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Abstract

Thermal atomic layer etch, the reverse of atomic layer deposition, uses a cyclic se-

quence of plasma-free and solvent-free gas-surface reactions to remove ultra thin layers

of material with a high degree of control. A theoretical investigation of the hydrogen

fluoride pulse in the thermal atomic layer etch of monoclinic alumina has been per-

formed using density functional theory calculations. From experiments, it has been

speculated that the HF pulse forms a stable and non-volatile layer of AlF3 on alumina

surface. Consistent with this, the desorption of an AlF3 molecule from an HF saturated

surface was computed to be energetically unfavourable. HF molecules adsorbed on the

alumina surface by forming hydrogen bonds, and either remained intact or dissociated
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to form Al-F and O-H species. At higher coverages, a mixture of molecularly and disso-

ciatively adsorbed HF molecules in a hydrogen-bonded network was observed. Binding

energies converged as the coverage of dissociated F became saturated, consistent with a

self-limiting reaction. The formation of H2O molecules in the HF pulse was found to be

endoergic with an energy barrier of at least +0.9 eV, but their subsequent desorption

was computed to cost as little as +0.2 eV. Based on a model of the saturated Al-F sur-

face, the theoretical maximum of the etch rate was estimated to be -0.57±0.02 Å/cycle

(-20.0±0.8 ng/(cm2 cycle)), which matches the range of maximum experimental values.

The actual etch rate will, however, be dependent on the specific reagent used in the

subsequent step of the atomic layer etch cycle.

Introduction

With Moore’s law driving semiconductor devices to ever-smaller dimensions, atomic scale

precision in device fabrication has become imperative. While atomic layer deposition (ALD)

has already been established as a key enabler in cutting-edge semiconductor device manu-

facturing,1–3 it still has to be augmented with robust atomically-controlled selective etching

in order to fabricate next generation devices.4,5 Historically, etching of materials has been

performed using plasma in the process known as ’dry etching’.6,7 The plasma, an energized

gas containing ions and radicals, continuously etches the material as long as it is switched

on, or until stops or masks are reached, making it a relatively uncontrolled process. Since

the critical dimensions of semiconductor devices have shrunk tremendously, etch accuracy

down to a single atomic layer has become necessary.

Atomic layer etch (ALE) opens up a new degree of control in material processing, as

well as lowering cost by removing the need for etch stops.8–10 In ALE, the substrate is

sequentially exposed to self-limiting etch reactions that affect the substrate material just

one atomic layer at a time. This can also be understood in terms of the synergy concept

published by Kanarik et. al.11 Currently, there are two different approaches to ALE.4 In the
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first approach, the surface is modified by halogenation and high energy ion bombardment is

then used to remove the modified layer.12–14 This method is anisotropic in nature since the

energized ions travel towards the surface in one direction only. In order to keep this step

as self-limiting as possible, accurate control on the ion energies and process conditions are

required. An alternative approach to the use of high energy ions is termed ’thermal’ ALE, as

it uses thermally-activated reactions to remove the modified layer instead, for example ligand

exchange reactions. Since only un-ionized gas phase precursors are used, this method allows

for isotropic etching of materials even at high aspect ratios. Typically, the thermal energy

used in such etch processes is much lower than the ion bombardment energy and therefore

this method could be used when materials are sensitive to the high energy techniques. For

particular applications a combination of directional plasma ALE and thermal ALE can also

be considered.

Thermal ALE can also be viewed as the reverse of atomic layer deposition (ALD) in

which the target material is grown up a fraction of an atomic layer in each cycle. In ALD,

the success of the technique depends on the ability to create a stable and non-volatile layer

at the surface of the substrate. Conversely, the focus in thermal ALE is in the formation

of a layer of volatile species via surface reactions. Combining ALD and thermal ALE could

allow the manufacture of an ultra-smooth thin film where ALD grows the film and thermal

ALE smoothens it.9 Thermal ALE is thus likely to be essential for the sub-10 nm critical

dimensions in semiconductor technology, e.g. to process nanowires and nanosheets for gate-

all-around transistors5 and vertical NAND flash memories.

A thermal ALE cycle typically consists of two precursor pulses and two purges as shown

in Fig. 1a. In the first pulse, precursor-1 is allowed to interact with the clean substrate that

must be etched and chemically ’modifies’ the exposed surface atomic layer. This surface

modification has to be self-limiting in nature, i.e. the intermediates produced in the reac-

tion must not be volatile species that would continuously desorb and lead to uncontrolled

etching of the substrate. Any additional precursor molecules that do not participate in the
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surface modification and other by-products are purged away efficiently. In the second pulse,

precursor-2 (for example, a ligand exchanging agent) is introduced into the ALE chamber so

as to interact with the modified layer of the substrate and produce stable and volatile by-

products. It is important once again that this step is also self-limiting in nature and that the

precursor-2 molecules do not interact with the ’un-modified’ substrate atoms. The volatile

by-products and un-reacted precursor molecules are then safely removed in the second purge

event, which leaves a clean substrate layer. This completes one ALE cycle. In some cases,

the second precursor pulse may leave non-volatile species at the surface which may block

surface sites for the first precursor in the next cycle.

The thermal ALE cycle of Al2O3 with alternating fluorination (using HF) and ligand

exchange reactions (using Sn(acac)2) was developed by George & co-workers15 and the pro-

posed mechanism is given in Fig. 1b. In the first pulse, HF gas is introduced on a clean Al2O3

surface. The HF molecules adsorb on to the surface and form a stable and non-volatile "AlF3"

layer, releasing H2O as by-product, which is purged away along with un-reacted HF. The

spectral signature of an AlF3 layer on alumina has also been identified using FTIR experi-

ments.16 Subsequently, a second precursor Sn(acac)2 is introduced that exchanges its ligands

with the AlF3 layer and is proposed to produce volatile Sn(acac)F and Al(acac)3, which

are flushed away in the subsequent purge step. One ALE cycle is thus completed and has

achieved etching of the Al2O3 surface. These two precursors are also effective in the etching

of other compounds such as hafnium oxide17 and aluminium nitride.18 Trimethylaluminium

(TMA) has also been found to be an effective precursor for the ligand exchange pulse of

Al2O3 ALE.19 Since TMA and HF are also used as precursors for the ALD of AlF3 films,

there will be competition between AlF3 ALD and Al2O3 ALE in this case.20,21

In this paper, we use DFT calculations to probe the HF pulse in detail so as to understand

the mechanism of fluorination of a bare θ-alumina surface. Our main goal is to identify the

key step that converts the Al-O bonds in the clean alumina surface to Al-F bonds during

the HF pulse. Based on that, a HF saturated surface model of ALD-deposited alumina will
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be constructed and a theoretical maximum of the etch rate will be deduced.

