this study from the UCC strain collection 

Strain Accession 

Number 

Origin Sequencing 

technology 

Average 

coverage 

subsp. lactis     

L. lactis 184 CP015895 Dairy product PacBio SMRT 72.56 

L. lactis 229 CP015896 Dairy product PacBio SMRT 107.27 

L. lactis 275 CP015897 Dairy product PacBio SMRT 60.88 

L. lactis 

UC06 

CP015902 Dairy product PacBio SMRT 66.25 

L. lactis 

UC08 

CP015903 Fermented meat 

product 

PacBio SMRT 159.42 

L. lactis 

UC11 

CP015904 Fermented meat 

product 

PacBio SMRT 113.79 

L. lactis 

UC063 

CP015905 Dairy product PacBio SMRT 95.48 

L. lactis 

UC77 

CP015906 Dairy product PacBio SMRT 97.73 

L. lactis UL8 CP015908 Dairy product PacBio SMRT 45.42 

L. lactis C10 CP015898 Dairy product PacBio SMRT 81.29 

subsp. 

cremoris 

    

L. lactis 158 CP015894 Dairy product PacBio SMRT 113.98 

L. lactis 

UC109 

CP015907 Dairy product PacBio SMRT 134.74 

L. lactis JM1 CP015899 Dairy product PacBio SMRT  49.26 

L. lactis JM2 CP015900 Dairy product PacBio SMRT  99.08 

L. lactis JM3 CP015901 Dairy product PacBio SMRT  72.01 

L. lactis JM4 CP015909 Dairy product PacBio SMRT  206.24 
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5.2.4 Comparative genomics 

ORFs encoding putative MTases and REases were identified by homology-

based BLASTP v2.2.26 [18] analysis against the non-redundant protein databases 

curated by the National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nig.gov/) and REBASE [8]. The Artemis (v16) genome 

browser and annotation tool was used to inspect and (where necessary) manually 

curate ORFs (http://www.sanger.ac.uk/science/tools/artemis). ORF annotations were 

refined where necessary using alternative databases; Pfam [19], HHpred [20] and 

Uniprot/EMBL (http://www.uniprot.org/). All sequence comparisons at protein level 

were performed via all-against-all, bi-directional BLAST alignments [18]. 

Alignment cut-off was: E-value <0.0001, with >30 % amino acid identity across 80 

% of the sequence length. For analysis and clustering of results, the Markov 

Clustering algorithm (MCL) was implemented in the mclblastline pipeline v12-0678 

[21]. TM4 MeV, MultiExperiment Viewer v4.9 was used to view MCL clustering 

data and conduct hierarchal clustering (http://www.tm4.org/mev.html).  

 

5.2.5 DNA restrictions 

Chromosomal DNA from L. lactis strains was isolated as previously 

described [22]. DNA restrictions were performed on genomic DNA in a 50 µl 

reaction volume, containing: 1 µl restriction enzyme, 5 µl reaction buffer, 10 µl 

DNA and 34 µl dH2O. Restriction enzymes were sourced from New England 

Biolabs, USA (BmtI, NsiI, SfaNI and ScrFI) and Roche, USA (DpnI). Restrictions 

were performed at 37 °C for 15 mins (NsiI), 60 mins (BmtI, SfaNI and ScrFI) and 3 

hours (DpnI) according to manufacturer’s instructions. Electrophoresis of DNA was 

conducted at 100 V for 30 mins on a 1 % agarose gel. 

http://www.ncbi.nlm.nig.gov/
http://www.sanger.ac.uk/science/tools/artemis
http://www.uniprot.org/
http://www.tm4.org/mev.html
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5.2.6 Quantitative polymerase chain reaction, qPCR  

Detection and quantification of hsdS domain configuration was performed 

via qPCR on a LightCycler 480 qPCR instrument (Roche Life Science) utilising 

LightCycler 480 SYBR Green I Master mix (Roche Life Science). DNA samples 

were prepared by phenol-chloroform extraction as described previously [22] and the 

quantity was estimated on a Nanodrop 2000 (Thermo Scientific), with the final DNA 

concentration adjusted to 10 ng/μl for each sample. Serial dilution of standard DNA 

was used to prepare a standard curve. Primers used are described in Table 5.2 and 

were synthesized by Eurofins MWG Operon (Germany).  

PCR reaction mixtures contained: 3 μl of ultrapure water, 2 μl 10X primers, 

10 μl 2X master mix and 5 μl of DNA template (template DNA was replaced by 

dH20 for negative controls). Quantitative PCR reactions were carried out with a 5 

min pre-incubation at 95 °C followed by 45 cycles of denaturation at 95 °C for 10 s, 

annealing/extension at 50 °C for 10 s/ 72 °C for 10 s. All samples were tested at least 

in triplicate. Absolute quantification analysis was used to calculate the crossing point 

(Cp, the point at which the fluorescence of a sample rises above the background 

fluorescence) for each sample in the analysis using the Fit points analysis method in 

LightCycler 480 qPCR software (Roche Life Science). 
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Table 5.2: qPCR primers for pMPJM2 shufflon used in this study 

Oligo name Sequence (5’ -3’) Target/Comment 

hsdS1A_1B_F 

hsdS1A_1B_R 

TCATGCAGTATCAGATTCCAGA 

GCAAGAGATCAAACTGAGCATC 

Targets hsdS sub-

unit combination 1A 

– 1B  

hsdS1A_2B_F 

hsdS1A_2B_R 

CCGCGTGGAGATAAATCAG 

GCCAATCATTTGGCATAACA 

Targets hsdS sub-

unit combination 1A 

– 2B 

hsdS2A_1B_F 

hsdS2A_1B_R 

 AAAGGGTTCAACTTGATGTGC 

GCAAGAGATCAAACTGAGCATC 

Targets hsdS sub-

unit combination 2A 

– 1B 

hsdS2A_2B_F 

hsdS2A_2B_R 

AGGGTTCAACTTGATGTGCTT 

GGCATAACACCATCATAGGG 

Targets hsdS sub-

unit combination 2A 

– 2B 

res1A_2B_F 

res1A_2B_R 

GCCTTAGATGATAGAATTGCTGAA 

AATACCAGTTAAGTTTGATAATTGCC 

Targets reservoir 

combination 1A – 

2B 

res1A_1B_F 

res1A_1B_R 

CCACTTGAGGATCAACGAAC 

ATGCTATTGCCAAAGCTAATGT 

Targets reservoir 

combination 1A – 

1B 

res2A_1B_F 

res2A_1B_R 

TCCATCGTTGGAAGAACAGA 

ATGCTATTGCCAAAGCTAATGT 

Targets reservoir 

combination 2A – 

1B 

res2A_2B_F 

res2A_2B_R 

AGGGTTCAACTTGATGTGCTT 

GGCATAACACCATCATAGGG 

Targets reservoir 

combination 2A – 

2B 
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5.3 Results 

 

5.3.1 Motif analysis 

SMRT sequencing technology was applied here to determine the DNA 

modifications of sixteen lactococcal genomes (described in detail in Chapter III) to 

assess their encoded MTases, with particular emphasis on MTases linked to cognate 

REases to form functional R-M systems. In total 51 6mA type and 1 4mC type 

methylation motifs were detected (Table 5.3). Initial analysis of detected methylation 

motifs identified isoschizomers of four motifs, namely; 5′-ATGC6mAT-3′, 5′-

GCTAG6mC-3′, 5′-GC6mATC-3′ and 5′-G6mATC-3′. Analysis of these motifs 

indicated that they represent Type II R-M motifs based on their short (4-8 bp) 

palindromic recognition sites. Type I methylation motifs were the most frequently 

encountered (34/52 detected motifs), indicating a high level of diversity of Type I 

systems in L. lactis (Table 5.3). 
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Table 5.3: Methylated motifs detected in strains sequenced by Pacific Biosciences SMRT sequencing  

Strain Motifs Modified 

Position 

Type % Motifs 

Detected 

# Of 

Motifs 

Detected 

# Of 

Motifs In 

Genome 

Mean 

Modification 

QV 

Mean 

Motif 

Coverage 

Partner Motif 

158 *TAAANNNNNNTTYG 3 m6A 100.00% 643 643 95.53 60.4 CRAANNNNNNTTTA 

184 VTACNNNNNGGT 3 m6A 97.05% 263 271 65.19 39.61 ACCNNNNNGTAB 

 GGCTNA 6 m6A 96.24% 3429 3563 64.67 37.71  

 ACCNNNNNGGT 1 m6A 95.33% 429 450 59.85 35.4 ACCNNNNNGGT 

 TTAMNNNNNGGT 3 m6A 94.59% 630 666 62.97 37.89 ACCNNNNNKTAA 

 GGAGA 5 m6A 94.57% 3222 3407 64.11 38.13  

229 *GATGNNNNNTTTA 2 m6A 86.51% 218 252 54.44 30.7 TAAANNNNNCATC 

 GAYNNNNNTTTA 2 m6A 81.06% 1211 1494 50.97 30.69 TAAANNNNNRTC 

 TAAANNNNNRTC 3 m6A 70.15% 1048 1494 46.15 31.62 GAYNNNNNTTTA 

 TAAANNNNNNTTYG 3 m6A 79.33% 572 721 49.56 30.62 CRAANNNNNNTTTA 

JM1 GAGNNNNNTGA 2 m6A 99.84% 1227 1229 92.21 55.9 TCANNNNNCTC 

 *AGCYAC 5 m6A 99.77% 1768 1772 91.49 57.92  

 *ATGCAT 5 m6A 98.91% 635 642 93.83 58.88 ATGCAT 

 *CCAAT 4 m6A 98.86% 8203 8298 87.63 54.51  

 *GAAYNDNNNNTARC 3 m6A 18.87% 50 265 53.48 57.54  

 GYTANNNNNDRTTC 4 m6A 21.68% 49 226 52.06 60.04  

JM2 CCANNNNNGTC 3 m6A 99.37% 629 633 82.74 50.71 GACNNNNNTGG 

 AGYNNNNNCGT 1 m6A 99.19% 853 860 84.9 49.41 ACGNNNNNRCT 

 TCACNNNNNNATGA 3 m6A 98.84% 85 86 83.96 54.92  

 TCAYNNNNNNATGB 3 m6A 98.53% 401 407 82.08 52.22  

 ACANNNNNNRTAA 3 m6A 98.40% 981 997 81.8 50.2 TTAYNNNNNNTGT 

 *AGAAG 4 m6A 98.10% 8814 8985 69.59 49.33  

 *CATNNNNNNRTGA 2 m6A 97.68% 632 647 81.67 52.47  

JM3 GMAGG 3 m6A 97.22% 5939 6109 68.53 38  

 GRTAAAT 6 m6A 94.59% 1817 1921 62.81 36.81  

JM4 GRTANAG 6 m6A 92.18% 2498 2710 112.98 69.55  

 AGAAGC 4 m6A 91.10% 1862 2044 110.18 65.8  

 *YTCANNNNNNRTTA 4 m6A 90.59% 549 606 106.02 71.64 TAAYNNNNNNTGAR 
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 *GCTAGC 6 m4C 86.20% 281 326 65.68 66.14 GCTAGC 

 *TTAANNNNNNVTTG 3 m6A 85.98% 423 492 101.67 70.32 CAABNNNNNNTTAA 

UC06 CAGNNNNNNTAYC 2 m6A 94.50% 584 618 62.08 33.11 GRTANNNNNNCTG 

 CACNNNNNNTTYG 2 m6A 92.43% 476 515 58.44 33.93 CRAANNNNNNGTG 

 *GATC 2 m6A 92.00% 4510 4902 61.28 34.19 GATC 

 ACTNNNNNNTYTC 1 m6A 90.42% 774 856 58.43 33.75 GARANNNNNNAGT 

 *GCDGCAGC 2 m4C 31.70% 71 224 40.24 37.03 Actual motif = GCNGC 

UC08 CNACNNNNNNNTGG 3 m6A 90.30% 549 608 56.53 32.26 CCANNNNNNNGTNG 

 GGANNNNNNNTTCA 3 m6A 86.35% 329 381 58.51 33.24 TGAANNNNNNNTCC 

 *GATGC 2 m6A 52.96% 1751 3306 45.07 37.16 GCATC 

UC11 *GATGC 2 m6A 99.91% 3280 3283 99.62 59.01 GCATC 

 CNACNNNNNNNTGG 3 m6A 99.84% 606 607 88.99 58.66 CCANNNNNNNGTNG 

 GGANNNNNNNTTCA 3 m6A 99.48% 381 383 91.03 60.16 TGAANNNNNNNTCC 

UC063 GACNNNNNNTTYG 2 m6A 99.26% 675 680 82.21 49.76 CRAANNNNNNGTC 

 *YTCANNNNNNRTTC 4 m6A 98.34% 534 543 83.73 49.78 GAAYNNNNNNTGAR 

 AGCNNNNNCCT 1 m6A 98.28% 573 583 88.37 49.02 AGGNNNNNGCT 

UC77 GATGNNNNNTTTA 2 m6A 99.60% 246 247 95.77 54.94 TAAANNNNNCATC 

 TAAANNNNNNTTYG 3 m6A 99.17% 713 719 77.63 50.84 CRAANNNNNNTTTA 

 GAYNNNNNTTTA 2 m6A 91.86% 1366 1487 59.07 52.27 TAAANNNNNRTC 

UC109 ACCNNNNNNTTAA 1 m6A 100.00% 306 306 96.72 63.2 TTAANNNNNNGGT 

 GRTCNAG 6 m6A 99.80% 994 996 98.09 61.38  

 *GAATC 3 m6A 99.51% 5103 5128 95.34 59.91  

 GARANNNNNNNTTTA 4 m6A 99.17% 718 724 95.65 60.9 TAAANNNNNNNTYTC 

 GCANNNNNNATTA 3 m6A 98.81% 415 420 97.75 64.97 TAATNNNNNNTGC 

* Indicates a motif which has been resolved to its associated restriction modification system
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5.3.2 Analysis of encoded MTases and REases 

In order to link the identified methylated DNA modifications to methylases 

of R-M systems, a bioinformatics-based search was undertaken to identify predicted 

chromosomally- and plasmid-encoded MTases and REases. The plasmid 

complement of the sixteen strains in this study was found to encode sixty eight 

proteins involved in DNA methylation and restriction, while the chromosomes were 

predicted to encode a further seventy four such proteins. Hierarchical clustering 

utilising all against all bidirectional BLASTP analysis was used to cluster the 

constituent strains based on the presence or absence of specific encoded MTases, 

REases and specificity subunits identified above which revealed a high degree of 

divergence between the constituent strains in the analysis (Fig. 5.1). Encoded 

MTases, REases and specificity subunits were further categorized into predicted R-

M systems based on homology to previously identified systems and their genetic 

organisation. This resulted in the identification of putative, complete and incomplete 

Type I (24), Type II (19), Type III (45) and Type IV (1) systems, which will be 

discussed individually (Table 5.4) (Fig 5.2).  

