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Abstract

Abstract

Wireless Mesh Networks are becoming increasingly important in many applica-
tions. In many cases, data is acquired by devices that are distributed in space, but
effective actions require a global view of that data across all devices. Transmit-
ting all data to the centre allows strong data analytics algorithms to be applied,
but consumes battery power for the nodes, and may cause data overload. To
avoid this, distributed methods try to learn within the network, allowing each
agent to learn a global picture and take appropriate actions.

For distributed clustering in particular, existing methods share simple cluster
descriptions until the network stabilises. The approaches tend to require either
synchronous behaviour or many cycles, and omit important information about
the clusters. In this thesis, we develop asynchronous methods that share richer
cluster models, and we show that they are more effective in learning the global
data patterns.

Our underlying method describes the shape and density of each cluster, as well
as its centroid and size. We combine cluster models by re-sampling from received
models, and then re-clustering the new data sets. We then extend the approach,
to allowing clustering methods that do not require the final number of clusters as
input. After that, we consider the cases that there might be sub-groups of agents
that are receiving different patterns of data. Finally, we extend our approaches
to scenarios where each agent has no idea about whether there is a single pattern
or are multiple patterns.

We demonstrate that the approaches can regenerate clusters that are similar to
the distributions that were used to create the test data. When the number of
clusters are not available, the learned number of clusters is close to the ground
truth. The proposed algorithms can learn how data points are clustered even
when there are multiple patterns in the network. When the number of patterns
(single or multiple) is not known in advance, the proposed methods Optimised
KDE and DBSCAN preform well in detecting multiple patterns. Although they
perform worse in detecting the single pattern, they can still learn how data points
are clustered.
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Chapter 1

Introduction

A wireless mesh network (WMN) is a communications network made up of radio
nodes organised in a mesh topology, communicating data over a multi-hop wireless
network, with a wide range of applications [Harb et al., 2017, Ting et al., 2018,
Alanazi et al., 2016]. Nodes in the network operate as host (sending packets
out) and router (forwarding packets on behalf of other nodes). Figure 1.1 shows
the architecture of WMN. In WMN, the network is established with the help of
various numbers of wireless nodes to communicate with each other. It also can
be connected with various existing networks, including mobile ad hoc network
and sensor network, to provide efficient communication.

Figure 1.1: Architecture of wireless mesh network [Akyildiz et al., 2005]

As the Internet of Things and Cyber Physical Systems develop, these network
nodes must also include actuators, which respond to sensed data or communicated
instructions to effect changes to the environment. In some applications, the

1



1. Introduction

actions taken by a node will depend on wider patterns observed in the network
- e.g. temperature readings in indoor heating systems, or vehicle movements in
traffic control - and so communication must flow back and forwards across the
network.

Although a massive amount of data, generated by device such as smart phones
and sensors has facilitated the machine learning methods, the shortage of data
resource is great due to the following two factors: 1) data are usually isolated. It
is disallowed to centralize the data to a central server (owned by different entities)
or cloud, or the cost to centralize them is high, 2)the increasing concerns of data
privacy and security. Transmitting all data to a central server creates risks for
the privacy and security of the data.

To address these concerns, we introduce an algorithm to cluster distributed
datasets without centralizing raw data. Each node acts as its own decision maker,
but must communicate with other nodes to learn wider network patterns [Zeng
et al., 2012]. The message shared among neighbours is a representation of the
raw data points. Nodes can infer the original raw data based on the message
received. The methods trade off potentially lower decision quality for reduced
communication, reduced energy use and improved privacy. For example, there
are some sensors deployed in an area in figure 3.1, and each sensor has a different
reading vi (1 ≤ i ≤ 9). Sensors could learn the average reading v̄ by in-networking
learning and message exchanging without gathering all data to a central server.

Figure 1.2: An example of learning the wider network pattern by message ex-
changing

In this work, we focus on clustering, where we attempt to identify patterns in
the data being received by the nodes in the network. The intention is that each
node should finish with cluster models, describing the data received across the
network, while minimising inference time and communication cost, and respecting

Asynchronous distributed clustering
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1. Introduction 1.1 Thesis Statement

the privacy of the raw data. We also want to avoid sharing raw data, but also
to respect what may be the privacy of the individual data points. We develop
an asynchronous mechanism for sharing information, to avoid synchronisation
delays.

We develop different approaches to in-network clustering, examining the trade-offs
between sharing local clusters and conducting incremental clustering as informa-
tion flows through the network. We design and implement different methods for
describing the shapes of locally identified clusters, to improve the global cluster-
ing performance. We evaluate the methods empirically, using an asynchronous
message delay simulator. The underlying datasets we used for simulation are
2-dimensional spatial datasets, which are generated from different distributions.
We consider both the flat network topology and tree-based network topology, and
experiments show that flat network topology is better for our proposed cluster-
ing algorithms. Compared to tree-based network topology, flat network topology
does not introduce single point of failure, but achieve similar clustering accuracy
and converges faster.

1.1 Thesis Statement

Distributed clustering in wireless mesh networks is possible by using an asyn-
chronous adaptive clustering algorithm without transmitting raw data, and with-
out incurring high latency or high energy costs, but can achieve high clustering
quality and even when extended to scenarios where there are sub-groups of agents
are receiving data from different environments

1.2 Key Contributions

To address the issues and challenges for learning the wider network patterns in
an unknown network, this thesis makes the following contributions:

1. When all agents sense data from the same source, we designed, implemented
and evaluated an asynchronous distributed clustering algorithm that allow
each agent to learn the global view but respects the privacy and commu-
nication cost. This algorithm works well even without knowing the size of
network.

2. We relax the assumption that the number of clusters are fixed in advance
and each agent estimates the number of clusters locally and independently.

Asynchronous distributed clustering
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1. Introduction 1.3 Thesis Organization

3. To mitigate the computation cost of Earth Mover Distance (EMD) 1 but
fully utilise the shape information of dataset owned by individual agent,
we proposed a modified EMD method to measure the similarity of cluster
models learned by different agents. Compared to the state of the arts,
our proposed adapted EMD method converges fast and performs better in
measuring the similarity of cluster models.

4. Based on the adapted EMD method, we proposed a hierarchical clustering
algorithm to predict the number of patterns when there are sub-groups of
agents are receiving data from different environments. Experiments show
that this algorithm is robust and works well in both evenly-split patterns
and unequally-split patterns (including the case with singleton agent).

1.3 Thesis Organization

The thesis is organized as follows:

In Chapter 2, the current state of the art solutions for learning the wider network
pattern are examined and issues and challenges of those solutions are discussed.
In addition, technologies and methodologies that used in the thesis are described.

In Chapter 3, we aim to learning the wider network patterns with known number
of clusters in single pattern network. A cluster model, that obtained by different
clustering approaches including K-means and Gaussian Mixture Models, is shared
with neighbours. In addition, a method is proposed to describe the shape of
clusters found by K-means. Each agent infer the original data points by the
cluster model received.

In Chapter 4, the assumption that number of clusters are known in advance
is relaxed, and how to learn the global view is presented. Initially, all agent
estimate the number of clusters locally and independently. Then, agents update
the number of clusters whenever receive models from neighbours.

In Chapter 5, a potential method to measure the similarity between cluster models
learned by different agents is proposed, and the performance is evaluated over
the state of the art solutions. Then we describe an approach to learn the wider
network patterns for multiple patterns network.

In Chapter 6, we relax the assumption that the algorithm knows there is a single

1it measures the distance between two probability distributions and is widely used in Com-
puter Vision.
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pattern or multiple patterns in advance. Two types of methods are proposed to
detect the single or multiple patterns.

1.4 List of Publication

The list of papers which have already been published from this thesis are:

1. Qiao, Cheng, and Kenneth N. Brown. "Asynchronous Distributed Cluster-
ing Algorithm for Wireless Sensor Networks." Proceedings of the 2019 4th
International Conference on Machine Learning Technologies. 2019.
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Chapter 2

Background and Literature
Review

This chapter introduces the technologies and concepts used in this thesis and
gives a survey on related work for the distributed learning problem. Three dif-
ferent types of clustering algorithms are discussed in detail first, then commonly
used methods to pick the number of clusters for those clustering algorithms are
presented, followed by a description of similarity measurement methods. After
that, information dissemination in networks are described. Finally, we review the
most relevant approaches to the problem of distributed learning.

2.1 Clustering

One of the first steps in understanding a dataset is identifying patterns in the
data. Once we have established the patterns, we can begin to identify items that
are qualitatively different from each other, and which may have distinct causes;
Alternatively, identifying distinct patterns might help improve future decision
making and actuation, by creating different cases to be handled differently.

For example, consider a dataset of Uber trips in New York City1, which provides
a large amount of valuable data such as traffic, transit time and peak pickup
localities. The dataset shows around 4.5 million Uber pickups in New York City
from April to September 2014 and the date, time, latitude and longitude are
recorded for each pickup. The analysis of these GPS data can allow cities to
optimise traffic flows based on real-time traffic information. From this dataset,

1https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
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Review 2.1 Clustering

we could try to infer which hours of the day and which area had the highest
number of pickups. This could be done by first dividing the whole city into
several sub-areas based on the longitude and latitude, then count the pickups
occurred in each sub-area by date and time. Figure 2.1 shows the eight sub-area
centres displayed on a Google map.

Figure 2.1: centres of sub-areas displayed on a Google map

Then the traffic flow in each sub-area over time is shown in figure 2.2, where
the x axis is the hour, the y axis the count, and the colours are the different
sub-areas. In this case, location information are used to define the patterns of
traffic flows. The pick up localities inside the same sub-area are close to each
other while different from pick up locations in other sub-areas.

Figure 2.2: Traffic flow in each sub-area

These patterns are called "clusters". Clustering algorithms attempt to identify
clusters automatically in the data. Typically, the algorithm is not given any
exemplars or descriptions of the clusters, and there is no oracle that can report
whether or not an item has been correctly clustered. In machine learning terms,
the clustering algorithm is "unsupervised". The general aim is to group instances
into clusters such that instances in the same clusters are similar to each other

Asynchronous distributed clustering
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while being different from instances in other clusters. The definitions of similarity
and difference, and the methods for forming the clusters, vary between different
clustering algorithms and frameworks.

There is no complete definition for clustering, but a classic one is described as
follows [Jain and Dubes, 1988]: a clustering algorithm aims to group the instances
into separated clusters such that instances in same cluster must as similar as
possible while instances in different clusters must be as different as possible and
the measurement for similarity and dissimilarity must be clear and have practical
meaning.

Clustering algorithms are frequently used in various data-intensive applications.
For instance, a retailer could detect groups of customers with similar buying
patterns by tracking their purchases. In computational biology, groups of genes
could be detected by exhibition of similar behaviour, which may indicate that
they are part of the same biological pathway. Xu et al. [Xu and Tian, 2015]
presented a comprehensive survey of various clustering algorithms.

In this section, we discuss three types of clustering algorithm applied in this
thesis: partition based, graph theory based and hierarchy based.

2.1.1 Partition Based Clustering

The K-means algorithm is a widely applied clustering technique [Likas et al.,
2003]. Given a dataset with n points in a d-dimensional space and the number
of clusters k to find, the goal of K-means is to partition the data points into k

clusters which best describe the data distribution. The output is a set of represen-
tative locations in space, one for each cluster, such that each point is associated
with its nearest cluster, and the locations, or centroids, are the weighted average
of the locations of its associated points. The error for each original data points is
the Euclidean distance to its centroids and the error for the cluster is the sum of
squared errors. The objective of K-means is then to minimise the sum of cluster
errors:

E =
k∑
k=1

∑
p∈Ci

(|p−mi|)2 (2.1)

where E denotes total squared error, p is a data point and mi is the centroid
cluster Ci.

Algorithm 1 shows the main steps for K-means algorithm. It starts with k initial
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centroids, chosen by some method, and a partition is created by assigning each
instance to its closest cluster. Then each cluster centroid is updated to be the
mean value of all its members. These steps will be repeated until the cluster
membership has stabilised.

Algorithm 1: K-means algorithm
1 Input: Set of instances: D = {x0, x1, · · · , xn}, number of desired clusters k;
2 Output: Set of clusters C;
3 Choose k initial centroids {c0, c1, , · · · , ck};
4 while cluster membership is not stabilised do
5 Create a new partition by assigning each instance to its closest centroid;
6 Compute new cluster centroids;

K-means is a computationally fast algorithm and easy to implement. It provides
a hard assignment of points to clusters, where a point either totally belongs to a
cluster or not at all. However, its weaknesses include:

1. the number of clusters k has to be specified in advance.

2. it is sensitive to noisy data and outliers.

3. it assumes clusters can be separated by a convex hull.

K-means can be viewed as creating a Voronoi partition, where each cluster is at
the centre of its Voronoi cell. Any point outside this partition is not considered a
member of the cluster. Depending on the representative objects and optimisation
objective, there are different variants of K-means, including K-median [Kariv and
Hakimi, 1979], K-medoids [Kaufman and Rousseeuw, 2009] and K-center [Dyer
and Frieze, 1985].

1. K-median: Instead of calculating the mean for each cluster to determine its
centroid, the centroid is calculated as the value in the median for each at-
tribute. The objective is to minimise the sum of distance from each instance
to its nearest median. The advantage of K-medians is that each representa-
tive is constructed from data values for each dimension that actually appear
for some points in the cluster.

2. K-medoids: rather than calculate the mean or median of the data points, K-
medoids instead selects the data point which minimises the sum of squared
distance to all other points in the cluster. The advantage is that the repre-
sentative is then an actual data point.

Asynchronous distributed clustering
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3. K-center: Similar to K-medoids, existing data points are chosen to repre-
sent the cluster, but now the point is chosen that minimises the maximum
distance to other points in the cluster.

Note that medoids and centers, rather than centroids, are all true instances from
the dataset 2. K-means and K-medoids aim to optimise the compactness (sum of
squared distance from instance to cluster representation) while K-median min-
imise the cluster diameter and K-center minimise the cluster radius [Basu et al.,
2008]. Compared to K-means, K-medoids is less sensitive to outliers since it is
based on the most centrally located object in a cluster. K-median, K-medoids
and K-center assume that clusters can be separated by a convex hull and the
number of clusters has to be specified in advance.

However, in some cases, we might not have complete confidence in the cluster
assignment of points located in the margin area between two clusters. This moti-
vates the introduce of a soft clustering method Gaussian Mixture Model (GMM)
clustering: fit data points to a GMM, and then turn it into a hard model by se-
lecting the most likely cluster for each observed points. GMM attempts to find a
mixture of multi-dimensional Gaussian probability distributions that best model
any input dataset. Each cluster is modelled as a different Gaussian distribution
and each data point could have been generated by any of those distribution with
a probability. A GMM can be used to create a hard clustering, by turning the
probabilities into a membership function, by assigning each point to the Gaussian
mean for which it has highest probability.

Suppose there are n observations {X1, X2, · · · , Xn} and each Xi is sampled from
a mixture model of K mixture components. How could we know which Gaussian
generated a particular data point? The GMM is a mixture model that uses a
combination of Gaussian probability distributions, so the estimation of the mean
and standard deviation parameters for each is required. The mixture component
to generate the data point, that is not observable, represents a latent variable. As
such, the expectation-maximisation (EM) algorithm is an appropriate approach to
use to estimate the parameters of the mixture component. In the EM algorithm,
the estimation-step would estimate the latent variable for each data point, and the
maximisation step would optimise the parameters of the probability distributions.
The process is repeated until a minimum log likelihood is achieved. Algorithm 2
shows the main steps for the GMM.

K-means represents each cluster by its mean, while GMM provides the mean and
2Note that medians might be true instances.

Asynchronous distributed clustering
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Algorithm 2: Gaussian Mixture Model
1 Input: Set of instances: D = {X0, X1, · · · , Xn}, K mixture components that

generate D;
2 Output: Set of clusters {c1, c2, · · · , cK};
3 Randomly assign mean µk, covariance δk2 and density πk for each cluster;
4 while The objective log likelihood is not minimised do

/* E step */
5 Calculate the probability that it belongs to cluster ck(1 ≤ k ≤ K);
6 γZi

(k) = P (Xi|Zi=k)P (Zi=k)
P (Xi) = πkN(µ,δk

2)∑K

k=1 N(µk,δk)
;

/* M step */
7 Compute new mean µk for each cluster;
8 µk = 1

Nk

∑N
n=1 γZi

(k)Xi ;
9 Compute new covariance matrix δi2 for each cluster ;

10 δk
2 = 1

Nk

∑N
n=1 γZi

(k)Xi(Xi − µk)2 ;
11 Compute new density πk for each cluster ;
12 πk = Nk

n
;

variance, and thus describes the distribution, or shape, of the cluster. However,
GMM still suffers from the same problem as K-means that the number of clusters
k has to be fixed manually in advance.

Example. Figure 2.3 below shows the different clustering between K-means
and GMM. The dataset is randomly generated by four Gaussians with centres
[[−2, 1], [2, 0], [1, 2], [−1, 3]]. The standard deviation for each Gaussian is fixed to
0.46. There is little difference in terms of centroids found by K-means and mean
estimated by GMM (black crosses shown in the figure). However, some points
in the margin area between the peach cluster and blue cluster are grouped into
the blue cluster by GMM even they are much closer to the centroids of peach
cluster. That is because the Gaussians give, for those points, a higher probability
of membership.

Figure 2.3: Compasion of K-means and GMM when underlying dataset is gener-
ated by symmetric Gaussians
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Figure 2.4 shows the difference of clusters obtained by K-means and GMM when
applied to data generated using a non-circular distribution. It shows that clusters
generated by K-means are significantly different from the original distribution,
while GMM is generating clusters that are similar to the original distribution.

Figure 2.4: Comparison of K-means and GMM when underlying dataset is gen-
erated by asymmetric Gaussians

2.1.2 Graph Theory Based Clustering

In last section, each data points xi is represented by a vector in the space. A
similarity graph G = (V,E) is another way to represent data, where the vertices
vi donate the data points. Note that xi is a vector which denotes the data points
while vi is a vertex without any attributes. Two vertices are connected if the
similarity sij between vertex vi and vj is larger than a threshold and the edge
is weighted by sij. Intuitively, the goal of clustering is to divide data points
into several groups such that points in the same group are similar and points in
different groups are dissimilar. If data is represented by similarity graph, now
the clustering problem could be reformulated as: find a partition of the graph
such that edges within a group have a high weight while edges between different
groups have a very low weight [White and Smyth, 2005].

Spectral clustering is a widely used graph clustering algorithm, based on a similar-
ity graph, in various applications including exploratory data analysis, computer
vision and speech processing. The basic idea for spectral clustering is to reduce
the dimensionality of an (n, n) matrix to an (n, k) matrix by a Laplacian matrix
L:

L = D − A (2.2)

where D is the degree matrix where the degree of a vertex is the number of edges
connected and A is the adjacency matrix where the row and column indices
represent the vertices, and the entries represent the absence or presence of an

Asynchronous distributed clustering
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edge between the vertices.

The first step is to construct an affinity matrix where the value expresses how
similar those vertices are to each other. There are several ways to construct
the affinity matrix, for instance, k-nearest neighbour method and precomputed
affinity matrix. The nearest neighbour approach assumes that k-close vertices
should be in the same cluster. However, it is too sensitive of the choice of number
of neighbours. Alternatively, precomputed affinity matrix is a matrix defined
based on the similarity measurement between vertices, using a threshold on a
distance metric-for example, euclidean distance, manhattan distance, minikowski
distance, cosine similarity and jaccard similarity. After that, the objective is to
minimise the weight of between-group connections.

