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Abstract 

Photonic integrated circuits (PICs) integrate optical components on a single semiconductor 

chip. As time has progressed, advances have been made allowing the components of these 

PICs to become smaller and smaller. It is now possible to place many of these components 

on a single PIC. As these components can contain, or be connected by, bending waveguides, 

it is desirable to make these waveguide bends with as small a radius of curvature as possible 

to allow many components to fit on the single PIC. Unfortunately, as the radius of curvature 

decreases, the power loss through the bend increases due to the waveguide’s fundamental 

mode shifting towards the outside of the bend, causing large loss from the transition 

between the straight and curved waveguides. The power from the shifted mode also leaks 

as the fields propagate through the bend. 

Therefore, the aim of this thesis was to reduce the loss caused by these bends at small radii 

of curvature, allowing the bends to take up less space on a PIC. This involved designing the 

waveguide bends to have curvature profiles other than the conventional circular waveguide 

bend. The propagating fields through the bends were then analysed by numerical 

simulations using a program utilising the 3D finite difference beam propagation method, 

which was created and optimised over the course of the research, to investigate if the 

different curvature profiles could reduce the loss caused by bends in ridge waveguides. It 

was found that much lower loss could be achieved for curved deep-etched ridge waveguides 

with small radii of curvature by designing the bend to have a section where the curvature of 

the waveguide linearly changes.        
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1 Introduction 
This chapter will give a brief overview of what the motivation and aims of the project were, 

as well as give an introductory explanation of photonic integrated circuits, optical 

waveguides, and the methods used to analyse optical waveguides. 

1.1 Motivation and Aims 
Photonic integrated circuits (PICs) allow the integration of multiple optical devices on a 

single semiconductor chip. The goal of the past number of years has been to reduce the size 

of the optical devices, and thus the PICs, to improve efficiency and reduce costs while 

simultaneously improving the performance and capabilities of the PICs. Many of the 

photonic devices contain, or are connected by, curved optical waveguides. Therefore, as the 

sizes of optical devices decrease, allowing more of them to fit on a single PIC, bends of lower 

radii of curvature are needed to allow the devices to take up as little footprint as possible. 

However, as the radii of curvature of these curved optical waveguides decrease, 

performance worsens. The reason for this is the behaviour of the confined modes of the 

curved waveguide. When a waveguide transitions from a straight region to a bend, the 

modes of that waveguide shift towards the outside of the bend. This shift of the modes 

causes large amounts of loss at the straight, curved waveguide transition due to the 

mismatch of the fundamental modes. The mode shift also causes the tails of the 

fundamental mode on the outside of bend to become radiative, causing power to “leak” 

from the waveguide as the electromagnetic fields propagate around the bend. 

Unfortunately, as the radius of curvature of the bend decreases, the curvature increases, 

causing the modes to shift further to the outside of the bend, increasing the loss at the 

waveguide transition as well as the propagating loss around the bend. For the optical 

devices, and therefore the PICs, to decrease in size without causing a decrease in 

performance, new methods to reduce the loss of these smaller radii bends must be 

developed. 

The aim of this thesis is therefore to improve the performance of these lower radii bends, 

allowing them to take up less space on a PIC. The analysis will focus on the improvement of 

the ridge waveguide bends fabricated by the Integrated Photonics Group (IPG) in the Tyndall 

National Institute. 

Many advancements have already been made to improve the performance of optical 

waveguide bends. One such advancement is to make a deep etch in the waveguide [1]. This 

introduces a large refractive index contrast, causing the fundamental waveguide mode to 

become more laterally confined and causing less power to leak from the waveguide around 

the bend. Other methods developed to improve performance include widening the 

waveguide to provide higher mode confinement, offsetting the curved waveguide from the 

straight waveguide to improve overlap of the fundamental modes and therefore reduce 

transition loss [2], and bend matching where the bend is designed to end on an integer 

number of beat lengths for curved waveguides where the curvature causes multiple modes 

to be excited in the bend [3]. Another improvement in the performance of the bends was 

the introduction of a linear change in curvature as opposed to the standard constant 
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curvature (circular) bend [51]. The linear change in curvature greatly improved the 

transition loss at the straight-curved waveguide boundary as it allowed the fundamental 

mode to gradually move towards the outside of the bend. 

This thesis will focus on using the linear change in curvature to improve the performance of 

the curved shallow and deep-etched ridge waveguide bends fabricated in Tyndall, by making 

the curvature profile of the bend partly or fully consist of a linear change in curvature. The 

aim is to make the bend’s effective radius as small as possible without causing significant 

losses. 

1.2 Optical Waveguides 
Integrated photonic devices are based on light propagation along optical waveguides. An 

optical waveguide is a physical structure that guides electromagnetic waves in the optical 

spectrum. The origins of optical waveguides trace back to the 19th century when scientists 

such as Jean Colladon and John Tyndall demonstrated the guiding of light by a stream of 

water [4]. The operating phenomenon, total internal reflection, had previously been studied 

by Johannes Kepler in 1611 and mathematically defined by Snellius in 1621. Despite these 

observations and developments, the potential applications of optical waveguides beyond 

imaging were not realised until the mid-20th century when the development of the laser 

provided a coherent and collimated light source. This led to the advent of optical fibres – 

optical waveguide consisting of strands of glass that guide light and transmit information by 

modulating the electromagnetic carrier waves. Today, optical waveguides are widely used as 

the transmission medium in optical communications systems and as components of 

photonic integrated circuits. 

Optical waveguides consist of a core region surrounded by a cladding or substrate region. 

The core region consists of a material with a higher refractive index material than that of the 

cladding. This causes light to be confined to the core by the principle of total internal 

reflection. This principle states that if light is incident on a refractive index boundary and the 

light is travelling from a region of higher refractive index, the light will be totally internally 

reflected if the light is incident at an angle to the normal of the boundary greater than the 

following critical angle [5]: 

𝜃𝑐 = sin−1 (
𝑛2

𝑛1
)      (1.1) 

𝑛1 refers to the refractive index of the material the light is travelling from while 𝑛2 refers to 

the refractive index of the material the light is travelling to. Figure 1.1 shows a diagram of a 

light ray traveling through an optical waveguide where the light ray is incident on the core 

cladding boundary at an angle that is greater than 𝜃𝑐  and thus is totally internally reflected. 
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Figure 1.1: Light ray undergoing total internal reflection as it propagates through an optical 

waveguide. 

The above shows how light is confined in the waveguide by total internal reflection as long 

as the light is incident at angles greater than the critical angle. However, not all light rays at 

arbitrary incident angles greater than the critical angle are able to propagate in the 

waveguide. Instead, light can only propagate in specific modes where each mode is 

associated with a discrete angle of propagation, as determined by electromagnetic wave 

analysis. 

The formation of the modes can be well understood using the propagating ray through a 

waveguide [6]. Consider the two rays propagating in the 𝒛̂ direction at an inclination angle 𝜙 

through the simple slab waveguide in Figure 1.2. Let the two rays belong to the same plane 

wave and let points P and R be on the same phase front. The light ray propagating from P to 

Q does not undergo any reflections, while the light ray propagating from R to S experiences 

two reflections. As points Q and S are on the same phase front, the product of the 

wavenumber and the optical path lengths PQ and RS should be equal or differ by an integer 

number of 2𝜋 to allow the phases of the two rays to match. However, when a ray 

experiences a reflection, it undergoes a phase shift Φ, known as the Goos-Hänchen shift [7]. 

Therefore, for the two rays to phase match, the following condition must hold: 

(𝑘𝑛1𝑅𝑆 + 2Φ) − 𝑘𝑛1𝑃𝑄 = 2𝑚𝜋    (1.2) 

 

Figure 1.2: Light rays and their phase fronts [8]. 

The geometry of Figure 1.2 allows RS and PQ to be written in terms of the inclination angle 

𝜙 and the waveguide width 2𝑎, while the phase shift Φ can be written in terms of 𝜙 using 

the reflection coefficient from electromagnetic wave theory [8]. This results in equation 

(1.2) giving rise to a transcendental equation for the solution of angle 𝜙 for different values 
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of 𝑚. The angles 𝜙 that satisfy the equation, and thus the phase matching condition, lead to 

optical field distributions that are known as modes, which arise due to the interference of 

light waves. Each mode has a corresponding propagation constant 𝛽, which is given by 𝛽 =

𝑘𝑛1 cos 𝜙, and the fundamental mode is the mode with the minimum angle 𝜙. Figure 1.3 

show the formations of the fundamental mode and the first higher order mode from the 

interference of the light rays in the slab waveguide. A waveguide can only support a finite 

number of modes as 𝜙 increases as the mode order increases. Eventually 𝜙 will reach a 

value where the incidence angle will become less than the critical angle at the waveguide 

boundary and total internal reflection no longer occurs. 

The supported modes of a waveguide can also be understood using Maxwell’s equations 

and electromagnetic boundary conditions [9]. 

 

Figure 1.3: Formation of optical waveguide modes [8].  

The shape of the supported modes depends on various factors including the geometry of 

the waveguide, the material properties, the wavelength of the light, and the direction in 

which the electromagnetic fields are polarised. Waveguides exist in a number of forms, 

some of which are shown in Figure 1.4. The simplest of these are the slab waveguide, where 

a layer of higher refractive index material is sandwiched between two layers of lower 

refractive index material giving optical confinement in one dimension, and the rectangular 

waveguide, where the higher index material is surrounded on all four sides by lower index 

material giving optical confinement in two dimensions. Rectangular waveguides and 2D 

channel waveguides are the most commonly used non-planar waveguides for PIC device 

applications [10]. Such channel waveguides include the ridge waveguide, the rib waveguide, 

the strip loaded waveguide, and the arrow waveguide, all of which can be seen in Figure 1.4. 

Ridge waveguides are advantageous as they allow for narrow waveguides with small bend 
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radii and therefore provide realisation of ultra-dense photonic circuits. Rib waveguides 

provide less horizontal confinement and therefore require larger bend radii. Meanwhile, 

strip-loaded waveguides provide horizontal confinement by having a narrower layer of 

lower refractive index material above the core which has the advantage of not needing to 

etch down into the core material in comparison with the rib waveguide [4]. One of the most 

well-known waveguide types is the circular waveguide which is utilised in optical fibre 

communications. The cores of these waveguides contain very thin strands of pure glass 

which are then surrounded by materials of lower refractive index. The refractive index can 

be constant throughout each material, making it a step index optical fibre, or can vary 

gradually, making it a graded index optical fibre. The fibre can also be designed to support 

one or multiple modes by varying the radius of the waveguide core. The different types of 

optical fibre are displayed in Figure 1.5. However, the analysis in this thesis will be on PIC 

components and will primarily focus on ridge and rib waveguides utilised in PICs. 

The materials utilised in PICs depend on the functions to be integrated. The most commonly 

used materials are semiconductor materials such as Gallium Arsenide (GaAs) and Indium 

Phosphide (InP) which allow the operation of semiconductor lasers when optically or 

electrically pumped. The use of these materials therefore allows the integration of various 

active and passive components on the same chip [11]. As the different materials chosen 

have different refractive indices, and thus different refractive index contrasts between the 

guiding and cladding materials, the confinement and therefore shape of the supported 

modes are heavily influenced by the materials chosen. High contrast III – V semiconductor 

material systems are analysed in this thesis, which utilise materials such as InP, GaAs, and 

AlGaInAs. Lower refractive index contrast material systems are also used in PICs such as 

silica (SiO2) which is commonly used when coupling light with optical fibres. The refractive 

index contrast between the core and cladding is usually defined using the Δ parameter 

where Δ = (𝑛𝑐𝑜𝑟𝑒
2 − 𝑛2

𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔)/2𝑛𝑐𝑜𝑟𝑒
2 . For silica systems, this Δ parameter can be as low 

as 0.008. Meanwhile, for semiconductor materials such as InP and Si, this parameter can be 

as large as 0.45 at air boundaries. The Δ value is crucial to determining the number of 

supported modes of a waveguide, with a higher contrast allowing more modes [12]. The loss 

experienced during a waveguide bend also depends heavily on the index contrast, which will 

be seen later in the thesis. There are a wide array of other material systems used in PICs, 

such as SiON, LiNbO3, and BCB, each used for different purposes. For example, SiON is an 

attractive material as its refractive index can be tuned over a wide range (from 1.45 (SiO2) to 

2.01 (Si3N4)), allowing it to be used in both low and high index contrast systems [13]. LiNbO3 

is regularly used in diffused waveguide systems where a high index confinement region is 

created by diffusion of dopants such as Titanium [4]. Due to the diffusion process, the 

refractive index varies gradually through the diffused region, with the change in refractive 

index proportional to the concentration of the impurities. The different material systems 

allow applications to be realised for various purposes across areas such as communications, 

optical sensing, and biophotonics. 

The refractive index contrast of the materials also affects the suitability of the numerical 

methods used to analyse them, as the contrast in different material systems can vary by 

orders of magnitude. For the high contrast III – V semiconductor material systems analysed 
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in this thesis, the finite difference method (FDM) is utilised as it is one of the most effective 

methods for dealing with these material boundaries. In particular, a semi-vectorial FDM 

mode solver and a semi-vectorial finite difference beam propagation method (SV-FD-BPM) 

are used as the semi-vectorial method allows accurate analysis of the different modes 

(quasi-TE and quasi-TM) that become supported due to the sharp refractive index contrast. 

While the finite difference method should provide accurate analysis of the supported modes 

of most of the material systems and waveguide geometries mentioned, be they high index 

or low index contrast systems, different methods are more applicable to certain waveguide 

geometries. For example, the finite element method should allow easier and more accurate 

analysis of waveguides of mixed geometries such as ellipses and polygons. For waveguides 

with sharp refractive index changes in the propagation direction, a fully vectorial time 

domain finite difference method would be a more accurate method to deal with the 

reflection and scattering that occurs at these boundaries. This method would also allow 

accurate analysis of waveguide structures that have strong coupling between the quasi-TE 

and quasi-TM modes, such as polarisation couplers, the effect of which is ignored in semi-

vectorial analysis [26].   

 
Figure 1.4: Examples of optical waveguides [14]. 

 
Figure 1.5: Optical fibres [15]. 
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The main purpose of curved optical waveguides is to interconnect optical waveguide 

devices. Figure 1.6 gives an example of curved waveguides connecting two straight 

waveguides that are either at an angle to each other or offset from each other. The design 

of the waveguide bend must be carefully tailored to minimise the mode mismatch and 

propagation loss. In addition to connecting waveguides, curved optical waveguides are also 

used in the function of certain optical devices. For example, an optical ring resonator [16] 

consists of a set of waveguides where at least one is a closed loop or ring that is connected 

to an input waveguide and an output waveguide, examples of which are given by Figure 1.7. 

The device operates through optical coupling and constructive interference. The input and 

output waveguides are at a distance from the ring whereby the coupling length allows the 

light to transfer between the waveguides and the ring. The intensity of the light in the ring 

builds up over multiple round trips as the optical path length of the ring is designed to allow 

the light to interfere constructively inside the ring resonator. As different light wavelengths 

interfere constructively and destructively at different points along the ring, only certain 

wavelengths of light will allow the light to build up over multiple round trips and the 

resonator therefore functions as a wavelength filter. 

  
(a) 90° bend connecting two waveguides.            (b) S-bend connecting two offset waveguides. 

Figure 1.6: Examples of waveguide bends. 

              
                 (a) Single ring resonator [17].                      (b) Double ring resonator [18]. 

Figure 1.7: Ring resonators. 
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1.3 Methods of Analysing Optical Waveguides 
In order to create and improve optical waveguide devices, methods of analysing the 

behaviour of light in optical waveguide structures have been developed. These consist of 

analytical methods for exact analysis of simpler optical waveguides and numerical methods 

for accurate analysis of the more complicated structures. The analytical methods focus on 

finding the effective refractive indices and mode profiles of the supported modes of an 

optical waveguide that is assumed to be invariant in the propagation direction. While the 

analytical methods provide an exact 1D solution to the slab waveguide, assumptions must 

be made to allow analysis of simple 2D structures, the rectangular waveguide for example, 

such as assuming the field to not exist in certain regions as well as neglecting derivatives of 

the relative permittivity. Meanwhile, the numerical methods do not need to make these 

assumptions and thus allow the 2D effective indices and mode profiles to be calculated 

more accurately. The numerical methods also allow analysis of more complicated structures 

and allow analysis of waveguide structures that vary in the propagation direction.  

1.3.1 Analytical Methods 
While analytical methods become less applicable as a waveguide becomes more 

complicated, they are easier to use and understand than the numerical methods. The 

simplest analytical method is that for analysing the wave equation for the 1D three-layer 

slab optical waveguide. The slab optical waveguide, which is shown in Figure 1.8, is a 1D 

structure consisting of three refractive index layers which extend infinitely in one transverse 

direction, the 𝒚̂ direction in Figure 1.8. The refractive index of the middle layer is higher 

than the refractive indices of the surrounding layers to support light confinement and the 

formation of optical waveguide modes. 

 
Figure 1.8: Three-layer slab waveguide. 

The electromagnetic wave equation is a second order partial differential equation that 

describes the propagation of electromagnetic waves through a medium. The 1D Helmholtz 

wave equation for the electric field is given by equation (1.3) and is derived from Maxwell’s 

equations by ignoring the derivative of the refractive index with respect to the transverse 𝒙 

direction and, since the structure is uniform in the 𝒚̂ direction, letting the derivatives with 

respect to 𝑦 equal 0. The analysis considers the time harmonic solution and therefore the 

field is assumed to oscillate at a single angular frequency, 𝜔. The derivation of the wave 

equations from Maxwell’s equations will be described in the next chapter.  
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𝑑2𝐄

𝑑𝑥2
+ 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐄 = 0          (1.3) 

In the above equation, 𝑛𝑒𝑓𝑓 is the effective refractive index of the mode and results from 

letting the derivatives with 𝑧, the propagation direction, equal 𝑖𝛽, where 𝛽 is the 

propagation constant and equal to 𝑘0𝑛𝑒𝑓𝑓, since the structure was assumed to be uniform 

in the propagation direction and the field was therefore assumed to take the form 𝐸 =

𝐸0 exp(𝑖𝛽𝑧). 

Two modes are found to propagate in the three-layer waveguide: the TE mode where the 

electric field is polarised in the 𝒚̂ direction and the magnetic field is polarised in the 𝒙̂ and 𝒛̂ 

directions, and the TM mode where the magnetic field is polarised in the 𝒚̂ direction and the 

electric field is polarised in the 𝒙̂ and 𝒛̂ directions. The polarisation of the field is important 

as the different polarisations cause different boundary conditions at the refractive index 

boundaries along the 𝒙̂ direction, as only the tangential components of the electric and 

magnetic fields are continuous at the boundary. 

Consider the TE mode where the electric field is polarised in the 𝒚̂ direction. As the field 

should exponentially decrease in the first and third layers, the following ansatz is found to 

satisfy the wave equations if the middle layer begins and ends at 𝑥1 = 0 and 𝑥2 = 𝑊 [9]: 

𝐸𝑦(𝑥) = 𝐴1 exp(𝛼1𝑥) ,       𝛼1 = 𝑘0√𝑛𝑒𝑓𝑓
2 − 𝑛1

2             (1.4) 

𝐸𝑦(𝑥) = 𝐴2 cos(𝛼2𝑥 + 𝛾1) ,       𝛼2 = 𝑘0√𝑛2
2 − 𝑛𝑒𝑓𝑓

2      (1.5) 

𝐸𝑦(𝑥) = 𝐴3 exp(−𝛼3(𝑥 − 𝑊)) ,       𝛼3 = 𝑘0√𝑛𝑒𝑓𝑓
2 − 𝑛3

2         (1.6) 

From Maxwell’s equations, the fields 𝐸𝑥, 𝐸𝑧 and 𝐻𝑦 are all found to equal 0 while the field 

𝐻𝑥 is equal to −(𝛽/𝜔𝜇0)𝐸𝑦 and 𝐻𝑧 is equal to (−𝑖/𝜔𝜇0) 𝜕𝐸𝑦/𝜕𝑥. From the boundary 

conditions, 𝐸𝑦 and 𝐻𝑧 must be continuous at the refractive index boundaries 𝑥1 and 𝑥2. 

Applying the boundary conditions and manipulating the algebraic equations eventually 

results in the following equation, allowing the effective refractive indices to be solved by 

means of a numerical root finding method such as the bisection or secant method. 

𝛼2𝑊 = − tan−1 (
𝛼2

𝛼1
) − tan−1 (

𝛼2

𝛼3
) + (𝑞 + 1)𝜋,       𝑞 = 0, 1, 2 …         (1.7) 

The above method applies to one dimensional waveguides, i.e. the waveguide is assumed to 

extend infinitely in one transverse direction. As these waveguides do not exist in practice, 

methods had to be developed to analyse two dimensional waveguides, i.e. waveguides 

where refractive index boundaries exist in two transverse directions.  

The simplest analytical method used to analyse the 2D waveguides is the effective index 

method [19]. The effective index method considers the 2D scalar wave equation given by 

equation (1.8), where derivatives of the refractive index with respect to the transverse 

directions are ignored. 
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𝜕2𝜙(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝜙(𝑥,𝑦)

𝜕𝑦2
+𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝜙 = 0                      (1.8) 

For the effective index method, it is assumed that separation of variables can be used to 

separate the field 𝜙(𝑥, 𝑦) into two functions 𝑓(𝑥) ⋅ 𝑔(𝑦). Substituting the two functions 

into the wave equation results in the following: 

1

𝑓(𝑥)

𝑑2𝑓(𝑥)

𝑑𝑥2 +
1

𝑔(𝑦)

𝑑2𝑔(𝑦)

𝑑𝑦2 +𝑘0
2(𝜀𝑟 − 𝑛𝑒𝑓𝑓

2 ) = 0                         (1.9) 

If the second and third terms are allowed to equal 𝑘0
2𝑁2(𝑥), then the first and fourth terms 

will equal −𝑘0
2𝑁2(𝑥). This results in the following two independent equations: 

𝑑2𝑔(𝑦)

𝑑𝑦2 +𝑘0
2(𝜀𝑟 − 𝑁2(𝑥))𝑔(𝑦) = 0                            (1.10) 

𝑑2𝑓(𝑥)

𝑑𝑥2 +𝑘0
2(𝑁2(𝑥) − 𝑛𝑒𝑓𝑓

2 )𝑓(𝑥) = 0                              (1.11) 

The purpose of the effective index method is to therefore reduce the 2D waveguide to a 

number of 1D waveguides. Equation (1.10) is applied to each waveguide region along the 𝑦 

axis to find a number of 𝑁(𝑥) values and the 𝑁(𝑥) values are then used along the 𝑥 axis for 

equation (1.11) to find the approximate effective refractive indices using, for example, the 

method for the three-layer slab waveguide. Figure 1.9 shows the application of the effective 

index method to a ridge waveguide. 

 
Figure 1.9: The effective index method [19]. 

While the effective index method is simple to implement, if the assumption that separation 

of variables can be applied to 𝜙(𝑥, 𝑦) is inaccurate, due to the waveguide structure or other 

reason, the accuracy of the method can become very poor. 

The other major analytical method used to analyse 2D waveguides is the Marcatili method 

[20]. The Marcatili method focuses on rectangular waveguides consisting of a rectangular 

core, surrounded on all sides by the cladding. The field is only assumed to exist in the core 

and the rectangular cladding regions connected to the four sides of the rectangular core, i.e. 

the regions labelled with a refractive index in Figure 1.10. This simplifies the analysis and 

allows the fields to take a 2D ansatz in the same fashion as was taken for the three-layer 

slab waveguide. As the field is assumed to not exist in the regions outside the corners of the 

waveguide core, the Marcatili method is best used for rectangular waveguides where the 

field is strongly confined to the core region. 
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Figure 1.10: The Marcatili method. 

1.3.2 Numerical Methods 
Due to the inaccuracies of the analytical methods for analysing 2D waveguides, because of 

both the assumptions made and their inability to deal with propagating beams through 

optical waveguides with refractive index profiles that vary along the propagation direction, 

numerical methods have been developed to more accurately analyse the electromagnetic 

fields propagating through optical waveguides. 

1.3.2.1 Calculating Modes of Propagation Direction Invariant Waveguides  

For optical waveguides where the refractive index profile does not vary in the propagation 

direction, the waveguides can be analysed by considering the cross-section of the 

waveguide structure. As was done for the analytical methods, derivatives with respect to 

the propagation direction in the wave equation are let equal 𝑖𝛽, where 𝛽 is the mode 

propagation constant. There are then a number of numerical methods that can be used to 

analyse the wave equation to find the supported propagation constants and corresponding 

mode profiles. These include the finite element method (FEM) and the finite difference 

method (FDM). 

The FEM solves the wave equation by subdividing the computational area into a number of 

smaller, simpler parts known as finite elements [21]. This method then approximates the 

solution of the wave equation in each element by adopting a simple form of function, for 

example, a polynomial. All of the element contributions to the system are assembled to 

form the functional. The functional consists of the field values at all the nodes and the 

boundary conditions at the peripheral nodes. The functional results in a system of linear 

equations, where the solutions of the equations give the field values to be obtained. The 

computational area can be discretised into a number of arbitrarily shaped elements, making 

this method particularly suited to solving modes of waveguides with geometries other than 

those made by connecting orthogonal sides, such as elliptical fibres and polygonal 

waveguides. Errors in the solutions can be easily reduced by using smaller sized elements. 

Another numerical method used to analyse the supported modes of complicated waveguide 

structures, and the one utilised in this thesis, is the finite difference method. The FDM 

involves discretising the computational area into a number of points and then calculating 

the derivatives in the wave equation by the method of finite difference [22]. This leads to an 

eigenvalue matrix equation of the form 𝐴𝜙 = 𝜆𝜙, where the calculated eigenvalues result 
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in the effective refractive indices of the supported modes and the corresponding 

eigenvectors result in the mode’s field distribution. The matrix is tridiagonal for 1D 

waveguides, which can be solved in a way that is numerically efficient. Although the matrix 

is no longer tridiagonal for 2D analysis, it is however sparse and structurally symmetric, 

allowing it to be solved relatively quickly with modern linear algebra software and computer 

processors. The application of the finite difference method to the wave equations is 

described in the next chapter. Like the FEM, the FDM also allows the analysis of complicated 

waveguide structures (as it can be implemented in various coordinate systems), provided 

enough computational points are used to minimise errors. The FDM is also particularly 

suited to analysing waveguides with high-step refractive index profiles and gradient 

refractive index profiles, making it a powerful solution for analysis of the high refractive 

index contrast waveguides discussed in this thesis. 

Both the FDM and FEM can be implemented to analyse different variations of the wave 

equations. In Chapter 2, Maxwell’s equations are used to derive the full vectorial versions of 

the wave equations for the electric and magnetic fields, which are given by equations (2.3) 

and (2.4). While the FEM and FDM can be implemented to analyse these equations directly, 

simplifications can be made to the wave equation in certain cases, allowing the wave 

equation to be analysed more efficiently. If the interaction between the two transversally 

polarised field components in the wave equations, which can be small, is ignored, the 

equations reduce to semi-vectorial forms. Unless a structure is specifically designed to 

induce coupling, such as polarisation couplers, the effect of the interaction terms is 

extremely weak and the semi-vectorial approximation is accurate, even in high index 

contrast waveguide structures [26]. It is therefore used to analyse the high index contrast 

structures in this thesis. Meanwhile, if the derivatives of the relative permittivity with 

respect to the transverse directions in the wave equations are ignored, the equations 

reduce to the same scalar form, ignoring any polarisation effects. Therefore, this method is 

only appropriate to analyse waveguides with very small index contrasts in both transverse 

directions. 

The PIC platform analysed in this thesis consists of III – V semiconductor compounds such as 

InP and GaInAs. The composition and refractive index profile of the platform can be viewed 

in Table 4.1. The structure consists of a number of layers with sharp refractive index 

contrasts between many of the layers. An etch into the material creates further sharp 

refractive index contrast along the horizontal direction. The finite difference method is 

particularly suited to analyse this structure due to its ability to accurately calculate the 

derivatives at the refractive index boundaries.  

1.3.2.2 Analysing Propagation Direction Variant Waveguides 

PICs contain multiple components on a single chip. To analyse how light propagates through 

the different devices, several methods have also been developed. The most popular 

methods are the beam propagation methods (BPMs) and the finite-difference time-domain 

method (FD-TD). While BPMs can be used to find the confined modes of optical waveguides, 

their main advantage is their ability to analyse waveguide structures where the refractive 

index profile is not uniform in the propagation direction, as well as analyse the operation of 
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optical devices such as a power coupler and a multi-mode interferometer which operate by 

launching a field consisting of a superposition of the supported modes of the optical 

waveguide structure. Various BPMs have been developed, with the most commonly used 

being the fast Fourier transform BPM (FFT-BPM) [23] and the finite difference BPM (FD-

BPM) [24].  

The FFT-BPM was the original BPM implementation and had been widely used until the FD-

BPM had been developed. The FD-BPM largely replaced the FFT-BPM as the FFT-BPM had 

several disadvantages due to the use of the FFT. These included a relatively long 

computation time, the requirement of equidistant computational point spacings, inferior 

boundary condition methods, the necessity of very small point spacing and propagation 

steps, its unsuitability for large index contrast waveguides, and the requirement of the 

number of transverse computational area points having to be a power of 2. Meanwhile, the 

FD-BPM is much more numerically efficient, the propagation step size can be made larger, 

and it can accurately deal with sharp refractive index contrast boundaries. Due to these 

differences, the FD-BPM is considered superior and thus a semi-vectorial implementation of 

it (SV-FD-BPM) was used to analyse the waveguides in this thesis. Its implementation will be 

described in the next chapter. 

The previous methods mentioned to analyse the wave equations assume a steady state 

solution, i.e. the derivative with respect to time is replaced with 𝑖𝜔. However, another 

method exists which directly solves the time-dependent Maxwell equations: the finite-

difference time-domain method (FD-TD) [28]. It is a fully vectorial technique and can better 

deal with issues such as polarisation coupling and reflections along the propagation 

direction. However, the technique requires very small grid spacings and time steps, making 

the amount of memory and time required to analyse 3D optical waveguides very large and 

therefore it was not used to analyse optical waveguides in this thesis. 

As this thesis analyses the propagation of light through curved waveguides, it is important to 

ensure that the analysis method is appropriate for this purpose. The next chapter will 

showcase how waveguide bends can be analysed by applying a conformal transformation to 

the semi-vectorial wave equations. The FD-BPM can easily be applied to the transformed 

equations, allowing the light propagation to be accurately analysed. As the curvature of the 

waveguide bends can vary along their length, the BPM is the most appropriate method to 

analyse how the field distribution alters as the light propagates through the varying 

curvature structures.   

1.4 Thesis Structure 
The thesis contains seven chapters. The first and current chapter gives an introduction to 

optical waveguides and the methods used to analyse them.  

The second chapter derives the wave equations from Maxwell’s equations and describes the 

implementation of the finite difference mode solver and the finite difference beam 

propagation method. Waveguides are analysed to show that the mode solver and BPM have 

been implemented correctly and a technique to improve wide-angle propagation is also 

described, implemented and tested. 
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The third chapter describes the method of analysing curved optical waveguides. The wave 

equations are altered using a conformal transformation and the finite difference method is 

again applied to the resulting wave equations. The FD-BPM is then tested on simple circular 

waveguides. The chapter also describes the curvature profiles of the curved waveguides 

analysed in this thesis. 

The fourth chapter analyses curved shallow-etched ridge waveguides. 90 and 180 degree 

bends are analysed and the curvature profiles of the bends are altered in an attempt to 

reduce the bend loss. 

The fifth chapter analyses curved deep-etched ridge waveguides. Different curvature 

profiles are again investigated and their performance is compared to that of the curved 

shallow-etched waveguides. The chapter also looks at the cause of the excitation of multiple 

modes in the waveguide bend and how these excitations can be prevented by using a linear 

change in curvature. 

The sixth chapter investigates how best to combine shallow-etched waveguides with deep-

etched bends. Many optical devices consist of, or contain, shallow-etched waveguides and 

this chapter aims to determine how best to connect them with deep-etched waveguide 

bends to take advantage of the lower loss offered by the deep-etched bends. 

The last chapter outlines the conclusions that can be drawn from the thesis and describes 

what could be done or improved on in the future.  
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2 The 3D Finite Difference Beam Propagation Method 
As described in Section 1.3, beam propagation methods are numerical techniques used to 

simulate the propagation of light along optical waveguide structures. The method utilized in 

this thesis is the three-dimensional semi-vectorial finite difference beam propagation 

method (3D-SV-FD-BPM), chosen as it allows accurate analysis of large refractive index 

contrast optical waveguides. This chapter involves the derivation of the method [24] and the 

mode solver [21] as well as describes the implementation of various modifications taken 

from different sources designed to improve the accuracy of the simulations, such as 

differing boundary conditions [36] [37] [39] and wide-angle propagation [41] [42]. The 

resulting mode solver and BPM equations were computationally implemented by the 

candidate and their implementation is also described in this chapter. Simulations from the 

computational implementation are discussed throughout the chapter to ensure the method 

was implemented correctly. 

2.1 The Wave Equations 
The vectorial wave equations can be derived from the following Maxwell’s equations: 

𝐃 = 𝜀𝐄     𝐁 = 𝜇𝐇 

𝛁 ⋅ 𝐃 = 𝜌    𝛁 ⋅ 𝐇 = 0 

𝛁 × 𝐄 = −
𝜕𝐁

𝜕𝑡
    𝛁 × 𝐇 =

𝜕𝐃

𝜕𝑡
+ 𝐉 

𝐉 = 𝜎𝐄     𝛁 ⋅ 𝐉 = −
𝜕𝜌

𝜕𝑡
 

The electric field is represented by 𝐄, the electric flux density by 𝐃, the magnetic field by 𝐇, 

the magnetic flux density by 𝐁, the current density by 𝐉, the electric permittivity by 𝜀, the 

magnetic permeability by 𝜇, the charge density by 𝜌 and the electric conductivity by 𝜎. The 

waveguides analysed in this thesis are assumed to be passive and therefore 𝐉 and 𝜌 can be 

neglected. The electric permittivity consists of the relative permittivity 𝜀𝑟 multiplied by the 

permittivity of free space 𝜀0. The magnetic permeability consists of the relative permeability 

𝜇𝑟 multiplied by the permeability of free space 𝜇0. This thesis will only analyse non-magnetic 

waveguides and therefore 𝜇𝑟 = 1. The refractive index, 𝑛, of the waveguide material is 

assumed to be isotropic and uniform. As 𝑛 = 𝜀𝑟
2, the relative permittivity can be represented 

by a scalar function of position. Under these conditions, Maxwell’s equations reduce to the 

following form: 

   𝛁 ⋅ 𝜀𝑟𝐄 = 0    𝛁 ⋅ 𝐇 = 0 

   𝛁 × 𝐄 = −𝜇0
𝜕𝐇

𝜕𝑡
   𝛁 × 𝐇 = 𝜀𝑟𝜀0

𝜕𝐄

∂𝑡
 

Assuming the fields oscillate at a singular angular frequency 𝜔, 𝐄 and 𝐇 can be expressed in 

the following time harmonic form: 

𝐄(𝑥, 𝑦, 𝑧, 𝑡) = Re[𝐄(𝑥, 𝑦, 𝑧) exp(−𝑖𝜔𝑡)]        (2.1) 

𝐇(𝑥, 𝑦, 𝑧, 𝑡) = Re[𝐇(𝑥, 𝑦, 𝑧) exp(−𝑖𝜔𝑡)]         (2.2) 
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Substitution of these electromagnetic fields into Maxwell’s equations allows the derivatives 

with respect to 𝑡 to be replaced by −𝑖𝜔. This gives Maxwell’s equations the following 

representation: 

   𝛁 ⋅ 𝜀𝑟𝐄 = 0    𝛁 ⋅ 𝐇 = 0 

   𝛁 × 𝐄 = 𝑖𝜇0𝜔𝐇   𝛁 × 𝐇 = −𝑖𝜀𝑟𝜀0𝜔𝐄 

Applying 𝛁 × to the curl of 𝐄 and substituting in the curl of 𝐇 gives: 

𝛁 × (𝛁 × 𝐄) = 𝑘0
2𝜀𝑟𝐄       (2.3) 

In the equation above, 𝑘0 is the wave number in a vacuum and is given by 𝑘0 = 𝜔√𝜀0𝜇0. 