  



248 

 

  
 

Figure 5.1: MCL analysis of encoded MTases and REases 

MCL analysis of DNA MTases, REases and S subunits grouped by hierarchical 

clustering based on presence/absence of CDS. Colour indicates copy number.



249 

 

Table 5.4: Overview of predicted chromosomally- and plasmid-encoded R-M Systems 

 158 184 229 275 C10 JM1 JM2 JM3 JM4 UC06 UC08 UC11 UC77 UC063 UC109 UL8 

Chromosomally encoded 

Type I 2 1 1 - - 1 1 - 1 - 1 1 1 1 1 - 

Type II 1 - - 1 - 1 - 3 1 4 1 1 - 1 - - 

Type III - 1 - - - - 1 - - - - - - - 1 - 

Type IV - - - - - - - - - 1 - - - - - - 

Plasmid encoded 

Type I 1 - 2 - - 2 3 - - - - - 1 2 1 - 

Type II - - - 1 - 1 - - 1 - 1 1 - - - - 

Type III - - - - - 1 - - - - - - - - - - 

Type IV - - - - - - - - - - - - - - - - 
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5.3.3 Type I R-M systems  

Type I R-M systems are usually comprised of three sub-units: REase 

(designated HsdR), MTase (designated HsdM) and a specificity determinant 

(designated HsdS) [7]. Based on their deduced recognition sequence, thirty five of 

the fifty two identified methylation motifs were assigned to Type I systems (see 

Table 5.3). BLAST analysis identified fifteen Type I R-M systems which appear to 

be complete, while also nine additional, orphan specificity subunits were detected 

(Fig 5.2). However, due to their divergent nature most of these thirty five motifs 

could not be attributed to specific type I R-M systems. Only eight methylation motifs 

(Table 5.3) were attributed to their putative specificity subunits based on homology 

to the target recognition domains (TRD) of previously identified Type I systems. 

S.Lla158ORFAP, located on plasmid p158F, is a reasonable candidate for 

CRAANNNNNNTTTA based on sequence homology between its TRD1 and that of 

S.Spy743I (CRAANNNNNNNTGC) (REBASE Enz. Num.113363). However, since 

S.Lla158ORFAP represents a solitary specificity subunit and both alternate subunits 

in strain 158 are associated with methylase genes, this specificity appears to be the 

result of a more complicated interaction. 

The motifs GAAYNDNNNNTARC and GYTANNNNNDRTTC detected in 

strain JM1 are most likely complementary strands and the probable motif is 

GAAYNNNNNNTARC. S.LlaJM1ORFDP located on plasmid pJM1E is a 

reasonable candidate based on sequence homology of its TRD1 to that of S.Sth9I 

(GAAYNNNNNNTAYG) (REBASE Enz. Num. 137120). However, as was the case 

for S.Lla158ORFAP, S.LlaJM1ORFDP represents a solitary specificity subunit and 

indicates that there may be more complex interactions occurring in this strain. 
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Figure 5.2: Overview of identified Type I R-M systems 

Genetic organisation of encoded Type I R-M systems in; L. lactis 158, L. lactis 184, 

L. lactis 229, L. lactis JM1, L. lactis JM2, L. lactis JM4, L. lactis UC08, L. lactis 

UC11, L. lactis UC063, L. lactis UC77 and L. lactis UC109. Methylation motifs are 

indicated where resolved.  
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Figure 5.2 continued: 

Genetic organisation of encoded Type I R-M systems in; L. lactis 158, L. lactis 184, 

L. lactis 229, L. lactis JM1, L. lactis JM2, L. lactis JM4, L. lactis UC08, L. lactis 

UC11, L. lactis UC063, L. lactis UC77 and L. lactis UC109. Methylation motifs are 

indicated where resolved.  
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S.LlaJM2ORFDP located on plasmid pJM2C is the most likely to be 

responsible for the recognition of motif CATNNNNNNRTGA based on sequence 

similarity of its TRD2 with that of S.SauSTORF499P (ACCNNNNNRTGA) 

(REBASE Enz. Num. 23368). LlaJM2ORFDP represents a complete Type I R-M 

system composed of a hsdR, hsdM and hsdS.  

In strain JM4, the two Type I motifs CAABNNNNNNTTAA and 

TAAYNNNNNNTGAR are presumably the results of odd combinations of the 

specificity subunits from the ORFC system located on the chromosome. This system 

is composed of a hsdR, hsdM and three partial hsdS, and appears to be interrupted by 

two transposon-elements, suggestive of a recombination event. 

S.Lla229ORFAP encoded on plasmid p229C in strain 229 is a good 

candidate for GATGNNNNNTTTA based on sequence homology of its TRD1 to 

that of S.Awo1030III (GATGNNNNNNTGC) (REBASE Enz. Num. 4579). 

Lla229ORFAP is one of two complete Type I R-M systems in strain 229 composed 

of a hsdR, hsdM and a single complete hsdS. 

S.Lla63ORFAP is part of a complete R-M system encoded on plasmid 

pUC063B in strain UC063 and represents a good candidate for the recognition of 

motif YTCANNNNNNRTTC based on the similarity of its TRD1 to that of 

S.Bsp3003III (YTCANNNNNNNTCNNC) (REBASE Enz. Num. 70536). However, 

there appears to be a specificity subunit missing unless there is an unknown 

interaction occurring with S.Lla63ORFBP on plasmid pUC063D. 

The remaining Type I motifs remain unassigned and therefore an increased 

dataset appears to be necessary to resolve more of these motifs. Furthermore, 

resolving these target specificities is highly complicated by the genetic make-up of 

some of the Type I systems, which appear to be subject to genetic rearrangements, 
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and multiple Type I specificity subunits which may be combining in the cell leading 

to unusual specificities. 

 

5.3.4 Type II R-M systems 

Analysis of the methylation motifs detected in this study resulted in the 

identification of eight Type II recognition motifs which were associated with their 

respective Type II R-M systems; LlaJM1IP, LlaJM1ORFAP, LlaJM4I, LlaUC06IP 

M.LlaUC06ORFDP, LlaUC08IP, LlaUC11IP and Lla158ORFBP. Complementary 

homology based analysis of the CDS in the respective genomes utilising BLASTP, 

MCL and REBASE allowed the identification of unique Type II R-M systems 

proposed to carry out this methylation function (Fig 5.3). 

Analysis of the detected R-M systems in strain JM1 indicated that the 

methylated motif CCAAT was a possible product of M.LlaJM1ORFEP, while the 

methylated motif AGCYAC was found to be a potential product of 

M.LlaJM1ORFAP. However, without cloning (and subsequent characterisation) the 

corresponding genes it is difficult to annotate such functions accurately. In strain 

JM3 it was found that the motif AAGGAAGWNNNR represents an inaccurate 

assignment for a simpler sequence, perhaps AGGAAG. However, while it and the 

other two motifs are the products of the three Type IIG enzymes encoded in JM3, 

none of the enzymes could be assigned motifs unambiguously. In strain UC06, it was 

found that the motif GCDGCAGC probably represents an inaccurate assignment for 

GCNGC, the product of the Type II methylase; M.LlaUC06ORFDP (Fig 5.3). 
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Figure 5.3: Overview of identified Type II R-M systems 

Genetic organisation of encoded Type II R-M systems in; L. lactis 158, L. lactis 275, 

L. lactis JM1, L. lactis JM3, L. lactis JM4, L. lactis UC06, L. lactis UC08, L. lactis 

UC11, and L. lactis UC063. Methylation motifs are indicated where resolved.  
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Figure 5.3 continued: 

Genetic organisation of encoded Type II R-M systems in; L. lactis 158, L. lactis 275, 

L. lactis JM1, L. lactis JM3, L. lactis JM4, L. lactis UC06, L. lactis UC08, L. lactis 

UC11, and L. lactis UC063. Methylation motifs are indicated where resolved.  

 

To assess if certain identified Type II methylated motifs prevent restriction, 

the total DNA complement of particular strains was treated with a restriction enzyme 

which targeted its respective base modification motif (Fig. 5.4). Treatment of strain 

L. lactis JM1 with NsiI did not result in DNA fragmentation confirming that the 

detected methylation motif is correct, while similarly BmtI did not restrict L. lactis 

JM4 (Fig. 5.4A). Both L. lactis UC08 and UC11 presented the methylation pattern 

corresponding to SfaNI, however only UC11 was protected from restriction (Fig. 

5.4B). Analysis of these motifs showed that while 99.84 % of these motifs were 

methylated in UC11, only 53.84 % of detected motifs in UC08 were methylated 

allowing the remaining motifs (1526 on the leading strand, 1555 on the lagging 

strand) to be restricted. This would indicate that the hsdR subunit in UC08 is not 

functional, but as the sequence of both systems is well conserved this may also be 

due to differential expression levels of the encoding plasmids.  

The Lla158ORFBP system detected on the genome of L. lactis 158 was also 

found to be active in methylation as treatment with the R.ScrFI enzyme did not result 
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in restriction (Fig. 5.4B). The Lla158ORFBP target site is an 5mC modification in the 

recognition motif 5′-C5mCNAGG-3′. This methylation motif was not detected by 

SMRT sequencing, most likely because such 5mC modifications are difficult to detect 

using SMRT [17]. Restriction with DpnII was also found to be blocked in the L. 

lactis UC06 genome (Fig. 5.4C), while L. lactis UC063 which did not contain any 

Type II methylation motifs was restricted by all of the enzymes employed in this 

analysis (Fig. 5.4A,B,C). 
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Figure 5.4: DNA restriction analyses 

Genomic DNA restrictions of [A] L. lactis JM1 and JM4, [B] L. lactis UC08, UC11 

and 158, [C] L. lactis UC06. In each case unrestricted DNA from the strain tested is 

used as a negative control, while L. lactis UC063 is used as a positive control. The 

enzymes used are indicated on each lane. 
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5.3.5 Type III/IV R-M systems 

Four Type III R-M systems were identified, three of which appear to be 

complete: Lla184ORFBP in L. lactis 184, LlaJM1ORFEP in L. lactis JM1 and 

Lla109ORFCP in L. lactis UC109. The fourth, M.LlaJM2ORFGP in L. lactis JM2 

appears to be responsible for the motif AGAAG as it is the only candidate in JM2. 

However, the gene currently has a frameshift, which may indicate a sequencing 

error. Alternatively, several active Type II methylases are known that also contain 

frameshifts [28]. The Type III methylase encoded by UC109, M.Lla109ORFCP, is 

probably the best candidate for the methylation of motif GAATC in that strain, while 

in strain JM1, the methylated CCAAT motif is a possible product of 

M.LlaJM1ORFEP. However, verification of these assignments will require cloning 

and characterisation of such methylases. In strain 184, the Type III motifs remain 

unassigned; GGAGA and GGCTNA both look as though they could be Type III 

motifs, but while M1.Lla184ORFBP appears functional, M2.Lla184ORFBP looks as 

though it is inactive. 

A single Type IV system (LlaUC06McrCP and LlaUC06McrBP) was 

identified in L. lactis UC06 and appears to be the only complete system. Type III and 

IV systems are both significantly under-represented in L. lactis compared to Type I 

and II systems and no motifs were assigned to Type IV systems in this analysis 

which may be a result of difficulty in detecting cytosine modifications. A complete 

overview of all identified Type III/IV systems with predicted R-M activities is 

presented in Figure 5.5. 
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Figure 5.5: Overview of identified Type III & IV R-M systems 

Genetic organisation of encoded Type III and Type IV R-M systems in; L. lactis 

184, L. lactis JM1, L. lactis JM2, L. lactis UC06, and L. lactis UC109. Methylation 

motifs are indicated where resolved.  
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5.3.6 Type I R-M Shufflon system 

Modulation of type I R-M recognition specificity by intergenic shuffling of 

HsdS-encoding genes has previously been reported [24-26]. Sequence analysis and 

annotation revealed the presence of a conserved Type I R-M shufflon system in the 

megaplasmids pMPJM1 (LlaJM1ORFCP) and pMPJM2 (LlaJM2ORFEP) (discussed 

in Chapter IV), consisting of multiple (apparently complete and incomplete) hsdS 

genes arranged around a recombinase-encoding gene (Fig. 5.4A). The presumed 

activity of this system was corroborated by the presence of a number of unassigned 

Type I methylase motifs in L. lactis JM2 containing m6A base modifications (Table 

5.3). The six detected motifs were on average methylated in 99.87 % of positions 

present in the genomes. Strain JM2 also encodes two additional complete Type I R-

M systems of which LlaJM2ORFDP was assigned the motif CATNNNNNNRTGA. 

However, it is not possible to assign additional motif(s) to the remaining individual 

systems. 