Method and Computational Details

In this paper, bulk as well as slab (surface) calculations have been performed within density

functional theory using the Vienna ab initio simulation package (VASP),26 which uses plane

wave basis sets to describe valence electrons, here with an energy cutoff of 400 eV. The

calculations are performed within spin-polarized generalized gradient approximation (GGA)

using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC) functional27 and the

behaviour of the core electrons is described by projector augmented wave (PAW) poten-

tials.28,29 For computing the energy of possible reactions, gas phase calculations of reagent

molecules and by-products have also been performed in a large periodic box of dimension

(15.0 Å× 16.0 Å× 15.5 Å) with an energy cutoff of 400 eV.

As-deposited alumina films from ALD are in general amorphous. However, the majority

of theoretical studies on alumina ALD in the literature use the α phase in periodic models

because it is the most stable crystalline phase. For example, first principles simulation of

ALD of alumina on the α-Al2O3(0 0 0 1) surface has been published.30 The mechanism of HF

adsorption on the α-Al2O3(0 0 0 1) surface has been studied in detail by Quan et. al.24 How-

ever, ALD-deposited alumina is found to transform under annealing into θ-Al2O3,31 which is

the most stable transition phase of alumina. We therefore use θ-Al2O3 as a periodic model

for ALD-grown alumina in this study. The first reported ab initio investigation on the prop-

erties of bulk and surface θ-Al2O3 used Hartree-Fock theory.32 In 2002, Cai et. al 33 studied

the transformation of γ-Al2O3 to θ-Al2O3 using density functional theory (DFT) calcula-

tions. Nørskov and co-workers34 investigated the change of surface energy with increasing

thickness of θ-Al2O3 surface slabs using DFT calculations and reported that hydroxylated

θ-Al2O3 surfaces may be more stable than those of α-alumina. However, we did not find any

published literature on the mechanism of HF adsorption on θ-Al2O3 surfaces.
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The unit cell of monoclinic θ-Al2O3 consists of 8 Al atoms and 12 O atoms with the

lattice parameters, a 6= b 6= c and (α = β) 6= γ. To compute these parameters,

we have simultaneously relaxed the atomic positions, cell shape and cell volume with a

higher energy cutoff (550 eV) and a 2×4×4 Monkhorst-Pack K-point sampling mesh. A

convergence test for the choice of K-point mesh is also performed and the results can be seen

in supporting information (S1). The computed lattice parameters are compared with the

experimental values35 in Table 1 and it can be seen that there is a good agreement between

them within an error of only 2%. The band gap of bulk θ-Al2O3 is computed to be 5 eV. The

overall band structure and the contributions of Al and O to the total density of states are

given in the supporting information (S2). An illustration of the equilibrium bulk geometry

of θ-Al2O3 along the ’ac’ plane is given in Fig. 2(a). Out of the 8 Al atoms per cell, 4 are

located in tetrahedral coordination sites (labelled in the figure) and the other 4 in octahedral

coordination sites relative to the oxygen lattice. In the equilibrium geometry, the valence

electrons are found to be localized mainly around the O atoms reflecting the predominantly

ionic character of Al-O bond. We also performed Bader analysis36 on the charge density to

find the valence charge on individual atoms, which revealed that only 4.6% of total valence

electrons are around Al atoms (average charge = +2.43) and 95.4% are around O atoms

(average charge = -1.62). We have also included the lattice constants obtained by adding

dispersion corrections to the energy based on the Tkatchenko-Scheffler method37 and from

Table 1, it is evident that this additional description of dispersion does not have a substantial

effect on the structure of bulk alumina.

The surface of monoclinic θ-Al2O3 oriented at the (2̄ 0 1) plane is considered for the slab

calculations. Even though this is not the most stable surface of θ-Al2O3,34 it is considered in

this study mainly because the ALD-deposited alumina has been found to grow along the (2̄ 0

1) surface orientation.31 A (1×4) supercell of a 13 Å thick (2̄ 0 1) slab of θ-Al2O3 with fixed

atoms at the bottom face and 16 Å of vacuum separating the slabs is used as the surface

model (Al96O144 per cell). Calculations to obtain converged values of the K-point mesh, plane

6
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wave energy cutoff and the vacuum thickness between slabs have been performed and the

results are tabulated in the supporting information (S1). Figure. 2(b) shows the optimized

geometry of the Al2O3 (2̄ 0 1) slab along with the electronic valence charge density. Similar

to the bulk case, it can be seen that the valence electrons are concentrated mostly around

the oxygen atoms. The surface energy of the fully relaxed surface slab is found to be 7.25

eV/nm2.

The first step of the alumina ALE process is the introduction of a fluorinating agent,

in this case the HF molecule. At the optimized surface slab, HF molecules are introduced

at various surface sites and at various coverages. The resulting geometries of slab and

adsorbate atoms are further relaxed to obtain energetic minima. This is done in order to

find the maximum possible coverage of F atoms on the alumina surface, from which then we

can estimate the maximum possible etch rate. For the geometry relaxation problem we have

adopted a two step approach where an estimated local minimum is first obtained from the

conjugate gradient (CG) method, which is known to be efficient when the starting geometry

is far from a local minimum, and the resulting geometry is re-optimized with a RMM-DIIS

algorithm, which is known to be efficient close to the minimum, as implemented in VASP.

The methodology of computing adsorption/binding energies and charge density difference is

provided in supporting information (S3).