Using the vector formula 𝛁 × (𝛁 × 𝐄) = 𝛁(𝛁 ⋅ 𝐄) − 𝛁𝟐𝐄 and Maxwell’s equation 𝛁 ⋅ 𝜀𝑟𝐄 =

𝟎, equation (2.3) reduces to the vectorial wave equation for the electric field E: 

𝛁𝟐𝐄 + 𝛁 (
𝛁𝜀𝑟

𝜀𝑟
⋅ 𝐄) + 𝑘0

2𝜀𝑟𝐄 = 0              (2.4) 

Alternatively, applying 𝛁 × to the curl of 𝐇 and manipulating the equation using the 

previously used vector formula and Maxwell’s equations leads to the following vectorial 

wave equation for the magnetic field 𝐇: 

𝛁𝟐𝐇 +
𝜵𝜀𝑟

𝜀𝑟
× (𝛁 × 𝐇) + 𝑘0

2𝜀𝑟𝐇 = 0      (2.5) 

In terms of components of the Cartesian coordinate system, the vectorial wave equation for 

the electric field can be expressed by the following three equations: 

𝜕2𝐸𝑥

𝜕𝑥2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑥

𝜕𝑦2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) +  

𝜕2𝐸𝑥

𝜕𝑧2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧
𝐸𝑧) + 𝑘0

2𝜀𝑟𝐸𝑥 = 0   (2.6) 

𝜕2𝐸𝑦

𝜕𝑥2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑦

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) +  

𝜕2𝐸𝑦

𝜕𝑧2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧
𝐸𝑧) + 𝑘0

2𝜀𝑟𝐸𝑦 = 0  (2.7) 

 
𝜕2𝐸𝑧

𝜕𝑥2 +
𝜕

𝜕𝑧
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) +  

𝜕2𝐸𝑧

𝜕𝑦2 +
𝜕

𝜕𝑧
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) +  

𝜕2𝐸𝑧

𝜕𝑧2 +
𝜕

𝜕𝑧
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧
𝐸𝑧) + 𝑘0

2𝜀𝑟𝐸𝑧 = 0    (2.8) 

Similarly, the vectorial wave equation for the magnetic field can be expressed by the 

following three equations in the Cartesian coordinate system: 

𝜕2𝐻𝑥

𝜕𝑥2
+  

𝜕2𝐻𝑥

𝜕𝑦2
+

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
) +  

𝜕2𝐻𝑥

𝜕𝑧2
−

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧
(

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
) + 𝑘0

2𝜀𝑟𝐻𝑥 = 0   (2.9) 

𝜕2𝐻𝑦

𝜕𝑥2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
) +  

𝜕2𝐻𝑦

𝜕𝑦2 + 
𝜕2𝐻𝑦

𝜕𝑧2 +
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧
(

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
) + 𝑘0

2𝜀𝑟𝐻𝑦 = 0 (2.10) 

𝜕2𝐻𝑧

𝜕𝑥2 +
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
(

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
) +  

𝜕2𝐻𝑧

𝜕𝑦2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
(

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
) +  

𝜕2𝐻𝑧

𝜕𝑧2 + 𝑘0
2𝜀𝑟𝐻𝑧 = 0 (2.11) 

2.2 The 2D Finite Difference Mode Solver 
If the waveguide is assumed to be uniform in the propagation direction, the 𝒛̂ direction, 

then the derivative of the electromagnetic field with respect to 𝑧 is constant, such that 
𝜕

𝜕𝑧
=

𝑖𝛽 [29]. 𝛽 is the propagation constant and is the 𝒛̂ directed component of the wavenumber 
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𝒌. The ratio of 𝛽 to the wave number in a vacuum, 𝑘0, is known as the effective refractive 

index 𝑛𝑒𝑓𝑓, 𝑛𝑒𝑓𝑓 =
𝛽

𝑘0
. The physical meaning of the propagation constant is the phase 

rotation per unit propagation distance. 

As electromagnetic fields propagate through optical waveguides, they take the shape of one 

of the waveguide’s supported propagation modes. Each of these modes has a different 

propagation constant 𝛽 and therefore a different effective refractive index 𝑛𝑒𝑓𝑓. For the 

mode to be a supported non-radiating mode, the effective refractive index must have a 

value between that of the core of the waveguide and that of the surrounding material. 

In order to use the beam propagation method, an initial field is required. This was usually 

generated by assuming the waveguide was invariant in the propagation direction and then 

using a 2D finite difference mode solver to find the fundamental mode and corresponding 

propagation constant. This section will describe how the mode solver was created by using 

the finite difference method on the wave equations [21]. 

As the waveguide is assumed to be invariant in the propagation direction, 
𝜕𝜀𝑟

𝜕𝑧
= 0. 

Substituting this and 
𝜕

𝜕𝑧
= 𝑖𝛽 into the wave equations (2.6) – (2.11), the equations for the 𝑥 

and 𝑦 components of the electromagnetic fields become: 

𝜕2𝐸𝑥

𝜕𝑥2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑥

𝜕𝑦2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐸𝑥 = 0  (2.12) 

𝜕2𝐸𝑦

𝜕𝑥2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑦

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐸𝑦 = 0  (2.13) 

𝜕2𝐻𝑥

𝜕𝑥2 +  
𝜕2𝐻𝑥

𝜕𝑦2 +
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
) + 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐻𝑥 = 0      (2.14) 

𝜕2𝐻𝑦

𝜕𝑥2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
) +  

𝜕2𝐻𝑦

𝜕𝑦2 + 𝑘0
2(𝜀𝑟 − 𝑛𝑒𝑓𝑓

2 )𝐻𝑦 = 0      (2.15) 

For propagation through optical waveguides, the terms corresponding to the interaction 

between 𝐸𝑥 and 𝐸𝑦, 
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) and 

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥), and between 𝐻𝑥 and 𝐻𝑦, 

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦

𝜕𝐻𝑦

𝜕𝑥
 and 

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥

𝜕𝐻𝑥

𝜕𝑦
, are usually quite small. Unless a structure is designed to induce coupling, such as 

polarization converters [25], the effect of these coupling terms is usually extremely weak 

and the semi-vectorial approximation is an excellent one, even in high index contrast 

structures such as semiconductor waveguides [26] [27]. Omitting them from the above 

vectorial wave equations decouples the wave equations and reduces them to semi-vectorial 

wave equations. This simplifies the analysis of these wave equations, allowing them to be 

solved in a way that is numerically efficient. The analysis can be further simplified by 

assuming the fields are polarized in a specific transverse direction. In the quasi-transverse 

electric (quasi-TE) mode analysis, the principal field component is assumed to be 𝐸𝑥 or 𝐻𝑦, 

while in the quasi-transverse magnetic (quasi-TM) mode analysis, the principal field 

component is assumed to be 𝐸𝑦 or 𝐻𝑥. The equations for the quasi-TE mode are therefore 

given by: 
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𝜕2𝐸𝑥

𝜕𝑥2
+

𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑥

𝜕𝑦2
+ 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐸𝑥 = 0  (2.16) 

     𝜀𝑟
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝐻𝑦

𝜕𝑥
)  +  

𝜕2𝐻𝑦

𝜕𝑦2 + 𝑘0
2(𝜀𝑟 − 𝑛𝑒𝑓𝑓

2 )𝐻𝑦 = 0   (2.17) 

Meanwhile, the equations for the quasi-TM mode are given by: 

 
𝜕2𝐸𝑦

𝜕𝑥2 + 
𝜕2𝐸𝑦

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐸𝑦 = 0   (2.18) 

     
𝜕2𝐻𝑥

𝜕𝑥2 + 𝜀𝑟
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝐻𝑥

𝜕𝑦
)  + 𝑘0

2(𝜀𝑟 − 𝑛𝑒𝑓𝑓
2 )𝐻𝑥 = 0   (2.19) 

2.2.1 Finite Difference Expressions of Wave Equations 
The finite difference expressions for the semi-vectorial wave equations are derived by 

calculating the derivatives in the wave equation using the method of finite difference. 

Assume that a one-dimensional function 𝑓(𝑥) is continuous. Assume 𝑓(𝑥) has the values 𝑓0, 

𝑓1 and 𝑓2 at 𝑥 = 0, −ℎ1, ℎ2 respectively. Let 𝑓1 and 𝑓2 be written as Taylor series expansions 

around 𝑥 = 0: 

    𝑓1 = 𝑓(−ℎ1) = 𝑓(0) −
ℎ1

1!

𝑑𝑓(0)

𝑑𝑥
+

ℎ1
2

2!

𝑑2𝑓(0)

𝑑𝑥2 −
ℎ1

3

3!

𝑑3𝑓(0)

𝑑𝑥3 + 𝑂(ℎ1
4)  (2.20) 

    𝑓2 = 𝑓(ℎ2) = 𝑓(0) +
ℎ2

1!

𝑑𝑓(0)

𝑑𝑥
+

ℎ2
2

2!

𝑑2𝑓(0)

𝑑𝑥2 +
ℎ2

3

3!

𝑑3𝑓(0)

𝑑𝑥3 + 𝑂(ℎ2
4)             (2.21) 

Subtracting 𝑓1 from 𝑓2 gives an expression for the first derivative along with the associated 

error, where ℎ represents the point spacing if ℎ = ℎ1 = ℎ2. If the spacing is not equal, the 

𝑂(ℎ3) term consists of an expression involving both ℎ1
3 and ℎ2

3. 

   𝑓2 − 𝑓1 = (ℎ2 + ℎ1)
𝑑𝑓(0)

𝑑𝑥
+

(ℎ2
2−ℎ1

2)

2

 𝑑2𝑓(0)

𝑑𝑥2 + 𝑂(ℎ3)    (2.22) 

           
𝑑𝑓(0)

𝑑𝑥
=

𝑓2−𝑓1

ℎ2+ℎ1
−

1

2
(ℎ2 − ℎ1)

 𝑑2𝑓(0)

𝑑𝑥2 + 𝑂(ℎ2)      (2.23) 

The error of the derivative is of the order 𝑂(ℎ2) when the point spacing is equal and of the 

order 𝑂(ℎ) when the point spacing is unequal. 

The second derivative of 𝑓 about 0 is found in a similar manner and is given by: 

𝑑2𝑓(0)

𝑑𝑥2 =
2

ℎ1ℎ2

ℎ2𝑓1−(ℎ1+ℎ2)𝑓0+ℎ1𝑓2

ℎ1+ℎ2
+ 𝑂(ℎ)     (2.24) 

The error of the second derivative is 𝑂(ℎ), where ℎ is an expression involving a linear 

combination of ℎ1 and ℎ2. However, the error reduces to 𝑂(ℎ2) when ℎ = ℎ1 = ℎ2. 

From these derivative expressions, it is evident that it is preferable to use equidistant point 

discretisation when calculating derivatives by method of finite difference in order to reduce 

the size of the error term. However, to reduce computation time and memory, non-

equidistant point discretisation is often used provided the difference in the point spacing is 

not made too large. 
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Applying the method of finite difference to the derivatives in the semi-vectorial wave 

equations (2.16) – (2.19) for the various component of the electromagnetic fields, the 

following finite difference expressions are obtained for the derivatives calculated at point 

(𝑥𝑝, 𝑦𝑞) where 𝐴 represents a component of the field, Δ𝑥𝑙 and Δ𝑥𝑟 represent the spacing to 

the left and right of a point along the 𝒙̂ axis, and Δ𝑦𝑑 and Δ𝑦𝑢 represent the spacing below 

and above a point along the 𝒚̂ axis: 

    
𝜕2𝐴(𝑥𝑝,𝑦𝑞)

𝜕𝑥2 =
2

Δ𝑥𝑙(Δ𝑥𝑙+Δ𝑥𝑟)
𝐴(𝑥𝑝−1, 𝑦𝑞) +

2

Δ𝑥𝑟(Δ𝑥𝑙+Δ𝑥𝑟)
𝐴(𝑥𝑝+1, 𝑦𝑞) −

2

𝛥𝑥𝑙𝛥𝑥𝑟
𝐴(𝑥𝑝, 𝑦𝑞)    (2.25) 

𝜕2𝐴(𝑥𝑝,𝑦𝑞)

𝜕𝑦2 =
2

Δ𝑦𝑑(Δ𝑦𝑑+Δ𝑦𝑢)
𝐴(𝑥𝑝, 𝑦𝑞−1) +

2

Δ𝑦𝑢(Δ𝑦𝑑+Δ𝑦𝑢)
𝐴(𝑥𝑝, 𝑦𝑞+1) −

2

𝛥𝑦𝑑𝛥𝑦𝑢
𝐴(𝑥𝑝, 𝑦𝑞)  (2.26) 

𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐴(𝑥𝑝, 𝑦𝑞)) =

2

Δ𝑥𝑙+Δ𝑥𝑟
[

1

Δ𝑥𝑟

𝜀𝑟(𝑥𝑝+1,𝑦𝑞)−𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝+1,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞)
(𝐴(𝑥𝑝, 𝑦𝑞) + 𝐴(𝑥𝑝+1, 𝑦𝑞)) −  

      
1

Δ𝑥𝑙

𝜀𝑟(𝑥𝑝,𝑦𝑞)−𝜀𝑟(𝑥𝑝−1,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝−1,𝑦𝑞)
(𝐴(𝑥𝑝, 𝑦𝑞) + 𝐴(𝑥𝑝−1, 𝑦𝑞)) ]      (2.27) 

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐴(𝑥𝑝, 𝑦𝑞)) =

2

Δ𝑦𝑑+Δ𝑦𝑢
[

1

Δ𝑦𝑢

𝜀𝑟(𝑥𝑝,𝑦𝑞+1)−𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞+1)+𝜀𝑟(𝑥𝑝,𝑦𝑞)
(𝐴(𝑥𝑝, 𝑦𝑞) + 𝐴(𝑥𝑝, 𝑦𝑞+1)) −  

      
1

Δ𝑦𝑑

𝜀𝑟(𝑥𝑝,𝑦𝑞)−𝜀𝑟(𝑥𝑝,𝑦𝑞−1)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞−1)
(𝐴(𝑥𝑝, 𝑦𝑞) + 𝐴(𝑥𝑝, 𝑦𝑞−1)) ]       (2.28) 

Substituting these finite difference expressions into the wave equations results in a finite 
difference equation of the following form: 

𝛼𝑙𝐴𝑝−1,𝑞 + 𝛼𝑟𝐴𝑝+1,𝑞 + 𝛼𝑑𝐴𝑝,𝑞−1 + 𝛼𝑢𝐴𝑝,𝑞+1 + (𝛼𝑚 + 𝑘0
2𝜀𝑟(𝑝, 𝑞))𝐴𝑝,𝑞 = 𝛽2𝐴𝑝,𝑞     (2.29) 

The 𝛼 coefficients depend on the mode and field analysed. In the quasi-TE mode with 𝐴 =

𝐸𝑥: 

𝛼𝑙 =
2

Δ𝑥𝑙(Δ𝑥𝑙+Δ𝑥𝑟)

2𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝−1,𝑦𝑞)
    (2.30) 

𝛼𝑟 =
2

𝛥𝑥𝑟(𝛥𝑥𝑙+𝛥𝑥𝑟)

2𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝+1,𝑦𝑞)
    (2.31) 

𝛼𝑑 =
2

𝛥𝑦𝑑(𝛥𝑦𝑑+𝛥𝑦𝑢)
               (2.32) 

𝛼𝑢 =
2

𝛥𝑦𝑢(𝛥𝑦𝑑+𝛥𝑦𝑢)
               (2.33) 

   𝛼𝑚 = −
4

𝛥𝑥𝑙𝛥𝑥𝑟
+ 𝛼𝑙 + 𝛼𝑟 − 𝛼𝑑 − 𝛼𝑢       (2.34) 

In the quasi-TE mode with 𝐴 = 𝐻𝑦: 

𝛼𝑙 =
2

Δ𝑥𝑙(Δ𝑥𝑙+Δ𝑥𝑟)

2𝜀𝑟(𝑥𝑝−1,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝−1,𝑦𝑞)
    (2.35) 

𝛼𝑟 =
2

𝛥𝑥𝑟(𝛥𝑥𝑙+𝛥𝑥𝑟)

2𝜀𝑟(𝑥𝑝+1,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝+1,𝑦𝑞)
    (2.36) 
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𝛼𝑑 =
2

𝛥𝑦𝑑(𝛥𝑦𝑑+𝛥𝑦𝑢)
              (2.37) 

𝛼𝑢 =
2

𝛥𝑦𝑢(𝛥𝑦𝑑+𝛥𝑦𝑢)
              (2.38) 

𝛼𝑚 = −𝛼𝑙 − 𝛼𝑟 − 𝛼𝑑 − 𝛼𝑢        (2.39) 

In the quasi-TM mode with 𝐴 = 𝐸𝑦: 

𝛼𝑙 =
2

Δ𝑥𝑙(Δ𝑥𝑙+Δ𝑥𝑟)
             (2.40) 

𝛼𝑟 =
2

𝛥𝑥𝑟(𝛥𝑥𝑙+𝛥𝑥𝑟)
             (2.41) 

𝛼𝑑 =
2

𝛥𝑦𝑑(𝛥𝑦𝑑+𝛥𝑦𝑢)

2𝜀𝑟(𝑥𝑝,𝑦𝑞−1)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞−1)
     (2.42) 

𝛼𝑢 =
2

𝛥𝑦𝑢(𝛥𝑦𝑑+𝛥𝑦𝑢)

2𝜀𝑟(𝑥𝑝,𝑦𝑞+1)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞+1)
     (2.43) 

𝛼𝑚 = −
4

𝛥𝑦𝑑𝛥𝑦𝑢
− 𝛼𝑙 − 𝛼𝑟 + 𝛼𝑑 + 𝛼𝑢     (2.44) 

In the quasi-TM mode with 𝐴 = 𝐻𝑥: 

𝛼𝑙 =
2

Δ𝑥𝑙(Δ𝑥𝑙+Δ𝑥𝑟)
               (2.45) 

𝛼𝑟 =
2

𝛥𝑥𝑟(𝛥𝑥𝑙+𝛥𝑥𝑟)
                (2.46) 

𝛼𝑑 =
2

𝛥𝑦𝑑(𝛥𝑦𝑑+𝛥𝑦𝑢)

2𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞−1)
    (2.47) 

𝛼𝑢 =
2

𝛥𝑦𝑢(𝛥𝑦𝑑+𝛥𝑦𝑢)

2𝜀𝑟(𝑥𝑝,𝑦𝑞)

𝜀𝑟(𝑥𝑝,𝑦𝑞)+𝜀𝑟(𝑥𝑝,𝑦𝑞+1)
    (2.48) 

𝛼𝑚 = −𝛼𝑙 − 𝛼𝑟 − 𝛼𝑑 − 𝛼𝑢         (2.49) 

Equation (2.29) is an eigenvalue matrix equation of the following form: 

 𝐹𝜙 = 𝛽2𝜙          (2.50) 

𝐹 represents the global matrix, 𝜙 represents the eigenvectors and 𝛽2 represents the 

eigenvalues. Therefore, the propagation constants and corresponding field distributions can 

be found by solving the eigenvalue matrix equation. The global matrix 𝐹 takes the form of a 

structurally symmetric sparse matrix, allowing it to be solved efficiently using a sparse 

matrix eigenvalue equation solver. The Armadillo C++ library was used for this purpose [30] 

[31]. Armadillo includes the ability to find a specified number of eigenvalues with the largest 

real part. This greatly sped up the computation as the effective refractive index of the 

fundamental mode always had the largest real part. For example, finding the fundamental 

mode of a waveguide where 250 x 250 discretisation points were used in the computation 

took approximately 30 seconds using two cores of an Intel Core i7-9700 processor. 
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2.2.2 Mode Solver Boundary Conditions 
When programming the point mesh and global matrix, boundary conditions must be 

implemented on points at the edge of the computational window. The two different 

boundary conditions utilised for this purpose were the Derichlet condition and the 

Neumann condition [33]. 

According to the Derichlet condition, the field outside the computational area is set to zero. 

  𝜙 = 0      (2.51) 

According to the Neumann condition, the normal derivative of the field at the edge of the 

computational window is set to zero. 

 
𝜕𝜙

𝜕𝑛
= 0      (2.52) 

These boundary conditions can be implemented by considering a hypothetical point outside 

of the computational area. If, for example, this point is located to the left of the 

computational area at (𝑥𝑝−1, 𝑦𝑞) while the point at (𝑥𝑝, 𝑦𝑞) is at the edge of the 

computational area, the field at these points are related by: 

𝜙𝑝−1,𝑞 = 𝛾𝜙𝑝,𝑞             (2.53) 

𝛾 is equal to zero in the case of Derichlet boundary conditions and 𝛾 is equal to one in the 

case of Neumann boundary conditions. 

𝛾 = {
0                                       (Dirichlet)
1                                     (Neumann)

    (2.54) 

The finite difference expression given by equation (2.29) then changes to: 

        𝛼𝑟𝐴𝑝+1,𝑞 + 𝛼𝑑𝐴𝑝,𝑞−1 + 𝛼𝑢𝐴𝑝,𝑞+1 + (𝛼𝑚′ + 𝑘0
2𝜀𝑟(𝑝, 𝑞))𝐴𝑝,𝑞 = 𝛽2𝐴𝑝,𝑞           (2.55) 

with: 

𝛼𝑚
′ = 𝛼𝑚 + 𝛼𝑙𝛾             (2.56) 

The same procedure is done for the boundaries at the other edges of the computational 

window. 

2.2.3 Testing Mode Solver  
The mode solver was tested to ensure it worked correctly for each mode and field 

polarisation. For this purpose, a simple square step index waveguide was analysed to easily 

observe if the field was continuous or discontinuous at refractive index boundaries for the 

different field polarisations. The width and height of the core are both 0.4 𝜇𝑚 and the 

refractive indices of the core and cladding are 3.5 and 3.1693 respectively. This refractive 

index for the core is a typical refractive index for a semiconductor core waveguide material 

and the cladding refractive index is approximately that of InP which is again a typical 

material used in these structures. This is the same waveguide as was analysed in reference 

[32] to test their implementation of the semi-vectorial finite difference method. The 

cladding extends for 2 𝜇𝑚 on each side of the core, giving the computational area a size of 
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4.4 𝜇𝑚 × 4.4 𝜇𝑚. The computational grid was divided into 251 x 251 points utilizing non-

equidistant point discretisation. The minimum spacing between points close to the 

refractive index boundaries was ∼ 0.007 𝜇𝑚 and the maximum point spacing was ∼

0.017 𝜇𝑚. Dirichlet boundary conditions were implemented in the simulation. The 

wavelength of the light analysed was 1.55 𝜇𝑚. This is the wavelength of the light analysed 

for all optical waveguides in this thesis, unless stated otherwise. A schematic of the 

waveguide is shown in Figure 2.1. 

Figure 2.2 shows the calculated fundamental mode profiles for the polarised fields in both 

the quasi-TE and quasi-TM modes. Derived from the integral version of Maxwell’s equations 

[34], certain conditions are imposed on the field either side of a material interface. If 𝐴1 and 

𝐴2 are components of the electromagnetic field either side of a refractive index boundary, 

for the electric field, the conditions applied are: 𝐧𝟏𝟐 × (𝐄𝟐 − 𝐄𝟏) = 0 and (𝐃𝟐 − 𝐃𝟏) ⋅

𝐧𝟏𝟐 = 𝜎𝑠, where 𝒏𝟏𝟐 is the normal vector from media 1 to media 2 and 𝜎𝑠 is the surface 

charge between the media. Meanwhile, for the magnetic field, the conditions applied are: 

𝐧𝟏𝟐 × (𝐇𝟐 − 𝐇𝟏) = 𝐣𝐬 and (𝐁𝟐 − 𝐁𝟏) ⋅ 𝐧𝟏𝟐 = 0, where 𝐣𝐬 is the surface current density 

between the two media. As 𝜎𝑠 and 𝐣𝐬 are both equal to zero, the following boundary 

conditions are applied to the polarised fields: 

• Tangential components of the electric fields are continuous, 𝐸1𝑡 = 𝐸2𝑡. 

• Normal components of the electric flux densities are continuous, 𝐷1𝑛 = 𝐷2𝑛 or 

𝜀𝑟1𝐸1𝑛 = 𝜀𝑟2𝐸2𝑛. 

• Due to the assumption that the magnetic permeability is the same for both 

materials, both the tangential and normal components of the magnetic fields are 

continuous, 𝐻1𝑡 = 𝐻2𝑡, 𝐻1𝑛 = 𝐻2𝑛. 

Figure 2.2 shows these conditions to hold, with 𝐸𝑥 appearing discontinuous at the refractive 

index boundaries along the 𝒙̂ direction in the quasi-TE mode, and 𝐸𝑦 appearing 

discontinuous at the refractive index boundaries along the 𝒚̂ direction in the quasi-TM 

mode. Meanwhile, 𝐻𝑥 and 𝐻𝑦 appear continuous at all refractive index boundaries. 

 

 
Figure 2.1: Refractive Index Profile of Rectangular Waveguide 
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(a) 𝐸𝑥  vs. 𝑥 & 𝑦 in the quasi-TE mode (b) 𝐻𝑦  vs. 𝑥 & 𝑦 in the quasi-TE mode 

with 𝑛𝑒𝑓𝑓 = 3.21682   with 𝑛𝑒𝑓𝑓 = 3.21682 

   
(a) 𝐸𝑦 vs. 𝑥 & 𝑦 in the quasi-TM mode (b) 𝐻𝑥  vs. 𝑥 & 𝑦 in the quasi-TM mode 

with 𝑛𝑒𝑓𝑓 = 3.21682   with 𝑛𝑒𝑓𝑓 = 3.21682 

Figure 2.2: Fundamental electric and magnetic field profiles for the quasi-TE and quasi-TM modes. 

The calculated effective refractive indices from the mode solver were 3.21682 for both the 

quasi-TE mode and the quasi-TM mode. These effective refractive indices were the same 

due to the square waveguide having the same properties along the 𝒙̂ and 𝒚̂ directions. In 

the analysis of reference [32], they got an effective refractive index of 3.2172 for both 

modes, however they used just 92 non-equidistant computational area points in each 

transverse direction and were therefore likely less accurate. To examine the accuracy of the 

simulations, the same simulation was done using different numbers of computational points 

and the calculated effective refractive indices were recorded. Figure 2.3 shows the results 

from the simulations involving the quasi-TM mode where the number of computational 

points along each direction varied from 51 to 251. The number of points close to the 

refractive index boundary was kept constant for each simulation, leaving the point spacing 

in this region at ∼ 0.007 𝜇𝑚, while the number of points in the other regions varied causing 

the point spacing to vary from ∼ 0.12 𝜇𝑚 with 51 computational points in both directions 

to ∼ 0.017 𝜇𝑚 with 251 computational points in both directions. The effective refractive 

index appears to converge to a value as the number of computational points increases. This 

is to be expected as the error in the finite difference approximations is of the order Δ𝑥 when 

the point spacing is unequal and of the order Δ𝑥2 when the point spacing is equal, as can be 

seen from equation (2.23). 
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Figure 2.3: Calculated effective refractive index vs. number of points used in computation. 

2.3 The 3D Semi-Vectorial Finite Difference Beam Propagation 

Method 
For the beam propagation method, the waveguide is no longer assumed to be invariant in 

the propagation direction, and therefore the derivatives with respect to 𝑧 must be 

calculated at each propagation point. Assuming there is no coupling between the differently 

polarised field components, this results in the following semi-vectorial wave equations for 

the quasi-TE mode as derived from equations (2.6) and (2.10): 

𝜕2𝐸𝑥

𝜕𝑥2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝐸𝑥) + 

𝜕2𝐸𝑥

𝜕𝑦2 +  
𝜕2𝐸𝑥

𝜕𝑧2 + 𝑘0
2𝜀𝑟𝐸𝑥 = 0           (2.57) 

𝜀𝑟
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝐻𝑦

𝜕𝑥
) +  

𝜕2𝐻𝑦

𝜕𝑦2 +
𝜕2𝐻𝑦

𝜕𝑧2 + 𝑘0
2𝜀𝑟𝐻𝑦 = 0     (2.58) 

And for the quasi-TM mode, results in the following semi-vectorial wave equations as 

derived from equations (2.7) and (2.9): 

𝜕2𝐸𝑦

𝜕𝑥2
+  

𝜕2𝐸𝑦

𝜕𝑦2
+

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) +  

𝜕2𝐸𝑦

𝜕𝑧2
+ 𝑘0

2𝜀𝑟𝐸𝑦 = 0           (2.59) 

  
𝜕2𝐻𝑥

𝜕𝑥2
+ 𝜀𝑟

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝐻𝑥

𝜕𝑦
) +

𝜕2𝐻𝑥

𝜕𝑧2
 + 𝑘0

2𝜀𝑟𝐻𝑥 = 0          (2.60) 

In the derivation of the magnetic fields above, the derivative of the relative permittivity with 

respect to 𝑧, 𝜕𝜀𝑟/𝜕𝑧, is assumed to be small and therefore the 
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑧

𝜕𝐻

𝜕𝑧
 term is ignored. 

The field components above can be expressed as the product of a complex field amplitude 

𝜙(𝑥, 𝑦, 𝑧) and a propagation factor exp(𝑖𝑘0𝑛0𝑧), where 𝑛0 is a reference index which is 

usually chosen to be that of the effective index of the propagating mode where possible. If 

the effective index is not known, the index of the cladding is usually used instead at the cost 

of lower accuracy. In this case, the wide angle Padé operators can be used to improve 

accuracy, where the choice of reference index has less impact on the calculation, as will be 

shown later in the chapter. For example, for 𝐸𝑥 in the quasi-TE mode: 

𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝜙(𝑥, 𝑦, 𝑧) exp(𝑖𝑘𝑜𝑛𝑜𝑧)                (2.61) 
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Substituting this expression into equation (2.57) results in the following: 

−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑧
−

𝜕2𝜙

𝜕𝑧2 =
𝜕2𝜙

𝜕𝑥2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝜙) + 

𝜕2𝜙

𝜕𝑦2 + 𝑘0
2(𝜀𝑟 − 𝑛0

2) 𝜙            (2.62) 

2.3.1 Slowly Varying Envelope Approximation (SVEA) 
If the wave is assumed to be paraxial, i.e. propagates at a very small angle to the 𝒛̂ direction, 

the slowly varying envelope approximation (SVEA) can be applied. According to the SVEA: 

2𝑘𝑜𝑛0 |
𝜕𝜙

𝜕𝑧
| ≫ |

𝜕2𝜙

𝜕𝑧2 |               (2.63) 

This allows the following Fresnel equation for the 𝐸𝑥 field in the quasi-TE mode to be 

obtained: 

−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑧
=

𝜕2𝜙

𝜕𝑥2
+

𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝜙) + 

𝜕2𝜙

𝜕𝑦2
+ 𝑘0

2(𝜀𝑟 − 𝑘0
2𝑛0

2)𝜙       (2.64) 

The same procedure is followed to find the Fresnel equations for the other fields. 

2.3.2 Finite Difference Expressions of BPM Wave Equations 
The right-hand side of equation (2.64) is the same as the left-hand side of equation (2.16), 

with 𝜙 replacing 𝐸𝑥 and 𝑛0 replacing 𝑛𝑒𝑓𝑓. This means that the derivatives in the transverse 

directions may be approximated by the method of finite difference in the same fashion as 

was done for the mode solver. Discretising the right-hand side of equation (2.64) in this 

manner results in the following finite difference expression: 

−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑧
= 𝛼𝑙𝜙𝑝−1,𝑞 + 𝛼𝑟𝜙𝑝+1,𝑞 + 𝛼𝑑𝜙𝑝,𝑞−1 + 𝛼𝑢𝜙𝑝,𝑞+1 + (𝛼𝑚 + 𝑘0

2(𝜀𝑟(𝑝, 𝑞) − 𝑛0
2))𝜙𝑝,𝑞 

  (2.65) 

The 𝛼 coefficients are the same as those given by equations (2.30) to (2.49), depending on 

the mode and field analysed. 

Next, equation (2.65) must be discretised with respect to the propagation direction, 𝑧. 

Applying the method of finite difference, the left-hand side of the equation is represented 

by: 

−2𝑖𝑘0𝑛0
𝜙𝑝

𝑘+1−𝜙𝑝
𝑘

𝛥𝑧
              (2.66) 

The superscript 𝑘 refers to a point along the 𝑧 propagation direction and Δ𝑧 is the distance 

between propagation points.  