Comparative analysis of the pMPJM2 hsdS subunits identified four 

conserved TRDs (target recognition domain) termed ARD (amino-proximal 

recognition domain) and CRD (carboxy-proximal recognition domain) in subunits 

1A/B, and TRD in subunits 2A and 2B (Fig. 5.4B). Sequence analysis of the 

pMPJM2 hsdS genes and their respective recognition domains indicated the presence 

of a putative recombinatorial sequence (AATCATCATTTA) termed ‘vipareetus’ by 

Sitaraman and colleagues (from the Sanskrit ‘vipareet’ meaning inverted or opposite) 

thought to behave as inversion sites (Fig. 5.5) [27]. Computational analysis of these 

vipareetus sequences indicate four possible functional hsdS combinations, with the 

‘unused’ subunits stored as a so-called reservoir (Fig. 5.4C).  
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Figure 5.4: Analysis of the pMPJM2 shufflon system 
[A] Arrangement of the LlaJM1ORFCP and LlaJM2ORFEP shufflon systems, 

shaded areas indicate BLAST amino acid identity. [B] Gene maps of conserved 

specificity domains and predicted combinations of the pMPJM2 LlaJM2ORFEP 

shufflon system. Locations of conserved recombination sequences are indicated by 

red lines. 
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Figure 5.5: Specificity sub-units of shufflon system 
[A] Nucleotide sequence analysis of the hsdS specificity subunits of the pMPJM2 

shufflon system. Nucleotide sequence is displayed (grey) with each specificity sub-

unit highlighted (red) and the predicted recombination sequences ‘vip’ (Black). [B] 

The mechanism of recombination of each sub-unit sequence is also displayed. 
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To assess this model, qPCR was employed as a method of detection and 

quantification of both the active subunit and the reservoir for each of the predicted 

combinations. Primers (Table 5.2) were designed based on sequences that represent 

each of the theoretical combinations (Subunits; 1A-1B, 1A-2B, 2A-1B, 2A-2B) and 

their corresponding respective reservoirs (Subunits; 2A-2B, 2A-1B, 1A-2B, 1A-1B). 

The analysis indicated the presence of each of these possible hsdS combinations with 

that of the sequenced conformation (hsdS 1A-1B) representing the dominant sub-unit 

(Fig. 5.6A & B) and confirming subunits are organised as predicted based on the 

vipareetus sequences.  

To further corroborate the proposed shuffling scenario, analysis of the raw 

sequencing reads which overlapped the shufflon region was undertaken. In 

accordance with the qPCR results, the sequenced conformation was found to be the 

dominant arrangement of the hsdS subunits (91 % of reads) (Fig 5.6C). Both the 

initial sequencing run and the qPCR analysis were conducted on a culture isolated 

from a single colony and it is believed this may have impacted on the heterogeneity 

of the population. An interesting observation from the raw read data was the 

conformation of the “reservoir” sub-units which in some cases were identified in 

alternate arrangements to those proposed in (Fig. 5.4C). In some instances they 

occurred in a different orientation or alternate strands to those described, while in a 

small number of cases a sub-unit was missing completely from the sequence, 

indicating that the shuffling of unused hsdS sub-units is less well conserved than 

previously thought. Interestingly, the homologous system sequenced on pMPJM1 

(Fig 5.4A), was sequenced in an alternative combination, indicating the proposed 

shuffling scenario is likely to result from selective pressure within a population. 
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Finally, analysis of the 6mA modified motifs detected by SMRT base 

modification analysis was conducted. It is expected that, in the case of an active type 

I R-M system, the ARD would contribute the first part of the target motif while the 

CRD would contribute the second part separated by N[x]. In the case of the shufflon 

system, this would indicate four distinct methylation motifs, composed of two ARD 

patterns and two CRD patterns, replicating each possible combination of the hsdS 

subunits. While the detection of several type I motifs in L. lactis JM2 would appear 

to corroborate this hypothesis (Table 5.3), at sequencing coverage of 99X, it was not 

possible to definitively confirm the sequences associated with each domain. The 

identification of two (one chromosomal- and one plasmid-encoded) additional Type I 

R-M systems in L. lactis JM2, further complicates the determination of which motifs 

should be associated with each system. L. lactis JM1, which encodes one additional 

type I R-M system on its chromosome, was found to produce one Type I motif with 

high confidence, while a further two Type I motifs were found to be complementary 

strands of the motif GAAYNNNNNNTARC which was associated with a solitary 

specificity subunit S.LlaJM1ORFDP located on a separate plasmid. 



266 

 

 

Figure 5.6: qPCR analysis of the pMPJM2 shufflon system 

[A] The levels of each identified hsdS sub-unit combination as detected by qPCR. 

[B] Pie chart representing the percentage of occurrence of the sequenced hsdS 

conformation versus alternate conformations detected by qPCR. [C] Pie chart 

representing the percentage of occurrence of the sequenced hsdS conformation 

versus alternate conformations found in the raw sequencing reads. 
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5.4 Discussion 

SMRT sequencing may be used for the identification of methylated DNA 

bases and their associated motifs. Methylome analysis of the lactococcal strains 

sequenced in the framework of this study was applied to identify methylation motifs 

that are linked to Type I and Type II R-M systems. The sequencing of a larger 

number of strains using this technology would permit an expansion and refinement 

of our knowledge of these systems in the future. A limitation of this technology is a 

difficulty in detecting 5mC base modifications. While not performed in this study, 

detection of such modifications can be improved by treating DNA with Tet1 enzyme 

prior to sequencing [17]. A further dependent factor is the fold-coverage of the 

sequencing data with higher fold coverage resulting in more accurate base 

modification detection. For this reason a minimum of 250X coverage is 

recommended by Pacific Biosciences (https://github.com/PacificBiosciences/ 

Bioinformatics-Training/). 

Comparative analysis of the lactococcal isolates in this study indicates a large 

degree of divergence in the encoded R-M systems present in each of the strains. This 

is also indicative of their phage defence abilities. L. lactis C10 and UL8 which 

encode no R-M systems contain five and three complete integrated prophages 

respectively, while strains L. lactis JM1 and JM2 which encode significantly more 

R-M systems present with one complete integrated prophage each. These two strains 

also present an adaptive phage response in the form of a plasmid-encoded Type I 

shufflon system. This system, the first of its type in L. lactis was composed of 

multiple hsdS subunits arranged around a recombinase-encoding gene allowing for 

the intergenic shuffling of specificity subunits, resulting in an effective adaptive 

defence mechanism against phage infection. Sequence analysis indicates the 
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recombination events rely on conserved overlapping ‘vipareetus’ sequences and 

analysis by qPCR confirms the proposed shuffling scenario.  

Detection of a number of Type II R-M methylation motifs allowed for 

functional analysis with commercial restriction preparations to test the functionality 

of these systems. In each case it was found that the detected methylation motif 

blocked restriction by the associated enzyme, with the exception of L. lactis UC08. 

Both L. lactis UC08 and L. lactis UC11were found to contain the methylation motif 

5′-GC6mATC-3′, but restriction with SfaNI was blocked in the case of UC11 only. 

Analysis of these motifs showed that while 99.84 % of these motifs were methylated 

in UC11, only 53.84 % of detected motifs in UC08 were methylated allowing the 

remaining motifs (1526 on the leading strand, 1555 on the lagging strand) to be 

restricted. 

The major advantages of these predictions are the ease with which data can 

now be mined for the detection of novel restriction enzymes. The technology also 

presents the ability to assess a strain rapidly and efficiently in terms of its abilities to 

withstand foreign DNA, particularly valuable in lactococcal strains which are 

frequently used in industrial fermentations, or in contrast to assess the ease with 

which a strain may be transformed in a laboratory setting. In this study overlapping 

motifs and clustering of REases and MTases allowed for the identification of the 

systems responsible for seventeen of the detected motifs from a total of fifty two; 

however, with increased data sets and continued improvements in sequencing 

coverage, it is envisioned that significantly more of these systems will be elucidated 

in the future.  
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lactococcal prophages 

 

 

 

 

 

 

 

Note: Prophage inductions and DNA restriction profiling were performed by Dr 

Jennifer Mahony.  
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6 Abstract 

Lactococcus lactis strains are the most extensively exploited lactic acid 

bacteria (LAB) in commercial dairy fermentations. Though the presence of 

prophages in lactococcal genomes is widely reported, only a small number of studies 

pertaining to the stability of the prophages in the genomes have been performed. The 

current study explored the genomes of thirty lactococcal strains for the presence of 

potentially intact prophages, so as to assess their genomic diversity and the 

associated risk (or benefit) of harbouring such prophages. Genomic predictions 

partnered with mitomycin C-induction tests revealed that only four strains 

consistently produced intact phage particles. Interestingly, our analysis revealed the 

widespread presence of phage-resistance systems encoded by lactococcal prophages 

highlighting the potential benefits for host fitness. Most of the identified lactococcal 

prophages are shown to belong to the so-called P335 phage group, while various 

(presumed) phage remnants bear similarity to members of the 936 phage group. The 

P335 phage group was recently shown to encompass four distinct genetic lineages. 

Our study identified an additional lineage, thus expanding the diversity of this 

industrially significant phage group. 
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6.1 Introduction 

Consistent cheese production relies on the application of technologically 

robust starter cultures, which in many cases consist of Lactococcus lactis strains. 

One of the key characteristics of technologically robust strains is resistance to 

virulent (bacterio)phages. However, many lactococcal chromosomes are known to 

harbour one or more integrated prophage genomes, which may excise following 

induction, culminating in starter cell lysis and release of intact phage particles. 

Prophage induction represents a double-edged sword phenomenon since on the one 

hand it may cause unwanted or premature lysis leading to poor quality or loss of 

product, while on the other hand phage-mediated cell lysis in maturing cheese is 

considered favourable because of the release of intracellular enzymes involved in 

flavour development [1].  

In the context of phage therapy, the presence of prophages may equally be 

considered both beneficial and problematic. For example, the development of 

unusually virulent derivatives of Streptococcus pyogenes was linked to prophage 

acquisition highlighting the role of prophages in the evolutionary fitness of the host 

[2]. This example is mirrored across a spectrum of bacterial pathogens, which 

include, among others, Bacillus anthracis, Staphylococcus aureus and Vibrio 

cholera [3-5]. Therefore, while integrated prophage genomes are observed to suffer 

from considerable genome decay, with a majority believed to become functionally 

defective, it is important to assess their presence, diversity and functionality. 

The genomes of L. lactis MG1363 and IL1403 were the first lactococcal 

genomes to be fully sequenced [6, 7], with each chromosome containing six 

predicted prophage-encoding regions, of which two and three, respectively, appear to 

represent intact prophages [6-8]. Various studies have applied UV, mitomycin C 
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(MitC), acid and thermal treatments with varying success to study prophage-

mediated lytic potential of lactococcal strains [9-11]. Furthermore, bacteriocin-

provoked prophage induction has been reported [12]. It is crucial to assess the 

induction ability of putative lactococcal lysogens in order to establish the risk they 

pose to dairy fermentations. To date, the majority of studies relating to prophage 

induction have focused on one or a limited number of lactococcal strains, 

encumbering our ability to generally appreciate the risk presented by such 

prophages.  

Lactococcal prophages are typically classified as members of the polythetic 

P335 phage group, which are a genetically diverse group of phages. Excluding 

integrated prophages, the genome sequences of ten P335 phages are currently 

publicly available and have recently been divided into four subgroups (designated as 

subgroup I, II, III and IV), based on their overall nucleotide similarity and associated 

virion morphology [13]. The structural elements of phages determine the 

morphology of the phage including features that comprise the adhesion module. 

These modules dictate the initial interactions of the phage with its host and 

consequently, are an essential factor in phage classification. The adhesion modules 

in lactococcal P335 phage genomes encode elements of the so-called “initiator” and 

“baseplate” complexes of the distal tail region. The adhesion module is comprised of 

(the C-terminus of) the tail tape measure protein (TMP), the distal tail protein (Dit), 

the the tail-associated lysin (Tal) or tail fibre, and the receptor binding protein (RBP) 

and in some cases additional baseplate proteins (Bpp’s). Since the RBP (which 

typically makes up [part of] the baseplate) is the primary determinant of host range, 

the baseplate-encoding region is explored in further detail here. Sub-group I phages 

typically possess tails with a long tail fibre, which is thought to consist of a long Tal 
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fused with an RBP. Sub-group II phages possess a single large RBP-encoding gene 

or a multi-component baseplate structure with a double-disc morphology [13]. P335 

phages assigned to Sub-groups III or IV typically display stubby tail tips that are 

reminiscent of the 936 phages of L. lactis and presumed to be solely composed of a 

homo-oligomeric RBP [13]. However, this subgrouping of P335 phages has not been 

applied to the extended analysis of lactococcal prophages and this constitutes a major 

knowledge gap in terms of the genetic diversity and interactions of these phages and 

their hosts. 

Significant advances in genome sequencing technologies in recent years have 

facilitated an increasing availability of high quality complete genome sequences and 

improved our ability to predict and assess technologically appropriate and 

advantageous strains, including the presence of prophage-associated DNA [14]. 

Complete genome sequences of fourteen lactococcal strains are currently available in 

the public data bases and represent a useful resource for the analysis of the genetic 

diversity and identification of strains carrying prophages that are fully functional. In 

the current study, complete genome sequences of a further sixteen lactococcal strains 

were assessed in order to derive information on the presence and diversity of 

lactococcal prophages. A survey of all thirty genomes was undertaken in this study 

to assess the genetic diversity of, and potential risk and/or benefit associated with 

prophages in the dairy industry.  
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6.2 Materials & Methods 

 

6.2.1 Bacterial Strains and growth conditions 

Bacterial strains used in this study are detailed in Table 6.1. L. lactis strains 

were routinely cultured at 30 oC in M17 broth (Oxoid) supplemented with 0.5 % 

glucose without agitation. 