Results

In the first part of the results section we evaluate the energetics of several postulated reactions

in order to obtain a qualitative idea of the nature of the HF pulse, whether it etches or self-

limits. Following that, the mechanism of monomeric HF adsorption on a bare alumina surface

is reported. This includes the estimation of minimum energy pathways for the migration

of a H atom on the surface along with corresponding energetic barriers. In the next part,

multiple HF adsorption and the resulting minimum energy geometries are investigated so

7
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as to understand the saturation of the alumina surface with HF. Towards the end of this

section, a possible hydrogen transport mechanism and pathways leading to the formation

and desorption of water molecules is reported.

Energetics of Overall Reactions

In this section, model reactions representing the HF pulse will be postulated and their

energetics will be evaluated. The reaction energies (∆E) of the balanced reactions are

listed in Table 2. Two types of reactions are considered, bulk gas & surf surf.

In the case of bulk gas reactions, we assume bulk θ-Al2O3 and gaseous HF as the

reactants that produce gaseous by-products. These represent continuous etch reactions that

produce volatile gaseous species, restore the initial surface and thus etch away units of bulk

alumina. For this computation, the equilibrium energy of bulk θ-Al2O3 and optimized gas

phase energies of molecules are used. For the surf surf reactions, we assume a clean

Al2O3(2̄ 0 1) slab and gaseous HF as reactants and the corresponding F covered alumina

surface and H2O as products. This represents a self-limiting reaction that saturates the

surface with a stable and non-volatile fluorinated layer AlFx (not necessarily a layer of

AlF3). To model an F covered alumina surface we have introduced 18 F atoms as HF and

removed 9 O atoms as H2O from the bare alumina surface model described in the method

section.

We consider three bulk gas reactions namely, R1, R2 and R3 where AlF3, Al2F6

and AlOF respectively are the gas-phase reaction by-products along with H2O.

R1 : Al2O3(b) + 6HF(g) 2AlF3(g) + 3H2O(g) (1)

R2 : Al2O3(b) + 6HF(g) Al2F6(g) + 3H2O(g) (2)

R3 : Al2O3(b) + 2HF(g) 2AlOF(g) + H2O(g) (3)

These reactions are non-redox type as Al, O , H and F atoms retain their formal oxidation

8
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states of +3, -2, +1 and -1, respectively. According to the ∆E values in Table 2, R1 and R3

were found to be endoergic, whereas R2 is exoergic. Moreover, the surf surf reaction

R4 : 3Al2O3(surf) + 18HF(g) 6AlF3(surf) + 9H2O(g), (4)

is found to be exoergic with a ∆E value of -3.6 eV/Al2O3 which is much lower than that of

R2. We have also computed the ∆E values of the bulk gas reactions using the much

more computationally expensive PBE0 hybrid functional and compared them to the PBE

values in Table 2. It can be seen that the values obtained with the two functionals agree to

within 0.04 eV/HF for R1 and R2, suggesting that the PBE functional is reliable enough for

these calculations. From these simplified model it appears that HF will saturate to form an

AlFx layer and not etch away θ-Al2O3 by itself under reactor conditions. Therefore, the next

step is to find the key mechanism responsible for this AlFx layer formation on the alumina

surface.

Adsorption of 1 HF onto Bare Alumina Surface

We initiated DFT based adsorption calculations by introducing one HF molecule to the

optimized (1×4) supercell of the θ-Al2O3(2̄01) surface. Detailed geometry of this supercell

is provided in the supporting information (S4). Depending on the binding site of the HF

molecule, it could either adsorb molecularly or dissociatively as shown in Fig. 3. Molecular

adsorption of the HF molecule to the surface via hydrogen bonding resulted in a binding

energy of -0.44 eV in the geometry M1
A. Here, MX

Y refers to a minimum geometry with X the

number of HF molecules adsorbed on the (1×4) supercell of the θ-Al2O3(2̄01) surface and the

alphabetical index Y referring to a specific minimum of that configuration. For example, M1

refers to all the possible minimum geometries of the studied alumina surface with 1 adsorbed

HF molecule. When more than one minimum are considered for discussion, we refer to them

as M1
A, M1

B and so on (see supporting information (S5)). We find that molecular adsorption

9
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results when the F atom in HF is not close enough to a surface Al atom for binding, which

could drive HF dissociation. This shows that the Al-F bonding is crucial for the HF splitting

reaction to take place. In geometry M1
B, the HF adsorbs dissociatively with a binding energy

of -1.74 eV and forms -Al-F and -O-H species on the surface. A detailed analysis of the

nature of the HF splitting reaction for the formation of M1
B is discussed further below.

Starting from M1
B, two other minima are possible depending on where the H atom hops

and binds. A further low energy minimum M1
D with a binding energy of -2.11 eV is possible

when the H atom displaces to the adjacent row of O atoms. Alternatively when the H atom is

displaced in the same row of O atoms (M1
C), binding becomes weaker and the binding energy

drops to -1.31 eV. M1
D and M1

C did not result directly from our geometry relaxation calcu-

lations, so there must be energetic barriers separating them from M1
B. Using the climbing

image nudged elastic band (CI-NEB) approach22,23 with three images in between the min-

ima, we computed minimum energy pathways (MEPs) connecting them and the activation

energies, as shown in Fig. 4. The MEP connecting M1
B and M1

C involves hopping of the H

atom to the adjacent row of O atoms first (forming M1
D) and then hopping back. Therefore,

the MEP connecting M1
D and M1

C is also calculated. The H transport MEPs M1
B - M1

D and

M1
D - M1

C are shown in Fig. 4(a) and (b), respectively, with a series of superimposed H atoms

representing the images connecting them. The plot in Fig. 4(c) shows the relative energy

difference of the images with respect to M1
B, from which the forward and reverse barriers

connecting M1
B and M1

D are found to be +0.83 eV and +1.20 eV, respectively. Similarly, the

forward and reverse barriers connecting M1
D and M1

C are computed as +1.4 eV and +0.63

eV, respectively. Therefore, the most probable pathways for H transport are from M1
B and

M1
C to M1

D.

