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Abstract 

Fresh and processed muscle-based foods are highly perishable food products and packaging 

plays a crucial role in providing containment so that the full effect of preservation can be 

achieved through the provision of shelf life extension. Conventional packaging materials and 

systems have served the industry well, however, greater demands are being placed upon 

industrial packaging formats owing to the movement of muscle-based products to 
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increasingly distant markets, as well as increased customer demands for longer product shelf-

life and storage capability. Consequently, conventional packaging materials and systems will 

have to evolve to meet these challenges. This review presents some of the new strategies that 

have been developed by employing novel nanotechnological concepts which have 

demonstrated some promise in significantly extending the shelf-life of muscle-based foods by 

providing commercially-applicable, antimicrobially-active, smart packaging solutions. The 

primary focus of this paper is applied to subject aspects, such as; material chemistries 

employed, forming methods utilised, interactions of the packaging functionalities including 

nanomaterials employed with polymer substrates and how such materials ultimately affect 

microbes. In order that such materials become industrially feasible, it is important that safe, 

stable and commercially-viable packaging materials are shown to be producible and effective 

in order to gain public acceptance, legislative approval and industrial adoption. 

1. Introduction 

Food wastage is a significant cost to the food industry. According to the Food & Agriculture 

Organisation of the United Nations, approximately one-third or over 1.3 billion metric tons of 

all edible food produced, including muscle-based foods, for human consumption is lost or 

wasted annually throughout the supply chain due to poor practices in harvesting, storage and 

transport; as well as through market and consumer wastage (UN, 2017; "World Health 

Organization: WHO Model of Essential Medicines. 

[http://www.who.int/medicines/publications/essentialmedicines/en/index.html],"). Tackling 

food wastage directly could potentially result in our ability to feed our growing future 

predicted global population, as an alternative strategy; rather than simply focussing on our 

capabilities to develop ever increasing quantities of food. A reduction in food wastage would 

enable sustainable food production and enhance market development.  
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Microbial contamination is the primary cause of food wastage (Sperber, 2009). Microbial 

contamination of food reduces quality, limits product shelf-life and increases food-borne 

illness risks to consumers. Contamination occurs primarily on the surface of foods, especially 

for muscle-based food products. For the food industry, prevention of food spoilage is an 

important variable when determining profit. Moreover, prevention of food spoilage can 

prolong the shelf-life of products and, thus, extend market boundaries, resulting in increased 

market size, product placement, sales and consequently, increased profits. The growth of 

microorganisms on muscle-based food products largely occurs post-processing and primarily 

during storage, therefore, adequate packaging of such food products is paramount among all 

possible processing technologies in terms of delivering longer product storage stability and 

shelf-life (Appendini & Hotchkiss, 2002; Kerry, O'Grady, & Hogan, 2006). Additionally, 

post-process contamination of muscle-based food products render such as dangerous if 

contaminated with microbes of public health significance. Therefore, the control of such 

microbes in long shelf-life product packs is critically important.  

Present packaging technologies work synergistically with a variety of physical, chemical and 

biological processes and agents to preserve food and prevent the growth and transmission of 

associated microorganisms (M. C. Cruz-Romero & Kerry, 2011; Rodríguez-Calleja, Cruz-

Romero, O’Sullivan, García-López, & Kerry, 2012). These solutions comprise; gaseous 

control within packs, modification of internal pack pressures, moisture control, active 

packaging modifications, ingredient modification, various chilling regimes, freezing, 

pasteurization, cooking, fermentation, irradiation etc. (Chouliara, Badeka, Savvaidis, & 

Kontominas, 2008); however, usage of non-packaging processes are product-specific. 

Developments in material science, particularly in the area of nanotechnology, has enabled 

scientific progress in many scientific spheres and allowed industrial uptake and application. 

Recent progress in nanoscience and surface engineering offers great promise in addressing 
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some of the significant problems faced by the food industry in general. One particular area 

which is ideal and perfectly positioned for uptake is the food packaging sector. The 

development of novel, natural and synthetic nanomaterials, which are antimicrobially-active, 

is significant and offers the potential of developing novel advanced materials and solutions 

for addressing the primary concerns of microbial contamination and growth in food, 

particularly muscle-based food products (Cushen, Kerry, Morris, Cruz-Romero, & Cummins, 

2012). The global nanoenabled packaging for food and beverage markets attained revenues 

worth US$6.5 billion in 2013. The market is estimated to be worth US$15.0 billion by the 

end of 2020, expanding at a CAGR of 12.7% over 2014-2020 (Valdes, Mellinas, Ramos, 

Garrigos, & Jimenez, 2014). Tuning the size, morphology, surface and interfacial properties, 

development of novel nanocomplexes and composites have all enabled the development of 

new and improved antimicrobial systems through their integration into host systems such as 

plastics and laminates manufactured by the packaging industry (Azeredo, 2009; Azlin-Hasim, 

Cruz-Romero, Ghoshal, et al., 2015; Azlin-Hasim, Cruz-Romero, Morris, et al., 2016; 

Duncan, 2011; Kumar, Howdle, & Münstedt, 2005).   

Polymeric compounds, owing to their many beneficial characteristics, including; high 

durability, high ductility and good tensile strength are used for manufacturing a major share 

of packaging materials. Different types and forms of plastics such as polyethylenes, 

polypropylenes, polyvinyl acetates, polyvinyl alcohols, polyvinyl chlorides, polyethylene 

terephthalates, polyamides etc. are the primary polymers used in plastic and laminate 

manufacture in the packaging industry (Marsh & Bugusu, 2007) for food usage. Despite their 

many advantages, they all possess some drawbacks. For example, micropore formation in 

plastics during manufacture is one drawback that compromises both containment and barrier 

properties.  
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Of all of the plastics available on the market for food usage, low density polyethylene 

(LDPE) requires special mention. LDPE is a widely used plastic in food packaging 

applications owing to its many advantages, such as; low cost, ease of processing and forming, 

optical properties (transparency, colour), water impermeability, but especially, because of its 

low processing temperature and heat-sealing ability. It is because of these latter properties 

that LDPE is predominantly used as the food contact plastic layer in most plastic-based 

laminated structures used for fresh and processed meat products. However, owing to its very 

hydrophobic nature and low reactivity, LDPE presents itself as a difficult substrate to 

functionalize and consequently, to target as a material layer for functionalisation to create 

antimicrobial surfaces. However, if it were possible to surface coat LDPE in a facile manner, 

so as to functionalize its surfaces to deliver antimicrobial activity, this surface coating could 

in turn improve its gas barrier and other physical properties. For example, incorporation of 

silver into a polymeric matrix has been shown, in addition to producing antimicrobial 

properties, to enhance the tensile modulus, strength, and elongation at break of formed films.  

Recent progress in the areas of nanotechnology and surface engineering concepts now enable 

food technologists to design novel nanocomplexes and composites and integrate them in 

these polymer systems, either through incorporation into host matrices or onto their surfaces 

by utilising processes, such as; polymer blending, micro-perforation, co-extrusion, 

lamination, solvent casting or coating (Liu et al., 2012;  ar   ne -Abad, Lagaron, & Ocio, 

2012). By selecting the required active/passive functionalities and processes, new packaging 

systems with superior properties can be developed. The dependence of product-innovation on 

packaging technologies makes such technologies highly desirable. Furthermore, the ever-

increasing demands for more diverse high-quality consumer food-products, including that of 

muscle-based food products, underline the need for feasible and cost-effective innovative 

packaging technologies (Troy & Kerry, 2010).  
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Smart packaging technologies, including novel active and intelligent packaging systems, have 

been available on global markets for some time and have enormous potential and scope for 

product application. However, many initial technologies are considered bulky, labour 

intensive and potentially interfere in recycling programmes. However, many of the initial 

technologies have evolved to address these issues and the approaches adopted now aim to use 

minimal amounts of smart packaging components which are more effective in function and 

that are strategically integrated into conventional packaging materials without the need for 

specialised application equipment. Research developments in the areas of active and 

intelligent packaging technologies are, therefore, progressing rapidly and commercial 

applications now a reality. More recent developments suggest that smart nanotechnology-

based packaging technologies are near to market. Therefore, the purpose of this review is to 

examine the smart packaging technologies and systems that have been, or are currently being, 

used for meat and meat product application and highlight those new and developing systems 

that may have potential for commercial use with muscle-based food packaging systems in the 

future.  

2. Nanomaterials and concepts in food packaging 

Food nanotechnology is an emerging field that is still in its’ adolescence stage, but has 

enormous potential to revolutionize the global food industry, with wide applications in food 

engineering, food nanosensing, development of nanostructured ingredients, food quality 

control, safety evaluation, food processing, preservation and food 

packaging. Nanotechnology has enabled almost all areas of food science from agriculture to 

food processing to security to nutrition and nutraceuticals to packaging. The potential for 

developing feasible food packaging solutions based around nanomaterials-based 

antimicrobials are enormous.  
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Nanomaterials refer to materials in which at least one of its dimensions is below 100 nm. A 

ma erial’s size reduction below 100 nm is normally associated with dramatic changes in their 

optical, electric, electronic and functional properties owing, in general, to their large surface-

to-volume ratio and quantum size effects (for materials of <10 nm) (Drexler, 1986). A similar 

trend for antimicrobial activity was envisaged and current studies, including that from our 

group, underline this concept (M. C. Cruz-Romero, Murphy, Morris, Cummins, & Kerry, 

2013). However, the potential antimicrobial application of a given nanoparticle (NP) depends 

on many factors, including; material type, (Ren et al., 2009; Ruparelia, Chatterjee, 

Duttagupta, & Mukherji, 2008) particle size, shape, (R. H. Wang, Xin, & Tao, 2005) 

functionality, hydrophilic-hydrophobic properties and usage concentration (Kim, Kim, Cho, 

& Cho, 2003).  