 

6.2.2 Genome sequencing and data assembly 

Sequencing and data assembly for the genomes of newly sequenced L. lactis 

strains employed in this study is detailed in Chapter III. 

 

6.2.3 General feature predictions  

Open Reading Frame (ORF) prediction was performed using a combinatorial 

approach of Prodigal v2.5 prediction software (http://prodigal.ornl.gov) and 

BLASTX v2.2.26 alignments [15]. Automatic annotation of ORFs was performed 

using BLASTP v2.2.26 [15] analysis against the non-redundant protein databases 

curated by the National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nig.gov/). Manual curation of predicted ORFs was conducted 

using Artemis v16 genome browser and annotation tool 

(http://www.sanger.ac.uk/science/tools/artemis), which was used to combine and 

inspect ORF results, to adjust where necessary start codons of predicted genes, and 

to aid in the identification of pseudogenes. Further refinement of annotations was 

performed where required using alternative databases; Pfam [16] and Uniprot/EMBL 

(http://www.uniprot.org/). Ribosomal RNA (rRNA) and transfer RNA (tRNA) genes 

were predicted using RNAmmer v1.2 (http://www.cbs.dtu.dk/services/RNAmmer/) 

http://prodigal.ornl.gov/
http://www.ncbi.nlm.nig.gov/
http://www.sanger.ac.uk/science/tools/artemis
http://www.uniprot.org/
http://www.cbs.dtu.dk/services/RNAmmer/
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and tRNA-scan-SE v1.4 (http://lowelab.ucsc.edu/tRNAscan-SE/), respectively. 

Predicted RNA encoding genes were manually added using Artemis.  

 

6.2.4 Prophage identification 

PHAST (PHAge Search Tool) [17] was used to screen genome sequences for 

the presence of integrated prophage genomes, and classifies its outputs in three 

categories: intact, incomplete and questionable. In order to further validate the 

presence of predicted complete or remnant prophages, relevant genomic regions 

where manually annotated as described above for bacterial genomes, in order to 

ascertain if all genes required to produce a functional phage particle were present. A 

complete phage particle was defined as one which contained genes necessary for 

lysogeny (integrase and repressor), replication/transcription/packaging (e.g. 

topoisomerase, replisome organiser, DNA-binding proteins, small & large 

terminases), morphogenesis (capsid, and tail, whiskers and other decorations) and 

lysis (holin[s] and lysin). Regions containing components of all the above-mentioned 

functional modules were predicted as intact, all others were predicted as incomplete 

phage (Supplemental Table S6.1). 

 

6.2.5 Identification of phage-encoded phage-resistance systems 

Potential abortive infection systems (Abi) were detected by constructing a 

database of the amino acid sequences of all currently known Abi systems 

(Supplemental Table S6.2) and performing an all-against-all reciprocal BLASTP 

[18] of the phage-encoding regions against the database using an alignment cut-off 

value; E-value 0.0001, and >50 % amino acid identity across 50 % of the sequence 

length. Sie (Superinfection exclusion) proteins were manually identified using the 

http://lowelab.ucsc.edu/tRNAscan-SE/
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following criteria: a small protein (~160 amino acids in length), possessing an N-

terminal transmembrane domain detected with TMHMM Server, v. 2.0, and encoded 

by a gene situated between the integrase- and repressor-encoding gene within the 

lysogeny module. Phage-encoded methylases were detected as described above for 

general feature predictions. 

 

6.2.6 Comparative genomics 

Sequence comparisons at the protein level were performed by all-against-all, 

bi-directional BLAST alignment [15] using the following alignment cut-off criteria: 

E-value < 0.0001, and > 50 % amino acid identity across at least 50 % of the 

sequence length. The Markov Clustering Algorithm (MCL) was implemented in the 

mclblastline pipeline v12-0678 [9], as previously described [19].  

 

6.2.7 Phylogenetic analysis 

Whole phage-genome nucleotide alignments were performed using 

MUSCLE v3.8.31 [20]. Phylogenetic trees were computed by the maximum-

likelihood method in PhyML v3.0 and bootstrapped x1000 replicates [21]. Tree files 

were visualised using ITOL (Interactive Tree of Life) 

(http://itol.embl.de/index.shtml). 

 

6.2.8 Pan- and core-virome analysis 

PGAP v1.0 [22] was used to perform the pan-genome analysis according to 

Heaps law pan-genome model [23]; the ORF content of each genome is organised in 

functional gene clusters using the Gene Family method where ORFs produce an 

alignment with a minimum of 50 % sequence identity across 50 % of their length 

http://itol.embl.de/index.shtml
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and a pan-genome profile was subsequently generated by plotting the number of 

genes in the pan-virome against the number of genomes added. 

 

6.2.9 Prophage induction 

To assess the functionality and lytic capability of the (predicted) resident 

prophages of the lactococcal strains employed in this study, induction trials with the 

DNA intercalating agent mitomycin C (MitC) were undertaken. Initial screening of 

prophage induction was performed in 96-well microtitre plate assays. 10 ml of 

GM17 broth was inoculated with 2 % of a fresh overnight of the bacterial strains to 

be analysed. The cultures were incubated at 30 °C until an OD at 600 nm of 

approximately 0.2 was reached at which point either 0.2 or 2 µg.ml-1 MitC (final 

concentration) was added. 0.2 ml of the treated cultures was transferred in triplicate 

(three independent cultures) to a 96-well microtitre plate. A negative control of 

uninduced culture of each strain was included, as well as a positive control of L. 

lactis NZ9000 carrying the inducible prophage TP901-1erm [24]. The microtitre 

plate was incubated at 30 °C for 16 hours in a microtitre plate reader (MWG Sirius 

HT plate reader, BIO-TEK® Instruments, USA) and OD600 readings recorded at 30 

minute intervals. 0.2 µg.ml-1 MitC is a relatively low level of this prophage-inducing 

agent, and where induction was observed at this level, it is considered to represent 

genuine prophage-induction mediated cell lysis as opposed to growth arrest or cell 

death due to toxicity as may be observed at the higher MitC level (2 µg.ml-1). 

 

6.2.10 Validation of prophage induction by DNA restriction profiling 

To validate the induction of prophage, DNA was isolated from representative 

induced and uninduced samples. Since strains C10 and IL1403 yielded positive 
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induction profiles according to the MitC induction trials described above they were 

employed as presumed prophage-positive samples. Conversely, SK11 displayed a 

negative prophage induction profile and was thus employed as a phage-negative 

candidate. Four 50 ml cultures of each strain were grown to an OD600 of 0.2 and 

three of the four samples were induced by 0.2 µg.ml-1 MitC (final concentration) as 

described above, while the remaining sample acted as an uninduced control. After 

overnight incubation, two of the four samples for each strain were DNase treated 

(Roche, Ireland) according to the manufacturer’s instructions and all samples were 

PEG-precipitated. The resulting pellets were resuspended in 0.4 ml TE and treated 

with 40 μl of 20 mg.ml-1 proteinase K for 20 min at 56 ˚C, followed by treatment 

with SDS at a final concentration of 2 % at 65 ˚C for 20 minutes. Potassium acetate 

was added to a final concentration of 1 M followed by incubation on ice for 20 min 

before centrifugation at 13,200 g for 10 min. The supernatant was then 

phenol/chloroform (25:24:1 phenol:chloroform:isoamyl alcohol, Sigma Aldrich, 

MO, USA) treated at least twice and the aqueous phase precipitated with 2.5 

volumes of ice cold 96 % ethanol and 0.1 volume of sodium acetate (pH 4.8). 

Subsequent to centrifugation, the pellet was washed in 70 % ethanol and 

resuspended in 100 μl of TE buffer (pH 8.0). The extracted DNA was subsequently 

restricted with EcoRV (Roche diagnostics, Ireland) according to the manufacturer’s 

instructions. For each strain, two induced samples were DNase-treated prior to 

EcoRV restriction, the third was not treated with DNase to allow residual host 

chromosomal to remain; while the fourth sample was uninduced and DNase-treated 

to account for spontaneously induced prophage (if any). 
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6.2.11 Nucleotide sequence accession numbers 

Sequences used in the analysis were retrieved from the GenBank database 

under the following accession numbers: L. lactis IL1403 [GenBank: NC_002662], L. 

lactis MG1363 [GenBank: NC_009004], L. lactis SK11 [GenBank: NC_008527], L. 

lactis KF147 [GenBank: NC_013656], L. lactis NZ9000 [GenBank: NC_017949], L. 

lactis CV56 [GenBank: NC_017486], L. lactis A76 [GenBank: NC_017492], L. 

lactis UC509.9 [GenBank: NC_019435], L. lactis IO-1 [GenBank: NC_020450], L. 

lactis KW2 [GenBank: NC_022369], L. lactis NCDO 2118 [GenBank: 

NZ_CP009054], L. lactis KLDS 4.0325 [GenBank: NC_022593], L. lactis AI06 

[GenBank: NZ_CP009472], L. lactis SO [GenBank: NZ_CP010050], Lactococcus 

phage 4268 [GenBank: NC_004746], Lactococcus phage BK5-T [GenBank: 

NC_002796], Lactococcus phage phiLC3 [GenBank: NC_005822], Lactococcus 

phage P335 [GenBank: DQ838728], Lactococcus phage r1t [GenBank: 

NC_004302], Lactococcus phage TP901-1 [GenBank: NC_002747], Lactococcus 

phage Tuc2009 [GenBank: NC_002703], Lactococcus phage ul36 [GenBank: 

NC_004066], Lactococcus phage 28201 [GenBank: KX456206], Lactococcus phage 

50101 [GenBank: KX456207], Lactococcus phage 50901 [GenBank: KX456208], 

Lactococcus phage 56701 [GenBank: KX456209], Lactococcus phage 62501 

[GenBank: KX456210], Lactococcus phage 63301 [GenBank: KX456211], 

Lactococcus phage 86501 [GenBank: KX456212], Lactococcus phage 98201 

[GenBank: KX456213], L. lactis 184 [GenBank: CP015895], L. lactis 229 

[GenBank: CP015896], L. lactis 275 [GenBank: CP015897], L. lactis UC06 

[GenBank: CP015902], L. lactis UC08 [GenBank: CP015903], L. lactis UC11 

[GenBank: CP015904], L. lactis UC063 [GenBank: CP015905], L. lactis UC77 

[GenBank: CP015906], L. lactis UL8 [GenBank: CP015908], L. lactis C10 
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[GenBank: CP015898], L. lactis 158 [GenBank: CP015894], L. lactis UC109 

[GenBank: CP015907], L. lactis JM1 [GenBank: CP015899], L. lactis JM2 

[GenBank: CP015900], L. lactis JM3 [GenBank: CP015901] and L. lactis JM4 

[GenBank: CP015909]. 
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6.3 Results 

 

6.3.1 Prophage identification 

The genomes of thirty fully sequenced lactococcal strains were analysed for 

the presence of prophages using PHAST as an initial screen for prophage-encoding 

regions, followed by manual validation and curating of putative prophage-

encompassing regions, resulting in the predicted presence of 59 intact and 106 

incomplete prophages. A summary of potential prophage-encoding regions by 

PHAST and manual examination in individual strains is provided in Table 6.1.  

Regions specifying predicted intact and incomplete prophages were extracted 

and a phylogenetic analysis was performed based on the nucleotide sequences of all 

prophage elements identified in previously and newly sequenced lactococcal 

genomes combined with representatives of sequenced P335 phages (temperate: 

Tuc2009, TP901-1, LC3, and BK5-T; and lytic: P335, ul36, r1t, 4268, Q33 and 

BM13). This analysis resulted in a tripartite grouping of the analysed phage 

genomes. A clear bifurcation of the major clade revealed two distinct genetic 

lineages, designated here as Cluster A and Cluster B, in addition to a minor clade, 

designated here as Cluster C. Cluster A is composed of 15 (predicted) intact 

prophages belonging to the previously recognized P335 sub-groups I-III and 82 

incomplete prophages, while Cluster B includes the ten sequenced P335 phage 

isolates (Tuc2009, TP901-1, LC3, BK5-T, P335, ul36, r1t, 4268, Q33 and BM13) 

(sub-groups I-IV) and 41 (predicted) intact prophages (Fig. 6.1) [13]. 
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Table 6.1: Prophage regions predicted by PHAST and manual curation in 

Lactococcus lactis genomes. 

Strain (ref/source) 

No. prophage regions detected by 

PHAST 

No. prophage regions 

identified manually 

Intact Questionable Incomplete Intact Incomplete 

158 $ - - 2 - 2 

JM1 $ 1 2 4 1 6 

JM2 $ 2 - 2 1 3 

JM3 $ 1 4 - 2 3 

JM4 $ 2 - 3 1 4 

UC109 $ - - 2 - 2 

MG1363 [25, 26] 3 - 3 2 4 

SK11 [27] 2 3 - 2 3 

NZ9000 [25] 4 1 2 2 4 

A76 [28] 4 3 2 2 7 

UC509.9 [29] - - 1 - 1 

KW2 [30] 1 - - 1 - 

184 $ 4 2 2 2 6 

229 $ 5 2 - 4 3 

275 $ 1 2 6 3 6 

C10 $ 7 - 1 5 3 

UC06 $ 4 1 - 2 3 

UC08 $ - - 2 - 2 

UC11 $ - - 2 - 2 

UC063 $ 5 1 2 3 5 

UC77 $ 7 1 - 5 3 

UL8 $ 6 1 3 3 7 

IL1403 [31] 6 - - 3 3 

KF147 [32] 2 2 2 2 4 

CV56 [33] 3 2 1 2 4 

IO-1 [34] 1 - 1 1 1 

NCDO 2118 [35] 2 2 1 2 3 

KLDS4.0325 [36] 6 1 4 4 7 

AI06 [37] 2 - - 1 1 

S0 [38] 2 1 3 3 3 

$Strains sequenced in Chapter III 
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Figure 6.1: Whole genome phylogenetic tree of the P335 prophage. 
Whole genome nucleotide alignment of the P335 type lactococcal prophage shows 3 

distinct genetic groups. The (predicted) intact prophages are coloured red while 

incomplete prophages are coloured black. Cluster A, marked blue contains 

predominantly incomplete prophage. Cluster B, marked green contains the 

experimentally proven active P355 prophage and (predicted) intact prophages. 