Fig. 5 describes in detail the mechanisms involved in the dissociative adsorption of a HF

molecule on Al2O3(2̄01) surface corresponding to geometry M1
B. This figure also includes a

complementary graph showing the energy change relative to the initial geometry as well as

the change of inter-atomic distances between H-F, Al-F and O-H (dH−F, dAl−F, dO−H) during

10
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the geometry optimization. The labelled vertical dashed lines in the graph correspond to

the geometries shown in the figure. Geometry (a) refers to the initial state where the HF

molecule is introduced at about 3 Å from the surface. During optimization, the HF molecule

approaches the surface until a hydrogen bond (dO−H < 2.5 Å) is made with a surface oxygen

atom as shown in geometry (b). In the graph, this can be observed from the correlated

decrease in dAl−F and dO−H which ends at (b), beyond which the hydrogen bond continues

to strengthen as indicated by continued decrease in dO−H. Moreover, a surface Al atom is

attracted by the F atom, which is evident from its out-of-lattice position and decreasing

dAl−F. The strengthening of the hydrogen bond and the Al-F bond leads to cleavage of

the HF bond as seen in geometry (c) (dH−F > 1.2 Å), which marks the crossover point of

dO−H and dH−F. The favourable nature of HF bond dissociation in these circumstances is

also indicated by a sharp decrease in the relative energy difference and increase in dH−F

beyond (c) in the graph. The splitting of HF results in the formation of isolated -Al-F and

-O-H species on the surface as seen in geometry (d), which further decreases the energy

difference. Beyond this point dAl−F, dH−F, dO−H and the relative energy difference converge

to stable values, indicating the formation of stable -Al-F and -O-H species resulting in the

minimum geometry (e) (M1
B in Fig. 3). The final bond lengths of Al-F and O-H are 1.67 Å

and 0.99 Å, respectively and the F bound Al atom is displaced about 1 Å upwards from its

lattice position along the surface normal direction. The above-described mechanism drives

the conversion of Al-O bonds into Al-F bonds by means of the HF splitting reaction, which

results in the formation of an AlFx layer at the end of the HF pulse. We find that the

inclusion of dispersion corrections based on the TS scheme did not result in a significant

difference in the geometry or in the binding energy values.

To identify the nature of the surface-HF bonding in M1
B, a charge density difference plot is

constructed as shown in Fig. 6 in which electrons accumulate in the yellow region and deplete

in the cyan region. The charge density difference is obtained by subtracting the individual

charge densities of the substrate (ρ(Al2O3)) and adsorbate molecule (ρ(HF)) from the charge
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density of the combined geometry (ρ(Al2O3 + HF)). From the figure it can be seen that the

electronegative F atom gains electrons which are polarized toward the bound Al atom at the

surface and that the H atom forms a covalent bond with a surface oxygen atom (dO−H =

0.99 Å). The optimized geometry and charge density difference plots are similar to those of 1

HF adsorbed on α-Al2O3(0001) surface reported by Quan et.al.24 We also performed Bader

charge analysis and found that the surface O-H and Al-F have a charge of -0.85 and +1.62,

respectively. More information on this is given in the supporting information (S6).

Adsorption of Multiple HF onto Bare Alumina

In subsequent simulations, we introduced multiple HF molecules onto the bare Al2O3(2̄01)

surface with coverages ranging from 1.2 to 15.4 HF/nm2. From the previous section we

know that Al-F bond formation drives the HF splitting reaction. There are 8 topmost Al

atoms on the surface of the (1x4) supercell (geometry in Fig. 2 and also in the supporting

information (S4)) that can potentially form Al-F bonds readily. It is to be noted that for up

to 16 HF molecules, there is a possibility that all the adsorbed HF molecules will dissociate

provided they adsorb in certain fashion (see M2
A, M8

A and M16 in Fig. 7). Therefore, we

introduced the HF molecules by hand in such a way that not all of the the HF would bind to

those 8 Al atoms and then optimized the resulting geometries. A mixture of molecular and

dissociative adsorption of HF molecules is observed in the optimized geometries shown in

Fig. 7. A list of these minima along with the HF coverage, Al-F coverage and corresponding

binding energies is given in Table 3. The least binding per HF is observed in the geometry

with 5 HF molecules where only one HF molecule dissociated. Also comparing the binding

energies of M2
A and M2

B geometries, it may appear that the dissociation of HF molecules

would lead to lower binding energies. However, from M8
A and M8

B geometries it seems that

the dissociation of all HF molecules is less favourable than a mixture of dissociative and

molecular adsorption. In fact the greatest binding energy per HF molecule is observed in the

case of M8
B where only 4 of the adsorbed HF molecules dissociated while the others formed

12

Page 12 of 40

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



hydrogen bonds with the remaining HF molecules and dissociated F atoms. Therefore, as

the HF coverage increases we can expect more formation of a hydrogen bonded HF network.

The transport of H atoms within this network would likely play a major role in facilitating

diffusion of H to reactive O and thus the formation of a stable AlFx layer on the alumina

surface.

Scatter plots of HF coverage vs Al-F coverage, HF coverage vs binding energy and Al-F

coverage vs binding energy of the minima are shown in panels (a), (b) and (c) of Fig. 8,

respectively. The data points with square markers along the regression line in panel (a)

correspond to minima M2
A, M8

A, M16 and M24
B , where nearly all of the adsorbed HF molecules

are dissociated to form Al-F bonds. The rest of the data points are below the regression line

indicating that some HF molecules remain undissociated. It is evident from panel (b) that

binding to the surface becomes stronger as the surface is exposed to more HF, though some

levelling-off is evident at high coverages. However, in panel (c) we observe that complete

dissociation of HF into Al-F is not necessary to attain the greatest binding energies. The

saturating coverage of dissociated F atoms is obtained when there is a convergence in the

values of binding energy in eV/nm2. The circular markers show dissociated Al-F coverage

saturating at 5-7/nm2, with further energetic stabilization to at most -16 eV/nm2 coming

from additional molecular HF at constant Al-F. Comparing squares and circles shows that

negligible energy is gained through further dissociation.