Food materials, in particular, meat products naturally support the onset and proliferation of 

microbes on their surface due to the presence of a myriad of complex chemical species in 

them that can be ideal hosts of microbes. This feature, however, causes a diminishing effect 

on an antimicrobial’s activity and the multitude of chemical species present in meat can 

nullify the efficiency of the antimicrobial in question by complexing with it. Therefore, 

instead of a direct mixing or coating of antimicrobials into or onto a film matrix, respectively, 

incorporating them instead into another medium which retains their functional properties and 

allows their application onto the chosen product is considered to be the best approach. In 

other words, technologies that enable the controlled supply of antimicrobials, when and 

where required, represent the best approach to creating functional materials. This has lead to 

the creation of active antimicrobial packaging concepts which have resulted in active 

antimicrobials being incorporated as sachets into food packs, active agents dispersed within 

the packaging materials, coatings and immobilizing active agents located on the surfaces of 

packaging materials, or applying biocompatible antimicrobial materials onto or into edible 
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films. Alhough considerable research has been carried out using these concepts, marketable 

solutions which have been both effective and affordable have been limited. However, further 

innovation is happening where natural and synthetic antimicrobials are being prepared in 

nanoform and integrated into the packaging for improved activity, application and cost. For 

example, inorganic- and metal-based NPs utilised as polmeric nanocomposites, natural 

antimicrobial-based nanoemulsions, nanocapsules and nanocomposites, as well as coatings, 

are being researched and developed currently. These will all be discussed as part of this 

review. There are a number of established surface deposition methods that have shown 

potential in the development of antimicrobial active packaging materials. This review will 

discuss them briefly. The main surface deposition technologies for the development of 

antimicrobial active packaging and novel strategies for the improvement of the deposition of 

antimicrobials will also be discussed.  

3. Surface activation and antimicrobial deposition procedures for the development 

of active packaging materials 

The commercial polymeric films used widely in food packaging applications, such as LDPE 

and PP, are generally inert, hydrophobic in nature and have low surface energies. Therefore, 

surface modification is often required to facilitate the development of polymer film surfaces 

with desirable functionalities or polar groupings for the attachment or deposition of 

antimicrobial materials. The surface modification of polymer materials involves three 

sequential steps: 1) cleaning or etching by removal of materials/contaminants from the 

surface 2) surface reactions producing functional groups and cross-linking and 3) deposition 

of target materials on the surface (Pelagade et al., 2010). Considering the surface chemistries 

of polymer substrates used for packaging muscle-based food products, especially LDPE 

surfaces which are chemically stable and inert, surface activation/functionalisation will be the 

defining step in the antimicrobial deposition process. A range of chemically-based (oxidation 
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by strong acids, ammonium persulfates, chemisorption or flame treatment), and radiation-

based (glow plasma discharge, corona discharge, UV/ozone treatment, photoactivation (UV), 

laser, ion beam, electron beam and gamma radiation) surface activation processes can be used 

for activating the surfaces (Lee & Coote, 2016).  

3.1. Surface functionalisation of polymer surfaces  

3.1.1 Oxidation by strong acids 

For functionalising the surface of polymers by chemical solutions, polymer substrates are 

immersed/dipped in an appropriate volume ratio of respective chemical solution at a desired 

temperature (normally 50-70°C) for a desired duration (normally more than 30 min.). The 

most commonly used strong acids solutions for surface modification of the polymers are:  

Chromic acid (K2Cr2O7/H2O/H2SO4; 1:2:18, 1:5:184 and 4:5:184, mass ratio): The chromic 

acid solution used for treating plastics is a mixture of potassium dichromate, water and 

sulfuric acid in a suitable proportion (Bag, Kumar, & Maiti, 1999).  

Ammonium persulfate + (FeNO3)3: A mixture of ammonium persulfate, Fe(NO3)3 and water 

is used in suitable proportion (Bandopadhay, Tarafdar, Panda, & Pramanik, 2004).   

Piranha solution: A mixture of H2O2 (30 %), H2SO4 and water in a suitable proportion 

(Barish & Goddard, 2011). 

After treatment with acid solutions, the films are dipped or rinsed and washed with water and 

dried (50-70°C). In all these treatments, polar groups like -OH, -CO and -COOH will be 

generated on the surface of the LDPE films (Bandopadhay et al., 2004). The strong oxidising 

species in all these processes attack the double bonds (-C=C-) on the surface of the polymers 

producing these functionalities. In the ammonium persulfate process; however, the persulfate 

first attack the double bond to form epoxy or diol groups, which on further oxidation by 
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FeO
2+

, will be converted to the  polar functional groups (-OH,  -CO and –COOH) (Louwerse 

& Jan Baerends, 2007). In these chemical treatments, however, a longer period of treatment 

can affect/deteriorate their bulk properties as compared to shorter treatment periods (< 1 hr) 

which produce only surface effects (Barish & Goddard, 2011). Finally, though these 

treatments show good surface activation potential, they are not favoured in industrial 

processes owing to their negative environmental effects.   

3.1.2 Radiation based surface activation  

Glow plasma discharge, corona discharge, UV/ozone treatment and UV photoactivation are 

the conventionally used surface activation processes for polymers. Though the efficiency and 

amount of functional groups formed will differ between these processes (which require 

different process parameters such as time duration, power used and intensity), they all 

produce hydroxyl (-OH) or carboxyl (-COOH) functionalities on the plastic surface. Plasmas 

are ionised gases, which consist of positive and negative ions, atoms, electrons, radicals, as 

well as neutral species (Bogaerts, Neyts, Gijbels, & van der Mullen, 2002). Plasma treatment 

is a low environmental impact process with potential to make pinhole-free coatings on 

polymer substrates without changing the bulk properties of the material. Polymer surface 

activation by the plasma activated gaseous species involves the modification of the surface 

chemistry and structure (Yameen, 2008), where reactions between the plasma-derived gas-

phase species and the surface produce functional groups and cross-linking at the surface. For 

example, oxygen plasma can react with the polymers to produce a variety of oxygen 

functional groups, including C-O, C=O, O-C=O, C-O-O and CO3 (Sanchis, Blanes, Blanes, 

Garcia, & Balart, 2006; J. Wang et al., 2008). In oxygen plasma, the reaction occurs between 

the active species from the plasma and the surface atoms, where two processes occur 

simultaneously: etching of the polymer through the reactions of oxygen atoms with the 

surface carbon atoms, giving rise to volatile reaction products, and the formation of oxygen-
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rich functional groups or polar groups at the polymer surface. Glow discharge plasmas are 

generally used for the surface modification of polymers because the processes involved are 

solvent-free and dry, the consumption of chemicals is extremely low and need for 

sterilization of the products is eliminated (Clarke et al., 2017; Guruvenket, Rao, Komath, & 

Raichur, 2004; Lehocký et al., 2003; Sanchis et al., 2006). Corona discharge is a form of 

plasma that operates at a standard atmospheric pressure. Corona discharge also produces 

similar excited species as plasma process and affects the surface in a similar manner, 

although the effectiveness can be different.  

For UV/ozone treatment, the major reactive substances generated are ozone and atomic 

oxygen. In the presence of the high-energy UV radiation at 185 nm, oxygen molecules will 

become excited and reactive atomic oxygen species are formed (Eq. 1). This reactive atomic 

oxygen species further react with oxygen molecules to form ozone (Eq. 2). Subsequently, the 

formed ozone absorbs UV radiation at 254 nm and decomposes by photo-dissociation to 

molecular and atomic oxygen (Eq. 3) having high oxidising potential (Jofre-Reche and 

Martín-Martínez 2013).  

  

The formed ozone and atomic oxygen react with polymer surfaces and create C-O and C=O 

polar groups in the gas phase and –OH and –COOH surfaces in the liquid phase. An 

unpublished study by our group showed that the UV/ozone treatment increased (p < 0.05) the 

generation of polar groups on polymer film surfaces and that the increase detected was 

dependent directly to exposure time. An optimisation process indicated that oxygen flow rate 

and exposure time increased (p < 0.05) the formation of carboxylic groups, with optimum 
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effects observed when the UV/ozone treatment was carried out at 0.5 L min
-1

 oxygen flow 

rate for 30 min.[PhD Dissertation, Azlin-Hasim, University College Cork, 2016] 

3.2 Antimicrobial deposition/coating methods  

In the following step (step 2), the formed surface functionalities are used as an anchoring 

platform for further deposition of the active functionalities. For the development of 

antimicrobial-active packaging for food applications, inorganic- or metal-based antimicrobial 

NPs such as Ag, Cu, ZnO, TiO2, MgO or nanoemulsions or nanoencapsulations containing 

active natural antimicrobial materials can be attached through covalent, electrostatic or 

through hydrogen bonding interactions, covalent interactions being the most preferred. For 

example, and in general, silver NPs can be attached to a plastic substrate by following these 

sequential steps: surface activation of plastic to provide –COOH functionality, modification 

of the activated surface with a chelating agent (for example, a diamine such as 1,2-

ethylenediamine (EDA)), and deposition of Ag or Ag NP onto the amine functional group. 