Cluster C, coloured yellow represents a novel sub-group of P335 prophages. 
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In the majority of instances the phage remnants in Cluster A lack 

morphogenesis and lysis modules, the groupings were therefore made on the 

modules that are present. Furthermore, since the grouping of P335 phages is based 

on overall identity and morphology (as defined by the structural module), the 

prophage remnants in Cluster A were not considered to represent a new sub-group, 

but, rather, a group of incomplete prophages which cannot be classified due to the 

absence of group-determining genetic elements. The remaining prophage-encoding 

regions (Cluster C), which appear genetically distinct from Clusters A and B, 

encompasses eight incomplete prophage elements and nine intact prophage genomes 

(Fig. 6.1). The three clusters encompass the previously described P335 sub-groups I-

IV [39]. Subgroups I-IV are contained within Cluster B, while a new sub-group (V) 

is contained in Cluster C as an evidently distinct genetic lineage. The overall tree is 

thought to be in agreement with previously described groupings of the P335 phage 

[39], yet contains more variation as a result of a vastly increased dataset and the 

inclusion of a large number of incomplete phage. 
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6.3.2 MCL analysis of structural regions  

Due to the genetic variation and lack of conservation observed within the 

P335 prophages, the Markov Clustering Algorithm (MCL) was employed to classify 

the protein complement of those prophages that had been predicted to be complete. 

Prophage sequences that were presumed to be incomplete were excluded from the 

analysis at this point as partial phage regions would heavily skew the analysis and 

prevent accurate clustering. All-against-all reciprocal BLASTP analysis of the total 

protein complement of the analysed (presumed complete) prophages was initially 

performed and sorted using MCL, revealing a number of (distinct) clusters of 

conserved protein families. Further investigation highlighted that all of these 

conserved protein families were within the structural module of the prophages, 

allowing refinement of the analysis to this region. The amino acid sequences of all 

predicted ORFs corresponding to the predicted small terminase subunit (TerS) to the 

lysin-encoding gene of each prophage were taken and the analysis repeated. The 

analysed group of proteins includes those that are specified by the lysis cassette, 

which was used as a genetic marker to indicate the end of the structural module 

(although their encoded proteins are not components of the mature virion). The 

results of the MCL were formatted into a presence/absence matrix and hierarchical 

clustering (HCL) was applied to organise the prophages into groupings based on the 

variable content of their structural modules (Fig. 6.2). This analysis resulted in nine 

distinct and highly conserved structural classes each belonging to one of the four 

previously defined classical P335 sub-groups (defined as sub-group IA/B/C, sub-

group IIA/B, sub-group IIIA/B and sub-group IV) plus one additional sub-group 

(sub-group V) (Fig. 6.2). Two representatives from each group were employed in 

further comparative analysis, which revealed that within each group a high level of 



291 

 

amino acid similarity was observed across the entire structural and lysis modules, yet 

that very little amino acid sequence relatedness was evident between groupings, 

indicating clear divisions between the groups (Fig. 6.3). Interestingly, while amino 

acid sequence similarities were not conserved between groupings, predicted 

functional synteny was preserved across the structural regions of all prophages in 

this study. 
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Figure 6.2: HCL presence/absence matrix of the P335 prophage structural regions. 
HCL was performed on the basis of presence (coloured squares) or absence (black squares) of proteins from the constituent protein 

families of the P335 phage structural region. The structural regions of the P335 group phages form nine distinct clusters. The nine 

clusters shown include; subgroup IA/B/C; subgroup IIA/B; subgroup IIIA/B and subgroup IV, along with the newly discovered 

subgroup V phage. 
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Figure 6.3: Gene synteny in the P335 prophage structural regions. 

Representative strains form conserved groupings of the P335 phage structural 

regions are shown with arrows representing ORF coloured according to predicted 

function. Shaded boxes correspond to percentage amino acid identity between ORF. 
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6.3.3 Analysis of the adhesion module of the Group V members  

In this study, phylogenetic analysis of the prophages of all sequenced 

lactococcal genomes and the P335 phages that have been sequenced revealed the 

presence of a fifth subgroup of P335 phages, termed subgroup V (represented by 

Cluster C in Fig. 6.1 and subgroup V in Fig. 6.3). Members of subgroup V possess 

TMPs of varying lengths (350 – 900 AA in length), well conserved Dit elements and 

large (~ 1500 AA in length) RBPs (Fig. 6.3). The RBPs of subgroup V phages are 

comparable in size to that of the Group I phage BK5-T and conserved domain search 

results for the RBP of C10E highlights the presence of a RBP N-terminal domain 

(residues 147-386) and a collagen triple helix (20 copies of a G-X-Y motif) at the 

protein’s carboxy terminus (residues 1116-1144). A distinct gene encoding the Tal 

component is not observed in C10E or UC063C (Fig. 6.3), an observation that is 

consistent with BK5-T, which encodes a protein with an apparently fused Tal and 

RBP. Interestingly, the BK5-T virion contains a long tail fibre extending from the 

tail tip region [13], while recently it has been shown that the induced prophage 

98201, a member of the newly identified subgroup V, also possesses such a long tail 

fibre [40]. Therefore, while the sequences of the RBPs of the Group I and V phages 

may be disparate, it is tempting to speculate that similar roles and structural features 

are conserved between these two phage subgroups. 
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6.3.4 Pan- and core-virome analysis 

To ascertain genetic diversity levels and the extent to which additional 

genome sequencing will enhance current knowledge on this group of phages, pan- 

and core-virome analysis of all 74 predicted intact prophage-encoding regions of 

currently available lactococcal genome sequences was undertaken. Pan-virome 

analysis of prophage-encoding regions revealed an asymptotic curve indicating that 

the pan-virome is reaching a plateau and as additional genome sequences are added 

to this analysis, very limited new genetic information is expected to be added to the 

dataset (Fig. 6.4A). The resulting deduced mathematical function displays an 

exponential value < 0.5 confirming the closed state of the pan-virome. Conversely, 

core-virome analysis of the P335 prophage reveals the extent of genetic diversity and 

lack of conservation within the P335 group phages. Effectively no single gene is 

conserved among all of the P335 group phages (Fig. 6.4B). Effectively the 

discrepancy between the pan- and core- virome of these prophage is a result of 

conserved blocks of genes in the morphogenesis modules of the phage. These 

regions are highly conserved within each of the 5 P335 sub-groups and account for a 

large proportion of the pan-virome, thus reducing the perceived genetic variance in a 

large data-set. Conversely the morphogenesis regions do not share significant amino 

acid homology between the sub-groups resulting in an empty core-virome, whereas a 

core-virome could be described for each of the five distinct P335 sub-groups. 
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Figure 6.4: Pan-virome analysis of the P335 prophage genomes. 

[A] Plot of accumulated number of genes in the P335 pan-virome (y-axis) versus the 

number of genomes added (x-axis), with deduced mathematical function. [B] Core-

virome analysis of the P335 prophage. Plot of accumulated number of genes in the 

P335 core-virome (y-axis) versus the number of genomes added (x-axis), with 

deduced mathematical function 
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6.3.5 Prophage induction trials 

Small-scale prophage induction trials were performed to assess if prophages 

could be induced from the thirty sequenced strains, while it was also used to 

ascertain if the predictions of the presence of intact (and thus functional) prophages 

is consistent with inducibility of such phages. Prophage inductions were 

implemented by the use of a sub-lethal and a relatively high dose of MitC in order to 

distinguish between genuine prophage-induction mediated cell lysis on the one hand, 

or growth arrest and/or cell death mediated by a lethal dose of MitC on the other. 

This yielded three distinct growth/cell lysis profiles: (i) both levels of MitC induced 

cell lysis, thus indicating prophage induction (Fig. 6.5A); (ii) only the addition of 2 

µg.ml-1 MitC induced cell death as delineated by a reduction in optical density at 600 

nm (Fig. 6.5B); and (iii) lysis (as an indication of induction) is not observed at either 

level of MitC (Fig. 6.5C). A representative of each profile is presented in Fig. 6.5. 

Strains 184, 158, KF147, 275, A76, UC77, NZ9000, UC06, IO-1 and UC109 all 

exhibited growth profile (iii) and do not appear to contain inducible prophages 

(under the assessed conditions), while UC063, SK11, UC08, JM1, JM2, JM4, 

UC509.9 and UL8 are observed to lyse upon the addition of 2 µg.ml-1 but not in the 

presence of 0.2 µg.ml-1 MitC (growth profile ii), indicating cell death rather than 

prophage induction. Conversely, IL1403, C10, 229 and JM3 were observed to lyse 

upon the addition of 0.2 µg.ml-1 MitC (growth profile i), thus indicative of prophage 

induction.  
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Figure 6.5: MitC induction profiles of representative lactococcal strains. 

[A] Graph indicating the induction profile of L. lactis SK11 in the presence of 0.2 µg.ml-1 or 2 µg.ml-1, or in the absence of MitC. Culture lysis 

was observed at both levels of MitC. [B] Graph indicating the induction profile of L. lactis JM1 in the presence of 0.2 µg.ml-1 or 2 µg.ml-1, or in 

the absence of MitC. Culture lysis was observed only in the presence of 2 µg.ml-1 of MitC indicating that the culture is killed in the presence of 

this high level of inducing agent. [C] Graph indicating the induction profile of L. lactis UC06 which displays similar growth profiles in the 

presence or absence of MitC. These graphs present the data for representative strains and all strains analysed in this study exhibited one of the 

three profile types. The results are representative of at least three independent assays. 



299 

 

6.3.6 Validation of the presence of induced prophages 

Four of the 24 strains assessed were identified as inducible by MitC 

treatment (IL1403, C10, 229 and UC063), with a further four strains yielding 

variable induction profiles (UC77, NZ9000, A76 and kw2). To ensure that the 

observed lysis corresponds to DNA-filled phage particle release and to further 

validate the induction profiles of the lactococcal strains, DNA was extracted from 

induced and uninduced culture supernatants from L. lactis C10 and IL1403. The 

recovered DNA was restricted with EcoRV and the restriction products separated by 

agarose gel electrophoresis (Fig. 6.6). The cell-free supernatants of the induced 

lysates of IL1403 and C10 exhibited clear profiles while the supernatant of the 

uninduced cultures did not indicate the presence of DNA, ruling out the possibility 

of (substantial) spontaneous prophage induction or background host DNA 

contributing to the restriction profiles since the supernatants of the uninduced strains 

were treated with DNase to remove background host chromosomal DNA.  
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Fig 6.6: Restriction profiling of induced prophage 

Lane 1; DNA ladder, lanes 2 and 3; IL1403 induced, lane 4; IL1403 induced & 

without DNase and lane 5; IL1403 uninduced. Lanes 6 and 7; C10 induced, lane 8; 

C10 induced & without DNase and lane 9; C10 uninduced. 
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6.3.7 Prophage-encoded phage-resistance systems 

While prophages are considered a threat to production processes, it must also 

be considered that their presence may confer some advantages on the host. One such 

advantage is the potential for the provision of phage-resistance systems. An analysis 

of the prophages predicted to be intact in this study were assessed for the presence of 

potential phage-resistance systems based on previously established criteria [41, 42], 

or based on BLASTP analysis. On this basis, 14 and 9 out of 29 strains assessed 

were predicted to harbour prophages that encode at least one superinfection 

exclusion system or abortive infection system, respectively. In many cases multiple 

predicted systems were observed to be “stacked” in the strains owing to the presence 

of multiple prophages within a given strain (Table 6.2). The presence of such phage-

resistance systems is expected to confer protection against a variety of phages thus 

providing a fitness benefit upon the host. It is also noteworthy that this is a 

conservative number since in many cases genes encoding hypothetical proteins are 

observed in the lysogeny modules that may possess Sie activity with characteristics 

that are beyond those that are currently proven to be active against the 936 phages. 

Similarly, additional, but as yet, unknown Abi systems may be encoded by 

prophages and it is therefore plausible that a much higher number of prophage-

encoded phage-resistance systems is present. Conversely, twelve phage-encoded 

methylases were detected in this analysis, which can aid phage in overcoming host 

encoded R-M systems (discussed in Chapter V).   
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Table 6.2: Identification of phage-resistance systems on lactococcal prophages 

(Sie & Abi systems) and methylases to overcome R-M systems. 