The difference centre of equation (2.66), the left-hand side of equation (2.65), is midway 

between 𝑘 and 𝑘 + 1 at 𝑘 +
1

2
. Therefore, the difference centre of the right-hand side of 

equation (2.65) must also be at 𝑘 +
1

2
. Discretisation of the propagation direction in this 

manner is known as the Crank-Nicholson scheme. To achieve this, the right-hand side is 

averaged at points 𝑘 and 𝑘 + 1. This results in the following finite difference expression: 

−2𝑖𝑘0𝑛0
𝜙𝑝

𝑘+1−𝜙𝑝
𝑘

Δ𝑧
=

1

2
[𝛼𝑙

𝑘𝜙𝑝−1,𝑞
𝑘 + 𝛼𝑟

𝑘𝜙𝑝+1,𝑞
𝑘 + 𝛼𝑑

𝑘𝜙𝑝,𝑞−1
𝑘 + 𝛼𝑢

𝑘𝜙𝑝,𝑞+1
𝑘 + (𝛼𝑚

𝑘 + 𝑘0
2(𝜀𝑟

𝑘(𝑝, 𝑞) −   
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𝑛0
2))𝜙𝑝,𝑞

𝑘 ] +
1

2
[ 𝛼𝑙

𝑘+1𝜙𝑝−1,𝑞
𝑘+1 + 𝛼𝑟

𝑘+1𝜙𝑝+1,𝑞
𝑘+1 + 𝛼𝑑

𝑘+1𝜙𝑝,𝑞−1
𝑘+1 + 𝛼𝑢

𝑘+1𝜙𝑝,𝑞+1
𝑘+1 + (𝛼𝑚

𝑘+1 +  

𝑘0
2(𝜀𝑟

𝑘+1(𝑝, 𝑞) − 𝑛0
2))𝜙𝑝,𝑞

𝑘+1 ]     (2.67) 

Rewriting the equation so that 𝑘 + 1 terms are put on the left-hand side and 𝑘 terms are 

put on the right-hand side: 

−𝛼𝑙
𝑘+1𝜙𝑝−1,𝑞

𝑘+1 − 𝛼𝑟
𝑘+1𝜙𝑝+1,𝑞

𝑘+1 − 𝛼𝑑
𝑘+1𝜙𝑝,𝑞−1

𝑘+1 − 𝛼𝑢
𝑘+1𝜙𝑝,𝑞+1

𝑘+1 − [ 𝛼𝑚
𝑘+1 +

4𝑖𝑘0𝑛0

Δ𝑧
 

+𝑘0
2(𝜀𝑟

𝑘+1(𝑝, 𝑞) − 𝑛0
2) ] 𝜙𝑝,𝑞

𝑘+1 = 𝛼𝑙
𝑘𝜙𝑝−1,𝑞

𝑘 + 𝛼𝑟
𝑘𝜙𝑝+1,𝑞

𝑘 + 𝛼𝑑
𝑘𝜙𝑝,𝑞−1

𝑘 + 𝛼𝑢
𝑘𝜙𝑝,𝑞+1

𝑘 + [ 𝛼𝑚
𝑘 − 

4𝑖𝑘0𝑛0

𝛥𝑧
+ 𝑘0

2(𝜀𝑟
𝑘(𝑝, 𝑞) − 𝑛0

2) ] 𝜙𝑝,𝑞
𝑘            (2.68) 

As the field at point 𝑘 is assumed to be known, equation (2.68) results in a structurally 

symmetric sparse matrix equation of the form 𝐴𝑥 = 𝐵, to be solved at each propagation 

step. This equation was solved using the large sparse linear system of equations solver, Intel 

MKL PARDISO [35]. Intel MKL PARDISO was used as it included a parallel solver optimised for 

structurally symmetric sparse matrix equations and was also optimised for Intel processors. 

2.3.3 Boundary Conditions 
As applying the finite difference beam propagation method requires a finite computational 

area, boundary conditions must be implemented at the edge of the computational window. 

Without these boundary conditions, radiated waves would be reflected back into the 

waveguide at the computational boundary and would then interfere with the propagating 

fields. This would greatly reduce the accuracy of the BPM simulation and therefore these 

boundary conditions are required to supress the reflections at the boundary. Two different 

boundary conditions were used with this BPM, their use depending on the waveguide 

structure and the method used to analyse the waveguide. 

2.3.3.1 Transparent Boundary Condition 

The transparent boundary condition (TBC) [36] was developed by Hadley as a way to 

simulate a non-existent boundary, where radiation is allowed to escape the waveguide 

without appreciable reflection. 

In the TBC, the field is assumed to be of the following form, with 𝑘𝑥 representing the 𝒙̂ 

directed wave number and 𝑘𝑦 representing the 𝒚̂ directed wave number: 

𝜙(𝑥, 𝑦, 𝑧) = 𝐴(𝑥, 𝑦, 𝑧) exp(𝑖𝑘𝑥𝑥) exp(𝑖𝑘𝑦𝑦)        (2.69) 

At the waveguide boundary, the value of 𝑘𝑥 or 𝑘𝑦 (depending on the direction of the normal 

to the boundary) can be determined by using the boundary point and the point closest to 

that boundary point. For example, if the boundary is on the right-hand side in the 𝒙̂ 

direction at an arbitrary 𝑦 and 𝑧 location and the 𝑥 axis is discretised into 𝑁 points, the 

fields at the boundary point and at the point closest to the boundary point can be 

represented by 𝜙𝑁,𝑞
𝑘  and 𝜙𝑁−1,𝑞

𝑘 , respectively, and are given by: 
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𝜙𝑁,𝑞
𝑘 = 𝐴(𝑦, 𝑧) exp(𝑖𝑘𝑥𝑥𝑁)        (2.70) 

𝜙𝑁−1,𝑞
𝑘 = 𝐴(𝑦, 𝑧) exp(𝑖𝑘𝑥𝑥𝑁−1)           (2.71) 

Dividing 𝜙𝑁,𝑞
𝑘  by 𝜙𝑁−1,𝑞

𝑘  gives the following expression for 𝑘𝑥: 

𝑘𝑥 = −
𝑖

𝑥𝑁−𝑥𝑁−1
ln (

𝜙𝑁,𝑞
𝑘

𝜙𝑁−1,𝑞
𝑘 )       (2.72) 

If a hypothetical point exists just outside the computational area at 𝑥𝑁+1, a distance Δ𝑥 

away from the boundary point where Δ𝑥 = 𝑥𝑁+1 − 𝑥𝑁 = 𝑥𝑁 − 𝑥𝑁−1, the field at this point 

can be expressed as: 

𝜙𝑁+1,𝑞
𝑘 = 𝐴(𝑦, 𝑧) exp(𝑖𝑘𝑥𝑥𝑁+1)           (2.73) 

Dividing 𝜙𝑁+1,𝑞
𝑘  by 𝜙𝑁,𝑞

𝑘  gives the following expression for 𝜙𝑁+1,𝑞
𝑘 : 

𝜙𝑁+1,𝑞
𝑘 = 𝜙𝑁,𝑞

𝑘 exp(𝑖𝑘𝑥𝛥𝑥)        (2.74) 

Substituting in the value for 𝑘𝑥 from equation (2.72) gives the following expression: 

𝜙𝑁+1,𝑞
𝑘 =

𝜙𝑁,𝑞
𝑘

𝜙𝑁−1,𝑞
𝑘 𝜙𝑁,𝑞

𝑘 = 𝛼𝑏𝜙𝑁,𝑞
𝑘            (2.75) 

However, as the wave travels rightward towards the boundary, this boundary condition is 

only sufficient to supress reflections at the boundary point if the real part of 𝑘𝑥 is positive. If 

𝑘𝑥 is negative, this implies reflection occurs at the boundary, and therefore the sign of the 

real part of 𝑘𝑥 must be switched to ensure the radiation escapes. If the sign of the real part 

of 𝑘𝑥 is switched, the previously found field at the boundary point must be altered in 

accordance with this sign change as shown by equation (2.72). 

Implementation of the boundary condition causes the finite difference equation (2.68) to 

take the following form at the right-hand boundary: 

−𝛼𝑙
𝑘+1𝜙𝑁−1,𝑞

𝑘+1 − 𝛼𝑑
𝑘+1𝜙𝑁,𝑞−1

𝑘+1 − 𝛼𝑢
𝑘+1𝜙𝑁,𝑞+1

𝑘+1 − [ 𝛼𝑚
𝑘+1 +

4𝑖𝑘0𝑛0

Δ𝑧
+ 𝛼𝑟

𝑘+1𝛼𝑏 

+ 𝑘0
2(𝜀𝑟

𝑘+1(𝑁, 𝑞) − 𝑛0
2) ] 𝜙𝑁,𝑞

𝑘+1 = 𝛼𝑙
𝑘𝜙𝑁−1,𝑞

𝑘 + 𝛼𝑑
𝑘𝜙𝑁,𝑞−1

𝑘 + 𝛼𝑢
𝑘𝜙𝑁,𝑞+1

𝑘 + [ 𝛼𝑚
𝑘 + 𝛼𝑟

𝑘𝛼𝑏 − 

4𝑖𝑘0𝑛0

𝛥𝑧
+ 𝑘0

2(𝜀𝑟
𝑘(𝑁, 𝑞) − 𝑛0

2) ] 𝜙𝑁,𝑞
𝑘            (2.76) 

The same procedure must be followed for points on the other boundaries, where the sign of 

𝑘𝑥 and 𝑘𝑦 is flipped if necessary, to ensure radiation escapes at the boundary. 

2.3.3.2 Perfectly Matched Layers 

Another technique to supress reflections at the boundaries is Bérenger’s perfectly matched 

layers (PMLs) [37] boundary condition. This technique involves placing layers with 

anisotropic conductivity at the edge of the computational area. This boundary condition 

requires additional memory and computation time but can be far more effective than the 

TBC for certain waveguide structures and especially for wide-angle propagation. 
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In this technique, the wave equation is mapped through an anisotropic complex 

transformation. The mapping produces a wave that is perfectly matched with the out-going 

waves in the original waveguide. If 𝑥′,𝑦′ and 𝑧′ were components of the original coordinate 

system, the coordinates are transformed as follows [39]: 

𝑥′ → 𝑥 (1 +
𝑖𝜎𝑥

𝜔𝜀0𝑛2)                  (2.77) 

𝑦′ → 𝑦 (1 +
𝑖𝜎𝑧

𝜔𝜀0𝑛2)                  (2.78) 

𝑧′ → 𝑧 (1 +
𝑖𝜎𝑧

𝜔𝜀0𝑛2)                  (2.79) 

𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 are the anisotropic conductivities of the PML region. 𝑛 is the refractive index 

of the PML region, which is assumed to be the same as that of the adjacent original 

computational region. The derivatives in the wave equations are replaced as shown below:  

𝜕

𝜕𝑥′ → (1 +
𝑖𝜎𝑥

𝜔𝜀0𝑛2)
−1 𝜕

𝜕𝑥
          (2.80) 

𝜕

𝜕𝑦′ → (1 +
𝑖𝜎𝑦

𝜔𝜀0𝑛2)
−1 𝜕

𝜕𝑦
         (2.81) 

𝜕

𝜕𝑧′ → (1 +
𝑖𝜎𝑧

𝜔𝜀0𝑛2)
−1 𝜕

𝜕𝑧
       (2.82) 

As the refractive index is assumed to be constant across the PML boundary, if 𝜙1 is the field 

in the original region, 𝜙2 is the field in the PML region and 𝑖 = 𝑥, 𝑦, 𝑧, the continuity 

equations require the following: 

𝜙1 = 𝜙2          (2.83) 

(1 +
𝑖𝜎𝑖1

𝜔𝜀0𝑛2)
−1 𝜕𝜙1

𝜕𝑖
= (1 +

𝑖𝜎𝑖2

𝜔𝜀0𝑛2)
−1 𝜕𝜙2

𝜕𝑖
          (2.84) 

If 𝑅 is the reflection coefficient at the boundary and the normal to the boundary is assumed 

to be in the 𝒙̂ direction, the field takes the following form in the non-PML region: 

𝜙1 = exp(𝑖𝑘𝑥1𝑥 + 𝑖𝑘𝑦1𝑦 + 𝑖𝑘𝑧1𝑧) + 𝑅 exp(−𝑖𝑘𝑥1𝑥 + 𝑖𝑘𝑦1𝑦 + 𝑖𝑘𝑧1𝑧)     (2.85) 

If 𝑇 is the transmission coefficient at the boundary, the field takes the following form in the 

PML region: 

𝜙2 = 𝑇 exp(𝑖𝑘𝑥2𝑥 + 𝑖𝑘𝑦2𝑦 + 𝑖𝑘𝑧2𝑧)                (2.86) 

The 𝑘𝑖𝑗 wavenumbers above have been modified due to the coordinate transformation as 

follows: 

𝑘𝑥𝑗 = (1 +
𝑖𝜎𝑥𝑗

𝜔𝜀0𝑛2
) 𝑛𝑘0 sin 𝜃𝑗 cos 𝜑𝑗                  (2.87) 

𝑘𝑦𝑗 = (1 +
𝑖𝜎𝑦𝑗

𝜔𝜀0𝑛2) 𝑛𝑘0 sin 𝜃𝑗 sin 𝜑𝑗      (2.88) 
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𝑘𝑧𝑗 = (1 +
𝑖𝜎𝑧𝑗

𝜔𝜀0𝑛2
) 𝑛𝑘0 cos 𝜃𝑗              (2.89) 

The angles 𝜃𝑗  and 𝜑𝑗 are the polar and arizmuthal angles respectively on either side of the 

boundary in the spherical coordinate system, formed by the direction of the field incident 

on the boundary, as shown in Figure 2.4. 

 
Figure 2.4: Coordinate system of propagating wave 

If the field is assumed to be incident on the boundary at 𝑥 = 0, utilising the boundary 

condition (2.83), each boundary condition of (2.84) leads to the following relationships: 

𝑖 = 𝑧,   cos 𝜃1 = cos 𝜃2     (2.90) 

𝑖 = 𝑦,    sin 𝜃1 sin 𝜑1 = sin 𝜃2 sin 𝜑2   (2.91) 

𝑖 = 𝑥,    𝑅 =
sin 𝜃1 cos 𝜑1−sin 𝜃2 cos 𝜑2

sin 𝜃2 cos 𝜑2+sin 𝜃1 cos 𝜑2
              (2.92) 

According to equations (2.90) and (2.91), 𝜃1 = 𝜃2, 𝜑1 = 𝜑2. This results in 𝑅 = 0, meaning 

there is no reflection at the PML boundary no matter the angle the field is incident upon the 

boundary. 

As the PML boundary is along the 𝒙̂ direction, 𝜎𝑦 and 𝜎𝑧 can be set to zero, giving the field 

the following form in the PML region: 

𝜙 = exp(𝑖𝑛𝑘0(sin 𝜃 cos 𝜑 𝑥 + sin 𝜃 sin 𝜑 𝑦 + cos 𝜃 𝑧) exp(−𝜎𝑥𝑛−1 sin 𝜃 cos 𝜑 √𝜇0/𝜀0𝑥) 

(2.93) 

Therefore, the non-physical wave in the fictitious PML region matches perfectly with the 

physical wave in the real region adjacent to it and decays exponentially with the decay 

constant 𝛼𝑥 = 𝜎𝑥𝑛−1 sin 𝜃 cos 𝜑 √𝜇0/𝜀0. The same procedure is done for the PML outside 

the boundaries in the 𝒚̂ direction where the attenuation constant is instead given by 𝛼𝑦 =

𝜎𝑦𝑛−1 sin 𝜃 sin 𝜑 √𝜇0/𝜀0. 

Implementation of the PML boundary condition causes the 𝐸𝑥 wave equation in the quasi-

TE mode to take the following form (after the application of the SVEA): 
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−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑧
= 𝑞𝑥

𝜕

𝜕𝑥
(𝑞𝑥

𝜕𝜙

𝜕𝑥
) + 𝑞𝑥

𝜕

𝜕𝑥
(

𝑞𝑥

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
𝜙) +  𝑞𝑦

𝜕

𝜕𝑦
(𝑞𝑦

𝜕𝜙

𝜕𝑦
) + 𝑘0

2(𝜀𝑟 − 𝑛0
2)𝜙       (2.94) 

The variables 𝑞𝑥 and 𝑞𝑦 are defined by: 

𝑞𝑥 =
1

1+𝑖𝜎𝑥/𝜔𝜀0𝑛2
,    𝑞𝑦 =

1

1+𝑖𝜎𝑦/𝜔𝜀0𝑛2
                (2.95) 

𝜎𝑥  and 𝜎𝑦 are only set to a non-zero value in the PML regions outside boundaries in their 

respective directions. Meanwhile, 𝜎𝑧 has been set to 0 for all PML regions. 

The resulting finite difference expression will take the same form as (2.68) with the 𝛼 

components modified to account for the 𝑞𝑥 and 𝑞𝑦 terms. 

2.3.4 Testing 3D-SV-FD-BPM 
To ensure the BPM was implemented correctly, a number of different propagating beams 

and waveguides were analysed. The first test was the propagation of a simple Gaussian 

beam in a uniform medium, which was sent propagating towards the computational 

boundary. 

Assuming the field is polarized in the 𝒙̂ direction and propagates in the 𝒓̂ direction, the 

Gaussian shaped electric field takes the following initial form: 

𝐸(𝑥, 𝑦, 0) = 𝐸0 exp (
−𝜌2

𝜔0
2 ) exp (𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧)) 𝒙̂     (2.96) 

𝐸0 = 𝐸(0, 0, 0) is the initial field amplitude at the origin, 𝜔0 is the radial distance from the 

centre of the Gaussian where the field amplitude falls to 1/𝑒 of its value at the centre of the 

Gaussian, 𝜌 is the radial distance from the centre of the Gaussian, and 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 are the 

wavenumbers in their respective directions and are given by: 

𝑘𝑥 = 𝑛𝑘0 sin 𝜃 cos 𝜑                  (2.97) 

𝑘𝑦 = 𝑛𝑘0 sin 𝜃 sin 𝜑       (2.98) 

𝑘𝑧 = 𝑛𝑘0 cos 𝜃                  (2.99) 

To test the boundary conditions, the Gaussian was propagated at angles 𝜃 = 10° and 𝜑 =

45° in a medium of uniform refractive index. If the boundary conditions are implemented 

correctly, the Gaussian should pass out of the computational region without appreciable 

reflection. The following parameters were used for the Gaussian beam: 𝐸0 = 1.2, 𝜆 =

1.55 𝜇𝑚, 𝜔0 = 𝜆/2, 𝑛 = 16. A large refractive index value was used to prevent the beam 

radius growing too large as it propagated (Gaussian spreading) to allow the passage of the 

beam to be observed more easily. 201 equally spaced points were used in both the 𝒙̂ and 𝒚̂ 

directions giving a point spacing of 0.025 𝜇𝑚. Δ𝑧 was equal to 0.1 𝜇𝑚. Although the Δ𝑧 

value is considerably greater than the transverse spacing, one of the advantages of the FD-

BPM is to ability to use a relatively large propagation step, as the Crank-Nichelson scheme 

results in a very small error [40]. 

Figure 2.5 shows the propagation of the Gaussian beam with the implementation of the 

TBC. As can be seen from the graph, the beam passes through the computational area 
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without appreciable reflection. Figure 2.6 shows the propagation of the same Gaussian 

beam, this time with the implementation of the PML boundary condition. The PML region is 

not displayed in the graphs but extends for 𝐿 = 1 𝜇𝑚 beyond each boundary. The 

conductivities of the region are given by: 

𝜎𝑥 = 𝜎𝑚𝑎𝑥 (
𝑥−𝑥𝑛

𝐿
)

2

,    𝑥 ∈ [𝑥𝑛, 𝑥𝑛 + 𝐿]            (2.100) 

𝜎𝑥 = 𝜎𝑚𝑎𝑥 (
𝑥1−𝑥

𝐿
)

2

,    𝑥 ∈ [𝑥1 − 𝐿, 𝑥1]            (2.101) 

𝜎𝑦 = 𝜎𝑚𝑎𝑥 (
𝑦−𝑦𝑛

𝐿
)

2

,    𝑦 ∈ [𝑦𝑛, 𝑦𝑛 + 𝐿]            (2.102) 

𝜎𝑦 = 𝜎𝑚𝑎𝑥 (
𝑦1−𝑦

𝐿
)

2

,    𝑦 ∈ [𝑦1 − 𝐿, 𝑦1]            (2.103) 

𝑥1, 𝑥𝑛, 𝑦1, 𝑦𝑛 represent the boundary points of the original non-PML region. 𝜎max must be 

tailored for each PML region to ensure the reflections are sufficiently surpessed. In this case, 

𝜎max = 1.5 𝜀0𝜔. 

  
(a) Initial field profile.                         (b) Field at 𝑧 = 5 𝜇𝑚. 

  
(c) Field at 𝑧 = 15 𝜇𝑚.                       (d) Field at 𝑧 = 25 𝜇𝑚. 

Figure 2.5: Gaussian beam propagating through a uniform medium at angles 𝜃 = 10° and 𝜑 = 45° 
with the TBC implemented. 
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(a) Initial field profile.                         (b) Field at 𝑧 = 5 𝜇𝑚. 

 
(c) Field at 𝑧 = 15 𝜇𝑚.                       (d) Field at 𝑧 = 25 𝜇𝑚. 

Figure 2.6: Gaussian beam propagating through a uniform medium at angles 𝜃 = 10° and 𝜑 = 45° 
with the PML implemented. 

Figure 2.7 shows the fraction of power remaining in the computational area as the Gaussian 

propagates towards the boundary in the cases of both the TBC and PML. The graphs prove 

both boundary conditions to be effective with the TBC leaving slightly less power in the 

computational area than the PML after 100 𝜇𝑚 in this case. 

The BPM was then tested by propagating a Gaussian through the rectangular waveguide 

given by Figure 2.1. If the BPM is working correctly, the Gaussian would be expected to 

eventually take the shape of the fundamental mode as it propagates, as the waveguide only 

supports a single mode. 

The Gaussian took the form of equation (2.96) with 𝜆 = 1.55 𝜇𝑚, 𝐸0 = 0.03, and 𝜔0 = 𝜆/4. 
201 equally spaced points were used in both the 𝒙̂ and 𝒚̂ directions giving a point spacing of 
0.022 𝜇𝑚. The Gaussian was propagated for 50 𝜇𝑚 with 500 points used in the propagation 
direction giving a step size of 0.1 𝜇𝑚 in the 𝒛̂ direction. The shape of the Gaussian is given 
by Figure 2.8 (a) and, due to the lack of discontinuities in the magnetic fields, is assumed to 
represent the magnetic field 𝐻𝑦 in the quasi-TE mode. 
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Figure 2.8 (b) shows the shape of the field after it has propagated 50 𝜇𝑚. The field has 

taken the form of the fundamental mode shown in Figure 2.2 (b). To further illustrate this, 

Figure 2.9 gives the overlap integral error (OIE) between the propagating Gaussian beam 

and the fundamental mode. The OIE is a sensitive measure of the deformation between two 

fields and is given by: 

𝑂𝐸 = 1 −
| ∫ ∫ 𝜓1

∗ 𝜓2 𝑑𝑥 𝑑𝑦|2𝐿𝑥
0

𝐿𝑦
0

∫ ∫ |𝜓1|2 𝑑𝑥 𝑑𝑦
𝐿𝑥

0
𝐿𝑦

0  ∫ ∫ |𝜓2|2 𝑑𝑥 𝑑𝑦
𝐿𝑥

0
𝐿𝑦

0

         (2.104) 

The OIE approaches 0 as the field propagates, showing that the initial Gaussian field takes 

the form of the fundamental mode. 

 
(a) TBC           (b) PML 

Figure 2.7: Log10 of the fraction of power remaining in the computational area as the Gaussian 

propagates. 

 
(a) Initial Gaussian.         (b) Field at 𝑧 = 50 𝜇𝑚. 

Figure 2.8: Initial and propagating form of Gaussian field assumed to be the magnetic field 𝐻𝑦 in the 

quasi-TE mode as it propagates through a square waveguide. 
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Figure 2.9: Overlap integral error between propagating Gaussian and the quasi-TE 𝐻𝑦 fundamental 

mode of a rectangular waveguide. 

To further test the boundary conditions, the Gaussian was propagated through the uniform 

medium along the 𝑧 axis, causing it to spread due to diffraction. The analytical solution to 

the paraxial wave equation is known for this “Gaussian spreading” and is given by [38]: 

𝐸(𝑥, 𝑦, 𝑧) = 𝐸0
𝑊0

𝑊(𝑧)
exp (

−(𝑥2+𝑦2)

𝑊2(𝑧)
) exp (𝑖 (𝑘𝑧𝑧 + 𝑘𝑧

(𝑥2+𝑦2)

2𝑅(𝑧)
+ 𝑖𝜑(z))) 𝒙̂        (2.105) 

In the above equation, 𝑊(𝑧) is known as the beam width and 𝑊(𝑧) = 𝑊0√1 + (
𝑧

𝑧0
)

2

, 𝑊0 is 

the waist radius, i.e. the beam width at 𝑧 = 0 and equals 
𝜆𝑧0

𝑛𝜋
, 𝑧0 is the Rayleigh range, 

𝑅(𝑧) = 𝑧 [(1 + (
𝑧0

𝑧
)

2
)], and 𝜑(𝑧) is the phase retardation due to the Gouy Effect. As the 

analytical solution is known, the numerical computations can be compared with the 

analytical solution and the effectiveness of the boundary conditions can be further 

investigated. Figure 2.10 gives the Log10 of the fraction of power remaining in the 

computational area as the Gaussian propagates. The resulting curves appear very similar, 

suggesting the boundary conditions have successfully suppressed the reflections. Figure 

2.11 gives the field distribution for both boundary conditions and the analytical solution at 

𝑧 = 100 𝜇𝑚. The graphs appear to suggest that while the TBC allowed the radiation to pass 

outside the computational region, it was less successful at maintaining the shape of the 

propagating Gaussian. Meanwhile, the PML proved far more capable with this problem as 

the shape of the field closely resembled that of the analytical solution. The results suggest 

that the PML boundary conditions should be used when dealing with diffraction problems of 

this nature. 



The 3D Finite Difference Beam Propagation Method 
 

Analysing Curved Optical Waveguides Using 35 Tommy Murphy 
the Finite Difference Beam Propagation Method 

 
Figure 2.10: 𝐿𝑜𝑔10 of the fraction of power remaining in the computational area as the Gaussian 

propagates for the TBC and PML boundary conditions and the analytical case. 

  
(a) TBC.            (b) PML. 

  
(b) Analytical solution. 

Figure 2.11: Gaussian beam propagating along the 𝑧 axis at 𝑧 = 100 𝜇𝑚 for the TBC and PML 
boundary conditions as well as the analytical solution. 

 

2.4 Wide-Angle Propagation 
Before this section, the BPM was based on the Fresnel wave equation, where the field was 

assumed to be propagating in primarily the 𝒛̂ direction. Here, wide-angle propagation is 
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implemented using Hadley’s technique involving Padé approximant operators [41] and the 

multistep method [42]. 

2.4.1 Padé Approximant Operators 
If the Fresnel approximation is not used, i.e. the second derivative with respect to 𝑧 is not 

ignored, the wave equation takes the following form: 

−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑧
−

𝜕2𝜙

𝜕𝑧2 = 𝑃𝜙         (2.106) 

𝜙 is the complex field amplitude from equation (2.61) and 𝑃 is an operator which depends 

on the mode and field analysed. 𝑃 takes the following forms: 

  𝑃𝑇𝐸(𝐸𝑥) =
𝜕2

𝜕𝑥2 +
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑥
) + 

𝜕2

𝜕𝑦2 + 𝑘0
2(𝜀𝑟 − 𝑛0

2)               (2.107) 

    𝑃𝑇𝐸(𝐻𝑦) = 𝜀𝑟
𝜕

𝜕𝑥
(

1

𝜀𝑟

𝜕

𝜕𝑥
) +  

𝜕2

𝜕𝑦2 + 𝑘0
2(𝜀𝑟 − 𝑛0

2)           (2.108) 

𝑃𝑇𝑀(𝐸𝑦) =
𝜕2

𝜕𝑥2 +  
𝜕2

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
) + +𝑘0

2(𝜀𝑟 − 𝑛0
2)             (2.109) 

𝑃𝑇𝑀(𝐻𝑥) =   
𝜕2

𝜕𝑥2 + 𝜀𝑟
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕

𝜕𝑦
) + 𝑘0

2(𝜀𝑟 − 𝑛0
2)        (2.110) 

Rewriting equation (2.106): 

𝜕

𝜕𝑧
(1 −

𝑖

2𝑘0𝑛0

𝜕

𝜕𝑧
) 𝜙 =

𝑖𝑃

2𝑘0𝑛0
𝜙        (2.111) 

Therefore: 

𝜕𝜙

𝜕𝑧
 =

𝑖𝑃/2𝑘0𝑛0

1−(𝑖/2𝑘0𝑛0)(𝜕/𝜕𝑧)
𝜙     (2.112) 

Regarding the derivatives with respect to 𝑧 in equation (2.112), a recurrence relation 

between the left and right hand side can be constructed as follows: 

𝜕

𝜕𝑧
|

𝑛
 =

𝑖𝑃/2𝑘0𝑛0

1−(𝑖/2𝑘0𝑛0)(𝜕/𝜕𝑧)
|

𝑛−1
 ,   

𝜕

𝜕𝑧
|

0
= 0    (2.113) 

If 𝑛 is considered to be the wide-angle order, the results for the first 6 orders of equation 

(2.113) are given below: 

1. 𝑛 = 1 (Fresnel approximation) 

𝜕

𝜕𝑧
|
1

= 𝑖
𝑃

2𝑘0𝑛0
                (2.114) 

2. 𝑛 = 2 

𝜕

𝜕𝑧
|

2
= 𝑖

𝑃/2𝑘0𝑛0

1+𝑃/4𝑘0
2𝑛𝑜

2                   (2.115) 

3. 𝑛 = 3 

𝜕

𝜕𝑧
|

3
= 𝑖

𝑃/2𝑘0𝑛0 + 𝑃2/8𝑘0
3𝑛0

3

1 + 𝑃/2𝑘0
2𝑛0

2             (2.116) 
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4. 𝑛 = 4 

𝜕

𝜕𝑧
|

4
= 𝑖

𝑃/2𝑘0𝑛0 + 𝑃2/4𝑘0
3𝑛0

3

1 + 3𝑃/4𝑘0
2𝑛0

2 + 𝑃2/16𝑘0
4𝑛0

4                 (2.117) 

5. 𝑛 = 5 

𝜕

𝜕𝑧
|

5
= 𝑖

𝑃/2𝑘0𝑛0 + 3𝑃2/8𝑘0
3𝑛0

3 + 𝑃3/32𝑘0
5𝑛0

5

1 + 𝑃/𝑘0
2𝑛0

2 + 3𝑃2/16𝑘0
4𝑛0

4           (2.118) 

6. 𝑛 = 6 

𝜕

𝜕𝑧
|

6
= 𝑖

𝑃/2𝑘0𝑛0 + 𝑃2/2𝑘0
3𝑛0

3 + 3𝑃3/32𝑘0
5𝑛0

5

1 + 5𝑃/4𝑘0
2𝑛0

2 + 3𝑃2/8𝑘0
4𝑛0

4 +𝑃3/64𝑘0
6𝑛0

6            (2.119) 

Therefore, the recurrence relation (2.113) can be reduced to an expression that only 

includes the components 𝑁 and 𝐷 which are both polynomials of the 𝑃 operator: 

𝜕𝜙

𝜕𝑧
 = 𝑖

𝑁

𝐷
𝜙        (2.120) 

The wide-angle orders correspond to the Padé operators as follows (the Padé order is of the 

form (A, B), where A is the degree of the 𝑃 polynomial in 𝑁 and B is the degree of the 𝑃 

polynomial in 𝐷): 

Wide-angle order (𝒏) Padé order 

1 (1, 0) 

2 (1, 1) 

3 (2, 1) 

4 (2, 2) 

5 (3, 2) 

6 (3, 3) 
Table 2.1: Wide-angle and Padé orders 

2.4.2 Finite Difference Expressions Utilising Padé Approximant Operators 
Differentiating equation (2.120) using the finite difference method and making both sides 

have the same difference centre results in the following finite difference expression: 

1

𝛥𝑧
(𝜙𝑘+1 − 𝜙𝑘) = 𝑖

𝑁

𝐷

1

2
(𝜙𝑘+1 + 𝜙𝑘)              (2.121) 

Restructuring the equation allows it to take the following form: 

𝜙𝑘+1 =
𝐷+𝑖(𝛥𝑧/2)𝑁

𝐷−𝑖(𝛥𝑧/2)𝑁
𝜙𝑘               (2.122) 

As the coefficients of the polynomials 𝑁 and 𝐷 are real, the equation can be written as: 

𝜙𝑘+1 =
𝐷+𝑖(𝛥𝑧/2)𝑁

[𝐷+𝑖(𝛥𝑧/2)𝑁]∗ 
𝜙𝑘 =

∑ 𝜉𝑖𝑃𝑖𝑚
𝑖=0

∑ 𝜉𝑖
∗𝑃𝑖𝑚

𝑖=0

𝜙𝑘               (2.123) 

The 𝑚 in the sum refers to the largest power of 𝑃 in 𝑁 and 𝐷 and is therefore equal to the 

larger of the A, B values in the (A, B) Padé order. The values 𝜉𝑖 for each Padé order are as 

follows: 
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Padé 
order 

𝜉0 𝜉1 𝜉2 𝜉3 

(1, 0) 1 𝑖Δ𝑧

4𝑘0𝑛0
 

N/A N/A 

(1, 1) 1 1

4𝑘0
2𝑛0

2
(1 + 𝑖𝑘0𝑛0Δ𝑧) 

N/A N/A 

(2, 1) 1 1

4𝑘0
2𝑛0

2
(2 + 𝑖𝑘0𝑛0Δ𝑧) 

𝑖Δ𝑧

16𝑘0
3𝑛0

3 
N/A 

(2, 2) 1 1

4𝑘0
2𝑛0

2
(3 + 𝑖𝑘0𝑛0Δ𝑧) 

1

16𝑘0
4𝑛0

4
(1 + 𝑖2𝑘0𝑛0Δ𝑧) 

N/A 

(3, 2) 1 1

4𝑘0
2𝑛0

2
(4 + 𝑖𝑘0𝑛0Δ𝑧) 

1

16𝑘0
4𝑛0

4
(3 + 𝑖3𝑘0𝑛0Δ𝑧) 

𝑖Δ𝑧

64𝑘0
5𝑛0

5 

(3, 3) 1 1

4𝑘0
2𝑛0

2
(5 + 𝑖𝑘0𝑛0Δ𝑧) 

1

16𝑘0
4𝑛0

4
(6 + 𝑖4𝑘0𝑛0Δ𝑧) 

1

64𝑘0
6𝑛0

6
(1 + 𝑖3𝑘0𝑛0Δ𝑧) 

Table 2.2: Coefficients of 𝑃𝑖  for each Padé order 

Therefore, the unknown field at 𝜙𝑘+1 can be found using equation (2.123). 

2.4.3 Multistep Method 
Due to equation (2.123) potentially containing 𝑃 with powers greater than 1, the finite 

difference expression becomes more complicated and the subsequent matrix becomes less 

sparse as the Padé order increases. Fortunately, Hadley developed a method which 

simplifies the problem, the multistep method, originally created to keep the component 

matrix tridiagonal for his 2D analysis, as a tridiagonal matrix equation is much more 

numerically efficient to solve. 