The Ag NP can be further protected with suitable functional groups to stabilize it against 

dissolution so that only a slow dissolution occurs. This slow dissolution in applications like 

active food packaging can be advantageous for providing a longer shelf-life of packaged food 

by controlled release of Ag ions, thereby achieving a lower Ag migration into the food. The 

chemistry behind the process (Fig. 1) is a spontaneous reaction between an acidic functional 

group (-COOH) and an amine group (-NH2) to yield a urethane linkage (-CO-NH-) followed 

by the binding of silver by amine, which occurs due to the high affinity of amines for silver 

(Fan, Thompson, Andrade, & Brolo, 2010). 

Many variations of chemical reagents can be used to create silver loaded plastics, depending 

on the application, such as different diamines, different silver stabilizing molecules, etc. For 

example, hydrophilically-functionalised, hydrophobically-functionalised or a hydrophilic-

hydrophobic-functionalised, but balanced chelating compound (e.g., nanoemulsions), can be 
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prepared by selecting suitable functional molecules from a variety of available ligands, 

chelating agents and surfactants. It is to be noted that the modification procedure of other 

more energetic polymeric substrates used in packaging applications with inherent 

functionalities (e.g., PVC, PVA, EVA etc.) are less cumbersome and therefore, processed by 

similar approaches.  Furthermore, other methods like chemical or physical vapour deposition 

can be applied to deposit inorganic or metal NPs or other active inorganic nanomaterials onto 

activated surfaces, but these are more expensive processes, requiring sophisticated processing 

equipment. The chemical deposition of oxides (ZnO, TiO2, MgO and CuO) from solution can 

be a rather inexpensive method which can utilise similar processes as that employed for 

silver. Their readily available oxide surfaces make them good candidates for surface 

functionalization and deposition (Iijima & Kamiya, 2010).  

3.2.1 Layer-by-layer (LBL) process 

The activated surface can also be used as a platform to deposit active antimicrobial materials 

(inorganic, metal or natural) by a LBL deposition process. The method is based on a 

sequential electrostatic-based adsorption of polycationic and polyanionic compounds from 

solution (Fig. 2). Other weak interactions such as van der Waals forces, hydrogen bonding 

and weak coordination bonding can also be used to stack layers by LBL method. For 

example, chitosan (polycationic) and alginate (polyanionic) are two biodegradable polymers 

applicable in food packaging. Sequential dip/spray coatings of these compounds or their 

nano-equivalents (e.g., chitosan NPs) from their dispersed solutions will produce an 

antimicrobial surface on the polymer substrate. These two alternate deposition steps can be 

repeated to make a thick coating. Similarly, inorganic (Iijima & Kamiya, 2010) and metal 

NPs can also be surface modified and dispersed in suitable solvents and deposited onto 

polymeric substrates using this approach (Antunes et al., 2011; Yang, He, Duan, Cui, & Li, 

2007; Ye, Wang, Liu, & Tong, 2005). This technique, although used to assemble a wide 
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range of materials including DNA, enzymes, EOs, proteins, polymers etc., have seldom been 

used in food packaging technologies. Developmental research on these techniques are hence 

of high importance for developing new technologies and food packaging solutions (Fabra et 

al., 2016; Yang et al., 2007). 

Ag and Cu, owing to their similarity in surface chemistries, can be processed by similar 

approaches. i.e., similar processes can be used to deposit them using the aforementioned 

methods (Azlin-Hasim, Cruz-Romero, Morris, et al., 2016). Similarly, metal oxide NPs 

(TiO2, ZnO and MgO) can also be processed, though with required changes, depending on 

their other chemical aspects such as point of zero charge which determines their surface 

properties. These metal oxide NPs can be produced in a range of primary particle sizes. The 

most common procedure for the synthesis of TiO2 NPs utilizes the hydrolysis of its 

salt/alkoxide in an acidic solution (Sibu, Kumar, Mukundan, & Warrier, 2002; Sivakumar, 

Sibu, Mukundan, Pillai, & Warrier, 2004). ZnO and MgO NPs are commonly prepared by 

sol-gel, hydrothermal or vapour deposition processes (Jin, Sun, Su, Zhang, & Sue, 2009; 

Tang & Lv, 2014; Znaidi, Chhor, & Pommier, 1996). Methods such as chemical vapour 

condensation or nucleation from sol–gel can control the structure, size and shape of these 

NPs (Jin et al., 2009; Xingping et al., 2008; Znaidi et al., 1996).  

3.2.2 Sol-gel coating process 

The sol-gel process is a simple hydrolysis-condensation process by which a variety of high 

purity metal oxide NPs, as well as organic-inorganic hybrid systems, can be prepared. The 

NPs formed by sol-gel reactions are predominantly transparent owing to their nanosize 

dimension. A typical sol-gel reaction starts with the hydrolysis of a metal salt or metalorganic 

precursor (e.g. metal alkoxide) followed by extensive condensation reactions leading to 

extended metal oxide frameworks. One particular advantage of sol-gel process is the ease to 

prepare organic-inorganic frameworks, (Marini et al., 2007) mixed oxide systems, 
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(Sivakumar et al., 2004) or carefully doped systems (Padmanabhan et al., 2007; Sibu et al., 

2002) by mixing their respective precursors and salts and allowing them to hydrolyse and 

polycondensate to form the gel network, followed by drying (xerogel) and annealing to form 

the final product. Sols can be used directly for coating on substrates, and on surface gelation, 

drying and heating, will be converted to the respective oxide forms. Antimicrobial silver NP-

metal oxide systems and titania systems prepared through sol-gel process have shown great 

potential for this technique to be applied in developing antimicrobial surfaces for food 

packaging applications (Marini et al., 2007). 

3.2.3 Electrospinning 

Electrospinning is a simple method, where a polymer solution jet is accelerated towards a 

target by an applied high voltage (tens of kV) and deposited as ultrathin polymer fibres. The 

conventional electrospinning system consists of three parts: 1) a source of high voltage, 2) a 

spinneret and 3) a grounded collector. In the electrospinning process, the high voltage 

connected to the end of the capillary containing liquid solution produces a high intensity 

electric field. With this increased field intensity, the hemispherical surface of the liquid at the 

end of the capillary extends and creates a conical shape known as a Taylor cone. When 

increasing the electric field further, the repulsive electrostatic force overcomes the surface 

tension of the liquid that holds it together (critical limit) and the charged strand jets out of the 

end of the Taylor cone. This strand of polymer solution undergoes a process of lengthening 

and instability during which solvent evaporates. The fibers are subsequently deposited on the 

collector as a non-woven fibrous layer. These fibres can be prepared into sub-micrometer 

sizes and antimicrobial agents can be added onto the fibres or they can be incorporated into 

the polymer solution beforehand and electrospun (Torres-Giner, 2011; Zhang & Yu, 2014). 

Antimicrobial Ag containing electrospun polymer fibres including poly(acrylonitrile) (PAN), 

cellulose acetate, PVP, polyvinyl acetate (PVA), PVA/polyacrylic acid (PVA/PAA) and 
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PMMA have been reported to show food packaging applicability (Kong & Jang, 2008; Son, 

Youk, & Park, 2006). 

3.2.4 Electrospraying 

In electrospraying, a polymer solution is made to flow through an emitter applied with a high 

voltage at its tip. The principle is similar to that of electrospinning. When the energy of the 

electric field overcomes the surface tension of the solution, influenced by electrostatic forces, 

a Taylor’s cone forms from which the solution breaks into small charged particles. The 

solvent evaporates from the surface of these droplets on its way out of the cone. The particle 

size can be tuned by controlling solution properties such as concentration and conductivity, 

and processing parameters such as flow rate and applied voltage. Electrospraying enables the 

generation of micro- and nano-sized particles simply by applying a high voltage electric field.  

3.2.5 Chemical vapour deposition (CVD) 

In the CVD process, the material to be coated, or its chemical precursor, is vapourised and 

deposited onto the substrate placed inside a vacuum chamber. The vapourisation can be 

realised by either heating the material or its precursor, or by reducing the pressure in the 

chamber until it vapourises. The precursor can also be vapourised externally and introduced 

into the chamber. The vapourised material subsequently starts to deposit onto the substrate 

and a uniform coating is formed. The thickness of the coating can be controlled by adjusting 

the temperature and duration of the process. When high temperatures are required to deposit 

metals, like Ag, the polymer deposition involves low temperatures. However, the polymer 

process requires the introduction of two or more monomeric precursors, depending on the 

required end product and initiators into the chamber where they react to form polymers as 

they deposit on the surface.  CVD can produce uniform, pure coatings of metals and 

polymers.  
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3.2.6 Self-assembly of block co-polymer (BCP) systems 

The scope of BCP self-assembly based surface deposition of nanostructured antimicrobial 

materials (Ag, Cu, TiO2, ZnO, MgO and natural antimicrobials) on polymers that are widely 

used in food packaging materials have recently been demonstrated by our research group 

(Azlin-Hasim, Cruz-Romero, Ghoshal, et al., 2015). The advantages of this technique are the 

ability to strictly control nanoparticle size and spacing, as well as allow direct deposition onto 

a range of substrates. Self-assembly is a process of self-organisation of materials or 

components into patterns or structures without the assistance of any external forces or 

manipulation. In the BCP-based self-assembly process, generally, BCPs with chemically 

distinct polymer blocks which are linked together by a covalent bond are used. In a typical 

self-assembly process, a BCP such as polystyrene-b-polyethylene (PS-PEO) is allowed to 

self-assemble on a substrate at a slightly elevated temperature (<60°C) in the presence of a 

suitable solvent or solvent mixture that selectively swells one (or both) of the component 

block(s) of the BCP. The swelling allows free movement of the component groups in the 

structure that may have been entangled when coated, which on evaporation of the solvent(s), 

freezes into an energetically stable (low energy) structure. The energetically stable structures 

in BCPs are normally formed when the component blocks are separated to their maximum 

extent, possibly in order to share their interfaces to the minimum possible extent. Due to the 

presence of the covalent linkage in the middle, however, the movement apart of these 

structures are restricted, thereby causing them to freeze within a phase separated nanoscale 

structure.  One particular advantage of the BCP self-assembly process is its ability to produce 

a variety of structures such as spheres, lamellae, cylinders, gyroid structures etc., thereby 

enabling this process to be a promising method in terms of manipulating the structure and 

shape of nanoscale materials. 