Strain 

No. prophage-encoded 

predicted potential Sie 

systems 

No. prophage-

encoded predicted 

Abi systems 

No. predicted 

prophage-encoded 

methylases 

C10 1 (C10A) 1 (C10D) 2 (C10A, C10E) 

229 - - 1 (229D) 

UC77 - 1 (UC77B) 1 (UC77B) 

IL1403 1 (IL1403A) - - 

UC063 - 1 (UC063A) 1 (UC063B) 

UL8 - 1 (UL8A) - 

275 1 (275B) - 2 (275A, 275C) 

NZ9000 1 (NZ9000A) 1 (NZ9000A) - 

A76 1 (A76A) - - 

SK11 1 (SK11A) - - 

UC06 2 (UC06A, UC06B) 1 (UC06_rem2) - 

KF147 2 (KF147A, KF1477B ) - 1 (KF147A) 

184 2 (184A, 184B) - - 

JM1 1 (JM1A) - - 

JM2 1 (JM2B) - - 

JM3 1 (JM3A) - - 

JM4 - 1 (pJM4A) - 

KW2 - - 1 (KW2A) 

IO-1 1 (IO1A) - - 

UC509.9 - - 1 (UC509_rem1) 

UC08 - - - 

UC11 - - - 

158 - - - 

UC109 - - - 

AI06 - 1 (AI06A) - 

SO 1 (SOC) - - 

KLDS 

4.0325 
- 2 (KLDSA, KLDSB) 1 (KLDSD) 

NCDO2118 - - - 

CV56 - - 1 (CV56A) 
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6.4 Discussion 

Lactococcal phages persist as a major threat to commercial fermentation 

processes required for the manufacture of dairy products, particularly cheese. While 

lactococci are prone to infection by lytic phages, the threat of prophage induction 

and concomitant cell lysis presents an equally challenging risk factor. Recently, the 

stability of active lactococcal prophages under dairy processing conditions was 

assessed for three lactococcal strains and it was observed that the prophages were not 

induced in media incorporating acids and osmotic stressors or through thermal 

treatments that would typically be encountered during dairy fermentation processes 

[43]. In contrast, MitC treatment was shown to be effective in inducing prophage 

elements from each of these three strains. However, the limited number of strains 

employed in this study constrains the assertions that can be applied to dairy strains in 

general as each strain will behave uniquely. To counter this issue the current study 

investigated the incidence of prophage induction in a larger set of strains so as to 

assess the genetic diversity of and risk factor presented by lactococcal prophages. 

Thirty lactococcal genomes were explored for potential prophage-encoding 

regions using the PHAST software and followed by manual assessment of this 

analysis. This resulted in the identification of 84 potentially intact prophages; 31 

questionable (and likely non-functional) prophage regions and 51 incomplete 

prophages. Phylogenetic analysis of the nucleotide sequence of all identified 

prophage regions combined with the sequences of previously sequenced P335 

phages revealed two major groups of lactococcal prophages with a third minor group 

composed of a newly identified genetic lineage of prophage. The two major groups 

specify two distinct genetic lineages with the P335 phages (as distinct from 

prophages sequenced as part of bacterial chromosomal sequences) aligning within 
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Cluster B (Fig. 6.1). This suggests that lytically active P335 phages may all have 

derived from the genetic lineage constituted by Cluster B. Indeed, all but four of the 

phage sequences represented in Cluster B are P335 phages or predicted intact 

prophage regions (Fig. 6.1), while Cluster A contains predominantly phage 

remnants. Therefore, while Cluster A prophages largely appear to be permanent 

residents within their host bacterial genomes, Cluster B prophages present a much 

higher degree of likelihood of presenting with lytically active geno/phenotypes. 

Furthermore, while there are also a significant number of incomplete/non-functional 

prophage remnants in this group, it is possible that these prophages may contribute 

to the overall genetic diversity of incoming virulent or temperate phages since the 

lytically active P335 phages are contained within this overall genotypic group. 

The lactococcal strains MG1363 and IL1403 were among the first to be 

analysed with respect to their prophage-encoding regions, each possessing six 

prophage regions [6-8]. Prophage induction of L. lactis MG1363 and IL1403 has 

been reported to result in variable inducibility profiles for MG1363 [8, 10, 43] and 

positive induction of two prophage elements of IL1403 [11]. Induction of the 

lactococcal strains ASCC890310 and ASCC890049 resulted in the release of phages 

detected using DNA sequencing before and after exposure to heat, acid, osmotic, 

oxidative and antibiotic stressors, with similarity to P335 subgroup I (BK5-T-like) 

and subgroup II (TP901-1-like) phages, respectively, among others [43]. This is also 

reflected in the current analysis since several strains including UC77, 229, NCDO 

2118, UL8, 275, UC063, IL1403 and C10 possess at least one prophage with 

similarity to the sub-group I phages BK5-T and 4268 (Fig. 6.1), while a smaller 

number of strains possess prophages with similarity to subgroup II phages.  
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To assess the overall inducibility of lactococcal prophages resident within the 

host chromosomes, small-scale induction profiles were undertaken. Induction 

profiling under the assessed conditions determined that just four out of the 24 

assessed strains contained inducible prophage. This is a relatively low number given 

the significant presence of seemingly intact phage genomes within lactococcal 

chromosomes and, as such, appears to represent a containable risk factor for the 

dairy industry. However, this entails a cautionary note as the appropriate conditions 

for induction may not have be achievable using MitC based inductions and induction 

under industrial fermentation conditions may still pose a valid threat. There appears 

to be a significant discrepancy between the number of predicted “intact” prophage 

genomic elements and the number of genuinely inducible prophage particles. There 

also appears to be a discrepancy between the number of intact prophages by PHAST 

and those by manual curation indicating that this tool should be used only as a 

guideline or indicator for the potential presence of intact prophage. However, 

ultimately manual checking of these prophage-encoding regions is essential for 

accurate determination of potential prophage-encoding regions.  

From this study, it is clear that the majority of identified lactococcal 

prophage genomic regions are stable residents within their lactococcal host 

chromosome. Their replication in situ with the host is favourable to their continued 

existence, and induction of seemingly intact prophages appears at a relatively low 

frequency, approximately one in six strains are likely to be inducible under harsh 

conditions with a lower risk of induction expected in the dairy environment. 

However, while these lactococcal prophages are seemingly silent, they represent a 

vast genetic pool with the potential to increase the genetic diversity and adaptability 

of virulent phages. This is illustrated by the P335 phage ul36, which was previously 
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observed to circumvent two Abi systems, AbiK and AbiT, resident on the genome of 

L. lactis SMQ86 (UL8) by recombining with a resident prophage to produce progeny 

with altered receptor binding proteins and baseplate components [44]. Furthermore, 

through the acquisition of DNA replication functions, phage-resistance associated 

genes such as superinfection exclusion and abortive infection functions, it is clear 

that prophages may positively contribute to the overall fitness of the host. 

In conclusion, prophages may represent a relatively low direct risk to cheese 

production processes, but their potential to expedite the evolution of virulent phages 

and the fitness of the host are key features that should be considered when selecting 

starter cultures. It is expected that rapid turnaround time on modern genome 

sequencing methods combined with the reduced costs will endorse the continued and 

vastly increased availability of lactococcal genomes permitting advanced 

assessments of prophage distribution, diversity and evolution, information that wil 

be crucial for the selection of genome-informed next generation starter cultures. 
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Supplementary Table S6.1: In silico detected P335 type (pro)phage fragments 

 
Lactococcal 

subsp. Strain name 

Genbank 

accession no. 

PHAST 

prediction Phage co-ordinates 

Genome size 

(bp) Re-annotation 

cremoris 158  Incomplete 1126714-1140695 13982 Incomplete 

   Incomplete 1371155-1377902 6748 Incomplete 

 JM1  Questionable 217275-234210 16936 Incomplete 

   Incomplete 277856-297428 19573 Incomplete 

   Incomplete 862688-884009 21322 Incomplete 

   Questionable 1007488-1066452 58965 Intact 

   Incomplete 1046019-1073805 27787 Incomplete 

   Incomplete 1345807-1355395 9589 Incomplete 

   Intact 1843663-1864000 20338 Incomplete 

 JM2  Incomplete 486030-502980 16951 Incomplete 

   Intact 581889-608595 26707 Incomplete 

   Intact 1302471-1347786 45316 Intact 

   Incomplete 1922969-1957200 34232 Incomplete 

 JM3  Intact 291444-304882 13439 Incomplete 

   Questionable 1043875-1105910 62036 Intact 

   Questionable 1673961-1710094 36134 Incomplete 

   Questionable 1989769-2029364 39596 Intact 

   Questionable 2235012-2264102 29091 Incomplete 

 JM4  Incomplete 540075-559569 19495 Incomplete 

   Intact 843211-892526 49316 Intact 

   Incomplete 1611464-1630709 19246 Incomplete 

   Intact 1936722-1985616 48895 Incomplete 

   Incomplete 2056181-2085124 28944 Incomplete 

 UC109  Incomplete 312684-329292 16069 Incomplete 

   Incomplete 1109821-1123802 13982 Incomplete 

 MG1363 NC_009004 Intact 25908-60678 34771 Incomplete 

   Intact 778852-821910 43059 Intact 

   Incomplete 861704-872284 10581 Incomplete 

   Incomplete 1310020-1335809 25790 Incomplete 

   Intact 2061037-2110526 49490 Intact 
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   Incomplete 2203214-2237668 34455 Incomplete 

 SK11 NC_008527 Intact 276137-289575 13439 Incomplete 

   Questionable 1033838-1076036 42199 Intact 

   Questionable 1660466-1696599 36134 Incomplete 

   Intact 1976301-2015895 39595 Intact 

   Questionable 2109819-2138908 29090 Incomplete 

 NZ9000 NC_017949 Intact 25908-60678 34771 Incomplete 

   Intact 583073-616375 33303 Incomplete 

   Intact 776265-822742 46478 Intact 

   Incomplete 862536-873116 10581 Incomplete 

   Incomplete 1310854-1336625 25772 Incomplete 

   Intact 2061853-2108338 46486 Intact 

   Questionable 2204031-2238484 34454 Incomplete 

 A76 NC_017492 Questionable 485882-509826 23945 Incomplete 

   Questionable 622605-662110 39506 Intact 

   Incomplete 854181-864183 10003 Incomplete 

   Intact 958351-993297 34947 Incomplete 

   Intact 1396426-1408335 11910 Incomplete 

   Intact 1971765-2014239 42475 Intact 

   Questionable 2111391-2125958 14568 Incomplete 

   Intact 2111920-2190374 78455 Incomplete 

   Incomplete 2352929-2381466 28538 Incomplete 

 UC509.9 NC_019435 Incomplete 1372116-1378862 6747 Incomplete 

 KW2 NC_022369 Intact 1878426-1919139 40714 Intact 

lactis 184  Questionable 28101-54060 25960 Incomplete 

   Questionable 154591-175458 20868 Incomplete 

   Incomplete 347415-363059 15645 Incomplete 

   Intact 524039-567880 43842 Intact 

   Intact 586126-607576 21451 Incomplete 

   Intact 728038-767971 39934 Intact 

   Intact 2080049-2093308 13260 Incomplete 

   Incomplete 2169282-2199842 30545 Incomplete 

 229  Intact 28102-56029 27928 Incomplete 
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   Intact 521533-563579 42047 Intact 

   Questionable 753845-802465 48621 Intact 

   Questionable 1163201-1190289 27089 Incomplete 

   Intact 1328423-1377207 48785 Intact 

   Intact 1902578-1932903 30326 Incomplete 

   Intact 2089335-2129151 39817 Intact 

lactis 275  Incomplete 28095-55010 26916 Incomplete 

   Intact 471423-513897 42475 Intact 

   Incomplete 1197985-1211911 13927 Incomplete 

   Incomplete 1266386-1288094 21709 Incomplete 

   Incomplete 1291245-1306284 15039 Incomplete 

   Questionable 1849809-1871796 21988 Incomplete 

   Incomplete 1912611-1956567 43957 Intact 

   Questionable 2063557-2107092 43536 Intact 

   Incomplete 2164503-2183534 19032 Incomplete 

 C10  Intact 28092-53276 25185 Incomplete 

   Intact 454052-472631 18580 Incomplete 

   Incomplete 970790-1027408 56619 Intact 

   Intact 1317704-1360928 43225 Intact 

   Intact 1397295-1440769 43475 Intact 

   Intact 1762798-1800375 37578 Incomplete 

   Intact 1944983-1988623 43641 Intact 

   Intact 2179908-2238998 59091 Intact 

 UC06  Questionable 361041-414377 53337 Incomplete 

   Intact 1080213-1120371 40159 Intact 

   Intact 1129338-1159934 30597 Incomplete 

   Intact 1884301-1927291 42991 Intact 

   Intact 2083183-2105865 22683 Incomplete 

 UC08  Incomplete 1690095-1719553 29459 Incomplete 

   Incomplete 2279979-2300415 20437 Incomplete 

 UC11  Incomplete 558102-578503 20402 Incomplete 

   Incomplete 1149693-1164391 14699 Incomplete 

 UC063  Intact 28095-53289 25195 Incomplete 
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   Incomplete 138756-162176 23421 Incomplete 

   Intact 493605-513193 19589 Incomplete 

   Incomplete 1676175-1718240 42066 Incomplete 

   Intact 1861779-1912694 50916 Intact 

   Intact 2097464-2139720 42257 Intact 

   Intact 2161841-2206154 44314 Intact 

   Questionable 2296161-2315914 19754 Incomplete 

 UC77  Intact 28111-56038 27982 Incomplete 

   Intact 521544-563590 42027 Intact 

   Intact 581834-603842 22009 Incomplete 

   Intact 1055162-1097440 42279 Intact 

   Intact 1623401-1672185 48785 Intact 

   Questionable 1794408-1844579 50172 Intact 

   Intact 1946942-1977267 30326 Intact 

   Intact 2120957-2177555 56599 Incomplete 

 UL8  Intact 28101-53285 25185 Incomplete 

   Incomplete 293250-312083 18834 Incomplete 

   Intact 485553-504150 18598 Incomplete 

   Intact 547240-587879 40640 Intact 

   Intact 735539-773116 37578 Incomplete 

   Intact 1096224-1139671 43448 Intact 

   Incomplete 1487223-1538320 51098 Intact 

   Intact 2008049-2052163 44115 Incomplete 

   Incomplete 2259191-2268474 9248 Incomplete 

   Questionable 2288790-2309454 20665 Incomplete 

 IL1403 NC_002662 Intact 28459-56386 27928 Incomplete 

   Intact 442048-484094 42047 Intact 

   Intact 502338-520485 18148 Incomplete 

   Intact 1030421-1075411 44991 Intact 

   Intact 1414112-1460426 46315 Intact 

   Intact 1997699-2028705 31007 Incomplete 

 KF147 NC_013656 Incomplete 311989-324003 12015 Incomplete 

   Questionable 1055159-1110009 54851 Intact 
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   Intact 1534073-1593606 59534 Intact 