Consider the numerator on the right-hand side of equation (2.123). As 𝜉0 always equals 1, 

the numerator is always written in the form 1 + 𝜉1𝑃1 + 𝜉2𝑃2 + ⋯ + 𝜉𝑚𝑃𝑚. This allows the 

numerator to be factorised in the following form: 

   ∑ 𝜉𝑖𝑃
𝑖𝑚

𝑖=0 = (1 + 𝑎𝑚𝑃) … (1 + 𝑎2𝑃)(1 + 𝑎1𝑃)           (2.124) 

The 𝑎 coefficients can be found algebraically by relating them with the previously found 𝜉 

coefficients. 

As the denominator of the right-hand side of equation (2.123) is just the complex conjugate 

of the numerator, it can be represented as: 

 ∑ 𝜉𝑖
∗𝑃𝑖𝑚

𝑖=0 = (1 + 𝑎𝑚
∗ 𝑃) … (1 + 𝑎2

∗𝑃)(1 + 𝑎1
∗𝑃)          (2.125) 

The field 𝜙𝑘+1 is therefore related to the field 𝜙𝑘 as follows: 

𝜙𝑘+1 =
(1+𝑎𝑚𝑃)…(1+𝑎2𝑃)(1+𝑎1𝑃)

(1+𝑎𝑚
∗ 𝑃)…(1+𝑎2

∗𝑃)(1+𝑎1
∗𝑃)

𝜙𝑘            (2.126) 

In order to solve the equation, it must first be rewritten as: 

(1+𝑎𝑚
∗ 𝑃)…(1+𝑎2

∗𝑃)

(1+𝑎𝑚𝑃)…(1+𝑎2𝑃)
𝜙𝑘+1 =

(1+𝑎1𝑃)

(1+𝑎1
∗𝑃)

𝜙𝑘           (2.127) 
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Allowing the left-hand side of the equation to be written as: 

(1+𝑎𝑚
∗ 𝑃)…(1+𝑎2

∗𝑃)

(1+𝑎𝑚𝑃)…(1+𝑎2𝑃)
𝜙𝑘+1 = 𝜙𝑘+

1

𝑚        (2.128) 

Equation (2.127) can be represented by: 

(1 + 𝑎1
∗𝑃)𝜙𝑘+

1

𝑚 = (1 + 𝑎1𝑃)𝜙𝑘          (2.129) 

After applying the 𝑃 operator, this equation takes the same form as equation (2.68), 

allowing it to be solved in the same manner as that of the Fresnel equation. Once 𝜙𝑘+
1

𝑚 has 

been found, the procedure is repeated with: 

(1 + 𝑎2
∗𝑃)𝜙𝑘+

2

𝑚 = (1 + 𝑎2𝑃)𝜙𝑘+
1

𝑚          (2.130) 

The procedure is repeated until 𝜙𝑘+1 is found with the final equation being: 

(1 + 𝑎𝑚
∗ 𝑃)𝜙𝑘+1 = (1 + 𝑎𝑚𝑃)𝜙𝑘+

𝑚−1

𝑚             (2.131) 

Therefore, to find 𝜙𝑘+1 using Padé approximant operators, the Fresnel calculation must be 

done 𝑚 times, 𝑚 being the largest value of the (A, B) components of the Padé operator, 

with the 𝑎 coefficient changing for each computation. For this reason, it only makes sense to 

use the (1, 1), (2, 2) and (3, 3) Padé orders as the computation time is practically no different 

to their (m, m-1) Padé order counterparts. 

2.4.4 Testing Wide-Angle Propagation 
To test that the wide-angle propagation was working correctly, a Gaussian beam was 

propagated with angles 𝜃 = 45° and 𝜑 = 0° through free space. The Gaussian took the 

form of equation (2.96), with 𝐸0 = 1, 𝜔0 = 2.828 𝜇𝑚 and 𝜆 = 1.55 𝜇𝑚, and was initially 

centred at 𝑥 = 10 𝜇𝑚, 𝑦 = 0 𝜇𝑚. The computational area extended for 36 𝜇𝑚 in the 𝒙̂ and 

𝒚̂ directions and 301 points were used in both directions, giving a point spacing of Δ𝑥 =

Δ𝑦 = 0.12 𝜇𝑚. Meanwhile, the point spacing in the 𝒛̂ direction was 0.05 𝜇𝑚. Due to the 

large propagating angle with the 𝒛̂ direction, the simulation was expected to get more 

accurate as the Padé order increased. 

As the Gaussian only propagates in the 𝑥 − 𝑧 plane, Figure 2.12 shows the shape of the 

intensity of an 𝑥 cross section through the peak of the field at 𝑧 = 10 𝜇𝑚 for different Padé 

orders. As the Padé order increases, the angle of propagation is seen to get closer to 45° as 

the field’s centre gets closer to 𝑥 = 20 𝜇𝑚. The paraxial simulation also incorrectly 

preserves the shape of the Gaussian as it propagates. The shape of the field should spread 

out and become asymmetrical as it propagates due to the effect of diffraction [41], which is 

accurately reflected in the higher Padé order simulations. 
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Figure 2.12: Field intensity at 𝑧 = 10 𝜇𝑚 after propagating through free space for different Padé 

orders. 

According to various sources [43] [44], the use of Padé approximant operators should also 

significantly lessen the impact of the chosen reference refractive index on the accuracy of 

the beam propagation method. To verify this, a simple directional coupler was formed using 

two of the rectangular waveguides shown in Figure 2.1. The two waveguides were placed 

0.6 𝜇𝑚 apart as shown in Figure 2.13.  

Only the left-hand waveguide was initially powered to observe the propagation distance 

when the power had completely transferred to the right-hand waveguide. This propagation 

distance is known as the coupling length. It is known that the coupling length of the 

directional coupler is related to the effective refractive indices of the even and odd modes 

of the directional coupler by the following equation [45], where 𝑛𝐸𝑒𝑓𝑓 is the effective index 

of the even mode and 𝑛𝑂𝑒𝑓𝑓 is the effective index of the odd mode: 

𝐿𝐶 =
𝜆

2(𝑛𝐸𝑒𝑓𝑓−𝑛𝑂𝑒𝑓𝑓)
            (2.132) 

151 points were used in each transverse direction and the analysis was done on the 𝐸𝑥 field 

in the quasi-TE mode. The found supported even and odd modes are given in Figure 2.14 

and the found effective indices were 3.22581 and 3.20374 respectively. According to 

equation (2.132), this should give a coupling length of approximately 35.1 𝜇𝑚. 

For the beam propagation simulation, the left-hand waveguide was initially powered and 

allowed to propagate for 100 𝜇𝑚 with Δ𝑧 = 0.1 𝜇𝑚. The overlap integral error was found 

between the initial field and the propagating field at each propagation point, and the point 

where the error reached its maximum indicated the point where the power had completely 

transferred to the right-hand waveguide. Figure 2.15 shows the overlap integral error vs. 

propagating distance graph when the reference index was set to that of the even mode. The 

maximum error occurred at 𝑧 = 35.1 𝜇𝑚, which was the expected coupling length. 
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Figure 2.13: Directional coupler with two rectangular waveguides. 

 
(a) Even mode.      (b) Odd mode. 

Figure 2.14: Even and odd modes of the directional coupler. 

 
Figure 2.15: Overlap integral error vs. propagation distance through the directional coupler. 

The reference index was then modified from this value and its impact on the coupling length 

was investigated for different Padé orders. Figure 2.16 displays the corresponding results 

and shows how the coupling length gets less sensitive to the reference refractive index as 

the Padé order increases. This is significant as a higher Padé order will give more accurate 

results when analysing multimode waveguides and waveguides with slowly radiating 
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evanescent modes, where the effective refractive indices of the different modes may be far 

apart, as will be the case for waveguides analysed later in the thesis. 

 
Figure 2.16: Percentage error in coupling length vs. reference refractive index for different Padé 

orders. 

2.5 Conclusions 
This chapter successfully derived the wave equations for the both the quasi-TE and quasi-

TM modes as well as described the implementation of the finite difference method for both 

the mode solver and beam propagation method. The mode solver and beam propagation 

method were shown to be implemented correctly through examples and the Padé 

approximant operators were shown to improve wide-angle propagation.  

The next chapters will use the mode solver and beam propagation method to analyse the 

behaviour of the electromagnetic fields through curved optical waveguides. 
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3 Curved Optical Waveguides 
This chapter describes how semi-vectorial wave equations are analysed through a curved 3D 

waveguide. It also introduces the curvature profiles of the waveguides analysed in this 

thesis. 

3.1 The Wave Equations in the Cylindrical Coordinate System 
Assuming a field propagates initially in the 𝒛̂ direction through a straight waveguide and 

then transitions to a curved waveguide, with the waveguide bending in the (𝑥, 𝑧) plane, the 

𝒙̂ directed field in the straight waveguide in the cartesian coordinate system immediately 

becomes the 𝒓̂ directed field in the curved waveguide in the cylindrical coordinate system, 

as shown in Figure 3.1. Meanwhile, the propagation direction becomes the 𝝋̂ direction. 

 
Figure 3.1: Change of coordinate system from straight to curved waveguide.  

In the cylindrical coordinate system, the vectorial equation for the electric field (2.4) results 
in the following two equations for the transverse components of the electric field [46]: 

𝜕2𝐸𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝐸𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝐸𝑟

𝜕𝜑2 +
𝜕2𝐸𝑟

𝜕𝑦2 +
𝜕

𝜕𝑟
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑟
𝐸𝑟) +

𝜕

𝜕𝑟
(

1

𝜀𝑟𝑟

𝜕𝜀𝑟

𝜕𝜑
𝐸𝜑 ) +

𝜕

𝜕𝑟
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2𝜀𝑟𝐸𝑟 = 0   (3.1) 

𝜕2𝐸𝑦

𝜕𝑟2 +
1

𝑟

𝜕𝐸𝑦

𝜕𝑟
+

1

𝑟2

𝜕2𝐸𝑦

𝜕𝜑2 +
𝜕2𝐸𝑦

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑟
𝐸𝑟) +

𝜕

𝜕𝑦
(

1

𝜀𝑟𝑟

𝜕𝜀𝑟

𝜕𝜑
𝐸𝜑 ) +

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2𝜀𝑟𝐸𝑦 = 0  (3.2) 

Similarly, the vectorial equation for the magnetic field (2.5) results in the following two 
equations for the transverse components of the magnetic field: 

𝜕2𝐻𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝐻𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝐻𝑟

𝜕𝜑2 +
𝜕2𝐻𝑟

𝜕𝑦2 +
1

𝜀𝑟𝑟2

𝜕𝜀𝑟

𝜕𝜑
(

𝜕(𝑟𝐻𝜑)

𝜕𝑟
−

𝜕𝐻𝑟

𝜕𝜑
) −

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
(

𝜕𝐻𝑟

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑟
) + 𝑘0

2𝜀𝑟𝐻𝑟 = 0   (3.3) 

𝜕2𝐻𝑦

𝜕𝑟2 +
1

𝑟

𝜕𝐻𝑦

𝜕𝑟
+

1

𝑟2

𝜕2𝐻𝑦

𝜕𝜑2 +
𝜕2𝐻𝑦

𝜕𝑦2 +
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑟
(

𝜕𝐻𝑟

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑟
) −

1

𝜀𝑟𝑟

𝜕𝜀𝑟

𝜕𝜑
(

1

𝑟

𝜕𝐻𝑦

𝜕𝜑
−

𝜕𝐻𝜑

𝜕𝑦
) + 𝑘0

2𝜀𝑟𝐻𝑦 = 0    (3.4) 

The refractive index profile is assumed to vary slowly in the 𝝋̂ direction, i.e. 𝜕𝜀𝑟/𝜕𝜑 ≈ 0. In 
the semi-vectorial formulation, the coupling between the different transverse directions is 
also assumed to be small and is therefore neglected. In the quasi-TE mode, 𝐸𝑟 and 𝐻𝑦 are 
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the principal field components and their wave equations take the following semi-vectorial 
forms in the cylindrical coordinate system: 

𝜕2𝐸𝑟

𝜕𝑟2
+

1

𝑟

𝜕𝐸𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝐸𝑟

𝜕𝜑2
+

𝜕2𝐸𝑟

𝜕𝑦2
+

𝜕

𝜕𝑟
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑟
𝐸𝑟) + 𝑘0

2𝜀𝑟𝐸𝑟 = 0          (3.5) 

𝜕2𝐻𝑦

𝜕𝑟2
+

1

𝑟

𝜕𝐻𝑦

𝜕𝑟
+

1

𝑟2

𝜕2𝐻𝑦

𝜕𝜑2
+

𝜕2𝐻𝑦

𝜕𝑦2
−

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑟

𝜕𝐻𝑦

𝜕𝑟
+ 𝑘0

2𝜀𝑟𝐻𝑦 = 0          (3.6) 

In the quasi-TM mode, 𝐸𝑦 and 𝐻𝑟 are the principal field components and their wave 

equations take the following semi-vectorial forms in the cylindrical coordinate system:  

𝜕2𝐸𝑦

𝜕𝑟2 +
1

𝑟

𝜕𝐸𝑦

𝜕𝑟
+

1

𝑟2

𝜕2𝐸𝑦

𝜕𝜑2 +
𝜕2𝐸𝑦

𝜕𝑦2 +
𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2𝜀𝑟𝐸𝑦 = 0         (3.7) 

𝜕2𝐻𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝐻𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝐻𝑟

𝜕𝜑2 +
𝜕2𝐻𝑟

𝜕𝑦2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦

𝜕𝐻𝑟

𝜕𝑦
+ 𝑘0

2𝜀𝑟𝐻𝑟 = 0      (3.8) 

3.2 Conformal Transformation Approach to Analysing Curved 

Waveguides 
The conformal transformation approach to analysing curved waveguides was introduced by 

Heiblum and Harris [47], and was originally used to analyse the 2D scalar wave equation. A 

conformal transformation is an angle preserving transformation [48] and Heiblum and 

Harris’ method used a conformal transformation to map the curved waveguide structure 

onto an equivalent straight waveguide structure, as shown in Figure 3.2. The effect is to 

simplify the wave equations and allow them to be analysed by methods such as the finite-

difference beam propagation method. 

 
Figure 3.2: Waveguide structure before and after conformal transformation. 

Assuming the path of the centre of the waveguide along the 𝝋̂ direction in Figure 3.1 

describes that of a segment of a circle of radius 𝑅, the circular region in the (𝑟, 𝜑) plane can 

be mapped to a rectangular region in the complex (𝑢, 𝑣) plane. The coordinate 

transformation is represented by 𝑊 = 𝑢 + 𝑖𝑣 = 𝑓(𝑍) = 𝑓(𝑟 exp(𝑖𝜑)). To analyse the wave 

equations in the (𝑢, 𝑣) plane, the following transformation is used [47]: 

𝑊 = 𝑅 ln
𝑍

𝑅
              (3.9) 
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Splitting 𝑊 into real and complex components gives the following expressions for 𝑢 and 𝑣: 

𝑢 = 𝑅 ln
𝑟

𝑅
        (3.10) 

𝑣 = 𝑅𝜑                  (3.11) 

Next, the derivatives in the wave equations with respect to 𝑟 and 𝜑 must be replaced with 

derivatives with respect to 𝑢 and 𝑣 using 𝑟 = 𝑅 exp(𝑢/𝑅) and 𝜑 = 𝑣/𝑅 as follows: 

 
𝜕𝑓

𝜕𝑟
=

𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟
=

𝑅

𝑟

𝜕𝑓

𝜕𝑢
= exp (−

𝑢

𝑅
)

𝜕𝑓

𝜕𝑢
              (3.12) 

𝜕𝑓

𝜕𝜑
=

𝜕𝑓

𝜕𝑣

𝜕𝑣

𝜕𝜑
= 𝑅

𝜕𝑓

𝜕𝑣
               (3.13) 

Substituting these derivatives into the wave equations results in the following expressions 

for the semi-vectorial wave equations in the quasi-TE mode: 

𝜕2𝐸𝑢

𝜕𝑢2
+

𝜕2𝐸𝑢

𝜕𝑣2
+ exp (

2𝑢

𝑅
)

𝜕2𝐸𝑢

𝜕𝑦2
+ exp (

𝑢

𝑅
)

𝜕

𝜕𝑢
(

1

𝜀𝑟exp (𝑢/𝑅)

𝜕𝜀𝑟

𝜕𝑢
𝐸𝑢) + 𝑘0

2𝜀𝑟 exp (
2𝑢

𝑅
) 𝐸𝑢 = 0   (3.14) 

𝜕2𝐻𝑦

𝜕𝑢2 +
𝜕2𝐻𝑦

𝜕𝑣2 + exp (
2𝑢

𝑅
)

𝜕2𝐻𝑦

𝜕𝑦2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑢

𝜕𝐻𝑦

𝜕𝑢
+ 𝑘0

2𝜀𝑟 exp (
2𝑢

𝑅
) 𝐻𝑦 = 0              (3.15) 

And the following semi-vectorial wave equations in the quasi-TM mode: 

𝜕2𝐸𝑦

𝜕𝑢2 +
𝜕2𝐸𝑦

𝜕𝑣2 + exp (
2𝑢

𝑅
)

𝜕2𝐸𝑦

𝜕𝑦2 + exp (
2𝑢

𝑅
)

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2𝜀𝑟 exp (
2𝑢

𝑅
) 𝐸𝑦 = 0         (3.16) 

𝜕2𝐻𝑢

𝜕𝑢2 +
𝜕2𝐻𝑢

𝜕𝑣2 + exp (
2𝑢

𝑅
)

𝜕2𝐻𝑢

𝜕𝑦2 − exp (
2𝑢

𝑅
)

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦

𝜕𝐻𝑢

𝜕𝑦
+ 𝑘0

2𝜀𝑟 exp (
2𝑢

𝑅
) 𝐻𝑢 = 0            (3.17) 

3.2.1 Finding Supported Modes of a Circular Waveguide 
To find the supported modes of a circular region of the waveguide, the waveguide is 

assumed to be invariant in the 𝒗̂ direction and therefore the derivative with respect to 𝑣 can 

be replaced with 𝑖𝛽 where 𝛽 = 𝑘0𝑛𝑒𝑓𝑓 is the propagation constant, analogous to what was 

done for the modes in the original straight waveguide. This has the following effect on the 

semi-vectorial equations in the quasi-TE mode: 

𝜕2𝐸𝑢

𝜕𝑢2 + exp (
2𝑢

𝑅
)

𝜕2𝐸𝑢

𝜕𝑦2 + exp (
𝑢

𝑅
)

𝜕

𝜕𝑢
(

1

𝜀𝑟exp (𝑢/𝑅)

𝜕𝜀𝑟

𝜕𝑢
𝐸𝑢) + 𝑘0

2 (𝜀𝑟 exp (
2𝑢

𝑅
) − 𝑛𝑒𝑓𝑓

2 ) 𝐸𝑢 = 0    (3.18) 

𝜕2𝐻𝑦

𝜕𝑢2
+ exp (

2𝑢

𝑅
)

𝜕2𝐻𝑦

𝜕𝑦2
−

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑢

𝜕𝐻𝑦

𝜕𝑢
+ 𝑘0

2 (𝜀𝑟 exp (
2𝑢

𝑅
) − 𝑛𝑒𝑓𝑓

2 ) 𝐻𝑦 = 0            (3.19) 

And the following effect on the semi-vectorial wave equations in the quasi-TM mode: 

𝜕2𝐸𝑦

𝜕𝑢2 + exp (
2𝑢

𝑅
)

𝜕2𝐸𝑦

𝜕𝑦2 + exp (
2𝑢

𝑅
)

𝜕

𝜕𝑦
(

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦
𝐸𝑦) + 𝑘0

2 (𝜀𝑟 exp (
2𝑢

𝑅
) − 𝑛𝑒𝑓𝑓

2 ) 𝐸𝑦 = 0    (3.20) 

𝜕2𝐻𝑢

𝜕𝑢2 + exp (
2𝑢

𝑅
)

𝜕2𝐻𝑢

𝜕𝑦2 − exp (
2𝑢

𝑅
)

1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑦

𝜕𝐻𝑢

𝜕𝑦
+ 𝑘0

2 (𝜀𝑟 exp (
2𝑢

𝑅
) − 𝑛𝑒𝑓𝑓

2 ) 𝐻𝑢 = 0       (3.21) 
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The above equations correspond to equations (2.16) - (2.19) in the original straight 

waveguide and can be analysed in the same way with the result being an eigenvalue matrix 

equation to be solved, with the eigenvalues giving the propagation constants and the 

corresponding eigenvectors giving the mode profiles. 

3.2.2 Beam Propagation Method Through a Curved Waveguide 
As was done for the beam propagation method in the straight waveguide, the field 

components above can once again be expressed as the product of a complex field amplitude 

𝜙(𝑢, 𝑦, 𝑣) and a propagation factor exp(𝑖𝑘0𝑛0𝑣), where 𝑛0 is a reference index which is 

chosen to be as close as possible to the effective index of the propagating mode. For 

example, for 𝐻𝑦 in the quasi-TE mode: 

𝐻𝑦(𝑢, 𝑦, 𝑣) = 𝜙(𝑢, 𝑦, 𝑣) exp(𝑖𝑘0𝑛0𝑣)                (3.22) 

Substituting this expression into equation (3.15) results in the following: 

−2𝑖𝑘0𝑛0
𝜕𝜙

𝜕𝑣
−

𝜕2𝜙

𝜕𝑣2 =
𝜕2𝜙

𝜕𝑢2 + exp (
2𝑢

𝑅
)

𝜕2𝜙

𝜕𝑦2 −
1

𝜀𝑟

𝜕𝜀𝑟

𝜕𝑢

𝜕𝜙

𝜕𝑢
+ 𝑘0

2 (𝜀𝑟 exp (
2𝑢

𝑅
) − 𝑛0

2) 𝜙      (3.23) 

From here, the same approach can be applied to this wave equation as carried out in 

section 2.3. The wave equations in the (𝑢, 𝑦, 𝑣) coordinate system (3.14) - (3.17) are very 

similar to the original wave equations in the straight waveguide’s (𝑥, 𝑦, 𝑧) coordinate 

system with just extra factors of exp (2𝑢/𝑅) appearing for the curved waveguide. This 

means that the finite difference method, boundary conditions and Padé approximant 

operators can all also be easily applied to the wave equations in the (𝑢, 𝑦, 𝑣) coordinate 

system. 

3.3 Effect of Curvature on Supported Modes and the Propagating 

field 
In the original straight waveguide, if the derivative of the relative permittivity with respect 

to the transverse directions is neglected, equations (2.6) to (2.11) would reduce to the same 

equation, known as the scalar equation: 

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑧2 +
𝜕2𝜓

𝜕𝑦2 + 𝑘0
2𝜀𝑟𝜓 = 0                  (3.24) 

Correspondingly, in the (𝑢, 𝑦, 𝑣) coordinate system of the curved waveguide, if the 

derivative of the relative permittivity with respect to the transverse directions is neglected, 

equations (3.14) to (3.21) would reduce to the following scalar equation: 

𝜕2𝜓

𝜕𝑢2
+

𝜕2𝜓

𝜕𝑣2
+ exp (

2𝑢

𝑅
)

𝜕2𝜓

𝜕𝑦2
+ 𝑘0

2𝜀𝑟 exp (
2𝑢

𝑅
) 𝜓 = 0              (3.25) 

In the (𝑢, 𝑦, 𝑣) coordinate system, with the absence of a derivative of the relative 

permittivity with respect to a transverse direction, the conformal mapping has the effect of 

multiplying the original refractive index profile by exp (𝑢/𝑅). Figure 3.3 displays this 

transformation of the refractive index for the square waveguide analysed in chapter 2, for a 

radius of curvature of 20 𝜇𝑚. This transformation will clearly cause the fundamental mode 
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to shift towards the outside of the bend, as the refractive index exponentially increases 

from the inside of the bend to the outside of the bend. The amount of shift however is 

dependent on the radius of curvature, with the mode shifting further as the radius of 

curvature decreases. 

    
(a) Straight waveguide      (b) Circular waveguide 

Figure 3.3: Transformation of the refractive index profile of a square waveguide from the straight 
waveguide in the (𝑥, 𝑦) plane to the circular waveguide in the (𝑢, 𝑦) plane, according to the 

conformal mapping of the scalar wave equation for a radius of 20 𝜇𝑚. 

However, while the above transformation to the refractive index is true for the scalar wave 

equation and the semi-vectorial wave equations in the quasi-TM mode, care must be taken 

when applying the conformal transformation to the semi-vectorial wave equations (3.14) 

and (3.15) in the quasi-TE mode. The presence of the 𝜕𝜀𝑟/𝜕𝑢 terms in these equations 

means the refractive index cannot simply be multiplied by exp (𝑢/𝑅) as this would lead to 

errors at the refractive index boundaries along the 𝒖̂ direction. 

3.3.1 Effect of Curvature on Supported Semi-Vectorial Modes 
Figure 3.4 shows the effect of the curvature on the fundamental mode fields for both the 

quasi-TE and quasi-TM modes of the square waveguide, with a relatively large radius of 

curvature of 150 𝜇𝑚. The modes were computed in the (𝑢, 𝑦) plane and the coordinates 

were then transformed back to the (𝑟, 𝑦) plane. The corresponding modes in the straight 

waveguide can be seen in Figure 2.2. For the curved waveguide modes, the horizontal axis 

has been replaced with 𝜌 = 𝑟 − 𝑅, where 𝑅 is the radius of curvature, to allow for a clearer 

representation of the axis. The computations were done using an 8.4 X 6.4 micron grid but 

only the area close to the core is plotted to allow the shift of the mode profiles to be seen 

more clearly. The centre of the waveguide is shown by a dashed white line to also allow the 

shift to be seen more clearly. 351 grid points were used along the 𝝆̂ direction and 251 points 

were used along the 𝒚̂ direction. Neumann boundary conditions were implemented. In each 

case, the field shifts slightly towards the outside of the bend, with the electric fields also 

maintaining the discontinuities at the refractive index boundaries. Figure 3.5 displays the 

electric fields as they approach the edge of the computational area on the outside of the 

bend. For both modes, the fields appear to decay to zero away from the centre of the 

waveguide and then actually become slightly negative as they approach the right-hand side 

of the computational window. This suggests that the modes have become slightly radiative 
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at this radius of curvature as the boundary conditions implemented are insufficient to deal 

with the tails of the field. 

  
(a) 𝐸𝑟  in the quasi-TE mode      (b) 𝐻𝑦  in the quasi-TE mode 

  
(c) 𝐸𝑦 in the quasi-TE mode     (d) 𝐻𝑟  in the quasi-TM mode 

Figure 3.4: Shifts in the fundamental mode fields of the quasi-TE and quasi-TM modes at a radius of 
curvature of 150 𝜇𝑚. The quasi-TE mode has an effective refractive index of 3.21770 and the quasi-

TM mode has an effective refractive index of 3.21768. 

  
(a) 𝐸𝑟 in the quasi-TE mode          (b) 𝐸𝑦 in the quasi-TE mode 

Figure 3.5: Fundamental mode electric fields for the 150 𝜇𝑚 radius circular rectangular waveguides 
in the quasi-TE mode as the fields approach the computational boundary on the outside of the bend. 

Meanwhile, Figure 3.6 shows the mode profiles of the square waveguide for a radius of 
curvature of 75 𝜇𝑚. A white line has again been drawn through the centre of the plot to 
better display the shifting of the mode profile. At this radius of curvature, the amplitudes of 
the fields appear to oscillate as they approach the right-hand computational boundary. This 
suggests that the mode profiles have become lossy [49], and are therefore known as “leaky” 
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modes as they radiate away their power as they propagate around the bend. The ability of 
the mode solver to accurately analyse these leaky modes is insufficient due to the simplicity 
of the implemented Dirichlet or Neumann boundary conditions, and the oscillating part of 
the mode profile can vary substantially depending on the width of the computational area 
allocated to the outside of the waveguide bend. To analyse how the shape of the 
fundamental mode is altered by the curvature in such waveguides correctly, the beam 
propagation method must be used which utilises the more powerful TBC and PML boundary 
conditions. 

  
(a) 𝐸𝑟  in the quasi-TE mode        (b) 𝐻𝑦  in the quasi-TE mode 

  
(c) 𝐸𝑦 in the quasi-TM mode        (d) 𝐻𝑟  in the quasi-TE mode 

Figure 3.6: Shifts in the fundamental fields of the quasi-TE and quasi-TM modes at a radius of 
curvature of 75 𝜇𝑚.  

3.3.2  Effect of Curvature on the Propagating Fundamental Mode 
When the transition from a straight waveguide to a circular waveguide and then back to a 

straight waveguide is analysed using the beam propagation method, the fundamental mode 

of the straight waveguide is expected to transition to the shape of the fundamental curved 

waveguide mode at the straight-curved waveguide boundary. Loss would occur at both 

straight-curved waveguide boundaries due to the mismatch of fundamental modes. The loss 

due to the transition between modes can be measured using the overlap integral method, 

and is given by: 

𝑇𝐿 = −10 log10(1 − 𝑂𝐸)  𝑑𝐵                  (3.26) 

In the above equation, 𝑂𝐸 represents the overlap integral error, given by equation (2.104), 

and is computed using the propagating field in the curved waveguide and the initially 
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propagated field in the straight waveguide, i.e. the fundamental mode field of the straight 

waveguide. The mode mismatch loss from the bend can be measured once the propagating 

field has transitioned back to the straight waveguide and can be computed as follows: 

𝑀𝐿 = −10 log10(1 − 𝑀𝐸)  𝑑𝐵          (3.27) 

𝑀𝐸 is known as the mode mismatch error and is given by: 

𝑀𝐸 = 1 −
| ∫ 𝜙0𝜙∗ 𝑑𝑥 𝑑𝑦|

2

|∫ |𝜙0|2 𝑑𝑥 𝑑𝑦|
2       (3.28) 

𝜙0 refers to the field in the initial straight waveguide and 𝜙 refers to the field in the straight 

waveguide after the bend. 

The fundamental mode fields in both the quasi-TE and quasi-TM modes of the square 

waveguide were propagated through a 90° circular bend with a radius of 150 𝜇𝑚. The 

waveguide was initially straight for approximately 30 𝜇𝑚, then turned through 90°, then set 

to straight again for approximately 90 𝜇𝑚. The same number of transverse points were used 

in the computation as were used for the computation of the curved waveguide modes. 

Figure 3.7 shows a top-down view of the propagating fields through the 𝑦 centre of the 

waveguide. The horizontal 𝜌 axis shows the 𝑥 distance from the centre of the waveguide for 

the straight regions and the 𝑟 distance from the centre of the waveguide for the curved 

regions. The vertical 𝑧 axis shows the propagation distance for the field through the centre 

of the waveguide. Dashed black lines have been drawn on the 𝐻𝑦 graph in the quasi-TE 

mode and the 𝐸𝑦 and 𝐻𝑟 graphs in the quasi-TM mode to indicate the edges of the 

waveguide. They have not been drawn on the 𝐸𝑟 graph in the quasi-TE mode as 

discontinuities can already be observed at the refractive index boundaries. The field is seen 

to shift slightly towards the outside of the bend at the straight-curved waveguide boundary, 

and then shift back to the centre at the curved-straight waveguide boundary. In the bend, 

the tails of the field on the outside of the bend are observed to have a non-zero value at the 

edge of computational region, showing that the shifted fundamental mode has become a 

leaky mode and thus the field loses a small amount of power as it propagates around the 

bend. 
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(a) 𝐸𝑟  in the quasi-TE mode.      (b) 𝐻𝑦  in the quasi-TM mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑟  in the quasi-TM mode. 

Figure 3.7: Evolution of the fields at the 𝑦 centre of the waveguide as they propagate through the 
straight-curved-straight square waveguide structure. 

Figure 3.8 shows the shape of the transverse cross section of the fields once they have 

propagated 45° through the bend. The fields are seen to have slightly shifted towards the 

outside of the bends to take the forms of the curved waveguide modes given by Figure 3.4. 

This is made easier to see by Figure 3.9 which shows a zoomed in view of the shifted 

fundamental mode 𝐸𝑟 field from Figure 3.4 and the propagating 𝐸𝑟 field 45° through the 

bend. To further show this numerically, the evolution of the overlap integral error between 

the propagating fields and the initially propagated fundamental mode fields of the straight 

waveguide is represented by the blue curves in Figure 3.10. The 𝑠 parameter on the 

horizontal axis defines the propagating distance through the centre of the waveguide. For 

each propagating field, the overlap integral error is seen to rise sharply after entering the 

curve before settling at a constant value as it propagates around the circular bend. It then 

falls back to 0 as it propagates through the exit straight waveguide. The constant value 

found while propagating through the waveguide bend occurs when the field has taken the 

form of the fundamental mode of the circular waveguide, and should therefore equal the 

overlap integral error between the corresponding fundamental modes in Figure 2.2 and 
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Figure 3.4. The calculated overlap integral errors between these modes found using the 

mode solver were as follows: 0.0106 for 𝐸𝑟 in the quasi-TE mode, 0.0096 for 𝐻𝑦 in the quasi-

TE mode, 0.0100 for 𝐸𝑦 in the quasi-TM mode, and 0.0096 for 𝐻𝑟 in the quasi-TM mode. 

These values are represented by the dashed red lines in Figure 3.10, showing that the 

overlap integral error between the modes from the BPM was slightly larger in each case, 

suggesting the curved waveguide modes had become leaky and were therefore inaccurately 

found by the mode solver. 

  
(a) 𝐸𝑟  in the quasi-TE mode.    (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.     (d) 𝐻𝑟  in the quasi-TM mode. 

Figure 3.8: Transverse field profiles after propagating 45° through a circular square waveguide with a 
radius of curvature of 150 𝜇𝑚. 

 
                     (a) Shifted fundamental mode.                        (b) Propagating field 45° through bend. 

Figure 3.9: Comparison of the shifted fundamental mode 𝐸𝑥 field with the propagating 𝐸𝑥 field at 

45° through a circular square waveguide bend with a radius of curvature of 150 𝜇𝑚.  
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(a) 𝐸𝑟  in the quasi-TE mode.          (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.          (d) 𝐻𝑟  in the quasi-TM mode. 

Figure 3.10: Overlap integral error between the propagating fields and the fundamental mode fields 
of the square waveguide. 

Figure 3.11 shows the mode mismatch error between the propagating fields and the 
fundamental mode fields of the straight waveguide. Whereas the overlap integral error just 
accounts for the deformation of the mode profile, the mode mismatch error also accounts 
for the loss of the mode as it propagates. The mode mismatch error graphs show that the 
fundamental mode fields of the curved waveguide have become leaky, as the mode 
mismatch error continues to increase over the propagating distance where the overlap 
integral error had become constant, indicating that the curved waveguide modes had 
become lossy. 
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(a) 𝐸𝑟  in the quasi-TE mode.        (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.      (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 3.11: Mode mismatch error between the propagating fields and the fundamental fields of the 
square waveguide. 