 3.2.6.1 Chemistry of BCP self-assembly in brief 
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BCPs are composed of two or more chemically distinct polymeric segments that are usually 

immiscible with each other. Several types of BCPs have been reported to be capable of 

forming phase separated nanopatterns, including; PS-b-PEO, PS-b-PMMA, PS-poly(2-

vinylpyridine) (PS-b-P2VP), PS-poly(4-vinylpyridine) (PS-b-P4VP), PS-

poly(dimethylsiloxane) (PS-b-PDMS) and PS-polylactic acid (PS-b-PLA) (Cummins, 

Ghoshal, Holmes, & Morris, 2016). The self-assembly of BCPs can be controlled by 

selecting BCP blocks with different molecular weight, degree of polymerisation (N) and 

volume frac ion (ƒ), which in  urn will define  he s reng h of  he in erac ion between the 

blocks (represented by the A-B Flory-Huggins in erac ion parame er χ). In o her words,  he 

architecture and composition (e.g., molecular weight, molar ratio) of BCPs affect the 

morphologies of the self-assembled structure and form phases such as spherical, cylindrical, 

bicontinuous porous, or lamellar (Bates and Fredrickson 1999). The self-assembly of BCP 

and current research on BCP materials impregnated with various inorganic materials have 

been discussed in detail previously (Mai & Eisenberg; Cummins et al., 2016). 

Owing to the simplicity and effectiveness of the BCP patterning technique, it was used for 

generating Ag nanodots on various substrates by our research group and demonstrated that 

this approach has the potential to be used as a simple method for developing antimicrobially-

active packaging materials. Briefly, a prepared self-assembled PS-b-PEO pattern was used as 

a template to create Ag nanodots by depositing an ethanolic solution of AgNO3, which on 

subsequent drying and curing, was attached to the BCP pattern. The schematic of the 

methodology that can be used for antimicrobial deposition on the surface of the polymer is 

illustrated in Fig. 4. The BCP coated onto a substrate surface was microphase separated by an 

annealing process into a cylindrical pattern (a), the active antimicrobial Ag was subsequently 

incorporated onto the nanocylinders by dip- or spray-coating and a low temperature heating 

process (<60°C) produced an intact Ag-coated surface (b). Such self-assembled PS-b-PEO or 
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any other suitable BCP pattern can be used as templates to coat antimicrobial materials, from 

preformed NP solutions (Ag, Cu, TiO2, ZnO, MgO and a host of naturally-occurring 

antimicrobials) or their precursor salt solution. 

3.2.7 Gravure printing 

Gravure printing is a fast (beyond 15 m/sec) high-volume printing method conventionally 

used for printing magazines, catalogues or packaging materials. The working principle is 

illustrated in Fig. 5. The gravure system consists of a gravure cylinder and an impression 

cylinder. The gravure cylinder is made of steel and the printing image on its surface consists 

of engraved cells worked into a thin layer of copper, which is further coated with a chromium 

layer to enhance the wearing resistance of the copper. Depending on the application and the 

desired printing results, the depths, sizes, shape or screen ruling of the cells worked into the 

copper layer can be altered to adjust the print volume in ml/m
2
. The printing cylinder is 

immersed in an ink bath, which on rotation, carries the metered ink in the cells. The doctor 

blade attached just above the tank scrapes off excess ink, thereby leaving the unpatterned 

chrome surface blank. In a slightly different set up, the ink can be kept in an enclosed system 

with a chambered blade and transferred to the substrate through surface interactions of the nip 

zone between gravure cylinder and the impression cylinder. The ink rheology, complex 

interactions between the cell characteristics and the printing parameters used normally 

defines the ink transfer rate. The low viscosity ink solutions normally require levelling after 

deposition to form a homogeneous layer due to the structured printing image based on small 

cells. To offset this issue, the inked gravure cylinder first transfers the ink to a soft blanket 

roller and this in turn is then transferred onto the substrate. 

3.2.8 Flexographic printing 
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Flexographic printing is an industrially used, very fast method for a wide range of substrates 

with web widths beyond 1.5m that can run at hundreds of meters per minute. The working 

principle is illustrated in Fig. 6. In contrast to the gravure method, it uses a soft, flexible 

printing plate made of rubber or a photopolymer with different hardness and material quality 

depending on the intended application and the ink employed. The set up consists of three 

parts and an impression cylinder. The first part is a fountain roller immersed in an ink bath. 

The second part of the printing unit is the anilox roller, normally made from ceramics. The 

surface of the anilox roller is engraved with small cavities or cells of a certain ink volume 

(ml/m
2
) to carry ink and transfer to the substrate. In a three roller system, the fountain roller 

supplies ink to the anilox roller and in a two roller system, the anilox roller is directly 

connected to a closed chambered blade system. Excess ink in the anilox roller is scraped off 

with a doctor blade. It is then brought into contact with the printing form cylinder that picks 

out the ink and transfers it to the substrate. The printing plate is either taped onto the printing 

cylinder or manufactured as a gapless sleeve. The plates are made by either direct laser 

engraving, or through light exposure, developing and washing techniques. This technique 

uses low to medium viscosities of inks below 500 mPa⋅s, which is similar to gravure printing.  

3.2.9 Inkjet printing 

There are two types of inkjet printing; continuous inkjet (CIJ) and drop-on-demand (DOD) 

inkjet. In DOD inkjet printing, which is used in most current applications, piezoelectrically 

actuated transducers are used to eject droplets from the nozzle on demand. The working 

principle is illustrated in Fig. 7. The ink held in the chamber is ejected by a pressure pulse 

generated by mechanical actuation produced by a voltage waveform (firing pulse) applied to 

the piezo. Ink is held inside the chamber due to surface tension and static pressure that 

stabilizes the meniscus at the nozzle and this is ejected as droplets once the pressure exceeds 
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the threshold at the nozzle. For roll-to-roll (R2R) systems, inkjet heads with large print 

swathe widths are preferred. They often have >1000 nozzles and can print >70mm wide at 

speeds beyond 50m/min
1
. The choice of solvent mixtures (low and high boiling point) and 

print parameter settings have a crucial impact on the layer print results. It is a very complex 

technology with a huge parameter space that needs to be taken into account for the 

fabrication of functional structures. The big advantage, however, is the virtually waste-free 

nature of this printing process which employs additive processes and digital printing forms 

which are literally free and can be changed on-the-fly. 

3.2.10 Slot die coating 

Slot-die coating is a non-contact large-area processing method for the deposition of 

homogeneous wet films with high cross-directional uniformity. It works with solutions of a 

broad range of viscosities between less than 1 mPa⋅s and several thousand Pa⋅s and speeds 

between less than 1 m min
-1

 and more than 600 m min
-1

. The method allows coating of all of 

the supplied liquid onto the substrate, where the wet film thickness is controlled by the flow 

rate, coating width and speed. The working principle is shown in Fig. 8. 

4. Solvent casting or extrusion techniques 

Techniques such as solvent casting and extrusion are commonly used for making polymer-NP 

nanocomposites for packaging applications; however, the homogeneous dispersion of NPs in 

the polymer matrix has been an issue that generally affects the material’s mechanical and 

barrier properties, thereby indirectly affecting antimicrobial activity. This happens mainly 

because of the different polarities of the polymer matrix and the additives (particles or 

compounds). Simple mixing or blending of particles with polymer will result in the 

aggregation of particles. One potential approach to achieve a uniform dispersion is by 

functionalising the NPs with polymer matrix-compatible organic molecules or surfactants. 
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Use of diacids was reported as a suitable procedure to disperse Ag NPs (Jiang, Moon, Li, & 

Wong, 2006). Selecting NP-binding metalorganic compounds with similar chemistries and 

polarities of that of the polymer matrix material such as vinyltriethoxysilane (VTES) or 

vinyltrimethoxysilane (VTMS) or any analogue of such compounds could be another 

potential approach (Melo, Aguiar, & Marques, 2015). Due to their chemical similarity and 

polarity, they can mix effectively in the polymer matrix without significant disturbance to 

their extensive linkage, thereby minimally affecting their mechanical and barrier properties 

which mainly depend on the extensive polymer-polymer linkages and crystallinity. 