   Intact 2052627-2073606 20980 Incomplete 

   Incomplete 2278255-2308949 30695 Incomplete 

   Questionable 2501570-2524177 22608 Incomplete 

 CV56 NC_017486 Intact 28450-53643 25194 Incomplete 

   Intact 1013597-1061046 47450 Intact 

   Questionable 1722092-1743035 20944 Incomplete 

   Questionable 1883260-1937861 54602 Intact 

   Intact 2145779-2187692 41914 Intact 

   Incomplete 2270197-2287233 17037 Incomplete 

 IO-1 NC_019435 Intact 1706646-1759771 53126 Intact 

   Incomplete 1951310-1976355 25046 Incomplete 

 NCDO 2118 NZ_CP009054 Intact 995741-1039125 43385 Intact 

   Incomplete 1179864-1214211 34348 Incomplete 

lactis   Questionable 1773540-1821085 47546 Intact 

   Intact 2060517-2081495 20979 Incomplete 

   Questionable 2458115-2480723 22609 Incomplete 

 KLDS 

4.0325 

NC_022593 Incomplete 153649-177366 23718 Incomplete 

   Questionable 320922-333276 12355 Incomplete 

   Intact 506771-548782 42012 Incomplete 

   Intact 955456-1007952 52500 Intact 

   Intact 1717014-1754981 37968 Intact 

   Intact 1906998-1920058 13061 Incomplete 

   Intact 2072376-2121522 49147 Intact 

   Incomplete 2203268-2230575 27308 Incomplete 

   Intact 2336619-2393566 56948 Intact 

   Incomplete 2464584-2483381 18798 Incomplete 

   Incomplete 2527610-2552014 24405 Incomplete 

 AI06 NZ_CP009472 Intact 285344-297987 12644 Incomplete 

   Intact 1042997-1090892 47896 Intact 

 SO NZ_CP010050 Incomplete 28625-50595 21971 Incomplete 

   Incomplete 901021-916134 15114 Incomplete 

   Questionable 1041956-1088069 46114 Intact 
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   Intact 1432907-1477592 44686 Intact 

   Incomplete 1900585-1921034 20450 Incomplete 

   Intact 2084506-2122279 37774 Intact 
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Supplementary Table S6.2: Abi sequences used to create Abi database for 

screening of lactococcal prophages.  

Genbank accession  Product 

gi|60461909| abi (plasmid) [Lactococcus lactis] 

gi|695269642| abi [Lactococcus lactis] 

gi|695261980| abi [Lactococcus lactis] 

gi|695261751| abi [Lactococcus lactis] 

gi|501454300| abi [Lactococcus lactis] 

gi|499170988| abi [Lactococcus lactis] 

gi|695262046| abi [Lactococcus lactis] 

gi|695261979| abi [Lactococcus lactis] 

gi|695262149| abi [Lactococcus lactis] 

gi|691500870| abi [Lactococcus lactis] 

gi|504894708| abi [Lactococcus lactis] 

gi|504894644| abi [Lactococcus lactis] 

gi|500161265| abi [Lactococcus lactis] 

gi|500159963| abi [Lactococcus lactis] 

gi|499429749| abi [Lactococcus lactis] 

gi|499429738| abi [Lactococcus lactis] 

gi|552525936| Abi [Lactococcus lactis subsp. lactis Dephy 1] 

gi|695198230| phage abi (plasmid) [Lactococcus lactis] 

gi|2865246| phage abi (plasmid) [Lactococcus lactis] 

gi|457140| abi mechanism-related protein [Lactococcus lactis] 

gi|499994905| abortive phage infection protein [Lactococcus lactis] 

gi|695197890| abortive phage resistance protein (plasmid) [Lactococcus lactis] 

gi|2072188| abortive phage resistance protein (plasmid) [Lactococcus lactis] 

gi|1304597| abortive phage resistance protein (plasmid) [Lactococcus lactis] 

gi|695197889| abortive phage resistance protein (plasmid) [Lactococcus lactis] 

gi|2072187| abortive phage resistance protein (plasmid) [Lactococcus lactis] 

gi|2765135| abiN (abi gene) [Lactococcus lactis] 

gi|10441471| abi phage resistance protein abiU [Lactococcus lactis subsp. lactis] 

gi|578496740| abi bacteriophage resistance protein [Lactococcus lactis subsp. cremoris HP] 

gi|578495886| abi mechanism-related protein [Lactococcus lactis subsp. cremoris HP] 

gi|413975337| 

abi mechanism-related protein (plasmid) [Lactococcus lactis subsp. cremoris 

UC509.9] 

gi|413975227| 

abi mechanism-related protein (plasmid) [Lactococcus lactis subsp. cremoris 

UC509.9] 

gi|525227584| Putative phage abi [Lactococcus lactis subsp. lactis A12] 

gi|695209020| abort lactococcal phage infection AbiTii (plasmid) [Lactococcus lactis] 

gi|695209019| abort lactococcal phage infection AbiTi (plasmid) [Lactococcus lactis] 

gi|24421167| abort lactococcal phage infection AbiTii (plasmid) [Lactococcus lactis] 

gi|24421166| abort lactococcal phage infection AbiTi (plasmid) [Lactococcus lactis] 

gi|32455447| AbiK (plasmid) [Lactococcus lactis] 

gi|312831083| 

unnamed protein product; ORF24 similar to abi K of Lactococcus lactis 

domain protein (plasmid) [Staphylococcus aureus subsp. aureus ECT-R 2] 

gi|312831082| unnamed protein product; ORF24 similar to abi K of Lactococcus lactis 
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domain protein (plasmid) [Staphylococcus aureus subsp. aureus ECT-R 2] 

gi|14251228| AbiK (plasmid) [Lactococcus lactis] 

gi|32455435| AbiQ (plasmid) [Lactococcus lactis] 

gi|695212062| AbiA (plasmid) [Lactococcus lactis] 

gi|4079668| AbiQ (plasmid) [Lactococcus lactis] 

gi|639891| AbiA (plasmid) [Lactococcus lactis] 

gi|695197413| AbiF from pNP40 (plasmid) [Lactococcus lactis] 

gi|60392783| AbiD1 (plasmid) [Lactococcus lactis] 

gi|1039480| AbiF from pNP40 (plasmid) [Lactococcus lactis] 

gi|695197410| AbiEii (plasmid) [Lactococcus lactis] 

gi|695197409| AbiEi (plasmid) [Lactococcus lactis] 

gi|149360| abiC, partial [Lactococcus lactis] 

gi|1039477| AbiEii (plasmid) [Lactococcus lactis] 

gi|1039476| AbiEi (plasmid) [Lactococcus lactis] 

gi|149358| abi829 [Lactococcus lactis] 

gi|1616605| abiH [Lactococcus lactis] 

gi|695198026| abiI (plasmid) [Lactococcus lactis] 

gi|2304799| abiI (plasmid) [Lactococcus lactis] 

gi|190571770| AbiF (plasmid) [Lactococcus lactis] 

gi|108736169| AbiF (plasmid) [Lactococcus lactis] 

gi|190571774| AbiEi (plasmid) [Lactococcus lactis] 

gi|190571773| AbiEii (plasmid) [Lactococcus lactis] 

gi|501454304| AbiEi [Lactococcus lactis] 

gi|501454303| AbiEii [Lactococcus lactis] 

gi|108736173| AbiEi (plasmid) [Lactococcus lactis] 

gi|108736172| AbiEii (plasmid) [Lactococcus lactis] 

gi|15674277| abi phage resistance [Streptococcus pyogenes M1 GAS] 

gi|33575906| abi phage resistance protein [Bordetella bronchiseptica RB50] 

gi|13621356| abi phage resistance [Streptococcus pyogenes M1 GAS] 

gi|17366546| RecName: Full=Abortive phage resistance protein AbiGii 

gi|416568| RecName: Full=Abortive phage resistance protein AbiC 

gi|1405404| AbiGi [Lactococcus lactis subsp. cremoris] 

gi|1405405| AbiGii [Lactococcus lactis subsp. cremoris] 

gi|695197296| AbiD (plasmid) [Lactococcus lactis subsp. lactis] 

gi|705395| AbiD (plasmid) [Lactococcus lactis subsp. lactis] 

gi|288547034| CAAX amino terminal protease family protein  

gi|17366543| RecName: Full=Abortive phage resistance protein AbiGi 

tr|O06042| Abortive phage resistance protein 

 gb|AAB53711.1| abortive phage resistance protein [Lactococcus lactis] 

gb|AAC15900.1| phage abi [Lactococcus lactis] 

 gb|AAN60762.1| abort lactococcal phage infection AbiTi [Lactococcus lactis] 

gb|AAN60763.1| abort lactococcal phage infection AbiTii [Lactococcus lactis] 

ref|WP_032398699.1| AbiZ [Lactococcus lactis] 

ref|WP_058206056.1| hypothetical protein [Lactococcus lactis] 
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The overall goal of the work described in this thesis was to assess the 

potential application of comparative and functional genomics in the selection of 

starter cultures, for example for optimum flavour production in particular cheeses 

(such as half-fat and/or low-salt cheese). This was approached via a focused genomic 

analysis of four strains of Lactococcus lactis that are known to produce good quality 

half-fat reduced salt cheese. 

The research described in Chapter II provides an in-depth functional analysis 

of twenty L. lactis strains with particular emphasis on performance in terms of 

growth and autolysis coupled to cheese flavour development characteristics of 

lactococcal starter cultures. The functional characteristics of these strains generated 

selection criteria to screen candidate strains for whole genome sequencing. Chapter 

III describes the whole genome sequencing of sixteen L. lactis isolates; doubling the 

number of finished quality lactococcal genomes currently available in public 

databases. A comparative genomic investigation of the chromosomes of the sixteen 

strains sequenced in the context of this study and a further fourteen finished quality 

genomes available from the NCBI database was conducted with particular emphasis 

on dairy niche adaptations. Chapter IV describes the current lactococcal plasmidome 

and the discovery of the first lactococcal megaplasmids. In chapter V the restriction 

modification systems and associated methylome of sixteen L. lactis strains are 

investigated with the aid of single molecule real time sequencing, identifying a novel 

Type I shufflon RM system. Chapter VI represents the largest analysis to date of 

integrated lactococcal prophages, resulting in the identification of fifty nine intact 

and one hundred and six incomplete prophage regions within the thirty genomes 

assessed. This work also aided in the identification of an additional P335 phage 
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lineage, thus expanding knowledge on the diversity of this industrially significant 

phage group. 

Lactococcal starter strains are a fundamental element of the dairy industry 

and consequently have been the focus of significant research interest. Commercial 

suppliers and producers are constantly looking to expand their product portfolios and 

overcome issues of phage sensitivity to meet both economic, production and 

consumer demands. Therefore, there is an ever-increasing demand to improve 

technologies for the selection of novel starter culture blends. Single molecule real 

time sequencing presents a promising new approach through whole genome 

sequencing and functional genome analyses; for the rapid identification and selection 

of such strains. 

The contribution of lactococcal starter strains to cheese flavour development 

is predominantly through the major flavour pathways of lactose, lactate and citrate 

metabolism, lipolysis, proteolysis and the catabolism of free amino acids [1]. 

Functional analysis of the lactococcal starter strains in this study focused on 

assessing their performance in terms of these flavour-associated pathways. The 

subspecies divide between lactis and cremoris was found to be fundamentally 

important in terms of Cheddar production. The typical cooking temperatures used in 

Cheddar cheese fermentations is suitable for inducing temperature-controlled 

autolysis in cremoris strains but not lactis due to their higher thermal tolerance [2]. It 

suggests that cremoris strains are very suitable for Cheddar production, whereas the 

typical representatives of subspecies lactis strains are less appropriate for this 

purpose. 

It was found in chapter II that subspecies cremoris strains elicit the highest 

overall enzymatic activity levels (in terms of aminotransferase and peptidases; pepX, 
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pepA, pepN/C), but the variations in enzyme profiles suggest that a number of 

subspecies lactis strains contribute a wider variety of flavour characteristics. It is 

widely accepted that the original niche environment of L. lactis is plant-based [3-5] 

and that the majority of dairy strains in use today are derived from a small number of 

closely related lineages. Therefore, plant-based lactis strains appear to offer the 

greatest possibilities for the expansion of flavours and novel types of dairy products. 

Since their performance is not ideally suited to current Cheddar type fermentations, 

an interesting avenue of investigation would be the transfer of peptidases or unique 

carbohydrate/lipolytic characteristics from lactis to cremoris strains utilising 

“natural” food-grade transfer mechanisms such as conjugation or transduction 

Phenotypic analysis of four lactococcal starter cultures used in the Irish dairy 

industry for the production of low-fat Cheddar cheese allowed for the selection of 

potential novel starter cultures from the UCC starter culture collection (12 subsp. 

cremoris and 8 subsp. lactis strains were assessed) which may be useful for this type 

of dairy fermentation. The L. lactis subsp. cremoris strains were found to perform in 

a similar manner to the industrial isolates JM1-JM4. In particular strains 158 and 

UC109 presented with very similar growth and enzymatic profiles. Consequently 

these strains were selected for whole genome sequencing in addition to the industrial 

strains JM1-JM4, to further investigate their genetic composition.  