Intuitively, for any distance matrix, 0 means identical elements and high values
mean very dissimilar elements while high values in a similarity matrix means
similar elements and 0 means significantly different elements. So any distance
matrix could be transformed into a similarity matrix by applying the Gaussian
kernel:

Smatrix = exp{−Dmatrix
2

2δ2 } (2.3)

where Smatrix means the similarity matrix transformed from distance matrix
Dmatrix and δ represents the width of the Gaussian kernel.

The main advantage of spectral clustering is that it does not make any assump-
tions about the cluster shapes. However, it is computationally expensive com-
pared to partition based clustering, as pairwise similarities or distance must be
computed, instead of only distances to centroids.

Example 1. Suppose there is a graph with 10 vertices, the pair-wise euclidean
distance is already known and number of clusters is fixed to 2 in advance. The
symmetric affinity matrix is shown as follows:

Based on table 2.1, it is difficult to tell the inter-vertex relationship. So we sort
the matrix by row and column. Table 2.2 shows the closeness between vertices
after sorting. Vertex A0 is closer to vertex A2 but far away from vertex A6.
Thus, vertex A0 should be put into a group with A2 but apart from A6. When
the Gaussian Kernel is used to measure the similarity, the matrix is transformed
to that in table 2.3:

Asynchronous distributed clustering
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Table 2.1: Pairwise distance between 10 vertices

Vertices name

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

A0 0.000 1.174 0.036 0.048 0.061 1.202 1.222 0.941 0.064 0.852
A1 1.175 0.000 1.151 1.180 1.175 0.971 0.821 0.992 1.171 0.894
A2 0.036 1.151 0.000 0.048 0.059 1.184 1.196 0.926 0.057 0.845
A3 0.048 1.180 0.048 0.000 0.055 1.205 1.229 0.942 0.043 0.851
A4 0.062 1.175 0.059 0.055 0.000 1.195 1.236 0.959 0.068 0.861
A5 1.202 0.971 1.184 1.205 1.195 0.000 1.150 0.993 1.204 1.131
A6 1.222 0.821 1.196 1.229 1.236 1.150 0.000 1.078 1.226 1.321
A7 0.941 0.992 0.926 0.942 0.959 0.993 1.078 0.000 0.944 0.901
A8 0.065 1.171 0.057 0.043 0.068 1.204 1.226 0.944 0.000 0.854
A9 0.853 0.894 0.845 0.851 0.861 1.131 1.321 0.901 0.854 0.000

Table 2.2: Distance matrix sorted by row and column

Vertices name

A0 A2 A3 A4 A8 A9 A7 A1 A5 A6

A0 0.000 0.036 0.048 0.062 0.065 0.853 0.941 1.175 1.202 1.222
A2 0.036 0.000 0.048 0.059 0.057 0.845 0.926 1.151 1.184 1.196
A3 0.048 0.048 0.000 0.055 0.043 0.851 0.942 1.180 1.205 1.229
A4 0.062 0.059 0.055 0.000 0.068 0.861 0.959 1.175 1.195 1.236
A8 0.065 0.057 0.043 0.068 0.000 0.854 0.944 1.171 1.204 1.226
A9 0.853 0.845 0.851 0.861 0.854 0.000 0.901 0.894 1.131 1.321
A7 0.941 0.926 0.942 0.959 0.944 0.901 0.000 0.992 0.993 1.078
A1 1.175 1.151 1.180 1.175 1.171 0.894 0.992 0.000 0.971 0.821
A5 1.202 1.184 1.205 1.195 1.204 1.131 0.993 0.971 0.000 1.150
A6 1.222 1.196 1.229 1.236 1.226 1.321 1.078 0.821 1.150 0.000

Table 2.3: Similarity matrix obtained by Gaussian Kernel

Vertices name

A6 A5 A1 A7 A9 A8 A4 A3 A2 A0

A6 1.00000 0.06626 0.20531 0.05260 0.01487 0.00015 0.00015 0.00013 0.00015 0.00014
A5 0.06626 1.00000 0.12821 0.09463 0.04084 0.00027 0.00028 0.00024 0.00026 0.00026
A1 0.20531 0.12821 1.00000 0.10076 0.09190 0.00036 0.00037 0.00032 0.00036 0.00034
A7 0.05260 0.09463 0.100769 1.00000 0.17349 0.00668 0.00661 0.00623 0.00667 0.00647
A9 0.01487 0.04084 0.09190 0.17349 1.00000 0.01698 0.01705 0.01598 0.01650 0.01639
A8 0.00015 0.00027 0.00036 0.00668 0.01698 1.00000 0.99017 0.99566 0.99049 0.99104
A4 0.00015 0.00028 0.00037 0.00661 0.01705 0.99017 1.00000 0.99247 0.98861 0.99113
A3 0.00013 0.00024 0.00032 0.00623 0.01598 0.99566 0.99247 1.00000 0.99240 0.99464
A2 0.00015 0.00026 0.00036 0.00667 0.01650 0.99049 0.98861 0.99240 1.00000 0.99548
A0 0.00014 0.00026 0.00034 0.00647 0.01639 0.99104 0.99113 0.99464 0.99548 1.00000
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The values in table 2.3 shows the similarity of pairwise vertices. A large value
means high level of similarity and small values indicates they are dissimilar. The
highlighted red rectangle boxes show the two groups where intra-vertices are
similar to each other but dissimilar to other vertices outside the boxes. If k is
fixed to be 2, then vertex A6, A5, A1, A7 and A9 should be put together and
apart from another group [A8, A4, A3, A2, A0].

Figure 2.5: Groups found by spectral clustering

Figure 2.5 shows the groups found by spectral clustering where light colour means
they are similar but deep colour means dissimilarity. When the number of groups
are fixed to be 2, the groups found are the same group depicted in highlighted
rectangle in table 2.3. Again, spectral clustering also suffer from the same prob-
lem as K-means and GMM: the number of clusters or groups has to be fixed in
advance. In addition, the method to measure the similarity must also be speci-
fied, and can have a significant effect on the performance of this kind of clustering
method.

Example 2. Figure 2.6 shows an example of K-means, GMM and spectral
clustering where the number of clusters is fixed to be 2. The test data is two
interleaving half circles. Since this shape is complicated, K-means and GMM
may are not able to detect the right clusters. The affinity matrix of the spectral
cluster is constructed based on the nearest neighbours method. Figure 2.6b and
2.6c show that neither K-means nor GMM can generate clusters that are similar
to the original distribution. However, clustering obtained by GMM is better than
that of K-means. Figure 2.6d shows that clusters obtained by spectral clustering
is similar to the original distribution.
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(a) Test dataset (b) Clusters found by K-means

(c) Clusters found by GMM (d) Spectral clustering

Figure 2.6: An example of K-means, GMM and Spectral clustering

2.1.3 Hierarchy Based Clustering

As mentioned before, we have to decide the number of clusters before using K-
means or GMM. However, ideally, we would not be told how many clusters we
should have as input. This is a gap hierarchical clustering bridges. It solves the
problem of having to pre-define the number of clusters. For this kind of clustering,
a hierarchical relationship among data is constructed.

There are mainly two types of hierarchical clustering: agglomerative hierarchi-
cal clustering and divisive hierarchical clustering. For agglomerative hierarchical
clustering, initially each data point stands for an individual cluster. Then the
closest two clusters are merged into a new cluster until there is only one clus-
ter left. Divisive hierarchical clustering works in the opposite way. Instead of
starting with n clusters, it starts with a single cluster and assigns all the points
to that cluster. Euclidean distance is widely used as a distance metric to mea-
sure the closeness. Note that there are also some other distance metrics. Any
distance measurement that is sensible for the problem should be considered. For
instance, manhattan distance may be appropriate if clustering crime sites in a
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city is demanded.

After selecting a distance metric, it is necessary to determine how the metric is to
be applied. For example, it can be computed between the two most similar parts
of a cluster (single-linkage) or the two least similar bits of a cluster (complete-
linkage). In the past years, many linkage criteria have been developed. There
are six popular methods to measure the closeness between two clusters:

1. Single, also known as nearest point algorithm, which assumes that the dis-
tance between two clusters is measured by the distance between the two
nearest points.

2. Complete, also known as furthest point algorithm, which assumes that the
distance between two clusters is measured by the distance between two
farthest points.

3. Average, the distance between two clusters is defined as the average distance
between each point in one cluster to every point in the other cluster.

4. Centroid, the distance between two clusters is defined as distance between
centroids.

5. Median, also known as Weighted Pair Group Method with Arithmetic
Mean, which assigns distance like the centroids method. When two clusters
s and t are combined into a higher-level cluster u, the average of centroids
s and t give the new centroid u. Then, its distance to another cluster k is
simply the arithmetic mean of the distances between k and its members of
u.

6. Ward, also known as the incremental algorithm. With this method, groups
are formed so that the pooled within-group sum of squares is minimised.
That is, at each step, the two clusters are fused which result in the least
increase in the pooled within-group sum of squares.

Among these linkage criteria, Ward’s method is widely used. Similar to K-means,
this method aims to minimise the sum of squared distances of each observation
from the average observation in a cluster and it matches the standard assumptions
of how to compute differences between groups in statistics.

Example 1. Again, we use the same graph in spectral clustering as an example.
Figure 2.7 shows the clustering result when incremental algorithm ward was used
to measure the distance between groups. Vertex A3 and A8 are merged into a new
cluster C1 in the beginning because they are closest among all agents (distance
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is 0.0666). Then vertex A0 and A2 are formed as a new cluster C2. After that,
vertex A4 are merged with cluster C1 to a new cluster C3. This step will repeat
until there is only one big cluster left.

Figure 2.7: Dendrogram when ward’s method is applied

Figure 2.7 shows a hierarchical relationship among clusters. Although the number
of clusters are not required to pre-defined, a final number of clusters have to decide
manually based on the hierarchical relationship. Note that the distance between
the left cluster (where vertex A3, A8, A0, A2, A4 are in) and right cluster (where
vertex A7, A9, A5, A1, A6 are in) is 5.38, two times longer than the second largest
inter-cluster distance, which indicates that these two clusters are dissimilar and
there might be 2 clusters.

To estimate the final number of clusters, a threshold distance could be defined
manually such that two clusters are merged if the distance between them are
below the threshold. Based on figure 2.7, we could set the threshold distance to
around 3, then there are two final clusters.

2.2 Selecting the number of clusters

Note that all methods showed in previous sections requires that the number
of clusters to be specified before start (except the hierarchical). Here we take
the well-known iris flower dataset as an example. This dataset contains four
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measurements of three different iris flowers. The measurements are: sepal length,
sepal width, petal length, and petal width and the three types of iris are Setosa,
Versicolour, and Virginica. Only the values of the petals’ lengths and widths are
used here. Figure 2.8 shows the differences between using two, three, four, and
five clusters. The graphs also indicate that three is the most appropriate number
of clusters. It makes sense when taking into account that there are three types
of iris flowers in the dataset.

Figure 2.8: Clustering with different number of clusters on Iris dataset

However, there is no clear way to choose the appropriate number of clusters, since
the shape and scale of the distribution of points in a dataset and the desired
clustering resolution varies with applications. Note that increasing the number
of clusters k will always reduce the amount of error (for example, Mean Squared
Error), but the performance, usually measured by minimal intra cluster distance
and maximal inter cluster distance, would be degraded when k is getting large
until we reach the extreme case that k equals the number of data points. In
this section, some frequently used methods to select the number of clusters are
described.

2.2.1 Elbow method

The main idea for the elbow method is selecting the best number of clusters by
calculating the sum of squares for a range of numbers of clusters and the selected
number is then the one that had the steepest slope from the previous number
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(the elbow point). When the number of clusters increases, data points are closer
to the clusters centroids, so the sum of squared distance from each point to its
assigned centroids will decrease. The improvements will decline, at some point
rapidly, creating the elbow shape. This ”elbow” point is a good indication that
the underlying model fits best with that number of clusters. Algorithm 5.6 shows
the main steps to pick the number of clusters by the Elbow method.

Algorithm 3: Elbow method to pick the number of clusters
1 Input: Range of number of clusters: k = {k0, k1, · · · , kn};
2 Output: The number of clusters that fits model best kb;
3 for i = 0; i ≤ n do
4 Compute clustering algorithm for different values ki ;
5 Calculate the total within-cluster sum of square distance (TWD);
6 Plot the curve of TWD for all different values ki;
7 Find out the location kb of "elbow" point in the plot;

The Elbow method is simple but it is not intended as a fully automated algorithm.
The final step in algorithm 5.6 to determine the location is carried out by a human
operator. Figure 5.6 below shows the best k is around 2, but could also be 3.

Figure 2.9: Test data and line chart with different number of clusters

2.2.2 Affinity Propagation

Frey and Dueck proposed a clustering algorithm called affinity propagation (AP)
which does not require that the number of clusters to be fixed in advance. This
method is based on message passing between data points [Frey and Dueck, 2007].
There are two kinds of messages exchanged between data points, responsibilities
and availabilities. The responsibilities quantify how well-suited a data point xi
is to serve as the exemplar compared with other candidate exemplars and avail-
abilities represent how appropriate it would be for data point xi to pick another
data point xk as its exemplar, taking into account other points’ preferences. Due
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to its simplicity and general applicability, AP is getting more and more popular.
However, the algorithm requires two inputs:

1. Similarities between data points, which represents how well-suited a point
is to be another one’s exemplar. The similarity matrix could be defined
based on negative squared distance between points:

s(i, j) = −||xi − xj||2 (2.4)

where a means average intra-cluster distance and b denotes the average
distance to its nearest cluster.

2. Responsibility, representing each data point’s suitability to be an exemplar.

Algorithm 4 shows the process of clustering method AP. The responsibility ma-
trix and availability matrix will be updated until convergence. The convergence
condition could be reaching an upper limit to the number of iterations or changes
of the value before and after updating fall below a fixed threshold. After that, an
element i will be assigned to an exemplar k which is not only highly responsible
but also highly available.

Algorithm 4: Affinity Propagation
1 Input: Similarity matrix S and responsibilities matrix R ;
2 Output: Clusters that group similar data points together;
3 Initialise availability matrix A;
4 while not converged do
5 Update responsibilities and availabilities as:
6 r(i, k) = s(i, k)−maxk′ 6=k a(i, k′) + s(i, k′)

7 a(i, k) =

min{0, r(k, k) +∑
i′ /∈{i,k}max{0, r(i′, k)}}, if i 6= k.∑

i′ /∈{i,k}max{0, r(i′, k)}, if i = k.

8 Making assignment for data points i:
9 c(i, k)← argmaxk(r(i, k) + a(i, k))

Figure 2.10 shows the clusters found by affinity propagation. Unlike the previous
method, this method shows the clusters, rather than the estimated number of
clusters. Compared to the elbow method and silhouette method (defined below),
AP does not require that the number of clusters or range of number of clusters
is fixed in advance. However, the computation cost is high since the availability
matrix and responsibilities matrix must be updated each iteration.

Asynchronous distributed clustering
algorithms for wireless mesh network

21 Cheng Qiao



2. Background and Literature
Review 2.2 Selecting the number of clusters

Figure 2.10: Estimated number of clusters obtained by AP method

2.2.3 Silhouette method

The silhouette value is a measure of how similar an object is to its own cluster
compared to other clusters. The silhouette value ranges from −1 to +1, where
a high value indicates that the object is well matched to its own cluster and
poorly matched to nearest clusters. If most objects have a high value, then the
clustering configuration is appropriate, otherwise, there may be too many or too
few clusters. The silhouette is calculated as:

Sindex = b− a
max(a, b) (2.5)

where a means average intra-cluster distance and b denotes the average distance
to its nearest cluster.

Algorithm 5 shows that the silhouette method is similar to the elbow method but
the objective is different. Compared to the elbow method, the silhouette method
can be automated, since it is simple to determine the maximum value [Kaufman
and Rousseeuw, 2009]. However, the range of the number of clusters still has
to be fixed in advance. Figure 2.11 shows the best k found by the silhouette
method. The difference is obvious compared to figure 2.9. The average value of
the silhouette increases to k = 3, and then decreases sharply for k larger than
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Algorithm 5: Silhouette method to pick the number of clusters
1 Input: Range of number of clusters: k = {k0, k1, · · · , kn};
2 Output: The number of clusters that fits model best kb;
3 for i = 0; i ≤ n do
4 Compute clustering algorithm for different values ki ;
5 Calculate the average silhouette (S);
6 Plot the curve of S for all different values ki;
7 Find out the location kb with maximum S in the plot;

3. The pronounced peak at k = 3 indicates that this is the appropriate number
of clusters. In this thesis, we apply silhouette method to estimate the initial
number of clusters k for partition based clustering method, including K-means
and GMM.

Figure 2.11: Number of clusters found by silhouette

Olatz et al. shows that Silhouette achieves the best results among the 30 cluster
validity indices in most cases [Arbelaitz et al., 2013]. In this thesis, we use
the Silhouette method to pick the number of clusters. It measures how similar a
point is to its own cluster (cohesion) compared to other clusters (separation). The
cohesion is measured based on the distance between all the points in the same
cluster and the separation is based on the nearest neighbour distance. Formally:

Sil(C) = 1/N
∑
Ck∈C

∑
xi∈ck

b(xi, ck)− a(xi, ck)
max{a(xi, ck), b(xi, ck)}

(2.6)
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where

a(xi, ck) = 1
|ck|

∑
xj∈ck

de(xi, xj) (2.7)

b(xi, ck) = min
cl∈{C−ck}

{ 1
|cl|

∑
xj∈cl

de(xi, xj)} (2.8)

2.3 Similarity measurement

In previous section, the similarity of two data points is represented as the distance
between them. In this section, we also discuss the similarity in an agent level,
which is used to predict whether an agent is different. The concept of similarity
is important in almost every scientific field, such as mathematics, management
and medicine. In this section, distance based, feature based and Earth Mover’s
Distance based methods to measure the similarity are discussed.

2.3.1 Distance based similarity

Distance is one of the most influential assumptions related to similarity: two
objects can be said to be similar if the distance between their descriptions is
small [Young and Hamer, 1994]. The two most popular distance measures are
Euclidean distance and Manhattan distance. Given the coordinates of m obser-
vations A in a n-dimensional space (xA1, xA2, · · · , xAm), the Euclidean distance
from observations A to some other observations B is:

d(A,B) =
√√√√ n∑
i=1

(xAi − xBi)2 (2.9)

The corresponding Manhattan distance distance is:

d(A,B) =
n∑
i=1
|xAi − xBi| (2.10)

The distance then could be translated to a similarity via an exponential function
[Shepard, 1987]:

s(A,B) = e−d(A,B) (2.11)
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All types of distance obey certain properties, named the distance axioms. Gen-
erally, there are four distance axioms (take data points A, B, C as an example):

1. Non-negativity. d(A,B) ≥ 0. If A and B differ, then distance d(A,B) > 0.

2. Equal self-similarity. d(A,B) = 0 if and only if A = B.

3. Symmetry. d(A,B) = d(B,A).

4. Triangle inequality. d(A,B) + d(B,C) ≥ d(A,C). The distance between
any two points can not be larger than the sum of their distance from a third
point.