5. Application of antimicrobial nanocomposites with particular emphasis on 

muscle-based food products 

Packaging technologies used by the meat industry fundamentally provides product protection, 

convenience and safety, while also addressing consumer expectation for quality and product 

freshness through the delivery of meat products of high quality, colour, flavour and texture 

(M. Cruz-Romero & Kerry, 2017; Walsh & Kerry, 2012). Packaging is also a critical 

component of value-added meat products offered for both export and domestic markets. In 

order to preserve the quality of muscle-based food products, mechanical, optical, barrier, 

antioxidant and antimicrobial properties are the most relevant properties required for the 

packaging materials (Atarés & Chiralt, 2016). 

The shelf-life of a muscle-based food product is defined as the length of time that a meat 

product in a container will remain in an acceptable condition for its use or application, under 

specific conditions of storage (Morris et al., 2010). The shelf-life of muscle-based food 

products depends largely on the initial quality of the raw material (Carbone et al., 2016). The 

shelf-life of a food product is influenced by three factors: 1) product characteristics, including 

formulation and processing parameters (intrinsic factors), 2) the properties of the package and 
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3) the environment to which the product is exposed during distribution and storage (extrinsic 

factors) (Emblem, 2012a). Intrinsic factors include; pH, water activity (aw), enzymes, 

microorganisms and concentration of reactive compounds and many of these factors can be 

controlled by appropriately selecting the raw materials and ingredients, as well as the choice 

of processing parameters. Extrinsic factors include; temperature, relative humidity, light, total 

pressure and partial pressure of different gases, as well as mechanical stresses including 

consumer handling. Many of these extrinsic factors can affect the deterioration reactions rates 

that occur during storage of the food product. When considering the preservation function of 

packaging, it is important to recognise that whilst packaging can and does contribute to shelf-

life, it cannot overcome inherent product problems, if the product at the point of packaging is 

unsafe or of poor quality, it is likely that the packaged product will remain unsafe or of poor 

quality, as packaging systems can only maintain the initial quality of the product in question. 

Additionally, if temperature is a key preservation factor, e.g. chilling or freezing, the 

packaging has only a “suppor ing” role  o play as if  empera ure of  he packaged muscle-

based food product is allowed to rise to the point where deterioration occurs, the packaging 

will not compensate for this failure to manage storage conditions (Emblem, 2012b).  

In order to determine the optimum packaging required to extend shelf-life of muscle-based 

food products, within the limitations mentioned above, it is necessary to define the cause of 

deterioration, i.e. what is the spoilage mechanism? It is then necessary to understand what 

process (if any) will be used to prevent/delay spoilage and the extent to which this will affect 

the packaging used and, therefore, determine its key properties (Emblem, 2012b).  

The increased demand for fresh muscle-based food products with an extended shelf-life and 

enhanced safety, as well as changes in consumer preferences, has led to the development of 

innovative and novel approaches in food packaging technologies (Angiolillo, Conte, & Del 

Nobile, 2016). There is a growing demand in the meat industry for the use of antimicrobial 
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packaging, which can play a crucial role in extending the shelf-life of muscle-based food 

products. Over the last few years, different strategies in manufacturing packaging materials 

with high antibacterial efficacy have been explored for food preservation and storage 

purposes. As in most fresh or processed meat products, microbial contamination is found 

principally on the product surface. Therefore, the application of antimicrobially-active 

packaging can be more efficient than the addition of antimicrobial additives directly into the 

foodstuff (Falguera, Quintero, Jiménez, Muñoz, & Ibarz, 2011) as the packaging can actively 

interact with the product and the environment (Angiolillo et al., 2016). Recent developments 

in nanosciences and nanotechnologies offer new prospects for the development of novel 

antimicrobial packaging materials. Nanocomposite materials, which contain certain NPs that 

possess good antimicrobial activity, have been proposed as promising candidates for the 

development of antimicrobial packaging materials.  Given the number of publications that 

cite antimicrobial food packaging as one of the main applications for nanotechnology and 

nanomaterials in the agriculture, feed and food sectors (Amenta et al., 2015; Cushen et al., 

2012), it is then rather surprising to find that the number of publications which report the 

application of antimicrobial nanocomposite materials for the purposes of extending the shelf-

life or improving the safety of actual packaged food components, especially for muscle-based 

food products, is surprisingly small.  

Active antimicrobial packaging composites interact with packaged food and headspace to 

reduce, delay, or even inhibit the growth of spoilage and pathogenic microorganisms (Otoni, 

Espitia, Avena-Bustillos, & McHugh, 2016). The incorporation of certain antimicrobial NPs 

in polymers has led to the development of antimicrobially-active packaging materials that 

have the capability to prevent growth or inactivate microorganisms and hence, preserve the 

quality of muscle-based food products during transportation and storage. The antimicrobial 

effect that a nanocomposite packaging has on a food depends on its active ingredient, 
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namely; the composition of the nanomaterial that is being applied. The use of inorganic 

nanomaterials, such as silver NPs, titanium oxide and zinc oxide NPs and organic 

nanomaterials, such as chitosan and essential oils (EOs), have been reported in the literature. 

The polymer matrix may also have a role to play in controlling the action of the 

nanocomposite; for example, it may influence particle release rate, as density determines the 

rate of release of bioactive compounds which may be required to be either bound 

(immobilised) in the matrix or be released over time. Therefore, the choice of polymer matrix 

is a major factor in the release efficacy of the active components in the nanocomposite film 

(Cushen et al., 2012). The polymers commonly used in the manufacture of nanocomposites, 

include; polyamides (PA), nylons, polyolefins, polystyrene (PS), ethylene-vinylacetate 

(EVA) copolymer, epoxy resins, polyurethane, polyimides and polyethyleneterephthalate 

(PET) (Simon, Chaudhry, & Bakos, 2008). Since microbial contamination of most food 

products occurs predominantly at the surface, mainly due to post-process handling, attempts 

have been made to improve safety and to delay spoilage through the use of antimicrobially-

active packaging films to effectively control the microbial growth on the surface of the food 

(Azlin-Hasim, Cruz-Romero, Morris, Cummins, & Kerry, 2015; Azlin-Hasim, Cruz-Romero, 

Morris, et al., 2016).  

Many studies have assessed the antibacterial properties of nanocomposites involving various 

NPs and polymers. Fedotova et al. (2010) immobilised silver NPs in cellulose and collagen 

sausage casings and found that these materials exhibited high bactericidal activity against 

Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The authors also reported 

that these materials, while exhibiting high bioactivity to different forms of microorganisms, 

were deemed to be non-toxic to humans and the environment.  

 Kumar and Münstedt (Kumar & Münstedt, 2005b) and Damm et al.
 
(Damm, Münstedt, & 

Rösch, 2007) studied the antimicrobial effect of Ag in polyamide (PA)-based composites. 
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The Ag-PA nanocomposite was an effective antimicrobial against E. coli and S. aureus and 

that the effectiveness of the antimicrobial nanocomposite was still discernible after 28 days of 

testing. Damm et al. (Damm et al., 2007) reduced silver acetate thermally during the melting 

of polyamide 6/silver-nanocomposites producing polyamide 6/silver-nanocomposites with 20 

nm Ag NPs. The antibacterial activity of the polyamide 6/silver-nanocomposite against E. 

coli was excellent and complete removal of this organism was achieved. Nanocomposite 

samples immersed in water for 100 days were found to be equally as effective as only 3% of 

the available Ag
+
 had been released after 100 days of immersion, suggesting that the 

antimicrobial lifetime of the nanocomposite produced could be potentially much longer than 

100 days (Damm et al., 2007). For comparative purposes, poly(methyl methacrylate) 

(PMMA) was used to produce a PMMA-Ag nanocomposite. Although, antibacterial 

properties of this material was not investigated, Ag
+
 release was tracked and it was found that 

Ag
+
 release from the PMMA-based composite was much lower than that of its PA-based 

counterpart over the course of a 25-day immersion in water. Presumably this could have 

resulted in lower antimicrobial activity due to the role of Ag
+
 in the antibacterial mechanism 

of Ag NPs. Therefore, the polymer used, as well as the NP characteristics, can greatly 

influence the antibacterial properties of a nanocomposite. In the case of PA and PMMA, the 

authors attributed a much greater Ag ion release from PA due to its greater hydrophilicity. As 

ion release is dependent on hydration, the greater hydrophilicity of the polymer results in 

greater hydration of the NPs and, in turn, greater Ag ion release (Damm et al., 2007). Kumar 

and Münstedt (Kumar & Münstedt, 2005a) discussed some of the effects of the base polymer 

of the composites in more detail. It was found that PA crystallinity in PA-Ag composites 

influenced Ag
+
 release from the composites. The effect of initial silver concentration (% 

w/w) on silver ion release has also been investigated (Kumar & Münstedt, 2005a) and a 

greater initial silver concentration resulted in greater Ag
+
 release. For all samples tested, the 
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increased Ag
+
 release was non-linear as a function of time. For the first 6 days of the 14-day 

analysis, differences in Ag
+

 release from nanocomposite samples containing 2%, 4% and 8% 

(w/w) silver, respectively, were not significantly different. However, after day 6, a marked 

increase in Ag
+
 release was noticed in samples containing 4% and 8% silver. However, 

nanocomposites containing 2% silver, released Ag
+
 at approximately the same rate for the 

duration of the test and this was attributed to the characteristics of the PA-Ag nanocomposite. 