3.4 Curvature Profiles 
So far, this chapter has only dealt with circular waveguides where the radius of curvature is 

constant. This section will describe the other curvature profiles which will be analysed in this 

thesis. The first is the linearly changing curvature profile, where the curvature linearly 

increases for half of the bend and then linearly decreases for the other half of the bend. The 

second is the trapezoidal curvature profile, where the curvature linearly increases to some 

maximum curvature for a certain fraction of the bend, then stays as this maximum 

curvature for the next portion of the bend before linearly decreasing for the rest of the 

bend. The three curvature profiles can be seen in Figure 3.12. When analysing a non-

constant curvature waveguide using the FD-BPM, a conformal transformation is made to 

update the curvature at each propagation step. 

Euler’s method of natural equations [50] allows the path of a bend to be described using the 

curvature of the bend along its path length. This requires, firstly, the evaluation of an 

integral which gives the angle a tangent to the curve at a point makes with the tangent to 

the curve at the start of the curve. The bend is then described by evaluating another pair of 

integrals which gives a parametric representation of the bend based on the relative axes. All 

three curvature profiles can be parameterised in this manner [51] [52]. 
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Let the centre of a waveguide describe a path 𝑠 as the waveguide follows a bend in the 

(𝑥, 𝑧) plane. Assume the curvature 𝜅 of the bend varies along 𝑠. If a tangent to the curve 𝑠 is 

drawn at point 𝑠1, it will intersect the 𝑧 axis with an angle 𝜙1, the bending angle, as shown 

in Figure 3.13. If the curve 𝑠 intersects the 𝑧 axis at point 𝑠0 along its path length, the angle 

𝜙1 can be calculated using the curve’s curvature 𝜅 as follows: 

𝜙1 = ∫ 𝜅(𝑠) 𝑑𝑠
𝑠1

𝑠0
            (3.29) 

 
Figure 3.12: Circular, liner and trapezoidal curvature profiles.  

The bend occurs in the (𝑥, 𝑧) plane and will therefore be parameterised using 𝑥 and 𝑧. Let 

𝑑𝑠 be an infinitesimally small length of the bend 𝑠. 𝑑𝑠 extends for length 𝑑𝑥 along the 

negative 𝒙̂ direction and 𝑑𝑧 along the 𝒛̂ direction and the lengths are related by 𝑑𝑠2 =

𝑑𝑥2 + 𝑑𝑧2. If 𝜙 is the angle 𝑑𝑠 makes with the 𝑧 axis, 𝑑𝑥 and 𝑑𝑧 can be individually 

expressed by: 

𝑑𝑥 = − sin 𝜙 𝑑𝑠            (3.30) 

𝑑𝑧 = cos 𝜙 𝑑𝑠           (3.31) 

The parametric representation of the bend in the (𝑥, 𝑧) coordinate system at point 𝑠1 along 

the path length can therefore be found by integrating both sides of the above equations: 

𝑥(𝑠1 − 𝑠0) = − ∫ sin 𝜙(𝑠)
𝑠1

𝑠0
 𝑑𝑠           (3.32) 

𝑧(𝑠1 − 𝑠0) = ∫ cos 𝜙(𝑠)
𝑠1

𝑠0
 𝑑𝑠          (3.33) 

Therefore, to parameterise the bend in the (𝑥, 𝑧) coordinate system, 𝜙 must first be 

calculated at each point along 𝑠 using equation (3.29), and then equations (3.32) and (3.33) 

are used to find the 𝑥 and 𝑧 parameterisation at each point along 𝑠. 

In the case of the circular waveguide, the curvature is constant along the bend and, 

assuming the 𝑠0 point is at (0, 0) in the (𝑥, 𝑧) coordinate system, equation (3.29) is simply 

expressed as 𝜙1 = 𝜅𝑠1. 𝑥(𝑠1) and 𝑧(𝑠1) are therefore given by: 
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𝑥(𝑠1) = − ∫ sin(𝜅𝑠)
𝑠1

0
 𝑑𝑠 = −

1

𝜅
(1 − cos(𝜅𝑠1))           (3.34) 

𝑧(𝑠1) = ∫ cos(𝜅𝑠)
𝑠1

0
 𝑑𝑠 =

1

𝜅
sin(𝜅𝑠1)               (3.35) 

As 𝜅 = 1/𝑅, where 𝑅 is the radius of curvature, the parametric representation of the 

circular bend is simply given by: 

𝑥𝐶(𝑠1) = −𝑅 (1 − cos (
𝑠1

𝑅
))          (3.36) 

𝑧𝐶(𝑠1) = 𝑅 sin (
𝑠1

𝑅
)               (3.37) 

 
Figure 3.13: Tangent of curve 𝑠 at point 𝑠1 intersecting 𝑧 axis with angle 𝜙1. 

3.4.1 Linearly Changing Curvature Bend 
In this curvature profile, the curvature is set to linearly change with 𝑠. If the bend is 

designed to have a total path length 𝐿, the curvature is designed to linearly increase for the 

first half of the path length and then linearly decrease for the second half of the path length. 

If 𝑚𝑙 is the slope of the change in curvature with 𝑠, 𝜅(𝑠) is represented by: 

𝜅(𝑠) = {
𝑚𝑙𝑠                                       0 ≤ 𝑠 ≤

L

2

𝑚𝑙(𝐿 − 𝑠)                            
L

2
< 𝑠 ≤ 𝐿

              (3.38) 

The linearly changing curvature bend is designed to have the same end point as that of a 

circular waveguide that turns through an angle 𝜑 with radius 𝑅. It is therefore necessary to 

set 𝐿 and 𝑚𝑙 to values that will achieve this. A relationship between 𝜑, 𝐿, and 𝑚𝑙 can be 

found using equation (3.29): 

𝜑

2
= ∫ 𝑚𝑙𝑠 𝑑𝑠

𝐿

2
0

=
𝑚𝑙𝐿2

8
                (3.39) 

To find the relationship between 𝑅, 𝐿, and 𝑚𝑙, the 𝑥 and 𝑧 parameterisation of the linearly 

changing curvature bend must be constructed and then be allowed to equate to the 𝑥 and 𝑧 

parameterisation of the circular bend at 𝑠 = 𝐿. 
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According to equation (3.29), in each region the bending angle at 𝑠 is given by: 

𝜙(𝑠) = {

𝑚𝑙𝑠2

2
                                       0 ≤ 𝑠 ≤

L

2

𝑚𝑙𝐿𝑠 −
𝑚𝑙𝐿2

4
−

𝑚𝑙𝑠2

2
            

L

2
< 𝑠 ≤ 𝐿

              (3.40) 

According to equations (3.32) and (3.33), the parametrisation of the linearly changing 

curvature bend is therefore given by: 

𝑥(𝑠1) = {
− ∫ sin (

𝑚𝑙𝑠2

2
)

𝑠1

0
𝑑𝑠                                                                      0 ≤ 𝑠1 ≤

𝐿

2

− ∫ sin (
𝑚𝑙𝑠2

2
)

𝐿

2
0

𝑑𝑠 − ∫ sin (𝑚𝑙𝐿𝑠 −
𝑚𝑙𝑠2

2
−

𝑚𝑙𝐿2

4
)

𝑠1
𝐿

2

 𝑑𝑠        
𝐿

2
< 𝑠1 ≤ 𝐿

 (3.41) 

𝑧(𝑠1) = {
∫ cos (

𝑚𝑙𝑠2

2
)

𝑠1

0
𝑑𝑠                                                                          0 ≤ 𝑠1 ≤

𝐿

2

∫ cos (
𝑚𝑙𝑠2

2
)

𝐿

2
0

𝑑𝑠 + ∫ cos (𝑚𝑙𝐿𝑠 −
𝑚𝑙𝑠2

2
−

𝑚𝑙𝐿2

4
)

𝑠1
𝐿

2

 𝑑𝑠          
𝐿

2
< 𝑠1 ≤ 𝐿

 (3.42) 

The integrals in the equations above can be written in terms of the Fresnel integrals [53]. 

The Fresnel integrals are defined through the following integral representations: 

𝐶(𝑥) = ∫ cos
𝜋𝑡2

2
 𝑑𝑡

𝑥

0
                (3.43) 

𝑆(𝑥) = ∫ sin
𝜋𝑡2

2
 𝑑𝑡

𝑥

0
                (3.44) 

Using the above Fresnel integrals, the integrals in equations (3.41) and (3.42) can be 

evaluated using the following formulae: 

∫ cos(𝑎𝑠2)  𝑑𝑠
𝑠1

𝑠0
=  √

𝜋

2𝑎
𝐶 (√

2𝑎

𝜋
𝑠) |

𝑠0

𝑠1

                (3.45) 

∫ sin(𝑎𝑠2)  𝑑𝑠
𝑠1

𝑠0
=  √

𝜋

2𝑎
𝑆 (√

2𝑎

𝜋
𝑠) |

𝑠0

𝑠1

                (3.46) 

∫ cos(𝑎𝑠2 + 2𝑏𝑠 + 𝑐)  𝑑𝑠
𝑠1

𝑠0
=  √

𝜋

2𝑎
[cos (

𝑏2−𝑎𝑐

𝑎
) 𝐶 (√

2

𝑎𝜋
(𝑎𝑠 + 𝑏)) +     

 sin (
𝑏2−𝑎𝑐

𝑎
) 𝑆 (√

2

𝑎𝜋
(𝑎𝑠 + 𝑏)) ]  |

𝑠0

𝑠1

                   (3.47) 

∫ sin(𝑎𝑠2 + 2𝑏𝑠 + 𝑐)  𝑑𝑠
𝑠1

𝑠0
=  √

𝜋

2𝑎
[cos (

𝑏2−𝑎𝑐

𝑎
) 𝑆 (√

2

𝑎𝜋
(𝑎𝑠 + 𝑏)) −     

 sin (
𝑏2−𝑎𝑐

𝑎
) 𝐶 (√

2

𝑎𝜋
(𝑎𝑠 + 𝑏)) ]  |

𝑠0

𝑠1

                       (3.48) 

Using the above formulae, the 𝑥 and 𝑧 parameterisation at point 𝑠 = 𝑠1 is given by: 
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𝑥𝐿(𝑠1) = −√
𝜋

𝑚𝑙
𝑆 (√

𝑚𝑙

𝜋
𝑠1)       0 ≤ 𝑠1 ≤

𝐿

2
      (3.49) 

𝑥𝐿(𝑠1) = −√
𝜋

𝑚𝑙
[𝑆 (√

𝑚𝑙

𝜋

𝐿

2
) − cos (

𝑚𝑙𝐿2

4
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠 − 𝐿)) + 𝑆 (√

𝑚𝑙

𝜋

𝐿

2
)] +    

sin (
𝑚𝑙𝐿2

4
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠 − 𝐿)) + 𝐶 (√

𝑚𝑙

𝜋

𝐿

2
)] ]           

𝐿

2
< 𝑠1 ≤ 𝐿      (3.50) 

𝑧𝐿(𝑠1) = √
𝜋

𝑚𝑙
𝐶 (√

𝑚𝑙

𝜋
𝑠1)     0 ≤ 𝑠1 ≤

𝐿

2
      (3.51) 

𝑧𝐿(𝑠1) = √
𝜋

𝑚𝑙
[𝐶 (√

𝑚𝑙

𝜋

𝐿

2
) + cos (

𝑚𝑙𝐿2

4
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠 − 𝐿)) + 𝐶 (√

𝑚𝑙

𝜋

𝐿

2
)] +      

sin (
𝑚𝑙𝐿2

4
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠 − 𝐿)) + 𝑆 (√

𝑚𝑙

𝜋

𝐿

2
)] ]           

𝐿

2
< 𝑠1 ≤ 𝐿      (3.52) 

As the linearly changing curvature bend must end at the same point as that of a circular 

bend of a certain radius of curvature 𝑅 (𝑅 is known as the effective radius of curvature) and 

path length 𝐿𝐶 = 𝑅𝜑: 

𝑥𝐶(𝐿𝐶) = 𝑥𝐿(𝐿)           (3.53) 

𝑧𝐶(𝐿𝐶) = 𝑧𝐿(𝐿)           (3.54) 

Applying equations (3.53) and (3.39) results in the following expression for 𝑚𝑙 in terms of 𝑅 

and 𝜑: 

𝑚𝑙 =
𝜋

𝑅2(1−cos(𝜑))2 [𝑆 (√
𝜑

𝜋
) (1 − cos(𝜑)) + 𝐶 (√

𝜑

𝜋
) sin(𝜑)]

2

            (3.55) 

And substituting 𝑚𝑙 into equation (3.39) allows 𝐿 to be expressed in terms of 𝑅 and 𝜑: 

𝐿 = 2𝑅(1 − cos(𝜑)) √
𝜑

𝜋
[𝑆 (√

𝜑

𝜋
) (1 − cos(𝜑)) + 𝐶 (√

𝜑

𝜋
) sin(𝜑)]

−1

           (3.56) 

As the maximum curvature 𝜅𝑙 = 𝜅(𝐿/2) = 𝑚𝑙𝐿/2: 

𝜅𝑙 =
√𝜋𝜑

𝑅(1−cos(𝜑))
[𝑆 (√

𝜑

𝜋
) (1 − cos(𝜑)) + 𝐶 (√

𝜑

𝜋
) sin(𝜑)]      (3.57) 

3.4.2 Trapezoidal Curvature Bend 
In a trapezoidal curvature bend, the curvature increases linearly for some fraction of the 

path length of the bend until it reaches a certain value. The curvature then stays at this 

constant value for another fraction of the path length of the bend, before decreasing 

linearly for the rest of the bend. This makes the shape of the curvature profile represent a 

trapezoid, as can be seen in Figure 3.12. 
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If 𝑚𝑙 is the slope of the change in curvature with 𝑠, 𝑘𝑡 is the maximum curvature reached, 𝜎 

is the path length of the linearly increasing curvature section, 𝑣 − 𝜎 is the path length of the 

constant curvature section, and 𝐿 is the total path length of the bend, 𝜅(𝑠) is represented 

by: 

𝑘(𝑠) = 𝑚𝑙𝑠          0 ≤ 𝑠 ≤ 𝜎     (3.58) 

𝑘(𝑠) = 𝑘𝑡        𝜎 < 𝑠 ≤ 𝑣     (3.59) 

𝑘(𝑠) = 𝑚𝑙(𝐿 − 𝑠)              𝑣 < 𝑠 ≤ 𝐿     (3.60) 

The curvature profile is designed so that the path length traversed while the curvature is 

linearly increasing is equal to the path length traversed while the curvature is linearly 

decreasing, i.e. 𝜎 = 𝐿 − 𝑣. If 𝜎 = 0, the curvature profile reduces to the circular case as the 

curvature is constant around the full bend. If 𝜎 = 𝐿/2, the curvature profile reduces to the 

linearly changing curvature case. The curvature profile must be continuous at 𝜎 and 𝑣, and 

this is the case as long as: 

𝜎 =
𝑘𝑡

𝑚𝑙
                  (3.61) 

As was the case for the linearly changing curvature profile, the bend is designed to give the 

same endpoints as a circular waveguide of an equivalent radius of curvature, 𝑅, that turns 

through an angle 𝜑. 𝑚𝑙, 𝑘𝑡 and 𝐿 must be set to achieve this for values 𝜎 and 𝑣 set to some 

fraction of the total path length. Equation (3.29) gives the relationship between 𝑚𝑙 , 𝑘𝑡, 𝐿 

and 𝜑. The integral only needs to be evaluated from 0 to 𝐿/2 due to the symmetry in the 

curvature profile: 

∫ 𝑚𝑙𝑠 𝑑𝑠 +  ∫ 𝑘𝑡  𝑑𝑠
𝐿

2
𝜎

=
𝜑

2

𝜎

0
       (3.62) 

𝑚𝑙𝜎2

2
+

𝑘𝑡𝐿

2
− 𝑘𝑡𝜎 =

𝜑

2
               (3.63) 

To find the relationship between 𝑅, 𝐿, 𝑚𝑙 and 𝑘𝑡, the 𝑥 and 𝑧 parameterisation of the 

trapezoidal curvature bend must be constructed and then be allowed to equate to the 𝑥 and 

𝑧 parameterisation of the circular bend at 𝑠 = 𝐿.  

According to equation (3.29), in each region the bending angle at 𝑠 is given by: 

𝜙(𝑠) =
𝑚𝑙𝑠2

2
                                       0 ≤ 𝑠 ≤ 𝜎       (3.64) 

𝜙(𝑠) = 𝑘𝑡𝑠 −
𝑘𝑡

2

2𝑚𝑙
                                 𝜎 < 𝑠 ≤ 𝑣       (3.65) 

𝜙(𝑠) = −
𝑘𝑡

2

𝑚𝑙
+ 𝑘𝑡𝐿 −

𝑚𝑙𝑠2

2
−

𝑚𝑙𝐿2

2
+ 𝑚𝑙𝐿𝑠           𝑣 < 𝑠 ≤ 𝐿       (3.66) 

According to equations (3.32) and (3.33), the 𝑥 and 𝑧 parameterisation at 𝑠1 is given by: 

𝑥(𝑠1) = − ∫ sin (
𝑚𝑙𝑠2

2
)  𝑑𝑠                         0 ≤ 𝑠1 ≤ 𝜎

𝑠1

0
      (3.67) 
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𝑥(𝑠1) = − ∫ sin (
𝑚𝑙𝑠2

2
)  𝑑𝑠 − ∫ sin (𝑘𝑡𝑠 −

𝑘𝑡
2

2𝑚𝑙
)  𝑑𝑠       𝜎 ≤ 𝑠1 ≤ 𝑣

𝑠1

𝜎
 

𝜎

0
     (3.68) 

𝑥(𝑠1) = − ∫ sin (
𝑚𝑙𝑠2

2
)  𝑑𝑠 − ∫ sin (𝑘𝑡𝑠 −

𝑘𝑡
2

2𝑚𝑙
) 𝑑𝑠 

𝑣

𝜎
 

𝜎

0
−  

∫ sin (−
𝑚𝑙𝑠2

2
+ 𝑚𝑙𝐿𝑠 −

𝑚𝑙𝐿2

2
+ 𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)

𝑠1

𝑣
 𝑑𝑠       𝑣 < 𝑠1 ≤ 𝐿      (3.69) 

𝑧(𝑠1) = ∫ cos (
𝑚𝑙𝑠2

2
)  𝑑𝑠                          0 ≤ 𝑠1 ≤ 𝜎

𝑠1

0
      (3.70) 

𝑧(𝑠1) = ∫ cos (
𝑚𝑙𝑠2

2
)  𝑑𝑠 + ∫ cos (𝑘𝑡𝑠 −

𝑘𝑡
2

2𝑚𝑙
)  𝑑𝑠      𝜎 ≤ 𝑠1 ≤ 𝑣

𝑠1

𝜎
 

𝜎

0
     (3.71) 

𝑧(𝑠1) = ∫ cos (
𝑚𝑙𝑠2

2
)  𝑑𝑠 + ∫ cos (𝑘𝑡𝑠 −

𝑘𝑡
2

2𝑚𝑙
) 𝑑𝑠 

𝑣

𝜎
 

𝜎

0
+  

∫ cos (−
𝑚𝑙𝑠2

2
+ 𝑚𝑙𝐿𝑠 −

𝑚𝑙𝐿2

2
+ 𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)  𝑑𝑠

𝑠1

𝑣
       𝑣 < 𝑠1 ≤ 𝐿       (3.72) 

The integrals in equations (3.67) to (3.72) can be evaluated using the Fresnel integrals in the 

following manner: 

∫ cos (
𝑚𝑙𝑠2

2
)  𝑑𝑠 = √

𝜋

𝑚𝑙
𝐶 (√

𝑚𝑙

𝜋
𝑠1)

𝑠1

0
             (3.73) 

∫ sin (
𝑚𝑙𝑠2

2
)  𝑑𝑠 = √

𝜋

𝑚𝑙
𝑆 (√

𝑚𝑙

𝜋
𝑠1)

𝑠1

0
             (3.74) 

∫ cos (𝑘𝑡𝑠 −
𝑘𝑡

2

2𝑚𝑙
)  𝑑𝑠 =

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝑠1 −

𝑘𝑡
2

𝑚𝑙
)) cos (

𝑘𝑡𝑠1

2
)

𝑠1

𝜎
                          (3.75) 

∫ sin (𝑘𝑡𝑠 −
𝑘𝑡

2

2𝑚𝑙
)  𝑑𝑠 =

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝑠1 −

𝑘𝑡
2

𝑚𝑙
)) sin (

𝑘𝑡𝑠1

2
)

𝑠1

𝜎
                     (3.76) 

∫ cos (−
𝑚𝑙𝑠2

2
+ 𝑚𝑙𝐿𝑠 −

𝑚𝑙𝐿2

2
+ 𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)  𝑑𝑠 = 

𝑠1

𝑣
  

√
π

𝑚𝑙 
cos (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝐶 (

𝑘𝑡

√𝑚𝑙𝜋
)] +  

√
𝜋

𝑚𝑙
sin (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝑆 (

𝑘𝑡

√𝑚𝑙𝜋
)]               (3.77) 

∫ sin (−
𝑚𝑙𝑠2

2
+ 𝑚𝑙𝐿𝑠 −

𝑚𝑙𝐿2

2
+ 𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)  𝑑𝑠 = 

𝑠1

𝑣
  

√
π

𝑚𝑙
sin (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝐶 (

𝑘𝑡

√𝑚𝑙𝜋
)] −  

√
𝜋

𝑚𝑙
cos (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝑆 (

𝑘𝑡

√𝑚𝑙𝜋
)]                (3.78) 

The trapezoidal bend is therefore parameterised as follows: 
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𝑥𝑇(𝑠1) =  −√
𝜋

𝑚𝑙
𝑆 (√

𝑚𝑙

𝜋
𝑠1)                            0 ≤ 𝑠1 ≤ 𝜎     (3.79) 

𝑥𝑇(𝑠1) =  − (√
𝜋

𝑚𝑙
𝑆 (

𝑘𝑡

√𝜋𝑚𝑙
 ) +  

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝑠1 −

𝑘𝑡
2

𝑚𝑙
)) sin (

𝑘𝑡𝑠1

2
))       𝜎 < 𝑠1 ≤ 𝑣     (3.80) 

𝑥𝑇(𝑠1) = − {√
𝜋

𝑚𝑙
𝑆 (

𝑘𝑡

√𝜋𝑚𝑙
 ) +

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝐿 −

2𝑘𝑡
2

𝑚𝑙
)) sin (

1

2
(𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)) +            

√
π

𝑚𝑙
sin (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝐶 (

𝑘𝑡

√𝑚𝑙𝜋
)] −                  

√
𝜋

𝑚𝑙
cos (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝑆 (

𝑘𝑡

√𝑚𝑙𝜋
)] }          𝑣 < 𝑠1 ≤ 𝐿     (3.81) 

𝑧𝑇(𝑠1) =  √
𝜋

𝑚𝑙
𝐶 (√

𝑚𝑙

𝜋
𝑠1)                            0 ≤ 𝑠1 ≤ 𝜎     (3.82) 

𝑧𝑇(𝑠1) =  √
𝜋

𝑚𝑙
𝐶 (

𝑘𝑡

√𝜋𝑚𝑙
 ) +  

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝑠1 −

𝑘𝑡
2

𝑚𝑙
)) cos (

𝑘𝑡𝑠1

2
)       𝜎 < 𝑠1 ≤ 𝑣     (3.83) 

𝑧𝑇(𝑠1) = √
𝜋

𝑚𝑙
𝐶 (

𝑘𝑡

√𝜋𝑚𝑙
 ) +

2

𝑘𝑡
sin (

1

2
(𝑘𝑡𝐿 −

2𝑘𝑡
2

𝑚𝑙
)) cos (

1

2
(𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
)) +            

√
π

𝑚𝑙
cos (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝐶 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝐶 (

𝑘𝑡

√𝑚𝑙𝜋
)] +                  

√
𝜋

𝑚𝑙
sin (𝑘𝑡𝐿 −

𝑘𝑡
2

𝑚𝑙
) [𝑆 (√

𝑚𝑙

𝜋
(𝑠1 − 𝐿)) + 𝑆 (

𝑘𝑡

√𝑚𝑙𝜋
)]           𝑣 < 𝑠1 ≤ 𝐿     (3.84) 

Let 𝑓 be the fraction of the path length of the bend devoted to linearly increasing curvature: 

𝑓 =
𝜎

𝐿
=

𝑘𝑡

𝑚𝑙𝐿
                   (3.85) 

As the trapezoidal curvature bend must end at the same point as that of a circular bend with 

an effective radius of curvature 𝑅 and path length 𝐿𝐶 = 𝑅𝜑: 

𝑥𝑇(𝐿) = 𝑥𝐶(𝐿𝐶)           (3.86) 

𝑧𝑇(𝐿) = 𝑧𝐶(𝐿𝐶)                       (3.87) 

Utilising equations (3.61), (3.63), (3.85), and (3.86) leads to the following expression for 𝑚𝑙 

in terms of 𝑓, 𝜑 and 𝑅: 

𝑚𝑙 =
1

𝑅2(1−cos(𝜑))2 {√𝜋 𝑆 (√
𝑓𝜑

𝜋(1−𝑓)
 ) +  2√

1−𝑓

𝜑𝑓
sin (

𝜑

2
(

1−2𝑓

1−𝑓
)) sin (

𝜑

2
) +  

√𝜋 sin(𝜑) [𝐶 (√
𝑓𝜑

𝜋(1−𝑓)
)] − √𝜋 cos(𝜑) [𝑆 (√

𝑓𝜑

𝜋(1−𝑓)
)] }

2

             (3.88) 

Equations (3.61), (3.63), and (3.85) then allow 𝑘𝑡 and 𝐿 to be expressed in terms of 𝑚𝑙 , 𝑓, 

and 𝜑: 
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𝑘𝑡 = √
𝜑𝑚𝑙𝑓

(1−𝑓)
          (3.89) 

𝐿 = √
𝜑

𝑚𝑙𝑓(1−𝑓)
            (3.90) 

The parameterisation of the bend in the (𝑥, 𝑧) coordinate system also allows a cross section 

of the waveguide and the propagating field to be plotted easily in plotting software. For 

example, Figure 3.14 and Figure 3.15 show the 𝑦 cross section through the centre of the 

square waveguide (Figure 2.1) and the propagating 𝐻𝑦 field, respectively, in the cases of the 

circular and linearly changing curvature bends, for an effective radius of curvature of 10 𝜇𝑚. 

This graphical representation of the bend makes it easy to see how the fundamental mode 

shifts towards the outside of the bend and then ‘leaks’ as it propagates around the bend. 

  
Figure 3.14: 𝑦 cross section of the square waveguide and propagating 𝐻𝑦 field in the quasi-TE mode 

through a 90° circular bend. 

  
Figure 3.15: 𝑦 cross section of the square waveguide and propagating 𝐻𝑦 field in the quasi-TE mode 

through a 90° linearly changing curvature bend. 

3.5 Conclusions 
This chapter introduced the method of analysing curved optical waveguides by conformal 

transformation. Both the mode solver and beam propagation method were shown to work 

correctly with the transformed curved waveguide structures. The curvature profiles of the 

waveguide bends were also introduced and explained in this chapter. 

The next chapters will analyse the propagation of light through curved shallow-etched and 

deep-etched ridge optical waveguides.  
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4 Analysis of the Curved Shallow-Etched Ridge Waveguide 

This chapter will focus on the analysis of curved shallow-etched ridge optical waveguides. 

These waveguides are regularly used in photonic integrated circuits and, in this chapter, an 

effort will be made to reduce the loss of a curve in the shallow-etched waveguide by 

utilising different curvature profiles. 

4.1 The Shallow-Etched Ridge Waveguide 
The shallow-etched waveguide analysed in this chapter is based on a standard 1550 𝑛𝑚 

commercial laser material from International Quantum Epitaxy (IQE). This material is 

commonly used in the PICs fabricated by the integrated photonics group in the Tyndall 

National Institute. Although shallow-etched waveguide bends were used in the past, bends 

are now generally made using a deeper etch after they were found to produce much better 

performance at far smaller radii of curvature. This chapter therefore aims to confirm the 

inferiority of the shallow-etched bend in comparison to the deeper etch bend, which will be 

analysed later in this thesis, and also attempts to better understand why this is the case. It 

will also aim to observe if changing the curvature profile of the shallow-etched bend can 

lead to better performance. 

Table 4.1 shows the material and refractive index profile of the 16 layer IQE material which 

will be shallow etched. The width of the ridge waveguide after the etch is 2.5 𝜇𝑚 and the 

shallow etch depth is approximately 1.85 𝜇𝑚, stopping before reaching the quantum well 

region given by layers 8 to 5. 

Layer Number Material Thickness (𝝁𝒎) Refractive Index 

16 GaIn(0.53)As 0.2 3.5112 

15 GaIn(0.71)As(0.62)P 0.05 3.29429 

14 InP 0.1 3.1673 

13 InP 1.5 3.1673 

12 GaIn(0.85)As(0.33)P 0.02 3.18055 

11 InP 0.05 3.1673 

10 [Al(0.9)Ga]In(0.53)As 0.06 3.22444 

9 [Al(0.72 to 0.9)Ga]In(0.53)As 0.06 3.2725 

8 [Al(0.440 )Ga]In(0.49)As 0.01 3.36103 

7 × 5 [Al(0.24 )Ga]In(0.71)As 0.006 3.44344 

6 × 5 [Al(0.440 )Ga]In(0.49)As 0.01 3.36103 

5 [Al(0.9 to 0.72 )Ga]In(0.53)As 0.06 3.22444 

4 [Al(0.9 )Ga]In(0.53)As 0.06 3.22444 

3 [Al(0.86 to 0.9 )Ga]In(0.53)As 0.01 3.2347 

2 InP 0.5 3.1673 

1 InP 0.3 3.1673 
Table 4.1: Composition and refractive index profile of IQE wafer. 

Due to the small thicknesses of some layers, and especially those comprising of the 

quantum well region, a very large number of computational area points would have to be 

used to analyse the shallow-etched waveguide accurately using the mode solver and beam 



Analysis of the Curved Shallow-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 64 Tommy Murphy 
the Finite Difference Beam Propagation Method 

propagation method, requiring a significant amount of memory and time to run simulations. 

Therefore, to reduce the number of points needed for the computation, thin layers of the 

material were combined into a bulk material, and the refractive index set to one which 

would maintain the shape of the fundamental mode profile. Table 4.2 shows the refractive 

indices and thicknesses of the layers of the reduced bulk material. If 𝑛𝑖  is the refractive 

index and 𝑇𝑖 is the thickness of an IQE layer used in the combination of 𝑁 IQE layers to form 

the bulk material layer, the refractive index of the combined bulk material layer 𝑛𝐶𝐿 was 

initially set as follows, where 𝑇𝐶𝐿 is the thickness of the bulk material layer which is the sum 

of the thicknesses of the individual IQE layers: 

𝑛𝐶𝐿 = ∑ 𝑛𝑖 (
𝑇𝑖

𝑇𝐶𝐿
)𝑁

𝑖=1             (4.1) 

However, to improve the selection of the refractive indices of the layers, 1D mode 

simulations were made on the original waveguide and the reduced bulk material waveguide, 

as 1D calculations allow much faster computations and therefore more computational area 

points could be used. 1D simulations assumed the waveguides to extend infinitely along the 

horizontal and allowed the fundamental mode profiles of the waveguides along the 𝒚̂ 

direction to be calculated.  The OIE was then calculated between the two fundamental 

mode fields and the refractive indices of the bulk material regions were then altered until 

the OIE between the fundamental mode fields was minimised. The analysis was done for the 

TE mode, which assumes the electric field to be polarised in the 𝒙̂ direction. 4000 

computational points were used for the computations, giving a point spacing of 

approximately 0.002 microns. The refractive index values given by Table 4.2 were those 

resulting in the minimum OIE between the fields of approximately 1.07 × 10−5 and Figure 

4.1 shows the fundamental mode 𝐸𝑥 fields calculated for the original waveguide and the 

reduced bulk waveguide for this minimum OIE value. The calculated effective refractive 

indices were 3.19633 for the original waveguide and 3.19644 for the reduced bulk material 

waveguide. 

Layer Number IQE Wafer Layers Thickness (𝝁𝒎) Refractive Index 

8 16 0.2 3.5112 

7 15 0.05 3.29429 

6 13, 14 1.6 3.1673 

5 11, 12 0.07 3.168 

4 9, 10 0.12 3.25 

3 5 × 6, 5× 7, 8 0.09 3.387 

2 3, 4, 5 0.13 3.229 

1 1, 2 0.8 3.1673 
Table 4.2: Refractive index profile of bulk material waveguide. 

Figure 4.2 shows the refractive index profile of the analysed bulk material shallow-etched 

waveguide. The shallow etch was made through the top three layers, giving an etch depth of 

1.85 𝜇𝑚. The etch causes the waveguide to be surrounded by air, with a refractive index of 

1. The substrate, with the same refractive index as layer 1, extended for 3.7 𝜇𝑚 to allow the 

shape of the fundamental modes to be calculated accurately. 
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(a) Original waveguide.        (b) Bulk material waveguide.  

Figure 4.1: 1D TE fundamental mode 𝐸𝑥 profiles for the original waveguide and the reduced bulk 
material waveguide. 

 
Figure 4.2: Refractive index profile of  analysed shallow-etched waveguide. 

Figure 4.3 shows the calculated fundamental mode field distributions for both the quasi-TE 

and quasi-TM modes of the shallow-etched waveguide. 250 computational grid points were 

used in each transverse direction, with a grid spacing reducing to 0.01 𝜇𝑚 close to refractive 

index boundaries. The effective refractive index of the quasi-TE mode is 3.1851 and the 

effective refractive index of the quasi-TM mode is 3.1817. The 𝐸𝑥 and 𝐻𝑦 field distributions 

appear very similar, with the largest amount of power confined in the bulk material 

representation of the quantum well region. As this etch is not deep enough to penetrate 

this region, the refractive index profile of the region is constant along the 𝒙̂ direction. This 

means the electromagnetic fields are continuous across the region for both the 𝐸𝑥 and 𝐻𝑦 

fields, making the electromagnetic field profiles appear similar. For the 𝐸𝑦 field distribution, 

multiple discontinuities can be seen in the field along the 𝒚̂ direction, due the many layers 

with different refractive indices. Note however that there should be more as the quantum 

well region layers of different refractive indices have been combined to form the bulk 
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material. Also note that there appears to be another small peak in the field at the top of the 

waveguide for both fields in the quasi-TE mode, whereas the field amplitude in the quasi-

TM mode gradually reduces as it approaches the top of the waveguide. This can be seen 

more clearly in Figure 4.4, which shows a 1D 𝑦 slice of the magnetic fields at 𝑥 = 5.25 𝜇𝑚. 

 
(a) 𝐸𝑥  in the quasi-TE mode.     (b) 𝐻𝑦  in the quasi-TE mode. 

 
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.3: Fundamental mode field distributions of the quasi-TE and quasi-TM modes for the 
shallow-etched waveguide. 