2.3.2 Feature based similarity

The validity of these distance axioms is criticised in some cases. For instance,
Tversky et al. [Tversky, 1977] proposed an example against the symmetry axiom:
most people judge the similarity of North Korea to China to be greater than that
of China to North Korea. So a feature-based similarity was proposed to against
the distance axioms, and it was defined as:

s(A,B) = αg(A ∩B)− βg(A−B)− γg(B − A) (2.12)

where g(A ∩ B) denotes the features that are common to A and B, g(A − B)
denotes the features that are unique to A, and α, β and γ are predefined parame-
ters. Based on the definition, it considered the common and distinct observations
features and features in common increase the similarity while features that are
unique to any observation decrease the similarity.

In many machine learning tasks, the definition of similarity plays a crucial role in
the performance of proposed solutions. Distance based similarity is widely use in
different areas, such as image retrieval and pattern recognition [Guo et al., 2002,
Wren et al., 2006]. It provides a simple and mathematically convenient metric on
raw features and an excellent survey on distance measure can be found in [Cha,
2007]. It is valid when features can not be defined, or when features consists of
both continuous and categorical variables.

In some other areas, feature based similarity is widely used. For instance, in rec-
ommender systems, it was used to describe the preference [Agarwal and Chauhan,
2017, Han and Karypis, 2005]. Based on preference, it recommends products to
a customer who are most likely to buy or music to a user who will find enjoyable.
This feature-based recommend system has proven to be very successful in many
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e-commerce settings, especially when user’s needs and preferences are not clear
defined.

2.3.3 Earth Mover’s Distance based similarity

The Earth Mover’s Distance (EMD) is a natural and intuitive metric to evaluate
dissimilarity between signatures that are representations of two multi-dimensional
distributions [Hitchcock, 1941, Rubner et al., 1998]. For cluster analysis, the
distribution can be considered as a set of clusters where each cluster is represented
by its mean or model. It measures how much work would have to be done
modifying the two distributions so that they coincide exactly.

Given signature P = {(p1, wp1), ..., (pn, wpn)} and Q = {(q1, wq1), ..., (qn, wqm)},
where pi (or qi) is the cluster representative and wpi (or wqi) is the weight of the
cluster, and dij is defined as the ground distance between cluster pi and qj, the
EMD between them is treated as a solution to a transportation problem. Treat
elements in P as supplies and elements in Q as demands (corresponding Wpi and
Wqj indicates the amount of supply and demand respectively). EMD is defined as
the minimum work required to resolve the supply-demand transports, that find
a flow F=[fij] that minimises the overall cost:

WORK(P,Q, F ) =
n∑
i=1

m∑
j=1

fijdij (2.13)

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ n; 1 ≤ j ≤ n
n∑
i=1

fij ≤ wpi 1 ≤ i ≤ n

m∑
j=1

fij ≤ wqj 1 ≤ j ≤ m

n∑
i=1

m∑
j=1

fijdij = min(
n∑
i=1

wpi,
m∑
j=1

wqj)

(2.14)

The first condition limits the flow to move from P to Q and not vice versa. The
maximum amount of supplies and demand are restricted by P and Q in next two
conditions, separately. The maximum work is limited by supply and demand in
the final constraint. EMD is defined as the work normalised by the total flow:
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EMD(P,Q) =
∑n
i=1

∑m
j=1 fijdij∑n

i=1
∑m
j=1 fij

(2.15)

The EMD has been used successfully in various real applications, such as image
retrieval, key point matching and duplicate image identification [Rubner et al.,
2000, Pele and Werman, 2008, Xu et al., 2008]. There are several advantages of
using EMD over other dissimilarity measures: (1) robust to noise, (2) insensitive
to topology change, and (3) globally shape-aware.

Although there are advantage of using EMD, it is hardly used outside the com-
puter vision community due to its high computation cost. The time complexity is
O(n3logn) for a distribution that denoted by n signatures. To mitigate the high
computation cost of EMD, there have been several proposals. Shirdhonkar and
Jacobs [Shirdhonkar and Jacobs, 2008] transform the data array using a wavelet
function and then an approximate EMD is obtained by the L1-norm of the differ-
ence of two transformed wavelet descriptors before computing the EMD distance
directly. The computation time could be reduced to O(n) by this method. Al-
though the error, denoted by ratio of wavelet EMD to EMD or EMD to wavelet
EMD, is bounded, it is shown that this error could be as high as 7.

Figure 2.12: Wavelet EMD [Shirdhonkar and Jacobs, 2008]

Pele and Werman transferred the transportation problems to a transhipment
problem by allowing the shipping of the goods to a intermediate destination,
which could reduce the number of edges by an order of magnitude ( reduced from
n2 + N to nK + n where n is the number of bins, N is the number of edges and
K is the average number of edges going out) [Pele and Werman, 2009]. Besides,
thresholded distance, rather than ground distance, is used (– see figure 2.13, where
the striped yellow square is the new transhipment vertex). The computation time
could be reduced to O(n2logn) by this method. However, it is too complex for
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the set-up process. In chapter 5 of this thesis, we will propose a simplification of
EMD that is faster to compute, and which appears almost as effective when used
in our clustering problems.

Figure 2.13: Robust EMD [Pele and Werman, 2009]

2.4 Information Dissemination in Wireless Net-
works

Information dissemination is one of most critical in-network operations for various
applications, such as remote monitoring, assembly line monitoring and tracking.
Under those circumstances, the network nodes have to spread or disseminate the
information they have collected or sensed to other nodes via multi-hop paths.
There are three widely used information dissemination protocols: 1) Flooding, 2)
Gossip, 3) Sensor Protocols for Information via Negotiation (SPIN).

2.4.1 Flooding

Flooding protocol is one of the most widely used strategies to disseminate infor-
mation in the network [Jetcheva, 2001]. A source node sends a packet to all of its
neighbours. Each recipient node stores a copy of the packet and rebroadcasts the
packet. This process continues until all the reachable nodes received the packet.
This method of disseminating information is robust to node failures. However,
flooding suffers from the following disadvantages [Tseng et al., 2002]:

1. Redundant rebroadcasts. In some cases, all neighbours of a specific node
may have already received the message but that node still rebroadcast the
message.
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2. Channel contention. If many of its neighbours decide to broadcast the
message in the same time, they have to compete for the channel.

3. Collision. Collisions are more likely to occur if too many neighbours decide
to rebroadcast the message.

The redundant rebroadcast can be avoided by knowing the source ID and sequence
number of each packet. Based on that, nodes can identify each packet and prevent
broadcasting the same packet to the same node more than once. Since flooding
is simple but effective, there are several approaches proposed in the literature
to improve the efficiency, based on two considerations: reduce the possibility of
redundant rebroadcasts and differentiate the timing of rebroadcasts [Tseng et al.,
2002].

Based on the location information, the concept of a request zone is introduced to
limit the search space for a desired route, by which the set of nodes to broadcast
the packets is reduced [Sohrabi and Pottie, 1999]. Sabbineni et al.[Sabbineni and
Chakrabarty, 2005] proposed a modified flooding data dissemination protocol for
wireless sensor networks. The list of node IDs are stored in a special field of the
packet header which tells the receiver nodes that all the nodes in the list already
have the packet, hence it is unnecessary to forward the packet again. In addition,
with the aid of GPS, a sensor can calculate its position in three dimensions. The
monitored area is divided into virtual grids, and the ID of the grid in which
the sender of the packet is currently in is also stored in the packet header. The
gateway node will prevent the retransmission of packets the grid has already seen.

2.4.2 Gossip and weighted gossip algorithm

Rumours travel at a great speed and reach almost every member of the com-
munity in society without needing a central coordinator. Gossip algorithm is an
asynchronous information exchange protocol inspired by this rumour style. In
sensor networks, peer-to-peer networks or vehicular vehicles and social networks,
providing communication is expensive in terms of time and resource. Gossip pro-
tocols try to solve the problem of flooding protocol, that is, disseminate a message
to all the nodes in the network and each node sends the message to only a few of
the nodes.

The basic idea behind it is simple. if a node wants to share some information to
the other nodes in the network:

1. Periodically it selects randomly a node or a fraction of nodes and transmits

Asynchronous distributed clustering
algorithms for wireless mesh network

29 Cheng Qiao



2. Background and Literature
Review

2.4 Information Dissemination in Wireless
Networks

the information.

2. The node that receives the information updates its own records and then
transmits the updated information.

3. Repeat until reach the stop criteria.

Based on the way nodes choose how many other nodes to communicate with, there
are two main approaches to the gossip algorithm. One is called binary gossip,
where each network node shares data with a single other node at each step. The
other one called weighted gossip, where each node share data with all its network
neighbours in a weighted fashion. Based on how nodes communicate with other
nodes, the gossip algorithm could be classified as Push-pull and Push-sum gossip.

Algorithm 6: Push-pull binary gossip
1 Initialization: xi;
2 while not stabilised do
3 Choose a neighbour node j uniformly at random ;
4 Send xi

2 to node j;
5 xi ← xi

2 ;
6 if received pushing message from neighbour z then
7 Send pair xi

2 to node z;
8 xi = xi+xz

2 ;

Push-pull gossip is a synchronous protocol. For instance, in a push-pull based
binary gossip (algorithm 6) , node i randomly chooses a neighbour j and halves
its value (xi

2 ) to node j (push). Upon receipt of pushing from node i, node j sends
half of its value (xj

2 ) and sends it back to node i (pull). node i and j update
their value to xi+xj

2 . Push-pull protocol does not require global knowledge or
global coordination. However, the feedback required (pull) in this protocol may
be difficult or even not exist anymore when the message is sent through a long
route within the network.

Unlike push-pull gossip, push-sum gossip is an asynchronous protocol. At each
time t, each node maintains a sum st,i (initialized to s0,i = xi), and a weight wt,i
(initialised to w0,i = 1). At start of each time point , it sends pair 1/2(s0,i, w0,i)
to itself and a random neighbour. Each node i follows the protocol given as
algorithm 7:

Weighted gossip is defined as the class of gossip-based algorithms following the
sum and weight structure. The weight vector in weighted gossip is defined as
w = {w1, · · · , wn}T , which will be initialised to be all ones 1. Each node i
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Algorithm 7: Push-sum binary gossip
1 Initialization: xi, ωi = 1;
2 while not stabilised do
3 Choose a neighbour node j uniformly at random ;
4 Send ( si

2 ,
ωi

2 ) to node j;
5 Let {(xi, wi)} be all pairs sent to i;
6 si = ∑

i xi;
7 ωi = ∑

iwi;
8 xi = si

ωi
;

choose a non-nagetive share αi,j for each j, such that ∑j αi,j = 1 and send an
αi,j fraction of its sum and weight to each j. The non-negative n × n transition
matrix is defined as K = {k1, · · · ,kn}T .

Consider a undirected graph G=(V,E), where V is the set of vertices and E

denotes the edge set. We denote the vector of the values in all nodes x =
{x1, · · · , xn}T . The global mean value x = 1

n

∑n
i xi. The weight vector in

weighted gossip is defined as w = {w1, · · · , wn}T , which will be initialised to
be all ones 1. Each node i communicates with its neighbours to exchange mes-
sages and hold a codebook maintaining the share probability to its neighbours
denoted by ki = {ki,j|(i, j) ∈ E}T , s.t.∀ki,j ≥ 0,∑j ki,j = 1.

Algorithm 8: Push-sum Weighted gossip
1 At node i ;
2 Input: The initial value x = {x0, x1, · · · , xk} and ω = {ω0, ω1, · · · , ωk} ;
3 Set of neighbours of node i is denoted as Γ(i), and |Γ(i)| = Nnei ;
4 β=0.01 ;
5 Output: Average value x = {x̄, x̄, · · · , x̄}, |x| = K, where x̄ = s̄i

ω̄i
;

6 αi,j = 1
1+Nnei

, ∀j ∈ Γ(i) ;
7 while the stop condition is not satisfied do
8 for j ∈ Γ(i) do
9 send the weighted pair (αi,jxi, αi,jωi) to node j ;

10 // update process ;
11 Let {(sj, ωj)} be all pairs sent to node i ;
12 ŝi ←

∑
j sj ;

13 ω̂i ←
∑
j ωj ;

14 s̄i = αi,jsi + ŝi ;
15 ω̄i = αi,jωi + ω̂i ;

To summarise, Gossip algorithm is robust, scalable, fault-tolerance and decen-
tralised. However, it is not efficient since redundant information can arrive several
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times to a node due the randomness of picking neighbours to share information.
More importantly, Gossip is not efficient in time, and is not suitable for scenarios
where there is limited time to propagate the information [Birman, 2007].

2.4.3 SPIN

SPIN is a negotiation based information dissemination protocol [Heinzelman
et al., 1999]. The main idea behind SPIN is sharing descriptors with neighbours
before transmitting actual data. When a description is received, a node deter-
mines whether it has the data or not. If this data is new, a request message is
sent to the source, which replies with the actual data. Thus, the classic problems
of flooding such as redundant rebroadcast, channel contention and collision are
solved by this negotiation, improving energy efficiency. An excellent survey high-
lighting the issues in SPIN protocol and possible enhancement of SPIN protocol
is presented in [Patel and Parekh, 2014].

Figure 2.14: SPIN protocol [Patel and Parekh, 2014]

Figure 2.14 shows an example how SPIN works in the network. There are three
different defined message: 1), ADV message: advertise a particular meta-data
before transmitting actual data, 2) REQ message: request the specific data, 3)
DATA message: message that carry the actual data. Node A initialise a ADV
message to node B. When received this ADV message, B responds by sending
a request REQ to node A. Node A send the DATA message after receiving the
REQ. Then node B sends out ADV message to all its neighbours, neighbours who
has not seen the message send a request to node B.

Asynchronous distributed clustering
algorithms for wireless mesh network

32 Cheng Qiao



2. Background and Literature
Review 2.5 Model selections

2.5 Model selections

In this section, we describe two different methods to perform model selections.
The first method is information-theoretic criteria (IC): Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC). They are both penalised-
likelihood criteria, and are defined as:

AIC = −2logL+ 2p (2.16)

BIC = −2logL+ logn ∗ p (2.17)

where L is the likelihood function and p is the number of parameters in the
model. Both Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) are likelihood function based criterions for model selection among a
finite set of models. AIC estimates the relative distance between fitted likelihood
function of the model and unknown true likelihood function of the observations,
so that a lower AIC means a model is considered to be closer to the truth. By
trying different number of components, we can estimate the optimal components.
BIC, by the name, is an estimator of a posterior probability function of a model
being true, so that a lower BIC means that a model is considered to be more
likely to be the true model. When fitting models, it is possible to increase the
likelihood by adding parameters, but doing so may result in overfitting. Both
BIC and AIC attempt to resolve this problem by introducing a penalty term for
the number of parameters in the model. Since this method is used to detect single
pattern, we assume that if estimation by any method, AIC or BIC, is a single
pattern, we confirm that there is a single pattern.

As well as information-theoretic criteria (IC), P-value is also used to perform
model selections in statistics. When there is little data available or we have no
idea about the standard error for a given observation, a sampling technique, for
instance, bootstrap, can be used to estimate the true population of given obser-
vation. Draw n observations from the sample with replacement and calculate the
sample mean X̄i. These sample means form the bootstrap sampling distribution.
Repeat this over and over (typically 1,000 or 10,000 times) to end up with B.
The central limit theorem says that the distribution of bootstrap sampling will be
closely approximated by a normal distribution and the mean of this distribution
will be very close to the true mean. The P-value is calculated by the confidence
interval (CI) as follows [Altman and Bland, 2011]:
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P = e−0.717Z−0.416Z2 (2.18)

where test statistic Z is defined as estimation Est divided by standard error SE
with SE = (U − I)/(2 ∗ 1.96), and U and I are the upper and lower limits of a
95% CI respectively.

So which method is better for model selection? Both P-value and IC are dif-
ferent approaches to mine meaningful information from data. P-value is based
on sampling theory while AIC is based on information-theoretic criteria. AIC is
used to compare competing models for adequacy. The model with the least IC
is considered as the most adequate. P-values of parameters indicate significance
of a predictor by testing hypotheses that regression coefficients differ from zero
(hypotheses means the number of component here). Using p-values in stepwise
regression to select hypotheses is definitely not recommended since looking at
individual p-values can be misleading [Xin and Zhu, 2012]. Large p-values could
be caused by the fact that there is high correlation between variables. This does
not mean the variables are useless. As a quick rule of thumb, selecting model
with the AIC criteria is better than looking at p-values.

2.6 Distributed learning frameworks for wire-
less networks

We are interested in learning the wider network through message exchange when
each agent in the network only see a fraction of the data points 3. Distributed
learning methods are proposed to avoid the privacy, security and overhead issues
caused by centralising all raw data to a central server or cloud. Generally, there
are two different distributed learning frameworks for power-constrained wireless
networks: distributed learning with a fusion centre and with in-network pro-
cessing. Figure 2.15 shows the frameworks, where Si = {(Xij, Yij)} represents a
stationary sensor’s reading.

When a fusion centre is available, sensors communicate directly with a fusion cen-
tre and it focus on how learning is effected when gathering all data is impossible
for the communication constraints. Sending all collected data to the fusion centre

3Hadoop spreads the data out, and then gathers the result, so it is different [Greenhill and
Venkatesh, 2007, Kotary and Nandal, 2019, Corbett et al., 2013]
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is a direct way but is costly in terms of energy and bandwidth. Alternatively,
designating a small subset of nodes to send data is more principled method. For
instance, partitioning the sensors into sub-groups and electing a cluster head for
each sub-group. The selected cluster head is required to send data to the fusion
centre. This setting is relevant to WSN whose primary purpose is data collection.

The second framework is formed with an ad hoc structure in the right side of figure
2.15. The typical assumption is that the topology of the network is dynamic and
might be unknown prior to deployment, but sensors are highly independent and
able to make their own decisions. The goal is to learn a wider network pattern.
Now the question is that how to achieve collaborative learning by efficient inter-
sensor communication and in-network processing such that each sensor derives
a global estimation? Note that the global estimation is learned through sharing
information and built up gradually in an ad hoc way where all sensors contributed
a little bit. The global estimation learned may vary with nodes and further work
has to be done if it is required that all nodes learned the same global picture.

Figure 2.15: Distributed learning framework: (a) with a fusion center. (b) with
in-network processing [Predd et al., 2006]

Clustered approaches, which differs from the clustering algorithm in section 2.1,
has been frequently used in distributed learning with a fusion centre [Bandy-
opadhyay and Coyle, 2003, D’Costa et al., 2004, Nguyen et al., 2005]. In section
2.1, clustering algorithms are applied on data points owned by individual sensors.
Nodes in the network are grouped together as clusters in clustered approaches.
The nodes are divided into groups and one sensor of each group is assigned as
cluster head. Communication inside clusters could be efficient since nodes in a
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cluster are nearby. The cluster head filters the data received from nodes within
its group and send the fusion centre a summary that best describe the locally
learned rules. However, the cluster head election is still a challenge in the liter-
ature, and this learning framework is not suitable when topology of network is
unknown in advance.