Ag
+
 release is governed by the oxidation of the silver particles to produce ions; therefore, the 

rate of water diffusion is an important factor, as oxidation takes place in the presence of 

water. The researchers determined that the rate of water diffusion increased after day 6, 

which led to greater oxidation and therefore more Ag
+
 release. Effectively, Ag

+
 release was 

limited by the rate of water diffusion over the first 6 days of the test, which explains small 

initial differences between samples from different silver concentrations. 

 (Pongnop, Sombatsompop, Kositchaiyong, & Sombatsompop, 2011) studied the effects of 

antibacterial activity against E. coli of nanosilver colloid content and silver polymer contact 

time for medium-density polyethylene (MDPE), PS, PET and polyvinyl chloride (PVC) 

containing nanosilver colloids incorporated using spray-coating and melt-blending 

techniques. It was observed that the viable cell count decreased with increasing concentration 

of nanosilver colloid and that the contact time of 150 min was sufficient for 99.9 % reduction 

of E. coli at the optimum silver content of 50 ppm for PS, PET and PVC and of 75 ppm for 

MDPE. However, PVC exhibited the highest percentage of E. coli reduction, due to higher 

silver release. For a given silver content, the spray-coating technique produced a better 

dispersion level of silver throughout the thermoplastic films and this led to more effective 

antibacterial performance as compared with the dry-blending technique. The antibacterial 

performance of the silver incorporated thermoplastic films was dependent on the chemical 

structure and polarity of thermoplastics only at low silver content of 25ppm. However, at 
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higher concentrations, the antimicrobial performance was influenced by silver content. 

Dispersion and agglomeration of silver particles significantly affected the antibacterial 

performance of the thermoplastics used. Among the thermoplastics assessed, PVC gave the 

highest percentage reduction of E. coli as the silver release from PVC was greater than that 

observed for MDPE, PS or PET.  

 (Busolo, Fernandez, Ocio, & Lagaron, 2010) obtained solvent casted antimicrobial active 

polylactic acid biocomposite films containing a novel silver-based antimicrobial layered 

silicate additive. The developed films were highly transparent with enhanced water barrier 

and strong biocidal properties and showed potential in extending the shelf-life of food 

products, including meat.  Mahdi et al. (Mahdi, Vadood, & Nourdahr, 2012) evaluated the 

antimicrobial effect of using a nanosilver treated tray to extend the shelf-life of minced beef 

during storage at 3°C. The study indicated that the nanosilver tray increased the shelf-life of 

mince beef to 7 days compared to a shelf-life of only 2 days for common control trays and 

that the antimicrobial effect of the nanosilver tray was affected by the thickness of the minced 

meat packaged, with greater effectiveness on minced meat of 1cm in thickness compared to 

minced meat with a thickness of 1.5cm.     

Researchers
 
(Angiolillo et al., 2016; Nobile et al., 2004) produced polyethylene-based 

antimicrobial films containing silver NPs of 90nm via a sputtering/deposition process. These 

authors indicated that growth medium can affect the growth characteristics of bacteria, as the 

release of silver ions (Ag
+
) was affected by the growth medium, with higher Ag

+
 release 

observed in microbiological media than in real food products. However, when distilled water 

was used as a comparison, release of a greater concentration of silver ions was observed. 

Therefore, the ionic strength of the medium governed silver ion release and therefore, 

influenced the antimicrobial activity of the film. This may indicate that the antimicrobial 

activity of the antimicrobial nanocomposites can also depend on the food product used; 
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indicating that careful consideration should be given when choosing the food product against 

a particular antimicrobial nanomaterial.  Brody, Strupinsky & Kline (2002) stated that certain 

kinds of amino acids and proteins present in the food product can affect antimicrobial 

activity. Therefore, it is necessary to consider the quality and quantity of amino acids and 

proteins in foods in terms of antimicrobial activity when films containing Ag are applied for 

food-quality preservation. Ishitani (1997) reported that there are largely three types of amino 

acids and related compounds that can affect the elution pattern of Ag and thus, influence its 

antimicrobial activity. The glycine-type amino acid stimulates the elution of Ag, but does not 

interfere in the action of Ag ions as the reaction with Ag is weak. In the lysine-type, the 

elution of Ag ions is weaker than with glycine; however, the association with Ag ions is 

relatively strong, thereby inhibiting antimicrobial activity. With cysteine-type amino acids, 

both the elution and association with Ag are strong; therefore cysteine significantly inhibits 

the antimicrobial activity of Ag (Ishitani, 1997).  

Ho et al.
 
(Ho, Tobis, Sprich, Thomann, & Tiller, 2004) developed an innovative silver-

containing PEI-MA/HEA (Poly(ethylene imine)-methacrylate/2-hydroxyethyl acrylate) 

nanocomposite that was antibacterial on two levels. Like the other films described, the 

material releases Ag
+
, giving it biocidal properties; however, the material also contained 

polyethylene glycol (PEG), which repelled microbes. The film inactivated 99.9% of S. aureus 

cells; however, when the film was intensively washed with saline solution for 6 hours, they 

observed only a reduc ion in i s’ an ibac erial proper ies. Thus, even after the (complete) 

removal of Ag ions from the film, PEG continued repelling microbes, thereby making it a 

promising antimicrobial material. Li, Lee, Sheng, Cohen and Rubner (2006) also produced 

films which were capable of an ibac erial ac ion by bo h “release killing” and “con ac  

killing” abili ies. The an imicrobial films were produced via a “layer-by-layer” (LbL) 

technique, in which the material had a reservoir for releasing biocidal materials, quaternary 
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ammonium salts, as well as an Ag NP layer which compliments the material’s contact killing 

properties. The antimicrobial film produced was effective, reducing 99.9 % of S. epidermidis 

and E. coli counts. Similarly in our research group, Azlin-Hasim et al. (Azlin-Hasim, Cruz-

Romero, Cummins, Kerry, & Morris, 2016) used a LbL technique to coat commercial LDPE 

films with antimicrobial silver NPs. The coated LDPE films containing antimicrobial Ag had 

good antimicrobial activity against Gram-positive (S. aureus) and Gram-negative bacteria 

(Pseudomonas fluorescens) demonstrating that the LbL technique has the potential to be used 

as a coating method containing antimicrobial Ag NPs and that the manufactured films could 

potentially be applied as antimicrobial packaging. 

De Silva, Prabakhsh, Lee & Kit (2015) manufactured ZnO deposited/encapsulated halloysite–

poly (lactic acid) (PLA) nanocomposites for high performance packaging films with 

improved mechanical and antimicrobial properties. ZnO NPs were deposited on the outer and 

inner surfaces of halloysite nanotubes (Hal) using a novel solvothermal method and these 

ZnO deposited Hal (ZnO-Hal) NPs were incorporated into the PLA matrix as a reinforcing 

filler. PLA nanocomposite films were fabricated using the solution casting method with 

different filler loadings (0–10 mass %). PLA nanocomposite films with ZnO had inferior 

mechanical properties, while PLA films with ZnO-Hal showed significantly improved 

mechanical properties, where tensile strength and modulus increased by 30% and 65% with 

the addition of 5 mass %, respectively. Antimicrobial tests revealed that ZnO-Hal reduced 

bacterial counts for E. coli and S. aureus by more than 99%.  

The antimicrobial activity spectrum of any antimicrobial can be enhanced by combining 

different antimicrobials. Metat (2015) studied the effects of commercial antimicrobial 

nanocomposite based nano-Ag and nano-titanium dioxide (TiO2) on PE food containers and 

demonstrated that nano-Ag antimicrobial food packaging applications are a novel approach 

toward the preservation of foods and the extension of their shelf-life. The presence of both 
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NPs with a concentration of 1% nano-Ag and 0.1% nano-TiO2 in the commercial 

antimicrobial nano-Ag food packaging containers was confirmed. The structural morphology 

showed the intercalation of Ag and TiO2 NPs in the 20-70nm range, both of spherical shape 

NPs, within the bulk polymer and this explained the significant antimicrobial effect observed. 

Panea, Ripoll, González, Fernández-Cuello, & Albertí (2014) developed antimicrobial LDPE 

nanocomposite packaging materials containing a combination of ZnO and silver. The 

LDPE/ZnO+Ag nanocomposite inactivated the pathogenic bacteria present in meat products 

such as E. coli, Pseudomonas aeruginosa and Listeria monocytogenes (L. monocytogenes) 

and increased the shelf-life of chicken breast fillets delaying the growth of bacteria and lipid 

oxidation. 

Morsy, Khalaf, Sharoba, El-Tanahi & Cutter (2014) incorporated 2% oregano EO, 2% 

rosemary EO, 100nm Ag and 110nm zinc oxide NPs into pullulan films. The developed 

pullulan films containing the EOs and NPs when applied to fresh turkey, raw beef or further 

processed ready-to-eat turkey deli meat inhibited foodborne pathogens S. aureus, L. 

monocytogenes, E. coli O157:H7 and Salmonella Typhimurium over a 3-week vacuum-

packaged storage trial at 4°C. The authors concluded that antimicrobial films containing EOs 

and NPs have the potential to improve the safety and quality of muscle foods, thereby 

meeting the expectations of both food manufacturers and consumers. Rhim, Hong, Park and 

Ng (2006) developed chitosan-silver nanocomposite using a solvent-casting method. The 

chitosan-Ag nanocomposite showed good antimicrobial activity against food pathogenic 

bacteria, including; S. aureus, L. monocytogenes, Salmonella typhimurium and E. coli 

O157:H7, which are found in fresh or processed meat products. Wen et al. (2016) 

incorporated cinnamon EO-β-cyclodextrin inclusion complex (CEO/β-CD-IC) into PLA 

nanofibers via electrospinning technique. The resulting PLA/CEO/β-CD nanofilm had 

excellent antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. 
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coli) bacteria and prolonged the shelf-life of fresh pork to 8 days compared to a shelf-life of 

only 3 days for control samples. 

