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A General Characterization of
Model-Based Diagnosis

Gregory Provan1

Abstract. The Model-Based Diagnosis (MBD) framework devel-
oped by Reiter has been a strong theoretical foundation for MBD, yet
is limited to models that are described in terms of logical sentences.
We propose a more general framework that covers a wide range of
modelling languages, ranging from AI-based languages (e.g., logic
and Bayesian networks) to FDI-based languages (e.g., linear Gaus-
sian models). We show that a graph-theoretic basis for decomposable
system models can be augmented with several languages and corre-
sponding inference algorithms based on valuation algebras.

1 A GENERAL MBD FRAMEWORK

We propose a framework for extending the Reiter MBD approach
[7] by integrating several MBD and FDI approaches within a de-
composable graphical framework in which the modeling language
and inference are specified by a valuation algebra [6].

More formally, we define an MBD framework using a tuple
(G, T ,Γ), where G is a factor graph [5], T is the diagnosis task, and
Γ is a valuation algebra [6]. The factor graph G specifies a system
topology in terms of a decomposable relation Ψ, defined over a set
V of variables, such that Ψ = ⊗iψi(Vi), where ψi is a sub-relation,
⊗ is the composition operator and Vi ⊆ V . This decomposition can
be mapped to a graph, e.g., a DAG for a Bayesian network (BN)
or an undirected graph for a Markov network. The diagnosis task is
given by the tuple T = (D,y,R), where D is the task specifica-
tion; y is the required system measurement; and residual R(Ψ,y)
indicates a discrepancy between observation y and model-derived
prediction ŷ using some distance measure. The valuation algebra Γ
specifies (1) the underlying language for the diagnosis system, and
(2) the inference necessary to compute the diagnosis for the task T ,
e.g., multiple-fault subset-minimal diagnosis or Most-Probable Ex-
planation.

This decomposable representation can encode a wide range of di-
agnosis models, including propositional logic models, FDI dynami-
cal systems models, as well as stochastic models (Bayesian networks,
HMMs, and linear Gaussian models). Previous work, e.g., [4] has
shown AI-based approaches to diagnosis [7, 2] can be described by
valuation algebras. Here, we extend this to include FDI approaches
based on ordinary differential equations (ODEs), and show the im-
portance of system structure and diagnosis task in specifying the full
diagnosis representation.

This framework has several outcomes. First, it enables a clear sep-
aration between models and inference (although the two are linked).
Specifically, the model structure encoded as a factor graph that gov-
erns inference complexity. For example, tree-structured factor graphs
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are all poly-time computable. Second, the factor graph encoding
of models clarifies the structural difference between AI-based ap-
proaches and FDI-based approaches.

2 REPRESENTING MULTIPLE MODEL TYPES

Figure 1. Bayesian network for controlled tank example.

We can represent a system (or plant) modelΨ using a factor graph,
which represents the physical connectivity of Ψ in terms of a struc-
tured decomposition of Ψ into sub-relations. Consider Figure 1(a),
which shows an example of a tank with a valve, where we control
the level x in the tank by controlling the inflow f1 and the valve state
V . There are two possible failures in the system: (1) the tank can
leak, with failure mode φT , and (2) the valve can malfunction, with
failure mode φV . This example has variables {f1, f2, f3, x, φT , φV }
and three relations: ψ1(f1, φT , x), ψ2(x, f2), and ψ3(f2, f3, φV ).
ψ1 represents how the tank’s fluid level x is governed by inflow f1
and fault (leak) φT , ψ2 represents how outflow is governed by fluid
height x, and ψ3 represents the valve’s impact on flows f2, f3.

Given such a decomposition, we can represent the modelling
language as a valuation over ψ1 ⊗ ψ2 ⊗ ψ3. For example, if we
choose a probabilistic algebra then we obtain a diagnostic BN
model, for which Figure 1(b) shows the structure and valuation
P (V ) = P (f1)P (φT )P (φV )P (f1|φt, x)P (x|f2)P (f3|f2, φV ).
P (x|f1, φT ) defines the conditional dependence of tank level x on
the inflow f1 and the tank fault-state φT , and (2) P (f3|f2, φV ) the
conditional dependence of flow from this system, f3, on the tank out-
flow f2 and the valve fault-state φV .
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Approach Language Structure Task Semi-Ring RA FI Complexity

Atemporal Reiter Prop. Logic DAG Dx 〈{0, 1},∧,∨〉 Ψ↓∅ Ψ↓φ NP-hard
ATMS M-V Logic DAG all Dx 〈2P ,∩,∪〉 Ψ↓∅ Ψ↓φ NP-hard

Qualitative Q-Relation arbitrary Dx 〈2P ,
,�〉 Ψ↓∅ Ψ↓φ NP-hard
Constraint Network Constraint arbitrary all Dx 〈2P ,×,+〉 Ψ↓∅ Ψ↓φ NP-hard

BN-Posterior PGM DAG P (φ|y) 〈[0, 1],×,+〉 Ψ↓∅ Ψ↓φ NP-hard
BN-MPE PGM DAG MPE 〈[0, 1],max,×〉 Ψ↓∅ Ψ↓φ NP-hard