The in-network process usually comprises: 1) local learning step where each node
defined a summary that best describe the locally learned pattern; 2) an com-
munication step where nodes exchange information with their neighbours; 3) an
update step where each node refines its local estimation based on information
received from neighbours; and 4) a converge step where agents stop updating
their local estimation when certain conditions, for instance, a finite number of
iterations, are met. In the following sections, we describe the state of the art
related to these steps involved in the in-network processing.

2.6.1 Local learning

Traditional machine learning (ML) approaches are designed to learn from a unique
dataset, where components of dataset are centralised in a single database or lo-
cation. When those technologies are applied to distributed data, collection of
data in a central database is normally required, which is usually either ineffec-
tive or infeasible due to high transfer cost and privacy issues [Peteiro-Barral and
Guijarro-Berdiñas, 2013]. This motives learning from distributed data in an effec-
tive and efficient way: local learning is carried out in each location independently
and local models are then aggregated to the global model. Distributed data learn-
ing is highly scalable in amount of data, respects the privacy of components that
spread out over multiple locations and reduces the high cost to centralise raw
data.

In this thesis, we focus on unsupervised learning. As mentioned before, clustering
is frequently used in distributed learning in wireless networks and there are several
approaches to define the clusters. Clusters could be defined by a hierarchical
method, where the clusters are decided by means of agglomerative approaches
that recursively merge and split clusters until a stopping criterion is satisfied [Yin
et al., 2017]; or represented by centroids, which is the value of all members with
in this group on average [Krishnamachari et al., 2002]; or areas of high density
in the density-based clustering [Birant and Kut, 2007]. In spectral clustering,
clustering are performed in a transformed space [Scardapane et al., 2016]. Finally,
in the distribution-based clustering, clusters are defined as distribution (mean
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and standard deviation) that best model all objects belonging to in a probability
perspective and GMM is the most adopted approach to describe clusters [Moon,
1996].

K-Means was proposed for local learning in large-scale peer-to-peer wired net-
works [Datta et al., 2008, Di Fatta et al., 2013, Bendechache et al., 2016, Bénézit
et al., 2010]. The k-means algorithm is distributed by inserting an exchange of
messages between neighbouring nodes after each internal iteration of the basic
K-means loop (the selection of centroids, and the assignment of individual data
points to each centroid) on the node’s local data. After assigning the data points,
each node transmits a description of its centroids and the number of data points
associated with them to its neighbours. In [Tsiligaridis and Flores, 2016], local
data was model by GMM instead, where each node estimate the means and the
covariances of the clusters independently.

Recently, to fully utilised the shape information of clusters, Bendechache et al.
[Bendechache et al., 2016] represent each cluster by its boundary points as well
as centroids, and then exchange the boundary and the number of internal points.
Figure 2.16 shows an example to obtain the boundary points by Delauney trian-
gulation. Similarly, Kotary et al. [Kotary and Nandal, 2019] proposed that the
using of Euclidean distance based cluster assignment make K-means unable to
detect the clusters that have arbitrary shape and a symmetric distance was used
instead to assign data points. Cluster centroids and Lagrangian multipliers of
the diffusion method are shared among neighbours.

Figure 2.16: An example of obtaining boundary points of a cluster

PCA is another widely used unsupervised method used for feature extraction in

Asynchronous distributed clustering
algorithms for wireless mesh network

37 Cheng Qiao



2. Background and Literature
Review

2.6 Distributed learning frameworks for
wireless networks

wireless network [Jiang et al., 2011, Zhou et al., 2014, Yu et al., 2017]. It identifies
and keeps the highest priority information from the feature space to reduce the
dimensionality. Given the number of principle components to find, the output
of PCA is a linear combination of orthogonal principal components. In WSNs,
PCA is used to reduce the dimensionality of the data either at sensor level or at
cluster head level to reduce the communication overheads. Challenges, such as
localization, fault detection, data aggregation, and target tracking, have adopted
PCA.

Dictionary learning is another widely used method in many applications including
image denoising, dimensionality-reduction, feature-extraction, and novel docu-
ment detection [Mairal et al., 2010, Shen and Huang, 2008, Mairal et al., 2009].
It chooses a sparse matrix, called dictionary, to represent the data. The basic idea
is that, given T samples of a P-dimensional data sequence, Y = [y1, · · · ,yT ] ∈
CP×T , there must exist a set of K atoms or a dictionary, D = [d1, · · · ,dk] ∈
CP×K , such that each data sequence is a linear combination of only a few atoms,
Y ≈ DXwhere X has sparse columns. A basic dictionary can be obtained by
using a PCA. Learning the representation of the data is useful for many tasks
such as storing, transmitting or analysing the data to understand its content.

Distributed Dictionary Learning have proposed to adapt decentralised scenarios
[Chainais and Richard, 2013, Chen et al., 2014, Daneshmand et al., 2019]. The
idea is that each agent learned the dictionary Dn and corresponding coefficients
Xn on its own data. The choose of coefficients Xn is also known as inference
problem, that infer a matrix that as sparse as possible and the difference between
Dn Xn and real vector Y is minimised. Then agent communicate with neigh-
bours. Eventually, all agents will learn the global dictionary and the raw data
could be recovered by global dictionary multiply a matrix called coefficients X.

Based on the contents shared, there are mainly two different types of dictionary
learning methods. The first one is sharing dictionary with others. Chainais et al
[Chainais and Richard, 2013] proposed a diffusion-based method to learn a com-
mon dictionary over a sensor network where local dictionary was shared among
neighbours. Upon receipt of new dictionary, an Adapt-Then-Combine (ATC)
strategy is used to update its estimates by averaging neighbouring estimates. For
the privacy issue, dual variables are shared instead in [Chen et al., 2014], and
diffusion strategies are applied to solve the inference problem by considering dual
function of the inference problem as an aggregation of individual cost functions
associate with different agents.
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Dictionary learning is useful because it significantly reduces the dimension of the
raw data. However, the resulting dictionary learned is a dense matrix, and its
manipulation can be computationally costly both at the learning stage and later
in the usage of this dictionary. For this issue, dictionary learning is only applied
to relatively small-scale problems [Le Magoarou and Gribonval, 2015].

2.6.2 Information exchange and data aggregation

In-network communication is a necessary step for further model updating in the
in-network processing procedure. The architecture of the network plays a vital
role in the information exchanging and updating process. In this section, we
describe the communication approach and data aggregation protocol together
under different structures. Depending on the network structure, there are several
types of widely used data aggregation methods, such as Flat network, Cluster-
based, Tree-based, Chain-based and hybrid aggregation protocols. There is a
review of various energy efficiency data aggregation schemes in [Rajagopalan and
Varshney, 2006].

Cluster-based topology: In this approach, network is divided into a number of
clusters. Each cluster has a cluster-head which is responsible for communication
with a sink node or base station. Merging the data belonging to a single cluster
is an important way to reduce the energy consumption.

Figure 2.17: An example of Cluster-based topology [Gui et al., 2016]

The Low-energy adaptive clustering hierarchy (LEACH) is a widely used protocol
in WSN to lower the energy consumption of network [Heinzelman et al., 1999].
Since acting as a cluster head requires more consumption of energy, the election
of a cluster head is based on residual energy. All node that are not cluster heads
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only communicate with the cluster head. There are a lot of extensions to address
the limitations of LEACH, such as scalability and the need for all nodes to be
continuously listening [Zhang et al., 2010, Heinzelman et al., 2002, Lindsay et al.,
2001, Yueyang et al., 2006].

Chain-based topology In some cases, if the cluster head is far away from
the sensors, it may take excessive energy in communication. Alternatively, each
sensor transmits only to its closest neighbour. Chain-based topology is based
on this idea (figure 2.18). A node receives data from one of its neighbours,
forward the data to its other neighbours along the chain. Eventually the leader
node (selected by some methods), which is similar to cluster head, transmits the
aggregated data to the sink. However, the formation of chain normally requires
that all nodes have global knowledge of the network.

Figure 2.18: An example of Chain-based topology

Tree-based topology: In a tree-based network, sensor nodes are organised into
a tree and intermediate nodes, except the root node, performs data aggregation
when received information from its child node. Eventually, the root node will
receive all information and produce the final model. For this kind of structure,
constructing an energy efficient tree is widely explored [Ding et al., 2003, Tan
and Körpeolu, 2003].

Bendechache et al. [Bendechache et al., 2016] represent each cluster by its bound-
ary points, and then exchange the boundary and the number of internal points.
Messages flow up the tree to the root. When a node receives multiple descrip-
tions, it computes a new description by merging any overlapping clusters into a
single cluster, and computing the new boundary. The algorithm is initialised with
a much higher k value than is expected, to allow this cluster merging to reduce
the number of clusters. This approach solves the issue of arbitrary shapes, but
introduces failure points at each aggregation, and requires a secondary communi-
cation from root to leaves to disseminate the final clusters. It also exposes some
of the raw data to neighbouring nodes, in order to specify the cluster boundary.

Hybrid topology: A hybrid topology comprises two or more structures [Zhang
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et al., 2010, Liang et al., 2008, Hong et al., 2008]. Chen et al. [Zhang et al., 2010]
proposed WST-LEACH algorithm. By taking the remaining energy, distribution
density of nodes and distance from cluster heads to the base station into consid-
eration, it first group local nodes into clusters. The clustering protocol is based
on well-known LEACH protocol. Nodes within the cluster transmit to cluster
head, and cluster head aggregate the data and forward it. Then a spanning tree
is created by using cluster heads. After that, cluster heads sent the aggregated
data to the base station via tree. Similarly, a Cluster-based Minimal Spanning
Tree is created to maximise the network lifetime [Liang et al., 2008]. The cluster
head is elected based on residual energy. After that, the cluster heads create a
routing tree simultaneously and finally the base station receives data from cluster
heads.

Flat topology: When topology of network is flat, nodes usually transmit in-
formation to their neighbours, which is determined by the transmission range.
Sensors who receive information will update their local model. In [Lin et al.,
2018], a double-clock consensus-based K-means algorithm was proposed for time-
varying topology, where agent could only exchange size and summation of all data
points with their one-hop neighbour. Total communication cost and number of
iteration are considered. However, the cluster number k is assumed to be known
for all agents.

Distributed K-Means [Datta et al., 2008] was proposed for use in large-scale peer-
to-peer wired networks. The k-means algorithm is distributed by inserting an
exchange of messages between neighbouring nodes after each internal iteration
of the basic K-means loop (the selection of centroids, and the assignment of
individual data points to each centroid) on the node’s local data. After assigning
the data points, each node transmits a description of its centroids and the number
of data points associated with them to its neighbours. Once a node has received
an update from all of its neighbours, it proceeds to the next round. It assumes
centroids are listed in a specified order, and computes a weighted average of the
centroids, which it then uses as the initial centroids for the next iteration. The
algorithm terminates after successive updates do not change the centroids beyond
a specified threshold. In this scheme, no raw data is exchanged, thus satisfying
the basic privacy requirements, and the centroid summaries reduces the amount of
data being transmitted. However, the algorithm requires synchronisation, which
in wireless networks may introduce significant delay, and may fail to converge
if one node has initial data whose distribution is significantly different from the
average. The exchange of just centroids and counts also discards information
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about the shape of the cluster. When clusters have significantly different shapes,
this may again cause problems for convergence.

Gossip-based methods for distributed K-means are proposed in [Di Fatta et al.,
2013, Bénézit et al., 2010]. Rather than sharing message with all its neighbours,
each node selects a small subset of its neighbours to communicate with at each
round, and includes a damping factor in the weighted average to avoid oscillations.
Each node selects a small subset of its neighbours to communicate with at each
round, and includes a damping factor in the weighted average to avoid oscillations.
Although global synchronisation is avoided, local synchronisation is still required.
In practice, the nature of the gossip algorithm means that many rounds are
required before convergence. Since there is no global synchronisation, nodes are
unaware of when other nodes have converged, and so another algorithm running in
parallel is required to detect termination, or the algorithm is forced to terminate
after a fixed number of rounds.

Compared to hierarchical networks, such as hybrid topology, cluster-based topol-
ogy and tree-based topology, the flat network dose not suffer from the overhead
involved in cluster or tree formation throughout the network. Besides, the net-
work may still be operational even some nodes fail. For these reasons, flat topolo-
gies have been widely used for distributed learning in wireless network [Lin et al.,
2018, Datta et al., 2008, Bendechache et al., 2016, Di Fatta et al., 2013, Bénézit
et al., 2010].

Data aggregation function: Each of the different topologies can use different
data aggregation functions and they can be summarised as follows: duplicate sup-
pression and other aggregation functions with multiple inputs (for instance, sum,
mean, max, min, weighted mean and weighted sum) [Krishnamachari et al., 2002,
Giridhar and Kumar, 2005]. The aggregation function computes the relevant sum-
mary of the data. Taking temperature reading in environmental monitoring as
an example, the final estimated temperature may be the mean temperature of all
readings, or median, or mode while the maximum temperature reading might be
much more interesting in alarm networks.

Figure 2.19 shows an example of tree-based aggregation process, where the arrow
indicates the routing path and f(−) is the data aggregation function. Since
node 1 and 2 are leaf nodes, they will simply transmit the information (raw or
processed) to their parent node 3. Node 3 will combine a and b with its own
data c by a aggregation f(−), and f(a, b, c) will be sent to its parent node 5.
This process will be repeated until all aggregated information reached the sink
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node. If the aggregation function f(−) is to compute the mean of all readings
i = {a, b, c, e, x, y, g, z,m}, the mean h should be:

h = a+ b+ c+ e+ x+ y + z + g +m

9 (2.19)

If the data aggregation function mean is carried out in intermediate nodes, the
final reading h̄ is computed as:

h̄ = f(j, k,m) = m+ f(d, e, g) + f(x, y, z)
3

= m+ f(x, y, z) + (g + e+ f(a, b, c))
3

=
m+ 1

3(x+ y + z + g + e) + 1
3(a+ b+ c)

3

=
3m+ x+ y + z + g + e+ 1

3(a+ b+ c)
9

(2.20)

Which is approximately equal to the actual reading h based on the assumption
that readings in that monitoring area are similar. Note that if the data distri-
bution is not uniform, then this might be significantly wrong, because it gives 9
times as much weight to m as it does to a, b or c.

Figure 2.19: An example of tree-based aggregation process

In [Datta et al., 2008], a weighted average is used for the aggregation function.
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After a sensor received centroids and counts from its neighbours, it updates its
own information using the average weighting scheme ( algorithm 9). Similarly,
Gossip-based aggregation methods update their information using a weighted
average [Di Fatta et al., 2013, Bénézit et al., 2010].

Algorithm 9: Average Weighted Scheme
1 Local node Ni,
2 Require: Local centroids C = {c0, c1, · · · , ck} and counts

ω = {ω0, ω1, · · · , ωk};
3 Input: Centroids and counts pairs received from neighbors set Γ(i);
4 Output: Average value c̄ = {c̄0, c̄1, · · · , c̄k}, |c̄| = K, where c̄k = s̄k

ω̄k
,;

5 Let {(cj, ωj)} be all pairs sent to node Ni;
6 s̄ik ←

∑
j cjkωjk ;

7 ω̄ik ←
∑
j ωjk ;

However, this weighted average method can not be used any more when the
number of clusters k of all agents in the network are not consistent. In this thesis,
we consider a regeneration based method to update centroids and counts. Agents
estimate the distributions of clusters based on summary description received, then
combine the regenerated data with its local data and re-cluster them.

2.6.3 Convergence

When algorithm is asynchronous, which means nodes do not have to wait until
they have received a message from all its neighbours, it is necessary to determinate
the termination condition for nodes. For the termination conditions for nodes,
there are two different ways. One method is monitoring the maximum distance
between centroids of clusters, proposed by Kargupta [Datta et al., 2008]. If
the maximum distance between the centroids of nodes at the start and end of
iterations l is larger than a preset threshold λ, then nodes proceed to iteration
l + 1. Otherwise it enters the termination condition. In addition, a prefixed
number of maximum iterations is also used to force the node stopping updating.

di = max
∥∥∥ωj,̂i − ωj,i : 1 ≤ j ≤ K

∥∥∥ (2.21)

where ωj,̂i and ωj,i denotes the centroids for iteration î and i respectively.

The other one is global squared errors proposed by Di Fatta [Di Fatta et al.,

Asynchronous distributed clustering
algorithms for wireless mesh network

44 Cheng Qiao



2. Background and Literature
Review

2.6 Distributed learning frameworks for
wireless networks

2013]. It firstly compute the local squared errors for agent i as follows:

ei =
K−1∑
k=1

∑
x∈Ck

|d(x,mk)|2 (2.22)

where x is dataset inside cluster Ck and mk is the centroids for cluster Ck. Then
compute the global errors by summing up the error from all nodes. If the global
error is decreased below a specified minimum threshold λ, the agent turn to
terminated condition.

2.6.4 Weaknesses of the state of the art and corresponding
solutions

Distributed K-Means [Datta et al., 2008] was proposed for use in large-scale peer-
to-peer wired networks. In this scheme, no raw data is exchanged, thus satisfying
the basic privacy requirements, and the centroid summaries reduces the amount of
data being transmitted. However, the algorithm requires synchronisation, which
in wireless networks may introduce significant delay, and may fail to converge
if one node has initial data whose distribution is significantly different from the
average. The exchange of just centroids and counts also discards information
about the shape of the cluster. When clusters have significantly different shapes,
this may again cause problems for convergence.

Bendechache et al. [Bendechache et al., 2016] represent each cluster by its bound-
ary points, and then exchange the boundary and the number of internal points.
Messages flow up the tree to the root. This approach solves the issue of arbi-
trary shapes, but introduces failure points at each aggregation, and requires a
secondary communication from root to leaves to disseminate the final clusters. It
also exposes some of the raw data to neighbouring nodes, in order to specify the
cluster boundary.

Gossip-based methods for distributed K-means are proposed in [Di Fatta et al.,
2013, Bénézit et al., 2010]. Although global synchronisation is avoided, local
synchronisation is still required. In practice, the nature of the gossip algorithm
means that many rounds are required before convergence. Since there is no global
synchronisation, nodes are unaware of when other nodes have converged, and so
another algorithm running in parallel is required to detect termination, or the
algorithm is forced to terminate after a fixed number of rounds.

Due to communication cost, privacy consideration and power constraints of wire-
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less network, in-network learning methods should be efficient in energy consump-
tion and aware of latency. For the high computation cost, distributed dictionary
learning technology may not be suitable. However, distributed clustering algo-
rithm is a promising solution, but with the following weaknesses:

1. Only observations from the same source is considered. However, there might
be sub-groups that observed different scenes or readings in some practical
applications and this must be identified. For instance, agents that are close
to a fire may have a much higher temperature reading that other agents and
this must be reported immediately. Based on these concerns, an in-network
method that can distinguish different data patterns across the network is
desired.

2. The number of clusters is preset. As mentioned before, K-means requires
the number of clusters k to be fixed in advance. It is a strong assumption
for unsupervised learning, and if the methods are automated and act in
response to observed data, then it is unrealistic to assume that the k value
will be known. In addition, unless we can guarantee that all nodes are
observing the same phenomenon, then it is possible that the appropriate
k value will vary across the nodes. But if we allow different nodes to use
different k according to their own data, then we have a problem with limited
data fractions - a node may be misled by its observed data and propose a
smaller k value than is appropriate for the true data. Another concern is
that the overlapping between clusters. Huge overlapping between clusters
will force number of clusters k deviate from the true value. Based on these
consideration, an adaptive distributed K-means clustering for in-network
learning is desired.