 
(a) 𝐻𝑦  vs. 𝑦 at 𝑥 = 5.25 𝜇𝑚 in the quasi-TE mode.     (b) 𝐻𝑥  vs. 𝑦 at 𝑥 = 5.25 𝜇𝑚 in the quasi-TM mode. 

Figure 4.4: 𝑦 cross section of the magnetic field in the quasi-TE and quasi-TM modes at 𝑥 = 5.25 𝜇𝑚 
for the shallow-etched waveguide. 
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4.2 The Curved Shallow-Etched Ridge Waveguide 
This section will analyse the behaviour and loss of the fields as they propagate through a 

curved shallow-etched waveguide. 90° and 180° waveguide bends will be analysed as these 

bends are regularly used in PICs. 

4.2.1 Shallow-Etched Ridge Waveguide with a 90° Bend 
Figure 4.5 to Figure 4.8 show the electromagnetic fields in both the quasi-TE and quasi-TM 

modes before, during, and after a 90° circular bend with a radius of curvature of 400 𝜇𝑚. 

For these computations, the computational area was extended for an extra 1 𝜇𝑚 in each 

transverse direction to achieve a more accurate representation of the propagating field, as 

the field was expected to shift upon entering the curved waveguide region. 250 

computational points were used in each transverse direction and the TBC was implemented 

at the computational boundaries. The fields were propagated using the (1, 1) Padé order. 

The horizontal 𝜌 axis represents the 𝑥 distance from the centre of the waveguide when in 

the straight waveguide and represents the radial distance from the centre of the waveguide 

when in the curved waveguide.   

Each propagating field behaves in the same manner: they shift towards the outside of the 

bend once entering the circular region, then gradually lose power as they propagate around 

the waveguide bend, and then shift back to the centre of the waveguide upon exiting the 

bend. Note, however, that the field profiles shown in the exit straight waveguide were 

calculated approximately 235 𝜇𝑚 after the bend, and at this propagation distance, excited 

radiation modes in the shallow-etched waveguide have not yet completely radiated away, 

causing an asymmetrical appearance of the field either side of the ridge. The behaviour of 

the propagating fields is made further apparent by Figure 4.9, which shows a cross section 

of the fields, at 𝑦 where the initial field amplitude was maximum, as the fields propagate. 

From the graphs, the fields in the quasi-TM mode appear to be slightly less lossy than the 

fields in the quasi-TE mode. To confirm this, Figure 4.10 and Figure 4.11 show the mode 

mismatch error (MME) and overlap integral error (OIE), respectively, between the input 

fundamental mode of the straight waveguide and the propagating field, for both fields in 

the quasi-TE and quasi-TM modes. The MME graphs show that the MME after the bend is 

practically identical for both propagating fields in an individual mode, but it is approximately 

0.1 lower for the fields in the quasi-TM mode compared to those in the quasi-TE mode. 

Interestingly, the OIE graphs appear to show the OIE reach a constant value of 

approximately 0.1 as the fields in the quasi-TM mode propagate around the circular bend, 

while the value of the OIE appears to oscillate between approximately 0.13 and 0.14 for the 

fields in the quasi-TE mode. After the bend, the OIE tends to 0 as the propagating field takes 

the shape of the fundamental mode, but it has not yet reached 0 at the final propagation 

distance as the excited radiation modes of the shallow-etched waveguide have not yet fully 

radiated away at this propagation distance.  

The slight oscillations in the OIE for the fields in the quasi-TE mode, as they propagate 

through the circular bend, suggest an amount of mode beating. Figure 4.12 shows the 𝐸𝑥 

propagating field at two propagation points: one where the OIE is at a minimum in its 

oscillation at 420 𝜇𝑚 and the other where the OIE is at a maximum in its oscillation at 450 
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𝜇𝑚. The graphs show how the amount of power confined at the top of the waveguide 

oscillates as the field propagates. This suggests beating with a waveguide mode that is 

confined at the top of the waveguide. As the shallow-etched waveguide is single mode, the 

mode solver was run on the original straight waveguide to discover if there were any 

radiation modes which could be beating with the fundamental mode when shifted in the 

curved waveguide. A number of radiation modes were found to exist with much of their 

mode profile inhabiting the top of the waveguide. Figure 4.13 (a) shows an example of one 

such mode. Figure 4.13 (b) shows the mode to be relatively slowly radiating, requiring 

hundreds of microns before losing most of its power while propagating through the straight 

waveguide. These radiation modes suggest the shifted fundamental mode was beating with 

this shifted radiation mode or modes as it propagated around the bend, causing the OIE to 

oscillate. These radiation modes possibly contributed to the larger MME observed by the 

propagating fields in the quasi-TE mode, as the quasi-TM mode did not contain such 

radiation modes. 

  
(a) Initial 𝐸𝑥  in the straight waveguide.   (b) 𝐸𝑟  at 45° through the waveguide bend. 

 
(c) 𝐸𝑥  in the exit straight waveguide. 

Figure 4.5: The electric field in the quasi-TE mode before, during, and after a 90° circular shallow-
etched ridge waveguide bend with a radius of curvature of 400 𝜇𝑚. 
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(a) Initial 𝐻𝑦  in the straight waveguide.   (b) 𝐻𝑦  at 45° though the waveguide bend. 

 
(c) 𝐻𝑦  in the exit straight waveguide. 

Figure 4.6: The magnetic field in the quasi-TE mode before, during and after a 90° circular shallow-
etched ridge waveguide bend with a radius of curvature of 400 𝜇𝑚. 

  
(a) Initial 𝐸𝑦 in the straight waveguide.   (b) 𝐸𝑦 at 45° through the waveguide bend. 

 
(c) 𝐸𝑦 in the exit straight waveguide. 

Figure 4.7: The electric field in the quasi-TM mode before, during and after a 90° circular shallow-
etched ridge waveguide bend with a radius of curvature of 400 𝜇𝑚. 
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(a) Initial 𝐻𝑥  in the straight waveguide.   (b) 𝐻𝑟  at 45° though the waveguide bend. 

 
(c) 𝐻𝑥  in the exit straight waveguide. 

Figure 4.8: The magnetic field in the quasi-TM mode before, during and after a 90° circular bend 
with a radius of curvature of 400 𝜇𝑚 in a shallow-etched ridge waveguide. 

  
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.9: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 90° circular shallow-etched waveguide bend with 𝑅 = 400 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.10: Mode mismatch error as each field propagates through the 90° circular bend shallow-
etched waveguide with 𝑅 = 400 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐻𝑦  in the quasi-TE mode. 

  
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.11: Overlap integral error as each field propagates through the 90° circular shallow-etched 
waveguide bend with 𝑅 = 400 𝜇𝑚. 
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(a) 𝐸𝑦 at minimum in OIE.     (b) 𝐸𝑦 at maximum in OIE. 

Figure 4.12: 𝐸𝑦 in the quasi-TE mode at a minimum and maximum in the overlap integral error while 

propagating through the 90° circular shallow-etched waveguide. 

      
(a) Radiation mode of effective index 3.16396.  (b) MME as radiation mode propagates.  

Figure 4.13: Radiation mode field distribution of shallow-etched waveguide and MME as it 
propagates. 

The simulations through the 90° bend were then repeated using a linear change of 

curvature. The bend was designed to have the same end point as the previously analysed 

circular bend, meaning the linearly changing curvature bend had an effective radius of 

curvature of 400 𝜇𝑚. The same computational parameters as those used for the circular 

bend were used for the linearly changing curvature bend. Figure 4.14 shows the propagated 

𝐸𝑥 field before, during, and after the 90° bend, in the quasi-TE mode. At the 45° point, the 

field appears to be shifted further to the outside of the bend than that of the corresponding 

circular waveguide at an angle of 45°. After the bend, when the field has shifted back to the 

centre of the waveguide, the mode has appeared to have lost more of its power than that in 

the corresponding circular waveguide. The same behaviour is observed for the propagated 

𝐻𝑦, 𝐸𝑦 and 𝐻𝑥 fields. Figure 4.15 shows a cross section of the 𝐸𝑥 field in the quasi-TE mode 

and the 𝐸𝑦 field in the quasi-TM mode, at 𝑦 where the initial field amplitude was maximum, 

as the fields propagate. In each case, as the curvature linearly increases, the fields appear to 

move further and further towards the outside of the bend. As the fields approach the 45° 

mark, the curvature appears to reach a point where substantial power leaks from the 

waveguide, especially for the quasi-TE mode. Then, after 45° through the bend, the 

curvature linearly decreases, causing the fields to move back towards the centre of the 

waveguide. Like the circular waveguide, for both the quasi-TE and quasi-TM modes, the 

graph for the propagated magnetic field appears practically identical to the graph for the 

propagated electric field and is therefore omitted in this case. 
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(a) Initial 𝐸𝑥  in the straight waveguide.   (b) 𝐸𝑟  at 45° through the waveguide bend. 

 
(c) 𝐸𝑥  in the exit straight waveguide. 

Figure 4.14: 𝐸𝑥 in the quasi-TE mode before, during and after a 90° linearly changing curvature 
shallow-etched ridge waveguide bend with an effective radius of curvature of 400 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.15: Cross section of the fields, at 𝑦 where the initial field was maximum, as they propagate 
through a 90° linearly changing curvature shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 400 𝜇𝑚. 

    
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.16: Mode mismatch error as each field propagates through the 90° linearly changing 
curvature shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 400 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.17: Overlap integral error as each field propagates through the 90° linearly changing 
curvature shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 400 𝜇𝑚. 

Figure 4.16 and Figure 4.17 show the MME and OIE respectively between the initially 

propagated fundamental mode field and the propagating field for the electric field in both 

the quasi-TE and quasi-TM modes. The MME is seen to rise smoothly as the fields propagate 

through the linearly increasing curvature part of the bend. The MME is then observed to 

stop rising as the curvature of the bend begins to linearly decrease, causing the field to shift 

back towards the centre of the waveguide. Meanwhile, in both cases, the OIE rises steadily 

until the maximum curvature is reached where it then decreases steadily as the field again 

takes the shape of the initially propagated field. In contrast to the MME and OIE graphs 

observed for the circular waveguide, no oscillations are observed in the MME and OIE 

graphs for the linearly changing curvature waveguide. This is because the linear change in 

curvature removes the sharp transition between the straight and curved waveguides which 

occurs in the circular waveguide. This causes the shape of the field at each propagation 

point through the bend to be very close to the shape of the fundamental mode of the 

curved waveguide at the next propagation step. This results in primarily the excitation of the 

fundamental mode of the curved waveguide, causing very little excitation of the radiation 

modes.  The transition loss observed in the linearly changing curvature waveguide is 

therefore minimal. 

Unfortunately, the MME observed after the linearly changing curvature bend is far higher 

than that observed for the circular bend, for both the quasi-TE and quasi-TM modes. 

According to equation (3.57), the maximum curvature reached is 1.87 times the curvature of 

the circular waveguide of the equivalent radius of curvature. Figure 4.15 shows that most of 

the power leaks from the waveguide when the curvature of the waveguide is in the region 

of this maximum curvature. This suggests that although the linear change in curvature 

removes the sharp transition at the straight-curved waveguide interface, the propagating 

field loses much more power from the maximum curvature region of the linearly changing 

curvature waveguide than the propagating field through the circular waveguide loses from 

both the straight-curved waveguide transitions and the constant curvature of the bend. 

Interestingly, the MME for the 𝐸𝑥 field in the quasi-TE mode is higher than that for the 𝐸𝑦 

field in the quasi-TM mode after the linearly changing curvature bend, in agreement with 

what was observed for the circular bend. However, the higher MME in this case cannot be 



Analysis of the Curved Shallow-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 75 Tommy Murphy 
the Finite Difference Beam Propagation Method 

attributed to the excitation of shifted radiation modes, as the linear change in curvature 

should prevent these radiation modes from being excited. 

The linearly changing curvature bend was then replaced with a trapezoidal curvature bend 

with the same equivalent radius of curvature of 400 𝜇𝑚. The bend was designed for half the 

path length to consist of linearly changing curvature and the other half to consist of circular 

curvature. This gives the fraction of the path length consisting of linearly increasing 

curvature, 𝑓 in equation (3.85), a value of 0.25. The same computational parameters were 

used for this bend as were used in for the circular and linearly changing curvature bends. 

Figure 4.18 gives the cross section of the propagating electric fields for both the quasi-TE 

and quasi-TM modes. The fields behave as expected from the previous bends, with the 

fields slowly moving towards the outside of the bend during the linearly increasing 

curvature section of the waveguide, and then remaining at the outside of the bend and 

losing power as they propagate through the circular region. Again, more power appears to 

leak in the quasi-TE mode than the quasi-TM mode. Figure 4.19 shows the MME between 

the propagating field and the initially propagated field. The MME appears to increase until 

the curvature of the waveguide begins to linearly decrease, as observed in the linearly 

changing curvature waveguide. The MME after the bend is between that of the circular 

bend and the linearly changing curvature bend at approximately 0.78 for the quasi-TE mode 

and 0.66 for the quasi-TM mode. The overlap integral error graph in Figure 4.20 appears to 

have almost a trapezoidal shape. This is due to the shape of the field profile shifting as it 

propagates through the linearly changing curvature regions, and then taking a constant 

shape as it propagates through the circular regions. 

  
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.18: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 90° trapezoidal curvature bend shallow-etched waveguide with 𝑓 = 0.25 and 𝑅𝑒𝑓𝑓 =

400 𝜇𝑚. 

The MME results from the bends analysed appear to suggest that, for the 90° bend, the best 

approach is the simple circular curvature bend. The reduction in transition loss offered by 

the linear curvature bend is inconsequential in comparison to extra propagating loss 

suffered due to the larger maximum curvature reached. To verify this, and to investigate if it 

holds for bends of different effective radii of curvature, Figure 4.21 gives a graph of the 

mode mismatch error for different radii of curvature and different linear curvature fractions 

for the magnetic field in both the quasi-TE and quasi-TM modes. The graphs confirm that 
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the mode mismatch error increases with decreasing radius of curvature and increasing 

linear curvature fraction. Therefore, the bend profile with the least loss is the circular 

curvature bend. The graphs also show that less loss is observed for fields propagated in the 

quasi-TM mode for every effective radius of curvature and linear curvature fraction. To 

make shallow-etched bends without significant losses, the graphs suggest that the effective 

radius of curvature should be kept above approximately 500 𝜇𝑚 for the circular waveguide 

and above 650 𝜇𝑚 for the linearly changing curvature waveguide. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.19: Mode mismatch error as each field propagates through the 90° trapezoidal curvature 
bend shallow-etched waveguide with  𝑓 = 0.25 and 𝑅𝑒𝑓𝑓 = 400 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.20: Overlap integral error as each field propagates through the 90° trapezoidal curvature 
bend shallow-etched waveguide with 𝑓 = 0.25 and 𝑅𝑒𝑓𝑓 = 400 𝜇𝑚. 

   
(a) 𝐻𝑦  in the quasi-TE mode.     (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.21: Mode mismatch error vs. effective radius of curvature and the fraction of the path 
length consisting of linearly changing curvature for the 90° bend. 
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4.2.2 Shallow-Etched Ridge Waveguide with a 180° Bend 
Following on from the 90° bend analysis, the same procedure was used to find the best 

curvature profile for the 180° bend. Different results could be expected for the 180° bend, 

as the maximum curvature reached is smaller than that reached for the 90° bend in the 

cases of the linearly changing curvature and trapezoidal curvature profiles. For example, for 

the linear curvature waveguide, according to equation (3.57), the maximum curvature 

reached is 1.3768 times the curvature of a circular waveguide with the same effective radius 

of curvature. This is much lower than that of the 90° bend waveguide with 1.87 times the 

circular curvature. 

Figure 4.22 gives the cross section of the fields, at 𝑦 through the peak of the initial field, as 

they propagate through a circular bend with a radius of curvature of 500 𝜇𝑚. This is larger 

than the 400 𝜇𝑚 radius bend analysed for the 90° bend as a 180° bend produces more loss 

than a 90° bend with the same radius of curvature, due to the longer path length of the 

bend. The field of course behaves in the same manner as for the 90° circular bend, 

immediately shifting towards the outside of the bend at the straight-waveguide boundary 

and then losing power as it propagates through the circular bend. Figure 4.23 again shows 

the quasi-TM mode to perform better than the quasi-TE mode. And Figure 4.24 again shows 

how the bend causes shifted slow radiating mode(s) to be exited in the quasi-TE mode, 

however, this time it is easier to see the oscillations in the OIE dampen as the field 

propagates through the bend, showing that the power leaks substantially from the excited 

radiation mode(s). 

Next, Figure 4.25 shows the cross section of the field, at 𝑦 through the peak of the initial 

field, as it propagates through a linearly changing curvature bend with an effective radius of 

curvature of 500 𝜇𝑚. The field moves slowly towards the outside of the bend as the 

curvature linearly increases and then back to the centre of the waveguide as the curvature 

linearly decreases. In contrast to the 90° bend, the power does not leak substantially in the 

region of the waveguide close to the maximum curvature. Figure 4.26 shows the MME 

between the propagating fields and the initially propagated fundamental mode fields. In this 

case however, the MME after the bend appears to be slightly less than that of the 

corresponding circular bend, suggesting a linear change of curvature is of benefit to the 

180° bend. 

Figure 4.28 shows the cross section of the field as it propagates through a trapezoidal 

curvature bend with half the path length designated for linearly changing curvature and 

with an effective radius of curvature of 500 𝜇𝑚. For both the quasi-TE and quasi-TM modes, 

the field transitions smoothly to the fundamental mode of the circular region and loses 

most of its power while propagating through this circular region. The MME graphs show the 

MME to be less than both the circular and linearly changing curvature bends, suggesting a 

trapezoidal curvature profile is preferred to minimise loss. 

Although the bend appears to have the least amount of loss for the half linearly changing 

curvature, half circular bend, it is important to check if any other fraction of linearly 

changing curvature would reduce the loss further. It is also important to see if the 

observation holds for other radii of curvature. Figure 4.31 therefore gives the MME after the 
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bend for different radii and linearly changing curvature fractions, for the magnetic field in 

both the quasi-TE and quasi-TM modes. The graphs suggest that the MME is minimised 

when the graph is approximately half linearly changing curvature, half circular curvature, 

but the reduction in MME by designing the bend in this way appears to be relatively small. 

The linear curvature fraction where the MME is minimum also appears to vary depending on 

the effective radius of curvature. For example, Figure 4.32 more clearly shows the MME for 

the quasi-TE mode at effective radii of curvature of approximately 530 𝜇𝑚 and 730 𝜇𝑚. 

When 𝑅𝑒𝑓𝑓 = 530 𝜇𝑚, the minimum appears to be at a linear curvature fraction of 0.45 and 

the difference between the maximum and minimum MME is 0.06. Meanwhile, when 𝑅𝑒𝑓𝑓 =

730 𝜇𝑚, the minimum appears to be at a linear curvature fraction of 0.35 and the 

difference between the maximum and minimum MME is 0.05. As the effective radius of 

curvature is lowered from 1000 𝜇𝑚 to 300 𝜇𝑚, the linear curvature fraction where the 

MME is minimum appears to gradually shift from approximately 0.33 to 0.5. However, the 

difference between maximum and minimum MME remains relatively low at all effective 

radii of curvature. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.22: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° circular shallow-etched waveguide bend with 𝑅 = 500 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.23: Mode mismatch error as each field propagates through the 180° circular shallow-etched 
waveguide bend with  𝑅 = 500 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.24: Overlap integral error as each field propagates through the 180° circular shallow-etched 
waveguide bend with 𝑅 = 500 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.25: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° linearly changing curvature shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.26: Mode mismatch error as each field propagates through the 180° linearly changing 
curvature shallow-etched waveguide bend with  𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 

    
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.27: Overlap integral error as each field propagates through the 180° linearly changing 
curvature shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.28: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° trapezoidal shallow-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.29: Mode mismatch error as each field propagates through the 180° trapezoidal shallow-
etched waveguide bend with  𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 

    
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 4.30: Overlap integral error as each field propagates through the 180° trapezoidal shallow-
etched waveguide bend with 𝑅𝑒𝑓𝑓 = 500 𝜇𝑚. 

   
(a) 𝐻𝑦  in the quasi-TE mode.     (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 4.31: Mode mismatch error vs. effective radius of curvature and the fraction of the path 
length consisting of linearly changing curvature for the 180° shallow-etched bend. 
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(a) 𝑅𝑒𝑓𝑓 = 530 𝜇𝑚.    (b) 𝑅𝑒𝑓𝑓 = 730 𝜇𝑚. 

Figure 4.32: Change of mode mismatch error with linear curvature fraction for a constant effective 
radius of curvature for the 180° shallow-etched bend.  

4.3 Effect of Waveguide Width and Shallow Etch Depth on Curved 

Waveguide Loss 
The effect of changing the width and shallow etch depth of the waveguide were 

investigated to observe if the bend loss could be reduced. Increasing the width of the 

waveguide has previously be shown to reduce the bend loss of curved waveguides as the 

fundamental mode becomes more confined [54]. 

4.3.1  The Effect of Waveguide Width on Curved Waveguide Loss 
The width of the shallow-etched waveguide was varied to observe the effect it would have 

on loss from the waveguide bend. This is also important as the waveguide width can 

sometimes vary from approximately 2.4 𝜇𝑚 to 2.6 𝜇𝑚 during fabrication if designed to be 

2.5 𝜇𝑚, for example. The shallow-etched waveguide refractive index profile is the same as 

the one analysed in the previous section. Figure 4.33 gives the mode mismatch error 

between the initially propagated magnetic field in the quasi-TM mode and the field after a 

180° bend, for both a circular waveguide and a linear changing curvature waveguide with 

effective radii of curvature of 500 𝜇𝑚, where the waveguide width was varied from 2 𝜇𝑚 to 

3 𝜇𝑚. The same computational parameters were again used for this computation as the 

computations in the previous section. The graphs show that the MME decreases 

considerably with increasing waveguide width in both cases. As the width of the original 

waveguide was 2.5 𝜇𝑚, increasing the width to 3 𝜇𝑚 would give a decrease in the MME of 

approximately 0.12 from 0.52 to 0.4 for the circular waveguide and a decrease of 

approximately 0.14 from 0.5 to 0.36 for the linearly changing curvature waveguide. 

Waveguide widths beyond 3 𝜇𝑚 were not included as the waveguide becomes multimode 

in the quasi-TM mode beyond this width. Meanwhile, the shallow-etched waveguide 

becomes multimode at a waveguide width of approximately 2.8 𝜇𝑚 in the quasi-TE mode. 
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(a) Circular Waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 4.33: Effect of waveguide width on mode mismatch error after a 180° bend for 𝐻𝑥 in the 
quasi-TM mode. 

Figure 4.34 gives the 𝐻𝑥 field profiles in the quasi-TM mode through the straight waveguide 
for waveguide widths of 2 𝜇𝑚, 2.5 𝜇𝑚, and 3 𝜇𝑚 and offers an insight into why the varying 
waveguide width has such an impact on the bend loss. The decreasing waveguide width 
causes more of the field distribution to be pushed down from the region above the etch to 
the region below the etch. Numerically, for the 2 𝜇𝑚 width, 19% of the total power is 
confined to the region above the etch, compared to 23.4% for the 2.5 𝜇𝑚 width and 26% for 
the 3 𝜇𝑚 waveguide width. The decreasing waveguide width therefore allows more power 
to leak from the waveguide during the bend, as less of the field distribution is now confined 
by the sharp refractive index contrast between the waveguide material and air. 

  
(a) 2 𝜇𝑚 waveguide width.    (b) 2.5 𝜇𝑚 waveguide width. 

 
(c) 3 𝜇𝑚 waveguide width. 

Figure 4.34: 𝐻𝑥 field profiles in the quasi-TM mode for the shallow-etched waveguide of various 
widths. 



Analysis of the Curved Shallow-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 83 Tommy Murphy 
the Finite Difference Beam Propagation Method 

4.3.2 The Effect of Etch Depth on Curved Waveguide Loss 
The effect of altering the shallow etch depth on the curved waveguide loss was investigated. 

Although typically designed for a depth of 1.85 𝜇𝑚, the actual etch depth can vary slightly 

during fabrication. The effect on the loss was investigated for etch depths from 1.75 𝜇𝑚 to 

1.95 𝜇𝑚. 

Figure 4.35 shows graphs of the mode mismatch error between the initially propagated field 

and the field after 180° circular and linearly changing curvature bends with effective radii of 

500 𝜇𝑚, as the etch depth varies, for the magnetic field in both the quasi-TE and quasi-TM 

modes. The MME varies significantly within this etch depth range, becoming smaller as the 

etch depth increases. 

   
(a) Circular Waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 4.35: Effect of etch depth on mode mismatch error after a 180° bend for 𝐻𝑥 in the quasi-TM 
mode. 

The reason for these results is again primarily due to how much power is confined within 

the etch. This is clearly seen in Figure 4.36, which shows the 𝐻𝑥 field profile in the quasi-TM 

mode for etch depths of 1.75 𝜇𝑚, 1.85 𝜇𝑚, and 1.95 𝜇𝑚. The deeper the etch, the more 

power is confined by the sharp refractive index change, and the less power escapes from 

under the etch during the bend. At etch depths greater than 1.95 𝜇𝑚, the etch approaches 

the quantum well region and would therefore be considered a deep etch. 

4.4 Conclusions 
Curved shallow-etched ridge waveguides of various curvature profiles were analysed in an 

attempt to reduce the bend loss. Modifying the curvature profile of the bend only slightly 

improved the bend performance, as the shallow etch allowed the fundamental mode to 

easily shift and leak power from the bend regardless of the curvature profile. Large effective 

radii of curvature bends were therefore still needed to allow low loss shallow-etched bends. 

Slightly increasing the width and etch depth of the waveguide were shown to have a far 

greater impact on reducing the bend loss.  

The next chapter will analyse curved deep-etched ridge waveguides, where the higher mode 

confinement may cause the different curvature profiles to have a better impact on the 

curved waveguide loss. 
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(a) 1.75 𝜇𝑚 etch depth.     (b) 1.85 𝜇𝑚 etch depth. 

 
(c) 1.95 𝜇𝑚 etch depth. 

Figure 4.36: 𝐻𝑥 field profiles in the quasi-TM mode for the shallow-etched waveguide of various etch 
depths. 
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5 Analysis of the Curved Deep-Etched Ridge Waveguide 

This chapter will focus on the analysis of deep-etched ridge optical waveguides. The 

waveguide structure is equivalent to the waveguide analysed in the previous chapter, with 

the etch depth now penetrating through the quantum well region. This deep etch causes 

greater lateral confinement of the waveguide’s fundamental mode, leading to differing 

behaviour of the propagating field through a bend in the waveguide to that through the 

curved shallow-etched waveguide. 

5.1 The Deep-Etched Ridge Waveguide 
The waveguide analysed is again based on the standard 1550 𝑛𝑚 commercial laser material 

from IQE. After the material was deeply etched in the fabrication process at Tyndall, much 

less loss was observed after a bend in the waveguide, and much lower radii bends could be 

used relative to those used for the shallow-etched waveguide. This chapter therefore aims 

to show and understand the superior performance of the deep-etched bends and also 

investigate if the performance of the bend could be improved by varying the curvature 

profile of the bend. 

The material and refractive index structure of the original waveguide and simplified bulk 

material waveguide are again given by Table 4.1 and Table 4.2 respectively. The depth of the 

deep etch is 2.96 𝜇𝑚, which is the etch depth of the deep etch used by the IPG in Tyndall, 

and this depth causes the etch to extend approximately 0.8 𝜇𝑚 beyond the quantum well 

region. Figure 5.1 shows the refractive index profile of the bulk material deep-etched 

waveguide. 

Figure 5.2 shows the calculated fundamental mode field distributions for both the quasi-TE 

and quasi-TM modes of the deep-etched waveguide. 250 computational grid points were 

used in each transverse direction, with a grid spacing of 0.01 𝜇𝑚 used close to refractive 

index boundaries. Dirichlet boundary conditions were used for the computation. The 

effective refractive index of the quasi-TE mode is 3.18164 and the effective refractive index 

of the quasi-TM mode is 3.17941. The fields appear very similar to those computed for the 

shallow-etched waveguide in Figure 4.3, with the difference being that the fields through 

the quantum well region are now more confined in the 𝒙̂ direction due to the deep etch 

through the quantum well region causing a large refractive index contrast between the 

waveguide material and air. 

The properties of the different fields are also clearly evident for the deep-etched 

waveguide, i.e.  the 𝐸𝑥 field is discontinuous at refractive index boundaries along the 𝒙̂ 

direction, the 𝐸𝑦 field is discontinuous at refractive index boundaries along the 𝒚̂ direction, 

and the magnetic fields are continuous at all refractive index boundaries. In the case of all 

the fields, a small amount of the fields distribution still exists in the substrate region below 

the deep etch. In the case of the fields in the quasi-TE mode, a small second peak is again 

observed at the top of the waveguide. 
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Figure 5.1: Refractive index profile of the deep-etched waveguide. 

 
(a) 𝐸𝑥  in the quasi-TE mode.     (b) 𝐻𝑦  in the quasi-TE mode. 

 
(c) 𝐸𝑦 in the quasi-TM mode.    (d) 𝐻𝑥  in the quasi-TM mode. 

Figure 5.2: Fundamental mode field distributions of the quasi-TE and quasi-TM modes for the deep-
etched waveguide. 
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5.2 The Curved Deep-Etched Ridge Waveguide 
This section will analyse the behaviour and loss of the fields as they propagate through a 

curved deep-etched waveguide. This analysis will again focus on 90° and 180° bends. 

5.2.1 Deep-Etched Ridge Waveguide with a 90° Bend 

5.2.1.1 Circular Bend 

Figure 5.3 and Figure 5.4 show the propagating electric fields in the quasi-TE mode and 

quasi-TM mode, respectively, before, during, and after a 90° circular bend with a radius of 

curvature of 100 𝜇𝑚. 350 computational points were used in each transverse direction, 

including a PML region which extended for approximately 2 𝜇𝑚 beyond the original 

computational boundaries. The propagation step size was 0.1 𝜇𝑚 and the fields were 

propagated using the (2, 2) Padé order. The field within the PML region was not included in 

the graphs. These computational parameters were used for all BPM simulations done in this 

chapter, unless stated otherwise. 

Figure 5.3 (b) and (c) show the electric field in the quasi-TE mode at angles 44.2° and 51.9° 

through the bend. Although the angles only differ by 8.7°, the field distributions are quite 

different, with the field at 𝜑 = 44.2° shifted towards the outside of the bend, and the field 

at 𝜑 = 51.9° appearing to be located far closer to the centre of the waveguide. This 

changing shape of the field profile suggests the excitation of multiple modes on entry to the 

circular waveguide, which then beat together as the field propagates. This is made further 

evident by Figure 5.5 (a) which shows the cross section of the field, at 𝑦 through the peak of 

the initial field, as it propagates. The field appears to repeatedly shift towards and away 

from the outside of the bend as it propagates through the waveguide. Figure 5.3 (d) shows 

the field 59 𝜇𝑚 after the bend. The field had exited the bend as a superposition of curved 

waveguide modes causing multiple radiation modes to be excited in the exit straight 

waveguide. At this propagation distance, the field is deformed from the shape of the 

straight fundamental mode field suggesting the radiation modes are still beating, which in 

turn suggests the radiation modes are slowly radiating. The same behaviour is observed for 

the propagating field in the quasi-TM mode, with the field beating between modes as it 

propagates through the bend. 

Figure 5.6 shows the mode mismatch error between the propagating field and the initially 

propagated straight waveguide fundamental mode field for both the quasi-TE and quasi-TM 

modes. The MME oscillates as the fields propagate through the circular waveguide due to 

the excitation of the multiple modes which have different effective refractive indices. The 

MME values at the peaks and troughs also increase as the fields propagate due to the power 

slowly escaping under the deep etch due to the excitation of the leaky shifted fundamental 

mode and the shifted radiation mode(s). If the bend is designed to end on one of these 

troughs, the excitation of the fundamental straight waveguide mode can be maximised, 

leading to lower loss. The design of a waveguide bend in this manner is known as a matched 

bend and this method was applied to high index contrast waveguides in the University of 

Notre Dame [3]. In their analysis, two bend modes were excited and the bend was designed 

to end where the two excited modes had identical phases which caused the original field to 

be reproduced. This would correspond to ending the bend on a trough of Figure 5.6. The 
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path length of the bend was therefore designed to be an integer number of the beat length 

between the two modes, with the beat length given by: 

𝐿𝐵 =
𝜆

𝑛1−𝑛2
                   (5.1) 

𝑛1 and 𝑛2 refer to the effective refractive indices of the bend modes. Returning to Figure 

5.6, the rate of MME oscillation with propagating distance is slightly smaller for the quasi-

TM mode, causing the quasi-TM mode to perform worse at this radius of curvature, as the 

MME is approximately midway between a peak and a trough when the bend ends for the 

quasi-TM mode, while the MME is close to a trough when the bend ends for the quasi-TE 

mode. However, the MME at a peak or trough is larger for the quasi-TM mode than the 

corresponding peak or trough for the quasi-TE mode. This suggests the propagation loss is 

higher for the fields in the quasi-TM mode than the quasi-TE mode, opposite to what was 

true for the shallow-etched waveguide. 

  
     (a) Initial 𝐸𝑥  in the straight waveguide.    (b) 𝐸𝑟  at 44.2° through the waveguide bend. 

  
(c) 𝐸𝑟  at 52.9° through the waveguide bend.   (c) 𝐸𝑥  59 𝜇𝑚 after the bend.  

Figure 5.3: The electric field in the quasi-TE mode before, during and after a 90° circular deep-
etched ridge waveguide bend with a radius of curvature of 100 𝜇𝑚 . 
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     (a) Initial 𝐸𝑦 in the straight waveguide.    (b) 𝐸𝑦 at 47.5° through the waveguide bend. 

  
(c) 𝐸𝑦 at 56.8° through the waveguide bend.   (c) 𝐸𝑦 59 𝜇𝑚 after the bend.  

Figure 5.4: The electric field in the quasi-TM mode before, during and after a 90° circular deep-
etched ridge waveguide bend with a radius of curvature of 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.5: Cross section of the field, at 𝑦 through the peak of the initial field, as it propagates 
through the 90° circular deep-etched waveguide bend with 𝑅 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.6: Mode mismatch error as each field propagates through the 90° circular deep-etched 
waveguide bend with 𝑅 = 100 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.7: Overlap integral error as each field propagates through the 90° circular deep-etched 
waveguide bend with 𝑅 = 100 𝜇𝑚. 

Meanwhile, Figure 5.7 shows the overlap integral error between the propagating field and 

the initially propagated field. In contrast to the MME graph, the OIE values at the peaks and 

troughs do not rise as the field propagates as the OIE does not take into account the loss of 

the field. The OIE however does slowly decrease after exiting the bend, as the excited 

straight waveguide radiation modes slowly lose their power. 