Temporal DES M-V Logic arbitrary all Dx 〈2P ,∩,∪〉 Ψ↓∅ Ψ↓φ NP-hard
DBN PGM DAG P (φ) 〈[0, 1],×,+〉 Ψ↓∅ Ψ↓φ NP-hard
HMM PGM tree P (φ) 〈[0, 1],×,+〉 Ψ↓R Ψ↓φ O(n)
FDI ODE bipartite Dx 〈[0, 1],×,+〉 Ψ↓R Ψ↓φ NP-hard

Kalman filter PGM tree MPE 〈[0, 1],×,+〉 Ψ↓R Ψ↓φ O(n3)
Particle filter PGM arbitrary MPE 〈[0, 1],×,+〉 Ψ↓R Ψ↓φ NP-hard

Table 1. Classification of Diagnosis Approaches using Generalized Approach. RA and FI denote Residual Analysis and Fault Isolation, respectively. Shaded
rows denote stochastic methods, and unshaded rows denote deterministic methods. BN denotes Bayesian-network. For the language, Prop and M-V denote

propositional and multivalued respectively; Q-Relation denotes Qualitative Relation; PGM refers to probabilistic graphical model, and ODE to Ordinary
Differential Equation. For the task, Dx corresponds to a single diagnosis, P (φ) to the probability distribution over φ, and MPE to Most-Probable Explanation.

We perform inference in Ψ by message-passing and valuation up-
dating [6]. Figure 1(c) shows how we can compute a diagnosis (i.e.,
evaluate φT , φV ) by passing messages among the nodes starting
with the control and observation settings S. If all assignments in
S are nominal (nom), the “diagnosis” is P (φT = fault) = .004
and P (φV = fault) = .004. If scenario S has control assignment
f1=nom, and observation of f2, f3 both as low, we obtain a diagno-
sis given by P (φT = fault) = .067 and P (φV = fault) = .009,
i.e., a faulty tank is the most likely diagnosis.

We can represent several different tank models by keeping the
same decomposable structure and changing the valuation. For ex-
ample, we obtain a qualitative model by replacing (1) the conditional
probability tables with qualitative relations, and (2) passing qualita-
tive messages (e.g., {+,-,0} rather than discrete-valued probabilities),
and using qualitative inference rather than Bayesian updating.

Table 1 summarizes the properties of several models characterized
by our framework, defining the language, model structure, the under-
lying semi-ring, and the inference complexity. The language and task
can be characterized by the valuation semi-ring (Z,O1, O2), which
consists of a set Z and two operations (O1, O2) [3]. The last column
of Table 1 shows the inference complexity for which the primary de-
terminant is the topology [1]: any non-tree topology is likely to be
NP-hard for computing a task requiring at least one multiple-fault
diagnosis, whereas tree topologies are poly-time solvable for the ma-
jority of languages and tasks.

A valuation is a measure over the possible values of a set V
of variables [3]. Each valuation ψ refers to a finite set of variables
d(ψ) ⊆ V , called its domain. Given the power set P of V and a set
ψ of valuations with their domains in P , we can define 3 key oper-
ations: (1) Labeling: ψ �→ d(ψ), which returns the domain of each
valuation; (2) Combination: (ψ1, ψ2) �→ ψ1 ⊗ ψ2, which specifies
functional composition, i.e., the aggregation of data from multiple
functions; (3) Projection: (ψ, V ) �→ ψ↓V for V ⊆ d(ψ), which
specifies the computation of a query (set of variables) of interest.

Given an observation y, we specify diagnosis within a valuation
algebra as a two-step process of: (1) residual analysis (RA); and (2)
fault isolation (FI).

Residual analysis: This inference depends on the type of residual.
AI logic-based approaches compute RA using a consistency check,
denoted Ψ↓∅. FDI continuous-valued systems compute RA as R =
|ŷ − y|, where ŷ is the model’s prediction. Residual-specific FG

structure may be necessary to enable us to compute Ψ↓R.
Fault isolation: Isolating a diagnosis is equivalent to project-

ing the marginal over the fault-mode variables φ, denoted Ψ↓φ =
(ψ1 ⊗· · ·⊗ψn)

↓φ. Diagnostic inference requires all 3 valuation op-
erations, in particular combination and projection. The task also may
change the FG structure and operations required. For example, dif-
ferent operations are required for computing a posterior distribution
P (φ|y) as opposed to the Most Probable Explanation (MPE).

Given an observation y and prediction ŷ, the typical objective of a
diagnosis process is to identify the system fault-state that minimises
the residual vector: φ∗ = argminφ∈Φ R(Ψ,y). The full paper gen-
eralizes the inference metric to define our diagnosis task as jointly
minimizing the accuracy (based on R) and the inference complexity.

3 CONCLUSION

This article has presented a general framework for MBD that inte-
grates several approaches developed within different communities,
most notably the AI and FDI communities. By characterizing MBD
using the triple (G, T ,Γ) we show structural similarities in MBD
techniques using the underlying graph G. The valuation algebra Γ
enables us to demonstrate the operations and message-passing tech-
niques underlying the MBD approaches. As a consequence, we are
able to identify similarities among MBD approaches, thereby paving
the way for a more holistic approach to MBD and potential cross-
pollination of MBD inference techniques.
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