 The genome sequencing of sixteen novel lactococcal isolates has 

doubled the number of complete finished quality lactococcal genomes available and 

allowed for large-scale comparative analysis of the complete metabolic systems of 

the taxon. Our analysis clearly identifies a phylogenetic division between subspecies 

lactis and cremoris. This subspecies division is corroborated by hierarchical 

clustering based on both carbohydrate and amino acid metabolism, which indicates 
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two main subgroups that correspond to each subspecies. These observations support 

those of Cavanagh and colleagues, who recently proposed a re-evaluation of the 

taxonomic group separating L. lactis into two distinct species L. lactis and L. 

cremoris based on ANI (average nucleotide identity) and TETRA (tetranucleotide 

frequency correlation coefficients) [6]. The genomes of L. lactis subsp. cremoris 

were found to contain a higher number of pseudogenes in comparison to their L. 

lactis subsp. lactis counterparts, on average 100 per strain compared to 31 per strain, 

respectively. The vast majority of these strains are isolated from the dairy niche 

where genome decay and redundancy is widely reported [6, 38, 40], and believed to 

be due to continuous growth in milk. 

To evaluate current sequencing efforts of the L. lactis taxon and to determine 

if additional genome sequencing is necessary to provide a complete overview of the 

chromosomal diversity of this taxon, the pan-genome of L. lactis was calculated and 

found to constitute 5906 genes. The deduced pan-genome of L. lactis was found to 

be closed, indicating that the representative data sets employed for this analysis are 

sufficient to fully describe the genetic diversity of the taxon. The core genome was 

also calculated, indicating a core genome size of 1129 genes. 

It was determined that although strains can be clustered genotypically based 

on their subspecies and common niche, in agreement with a previous study [7], many 

of the flavour-related peptidases for which functional data are available, exist in 

single copy in the majority of lactococcal genomes. Therefore, it may not always be 

possible to make the genotype-phenotype link without the involvement of 

transcriptome and/or metabolome-based studies. It is therefore expected that 

continued work in this area would focus on complementing the genomics data with 

microarray or RNA-seq based analysis to gain a deeper understanding of these links. 
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The current study has provided a greater number of genome sequences and targets on 

which such platforms could be readily designed. 

Niche adaptation also relies heavily on the acquisition of new metabolic 

capabilities as well as the loss of unnecessary functions. The introduction of niche-

specific adaptations via plasmid acquisition, such as lactose and citrate metabolism 

has been extensively studied in L. lactis in view of their role in dairy niche 

adaptation [6, 8-11]; however, chromosomal adaptations are largely under-

represented by comparison. Interestingly, the division between plasmid- and 

chromosome-based traits is becoming less clear as multiple integration events within 

the lactococcal chromosome suggests a more fluid genome than previously thought 

[8]. 

Genome sequencing of sixteen L. lactis strains revealed the presence of a 

total of sixty-seven plasmids, including two megaplasmids. Comparative genomic 

analysis of these sequences combined with those of publicly available plasmids 

(eighty one publicly available) allowed the definition of the lactococcal plasmidome. 

The lactococcal pan-plasmidome calculation constituted 1129 CDSs and indicated 

that the pan-plasmidome remains in a fluid or open state, and continued plasmid 

sequencing efforts are therefore expected to further expand the observed genetic 

diversity among lactococcal plasmids.  

There has been limited research performed to date in the area of lactococcal 

gut adhesion as L. lactis is not commonly associated with the human gut. In Chapter 

IV, potential gut adhesion factors were identified within the lactococcal plasmidome, 

a key trait for persistence in the gastrointestinal tract. This may offer further insights 

into the potential application of L. lactis as a vector for vaccine and biomolecule 

delivery, a rapidly growing area of research [12, 13] or indicate probiotic potential 
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and/or functional food applications. It is envisioned that evolving nutritional 

preferences will further influence a trend towards such products and the 

identification of such traits within industrial strains may have beneficial implications 

for both industry and human health. 

Discovery of the first lactococcal megaplasmids along with a host of novel 

features is evidence that the diversity of the lactococcal plasmidome is a relatively 

untapped resource, coinciding with evidence of an open or fluid plasmidome 

suggests that continued future sequencing will increase the observed diversity carried 

by these elements, leading to new avenues of research. The previously calculated 

lactococcal pan-plasmidome by Ainsworth et al. constituted the complete plasmid 

complement if eight strains and also resulted in an open pan-plasmidome [8]. 

Abi systems confer defence against phage infection and are commonly found 

in lactococcal strains where they are frequently plasmid-encoded [14]. Analysis of 

the plasmid sequences identified fourteen plasmid-encoded Abi systems while 

further analysis also identified frequent occurrences of these systems within the 

lactococcal chromosomes [15]. The presence of these systems combined with a host 

of R/M systems is evidence of the adaptation of these strains towards phage-

resistance. The study of phage-resistance mechanisms will continue to be a valuable 

avenue of investigation as phages constitute one of the single greatest threats to dairy 

fermentations. 

SMRT sequencing may be employed for the identification of methylated 

DNA bases and their associated motifs. Methylome analysis of the lactococcal 

strains sequenced in the framework of this study was applied to identify methylation 

motifs that are linked to Type I and Type II R-M systems. Comparative analysis of 

the lactococcal isolates in this study indicates a large degree of divergence in the 
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encoded R-M systems present in each of the strains. This is also indicative of their 

phage defence capabilities. L. lactis C10 and UL8 which apparently do not encode 

R-M systems contain five and three complete integrated prophages, respectively, 

while strains L. lactis JM1 and JM2 which encode significantly more R/M systems 

present with one complete integrated prophage each. 

L. lactis JM1 and JM2 present an adaptive phage response in the form of a 

plasmid-encoded shufflon system. Analysis of the megaplasmids pMPJM1 and 

pMPJM2 resulted in the identification of a novel Type I shufflon R/M system. This 

system, the first of its type in L. lactis, is composed of multiple hsdS subunits 

arranged around a recombinase-encoding gene allowing for the intergenic shuffling 

of specificity subunits, resulting in an effective adaptive defence mechanism against 

phage infection. This system appears to be novel to these strains, though other 

systems with similar predicted functions have previously been reported in LAB [16]. 

SMRT technology allows a rapid assessment of a strain’s abilities to 

withstand foreign DNA, or in contrast to assess the ease with which a strain may be 

transformed in a laboratory setting. In Chapter V, overlapping motifs and clustering 

of REases and MTases identified the systems responsible for ten of the 49 detected 

motifs; however, with increased data sets and continued improvements in sequencing 

coverage, it is envisioned that significantly more of these systems will be elucidated 

in the future. 

Lactococcal phages persist as a major threat to commercial fermentation 

processes required for the manufacture of dairy products, particularly cheese. While 

lactococci are prone to infection by lytic phages, the threat of prophage induction 

and concomitant cell lysis presents an equally challenging risk factor. Thirty 

lactococcal genomes were explored for potential prophage-encoding regions using 
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the PHAST software followed by manual assessment and improvement. This 

resulted in the identification of fifty nine possibly intact prophages and one hundred 

and six incomplete prophage regions in total. Phylogenetic analysis of the nucleotide 

sequence of all such prophage regions combined with the sequences of previously 

sequenced P335 phages revealed two major groups of lactococcal prophages with a 

third minor group composed of a newly identified genetic lineage of prophages. The 

phylogenetic classification of the complete lactococcal prophage in this study is in 

agreement with a previous study [17] and previous P335 type phage sub-groupings 

[18] with the addition of one new sub-group V. 

Prophages in this study were found to have limited inducibility which 

represents a relatively low direct risk to cheese production processes but their 

potential to expedite the evolution of virulent phages and the fitness of the host are 

key features that should be considered when selecting starter cultures. It is expected 

that rapid turnaround time on modern genome sequencing methods combined with 

the reduced costs will endorse the continued and vastly increased availability of 

lactococcal genomes permitting advanced assessments of prophage distribution, 

diversity and evolution, information that will be crucial for the selection of genome-

informed next generation starter cultures. 

Finally, from the inception of this project, the primary goal was to establish a 

methodology for the selection of novel dairy starter cultures applicable to low fat 

Cheddar cheese fermentations. Functional and comparative genomic analysis with 

four industrial isolates, L. lactis JM1-JM4, permitted the selection of similarly 

performing strains. The closest performing strain L. lactis subsp. cremoris 158 was 

selected for large scale cheese trials, with professional cheese grading later applied. 

The results of these trials indicated a Cheddar cheese with smooth texture reported as 
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“good” overall and most notably it would not be apparent to a consumer that it 

represented Cheddar which was low in fat and salt. The results of the cheese trial are 

encouraging in the context of the current work and offer validation to genome 

sequencing as a useful tool for assessing dairy strain collections. A secondary, 

perhaps more useful advantage of this system is the ability to predict divergent traits 

within strains which may lead to expanded starter diversity in the future. 

The research presented in this thesis provides a solid foundation for further 

investigations into the comparative and functional genomics of L. lactis. The 

availability of a significantly enlarged L. lactis genomic data base will allow detailed 

studies into all aspects of L. lactis genomics. This work has also highlighted the 

potential of next generation sequencing technologies for applications such as strain 

screening/selection and the investigation of phage-host interactions; in terms of a so-

called arms race between lytic phages and host defence mechanisms and the double-

edged association of integrated prophages. 

 The significant proportion of unassigned and hypothetical plasmid-encoded 

proteins presents a wealth of available avenues for further studies to explore, which 

will undoubtedly result in the elucidation of novel traits in the future. Further 

methylome studies with an increased strain pool is likely to reveal more novel R/M 

systems and aid in the identification of their associated motifs, which has far-

reaching potential implications within molecular biology. 

 In conclusion, the work presented in this thesis significantly increases our 

knowledge of the L. lactis taxon and is expected to lead to the development of 

strategies to expand and diversify lactococcal starter stains used for dairy 

fermentations.  
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Appendix A 

 

 

 

 

 

 

Large-scale cheese fermentation trial results 

 

 

 

 

 

 

 

 

Large scale Cheddar cheese manufacturing trial was conducted by Prof. Tim Guinee 

and Catherine McCarthy at the MTL facility at Teagasc Rood Research Centre 

Moorepark. Cheese grading was performed by Enda Howley of Kerrygold.  
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 To assess the functional and comparative genomic method for the selection 

of lactococcal starter strains for reduced fat/salt Cheddar cheese production, a 

candidate strain was used to perform a large scale cheese trial. L. lactis subsp. 

cremoris 158 was selected based on functional and genetic similarities to industrial 

comparators L. lactis JM1-JM4. The main functional similarities (Chapter II) are 

summarized in (Fig. A1) and the main genetic similarities (Chapter III & IV) are 

summarised in (Table. A1). 

 

Figure A1: Overview of main performance and flavour based selection 

criteria 

Summary of functional analysis (Chapter I); [A] Growth performance under 

simulated cheese fermentation conditions, temperature profile is indicated by black 

dashed-line [B] Overview of peptidase activities as normalised percentage of total 

strain activity, [C] Amino acid transferase activity utilising phenylalanine and 

methionine based substrates for four commercial starters and strain 158. 
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Table A1: Overview of general genome features of representative L. lactis 

genomes 

Strain 158 JM1 JM2 JM3 JM4 

Genome length 

(Mbp) 

2250 2397 2374 2454 2380 

CDS 2078 2308 2316 2411 2293 

tRNA features 60 60 58 59 60 

rRNA features 19 19 19 19 19 

Hypothetical 

proteins % 

17.9 20.5 19.6 23.7 20.9 

Assigned function % 81.1 79.5 80.4 76.3 79.1 

Pseudo genes 106 74 68 60 88 

IS elements/ 

transposases 

150 243 167 163 181 

Prophage 2 Re 1 In 

6 Re 

1 In 

3 Re 

2 In 

3 Re 

1 In 

4 Re 

Plasmids  6 7 4 5 5 

Plasmid complement 

(Kbp) 

235.8 355.1 200.7 185.5 121.8 

GC % 35.88 36.01 35.8 35.87 35.83 

 

 

 The cheese trial was performed at Teagasc Food Research Centre, Moorepark 

in 400 litre vats, utilising; semi-skimmed milk, camel trypsin, under lactate buffered 

conditions with a standard protocol optimised for reduced fat/salt Cheddar cheese. A 

commercially supplied Cheddar cheese starter was used as a control. The results of 

the starter performance during cheese manufacture are described in (Table A2).   
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Table A2: Overview of Cheese trial cooking temperatures, time and pH 

 Vat 1 – Control Vat 2 – L. lactis 158 

Milk 454.1 kg / pH 6.57 456 kg / pH 6.57 

Acidity to 6.1 Lactate buffered Lactate buffered 

Starter Added 0 mins 0 mins 

Rennet 40 mins / pH 5.98 40 mins / pH 6.02 

Cut / Finish Cut 52 mins 51 mins 

Cooking 31-38.5oC  88 mins / pH 6.01 90 mins / pH 5.99 

Drain @ pH 7.5 142 mins / pH 5.95 139 mins / pH 5.88 

Trench Slab Turn (x3) 232 mins / pH 5.66 184 mins / pH 5.69 

Milk @ 5.3-5.35 345 mins / pH 5.38 301 mins /pH 5.36 

Weight of Curd 39.94 kg 43.12 kg 

Salt Addition (1%) 0.39 kg 0.43 kg 

Mellow 365 mins 321 mins 

Press 400 mins 366 mins 
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L. lactis 158 performed comparably with the commercial starter strain and 

delivered a high cheese yield. The manufactured Cheddar was matured at 8 °C for 

six months before grading. Cheeses were assessed at six months by a commercial 

grader from a local Cheddar factory, who was previously informed that the cheeses 

were half-fat [1]. The cheese grader reported that the Cheddar produced had “smooth 

texture”, “good cheese”, “tastes like a traditional table Cheddar in that it has acidic 

notes, unlike the ‘new’ Cheddar sold today which are considered quite sweet” and 

notably “a consumer wouldn’t know it is low in fat and salt”. 
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