3. The weighted average aggregation function only be suitable for the case
where the number of clusters k is fixed to be same for all nodes. So a data
aggregation function with adaptive number of clusters is desired.

4. Each agent has to synchronise its behaviour with its neighbours [Ben-
dechache et al., 2016, Datta et al., 2008, Di Fatta et al., 2013, Kotary and
Nandal, 2019, Bénézit et al., 2010]. Synchronisation in wireless networks
may introduce significant delay.

5. Communication cost is ignored. Since the power of node is limited and in-
network communication consumes the largest part of energy, it is necessary
to reduce the transmission of message to prolong the lifetime of network
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[Miller and Vaidya, 2005].

Before we describe the work in this thesis, we introduce the methods to measure
the performance of clustering:

1. Accuracy against ground truth data points. When we know the ground
truth distributions to create the raw data points, we compare the clustering
results with the ground truth data points. Any two data points that are
assigned into the same cluster or assigned into different clusters as ground
truth distributions are counted.

2. Accuracy against centralised data points. When the ground truth distri-
butions are not available, we run a single centralised clustering to get a
benchmark clustering result. Then compare our clustering result with this
benchmark result.

3. Accuracy against patterns. In cases of multiple patterns, where there are
sub-groups of agents receive data from different resource, we measure how
accurately the algorithm put agents into the same group as ground truth
patterns.

In this thesis, first, we will propose an asynchronous distributed clustering algo-
rithm for known k values that can also handle cases where the number of nodes in
the network is not known. The algorithm is able to reproduce clusters that were
used to create the raw data, it avoids transmitting raw data across the network,
and it converges in reasonable time. It is based on the idea of sharing informa-
tion about the data distribution in each cluster, and it can be used with different
internal cluster algorithms. Then we develop a revised algorithm that does not
require the k value as input, and we show that we can retain accuracy and the
good time performance. Then we introduce a method which can handle different
sub-groups of nodes observing different phenomena, with possibly different num-
ber of clusters. The method is based on applying a similarity measure based on
an adapted EMD to the different cluster models, but it does assume there is more
than one pattern to be detected. Finally, we introduce a method that can can
identify whether or not there are multiple patterns, based on the idea of anomaly
detection.
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Chapter 3

Asynchronous Distributed
Clustering for Mesh Networks

We consider a problem motivated by Wireless Mesh Networks: how should the
agents act and communicate so that all agents end up with the same understand-
ing of the environment? We assume this is an unsupervised task, and so we model
the problem as clustering. For this chapter, we assume that all agents are sensing
the same phenomenon, and so should finish with the same cluster descriptions,
and we assume that the number of clusters to be described is known by all agents
at the start. Our aim is to enable this while minimising elapsed time and com-
munication costs, without imposing a central controller in the network. For both
privacy and efficiency, we want to avoid sharing raw sensed data values; instead,
we will share summary descriptions.

Each of the different algorithm variants is constructed from individual runs of
a clustering algorithm by each agent, followed by sharing of cluster descriptions
across the network. The description includes information on the size and ’shape’
of the clusters. Depending on the particular scenario, after receiving new infor-
mation from other agents, an agent may update its own cluster description before
sharing it again, or it may simply relay the received information. When updating
the cluster descriptions, in order to exploit well-known clustering algorithms, an
agent may regenerate sample data points from the received information. Once
an agent believes it has received information from enough agents, it computes a
global cluster description, and shares that.

The outline of this chapter is as follows: In the first section 3.1, the main algorithm
is described in detail. Then in section 3.2 we introduce a regeneration based
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method to describe the shape of clusters. After that, two different scenarios
are illustrated in section 3.3 and experimental result are shown in section 3.4.
Conclusion is given in section 3.6.

3.1 Main Framework

In this section, we describe the asynchronous distributed clustering algorithm
(ADC) for all agents to learn wider network pattern (for instance, understand
the environment) (algorithm 10 and 11). We are assuming a flat ad hoc network
where each node has a limited communication range (for example in wireless
networking). Therefore each node has a set of neighbours with which it can
communicate directly. We do not assume any distinguished node in the network,
and so any node may be first to initiate the clustering process. Our proposed
algorithms do not impose any topology on top of this network, although we do
compare to algorithms for which a communication tree has been built, to get a
baseline for our results.

Algorithm 10 shows the outline algorithm when agents know the size of network.
Different instantiations of this framework will be developed in this and following
chapters. The node clusters its local data with a pre-defined k. It then sum-
marises the result of the clustering, and transmits that summary to neighbours.
After receipt of cluster summaries from each agent, the agent processes those de-
scriptions and do local clustering. Once a node detects that successive iterations
do not change the clusters significantly, and that there are no incoming messages,
it terminates.

Figure 11 shows the basic step to compute the global model when the size of
network is not known. Compared to the previous scenario, agent has to compute
the provisional model whenever received new massage. The agent will turn to
sleep but is ready to wake up. The algorithm will terminate if have not received
any message for a specified seconds.

3.2 Cluster descriptions and integration

Transmitting cluster centroids and counts is not enough, since it loses important
information about the distribution of data points around the centroids. We pro-
pose that each cluster is described by centre, estimation of size, and a description
of the distribution and shape. In this section, we present three different schemes
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Algorithm 10: Asynchronous distributed clustering algorithm (a)
/* The size of network is known */

1 Initialization: generate initial cluster model with a pre-defined k;
2 Exchange cluster descriptions with neighbours;
3 while not stabilised do
4 if received messages then
5 process received summaries and transmit results;
6 if received all summaries then
7 Compute the global model;
8 Send convergence command to neighbours ;
9 Set stabilised to be true;

10 else if Receive terminate message (a.k.a., global model) then
11 Update local knowledge;
12 Transmit terminate message to all neighbours;
13 Set stabilised to be true;
14 else
15 Wait until receive a message;
16 if have not received any message for a specified seconds then
17 Set stabilised to be true ;

Algorithm 11: Asynchronous distributed clustering algorithm (b)
/* the size of network is not known */

1 Initialization: generate initial cluster model with a pre-defined k;
2 Exchange cluster descriptions with neighbours;
3 Wait until messages received or time exceeded ;
4 while time not exceeded and messages received do
5 Incorporate received neighbours’ cluster information;
6 Run local clustering to completion;
7 Transmit new summaries to neighbours;
8 Wait until message received or time exceeded;

for this description. Figure 3.1 shows the three different schemes:

1. K-means. Local data are clustered by K-means. Nested bounding boxes are
then used to describe the shape of clusters. Centroids, counts and bounding
boxes are shared with neighbours.

2. Separate Gaussians (SG). Similarly, local data are clustered by K-means
and then a separate multi-dimensional Gaussian is fitted to each cluster,
where the shape of cluster is denoted by mean and variance. In this case,
the Gaussians, plus a count of the data points in each cluster, are shared
with neighbours.
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3. Gaussian Mixture Model (GMM). A Gaussian Mixture Model is fitted to
the local data by the EM algorithm. The shape of each cluster is described
by the means and variances of the GMM. The GMM, plus a count of the
number of data points in each cluster, is shared with neighbours.

Figure 3.1: Information propagation

The standard output from K-means is a list of centroids, with no associated in-
formation on the shape of the identified cluster, whereas the cluster descriptions
from SG and GMM do include shape descriptors – the mean and variance (or
co-variance matrix). Therefore, we augment the output of K-means by deriving
nested bounding boxes. We describe them using centroids, size of clusters prin-
cipal components, and percentiles with their corresponding values (for instance,
percentile 5% and value 0.1 means that 5% of data points is less than 0.1).

Suppose the percentile used for each axis is [0.0, 0.1, 0.3, 0.7, 0.9, 1.0]. We
first apply Principal Component Analysis to each cluster, to generate the axes of
the cluster shape, centred on the centroid. For each positive and negative axis,
we generate the maximal data point, the 80th percentile point, and the 40th
percentile point. We then adjust the 80th and 40th percentile points to midway
between that point and next closest greater point. Taken together, this produces
three bounding boxes (or hyper-rectangles), containing 100%, 80% and 40% of
the points respectively, oriented along the PCA axes, and thus approximates the
shape and density of the points in the cluster. Please note that this method
assume that data points inside a cluster are approximately evenly scattered.

Figure 3.2 shows on example how to describe the summary description given a
raw dataset. The red bounding box shows all raw data points are located inside
this box, the two arrowed direction shows the main orientation of shape of this
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cluster, and the cross denotes the centroids of this cluster. Note that PCA is only
carried out on the whole cluster, which indicates that the axes are the same for
each box. The computation cost is the main reason why we do not do PCA for
each small percentile box.

Figure 3.2: Original data and its summary description

At some stages in the overall algorithm, an agent will need to combine cluster
models from two or more agents. Possible methods include merging of the descrip-
tors by generating a new set of bounding box that enclose the individual ones,
or mathematical models for combining Gaussians. Instead, we consider methods
which generate new sets of data points by sampling from the distributions or
descriptions, and then re-running local clustering. If receives a GMM or separate
Gaussians, agents uses standard techniques to sample from these distributions,
proportional to the associated counts.

When the received description is a bounding box model, we need to specify
how to sample data points, and the process is shown in Algorithm 12. First,
randomly generate an x coordinate and find its right place by comparing with
the percentiles, then generate a random number in the corresponding interval
of percentile values. The number of points n to generate in a particular area
can be inferred by the bounding boxes. For example, assume the array of box
percentile values is [0.0, 0.1, 0.3, 0.7, 0.9, 1.0] and the corresponding values are
[v0, v1, v2, v3, v4, v5]. If A = 0.5 is generated, since 0.5 is located in the third
interval [0.3 − 0.7] of the percentile, the value of A should be randomly gener-
ated from the range [v2, v3]). Similarly, generate a y coordinate and store the
coordinate pair as a new point.

Figure 3.3 shows a summary description, and the data points generated from it.
The evaluation of this regeneration based method is attached in the appendix
8.1, where we consider how different percentiles for the bounding boxes, different
number of data points and different underlying distributions affect the perfor-
mance. Experiments show that we could generate a similar cluster based on its
summary description generated by our method. Descriptions for clusters that are
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Algorithm 12: Generate new data points
Input : Number of points to generated n, array of box percentile p and

corresponding values sval
Output: Generated dataset nda

1 count = 0 ;
2 while count < n do

/* generate x coordinate */
3 Random generate a number A in [0, 1] ;
4 Find the interval i of percentiles in p that contains A ;
5 Generate a random number in the corresponding interval of percentile

values sval[x]: xtem = sample from uniform(sval[x][i], sval[x][i+ 1]) ;
/* generate y coordinate */

6 Random generate a number B in [0, 1] ;
7 Find the interval j of percentiles in p that contains B ;
8 Generate a random number in the corresponding interval of percentile

values sval[y]: ytem = sample from uniform(sval[y][j], sval[y][j + 1]) ;
9 nda.append([xtem, ytem]);

10 count += 1 ;

Algorithm 13: Regeneration algorithm
1 Input: Summary descriptions S = {S1, S2, · · · , Sk};
2 Output: Regenerated dataset Rs;
3 for each cluster description Si ∈ S do
4 if Clustering algorithm is K-means then

/* p: array of box percentile, sval: corresponding values of p */
5 Si = {n, p, sval} ;
6 Call algorithm 12;
7 Append generated dataset to Rs;
8 else if Clustering algorithm is GMM or SG then

/* µ: mean of cluster, val: the variance of cluster */
9 Si = {n, µ, var};

10 Randomly generate n data points based on µ and val;
11 Append generated dataset to Rs;

12

elliptical are more stable than those for circular clusters. One possible approach
to improve the quality of generated cluster is choosing an appropriate percentile.
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Figure 3.3: Bounding boxes received and regenerated data based on it

3.3 Distributed Clustering algorithm and vari-
ous scenarios

In the last section, we have shown that, given a cluster of data points, we can
summarise it and then generate new points that give approximately the same
description. Now the question is how to share these summary descriptions and
update local models when a new model is received.

While a node is doing local clustering, more messages may arrive from neighbours.
We considered two approaches: transmit the result of local clustering, and then
read any stored messages and repeat; read stored messages and repeat clustering,
until the inbox is empty, and then transmit the clustering results. In practice,
transmitting before reading new messages produced better performance, so we
only report those results. As well as transmitting their own summaries, we allow
each node to send on summaries received from other nodes without modification
if needed. Further, to each summary we attach a list of all nodes whose data was
used to generate the clusters. This supports the delayed clustering above, where a
node waits until it has received information from all known nodes. In some cases,
we also allow a node to issue a request for reduced data summaries (summaries
built from a specific subset of nodes). Finally, we consider case where messages
are sent to all direct neighbours, and where messages are sent to a randomly
selected subset of neighbours.

For incorporating the simplest cluster summaries, we compute the weighted av-
erage centroids. For cases where we receive more descriptive summaries, we
generate new data points by sampling from those descriptions, and we sample
in proportion to the cluster counts. The sampled data is then combined with
the local data, and provides the input to next round of local clustering. For the
PCA/bounding box description, we generate points uniformly at random in the
40% box, and then generate points uniformly in each sector to extend to the
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80% box, and then repeat to fill the remainder of the 100% box (Fig 3.3, for the
same case as Fig 3.2). For the Gaussian summaries, we simply sample from the
Gaussian distribution.

We can use our framework to recreate the method of [Datta et al., 2008] (use
’no further improvement’ as terminating condition), by all nodes starting with
the same pre-scheduled initial centroids, running a single internal iteration of
k-means, counting the data points assigned to each cluster, transmitting a list
of pairs of centroid location and centroid count to all neighbours, waiting until
all neighbours have transmitted, then computing a weighted average location
for each centroid. Similarly, we can replicate the method of [Di Fatta et al.,
2013], by all nodes starting with the same pre-scheduled initial centroids, running
a full iteration of k-means, counting the data points assigned to each cluster,
transmitting a list of pairs of centroid location and centroid count to a single
randomly selected neighbours, then computing a weighted average location for
each centroid.

3.3.1 Agent knowledge: known number of nodes

We consider two different scenarios for the initial knowledge nodes have of the rest
of the network. In this first scenario, we assume that each node in the network
knows the total number of other nodes. In any uncontrolled process, we run
the risk of creating a feedback problem, where the neighbours of a node send it
summaries which already incorporate that node’s own cluster descriptions. For
example, A sends its summaries to B, which incorporates the data, generates new
summaries, and sends them on to C; C updates its global view, and passes it on
to A; if A then incorporates that model into it local data, it will effectively give
double the weight to its own data.

To avoid this problem, each agent can simply transmit its own summaries la-
belled with its own ID, and then simply relay other received previously unseen
summaries without re-clustering. Once it has received the correct number of
summaries, it can combine them all to get a global picture. At that point, it can
transmit the global summary, with a flag to indicate that no new information
will be received. Each agent receiving this termination message stops its own
process, adopts the global summary, and retransmits the message. We call this
algorithm variant Model Merge after Filtering 1 (MMF1), shown in Algorithm
14. We note that there is some privacy loss here, since at least one agent will see
the individual summaries from each other node.
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Algorithm 14: MMF1 for node Ni in n node network
1 Require: Message box B;
Input : Local dataset Xi

Output: Final representatives of clusters
2 Randomly generate k initial centroids in the space;
3 Cluster Xi with the generated centroids as input;;
4 Initialize list of received model T ;
5 while not terminated do
6 if Message box B is not empty then
7 if Receive terminate message then
8 Send terminate message to all neighbours;
9 Terminated

10 else if Receive data message x and x 6∈ T then
11 Add x to T ;
12 if len(T) == n then
13 Call algorithm 13;
14 Combined regenerated data with local data;
15 Do local clustering on the combined data;
16 Compute global view;
17 Send converge command to neighbours;
18 else
19 Share message x with neighbours;

3.3.2 Agent knowledge: direct neighbourhood only

In this scenario, we assume that each node knows only its immediate neighbours,
and does not know the identity of other nodes, or even the size of the network.
The same feedback problem as in the previous scenario still applies. In this case,
we cannot wait until all summaries are received, since no node knows how many
summaries are expected. Instead, we exploit the IDs that we can attach to each
model.

When a node receives a summary constructed only from IDs it has not seen
before, it applies the basic summary incorporation approach. If it receives a
summary constructed entirely from IDs it has already seen, it ignores it. If it
receives a summary built from some old and some new IDs, it then applies a
model subtraction procedure, to avoid the feedback problem. It generates sample
data points for the parent model, then generates temporary data points for the
model to be subtracted, and for each temporary data point, it removes the closest
data point generated for the parent model. If it does not have an appropriate set
of smaller models to subtract, it identifies a small missing set, and sends a request
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to one or more neighbours which transmitted a superset. Those neighbours either
reply with the summaries, or issue their own requests in turn. The algorithm,
MMF2, is described in Algorithm 15.

Algorithm 15: MMF2 for node Ni

1 Require: Message box B;
Input : Local dataset Xi

Output: Final representatives of clusters
2 Randomly generate k initial centroids in the space;
3 Cluster Xi with the generated centroids as input;
4 Send representatives and model name Mi to neighbours;
5 Wait until messages received or time exceeded ;
6 while time not exceeded and messages received do
7 Incorporate received neighbours’ cluster information;
8 Call algorithm 16;
9 Run local clustering to completion;

10 Transmit new summaries to neighbours;
11 Wait until message received or time exceeded;

Algorithm 16 shows the procedure for model subtraction. First, the final model
fmodel, which contains all unique messages it saw, is computed and the largest
subset lsub of fmodel is computed as well. For instance, sensor i received two
messages: abc and bcef , then the final model fmodel is abcef and lsub is bcef .

After that, dset is defined as the difference between lsub and fmodel. Then, the
elements of dset are searched for in History table T . If any item is still missing,
the agent sends out a request to specific neighbours who have transmitted this
message before. Finally, models for fmodel are combined by substracting and
regenerating and the regenerated dataset is clustered to get the new model.

3.3.3 Time Complexity

Algorithm 14 and 15 consists of updating local model, generating data points and
computing the global models. The time complexity to generate N data points
is bounded by O(N). If the size is known in advance, an agent computes the
global model as soon as it receives local model descriptions for each node in the
network. In this case, the time complexity depends on the clustering algorithm
used to compute the local and global models.

1. K-means is used as clustering algorithm. Since we calculate the distance
in a 2-dimensional space, we assume the cost of computing the distance
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Algorithm 16: Model Subtraction
Input : History table T̄ , Message list mi (0 ≤ i ≤ N)
Output: regenerated dataset Rs

1 H ← set of node IDs in T̄ ;
2 fmodel ← union of H & node IDs in mi;
3 T̄ = T̄ + mi;
4 if there exists a set of model IDs S ∈ T̄ such that S = H then
5 fmodel = S
6 else
7 lsub ← biggest subset from T̄ ;
8 dset ← fmodel \ lsub;
9 Find elements of dset missing from T̄ ;

10 Send request to neighbours to get those models;
11 fmodel = lsub + dset;
12 Call algorithm 13 with fmodel as input;
13 Cluster regenerated dataset;
14 Summarise the clusters;
15 return new model of clusters;

from a point to a cluster centroid is constant. Running t iterations of K-
means loops (Lloyd’s algorithm) exhibits the complexity of O(Nkpt), where
k is the number of clusters, p is the dimensionality of the data [Bachem
et al., 2016]. Usually the iterations t and k are small, so the time complex-
ity is O(N) 1 [Arthur and Vassilvitskii, 2006]. In this case, PCA is used
to compute the nested bounding boxes. Computing PCA involves a time
complexity of O(p2 ∗h+ p2 ∗N) [Sharma and Paliwal, 2007], where p is the
dimension of the data and h is the number of eigenvector in a reduced di-
mension to be computed 2. Given the underlying dataset is 2-dimensional,
computing the PCA takes time in O(N). So the overall time complexity is
bounded by O(N +N +N +N) = O(N).