These data suggest that a coverage of 7.1±0.3 F/nm2 of dissociated F can be readily

achieved. Further molecular HF can bind and dissociate, but without lowering the surface

energy appreciably. This value for the saturating F coverage will therefore be used further

below to derive the etch rate. Moreover in this (1x4) supercell of θ-alumina with a surface

area of 1.68 nm2, there are 8 topmost Al atoms at the surface (see supporting information

(S5)) that could readily form Al-F bonds, which corresponds to a coverage of 4.8 Al/nm2.

Therefore, for a coverage of 7.1±0.3 F/nm2 there will be about 1.5 F atoms per surface Al

atom on average.
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Hydrogen Transport Mechanism

We now describe in detail the hydrogen transport mechanism observed in the adsorption of

2 HF per cell on the (2̄01) surface of alumina, corresponding to the minimum M2
C in Fig. 7.

The initial geometry considered for this optimization problem is shown in Fig. 9(a), where

the two HF molecules are hydrogen bonded to surface oxygen atoms. Upon optimization,

we have observed dissociative adsorption of only one HF molecule while the other is intact

and forms hydrogen bonds with the surface -Al-F and -O-H species as shown in geometry

(e) (M2
C in Fig. 7). The binding at this geometry shows an energy of -1.4 eV per HF, which

is just 0.1 eV weaker than that of geometry M2
A, where both HF molecules are dissociated.

The mechanism of HF dissociation observed here is different from that of the 1 HF case

detailed earlier (see Fig. 5), as here the dissociated H atom did not covalently bind to the

surface O atom to which it was initially hydrogen bonded, but rather to the O atom in the

adjacent row. We have already seen in the case of 1 HF adsorption that H displacement to

adjacent row of O atoms is energetically favourable. Fig. 9 also includes a reference graph

showing the change of energy (relative to the initial geometry) and important bond distances

as a function of the optimization steps. Going from (a) to (b), the initial hydrogen bond

between molecule H1F1 and the surface is broken and a new hydrogen bond is beginning to

form between H1F1 and H2F2. At the same time, the strengthening of bond between Al’

and F1 is evident from the out-of-lattice position of Al’ and the decrease in dAl′−F1. These

events lead to a decrease in the relative energy of about -0.6 eV. In the next segment, between

(b) and (c), the hydrogen bond between H1F1 and H2F2 becomes stronger as evident from

considerable decrease in dH1−F2. Moreover, the H2F2 molecule switches its surface hydrogen

bond acceptor (to O’) as it is displaced closer to the H1F1 molecule due to stronger Al’-F1

binding. Towards end of the region between (c) and (d) four simultaneous events take place

which lead to the transfer of H atoms:

• Dissociation of H1F1
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• Dissociation of H2F2

• Formation of H1F2

• Formation of surface O’H2 species

From (c) to (d), the energy decreases gradually, but goes down steeply after the crossover

point at (d) as the newly-formed surface O’H2 and H1F2 molecule stabilize. These events

could be more pronounced at higher coverages where a network of hydrogen bonded HF

molecules, which transfers H atoms in this fashion, could affect surface fluorination and thus

influence etch rates.

H2O Formation and Desorption

In the postulated reactions given earlier, we have assumed the release of volatile H2O in

the HF pulse. However, we did not observe any spontaneous formation and desorption of

water molecules in our geometry relaxation calculations. Therefore, it will be interesting to

estimate the energetic barriers involved. In Fig. 10, two pathways leading to the formation

and desorption of H2O molecules are identified using minimum geometry G1 (M2
A in Fig. 7)

as the starting point. In the H2O formation process, the first step is the hop transfer of one

H atom to the adjacent row of O atoms (G1 G2). This is an exoergic event since the

resulting minimum G2 is 0.14 eV lower in energy than G1. However, there is an energetic

barrier of +0.92 eV to go from G1 to G2. The activation barriers discussed here are computed

using CI-NEB method and the results are listed in Table 4. Since the minimum G2 is lower

in energy than G1, the reverse hop of the H atom will have a slightly larger barrier of +1.06

eV.

From this point there are two possibilities for H2O formation. The first possibility

(G2 G3) is when the displaced H atom hops back to the OH in the initial row, crossing

an energy barrier of +1.63 eV, resulting in H2O formation. The second possibility (G2

G4) is when the un-displaced H atom in minimum G2 also hops to the OH in adjacent row
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and forms H2O after crossing an energy barrier of +1.79 eV. In both cases the resulting

geometries G3 and G4 are higher in energy than G2 by 1.21 eV and 1.44 eV, respectively.

Therefore, the formation of H2O is endoergic at T=0 K and is dependent on the ALE operat-

ing conditions (T and p). The reverse pathways G3 G2 and G4 G2 have relatively

lower barriers of +0.19 eV and +0.58 eV, respectively. Therefore, the water molecules must

desorb before they disintegrate and reform minimum G2 once again. The desorption ener-

gies of the H2O from geometries G3 and G4 are computed to be +0.26 eV and +1.17 eV,

respectively (corresponding to minima G5 and G6). Based on the above results for the two

pathways, G1-G2-G3-G5 and G1-G2-G4-G6, the former seems more preferable due to the

relatively lower activation energies for H2O formation and desorption.

If H2O molecules are not formed and OH persists at the alumina surface, this is likely to

lead to TMA adsorption via the competing surface reaction

OH(surf) + Al(CH3)3(gas) O Al(CH3)2(surf) + CH4(gas). (5)

Moreover, as already mentioned, the same precursors HF and TMA are used in the ALD

of AlF3
20,21 which might lead to a competition between the ALE of Al2O3 and the ALD of

AlF3. On the other hand, if Sn(acac)2 is used as the second precursor, the persistent surface

OH species might also lead to Sn(acac)2 adsorption via the following reaction

OH(surf) + Sn(acac)2(gas) O Sn(acac)(surf) + acacH(gas). (6)

Discussion

We started our investigation of the HF pulse on alumina by comparing the reaction energies

of continuous bulk etching and those of surface saturation. In both cases, it is assumed

that the surface oxygen atoms are removed as H2O molecules. We found that the saturating

surface reaction was energetically more favourable than the continuous etching reactions by
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at least 2 eV/Al2O3. This suggested that the HF pulse is self-limiting in nature, forming a

stable and non-volatile AlFx layer on the alumina surface.