To confirm these oscillations in the MME and OIE are due to the excitation of shifted slowly 

radiating higher order mode(s), Figure 5.8 shows the two quasi-TE radiation modes of the 

straight waveguide with the largest fraction of their field distribution confined in the 

waveguide above the deep etch, before and after they have propagated through a straight 

waveguide of length 400 𝜇𝑚. The first field is shown to be very slowly radiating, propagating 

for hundreds of microns while losing very little power. The second radiation mode field, 

while being far more radiative than the first field, would still be considered slowly radiating 

as it requires a couple of hundred microns to lose most of its power. This is shown 

numerically by Figure 5.9 where the MME is shown for both propagating fields. 

Meanwhile, unlike the quasi-TE mode, the quasi-TM mode does not contain a radiation 

mode where the field distribution is primarily contained in the top of the waveguide, as was 

also observed in the case of the shallow-etched waveguide. It does however contain a 

radiation mode with 2 peaks in the 𝒙̂ direction, very similar to the radiation mode found in 

the quasi-TE mode. The radiation mode field before and after propagating through a 

straight waveguide is given by Figure 5.10 and the MME is given by Figure 5.11. The MME is 

observed to progress very similarly to the MME for the corresponding radiation mode in the 

quasi-TE mode. 
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     (a) Quasi-TE 𝐸𝑥  radiation mode at 𝑧 = 0.    (b) Quasi-TE 𝐸𝑥  radiation mode at 𝑧 = 400 𝜇𝑚. 

  
(c) Quasi-TE 𝐸𝑥  radiation mode at 𝑧 = 0.    (d) Quasi-TE 𝐸𝑥  radiation mode at 𝑧 = 400 𝜇𝑚. 

Figure 5.8: Two propagating radiation modes through the straight deep-etched waveguide in the 
quasi-TE mode. The first has an effective index of 3.16404 and the second has an effective index of 

3.13681. 

   
(a) Mode with 𝑛𝑒𝑓𝑓 =  3.16404.    (b) Mode with 𝑛𝑒𝑓𝑓 = 3.13681. 

Figure 5.9: Mode mismatch error as the radiation modes propagate through the straight deep-
etched waveguide in the quasi-TE mode. 

  
(a) Quasi-TM 𝐸𝑦 radiation mode at 𝑧 = 0.    (b) Quasi-TM 𝐸𝑦 radiation mode at 𝑧 = 400 𝜇𝑚. 

Figure 5.10: Propagating radiation mode through the straight deep-etched waveguide in the quasi-
TM mode with an effective index of 3.14001. 



Analysis of the Curved Deep-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 92 Tommy Murphy 
the Finite Difference Beam Propagation Method 

 
Figure 5.11: Mode mismatch error as the radiation mode propagates through the straight deep-

etched waveguide in the quasi-TM mode with an effective index of 3.14001. 

The radiation modes in the curved waveguide consist of shifted versions of these modes, 

meaning that although these modes would be excited in the curved waveguide structure, 

assuming the shifted radiation modes are still slowly radiating, much of the power is not lost 

during the bend, allowing the superposition of the curved waveguide fundamental mode 

and radiation modes to excite the fundamental mode of the straight waveguide at the end 

of the bend. As the mode beating manifests by the field moving towards and away from the 

outside of the bend, it likely occurs primarily due the excitation of the shifted fundamental 

mode and the shifted radiation mode which has 2 peaks in the 𝒙̂ direction. Using the mode 

solver on the circular deep-etched waveguide with a radius of curvature of 100 𝜇𝑚, the 

shifted version of the modes can be found and are given by Figure 5.12. Although the field 

distribution inside the waveguide above the deep etch should be accurate, note that the tail 

regions of the fields are inaccurate due to the insufficiencies of the boundary conditions. 

Beating between these two modes is likely what is observed as the field propagates through 

the circular bend. To confirm this, the beat length of the modes can be approximately 

calculated according to equation (5.1) and compared to the propagating distance between 

successive peaks or troughs in Figure 5.6. The calculated effective refractive indices of the 

two modes in the quasi-TE mode were 3.18784 and 3.13808 respectively. This gives a beat 

length of approximately 31.15 𝜇𝑚. Meanwhile, from Figure 5.6, the average distance 

between two troughs is approximately 31.1 𝜇𝑚. The closeness of these results confirms the 

mode beating occurring in the propagating field is between the two modes. Also note that 

less of the field distribution appears to be confined to the region above the deep etch for 

the shifted fundamental mode in the quasi-TM mode than for the shifted fundamental 

mode in the quasi-TE mode. This would cause the propagation loss from the shifted 

fundamental mode to be higher for the quasi-TM mode which would explain the larger 

MME between the fields before and after the bend for the quasi-TM mode. 
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 (a) Quasi-TE 𝐸𝑟  shifted fundamental mode.       (b) Quasi-TE 𝐸𝑟  shifted radiation mode. 

  
(c) Quasi-TM 𝐸𝑦 shifted fundamental mode.       (d) Quasi-TM 𝐸𝑦 shifted radiation mode. 

Figure 5.12: Modes in a circular deep-etched waveguide with a radius of curvature of 100 𝜇𝑚. 

5.2.1.2 Linearly Changing Curvature Bend 

As the circular curvature results in the excitation of curved radiation modes, a linear change 

in curvature can be introduced to prevent these modes from being excited, as the shape of 

the field should be very similar to the shaped of the curved fundamental mode at each 

propagation step. The field should slowly move towards the outside of the bend as the 

curvature linearly increases and then move back towards the centre of the waveguide as the 

curvature linearly decreases. This should prevent the field exiting the bend as a 

superposition of the curved waveguide modes. This means the mode mismatch error 

between the field before and after the bend should be almost entirely dependent on the 

propagation loss of the shifted fundamental mode and not on the shape of the field exiting 

the bend. 

Figure 5.13 and Figure 5.14 show the electric field in the quasi-TE mode and quasi-TM 

mode, respectively, before, during, and after the linearly changing curvature 90° bend with 

an effective radius of curvature of 100 𝜇𝑚. In both cases, the field is observed to have 

shifted towards the outside of the bend midway through the bend and then shifted back to 

the centre of the waveguide after the bend. Figure 5.15 shows the fields to have shifted 

slowly to the outside of the bend and then back again. Small horizontal oscillations in the 

field suggest that there were small excitations of shifted radiation modes but were far less 

significant than for the circular waveguide. 

The MME and OIE between the initially propagated field and the propagating field are given 

by Figure 5.16 and Figure 5.17 respectively. The final MME of approximately 0.13 in the 

quasi-TE mode is slightly smaller than the MME for the corresponding circular waveguide 

which was approximately 0.16, while the final MME of approximately 0.175 in the quasi-TM 
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mode is much smaller than the MME for the corresponding circular waveguide which was 

approximately 0.31. The small oscillations in the MME and OIE again suggest slight 

excitations of the curved waveguide radiation modes. 

The advantage of the linearly changing curvature is that the propagating field should always 

be close to the shape of the fundamental mode of the straight waveguide when leaving the 

curved waveguide, due to little excitation of shifted radiation modes. This means that most 

of the field leaving the bend will take the shape of the fundamental mode of the straight 

waveguide. On the other hand, for the circular waveguide, the amount of the field leaving 

the bend that will take the shape of the fundamental mode of the straight waveguide is 

entirely dependent on the superposition of the fundamental mode and the radiation modes 

when leaving the waveguide bend. This means a small change in radius of curvature could 

cause a large change in MME for the circular curvature but the MME should change little for 

the linearly changing curvature waveguide. This is shown in Figure 5.18 where the MME 

after the bend is compared for the circular and linearly changing curvature bends as 

effective radius increases. Above 50 𝜇𝑚, as the effective radius increases, the MME is 

observed to steadily decrease for the linearly changing curvature waveguide while the MME 

is observed to largely oscillate while decreasing for the circular curvature. The MME curve 

for the linearly changing curvature also approximately passes through the minima of the 

MME for the circular curvature, meaning it is always beneficial to use linear curvature at 

effective radii greater than 50 𝜇𝑚. It also means that the extra propagating loss from the 

longer path length and larger maximum curvature has negligible contribution to the MME in 

comparison to the circular curvature. Below an effective radius of 50 𝜇𝑚, the MME again 

appears to oscillate for the linearly changing curvature waveguide, suggesting excitations of 

higher order modes, which will be investigated later in the chapter. 

  
     (a) Initial 𝐸𝑥  in the straight waveguide.    (b) 𝐸𝑟  halfway through the waveguide bend. 

  
(c) 𝐸𝑥  62.5 𝜇𝑚 after the waveguide bend.  

Figure 5.13: The electric field in the quasi-TE mode before, during, and after a 90° linearly changing 
curvature deep-etched ridge waveguide bend with an effective radius of curvature of 100 𝜇𝑚. 
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     (a) Initial 𝐸𝑦 in the straight waveguide.    (b) 𝐸𝑦 halfway through the waveguide bend. 

  
(c) 𝐸𝑦 62.5 𝜇𝑚 after the waveguide bend. 

Figure 5.14: The electric field in the quasi-TM mode before, during, and after a 90° linearly changing 
curvature deep-etched ridge waveguide bend with an effective radius of curvature of 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.15: Cross section of the fields, at 𝑦 through the peak of the initial field, as the fields 
propagate through the 90° linearly changing curvature deep-etched ridge waveguide bend with 

𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.16: Mode mismatch error as each field propagates through the 90° linearly changing 
curvature deep-etched ridge waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.17: Overlap integral error as each field propagates through the 90° linearly changing 
curvature deep-etched ridge waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

 
Figure 5.18: Mode mismatch error as radius increases for the 90° circular and linearly changing 

curvature deep-etched ridge waveguide bends for the electric field in the quasi-TE mode. 

5.2.1.3 Trapezoidal Curvature Bend 

The above results show that the linear change of curvature reduces the loss of the 
waveguide bend. It will now be investigated if the loss can be reduced further by mixing the 
circular curvature and linearly changing curvature for the trapezoidal curvature profile. If 
the linearly changing curvature portion of the bend sufficiently suppresses the excitations of 
the shifted radiation modes, lower propagating loss may be achieved due to the shorter 
path length of the bend and the smaller maximum curvature reached, relative to the linearly 
changing curvature bend. 

Again using the example of the bend with an effective radius of curvature of 100 𝜇𝑚, Figure 
5.19 gives the cross section of the electric fields, at 𝑦 through the peak of the initial field, as 
they propagate through the trapezoidal waveguide bend for both the quasi-TE and quasi-TM 
modes. The bend was designed for half the path length to consist of linearly changing 
curvature and half the path length to consist of circular curvature. Although the first quarter 
of the bend path length consists of linearly increasing curvature, the field still appears to 
beat slightly between the shifted fundamental mode and shifted radiation modes in the 
circular section. This suggests the linearly changing curvature section did not completely 
supress the excitations of the shifted radiation modes, but still considerably reduced them 
in comparison to the circular waveguide. This is confirmed by Figure 5.20 and Figure 5.21, 
where the oscillations in the MME and OIE still show the excitation of higher order radiation 
modes. The linearly decreasing curvature part of the bend still causes primarily the 
fundamental mode of the straight waveguide to be excited at the end of the bend and the 
MME at the end of the bend is very similar to that of the linearly changing curvature 
waveguide at approximately 0.125 for the quasi-TE mode and 0.17 for the quasi-TM mode. 
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For effective radii below 50 𝜇𝑚, both the circular and linearly changing curvature bends 

caused oscillations in the MME due to excitations of higher order modes. However, for the 

linearly changing curvature bend, there appeared an effective radius of approximately 20 

𝜇𝑚 where the MME was minimised and gave a low value of approximately 0.2. To check if a 

trapezoidal curvature waveguide with a certain linear curvature fraction could reduce this 

MME further, Figure 5.22 gives a plot of the MME between the field before the bend and 

after the bend as the effective radius of curvature and linear curvature fraction increase. 

The plots show that this MME is minimum for the linearly changing curvature waveguide at 

an effective radius of 18.75 𝜇𝑚 for the quasi-TE mode and an effective radius of 19.5 𝜇𝑚 for 

the quasi-TM mode. If the waveguide is designed to have a different effective radius of 

curvature, the MME will be minimum for trapezoidal waveguides with different linear 

curvature fractions. For example, for the quasi-TE mode, if the effective radius of curvature 

is 30 𝜇𝑚, the MME is minimised at approximately 𝑓 = 0.75, and if the effective radius of 

curvature is 60 𝜇𝑚, the MME is minimised at approximately 𝑓 = 0.5. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.19: Cross section of the fields, at 𝑦 through the peak of the initial fields, as they propagate 
through the 90° trapezoidal curvature deep-etched ridge waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.20: Mode mismatch error as each field propagates through the 90° trapezoidal curvature 
deep-etched ridge waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.21: Overlap integral error as each field propagates through the 90° trapezoidal curvature 
deep-etched ridge waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.     (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.22: Mode mismatch error vs. effective radius of curvature and the fraction of the path 
length consisting of linearly changing curvature for the 90° deep-etched bend. 

5.2.2 Deep-Etched Ridge Waveguide with a 180° Bend 
The previous analysis was repeated for the 180° bend. Due to the larger maximum 
curvature reached, smaller curvature slope, and larger fractional path length change for the 
linearly changing curvature and trapezoidal curvature 180° bends in comparison to the 90° 
bends, different results for the best curvature profile for each effective radius of curvature 
would be expected. 

5.2.2.1 Circular Bend 

Figure 5.23 shows the cross section of the electric fields, at 𝑦 through the peak of the initial 
field, as they propagate through the circular 180° waveguide with a radius of curvature of 
100 𝜇𝑚. The fields of course behave in the same way as for the 90° circular waveguide 
except that the bend now has double the path length. The input field is observed to excite 
the shifted fundamental mode and the shifted radiation modes which then beat as the light 
propagates through the circular region. This is confirmed by the presence of the oscillations 
in the MME and OIE plots given by Figure 5.24 and Figure 5.25 respectively. At this 
particular radius of curvature, the loss is much higher for the quasi-TM mode in comparison 
to the quasi-TE mode, both due to the higher propagation loss for the quasi-TM mode in 
general and the field exiting the bend when the MME was at a peak in its oscillation.  
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.23: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° circular deep-etched waveguide bend with 𝑅 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.24: Mode mismatch error as each field propagates through the 180° circular deep-etched 
waveguide bend with 𝑅 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.25: Overlap integral error as each field propagates through the 180° circular deep-etched 
waveguide bend with 𝑅 = 100 𝜇𝑚. 

5.2.2.2 Linearly Changing Curvature Bend 

Figure 5.26 shows the cross section of the fields, at 𝑦 through the peak of the initial fields, 
as they propagate through the linearly changing curvature waveguide. The fields appear to 
shift towards the outside of the bend much more smoothly than what was observed for the 
90° linearly changing curvature bend, with just slight transverse oscillations in the field 
suggesting very little higher order mode excitations. This is confirmed by Figure 5.27 and 
Figure 5.28 which show very slight oscillations in the MME and OIE. The oscillations are 
noticeably larger for the quasi-TM mode, again suggesting larger excitations of the shifted 
radiation modes due to a larger mismatch error between the input field and the curved 
fundamental mode. 
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For both the quasi-TE and quasi-TM modes, the final MME is considerably lower for the 

linearly changing curvature bend than for the circular bend. Although the path length of the 

linearly changing curvature bend is approximately 45% longer than that of the circular bend, 

the ability of the curvature profile to suppress higher order mode excitations makes it far 

more effective at reducing loss. To investigate if this result holds for all effective radii, Figure 

5.29 shows a graph of the MME between the propagating electric field in the quasi-TE mode 

before and after both the circular and linearly changing curvature bends, as the effective 

radius increases. The graph shows the linearly changing curvature to be far superior to the 

circular curvature for effective radii greater than approximately 40 𝜇𝑚. The improvement 

made by the linear curvature is shown to be even greater than that made for the 90° bend, 

as the MME curve for the linearly changing curvature is below that made by the oscillation 

minima of the circular MME plot. This is despite the fact that the path length for the linearly 

changing curvature is approximately 45% longer than that of the circular curvature for the 

180° bend, in comparison to just 7% longer for the 90° bend. However, the maximum 

curvature reached by the linearly changing curvature is approximately 38% larger than the 

circular curvature for the 180° bend, in comparison to 87% larger for the 90° bend. Due to 

the longer path length and smaller maximum curvature, the slope of the change in 

curvature with path length is also much smaller for the linearly changing curvature 180° 

bend, with it being approximate 0.27 times the value of the slope for the 90° bend. This 

suggests the loss caused by the higher order mode excitations is much more significant than 

the propagating loss from the shifted fundamental mode. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.26: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° linearly changing curvature deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.27: Mode mismatch error as each field propagates through the 180° linearly changing 
curvature deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 



Analysis of the Curved Deep-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 101 Tommy Murphy 
the Finite Difference Beam Propagation Method 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.28: Overlap integral error as each field propagates through the 180° linearly changing 
curvature deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

 
Figure 5.29: Mode mismatch error as radius increases for the circular and linearly changing curvature 

180° deep-etched waveguide bend for propagation in the quasi-TE mode. 

5.2.2.3 Trapezoidal Curvature Bend 

Figure 5.30 shows the cross section of the electric fields, at 𝑦 through the peak of the initial 

field, as they propagate through the trapezoidal curvature waveguide where half the path 

length consists of linearly changing curvature and the effective radius of curvature is 100 

𝜇𝑚. Figure 5.31 and Figure 5.32 shows the MME and OIE between the originally propagated 

fields and the propagating fields, respectively. The three figures show little higher order 

mode excitations for the quasi-TE mode with the field propagating through the circular 

region with very little mode beating, which is supported by the presence of only small 

oscillations in the MME and OIE graphs. The curvature profile for the quasi-TM mode is less 

successful at suppressing the excitation of radiation modes, with visible mode beating 

occurring as the field propagates through the circular region. The MME after the bend is 

slightly larger than what was observed for the linearly changing curvature bend with the 

same effective radius of curvature, suggesting the linearly changing curvature bend to be 

superior at this effective radius of curvature. 

Below an effective radius of approximately 50 𝜇𝑚, Figure 5.29 showed the linearly changing 

curvature MME to oscillate as the curve failed to prevent the excitation of higher order 

modes. To investigate if a trapezoidal curvature waveguide could be used to reduce the loss, 

Figure 5.33 shows a colour plot of the MME for different linear curvature fractions and 

effective radii of curvature between 10 and 60 𝜇𝑚 for the electric fields in the quasi-TE and 

quasi-TM modes. The results appear to be very similar for the different modes, with the 

differing locations of the maxima and minima only becoming noticeable as the effective 



Analysis of the Curved Deep-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 102 Tommy Murphy 
the Finite Difference Beam Propagation Method 

radius increases. As these maxima and minima appear primarily due to beating between the 

excited shifted fundamental mode and the higher order mode in the bend, equation (5.1) 

suggests that the effective refractive index difference between the shifted fundamental 

mode and the higher order mode must be very similar for both the quasi-TE and quasi-TM 

modes. The shift becoming more evident as the radius increases is likely due to the longer 

path length of the larger radii bends causing more power transitions between the shifted 

fundamental mode and the higher order mode to occur and therefore a larger difference in 

the mode loss at the end of the bend will accumulate between the quasi-TE and quasi-TM 

modes. Both the graphs show the MME to be greatly reduced as long as the linear curvature 

fraction is greater than approximately 0.5. The MME can be slightly reduced further by using 

a linear curvature fraction between 0.5 and 1 where the minimum depends on the effective 

radius of curvature. The graphs also show a minimum to exist at an effective radius of 

curvature of approximately 12 𝜇𝑚 which slightly decreases as the linear curvature fraction 

increases. Although the linear curvature fails to prevent excitations of radiative modes at 

this effective radius, the superposition of modes exiting the bend ends up closely 

resembling the shape of the fundamental mode of the straight waveguide, resulting in the 

low MME.   

    
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.30: Cross section of the fields, at 𝑦 through the peak of the initial field, as they propagate 
through the 180° trapezoidal curvature deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.31: Mode mismatch error as each field propagates through the 180° trapezoidal curvature 
deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 
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(a) 𝐸𝑥  in the quasi-TE mode.    (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.32: Overlap integral error as each field propagates through the 180° trapezoidal curvature 
deep-etched waveguide bend with 𝑅𝑒𝑓𝑓 = 100 𝜇𝑚. 

   
(a) 𝐸𝑥  in the quasi-TE mode.     (b) 𝐸𝑦 in the quasi-TM mode. 

Figure 5.33: Mode mismatch error vs. effective radius of curvature and the fraction of the path 
length consisting of linearly changing curvature for the 180° deep-etched bend. 

5.3 The Effect of Waveguide Width and Etch Depth on Curved Deep-

Etched Waveguide Loss 
This section will investigate the effect of the deep etch depth and waveguide width on the 

loss of the curved waveguide. 

5.3.1 The Effect of the Waveguide Width on Curved Deep-Etched Waveguide 

Loss 
The width of the deep-etched waveguide was varied to observe the effect it would have on 

the loss from the curved waveguide. Changing the width of the waveguide could cause 

better suppression of higher order modes for certain trapezoidal curvature profiles. It could 

also change the beat length of the shifted fundamental mode and excited radiation mode(s) 

causing different effective radii of curvature where the mode mismatch error would be at a 

minimum. 

Figure 5.34 gives the MME between the initially propagated electric field in the quasi-TE 

mode and the field after a 180° bend for both the circular and linearly changing curvature 

waveguides with an effective radius of curvature of 100 𝜇𝑚, where the waveguide width 

was increased from 2 𝜇𝑚 to 3 𝜇𝑚. Oscillations in the MME are observed for the circular 

bend, suggesting the changing width alters the beat length between the shifted 

fundamental mode and the excited radiation mode(s). The oscillations grow in amplitude as 

the width is increased further. Meanwhile, the MME appears to decrease as the waveguide 
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width increases for the linearly changing curvature. As the linear change in curvature 

successfully suppresses the excitations of higher order modes at this effective radius of 

curvature, the MME decreasing as the waveguide width increases is indicative of the 

widening waveguide allowing more of the fields distribution to be confined in the 

waveguide above the deep etch. This causes less power to leak under the etch during the 

waveguide bend. This is supported by Figure 5.35 which shows the field distributions for 

waveguide widths 2, 2.5, and 3 microns.  

   
(a) Circular Waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 5.34: Effect of waveguide width on mode mismatch error after a 180° deep-etched bend with 
𝑅𝑒𝑓𝑓 = 100 𝜇𝑚 for 𝐸𝑥 in the quasi-TE mode. 

  
(a) 2 𝜇𝑚 waveguide width.    (b) 2.5 𝜇𝑚 waveguide width. 

 
(c) 3 𝜇𝑚 waveguide width. 

Figure 5.35: 𝐸𝑥 field profiles in the quasi-TE mode for the deep-etched waveguide of various 

waveguide widths. 

As the varying width causes the MME to oscillate for the circular deep-etched waveguide at 

an effective radius of 100 𝜇𝑚, the varying width should also cause the MME to oscillate for 

the linearly changing curvature deep-etched bend when the effective radius is small and 

radiation modes are significantly excited. To show this, Figure 5.36 gives the MME as width 
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increases for linearly changing curvature 180° waveguide bends with effective radii of 

curvature of 12 𝜇𝑚 and 17 𝜇𝑚. These effective radii of curvature were selected as they 

were where the MME was at a minimum and maximum, respectively, in Figure 5.33. The 

results are interesting with the MME curve for the 12 𝜇𝑚 taking a parabolic shape with the 

minimum close to the original 2.5 𝜇𝑚 width. There is also only a small change in the 

maximum MME of 0.31 and the minimum MME of 0.263. This makes sense as the MME for 

this effective radius of curvature was at a minimum for the original 2.5 𝜇𝑚 and changing the 

width of the waveguide should cause the beat length to change, causing the MME minimum 

to change. However, for the 17 𝜇𝑚 bend, the MME increases greatly as the width increases, 

from 0.31 at a width of 2 𝜇𝑚 to 0.88 at a width of 3 𝜇𝑚. This suggests the effective radius 

where the MME is minimum may only change slightly with waveguide width, but the 

amplitude of the MME oscillations increases greatly as the width increases. This suggests 

the linear change in curvature is better able to suppress the higher order mode oscillations 

at smaller waveguide widths. To prove this, Figure 5.37 shows how the MME changes with 

the effective radius for the 180° linearly changing curvature deep-etched waveguide bend 

for waveguide widths 2 and 3 microns. The excitations are significantly suppressed for the 2 

𝜇𝑚 waveguide widths as the MME oscillations are far smaller than what was observed for 

the 2.5 𝜇𝑚 waveguide width. The MME also still remains relatively low even at a maximum 

in the MME oscillation with a value of 0.39 at an effective radius of curvature of 

approximately 15 𝜇𝑚. Meanwhile, the MME oscillations for the 3 𝜇𝑚 are far larger, showing 

significant excitations of higher order modes. Although the narrower waveguide better 

prevents the excitations of higher order modes, it also must be noted that it has larger 

propagation loss due to the narrower width confining less of the field distribution above the 

deep etch. This leads to certain effective radii of curvature where a wider waveguide 

performs better. An effective radius of 60 𝜇𝑚 is example of this from Figure 5.37.  

   
(a) Effective radius of 12 𝜇𝑚.    (b) Effective radius of 17 𝜇𝑚. 

Figure 5.36: Effect of waveguide width on mode mismatch error after a 180° deep-etched linearly 
changing curvature bend for 𝐸𝑥 in the quasi-TE mode. 
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(a) Waveguide width of 2 𝜇𝑚.    (b) Waveguide width of 3 𝜇𝑚. 

Figure 5.37: Mode mismatch error after a 180° deep-etched linearly changing curvature bend of 
different effective radii and waveguide widths for 𝐸𝑥 in the quasi-TE mode. 

5.3.2 The Effect of the Etch Depth on Curved Deep-Etched Waveguide Loss 
The depth of the deep etch was varied to investigate the effect it would have on the curved 

deep-etched waveguide loss. The etch depth used previously in the chapter was 2.96 𝜇𝑚. 

The etch depth was therefore varied between 2.46 𝜇𝑚 and 4.46 𝜇𝑚 to observe if the loss 

could be improved. 

Figure 5.38 gives the MME between the initially propagated electric field in the quasi-TE 

mode and the field after a 180° bend for both the circular and linearly changing curvature 

waveguides with an effective radius of curvature of 100 𝜇𝑚, where the etch depth was 

increased from 2.46 𝜇𝑚 to 4.46 𝜇𝑚. The waveguide width was set to 2.5 𝜇𝑚. As the etch 

depth is increased, the MME falls sharply until the etch depth reaches approximately 3 𝜇𝑚. 

Beyond this depth, the MME appears to flatten. The MME falls sharply initially simply due to 

the field distribution, which is primarily contained in the region containing the bulk material 

representation of the quantum wells, becoming more strongly confined by the sharp 

refractive index contrast between the waveguide material and air. This is shown in Figure 

5.39 which gives the field distributions for etch depths of 2.5, 3, and 4 microns. 

When the field propagates through the bend, lower loss is therefore observed as etch depth 

increases, as less power can leak from under the deep etch. As the etch depth is increased 

further, it has less effect on the loss as very little power escapes in this manner once a 

certain etch depth is reached, which in this case is approximately 4 𝜇𝑚. Beyond this etch 

depth, the MME flattens to approximately 0.175 for this particular circular waveguide and 

practically 0 for the linearly changing curvature waveguide. The zero MME for the linearly 

changing curvature waveguide and the non-zero MME for the circular waveguide suggest 

very little loss occurs due to power leakage beyond this etch depth, and the MME is 

primarily impacted by the superposition of modes entering the exit straight waveguide from 

the curved waveguide.  
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(a) Circular Waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 5.38: Effect of etch depth on mode mismatch error for 𝐸𝑥 in the quasi-TE mode after a 180° 
deep-etched bend with an effective radius of curvature of 100 𝜇𝑚. 

  
(a) 2.5 𝜇𝑚 etch depth.     (b) 3 𝜇𝑚 etch depth. 

 
(c) 4 𝜇𝑚 etch depth. 

Figure 5.39: 𝐸𝑥 field profiles in the quasi-TE mode for the deep-etched waveguide of various 

etch depths. 

The lack of noticeable oscillations in the MME for the circular waveguide means varying the 

deep etch depth likely has very little impact on the effective radii where the MME peaks and 

troughs occur. This is because the shapes of the fundamental mode and the radiation 

modes where much of the field distribution is above the etch change very little as the deep 

etch depth is increased beyond 3 𝜇𝑚. This is confirmed by Figure 5.40 which shows the OIE 

between the initially propagated field and the field after the bend as the etch depth 

increases, for both the circular and linearly changing curvature waveguides. The OIE 

oscillates only slightly between a depth of 2.5 and 3 microns and then approaches a 

constant value as the etch depth is increased further. Meanwhile, the OIE always remains 

low for the linearly changing curvature waveguide as the higher order mode excitations are 

always sufficiently suppressed at this effective radius of curvature. 
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(a) Circular Waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 5.40: Effect of etch depth on overlap integral error for 𝐸𝑥 in the quasi-TE mode after a 180° 
deep-etched bend with an effective radius of curvature of 100 𝜇𝑚. 

5.4 Investigating the Cause of Higher Order Mode Excitations in 

Linearly Changing Curvature Waveguides 
The previous section shows the linear changing curvature and trapezoidal curvature to 

reduce the deep-etched bend loss by preventing significant excitations of shifted higher 

order modes. This is effective down to a certain radius of curvature, under which the higher 

order modes are significantly excited. This section aims to better understand what causes 

these higher order mode excitations at lower radii of curvature. 

The curvature profile of the linearly changing curvature and trapezoidal curvature is 

characterised based on the path length, the maximum curvature reached, and the slope of 

the change in curvature of the linear section with path length. As the effective radius of 

curvature decreases, the path length decreases and the maximum curvature increases, 

causing the slope of the change in curvature with path length to increase. This section will 

investigate the impact of the maximum curvature reached and the slope of the curvature 

change with path length on the higher order mode excitations. 

To show the excitation of higher order modes, the amount of excitation of the shifted 

fundamental mode can be analysed. This is done by calculating the shifted fundamental 

mode using the mode solver at the maximum curvature that is reached at the end of the 

linearly increasing curvature section. The fundamental mode of the straight waveguide is 

then propagated through the curved waveguide and, when the maximum curvature is 

reached, the overlap integral error is calculated between the propagating field at that point 

and the calculated fundamental mode at the maximum curvature. If the overlap integral 

error is low, the fundamental mode has been significantly excited and thus excitations of 

curved radiation modes are low. If the overlap integral error is high, significant excitations of 

shifted radiation modes have taken place. Unfortunately, due to the inability of the mode 

solver to accurately calculate the fundamental mode of the shifted waveguide due it being a 

leaky mode, the deep etch is assumed to be infinite to prevent the fundamental mode from 

becoming leaky. From the previous section, this should still be accurate as the deep etch 

depth should not noticeably affect the beat length and therefore the excitations of the 

shifted fundamental modes from the original deep etch depth of approximately 3 𝜇𝑚. 

Figure 5.41 shows the refractive index profile of the infinite deep-etched waveguide as well 
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as the calculated curved fundamental mode electric field profile for a linearly changing 

curvature 90° waveguide bend with an effective radius of curvature of 100 𝜇𝑚 when the 

curvature has reached its maximum. 

To prove that multiple modes are excited in the linearly changing curvature region at small 

effective radii, Figure 5.42 shows the OIE between the propagating field when the 

waveguide has reached the maximum curvature and the calculated curved fundamental 

mode at maximum curvature for effective radii between 20 and 200 𝜇𝑚. The OIE increases 

as the effective radius decreases, showing that more excitations of higher order modes 

occur as the radius decreases.  

  
(a) Refractive index profile.                     (b) 𝐸𝑥  field. 

Figure 5.41: Refractive index profile and curved fundamental mode when the curvature was 
maximum for the electric field in the quasi-TE mode for a linearly changing curvature 90° deep-

etched bend with an effective radius of 100 𝜇𝑚. 

 
Figure 5.42: Change in the overlap integral error between the propagating field at maximum 

curvature and the calculated fundamental mode field at maximum curvature with effective radius 
for the electric field in the quasi-TE mode for a 90° linearly changing curvature deep-etched bend. 

Due to the higher order mode excitations occurring as the effective radius decreases, the 

impact of the maximum curvature reached and the curvature change with path length must 

be investigated to determine their individual contributions. To investigate the impact of the 

maximum curvature reached, the 90° linearly changing curvature bend with an effective 

radius of 100 𝜇𝑚 was initially selected. The electric field was propagated through the bend 

and when the field reached where the curvature was maximum, the OIE was calculated 

between the propagating field and the curved fundamental mode field at this maximum 

curvature. The angle turned through by the bend and the linear curvature fraction were 

then varied to allow a different maximum curvature to be reached, with the effective radius 

changed to keep the slope of the curvature with path length constant. The procedure was 

then repeated for multiple waveguide bends. Figure 5.43 shows the different maximum 
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curvatures reached for the constant slope as well as the calculated OIE between the 

propagating field and the curved fundamental mode field at maximum curvature for 

different maximum curvatures with the same curvature-path length slope. The OIE was 

observed to oscillate as the maximum curvature increased, with the amplitudes of the 

oscillations decreasing as the curvature increased. This indicated that the excited radiation 

modes were beating with the shifted fundamental mode, with the oscillation amplitudes 

decreasing as the excited radiation modes leak more strongly with propagating distance. As 

a line through the centre of the OIE oscillations does not increase with the increasing 

maximum curvature, the excitations of the radiation modes do not depend on the maximum 

curvature reached. 

  
(a) Curvature profile.                               (b) Overlap integral error. 

Figure 5.43: Curvature profiles and the overlap integral error for trapezoidal bends with the same 
linear curvature slope and different maximum curvatures reached. 

This suggests the excitations of the radiation modes depend entirely on the slope of the 
curvature change with path length. To prove this, the above procedure was repeated, using 
the same initial effective radius of curvature of 100 𝜇𝑚, this time with the maximum 
curvature remaining constant and slope varying. Figure 5.44 shows a graph of the curvature 
profiles of the different bends as well as the overlap integral error between the propagating 
field and the curved fundamental mode field at maximum curvature. The OIE is shown to 
oscillate, with the amplitude of the oscillations growing larger as the slope of the curvature 
with path length is increased. This slope is clearly the cause of the higher order mode 
excitations in the curved deep-etched waveguide. 

  
(a) Curvature profile.                               (b) Overlap integral error. 

Figure 5.44: Curvature profiles and the overlap integral error for trapezoidal bends with the same 
maximum curvature and different linear curvature slopes. 