2. GMM is used as clustering algorithm. The time complexity of GMM is
O(N ∗k∗p3) = O(N) [Pinto and Engel, 2015]. The overall time complexity
is bounded by O(N +N +N) = O(N).

3. SG is used as clustering algorithm. Compared the process with that of
K-means, the computation of PCA is not required. Applying a Gaussian
process to a dataset of size N has complexityO(N3), and it could be reduced

1In the worst case, k-means is exponential.
2When p is larger than N , the time complexity is bounded by O(min(p3, N3)) [Johnstone

and Lu, 2009]
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to O(N) by various approximate techniques (i.e., partition the dataset into
several groups) [Hensman et al., 2013]. Since we fit each cluster to a separate
Gaussian, so the overall complexity is O(kN̄), where N̄ is the size of cluster
and N̄ < N . So the overall time complexity is bounded by O(N +kN̄ +N)
= O(N).

When agent is only aware of its immediate neighbours, agent has to compute the
provisional global model whenever received new message. Suppose an agent has
to update T rounds until convergence. The complexity of algorithm varies with
the clustering algorithm:

1. K-means is used as clustering algorithm. In this case, an agent has to
compute PCA, re-generate data points and do clustering for T rounds. So
the overall time complexity is bounded by O(N + T (2N +N)) = O(TN).

2. GMM is used as clustering algorithm. The overall time complexity is
bounded by O(N + 2TN) = O(TN).

3. SG is used as clustering algorithm. The overall time complexity is bounded
by O(N + 2TN)) = O(TN).

3.4 Empirical Evaluation

In this section, we evaluate the performance of proposed methods and compare it
to the state of the arts. First, we make some assumptions about the underlying
network. The network

1. is connected – there is a multi-hop path between any pair of nodes;

2. uses point-to-point communication – i.e. each message transmission is sent
to a single neighbouring node;

3. ensures reliable delivery of the messages, but this may require retransmis-
sions on failure, and so there is a message-specific delay for any transmission;

4. begins clustering at a pre-scheduled time – all nodes start clustering at
approximately the same time, with the same expected number of clusters;

5. supports a parallel process to detect termination of the algorithm.

For the environmental conditions, we assume that nodes gather their own data
(i.e., from sensors or human interaction), and that they have a data storage policy
which determines the length of time for which that data is active. We assume that
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this distributed clustering task is then taking a snapshot of the current local data
stores. We make no particular assumptions about the form of the data, apart
from assuming we can apply various well-known algorithms to do local clustering.
In practice, in the thesis, we restrict our data samples to 2-dimensional data.

We evaluate a number of different instantiations of the ADC framework. MMFi-P
uses full k-means, exchanging PCA and Bounding Box summaries, regenerating
data by sampling, for the two MMF variants. Similarly, MMFi-SG uses full k-
means, but then exchanges separate Gaussian models with counts fitted to each
cluster. MMFi-GMM fits a Gaussian Mixture Model for clustering, and exchanges
the GMM with counts. We also evaluate [Datta et al., 2008] partial k-means,
exchanging centroids and counts with all neighbours, and [Di Fatta et al., 2013,
Bénézit et al., 2010] (full k-means, exchanging weighted centroids and counts with
a single neighbour).

To simulate the operation of the algorithms on a mesh network, we implement
an Asynchronous Message Delay Simulator, based on [Zivan and Meisels, 2006].
Random network topologies are generated based on [Erdös and Rényi, 1959],
where the probability pN is larger than (1+ε)ln(N)

N
, where ε is a positive constant,

to ensure that a random graph generated is a connected graph (we set ε = 1).
To generate dense graph topologies, pN is set to 0.8.

We consider a wireless network (dense or sparse) with 10 agents. The initial
raw data is generated in k clusters, sampled from a two-dimensional symmetric
Gaussians, scaled to the range [0,1] before being assigned randomly to network
nodes. Each node is given 200 data points and the number of clusters in all
simulations is set to 5. Each message transmission delay is generated uniformly
from the range [0.5, 1.0], and nodes begin their work at time randomly selected
in [0, 0.1s].

Before we distribute the data points over the nodes, we run a single centralised
k-means, to get a benchmark clustering result. Agents’ clustering results are
then compared to the clustering of centralised method. We use the percentage of
membership mismatch (PMM) as our formal measure of clustering error:

PMM (i) = 100
|~x ∈ X(i) : Lc(~x) 6= Lip(~x)|

|X(i)|
(3.1)

where Lc(~x) denotes the label of the cluster to which ~x is assigned at the end
of centralized methods and Lip(~x) denotes the label of the cluster to which ~x is
assigned once the node reaches the termination state.
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Table 3.1: Notation

MMF1 MMF scheme under Scenario 1
MMF2 MMF scheme under Scenario 2

P Describe clusters by bounding boxes
SG Fit clusters by separate gaussians

GMM Gaussian Mixture Model
R-msg Received data message
R-poll Received poll message
t0 First agent learned global view
t1 Last agent learned global view
t2 Convergence time for algorithm

Since GMM is a soft clustering method, which assigns to a single data point a
probability of membership of each cluster, PMM may be unfair to GMM, since
it can never achieve 100% clustering accuracy. In order to compare with the
hard assignment obtained by k-means, we assume that the final assignment of a
data point to a cluster is determined by the highest probability. In addition to
clustering accuracy, we measure the convergence time, which records the interval
between the time when first agent initialised and last agent terminated. For
communication costs, we record the total number of received messages. For each
measure, we compute Mean and Standard Deviation over 50 random problem
instances at each setting. The notation is summarised in Table 3.1.

None of our methods use a central controller, and we assume an additional process
which detects termination if required. For termination time, we record the last
time at which any node or message was active. For MMF2, we also measured the
time that the first node reached stability (t0), and the time that the last node
reached stability (t1). In those MMF2 experiments, t2 is the final termination.

The number of messages received is not necessarily sufficient to measure commu-
nication cost, since large messages require more packets and thus longer trans-
mission times. For IEEE 802.11ac, the maximum size of a single packet (MPDU)
is 11,454 bytes. For our experiments, we limit the number of clusters to 5. Five
centroid locations plus counts, or five Gaussians plus counts, can be described
in just over 1000 bytes. The principal components and bounding boxes for five
clusters can be described in just 9,272 bytes, and thus, for our experiments, each
model description can be transmitted in a single packet, and so the total number
of messages is a good proxy for communication energy costs.

First we evaluate performance under scenario 1, in which nodes know the size of
the network. The results for densely connected networks of 10 nodes are shown
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in figure 3.4. MMF1-P and -SG show the highest accuracy (relative to centralised
k-means); Both of these methods use full k-means at each node to generate the
initial clustering and the final clustering, but differ in the summaries that are
exchanged. MMF1-P requires the fewest messages, but takes significantly longer
than MMF1-SG to terminate – this appears to be because of the extra time re-
quired to analyse the clusters using PCA and to generate the bounding boxes.
MMF1-GMM requires the least time to stabilise, and achieves reasonably high
accuracy. The existing methods from [Datta et al., 2008], [Di Fatta et al., 2013]
and [Bénézit et al., 2010] are outperformed by the three MMF1 variants on all
measures, confirmed by a Tukey Test with significance level p=0.001. In Figure
3.5, we show the result for sparsely connected networks of 10 nodes. MMF-1
achieves the highest accuracy and requires the least amount of messages to con-
verge. Again, MMF1-GMM converges faster than other methods and achieves
high accuracy. Again, [Datta et al., 2008], [Di Fatta et al., 2013] and [Bénézit
et al., 2010] are outperformed on all measures (Tukey Test, p =0.001). To sum-
marise, selecting between MMF1-P, -SG and -GMM will depend on the relative
costs of accuracy, message transmission, and elapsed time.

Figure 3.4: Comparison of MMF1 method in 10-agent dense network, showing
mean results for each measure over 50 runs.

In figure 3.6 we show the result of for densely connected networks of 10 nodes for
scenario 2, in which nodes only know of the existence of their immediate neigh-
bours. We report three different time measures. MMF2-P again requires fewest
messages. MMF-SG again has the highest accuracy. The relative performance of
MMF2-GMM has improved, with close to the highest accuracy, and clearly the
fastest termination time. [Datta et al., 2008] is still outperformed by the other
methods, although the number of messages (including both data messages and
polling messages) are now closer in value. [Di Fatta et al., 2013] and [Bénézit
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Figure 3.5: Comparison of different schemes under MMF1 method in a 10-agent
sparse network, showing mean results for each measure over 50 runs.

et al., 2010] are still outperformed on all measures. The result for sparse networks
are shown in figure 3.7. MMF2-SG shows the highest accuracy and MMF2-P re-
quires the fewest messages but takes substantially longer time than MMF2-SG
to terminate. MMF2-GMM converges much faster than other methods and still
achieves high accuracy. The methods in [Datta et al., 2008], [Di Fatta et al.,
2013] and [Bénézit et al., 2010] are outperformed on all measures (Tukey Test, p
= 0.001).

In summary, the methods that use full clustering at each node on each cycle, and
which exchange more informative descriptions, outperform [Datta et al., 2008],
[Di Fatta et al., 2013] and [Bénézit et al., 2010]. Taking MMF2-GMM as repre-
sentative, it achieves 10 percentage points higher accuracy relative to centralised
k-means (reduces the misclassification rate from 12% to 1.7%), reduces the mes-
sage count by 20%, and reduces elapsed time by 75%.

In all cases, we respect the privacy of the original data, and do not exchange any
individually identifiable data points. However, we do lose some privacy compared
to [Datta et al., 2008], in that we can now identify data distributions for individual
nodes.

3.5 Significance Study

In this section, we discuss the statistical significance of the results. Most of
the parametric tests require that the assumption of normality be met. Usually,
a Shapiro-Wilk’s W test is used to test the assumption of normality, then a
parametric test is carried out. However, if the sample sizes are large enough
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Figure 3.6: MMF2 method in 10-agent dense networks

Figure 3.7: Comparison of different schemes under MMF2 method in a 10-agent
sparse network

(ζ > 30), the violation of the normality assumption should not cause major
problems and we can use parametric procedures even when the data are not
normally distributed [Ghasemi and Zahediasl, 2012].

A statistical comparison is thought to be significant when its P-value is less
than 0.05. We apply the Tukey test to conduct pairwise comparisons of the
approaches. The Tukey test is commonly thought to be better than the t-test,
as it takes the Type I error (false positives) into account [Lee and Lee, 2018].
When doing multiple comparisons, Tukey test considers the entire collections of
pairwise hypothesis tests. With the significance level of 5%, it assures that there
is at most a 5% chance to obtain a false positive among the entire set of pairwise
tests. This is very different from simply doing pairwise tests individually with
significance level of 5%.
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The statistical analysis is carried out through the built-in functions in Python.
Table 3.2 shows that, for all the scenarios, the null hypothesis is rejected with the
P-values all less than 0.05. It indicates that there is significant difference between
proposed algorithms and the state-of-the-art and the improvement is significant.

Table 3.2: Pairwise Tukey test for proposed methods and the state-of-the-art. � denotes
the difference of mean.

Dense Graph Spare Graph

Time Accuracy R-msg Time Accuracy R-msg
MMF1 (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
P −Datta (-3.6, 0.001) (11.30, 0.001) (-67.80, 0.001) (-8.0, 0.001) (10.20, 0.001) (-38.50, 0.001)
P − Fatta (-53.0, 0.001) (9.20, 0.001) (-84.0, 0.001) (-33.6, 0.001) (17.5, 0.001) (-66.0, 0.001)
P −Bénézit (-12.0, 0.001) (20.1, 0.001) (-119.67, 0.001) (-63.0, 0.001) (20.4, 0.001) (-183.1, 0.001)
SG−Datta (-10.0, 0.001) (11.5, 0.001) (-54.0, 0.001) (-13.6, 0.001) (8.40, 0.001) (-31.0, 0.001)
SG− Fatta (-59.0, 0.001) (9.20, 0.001) (-71.0, 0.001) (-39.3, 0.001) (15.70, 0.001) (58.20, 0.001)
SG−Bénézit (-18.3, 0.001) (16.3, 0.001) (-18.56, 0.001) (-68.30, 0.001) (18.60, 0.001) (-185.2, 0.001)
GMM −Datta (-10.6, 0.001) (7.40, 0.001) (-19.0,0.001) (-14.0, 0.001) (7.70, 0.001) (-30.0, 0.001)
GMM − Fatta (-60.6, 0.001) (5.20, 0.001) (-68.1, 0.001) (-39.60, 0.001) (15.0, 0.001) (-67.3, 0.001)
GMM −Bénézit (-19.0, 0.001) (15.30, 0.001) (-103.0, 0.001) (-69.03, 0.001) (17.8, 0.001) (-174.1, 0.001)

Dense Graph Spare Graph

Time Accuracy R-msg Time Accuracy R-msg
MMF2 (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
P −Datta (-1.13, 0.001) (9.7, 0.001) (-52.0,0.001) (-3.16, 0.001) (4.50, 0.001) (-27.3, 0.001)
P − Fatta (-50.50, 0.001) (7.6, 0.001) (-68.30, 0.001) (-29.40, 0.001) (11.8, 0.001) (-137.5, 0.001)
P −Bénézit (-8.8, 0.001) (18.9, 0.001) (-104.70, 0.001) (-58.10, 0.001) (14.60, 0.001) (-172.54, 0.001)
SG−Datta (-9.30, 0.001) (11.19, 0.001) (-8.20,0.001) (-10.7, 0.001) (8.02, 0.001) (3.30, 0.001)
SG− Fatta (-58.0, 0.001) (9.1, 0.001) (-45.20, 0.001) (36.6, 0.001) (15.36, 0.001) (-24.20, 0.001)
SG−Bénézit (-17.0, 0.001) (20.30, 0.001) (-60.0, 0.001) (-65.70, 0.001) (8.02, 0.001) (-141.10, 0.001)
GMM −Datta (-8.90, 0.001) (20.70, 0.001) (-18.30,0.001) (-10.70, 0.001) (7.60, 0.001) (-2.20, 0.001)
GMM − Fatta (-58.30, 0.001) (8.60, 0.001) (-45.40, 0.001) (-36.30, 0.001) (15.40, 0.001) (-30.10, 0.001)
GMM −Bénézit (-16.50, 0.001) (18.80, 0.001) (-70.50, 0.001) (-65.60, 0.001) (17.70, 0.001) (-147.6, 0.001)

3.6 Conclusion and future directions

We proposed an asynchronous distributed clustering algorithm framework for
mesh networks, which respects data privacy, while balancing communication cost
and clustering quality. Methods that use full k-means clustering at each node each
cycle, and which exchange cluster shape and density descriptions, require fewer
messages and give higher accuracy relative to centralised k-means, compared to
previous methods. Distributed Gaussian Mixture Model clustering achieves high
accuracy, and requires less elapsed time. The methods do, however, leak some
privacy about the data sensed by each individual node. The results show that
more informative cluster descriptions improve distributed clustering.

Note that we assume that the number of clusters to be described is known by all
agents at the start, which is a strong assumption for the agents. In some practical
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applications, agent may have different estimation of the number of clusters. If the
number of clusters are fixed in advance, agents are forced to cluster their local
data into predefined clusters. In next chapter, we will consider the case where the
nodes are all sensing from the same pattern, but where the k-value is unknown. In
addition, we only compare the accuracy against centralised method. It is possible
that the centralised method does not fit well with the underlying datasets. We
will consider the accuracy against ground truth as well in next chapter.
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Chapter 4

Adaptive Asynchronous
Distributed Clustering for Mesh
Networks

In last chapter, we proposed an asynchronous distributed clustering algorithm
framework for mesh networks. Agents do local clustering and share the summary
descriptions. Eventually, all agents end up with the same understanding of the
phenomenon. All algorithms that we developed assumed that the number of
clusters is known by all agents in advance. This assumption is also adopted
by most existing state-of-the-art work. However, in most practical applications,
there is no prior information on how many clusters there should be. Therefore, an
adaptive asynchronous clustering algorithm is required, which can derive the best
number of clusters as part of the algorithm. We could simply rerun the algorithm
from the previous chapter for each possible k value, but this would be expensive in
both elapsed time and in communication cost. We note that one recent paper on
distributed clustering, [Bendechache et al., 2016], does derive the appropriate k-
value automatically, by starting with large k values, and then combining multiple
clusters together as information flows up a tree in the network. We focus here on
algorithms for a flat network. For comparison, we also consider methods which
send all raw data to a single identified node.

Note that the network-wide model learned by all agents might not be identical
(but are similar) due to the stochastic process of regeneration and clustering
algorithm. However, in some practical applications, picking one specific model
from all learned model is required. Motivated by this, we consider two new
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assumptions about the network in this chapter: either that all agents may finish
with slightly different models or all agents must finish with identical models.

The outline of this chapter is as follows: first, we present the research problem.
Then in section 4.1 we discuss the adaptive distributed algorithm and require-
ments on the process: whether agents should all finish with the same model, or
whether they can have different (but similar) models. In section 4.2, we describe
the centralised methods, followed by introduction of measurement that will be
used in section 4.5, where experimental results are given. Conclusion is sum-
marised in section 4.7.

4.1 Distributed Algorithms

Since we relax the assumption that the number of clusters is known to agents
in advance, now the question is that how to generate a consistent global cluster
model if agents are not given the number of clusters k as input? In a distributed
mesh network environment, the data collected by individual agents is only a
fraction of the available data, and so it is not robust to infer the k value from just
one agent’s data. The approach we will develop starts with each agent inferring
its own k value, and then adjusting this value as the local cluster models are
shared.

As before, agents will use the regeneration method when merging cluster models.
Now, in addition, the agents will use the silhouette method to infer k from that
re-generated data. Algorithm 17 shows the process. First, an agent estimates
the number of clusters locally. Then a summary description is shared with neigh-
bours. Whenever new information is received, agent processes it in the following
steps:

1. if it is a terminate message, chooses the centroids, counts and k value, that
contained in the terminate message, as its final estimation. It then forwards
this terminate message to its neighbours.

2. if it is a final summary description, it combines the regenerated data from
all summary descriptions and estimates the k value again. Then, it clusters
the combined data, computes the final summary, and sends out a terminate
message to all its neighbours.

3. if it is a new summary description, there are two different options based
on agents’ knowledge about the network. When an agent is only aware
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of its neighbours, it regenerates data from the summary description and
combines it with its local data. Then it estimates the number of cluster k

again and produces the new summary description by re-clustering. The new
estimated k and centroids will be the assumed global view for agents while
the agent waits for a termination message or some new information. If the
size of network is known to agent, then the agent forwards this description
to all neighbours.