As the next step, we studied the adsorption mechanism of 1 HF molecule per cell on the

model θ-Al2O3 surface in order to identify the key reaction step responsible for the conversion

of Al-O bonds in the surface to Al-F bonds. With a computed dipole moment of 1.8 Debye,

the HF molecule initially physisorbed to the bare alumina surface by means of strong dipole

interactions. We observed that the HF molecule can next chemisorb either molecularly or

dissociatively. In either case, the HF molecule initially formed an hydrogen bond with a

surface O atom. Based on whether the F atom was oriented so as to find an Al partner on

the surface or not, the HF molecule either remained intact or dissociated to form surface-

bound Al-F and O-H species. The HF bond is strong with a bond dissociation energy of

6 eV. On adsorbing to the alumina surface, the HF bond did not begin to dissociate until

the O-H and Al-F bonds are almost formed (evident from the bond distances in Fig. 5).

The splitting of the HF bond correlates closely with the reduction of the total energy of the

system. In the case of dissociative adsorption, we found that the adsorbed H atom could

hop to other atop O sites on the surface subject to energetic barriers. The hop of H to an

adjacent row of O atoms away from the Al-F was energetically preferred, albeit impeded by

a barrier of +0.83 eV. It cost energy for H to hop to an adjacent O atom in the same row.

As the coverage of HF was increased in our simulations, we observed a mixture of intact

and dissociated HF molecules that formed a hydrogen bonded network on the surface. In fact,

such a mixed adsorption state was found to be similar in energy to the state where almost all

HF molecules were dissociated. This indicates that after the initial surface coating of AlFx,

there is little energetic driving force for further dissociation of HF molecules, potentially

therefore achieving the self-limiting condition. No spontaneous formation of the discrete AlF3

molecule is observed at the surface in our calculations even at high HF coverages. Moreover

at the saturating dissociated F coverage of 7.1±0.3 F/nm2, we find that on average only

1.5 F atoms are bound to each surface Al atoms. Our investigations further indicate that
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such a molecule (AlF3) would be involatile, as evidenced by a very high computed energy of

+2.75 eV at T=0 K for desorption from the HF-saturated surface M24
B in Fig. 7. Similarly,

the desorption energy of the Al2F6 molecule is found to be +3.17 eV. Exposing the surface

to various coverages of HF, we observe saturation in the coverage of dissociated F (at 5-

7 F/nm2) and eventually also saturation in the binding energy (at -16 eV/nm2) even when

additional HF molecules are present. Taken together, these findings strongly suggest that

the HF reaction is self-limiting, which is a key requirement for thermal ALE. To confirm

this will require detailed study of diffusion pathways of F into Al2O3 sublayers, including

relaxation of associated stress in large simulation cells.

The un-reacted HF molecules as well as any H2O formed should be removed in the purge

step, leaving an AlFx covered alumina surface. The desorption energies of AlF3 and Al2F6

relative to the AlFx layer on alumina surface obtained after the purge are computed to

be as high as +5.08 eV and +5.24 eV, respectively, substantially higher than the desorption

energies quoted above. Evidently, the molecules bind more strongly to the surface when some

surface O atoms have been removed as H2O. The geometries used for the above calculations

are shown in the supporting information (S7).

Since the HF reaction self-limits, a co-reagent is needed to chemically remove residual F

and Al atoms from the surface and complete the ALE cycle. In the literature, Sn(acac)215

and Al(CH3)310 have been demonstrated to be successful co-reagents. Analysis of the ligand

exchange mechanisms between the AlFx layer and the above mentioned co-reagents is beyond

the scope of this paper.

Having established the chemical nature of the saturating surface in one of the ALE pulses,

we are now able to estimate the maximum etch rate that is theoretically possible. Of all

the AlFx covered surface models that we computed, it can be seen from the Al-F coverage

and surface energy values in Table 3 that M26 (Fig. 7) is the most probable representative

geometry of the saturated surface. Although M24
B is slightly more stable at T=0 K, M26 has

a similar binding energy per unit area at considerably lower Al-F coverage. The coverage
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of dissociated F in M26 is 7.1±0.3 F/nm2. The maximum etch rate can clearly be achieved

when all of this dissociated F leads to etching of Al2O3 in each ALE cycle. According to the

etch reactions proposed by George and co-workers,15,16,19 three F atoms lead to the etching

of one Al atom, and so the coverage of Al that can be etched is one third of the F coverage,

2.4±0.1 Al/(nm2 cycle). Since the surface layer of θ-Al2O3(2̄01) shows an Al coverage of

4.8±0.3 Al/nm2, this maximum etch rate corresponds to 0.5 monolayer/cycle. Converting

to other units, this etch rate is -20.0±0.8 ng/(cm2 cycle) and, via the mass density of bulk

θ-alumina (3.5 g/cm3), -0.57±0.02 Å/cycle. (For the sake of comparison, the removal of

a complete monolayer of Al2O3 would require a dissociated F coverage of 14.2±0.3 F/nm2

and the corresponding etch rate would be -1.14±0.02 Å/cycle or -40.0±0.8 ng/(cm2 cy-

cle)). Clearly, the etch rate will be lower in magnitude than the theoretical maximum of

0.57±0.02 Å/cycle if reaction kinetics do not allow the etch reaction to proceed to com-

pletion. This could happen if residual F remains adsorbed at the surface after the ligand

exchange pulse or if the desorption of H2O is incomplete. Indeed, residual OH at the surface

could allow competing ALD growth reactions to take place when TMA is used as the ligand

exchange reagent.20,21

Using HF and Sn(acac)2 as precursors, George and co-workers15 report etch rates rang-

ing from -4.1 ng/(cm2 cycle) at 150◦C to -18.3 ng/(cm2 cycle) at 250◦C from quartz crystal

microbalance measurements, albeit hindered by residual acac impurities. The higher tem-

perature value is very close to our predicted maximum of -20.0±0.8 ng/(cm2 cycle). An

additional H2 plasma pulse after the Sn(acac)2 pulse has been reported to increase the etch

rates from 0.36 to 1.96 Å/cycle in the case of aluminium nitride using the same precursors.18