Hurdle technology refers to the intelligent combination of different preservation factors or 

techniques ('hurdles') in order to achieve multi-target, mild but reliable preservation effects 

(Chen et al., 2012; Leistner, 2000; Rodríguez-Calleja et al., 2012). Hurdle technology not 

only ensures the safety of muscle-based food products but maintains the high quality of the 

treated muscle-based food products as the intensity of the treatments is reduced. Based on the 

hurdle concept numerous investigations have been carried out to assess the efficiency of a 

combination of antimicrobial nanocomposite packaging systems and other mild preservation 

technologies. Azlin-Hasim et al. (Azlin-Hasim, Cruz-Romero, Morris, et al., 2015) 

manufactured LDPE nanocomposite films containing different concentrations of Ag NPs (0.5 

and 1 % of polymer weight, (w/w)) via extrusion and assessed the shelf-life of chicken breast 

fillets wrapped with Ag/LDPE nanocomposite films in combination with modified 

atmosphere packaging (using conventional laminates and employing a gas mix of 40% 

CO2:60% N2). Independent of the concentration of Ag NPs used, the Ag/LDPE 

nanocomposite films significantly extended the shelf-life of the chicken breast fillets and also 

significantly enhanced the oxidative stability compared to the control film. The authors 

indicated that LDPE nanocomposite films containing Ag NPs can potentially be used as 

antimicrobial packaging for food applications, and that in combination with MAP, it can 

significantly extend the shelf-life of muscle-based food products.  

Stability of the antimicrobial nanocomposite films during storage is an important parameter 

that is to be taken into consideration as antimicrobials can lose activity when stored for long 

periods. Khalaf, Sharoba, El-Tanahi, & Morsy (2013) studied the stability of pullullan films 

containing silver or ZnO NPs and oregano or rosemary EOs. Antimicrobial activity of the 

films during storage at different temperatures (4, 25, 37 and 55°C against S. aureus and L. 
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monocytogenes during 7 weeks storage) was carried out. The authors concluded that in order 

to maintain the antimicrobial activity of films containing EOs and NPs, films should be 

stored at temperatures below 25°C, as temperatures higher than 25°C significantly decreased 

the antimicrobial activity of films incorporating EOs or NPs. 

Azlin-Hasim et al. (2016) manufactured antimicrobial Ag/PVC nanocomposite films by 

solvent casting and assessed their mechanical, thermal, antimicrobial (against E. coli, S. 

aureus, B. cereus, P. fluorescens and microflora derived from raw chicken) and shelf-life 

properties (chicken breast fillets). Ag/PVC nanocomposite films containing 0.5% (w/w) Ag 

(of 5g PVC) were prepared by dissolving PVC in THF and adding Ag NPs of 20 nm, 

prepared by a polyvinylpyrrolidone (PVP; 0.1M) reduction of AgNO3 (0.1M), along with a 

plasticizer 2-bis-ethylhexyl adipate (DEHA) (30% (w/w) of PVC). The solution was 

homogenised and cast into a 500 μm  hick film using a hand-held applicator. The agar 

diffusion method was used for antibacterial studies. For shelf-life studies, chicken breast 

fillets were wrapped with the Ag/PVC nanocomposite films in combination with a modified 

atmosphere packaging (using conventional laminates and employing a gas mix of 

60% N2/40% CO2). The authors showed that there was an increased shelf-life of 8 days 

against PVC control films (6 days) and a reduction in the lipid oxidation profile. In line 

wi h  he poul ry indus ry’s requiremen s which uses da a such as  o al viable coun  

(TVC), Pseudomonas spp., lactic acid bacteria (LAB) and total coliform counts (TCC) as 

indicators of processing hygiene and microbiological quality (Bolton, Meredith, Walsh, & 

McDowell, 2014), these authors employed these guidelines. A microbiological 

acceptability limit of 6 log CFU g
−1

 for TVC was set (Azlin-Hasim et al., 2016) and the 

obtained changes in TVC, Pseudomonas spp. and LAB of MAP-packed chicken breast 

fillets during chilled storage was reported (Fig. 9). Furthermore, investigation of the 

migration features of Ag/PVC films showed that only low amounts of Ag migrated 
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(8.85mg/kg or 0.84mg/dm
2
) to the chicken meat from the film, which was well below the 

legal limits set by the European Union for Ag intended to come into contact with foodstuffs 

(not more than 60mg/kg or 10mg/dm
2
 (EC 2002)) (Cushen et al., 2012). 

As seen throughout this review, many publications in the area of antimicrobial packaging 

have focused on the direct insertion of antimicrobials including Ag NPs into a bulk polymer 

matrix via casting, lamination, extrusion or co-extrusion (Ghosh & Maiti, 1996; Rhim, Wang, 

& Hong, 2013; Sánchez-Valdes, Ortega-Ortiz, Ramos-de Valle, Medellín-Rodríguez, & 

Guedea-Miranda, 2009; Yeo & Jeong, 2003). These methods of insertion can be of limited 

effectiveness since the dispersion of the NPs can be non-homogeneous and furthermore, the 

antimicrobial effects become highly mass transport limited (Kumar et al., 2005). Novel 

methods, such as atomic layer deposition, oxygen plasma, electrochemical deposition, UV 

irradiation, ion implantation and sputtering (Goddard & Hotchkiss, 2007), can be used to 

attach Ag NPs to substrates. However, these techniques are expensive and need specialised 

equipment (Marini et al., 2007). From all studies to date, it has been observed that the 

stabilization of silver in its smallest NP or ionic state enhances its bioavailability. The higher 

activity of smaller silver NPs, over larger entities, may be due to more silver being available 

for surface contact with microorganisms owing to their larger surface-to-volume ratio. The 

challenge in effectively applying silver in food packaging technologies resides in minimising 

the silver concentration used and keeping it more bioavailable by stabilizing it with suitable 

agents. Citrate-based silver complex is a well-established silver formulation for antibacterial 

applications (Djokić, 2008). Furthermore, processes that enable the inclusion of active agents 

have been associated with a decrease in their mechanical and barrier properties.  

Intense research is ongoing to achieve high levels of antimicrobial activities with low loads of 

silver by complexing and stabilizing it with harmless, biocompatible agents/ligands. The 

concept of direct contact materials having ultralow levels of antimicrobial material (natural or 
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silver) is a potentially marketable technology in the food packaging sphere. Consistent with a 

surface deposition approach, our group has recently reported a novel surface coating method 

for polymer films, avoiding bulk inclusion techniques (Azlin-Hasim, Cruz-Romero, Ghoshal, 

et al., 2015). This involved two steps, where a polymer film (e.g., LDPE) was first 

functionalised with a self-assembling, long range ordered block-copolymer (BCP) by 

deposition from a solvent. In this instance, we used a PS-b-PEO polymer (of number average 

molecular weight (kg/mol), Mn, of 42-b–11.5; PS is polystyrene and PEO is polyethylene 

oxide). The deposited film was phase separated by solvent annealing in mixed solvents 

(toluene/water) to form a self-assembled pattern. Subsequently, a simple ethanolic-Ag ion 

solution was used to selectively deposit metal into the hydrophilic PEO block and simple 

processing yielded a metal nanodot array on the substrate surface that mimicked the original 

BCP pattern formed by the self-assembly process. The molecular weight of the BCP used 

controlled the size of nanodots formed, however it was noted that the size and structure of the 

nanodot arrays could also be controlled using different concentrations of the Ag precursor. 

The results suggested that the concentration of the Ag precursor used and surface coverage 

(%) were the most important determinants of antimicrobial activity, since they strongly 

correlated to the presence of a higher amount of Ag. The results also showed enhanced 

antimicrobial activity against P. fluorescens and S. aureus. The simple deposition process 

reported possesses great potential for incorporating antimicrobial NPs (natural and synthetic) 

onto the surfaces of most polymeric films used in the packaging industry. The atomic force 

micrograph (AFM) images of silver nanodots prepared by changing the molecular weight and 

ratio of BCP are presented in Fig. 10 to illustrate the process. Scanning electron micrograph 

(SEM) images of the Ag film formed with different silver precursor concentrations, as well as 

a schematic diagram showing the Ag deposition process is presented in Fig. 11.  

6. Risks and chemical migration 
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With the introduction of nanotechnology into food packaging, the perception of risk, health 

and safety is also increased among consumers. Identifying and quantifying the hazards 

presented by nanoparticles, if any, and addressing them in order to reduce eventually 

determined risks are, and will be, a key research topic in the future of food packaging 

research. A good number of studies have been targeted at the identification of nanomaterial 

hazards in food packaging, however, it is acknowledged that there is still considerable 

uncertainty about the potential harmful effects associated with nanoscale particles (Cushen, 

Kerry, Morris, Cruz-Romero, & Cummins, 2013, 2014a, 2014b; Hannon et al., 2015; 

Kuorwel, Cran, Orbell, Buddhadasa, & Bigger, 2015; Llorens, Lloret, Picouet, Trbojevich, & 

Fernandez, 2012; Panea, Ripoll, González, Fernández-Cuello, & Albertí, 2014). 