Algorithm 17: Adaptive asynchronous distributed clustering algorithm
1 Agents estimate the k value locally ;
2 Agents run local clustering to completion ;
3 Agents transmit summaries with agent ID to neighbours;
4 while not stabilised or messages received do
5 if Receive terminate message then
6 Update local knowledge and k value;
7 Transmit terminate message to all neighbours;
8 Terminated;
9 else if Receive final summary then

10 Estimate the k value ;
11 Compute global view;
12 Attach a timestamp to this produced model;
13 Send converge command to neighbours;
14 else
15 if The size of network is not available then
16 Incorporate received neighbours’ cluster information;
17 Run local clustering to completion;
18 Transmit new summaries to neighbours;
19 else
20 Restore the summary received and transmit it;

In addition to the two main scenarios we considered in the previous chapter, here
we consider two new assumptions:

1. agents may finish with different models.

2. agents must finish with identical models.

The basic process for these two assumptions is as follows:

1. If we accept that agents could end up with slightly different models, then
agent picks the model that is received or produced first as their final model
and ignores any model that comes later.
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2. If converging with identical models is required, all agents choose the model
with the earliest timestamp as their final model. In this case, an agent will
update its model only when the received model has an earlier timestamp
than its previous model.

4.2 Centralised methods

On top of the two assumptions and two scenarios, we also consider two centralising
methods. These two centralising methods are based on a tree based topology,
which differ from the flat topology used in last chapter. Instead of sharing a
basic model among neighbours, we consider two methods:

1. Centralise raw data points to a designated central agent. For individual
sensor, it requires multiple packets to send out all its raw data points. We
consider two different assumptions: in the first, there is no inter-packet
delay, while in the second there is a uniform inter-packet delay of 0.1s.

2. Each agent produces its own basic model as before, and then transmits that
model to the designated central agent.

To do this, we have to define the routing table for agents. We assume that this
routing table is available for each sensor in advance and the computation cost to
compute the routing path is ignored here. A shortest-path tree is constructed with
the central agent as the root. For different type of nodes, the sharing strategy is
listed as following:

1. Root node: wait until all information is received from its children, and then
compute the final model.

2. Leaf node: send all messages to its parent node (raw data points or basic
models).

3. Other node: send all its local data to its parent node and whenever messages
are received from child nodes, relay the message on to the parent.

The applied protocol and the transmission of raw data has an impact on the com-
munication measures. Information is transmitted in packets. For IEEE 802.15.4,
the maximum size of a single packet is 128 bytes and the size could be increased
to 11,452 bytes when IEEE 802.11ac is applied. In our previous chapter, we as-
sumed that all abstract information could be sent by one packet, and the size is
packet is around 10,000 bytes. The total size for 200 data points is 22,500 bytes,
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so there are in total 3 packets to send.

Figure 4.1 shows different scenarios considered in this chapter. Note that when
agents are only aware of their immediate neighbours but identical final model
is required, the cost is expected to be expensive. If the size of network is not
available, an agent has to compute its provisonal final model whenever a new
information arrives, as it may be the last information it will receive. After each
update, the model may has to be transmitted. For these reasons, we do not run
experiments on this.

Figure 4.1: Different scenarios considered in this chapter

4.3 Time Complexity

The proposed distributed algorithm 17 consists of obtaining the initial cluster
model, generating data points and computing the global models. Compared to
the algorithms in last chapter, an agent has to decide the number of clusters
k before obtaining the initial cluster model. When the number of cluster k is
not pre-defined, the time complexity of silhouette method is bounded by O(N2),
where N is the number of data points.
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When the size of network is known, the time complexity for the distributed algo-
rithms, no matter which clustering algorithm is used, is bounded by O(N2+N) =
O(N2). If agent is only aware of its neighbours, the time complexity is bounded
by O(N2 + 2TN) = O(N2), where T is the number of rounds required to obtain
the final cluster model.

The centralised method C_R consists of selecting the number of clusters k and
doing a complete clustering. The overall time complexity for three clustering
variants is bounded by O(N2 + N) = O(N2). The centralise method C_B
takes three steps: selecting the number of clusters k, generating data points
based on received local models, and computing the final model. It takes time in
O(N2 +N +N) = O(N2).

4.4 Measurement

In addition to the convergence time and communication costs, we also measure
the number of learned clusters for all agents on average. The accuracy measure-
ment used in the previous chapter measures how accurate each agent’s model
is on its own data compared to the centralised baseline or to the ground truth
(original generation of the data points), and it is denoted by M1. However, this
penalises the agent when its local data does not fit well with global model learned.
Measuring the accuracy against all raw data is expensive and slow, so we use a
new test dataset that sampled from the same ground truth distribution instead
(denoted by M2).

Again, we consider a wireless network with 10 agents. Each node is given 200 data
points and two types of underlying network topology are used: dense and sparse
graph. Each message transmission delay is generated uniformly from the range
[0.5, 1.0], and nodes begin their work at time randomly selected in [0, 0.1s]. The
experiments are repeated for 20 runs to get a more accurate performance mea-
surement. Three different underlying clustering algorithms are used: K-means,
GMM and SG. Three different types of two-dimensional datasets are tested: fully
symmetric multi-dimensional Gaussians, partially asymmetric multi-dimensional
Gaussians, and rectangle uniformly distributed data. For each type of dataset,
there are five generated clusters and three different types of clusters:

1. Heavily-overlapped clusters

2. Slightly-overlapped clusters
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3. Well-separated clusters

Figure 4.5 shows an example of different overlaps between cluster, and the nota-
tion is summarised in Table 4.1.

Figure 4.5: An example of different overlaps between clusters

Table 4.1: Notation of different methods and measurements

S1_A1(1) The size of network is known and agents may finish with different models,
the first agent who received all message shared its produced model with neighbours

S1_A1(2) The size of network is known and agents must finish with different models,
the first agent who received all message shared its latest information with neighbours

S1_A2 The size of network is known and agents must finish with identical model
S2 Agents only aware their neighbours and may finish with different models
C_R Centralise all raw data point to a central agent
C_B Centralise basic models to a central agent

Accuracy_c Accuracy against centralised clustering method
Accuracy_g Accuracy against ground truth

M1 Evaluate the performance on agent’s own data only
M2 Evaluate the performance on a new test data

4.5 Experimental Results

We only show the experimental results for dense graphs here; the results for result
on sparse networks are attached to the appendix 8.2. The difference between
dense networks and sparse networks lies in the amount of transmitted message.
Few transmissions are required when the networks are sparse, because each agent
has fewer neighbours to share information with. We will discuss the main results
with each figure, and a table of significant tests will be given at the end.

4.5.1 K-means as clustering algorithm

First, we measure the performance when K-means is used as the local clustering
algorithm. Figure 4.6 shows the comparison result when the underlying network
is dense. There are significant differences in convergence time (except S1_A1
and CB) and message transmission between centralised methods and distributed
methods.
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Centralising raw data points converges faster than other methods when inter-
package delay is not considered. Centralised basic model CB requires fewest
message transmissions. Since we assume that the routing table is known in ad-
vance and a shortest-path based tree is used, we expect this method will show
the least network overhead. However, the standard deviation shows that some
agents relayed many messages while other agents did not.

For distributed methods, S1_A1 converges faster than other methods. This
is as expected because S1_A1 assumes that the size of network is known and
agents could end up with different models, where agents do not need to keep
updating their models and sending more packets, and that fewer communications
are needed to share the final models. S2 requires the largest amount of message
transmissions, followed by S1_A2. The most likely reason behind this is each
agent is only aware of its immediate neighbours under S2 and has no idea about
the size of network. Agents in S2 are repeatedly updating their models and
transmitting them again, while in S1_A2, if multiple final models are created
independently, agents may be forced to accept updates with lower timestamps
and so have to retransmit a final model to their neighbours.

The extent of overlapping of clusters affects how accurate the number of learned
clusters is, compared to the ground truth. The third row of figure 4.6 shows
that centralised methods predict a more accurate number of clusters than the
distributed methods for the overlapped cases. For the well separated case, they
are all getting approximately 5. The last four rows show the accuracy against
centralised method and ground truth, measured by M1 and M2 separately. Cen-
tralising all raw data points C_R achieves the highest accuracy against ground
truth. That is as expected. C_R receives all the raw data unfiltered, while the
other methods are summarising, regenerating and re-clustering, and so can be
expected to introduce errors.

When accuracy against the centralised method is measured with an agent’s own
data M1, centralising all basic models C_B achieves the highest accuracy. How-
ever distributed method S1_A1 performs better than C_B when the same ac-
curacy is measured with a new test data M2. It indicates that agent’s local data
may not fit the learned model very well in some cases. Note that when accuracy
against ground truth is measured, there is very little difference between M1 and
M2.

Figure 4.7 shows the performance when data points that generated from partially
asymmetric Gaussians are used. Compared to the centralised methods, there is a
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Figure 4.6: K-means with symmetric multi-dimensional Gaussians on dense net-
work
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significant difference in message transmission, but there is no significant difference
in convergence time between C_B and distributed methods.

Compared to that with symmetric Gaussians, the accuracy against data points
and accuracy of the inferred number of clusters has dropped. However, the con-
vergence time and total message transmission remains unchanged. Note that
when the clusters are well separated from each other, there is no difference in
accuracy against data points and accuracy of the inferred number of clusters.
That is because K-means is able to cluster data points when clusters are well
separated.

Figure 4.8 shows the performance when uniformly distributed datasets are tested.
The message transmission by distributed methods differs substantially from cen-
tralised methods, and there is a significant difference in convergence time between
C_R and distributed methods.

Again, the convergence time and the number of transmitted messages remains
stable. Compared to the previous two figures, accuracy of the inferred k is poorer.
In addition, accuracy on data points against ground truth (both M1 and M2) has
dropped significantly. This is as expected because it is a challenge for K-means
to handle uniformly rectangle distributed data. If the data is uniform inside
a long rectangle, that K-means will struggle, because points at the end of one
rectangle may be closer to the centroids of another. Compared to accuracy on
data points against centralised method (the fourth and sixth row), the accuracy
on data points against ground truth (the fifth and seventh row) is much lower.
It indicates that simply comparing to centralised method is not reliable when
clustering algorithm is not fitting well with the underlying dataset.

To summarise, centralised method C_R takes the shortest time to converge if
inter-packet delay is not considered, and the convergence time depends on what
value you use in the simulator for inter-packet delay. Centralised method C_B
requires fewest transmissions. However, the high standard deviation shows that
agents close to the root have to relay many packets while agents far away from
the root only forward a few packets.

In terms of the number of learned clusters, the extent of overlapping between
clusters plays a vital role. When clusters are well separated from each other, our
proposed algorithm matches the ground truth number of clusters perfectly, no
matter what the underlying dataset and network topology are.

When K-means is used as clustering algorithm, it achieves the highest accuracy on

Asynchronous distributed clustering
algorithms for wireless mesh network

76 Cheng Qiao



4. Adaptive Asynchronous
Distributed Clustering for Mesh
Networks 4.5 Experimental Results

Figure 4.7: K-means on dense network with asymmetric multi-dimensional Gaus-
sians
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Figure 4.8: K-means on dense network with uniform distributed datasets

data points against centralised algorithm and ground truth when the underlying
datasets are formed from symmetric Gaussians clusters. The accuracy on data
points against ground truth drops to about 70% when partially-symmetric Gaus-
sians are used, then declines to around 65% when uniformly distributed clusters
are used. However, the accuracy on data points against the centralised algorithm
remains stable even when the underlying dataset appears a challenge for K-means
to cluster. It indicates that the drop in accuracy is due to the underlying K-means
algorithm, and not the distributed protocol.
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4.5.2 SG as clustering algorithm

We now measure the performance when K-means is used as clustering algorithm,
but where each cluster is then fitted by a separate Gaussian for using in infor-
mation sharing. In this case, the shape of clusters is described by the mean and
variance, rather than just the mean (i.e. the centroids) only.

Figure 4.9: SG on dense network with symmetric multi-dimensional Gaussians

Figure 4.9 shows the result on dense networks when fully symmetric multi-
dimensional Gaussians are used to generate the raw data. As before, there are sig-
nificant differences in message transmission and convergence time (except S1_A1
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against C_B) between centralised methods and distributed methods.

Again, centralising all raw data points to a central agent C_R converges faster
than other methods if inter-packet delay is not considered. Moreover, the number
of learned clusters, accuracy on data points against centralised algorithm and
ground truth appear to be better when the extent of overlapping between clusters
reduces from heavily overlapped to well separated, reaching accuracy levels over
80%.

Figure 4.10 shows the performance of different methods on dense networks when
partially-symmetric multi-dimensional Gaussians is tested. Similarly, there are
significant differences in message transmission and convergence time (except dis-
tributed methods against C_B) between centralised methods and distributed
methods. Compared to that with symmetric Gaussians, accuracy on data points
against ground truth in both M1 and M2 dropped.

Figure 4.11 shows the comparison result of different methods on dense networks
with uniformly distributed ground truth cluster data. Compared to the cen-
tralised methods, there is a significant difference in message transmission. Since
it is already a challenge for K-means to handle uniformly rectangular clusters, as
expected, the accuracy on data points against ground truth is lower than that
with symmetric or asymmetric Gaussians.

Similar to K-means, when SG is used to summarise the clusters that were found
by K-means: 1), centralised method C_R converges faster than other methods if
inter-packet delay is not considered 2), centralised method C_B requires fewest
transmissions. 3), there is little difference in the number of learned clusters, ac-
curacy on data point against centralised method, accuracy on data points against
ground truth when clusters are well separated. 4), SG preforms better when un-
derlying datasets are formed from fully symmetric Gaussians clusters and there
are overlaps between clusters.

4.5.3 GMM as clustering algorithm

In this section, we measure the performance when GMM is used as clustering
algorithm. In this case, the collection of clusters is described as a collection
of Gaussians. For three different underlying datasets, there are significant differ-
ences in message transmission and convergence time between centralised methods
and distributed methods.

Figure 4.12 shows the result on dense networks with data points formed from
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Figure 4.10: SG on dense network with asymmetric multi-dimensional Gaussians

fully symmetric Gaussians. Again, centralising all data points C_R takes the
shortest time to converge when inter-packet delay is ignored. In addition, C_B
requires the least amount of message to transmit. All centralised methods and
distributed methods achieved really high accuracy, even when there are heavy
overlaps between clusters.

Figure 4.13 shows the result on dense graphs when partially symmetric Gaus-
sians are tested. Compared to Figure 4.12, there is little difference between the
accuracy on data points against ground truth and centralised algorithm when
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Figure 4.11: SG on dense network with uniform distributed dataset

clusters are well separated from each other. However, when the extent of over-
lapping increased, the accuracy against ground truth dropped sharply while the
corresponding accuracy against centralised algorithm dropped by less than 10%.

When uniformly distributed data is used as underlying dataset, we expected
that accuracy against ground truth would be lower than that with symmetric or
asymmetric Gaussians. Figure 4.14 shows that the accuracy against ground truth
is around 62% for both M1 and M2. However, the accuracies against centralised
algorithm for M1 and M2 are still high, more than 80%.
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Figure 4.12: GMM on dense network with symmetric multi-dimensional Gaus-
sians
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Figure 4.13: GMM on dense network with asymmetric multi-dimensional Gaus-
sians
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Figure 4.14: GMM on dense network with uniform distributed dataset

Compared to K-means and SG, the result is similar when GMM is used as local
clustering method. The centralised method C_R converges slower than other
methods if inter-packet delay is considered and centralised method C_B requires
fewest transmissions. When clusters are well separated from each other, our
proposed algorithm learned the perfect number of clusters, achieved nearly perfect
accuracy against centralised algorithm and ground truth, no matter what the
underlying dataset and network topology are.
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4.5.4 Summary

In this section, we outline the difference between these three clustering algorithm
with different underlying datasets and network topologies. In terms of conver-
gence time, GMM convergences faster than SG and K-means. That is because
K-means has to compute the principal orientations of all found clusters. As ex-
pected, all methods perform nearly perfectly when clusters are well separated, no
matter what the underlying datasets and network topologies are. So we only de-
scribe the difference in accuracy on data points when there are overlaps between
clusters.

When underlying datasets are formed from symmetric Gaussians, we expected
that all methods perform well. Figure 4.6, Figure 4.9 and Figure 4.12 show that
accuracy on data points against ground truth achieved by GMM is the highest,
followed by SG. The accuracy achieved by K-means is the lowest. When the
underlying datasets are generated from symmetric Gaussians, mean and stan-
dard deviation would describe the cluster much faithfully than multiple bounding
boxes. Figure 4.15 shows the difference between these two regenerations when the
underlying dataset is generated by a fully symmetric Gaussian. The figure on the
left shows the dataset generated from a symmetric Gaussian and its correspond-
ing bounding boxes. Figure in the middle and right show the data points, that
generated by bounding boxes and mean and standard deviation separately. Ob-
viously, data points generated by mean and standard deviation are more similar
to the original dataset.

Figure 4.15: Comparison of different regenerations when underlying dataset is
generated by a symmetric Gaussian

With asymmetric Gaussians, GMM should perform better than SG and K-means
in accuracy against ground truth. When there are heavy overlaps between clusters
(the first column of each figure), SG achieves higher accuracy against centralised
algorithm and ground truth than K-means and GMM. When there are only slight
overlaps between clusters (the second column of each figure), both SG and GMM
achieved similar accuracy against centralised algorithm, but higher than K-means.
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However, the accuracy against ground truth achieved by SG is higher than GMM
and K-means.

For uniformly distributed dataset, none of these methods could partition the
dataset into reasonable clusters. When there are heavy overlaps between clusters
(the first column of each figure), there is little difference in terms of accuracy
against centralised algorithm and ground truth. However, with slight overlaps
between clusters (the second column of each figure), accuracy against centralised
algorithm and ground truth by SG is the highest, followed by GMM. K-means
performs the worst in these methods. Figure 4.16 shows an example of comparison
of different regenerations when underlying dataset is generated by a rectangle
uniform distribution. Apparently, data points generated by bounding boxes are
similar to the ground truth distribution when original distribution is uniform.

Figure 4.16: Comparison of different regenerations when underlying dataset is
generated by a uniformly rectangle distribution

Centralised method C_R takes the shortest time to converge if inter-packet delay
is ignored and achieves the highest accuracy against centralised algorithm and
ground truth. Centralised method C_B requires the fewest transmissions. Com-
pared to centralised methods, the amount of message required for distributed
methods could reduce to a large extent if the size of network is known and agents
may finish with different models. In terms of accuracy on data points against
centralised algorithm, there is little difference between centralised methods and
distributed methods.

4.6 Significance Study

In this section, we show the significance study of the experimental results ob-
tained by centralised methods and distributed methods. A statistical comparison
is thought to be significant when its P-value is less than 0.05. Note that the
experiments are repeated for 20 runs, and it is necessary to test the assumption
of normality. Before doing the significant test, we use the Shapiro-Wilk’s test to
assess whether the assumption of normality is hold.

Table 4.2 shows the result of normality test on convergence time and information
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transmission. A testing sample is considered to be normal if the result by Wilk’s
test is not significant. The result shows that, for all scenarios, the difference is not
significant with P-values all larger than 0.05. It indicates that the distribution of
obtained result is normal. We omit the result of the normality test on Learned
K and accuracy against ground truth, since the assumption of normality is not
hold.