This additional plasma pulse seems to remove the acac residual impurities on the surface

after the ligand-exchange pulse. Therefore, the etch rates of alumina can perhaps also be

improved by similar means. Alternatively, when trimethylaluminium (TMA) is used for the

ligand exchange pulse the experimental etch rate varies from -4.2 ng/(cm2 cycle) at 250◦C

to -23.3 ng/(cm2 cycle) at 325◦C.19 The upper value is slightly higher than the maximum

19

Page 19 of 40

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



rate that we predict. It appears therefore that the ligand exchange precursor also has an

effect on the actual etch rate and temperature behavior.

We can speculate that the hydrogen bonded network of HF molecules formed at high

coverages can efficiently transport H atoms across the surface of alumina, which would

affect flourination of the surface and thus influence the etch rate. We studied in detail the

mechanism of hydrogen transport for the case of 2 adsorbed HF, which indicated Grotthuss-

like transport of a proton,25 i.e. the net migration of charge in a hydrogen bonded liquid

where individual protons switch positions but do not physically migrate.

Using the geometry M2
A in Fig. 7 as the starting point, we studied two pathways leading

to the formation and desorption of H2O molecules. We found that there are high energetic

barriers ranging from +0.9 eV to +1.8 eV that inhibit the association of hydroxyl groups

into adsorbed water. By contrast, the desorption energies of the thus-formed water molecules

were found to range from +0.2 eV to +1.2 eV, which can be overcome in actual experimental

conditions, leading to the formation of gaseous H2O as etch by-product. Any OH that

persists on the surface at the end of HF pulse, due to the high energetic barrier for H2O

formation and desorption, is likely to lead to the competing growth reaction (i.e. ALD) in

the ligand exchange pulse, which is undesirable.

Conclusion

Theoretical insights on the HF pulse in the thermal atomic layer etch (ALE) of monoclinic

alumina were provided using DFT calculations. Based on reaction energetics of the pos-

tulated reactions, qualitative evidence suggesting the self-limiting nature of the HF pulse

was found. Following that, explicit slab calculations were conducted to study the adsorp-

tion of 1 to 26 HF molecules per cell on a monoclinic alumina surface. While a single HF

molecule readily dissociated on adsorbing to the alumina surface, a hydrogen bonded network

of mixed dissociated and intact HF molecules was observed at higher coverages. Evidence

20

Page 20 of 40

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



from surface binding energies and dissociated HF coverages indicated that the dissociative

chemisorption of HF is self-limiting, as required for ALE, rather than etching away the oxide

continuously. Based on a saturated surface model, a theoretical maximum etch rate was com-

puted to be -0.57±0.02 Å/cycle (-20.0±0.8 ng/(cm2 cycle)), which amounted to the removal

of 0.5 monolayer of material per cycle. Mechanisms for various surface chemical reactions

such as hydrogen transport and formation of the etch by-product H2O were studied and

their activation barriers were computed. Hydrogen transport was identified as a favourable

event, whereas the formation and desorption of H2O molecules were hindered by substantial

energetic barriers of at least 0.9 and 0.2 eV respectively.
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Table 1: Lattice parameters of monoclinic θ-Al2O3 computed with PBE XC functional with
and without dispersion correction (TS - Tkatchenko-Scheffler method37)are compared with
experimental results.35 A close agreement between the calculated and experimental values
is observed, with a slight improvement due to inclusion of dispersion correction.

Lattice parameter DFT (PBE) DFT (PBE+TS) Experiment35

a [Å] 11.94 11.85 11.85
b [Å] 2.94 2.92 2.90
c [Å] 5.67 5.63 5.62
α [◦] 90.00 90.00 90.00
β [◦] 103.99 104.01 103.83
γ [◦] 90.00 90.00 90.00
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Table 2: Reaction energies (∆E) of postulated reactions of the HF pulse are compared for
two scenarios, bulk gas (continuous etching) and surf surf (self-limiting) reac-
tions. The energy values are normalized per unit Al2O3 and per HF molecule for comparison
purposes. The ∆E values within parentheses refer to the PBE0 hybrid functional. (b) refers
to bulk, (g) to gas-phase and (surf) to surface.

Label Possible reactions ∆E
[eV/Al2O3] [eV/HF]

bulk gas

R1 Al2O3(b) + 6HF(g) 2AlF3(g) + 3H2O(g) 0.40 (0.66) 0.07 (0.11)
R2 Al2O3(b) + 6HF(g) Al2F6(g) + 3H2O(g) -1.53 (-1.41) -0.26 (-0.24)
R3 Al2O3(b) + 2HF(g) 2AlOF(g) + H2O(g) 9.88 (10.84) 4.94 (5.42)

surf surf

R4 3Al2O3(surf) + 18HF(g) 6AlF3(surf) + 9H2O(g) -3.60 -0.60
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Table 3: Adsorbate coverages and binding energies are tabulated for the minimum geometries
MX

Y given in Fig 7. Here, MX
Y denotes a minimum with ’X’ HF molecules and in case there

are several minima they are indexed with a label ’Y’. HF coverage denotes the coverage of
total number of HF molecules introduced in the supercell whereas Al-F coverage refers to
the coverage of dissociated F atoms that form Al-F bonds.