Nanoparticles, especially when their sizes fall within the range of that associated with 

biomolecules and biomacromolecules, can get adsorbed and could eventually induce 

chemical and structural transformations. The small size of nanoparticles provide them with 

unique chemical, physical and functional properties that can be entirely different from their 

macroscale chemical counterparts. The larger surface area, nanosize, shape, surface 

chemistry, chemical composition and dose can also influence their adsorption or uptake by 

biomolecules (Donaldson, Stone, Tran, Kreyling, & Borm, 2004; Goodman, McCusker, 

Yilmaz, & Rotello, 2004; Sun, Fu, Lin, & Huang, 2002). Nanoparticles of a few nanometers 

in size can also cross the cell membrane and enter the cell cytoplasm. However, with the 

development of nanotechnology, it needs to be acknowledged that many (Salata, 

2004), nanomaterials are currently being used in biological and medicinal applications, 

including; drug delivery, gene therapy, tissue engineering, as fluorescent biological labels, 

imaging contrast agents, DNA probes and nanoscale biochips (Kohli & Alpar, 2004; Salata, 

2004).  
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The current level of applications of nanomaterials in food packaging is at an elementary 

stage; however, it is widely expected that more and more products will be available in the 

market over the coming years in this space. A probable increase in available nanotechnology 

related products will inevitably increase both human and environmental exposure to 

nanomaterials. Therefore, thorough risk assessment in the area of nanotechnology in the food 

packaging sector should clarify potential risks (O’Brien & Cummins, 2011). Although there 

have been studies aimed at understanding the interaction, adsorption, uptake and retention of 

nanomaterials that have potential in food packaging, especially non-natural antimicrobial 

materials based on Ag, TiO2, ZnO, Cu etc., the risk assessment of these materials are not 

complete (Cushen et al., 2013, 2014a; Golja et al., 2017; Panea et al., 2014). Studies showed 

that amongst the nanomaterials studies, those having less solubility and degradability in the 

biological medium, can be more dangerous compared to the soluble ones. In this regard, 

antimicrobials based on silver, which are the most promising inorganic antimicrobials for 

food application, may prove not to be problematic at all, however, detailed toxicokinetic 

properties including their retention in organs and secretion from the body need to be assessed. 

Reducing the possibility of migration in food contact packaging materials below the allowed 

limit is however the first and foremost step in the commercialization of antimicrobial 

packaging materials and technology. As part of a programme to systematically evaluate 

migration from different packaging materials and assess the risk of exposure, our research 

team has carried out a number of studies (Cushen et al., 2014b; Hannon et al., 2015). These 

studies used either food simulants (3% aqueous acetic acid solution or deionised water) or a 

selected food product (chicken breast fillets) and studied the effects of time, temperature, 

food and food simulant on migration. In the experiments with chicken, the migration of silver 

to chicken breast fillet was estimated from plasticised PVC-silver and PE-silver 

nanocomposites following varying storage time and temperature conditions using inductively 
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coupled plasma mass spectroscopy (ICPMS) and migration was found to occur within a range 

of 0.03–8.4 mg/kg (Cushen et al., 2013) and 0.003-0.005 mg/dm
2
, respectively (Cushen et al., 

2014a).  A sensitivity analysis revealed that silver migration from the nanocomposite to the 

food surface was influenced most by the percentage fill (p < 0.01), followed by storage time 

(p < 0.01) and storage temperature (p < 0.05).  

Another approach to reduce the risk associated with the use of synthetic or metal-based 

nanomaterials in the short-term is to continue to investigate the antimicrobial and 

antioxidant properties of nanoparticled materials derived from foodstuffs themselves. 

Continued investigation of such materials as chitin/chitosan, essential oils, organic acids etc. 

in nanoparticle form may ultimately prove to be the most acceptable route to developing 

antimicrobially-active packaging materials through the employment of chemical approaches 

used for attaching synthetic and metal-based NPs to packaging material surfaces. 

 However, all approaches to the development of the technologies described for the creation of 

active packaging materials for potential commercial uptake are in their initial stages of 

development at present and tolerance, patience and time to allow study and perfect these 

technologies should be provided by bodies and organisations which have the capacity to 

create negativity around such technologies without necessarily possessing all of the scientific 

facts, primarily as these facts still remain to be determined by those researchers working 

within the area. 

7. Conclusion/ outlook 

The possibility of applying antimicrobials and natural antioxidants as NPs present enormous 

opportunities for the food scientists and stakeholders to identify, design and develop new 

strategies in terms of their synthesis and manipulation of matter at the nanoscale for advanced 

applications and market gains. Although extensive research has been carried out in the 
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development of antimicrobial packaging solutions, this type of active packaging has had 

limited commercial success mainly due to regulatory issues and also technical limitations that 

need to be solved (Realini and Marcos, 2014). Antimicrobial active packaging may play a 

role in the preservation and protection of perishable foods such as high-value meat products. 

For a manufacturer to invest in a new packaging system, the benefits of the packaging must 

be sufficient to warrant investment (Cushen & Cummins, 2017). Prolonging the shelf life of 

muscle-based food products has the added incentive of extending the geographical export 

market boundaries. High-value muscle-based food products are most likely to warrant 

investment in packaging to prolong the product shelf life. For consumers to accept the 

product in a new packaging (that uses unfamiliar technologies such as nanotechnology), the 

benefits of this product over a traditionally packaged counterpart must be communicated to 

them (Cushen & Cummins, 2017; O'Callaghan & Kerry, 2016; Troy, Ojha, Kerry, & Tiwari, 

2016). 

Most food chain crises are preventable with timely actions and the right investments. A 

multidisciplinary, collaborative and integrated approach would help develop novel 

technologies to address problems and bridge gaps to feed more and more people good quality 

food in a timely and effective manner. Therefore, the need to develop and commercialize 

smart and intelligent packaging technologies is higher than ever to support both food safety 

and security. 

Cost is the defining component in the commercialization path of any technologies. If the 

benefits, in terms of economics, utility, applicability and consumer satisfaction derived from 

the technologies is consistent with sustainable manufacturing costs, then the technology can 

be considered as cost-effective. In this respect, if a novel smart antimicrobial packaging can 

be marketed that reduces the spoilage significantly by extending shelf life and, therefore, 

helps sustainable food production, a slight increase in price would be accepted as sustainable. 
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It is important for food packaging to contain food in a cost-effective way that satisfies 

industry requirements and consumer desires, maintains food safety and minimizes 

environmental impact.  
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Figure captions  

Fig. 1: Schematic showing the sequential reactions occurring on a plastic. Step 1: plasma 

reaction forming -COOH functionality, step 2: reaction of –COOH functionality with diamine 

molecules forming urethane linkage and step 3: binding of silver to the amine group. 

Fig. 2: Schematic showing the alternate LBL deposition process of chitosan and alginate 

solutions to create multilayer coating on polymer substrate. 

Fig. 3: Typical reactions involved in the sol-gel process (Marini et al., 2007). 

Fig. 4: Schematic showing (a) the cylindrical pattern (red) formed from PS-b-PEO phase 

separation and (b) silver NPs incorporated into the cylinders formed (blue).  

Fig. 5:  Principle of gravure printing. [Reproduced with permission from DTU Energy]. 

Fig. 6: Principle of flexo printing. [Reproduced with permission from DTU Energy]. 

Fig. 7: Principle of flexo printing. [Reproduced with permission from DTU Energy]. 
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Fig. 8. Principle of slot-die coating. [Reproduced with permission from DTU Energy]. 

Fig. 9: Microbiological counts of chicken breast fillets during chilled storage under MAP 

condition using (circle) PVC control films or (black triangle) Ag/PVC nanocomposite films 

(a) total viable count, (b) Pseudomonas spp. and (c) lactic acid bacteria. Error 

bars represent standard deviation of analysis from eight readings ted from (Azlin-Hasim, 

Cruz-Romero, Morris, et al., 2016). [Reproduced with permission from the authors]. 

Fig. 10. AFM (a, c and e) and SEM (b, d and f) images of PS-b-PEO template after ethanol 

treatment for Mn 32–11(a) and (b); Mn 42–11.5 (c) and (d) and Mn 102–34 (e) and (f) of 

BCP, respectively. AFM lighter regions indicated the presence of PS and darker region PEO 

domains. Scale bar: 200 nm (Azlin-Hasim, Cruz-Romero, Ghoshal, et al., 2015). 

[Reproduced with permission from the authors]. 

Fig. 11. SEM images of Ag nanodots for Mn 42–11.5 PS-b-PEO coated once with (a) 0.6 % 

or (b) 2 % Ag precursor and Ag nanodots coated twice with (c) 2 % Ag precursor. Inset of (a) 

shows a higher magnification. The schematic diagrams of (B) and (C) show how continuous 

films are formed after overfills and repeated deposition of Ag precursor. Scale bars: 200 nm 

(Azlin-Hasim, Cruz-Romero, Ghoshal, et al., 2015). [Reproduced with permission from the 

authors]. 
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