Analysis of the Curved Deep-Etched Ridge Waveguide 
 

Analysing Curved Optical Waveguides Using 111 Tommy Murphy 
the Finite Difference Beam Propagation Method 

5.5 Conclusions 
Curved deep-etched ridge waveguides of various curvature profiles were analysed in an 

attempt to reduce the bend loss. Bends with a linearly changing curvature component were 

shown to greatly reduce the curved waveguide loss in most cases due to their ability to 

suppress excitations of higher order modes. The effect of the width of the waveguide and 

the deep etch depth on the loss was also investigated. The width of the waveguide was 

shown to greatly affect the ability of the linear change in curvature to supress higher order 

mode excitations, and while the deep etch depth had little effect on these higher order 

mode excitations, the deeper etch was shown to greatly reduce propagation losses. The 

cause of the excitations of higher order modes in the linearly changing curvature deep-

etched waveguides was investigated, with the excitations of the modes found to be 

dependent on the slope of the change in curvature. 

The next chapter will analyse devices where shallow-etched waveguides are connected by 

deep-etched bends to take advantage of the lower bend loss offered by the deep-etched 

bends.  
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6 Shallow-Etched Waveguides Connected by Deep-Etched Bends 
Many of the PIC devices fabricated in Tyndall consist of, or contain, waveguides with a 

shallow etch. Therefore, to allow the devices to be connected by small radii bends, a deep-

etched waveguide bend must be used. This chapter will therefore aim to find the best 

method and location to make the shallow etch-deep etch transition to achieve the lowest 

loss from the transitions and the bend. Note that the accuracy of some of the BPM 

simulations in this chapter may be slightly reduced at the shallow etch - deep etch 

transitions as the 𝜕𝜀𝑟/𝜕𝑧 = 0 approximation used to omit the coupling between the 

transverse and propagation directions in the derivation of the semi-vectorial wave 

equations in chapter two will no longer be valid. A vectorial FDTD simulation would be a 

superior method to analyse the behaviour and reflection of the fields for these sharper 

waveguide transitions. 

6.1 The Transition Between the Shallow-Etched and Deep-Etched 

Waveguides 
When the propagating field transitions from the shallow-etched waveguide to the deep-

etched waveguide, loss will occur due to the mismatch between the fundamental mode 

fields of both waveguides. The shallow-etched and deep-etched waveguides analysed for 

the transition have the same properties as those analysed in the previous chapters: the 

material composition is given by Table 4.1, the bulk material representation of the 

waveguide is given by Table 4.2, the width of the waveguide is 2.5 𝜇𝑚, the etch depth for 

the shallow etch is 1.85 𝜇𝑚, and the etch depth for the deep etch is 2.96 𝜇𝑚. The 

fundamental mode fields for both waveguides can be seen back in Figure 4.3 and Figure 5.2. 

To investigate the transition between the waveguides, the fundamental mode magnetic 

fields in the quasi-TE and quasi-TM modes were firstly launched into the shallow-etched 

waveguide. After a propagating distance of 100 𝜇𝑚, the waveguide was made deep etched, 

and after a further propagating distance of 1700 𝜇𝑚, the waveguide was again made 

shallow etched for a further 200 𝜇𝑚. The long deep-etched waveguide length was used to 

allow the excited slowly radiating higher order modes to lose their power. 251 

computational points were used in the transverse directions and a propagation step of 0.1 

𝜇𝑚 was used. The (2, 2) Padé order was implemented, along with PML boundary conditions. 

These computational parameters were used for the other simulations done in this chapter, 

unless stated otherwise. 

Figure 6.1 gives the 𝑥 – 𝑧 cross section of the propagating fields at 𝑦 where the initial fields 

were maximum. The graph shows the fields to narrow upon entering the deep-etched 

section. Small oscillations occur initially due to the excitation of radiation modes, but the 

oscillations are observed to lessen as the field propagates through the deep-etched 

waveguide as the radiation modes lose their power, especially in the case of the quasi-TM 

mode. At the transition back to the shallow-etched waveguide, the propagating field again 

takes the shape of the initially propagated field. To further examine the behaviour of the 

fields, Figure 6.2 and Figure 6.3 show the mode mismatch error and overlap integral error 

between the initially propagated fundamental mode fields of the shallow-etched waveguide 
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and the propagating fields. When the propagating fields enter the deep-etched region, both 

the MME and OIE are observed to immediately rise and then oscillate rapidly. The rapid 

oscillations are due to the excitation of the multiple higher order radiation modes in the 

deep-etched region. As the fields propagate further through the region, the rapid 

oscillations fade as the higher order modes lose their power. This causes the MME and OIE 

to approach a constant value for the quasi-TM mode as the field propagates through the 

deep-etched region, but for the quasi-TE mode, oscillations still occur as the field 

propagates, with the amplitude of the oscillations slightly decreasing with propagating 

distance. These oscillations are due to the fundamental mode beating with the very slowly 

radiating higher order mode which was analysed in Figure 5.8. This radiation mode is not 

present in the quasi-TM mode which explains the lack of oscillations in the MME and OIE. 

After the waveguide transitions back to being shallow etched, the MME is approximately 

0.15 for the quasi-TE mode and 0.09 for the quasi-TM mode, showing the loss resulting from 

the waveguide transitions. 

   
(a) 𝐻𝑦  in the quasi-TE mode.    (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 6.1: Cross section of the magnetic fields, at 𝑦 where the initial field was maximum, as the 
fields propagate through the shallow to deep and deep to shallow etch waveguide transitions. 

   
(a) 𝐻𝑦  in the quasi-TE mode.    (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 6.2: Mode mismatch error between the initially propagated fundamental mode of the 
shallow-etched waveguide and the propagating field, as each field propagates through the shallow 

to deep and deep to shallow etch waveguide transitions. 
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(a) 𝐻𝑦  in the quasi-TE mode.    (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 6.3: Overlap integral error between the initially propagated fundamental mode of the 
shallow-etched waveguide and the propagating field, as each field propagates through the shallow 

to deep and deep to shallow etch waveguide transitions. 

6.2 Reducing the Loss from the Transition Between the Shallow-

Etched and Deep-Etched Waveguides 
As these transitions are necessary to connect shallow-etched waveguide devices to deep-

etched waveguide bends, it is desirable to reduce the resulting loss from the transition as 

much as possible. This can be achieved if the deep-etched waveguide is modified so that the 

shape of the fundamental mode field of the deep-etched waveguide can be altered to be as 

close as possible to that of the shallow-etched waveguide. Figure 6.4 again shows the 

fundamental mode magnetic field in the quasi-TE mode for the both the shallow and deep-

etched waveguides. From the graphs, it is clearly seen that the field is less confined along 

the 𝒙̂ direction within the quantum well region, where the field amplitude is maximum, for 

the shallow-etched waveguide. This suggests that widening the deep-etched waveguide may 

result in a lower overlap integral error between the fundamental mode fields and therefore 

less loss would be achieved in the transition. To verify this, the width of the deep-etched 

waveguide was varied between 2.5 and 4 microns and the fundamental mode fields were 

calculated using the finite difference mode solver. The overlap integral error was then 

calculated between the fundamental mode fields of the original shallow-etched waveguide 

and the varying width deep-etched waveguide to find the width where the OIE was 

minimum. Figure 6.5 gives the value of this OIE with deep-etched waveguide width. The 

graphs show that the OIE can be minimised by increasing the waveguide width, with the 

minimum occurring at a width of 3.32 𝜇𝑚 for the quasi-TE mode and a width of 3.08 𝜇𝑚 for 

the quasi-TM mode. Unfortunately, for the quasi-TE mode, the slowly radiating second 

order mode, with most of its power confined at the top of the waveguide (Figure 5.8), 

becomes supported at a width of 2.82 𝜇𝑚, meaning that although the OIE has decreased, 

the excitations of the second order mode will no longer radiate away, potentially leading to 

more loss as the fundamental mode and the former radiation mode would beat together. 

Meanwhile, the third and higher order modes in the quasi-TE mode, as well as the second 

and higher order modes in the quasi-TM mode, do not become supported modes even at a 

waveguide width of 4 𝜇𝑚. They do, however, become more slowly radiating modes and 

therefore excitations must be minimised. 
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          (a) Shallow-etched waveguide.    (b) Deep-etched waveguide.  

Figure 6.4: Fundamental mode field distributions of 𝐻𝑦 in the quasi-TE mode for the shallow and 

deep-etched waveguides. 

   
(a) 𝐻𝑦  in the quasi-TE mode.    (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 6.5: Overlap integral error between the fundamental mode fields of the shallow-etched 
waveguide and the varying width deep-etched waveguide. 

Although the OIE between fundamental modes is reduced by increasing the waveguide 

width, Figure 5.36 showed that a linearly changing curvature bend with an increased 

waveguide width is less capable of suppressing higher order mode excitations. It would 

therefore not be advisable to use the waveguide widths where the OIE was minimum for 

the bend, as suggested by the previous result, and another method of lowering the OIE after 

the transition must be considered. 

Due to the shape of the mode profiles given by Figure 6.4, it was suggested that the OIE 

could also be lowered by only making one side of the waveguide deep etched, while keeping 

the other side shallow etched. The side to be deep etched would be the side on the outside 

of the bend, as the deep etch is far more effective at preventing the propagating field from 

leaking during the bend. The mode profiles of the shallow-etched and the deep-etched on 

one side waveguides are given by Figure 6.6. The deep etch on one side causes the field to 

shift slightly to the side with the shallow etch. This suggests increasing the waveguide size 

from the side with the deep etch may cause the field to better overlap with that in the 

shallow-etched waveguide. To verify this, Figure 6.7 gives a graph of the OIE between the 

fundamental mode magnetic field of the shallow-etched and the deep-etched on one side 

waveguides as the waveguide width increases from the side with the deep etch. The graphs 

show the OIE to be minimised at a width of 2.84 𝜇𝑚 for the quasi-TE mode and a width of 

2.76 for the quasi-TM mode, which are considerably smaller than what was observed for the 

OIE between the fields of the shallow-etched and deep-etched waveguides. 



Shallow-Etched Waveguides Connected by Deep-Etched Bends 
 

Analysing Curved Optical Waveguides Using 116 Tommy Murphy 
the Finite Difference Beam Propagation Method 

  
          (a) Shallow-etched waveguide.       (b) Deep-etched on one side waveguide. 

Figure 6.6: Fundamental mode field distributions of 𝐻𝑦 in the quasi-TE mode for the shallow and 

deep-etched on one side waveguides. 

   
(a) 𝐻𝑦  in the quasi-TE mode.    (b) 𝐻𝑥  in the quasi-TM mode. 

Figure 6.7: Overlap integral error between the fundamental mode fields of the shallow-etched 
waveguide and the varying width deep-etched on one side waveguide. 

As the OIE at the original 2.5 𝜇𝑚 waveguide width is much closer to the minimum OIE for 

the deep-etched on one side waveguide in comparison to the deep-etched on both sides 

waveguide, it may make sense to keep the waveguide size at 2.5 𝜇𝑚 and use the deep-

etched on one side waveguide for the bend. Firstly however, the deep-etched on one side 

bend must be analysed to investigate how similarly it performs to the deep-etched on both 

sides bend. Figure 6.8 shows the propagating electric field in the quasi-TE mode, at 𝑦 where 

the initial field amplitude was maximum, for a 180° circular bend and a 180° linearly 

changing curvature bend, both with an effective radius of curvature of 100 𝜇𝑚. Figure 6.9 

and Figure 6.10 give the MME and OIE between the initially propagated field and the 

propagating field. The graphs appear very similar to the corresponding graphs in Section 

5.2.2, which examined the propagating fields for the bend with the deep etch on both sides. 

The only differences appear to be the slightly different beat length between the 

fundamental mode and the radiation mode(s) of the circular waveguide as well as the 

linearly changing curvature waveguide appearing to be slightly less effective at suppressing 

higher order modes. To confirm this, Figure 6.11 shows the mode mismatch error between 

the fundamental mode field of the deep-etched on one side waveguide and the propagating 

field after the bend for the 180° circular and linearly changing curvature bends with 

effective radii of curvature between 10 and 200 microns for the electric field in both the 

quasi-TE and quasi-TM modes. Comparing it to Figure 5.29, which was the equivalent graph 

for the deep etch on both sides, the circular waveguide appears to perform worse for the 
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deep-etched on one side bends, with larger amplitude MME oscillations where the 

amplitude of the oscillations decreases much more slowly with respect to increasing radius 

of curvature. However, the MME at the minima of the oscillations are comparable to the 

MME at the minima for the circular deep-etched on one side bends, showing approximately 

the same amount of loss would be achieved if the bend was designed to end at one of these 

minima. For the linearly changing curvature waveguides, significant oscillations in the MME 

(which suggest significant excitations of higher order modes) do not begin until the effective 

radius of curvature has reached down to approximately 25 𝜇𝑚 for the deep-etched on one 

side bend. This is in contrast to an effective radius of approximately 20 𝜇𝑚 for the bend 

with the deep etch on both sides. Therefore, although making the waveguide deep etched 

on one side reduces the loss from the waveguide transition, it may lead to slightly higher 

bend loss for very small radii of curvature bends. 

    
(a) Circular waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 6.8: Cross section of the electric field, at 𝑦 where the initial field was maximum, as the electric 
field in the quasi-TE propagates through the circular and linearly changing curvature deep-etched on 

one side 180° waveguide bends with an effective radius of curvature of 100 𝜇𝑚. 

   
 (a) Circular waveguide.    (b) Linearly changing curvature waveguide. 

Figure 6.9: Mode mismatch error as the electric field in the quasi-TE mode propagates through the  
deep-etched on one side 180° waveguide bends with an effective radius of curvature of 100 𝜇𝑚. 
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 (a) Circular waveguide.    (b) Linearly changing curvature waveguide. 

Figure 6.10: Mode mismatch error as the electric field in the quasi-TE mode propagates through the 
deep-etched on one side 180° waveguide bends with an effective radius of curvature of 100 𝜇𝑚. 

 
Figure 6.11: Mode mismatch error between the fields before and after the 180° bend as the 

effective radius of curvature increases for the circular and linearly changing curvature deep-etched 
on one side waveguides. 

6.3 Shallow-Etched Waveguides Connected to Deep-Etched Bends 
The previous section showed how less loss is observed in a transition between a shallow-

etched waveguide and a deep-etched on one side waveguide than from a transition 

between a shallow-etched waveguide and a deep-etched on both sides waveguide, for a 

waveguide width of 2.5 𝜇𝑚. However, analysis of the deep-etched on one side bend showed 

the bend to perform slightly worse than the deep-etched on both sides bend in terms of loss 

and suppression of higher order mode excitations in the case of the linearly changing 

curvature waveguide. These bend simulations were done with the input and output straight 

waveguides also having the deep etch on one side and therefore did not consider the 

impact of the transition between the shallow-etched waveguide and the deep-etched on 

one side waveguide on the performance of the bend. Where this transition takes place 

could have an impact on the modes excited in the waveguide bend as the field after the 

transition could contain a superposition of modes due to the slowly radiating higher order 

modes. This superposition of modes could potentially better or worsen the excitation of the 

fundamental mode in the waveguide bend or potentially could also cause other higher order 

radiation modes to be significantly excited. 

Firstly, the case of the waveguide transitions occurring at the beginning and the end of the 

bend is considered. Figure 6.12 shows the magnetic field in the quasi-TE mode as it 

propagates through the circular and linearly changing curvature deep-etched on one side 

waveguide bends with an effective radius of curvature of 100 𝜇𝑚. Figure 6.13 and Figure 

6.14 show the MME and OIE between the initially propagated fundamental mode field of 
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the shallow-etched waveguide and the propagating field. For the circular waveguide, the 

amplitudes of the MME and OIE oscillations are actually smaller than what was observed in 

Figure 6.9 and Figure 6.10 when the connecting straight waveguides were also deep-etched 

on one side. This suggests the shape of the fundamental mode field of the shallow-etched 

waveguide is actually closer to the shape of the shifted fundamental mode field of the 

curved deep-etched on one side waveguide than the fundamental mode field of the straight 

deep-etched on one side waveguide is. This is suggested because less beating is observed 

between the modes if one mode receives more power, giving rise to the lower amplitude 

oscillations in the MME and OIE. This causes the straight shallow-etched waveguides 

connected to the circular deep-etched on the outside waveguide to actually perform better 

than the straight and circular waveguides all containing a deep etch on one side in general, 

except in cases where the bend ends on a MME minima, where the lower amplitude MME 

oscillations actually cause the lowest MME to occur for the case where the connecting 

straight waveguides and circular waveguide all contain a deep etch on only one side. 

Meanwhile, making the waveguide transition at the start and end of the bend is less 

effective for the linearly changing curvature. This is seen in Figure 6.13 (b) and Figure 6.14 

(b), where the MME and OIE rise sharply once the bend starts. This occurs as the curvature 

is very small at the beginning of the bend due to the curvature linearly increasing, and as a 

result, the shallow to deep waveguide transition causes multiple radiation modes to be 

excited in the linearly increasing curvature waveguide. These excited radiation modes are 

initially slowly radiating as the curvature is initially too small to cause them to radiate away 

over a short propagating distance. This gives rise to the rapid oscillations in the MME and 

OIE at the beginning of the bend and causes the linear change in curvature to be less 

effective at retaining most of the power in the shifted fundamental mode. 

    
(a) Circular waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 6.12: Propagating electric field in the quasi-TE mode, at 𝑦 where the field amplitude was 
initially maximum, through the circular and linearly changing curvature deep-etched on one side 
waveguides with an effective radius of curvature of 100 𝜇𝑚 that are connected by two straight 

shallow-etched waveguides. 

Next, it must be determined if it is better to use the deep-etched on one side or both sides 

bend when connecting to the straight shallow-etched waveguides. Figure 6.15 gives the 

MME between the fundamental mode magnetic field of the straight shallow-etched 

waveguide and the propagating field as the effective radius of curvature increases for both a 

circular and linearly changing curvature 180° bend, where the deep etch is either made on 

one side or both sides. The graphs appear very similar, with the MME being in general 
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slightly lower for the deep etch on the outside of the bend in the case of the linearly 

changing curvature. 

   
 (a) Circular waveguide.    (b) Linearly changing curvature waveguide. 

Figure 6.13: Mode mismatch error as the magnetic field in the quasi-TE mode propagates through 
the curved 180° deep-etched on one side waveguides with an effective radius of curvature of 

100 𝜇𝑚 that are connected at the ends to two shallow-etched waveguides. 

   
 (a) Circular waveguide.    (b) Linearly changing curvature waveguide. 

Figure 6.14: Overlap integral error as the magnetic field in the quasi-TE mode propagates through 
the curved 180° deep-etched on one side waveguides with an effective radius of 100 𝜇𝑚 that are 

connected at the ends to two shallow-etched waveguides. 

     
               (a) Deep etch on outside of bend.                    (b) Deep etch on both sides of bend.  

Figure 6.15: Mode mismatch error as the effective radius of curvature increases for the circular and 
linearly changing curvature 180° waveguide bends where the bends are either deep etched on one 

side or both sides and the connecting straight waveguides are shallow etched. 

For the above simulations, the waveguide transitions occur at the beginning and end of the 

waveguide bend. If the transition instead occurs at some point before the bend, the 

superposition of the excited slowly radiating higher order modes in the straight deep-etched 

waveguide could potentially cause different excitations of the shifted modes in the curved 
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waveguide, depending on where the waveguide transition takes place. Figure 6.16 shows 

the MME between the fundamental mode magnetic field of the straight shallow-etched 

waveguide and the propagating field in the straight shallow-etched waveguide after the 

bend for both a circular and linearly changing curvature deep-etched on one side bend with 

an effective radius of curvature of 100 𝜇𝑚, where the transitions between the shallow and 

deep-etched on one side waveguides take place at different distances from the beginning 

and end of the bend. For the circular waveguide, the MME is lowest when the transitions 

take place at the entry and exit points of the curved waveguide. For the linearly changing 

curvature waveguide, the MME does tend to decrease as the distance from the bend 

increases, however the reduction made to the MME is small suggesting it may not be worth 

the extra propagating distance. It also oscillates as the distance increases and the decrease 

may not hold for different radii of curvature. It would also not be advisable to make the 

waveguide transition after the bend begins, as Chapter 3 showed the shallow-etched bend 

to be much more lossy at lower radii of curvature. For these reasons, it would appear best 

to make the waveguide transitions at the immediate beginning and end of the bend. 

    
(a) Circular waveguide.                 (b) Linearly changing curvature waveguide. 

Figure 6.16: Mode mismatch error between the quasi-TE fundamental mode magnetic field of the 
shallow-etched waveguide and the propagating magnetic field after the circular and linearly 

changing curvature deep-etched on one side 180° waveguide bends with effective radii of curvature 
of 100 𝜇𝑚, which are connected by two straight shallow-etched waveguides, as the distance from 

the bend of the shallow etch to deep etch transition increases. 

Another way to potentially reduce loss from the waveguide transition between the shallow 

and deep-etched waveguides and the bend would be to make the waveguide transition 

before the bend, setting the width of the deep-etched waveguide so as to minimise the loss 

from the transition, as shown in Figure 6.5 and Figure 6.7. However, as the increased 

waveguide width would lessen the ability of the linear change in curvature to prevent higher 

order mode excitations, the waveguide width would then need to be reduced before 

entering the waveguide bend. This would be achieved by introducing a waveguide taper, 

which would reduce the waveguide width gradually over a set propagating distance. An 

example of a waveguide taper is given by Figure 6.17. The taper would allow the 

fundamental mode of the wider waveguide to gradually take the shape of the fundamental 

mode of the narrower waveguide, with very little loss. After the bend, another taper of the 

same length would be used to increase the width of the waveguide back to its original width 

to minimise the mismatch error in the transition with the exit shallow-etched waveguide. 
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Figure 6.17: Waveguide taper of length 50 𝜇𝑚 which increases the width of the deep-etched on both 
sides waveguide from 2.5 to 3.2 microns. The figure shows the refractive index profile at a 𝑦 location 

in the quantum well region.  

Firstly, the waveguide taper length must be selected to ensure minimal extra losses. This 

analysis will consider the waveguide transition from the shallow-etched waveguide to the 

deep-etched on one side waveguide. From Figure 6.7 it can be seen that the OIE between 

the fundamental modes is minimised at a width of 2.85 𝜇𝑚 for the quasi-TE mode. A change 

in width between 2.85 and 2.5 𝜇𝑚 will therefore be considered. To determine how long the 

taper must be to ensure minimal losses, the width of the deep-etched on one side 

waveguide was increased from 2.5 𝜇𝑚 to 2.85 𝜇𝑚 from the side of the deep etch using 

tapers of different lengths. If the taper works correctly, the field should slowly widen as the 

taper increases the width of the waveguide, and the OIE between the fundamental mode 

field of the wider waveguide and the propagating field should decrease as the field 

propagates through the taper. Figure 6.18 gives the propagating 𝐻𝑦 field in the quasi-TE 

mode through the taper as well as the OIE between the fundamental mode of the wider 

waveguide and the propagating field. The OIE is very close to zero when the taper ends at 

𝑧 = 75 𝜇𝑚, showing the taper to successfully transition the fundamental mode at a length 

of 50 𝜇𝑚. 

      
(a) Propagating 𝐻𝑦  field.    (b) Overlap integral error 

Figure 6.18: (a) Propagating 𝐻𝑦 field in the quasi-TE mode, at 𝑦 where the initial field amplitude was 

maximum, as the width of the deep-etched on one side waveguide increases from 2.5 to 2.85 
microns by means of a waveguide taper of length 50 𝜇𝑚 between a propagating distance of 25 and 
75 microns. (b) Overlap integral error between the fundamental mode of the wider waveguide and 

the propagating field. 
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To investigate if a shorter taper could be used, Figure 6.19 gives the OIE between the 

fundamental mode of the wider waveguide and the propagating field at the end of the 

taper. The graph shows that the longer the taper, the better the transition between 

fundamental modes and that the OIE initially drops sharply with increasing width. The curve 

begins to flatten at a length of approximately 50 𝜇𝑚. 

 
Figure 6.19: Overlap integral error between the fundamental mode of the wider waveguide and the 

propagating field at the end of the taper for different taper lengths where the width of the deep 
etch on one side waveguide is increased from 2.5 to 2.85 microns.  

Finally, the taper is implemented into the structure containing the two shallow-etched 

waveguides connected to the deep-etched bend. The fundamental mode magnetic field in 

the quasi-TE mode is initially propagated through the straight shallow-etched waveguide of 

width 2.5 𝜇𝑚. This shallow-etched waveguide then transitions to the deep-etched on one 

side waveguide of width 2.85 𝜇𝑚, as this was where the OIE between the fundamental 

modes of the two waveguides was minimum as shown in Figure 6.7. The 2.85 𝜇𝑚 width 

deep-etched on one side waveguide is then tapered down to a width of 2.5 𝜇𝑚 using a 50 

𝜇𝑚 length taper. The narrower deep-etched on one side waveguide then undergoes a 

linearly changing curvature bend with an effective radius of 100 𝜇𝑚. After the bend, the 

width of the deep-etched on one side waveguide is again increased to 2.85 𝜇𝑚 using a 50 

𝜇𝑚 long taper, and this wider waveguide then transitions to the exit shallow-etched 

waveguide of width 2.5 𝜇𝑚. Figure 6.20 (a) gives the magnetic field as it propagates through 

this structure, at 𝑦 where the amplitude of the initially propagated field was maximum. The 

straight black lines indicate the locations where the waveguide transitioned, where the 

tapers began and ended, and where the bend began and ended. Figure 6.20 (b) gives the 

MME between the initially propagated field and the propagating field. The MME of 

approximately 0.225 at the end of the structure is lower than that for the corresponding 

structure without the tapers given by Figure 6.13 where it was approximately 0.275, 

showing the benefit of including the waveguide tapers. 
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(a) Propagating 𝐻𝑦  field.    (b) Mode mismatch error 

Figure 6.20: (a) Propagating 𝐻𝑦 field in the quasi-TE mode, at 𝑦 where the initial field amplitude was 

maximum, for the 180° deep-etched on one side bend with an effective radius of curvature of 
100 𝜇𝑚, connected to two shallow-etched waveguides by means of two waveguide tapers. (b) Mode 

mismatch error between the initially propagated fundamental mode of the shallow-etched 
waveguide and the propagating field. 

As the taper successfully transitions the field to the fundamental mode of the narrower 

waveguide, the taper could also be used to decrease the width to below 2.5 𝜇𝑚 to take 

advantage of the lower loss and less excitations of higher order modes in the linearly 

changing curvature bend, as reported in section 5.3.1. 

6.4 Examples of Optimised Bends 
The following section will give examples of shallow-etched waveguide connected by deep-

etched waveguide bends which produce very small amounts of loss, optimised according to 

the previous results. 

Figure 6.21 (a) shows the cross section of the magnetic field in the quasi-TE mode as it 

propagates through an optimised 90° deep-etched on one side bend. The bend consists of 

linearly changing curvature with an effective radius of curvature of 22.5 𝜇𝑚. The width of 

the shallow etch waveguides is 2.5 𝜇𝑚 and the width of the deep-etch on one side 

waveguide is tapered down from 2.85 to 2.5 𝜇𝑚 over a short propagating distance of 10 𝜇𝑚 

before the bend. This short taper length allows the total device footprint to be smaller albeit 

at the cost of slightly higher loss, as shown by Figure 6.19. The deep etch depth is 4 𝜇𝑚, 

which was shown to minimise propagation loss in Figure 5.38. The beating of modes can be 

observed in the waveguide bend. The MME between the initially propagated fundamental 

mode field of the waveguide before and after the bend was a low value of 0.159, which is 

shown by Figure 6.21 (b). The main contributing factors to this MME were the immediate 

loss from the transitions between the shallow-etched and the deep-etched on one side 

waveguides and the loss from the mismatch between the fields at the beginning and end of 

the bend. The propagation loss from the propagating field in the curved region was 

minimised by using the deeper etch. 
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       (a) Propagating 𝐻𝑦  field.       (b) Mode mismatch error 

Figure 6.21: (a) Propagating 𝐻𝑦 field in the quasi-TE mode, at 𝑦 where the initial field amplitude was 

maximum, for the 90° deep-etched on one side linearly changing curvature bend, with an effective 
radius of curvature of 22.5 𝜇𝑚, connected to two shallow-etched waveguides by means of two 

waveguide tapers. (b) Mode mismatch error between the initially propagated fundamental mode of 
the shallow-etched waveguide and the propagating field. 

The next optimized bend is that of the 180° deep-etched on one side bend. This bend 

consisted of half circular and half linearly changing curvature. The same parameters were 

used as for the previous bend apart from the effective radius of curvature which was 13.5 

𝜇𝑚. The propagating field is given by Figure 6.22 (a). The MME after the bend was 0.122 

and the evolution of the MME is given by Figure 6.22 (b). 

    
             (a) Propagating 𝐻𝑦  field.                   (b) Mode mismatch error 

Figure 6.22: (a) Propagating 𝐻𝑦 field in the quasi-TE mode, at 𝑦 where the initial field amplitude was 

maximum, for the 180° deep-etched on one side, half circular, half linearly changing curvature bend, 
with an effective radius of curvature of 13.5 𝜇𝑚, connected to two shallow-etched waveguides by 

means of two waveguide tapers. (b) Mode mismatch error between the initially propagated 
fundamental mode of the shallow-etched waveguide and the propagating field. 

The last optimised bend is for the wider 2.85 𝜇𝑚 deep-etched on one side 180° bend. The 

bend consists of linearly changing curvature, has an effective radius of 11.5 𝜇𝑚, and 

connects the two standard 2.5 𝜇𝑚 width shallow-etched waveguides. The etch depth was 4 

𝜇𝑚. As the loss from the shallow-etched to deep-etched on one side waveguide transition is 

minimised at a width of 2.85 𝜇𝑚, no tapers are needed. Figure 6.23 (a) gives the cross 
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section of the propagating magnetic field in the quasi-TE mode through the curved 

waveguide and Figure 6.23 (b) shows the MME as it propagates. The MME between the 

initial field and the field after the bend was 0.166. Although tapers are not needed for this 

bend, this is larger than that for the optimised 2.5 𝜇𝑚 width 180° bend, which is likely due 

to wider waveguide’s inferior ability to supress higher order mode excitations, as shown in 

Figure 5.37. 

    
             (a) Propagating 𝐻𝑦  field.                   (b) Mode mismatch error 

Figure 6.23: (a) Propagating 𝐻𝑦 field in the quasi-TE mode, at 𝑦 where the initial field amplitude was 

maximum, for the 180° deep-etched on one side 2.85 𝜇𝑚 width linearly changing curvature bend, 
with an effective radius of curvature of 11.5 𝜇𝑚, connected to two shallow-etched waveguides by 

means of two waveguide tapers. (b) Mode mismatch error between the initially propagated 
fundamental mode of the shallow-etched waveguide and the propagating field. 

6.5 Conclusions 
Methods of combining shallow-etched waveguides with deep-etched bends have been 

investigated. The loss from the waveguide transitions and the bend were reduced by means 

of varying the waveguide width, the etch depth, and by implementing waveguide tapers. A 

number of optimised bends producing small amounts of loss were showcased. 
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7 Conclusions 
Many conclusions can be drawn from the work done in this thesis. Firstly, the ability to 

analyse three-dimensional semi-vectorial wave equations through curved waveguides by a 

conformal transformation was shown. The method of finite difference was applied to the 

derivatives in these equations and the resulting finite difference equations could be solved 

easily and relatively quickly using modern numerical libraries and computer processors. 

Modifying the curvature profile of the curved shallow-etched ridge waveguide did little to 

improve the overall loss from the bend. The weak confinement of the fundamental mode 

caused large amounts of propagation loss even at large radii of curvature. Increasing the 

width of the waveguide did somewhat improve the loss of the bend, but bends with 

effective radii of approximately half a millimetre were still required to prevent considerable 

loss.  

On the other hand, modifying the curvature profile of the deep-etched waveguide bend 

caused considerable improvement of the curved waveguide loss. By implementing a linear 

change in curvature, excitations of multiple slowly radiating modes in the curved waveguide 

were prevented. This allowed the fundamental mode to slowly shift in its position as it 

propagated around the bend, with very little propagation loss on account of the deep etch 

causing high modal confinement. However, as the effective radius of curvature became 

small, the linearly changing curvature failed to prevent the excitations of multiple modes. 

The excitation of the multiple modes was found to be dependent on the slope of the change 

of the curvature with the path length, with the larger the slope, the more excitations of 

higher order modes. However, it was found that, like the matched bend, the linearly 

changing curvature bend also had effective radii of curvature where the initial input field 

would be reproduced at the end of the bend and that the overall loss of this bend was lower 

than that of the matched circular bend of similar radii of curvature. 

Due to the superior performance of the deep-etched bend, the last chapter investigated the 

best approach of combining straight shallow-etched waveguides with deep-etched bends to 

take advantage of the lower loss. Methods to lower the loss from the transition between 

the shallow-etched and deep-etched waveguides were investigated, such as changing the 

waveguide width, changing the etch depth, introducing a waveguide taper, and only making 

the waveguide deep-etched on the outside. The analysis determined the best methods to 

minimise the overall loss and examples of optimised bends implementing the methods were 

shown. 

The results of the analysis should allow low loss small radii ridge waveguide bends to be 

reliably fabricated. It was aimed to experimentally verify the findings of this thesis by 

fabricating and testing a variety of 180° ridge waveguide bends that were simulated in this 

thesis. The curved waveguide devices were designed using the program PICDraw which is 

used to design complex integrated photonic structures by the IPG in Tyndall. Examples of 

bends designed using this program are shown in Figure 7.1. Unfortunately, due to delays 

and access restrictions caused by the COVID-19 epidemic, it was not possible to test the 
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devices in the timeframe of this masters programme. It is therefore hoped that these results 

will be verified at some point in the future. 

 
Figure 7.1: PIC waveguide bends designed using PICDraw. 

Following on from this thesis, future work could involve a number of actions. Firstly, the 

developed 3D-SV-FD-BPM could be implemented into PICDraw which currently only 

contains a 2D BPM tool that does not support waveguide bends. This would allow greater 

accuracy for simulation of proposed photonic device designs, especially in the case of the 

deep-etched ridge waveguides. Secondly, the accuracy of the numerical simulations could 

be increased. This could be done by implementing a time domain beam propagation 

method (TD-BPM) [28], which would better analyse the effect of reflections along the 

propagation direction, at the cost of longer computation time. Derivatives in the wave 

equations could also be better approximated by using a more accurate higher order finite 

difference scheme, again at the cost of longer computation time [55]. With regard to 

waveguide bends, it was recently shown that varying the width of a waveguide over a non-

constant curvature bend can lead to lower loss [56]. Making a bend of this type with the 

deep-etched ridge waveguides analysed in this thesis may improve the curved waveguide 

loss, as the waveguide width was shown to influence the excitations of higher order modes 

in the bend.  
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