Minima HF coverage Al-F coverage Ebind

[/nm2] [/nm2] [eV/HF] [eV/nm2]
M2

A 1.2 1.2 -1.5 -1.8
M2

B 1.2 0.6 -1.1 -1.3
M2

C 1.2 0.6 -1.4 -1.7
M3 1.8 0.6 -1.2 -2.0
M5 3.0 0.6 -0.8 -2.5
M8

A 4.8 4.8 -1.5 -7.1
M8

B 4.8 2.4 -1.6 -7.6
M12 7.1 3.6 -1.5 -10.5
M15 8.9 4.8 -1.4 -12.1
M16 9.5 9.5 -1.5 -13.9
M18 10.7 4.8 -1.3 -13.7
M22 13.1 4.8 -1.2 -15.1
M24

A 14.3 9.5 -1.0 -14.4
M24

B 14.3 13.7 -1.1 -16.2
M26 15.5 7.1 -1.0 -16.0
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Table 4: Activation energies for the barriers between minima involved in the H2O formation
pathways shown in Fig. 10. ∆E is the energy difference between the product (minimum)
state and reactant (minimum) state

Barrier Activation energy [eV] ∆E [eV]
G1 G2 0.92 -0.14
G2 G1 1.06 0.14
G2 G3 1.63 1.21
G3 G2 0.19 -1.21
G2 G4 1.79 1.44
G4 G2 0.58 -1.44
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Figure 1: a) Schematic representation of an ideal ALE cycle. b) Schematic representation
of a proposed Al2O3 ALE cycle.15,16
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a) a’)

b) b’)
(201)̅ (201)̅

Al1

Al2

Al3

Al4

Figure 2: (a,a’) The equilibrium geometry of bulk θ-Al2O3 along the ac lattice plane is shown
in panel a and along with the valence charge density as yellow spheres in panel a’. The Al
atoms marked with labels (Al1, Al2, Al3 and Al4) are found in tetrahedral coordination
sites of the oxygen lattice, while those that are not marked are in octahedral coordination
sites. The isosurface value is set to 0.2 e/Å3. (b,b’) The optimized geometry of Al2O3(2̄01)
surface slab is shown in panel b and along with the valence charge density in panel b’. The
isosurface value is set to 0.25 e/Å3. It can be seen that the electrons are localized around
the O atoms, which is an indication of predominantly ionic bonding between Al and O.
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Figure 3: Chart showing the geometries and binding energies of identified minima with
respect to 1 HF adsorption at θ-Al2O3(2̄01) surface. Here, M0 corresponds to the clean
alumina surface. M1

A and M1
B shows molecularly and dissociatively adsorbed HF, respectively.

M1
C and M1

D refers to the geometries where the dissociated H atom hopped to an adjacent O
atom in the same row and to an oxygen atom in the adjacent row, respectively. Activation
energies where computed are shown in Fig 4.
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Figure 4: a) Pictorial representation of the pathway between minima M1
B and M1

D that
shows an aggregate of all H atom positions as the H atom hops from one surface O atom to
another O atom in the adjacent row. b) Similarly, for the pathway between minima M1

D and
M1

C. Three images are chosen between the two minima and are optimized within CI-NEB
approach. c) The graph shows the energy difference of the images with respect to M1

B and
the energy barriers with respect to a) and b). Here, TS1

BD and TS1
DC represent the transition

states connecting M1
B – M1

D and M1
D – M1

C, respectively.
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a b c d e

(a)

(b)

(c)

(d)

(e)
M1
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(f)

Figure 5: Spontaneous dissociative adsorption of HF molecule on θ-Al2O3(2̄01) surface. Snap-
shots taken from geometry optimization run where (a) is the chosen starting geometry with
the HF molecule at least 3.0 Å from the surface. The HF molecule hydrogen bonds to a
surface O atom in (b), the onset of the HF dissociation is given in (c), the completely dis-
sociated HF forming -Al-F and -O-H species at the surface can be seen in (d) and the final
optimized geometry M1

B in (e). The graph (f) shows the total energy of the system relative
to the starting geometry (a) for the optimization steps along with the change in Al-F, H-F
and O-H bond distances.
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+_
=

ρ(Al2O3 + HF) ρ(HF)

ρ(Al2O3)

ρ(Al2O3 + HF) – ( ρ(Al2O3) + ρ(HF) )

Figure 6: Analysis of charge density difference in geometry M1
B. Here, the combined elec-

tronic charge density of the non-interacting systems (ρ(Al2O3) and ρ(HF)) is subtracted
from that of the interacting system (ρ(Al2O3 + HF)) to give the density difference plot in
the right. The isosurface value for ρ(Al2O3 + HF), ρ(Al2O3) and ρ(HF) is 0.1 e/Å3. The
isosurface value for the difference plot in the right is 0.02 e/Å3.
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Figure 7: Optimized geometries of 2 - 26 HF molecules adsorbed on bare Al2O3(2̄01) surface.
Here, MX

Y denotes a minimum with ’X’ HF molecules and in case there are several minima
they are indexed with a label ’Y’. In some cases multiple minima are shown in order to
convey the fact that very different stable configurations are possible. In most of the minimum
geometries shown above, a mixed dissociative and molecular adsorption of HF molecules can
be seen.
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Figure 8: (a) A scatter plot showing the coverage of total HF adsorbed Vs the coverage of Al-F
in the minima shown in Fig. 7. The data points are colored according to the corresponding
total binding energy per nm2 (color plot online). The square markers along the diagonal
dashed line indicate geometries where the HF coverage is equal to Al-F coverage. Panels (b)
and (c) show the change in binding energy per nm2 with increase in HF and Al-F coverage,
respectively.
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Figure 9: (a - e) Snapshots representing the hydrogen transport mechanism observed in the
optimization of 2 HF molecules adsorbed on alumina surface to form M2

C. (f) A complemen-
tary graph showing the trends of important inter-atomic distances and relative energy with
respect to the initial geometry.
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Figure 10: Pictorial representation of possible pathways in H2O formation and desorption.
The horizontal dotted line connecting each minimum corresponds to the energy change rel-
ative to geometry G1, which is also M2

A in Fig. 7

39

Page 39 of 40

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Graphical TOC Entry

HF

θ-Al2O3 (201)
_

18 9 H2O

AlFx on θ-Al2O3(201)
_

Adsorb Desorb

ATOMIC LAYER ETCH 
HALF-CYCLE

40

Page 40 of 40

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