Table 4.2: Test for normality with Shapiro-Wilk’s test, only the result with K-means
as clustering algorithm is given

Time Information

Symmetric Asymmetric Uniform Symmetric Asymmetric Uniform
K-means P value P value P value P value P value P value
CB 0.81 0.14 0.20 1.0 1.0 1.0
CR 0.53 0.28 0.36 1.0 1.0 1.0
S1_A1 0.36 0.89 0.22 0.36 0.40 0.82
S1_A2 0.40 0.52 0.99 0.37 0.22 0.08
S2 0.58 0.93 0.63 0.68 0.56 0.79

Tables 4.3 shows the measurement on convergence time and message transmission.
In term of convergence time, there is significant difference between centralised
methods and distributed methods except some cases of S1_A1 and CB. The
possible reason behind this is that the basic procedure is similar: the first agent
or central agent, who received all message from other agents, compute the global
model and send to neighbours. When consider the message transmission, all P-
value is less than 0.05, which shows there is significant difference between them.

4.7 Conclusion

If we assume that there is no inter-packet delay (t=0s), centralising all raw data
requires the transmission of less information and the shortest convergence time.
Centralising all raw data points to a central agent achieves higher accuracy on
data points than centralising basic models and distributed methods when there is
slight-overlapping or heavy-overlapping between clusters. However, this method
suffers from the problem of single point of failure and leakage of data privacy.
The standard deviation of communication cost is high, which means some agents
have relayed huge amounts of information while others have not. This will drain
the energy of agents and frequently recomputing the route table will become an
issue.

In terms of communication cost, the figures above show that centralising basic
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Table 4.3: Pairwise Tukey test for distributed methods and centralized methods, only
the results on dense graph is compared(1). � denotes the difference of mean

Symmetric Gaussians Asymmetric Gaussians

K-means GMM SG K-means GMM SG
Time (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
CR − CB (-1.30, 0.001) (0.01, 0.9) (-1.13, 0.001) (-1.52, 0.001) (0.15, 0.9) (-2.35, 0.015)
S1_A1− CR (1.07, 0.007) (2.28, 0.001) (0.823, 0.001) (1.16, 0.016) (2.91, 0.001) (2.07, 0.04)
S1_A2− CR (2.38, 0.001) (3.98, 0.001) (1.84, 0.001) (1.66, 0.001) (4.05, 0.001) (3.38, 0.001)
S2− CR (2.51, 0.001) (3.94, 0.001) (2.19, 0.001) (1.73, 0.001) (4.04, 0.001) (3.21, 0.001)
S1_A1− CB (-0.23, 0.9) (2.30, 0.001) (-0.31, 0.70) (-0.37, 0.8) (3.06, 0.001) (-0.28, 0.9)
S1_A2− CB (1.09, 0.006) (3.99, 0.001) (0.70, 0.04) (0.13, 0.9) (4.20, 0.001) (1.03, 0.56)
S2− CB (1.21, 0.002) (3.95, 0.001) (1.06, 0.001) (0.20, 0.9) (4.19, 0.001) (0.86, 0.70)

Uniform distributions

K-means GMM SG
Time (�, P value) (�, P value) (�, P value)
CR − CB (-1.57, 0.001) (0.18, 0.9) (-2.45, 0.004)
S1_A1− CR (1.46, 0.002) (2.76, 0.001) (1.36, 0.03)
S1_A2− CR (2.24, 0.001) (3.81, 0.001) (2.82, 0.001)
S2− CR (2.09, 0.001) (4.02, 0.001) (2.18, 0.01)
S1_A1− CB (-0.10, 0.9) (2.94, 0.001) (-1.10, 0.43)
S1_A2− CB (0.67, 0.365) (3.99, 0.001) (0.36, 0.9)
S2− CB (0.53, 0.59) (4.20, 0.001) (-0.28, 0.9)

Symmetric Gaussians Asymmetric Gaussians

K-means GMM SG K-means GMM SG
Transmission (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
CR − CB (39.25, 0.001) (39.25, 0.001) (39.25, 0.001) (39.25, 0.001) (39.25, 0.001) (39.25, 0.001)
S1_A1− CR (-11.28, 0.001) (-11.43, 0.001) (-11.17, 0.001) (-11.08, 0.001) (-11.44, 0.001) (-11.01, 0.001)
S1_A2− CR (29.37, 0.001) (29.75, 0.001) (30.04, 0.001) (29.87, 0.001) (29.87, 0.001) (29.15, 0.001)
S2− CR (29.30, 0.001) (29.75, 0.001) (29.39, 0.001) (29.60, 0.001) (29.81, 0.001) (28.88, 0.001)
S1_A1− CB (27.97, 0.001) (27.80, 0.001) (28.07, 0.001) (28.17, 0.001) (27.80, 0.001) (28.24, 0.001)
S1_A2− CB (68.62, 0.001) (69.0, 0.001) (69.29, 0.001) (69.12, 0.001) (69.13, 0.001) (68.40, 0.001)
S2− CB (68.55, 0.001) (69.0, 0.001) (68.64, 0.001) (68.86, 0.001) (69.07, 0.001) (68.13, 0.001)

Uniform distributions

K-means GMM SG
Transmission (�, P value) (�, P value) (�, P value)
CR − CB (39.25, 0.001) (39.25, 0.001) (39.25, 0.001)
S1_A1− CR (-11.15, 0.001) (-11.44, 0.001) (-11.03, 0.001)
S1_A2− CR (29.12, 0.001) (29.60, 0.001) (28.63, 0.001)
S2− CR (29.49, 0.001) (29.57, 0.001) (29.36, 0.001)
S1_A1− CB (28.09, 0.001) (27.80, 0.001) (28.24, 0.001)
S1_A2− CB (68.36, 0.001) (68.85, 0.001) (67.88, 0.001)
S2− CB (68.75, 0.001) (68.82, 0.001) (68.61, 0.001)

models to a central agent performs much better than other methods. This method
preserves the data privacy but still suffers from the problem of single point of
failure. Note that we assume that the shortest path is available for each agent
in advance and we ignore the cost to compute the routing table. Since agents in
wireless mesh networks are usually powered by limited batteries, this assumption
is not appropriate.

The extent of overlapping between clusters has a big effect on the learned number
of clusters. When clusters are well separated from each other, all proposed meth-

Asynchronous distributed clustering
algorithms for wireless mesh network

89 Cheng Qiao



4. Adaptive Asynchronous
Distributed Clustering for Mesh
Networks 4.7 Conclusion

ods learn the same number of clusters as ground truth. For distributed methods,
more information is required to be transmitted if it is required that agents must
finish with identical models. However, if we accept that agents may finish with
different models, it requires much less information transmission and much less
elapsed time. Compared to the highest accuracy of the centralised method, the
clustering accuracy achieved by the distributed method dropped by around 9%
and the communication cost increased by up to 20%. But the convergence time
has been reduced and the problem of a single point of failure has been avoided.
In addition, we respect the data privacy. The distributed method offers similar
clustering accuracy to the centralised methods but relaxes the assumption that
agent knows the whole routing path in advance.

Note that we assume that each agent is sensing data for the same phenomenon
in this and the last chapter. In many practical applications, group of agents
may sense data from different sources. For instance, agents near the fire may
have different temperature readings from others. We should separate these two
readings into different models, rather than simply combining these two readings
into one model. The question is then how to ensure the agents in the network can
recognise that they are sensing different phenomena, and can assign themselves
(i.e. their data) into the correct subgroups. We will address this problem in the
coming chapters.
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Chapter 5

Identifying multiple patterns in
distributed clustering

In previous chapters, we focused on clustering algorithm in wireless mesh net-
works, where each agent is sensing data from the same environment. Each agent
represents its raw data points as a cluster model (the number of clusters are not
necessarily consistent), and shares this model with its neighbours. Agents must
combine the shared models into a single description, and eventually, all agents end
up with the same understanding of the phenomenon (similar but not identical).

In this chapter, we extend the problem to consider the case where sub-groups
of agents receive data from different environments, and so the inferred cluster
models should be different for each sub-group (and could have different numbers
of clusters in each). We define these different environments as patterns. First,
to measure the similarity or difference between two cluster models, we propose a
method based on the Earth Mover’s Distance (EMD). We can then use this to
search for clusters of similar agents, which we infer are seeing the same pattern.
Then we go back to the general question: how should the agents act and com-
municate so that all agents understand the environment (for instance, how many
patterns observed, and do agents know what other agents are in their patterns,
etc) when there are group of agents receiving data from different environments.

The outline of this chapter is as follows. In the first section 5.1, we describe the
research questions and the main algorithm used to address the questions. We
introduce a EMD based method to measure the similarity between agents and
show the performance in section 5.2. After that, new requirements and sharing
strategies are described in section 5.3. The measurement for multiple pattern
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networks are illustrated in section 5.4 and experimental results are shown in
section 5.6 and 5.7. Conclusion is given in section 5.9.

5.1 Research question and proposed solutions

Suppose in a n-agent mesh network, m agents (m ≤ n) are sensing data from one
phenomenon and some other agents are receiving data from different phenomena.
We call these phenomena "patterns" to be detected in the network, and we note
that they are different from the sampling variation that may occur for individ-
ual agents observing the same phenomenon. Is it possible for the distributed
clustering algorithm to predict the right number of patterns and identify those
patterns, while preserving high clustering accuracy within each pattern? Predict-
ing the wrong pattern for agents, for instance, assigning an agent to a sub-pattern
that differs from the ground truth sub-pattern that it came from, may affect the
clustering accuracy and estimation of the number of clusters.

Compared to the procedures in preceding chapters, an agent has to run a sim-
ilarity test on the models whenever it is expected to combine multiple models
into one or more, or to update a model with some new information. Based on
the similarity measurement, it infers the number of patterns. If there are more
than one pattern, this agent runs separate processes (for instance, clustering, up-
dating and regenerating) for each pattern. Throughout this chapter, we will use
similarity between agents to mean similarity between their cluster models.

First, we focus on the similarity measurement. As we mentioned before, this step
plays an important role in inferring the number of patterns and group assignment
of all agents. The question is how to measure the similarity of cluster models
learned by different agents? Note that the number of clusters inside the model
learned by different agents may be different, so the widely used L1-norm and
L2-norm Euclidean distance can no longer be used. To address this problem, we
propose an EMD-based distance metric to measure the similarity between agents.
Although there are several advantages of EMD (robust to noise and globally
shape-aware), it is not widely used outside the Computer Vision area due to the
high computation cost. To mitigate the high computation cost, we propose that
an adapted EMD metric that is applied to the cluster models (centroids and
corresponding count), rather than to the raw data points.

Then we go back to the general question, how to understand the environment
when there are multiple patterns. Compared to algorithms in the preceding
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chapters, there are several differences. If an agent receives a terminate message,
it will accept the patterns and group assignment received as its estimation of
patterns and group assignment. However, when the size of the network is not
known (S2), an agent has to compare the similarity between clusters models
received and its own whenever it receives a new model. The agent will integrate
its models only when it believes the agent who sent the message is similar. When
agents know the size of network, the agent who received all cluster models will
compare the similarity between agents and infer the patterns.

In previous chapters, we were concerned with accuracy of data clustering. We
assumed that the raw data that the algorithm operates on is generated by some
underlying phenomenon or data distribution. After the algorithm completes, we
evaluate accuracy in terms of data point co-clustering - given new data points
sampled from the distribution, how well do our agents cluster the points in accor-
dance with the underlying distribution (or by comparison to a single central clus-
tering algorithm). The previous chapters assumed a single pattern for all agents
- that is, all agents observed data sampled from the same distribution. In this
chapter, we assume multiple patterns - that is, in ground truth, one sub-group
of agents observes data from one distribution, while other sub-groups observe
data from other distributions. A ground truth pattern is thus a data distribution
plus a group of agents that sample from it. The aim of the algorithm is now to
assign agents to groups, and to infer the data distribution for each group. For an
individual agent, we can assess data accuracy as before - does its model cluster
data in accordance with the ground truth distribution that generated the data.
But we now need an additional measure - are the agents assigned into groups or
patterns in the same way as the original ground truth (or, as before, in the same
way as a single centralised algorithm). This definition and evaluation of this new
accuracy against patterns will be discussed further in Subsection 5.4, and will be
defined precisely for each different scenario.

5.2 An EMD based method to measure the sim-
ilarity between cluster models

Suppose in a 5-agent network, datasets owned by the first three agents A0, A1
and A2 are sampled from one pattern and the rest are sampled from another
pattern. Figure 5.1 shows the raw data point for those agents. Based on the raw
data points, it is a challenge to decide algorithmically which agents are similar
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(and so belong to the same pattern) and which are different (and so belong to
different patterns).

Figure 5.1: Raw data points for each agent

The standard output of a cluster model is a set of centroids. Here we assume
that each agent is fixed to have 5 clusters. Figure 5.2 shows the corresponding
five centroids found by K-means. The centroids found by different agents are
separated by different colour and shape. The widely used L1 and L2-norms
could be used to measure the similarity between agents. Obviously, centroids of
agent A0, A1 and A2 are similar, but differ from agent A3 and A4. However,
this method ignores relevant information about the clusters. Each cluster is
represented as centroid only, and the shape of cluster and the size of cluster are
not considered.

From the perspective of data points, each agent is representing a distribution of
data. Standard EMD is one way to compare distributions, in which the cost of
moving each data point from one distribution to another is computed. But it is
expensive. This motivates us to find a new method to measure the similarity.

In this section, we propose a method to measure the similarity between the cluster
models inferred by different agents. This similarity is further used to estimate
the number of patterns and identify the patterns. Note that we focus on the
specific scenario that agents know the size of network (S1) and must finish with
identical models (A2). We will select a measure based on the results of this
scenario, and then transfer it for using in other scenarios. We consider two EMD-
based similarity measurements: EMD between centroids weighted by the size of
corresponding cluster (Weighted EMD) and EMD between all raw data points of
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Figure 5.2: Centroids for each agent

agents (Standard EMD). To evaluate the performance of EMD based methods,
we compare the widely used L1-norm Euclidean distance and L2-norm Euclidean
distance with Standard EMD and Weighted EMD. The four different methods to
measure the pair-wise similarity between agents are listed as follows:

1. L1-norm distance. It measures the sum of euclidean distance between
centroids.

2. L2-norm distance. The L2-norm of euclidean distance between centroids
is computed. By this method, the overall distance is treated as an n-
dimensional vector, where each vector is computed by distance between
centroids.

3. Weighted EMD. We assume that agents are denoted by a set of centroids.
The similarity between agents are represented by EMD distance between
the centroids. Take the 5 agents in figure 5.2 as an example, the similarity
between agent A1 and A2 are computed as the EMD between the 5 red
circular centroids and 5 blue rectangular centroids.

4. Standard EMD. We assume that agents are denoted by all raw data
points instead. The similarity between two agents is computed as the EMD
between all points of those agents.

Figure 5.3 shows the hierarchical clustering result based on the four different
methods 1. The horizontal axis of the dendrogram represents the objects and
clusters and the vertical axis represents the distance between clusters. The hor-

1We use the measures to create distance tables, and then apply standard hierarchical clus-
tering on that distance table.
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izontal bar between the two clusters is labelled with the distance (dissimilarity)
of these two clusters. When Euclidean distance is used to measure the similarity,
agent A0, A1 and A2 are close to each other, but agent A3 and A4 are far away
from each other (10 times larger than the average distance of first three agents).
However, when EMD is used, the first three agents stay close with each other and
A3 and A4 also cluster together. The top two figures are more likely to estimate
that there are three different groups since A3 and A4 are far away from each
other.

Figure 5.3: Hierarchical clustering by different methods

Since the hierarchical clustering result is available, now the question is how to
select a cut-off value that splits the dendrogram into subgroups such that agents in
the same group are similar but agents in different groups are different. Although
there are some common methods, including the elbow method, silhouette method,
cross-validation and information-theoretic approach, there is no standard method
to pick the cut-off points. There are two popular methods in the literature:
inconsistency method and elbow method. Both methods aim to find the biggest
increment in distance during the merging process. Taking EMD between agents
in figure 5.3 as an example, the dissimilarity between the new cluster C1 (merged
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by A4 and A3) and new cluster C2 (merged by A0, A1 and A2) is 0.368, more
than 2 times larger than its last merge 0.144. It suggests that C1 and C2 are
dissimilar and they should not merge into a new cluster.

In a hierarchical clustering tree, one way to determine the natural cluster divisions
to compare the height of each link with the heights of neighbouring links below
it. If there are no distinct divisions between objects joined at this level, the
height of these two links is approximately the same. On the other hand, a link
is considered to be inconsistent with another link if the heights differ noticeably
from each other. The inconsistency method compares each cluster’s merge height
h to the average and normalises it by the standard deviation std formed over the
previous h levels:

inconsistency = h− avg
std

(5.1)

where the inconsistency matrix consist of average, std, count and inconsistency
for each merge. This method finds the biggest increment during the merging
steps, and a cut-off value is automatically confirmed at the merging step with the
biggest increment. The sub-figure in the middle of figure 5.7 shows the merging
steps, where h is set to be 3. The biggest increment is detected in the final merge
step, where new cluster C1 (merged by A4 and A3) is merged with new cluster
C2 (merged by A0, A1 and A2). Based on this estimation, the estimated number
of groups P is 2: [A4, A3] and [A0, A1, A2].

However, this inconsistency method heavily depends on the depth of the tree
that the average is calculated over. If the default depth is assumed to be 2,
it assumes that only the previous distance matters. Moreover, the previous d
levels’ heights aren’t normally distributed, but increase monotonically. That is
because the hierarchical clustering method always merges the closest two clusters
(agents). Simply treating the current level as an outlier of a normal distribution
is not right, as it is expected to be bigger. In this section, we use the elbow
method to estimate the number of patterns.

The elbow method aims to find the merging step where there is a huge acceleration
of distance growth. Algorithm 18 shows the main steps to estimate the cut-off
value by the Elbow method. The difference of a new merge is measured against
the last merge. If the difference is maximised at a merge step, it indicates the
cut-off value should be the last distance before merging. The sub-figure in the
right side of figure 5.7 shows the increment during merging steps. The biggest
increment is detected in the final merge step, so there are two groups [A3, A4]
and [A0, A1, A2].
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Algorithm 18: Elbow method to estimate the cut-off value
1 Input: Distance metrics during the merge process D ={d1, d2, · · · , dm};
2 Output: The cut-off value r;
3 Difference metric Out=[];
4 for i = 1; i ≤ m do
5 Out[i] = d[i+1] - d[i] ;
6 Obtain the index ix of the maximum value in metric Out;
7 r = D[ix];

Figure 5.7: Estimation process by inconsistent and elbow method

5.2.1 Standard EMD based method for similarity mea-
surement

Based on the similarity measurement, we are interested in how accurately the al-
gorithms put the data points into the clusters and predict the number of patterns
compared to the ground truth. The accuracy against data points and against
ground truth are the same measure used in the previous chapters. The experi-
ment is carried out in a 10-agent network, where the first 7 agents are from one
pattern and the rest are from the another pattern and it is repeated for 50 runs.

Note that in the experiment we assume that agents know the size of network
(S1) and must finish with identical model (A2). The overall performance of the
distributed algorithms, which embed the four similarity measurements as distance
metrics, are measured. Figure 19 shows the algorithm used for evaluating the
similarity measures.

Figure 5.8 shows the accuracy on data points against ground truth. It shows that
the accuracy achieved when the algorithm uses either of the two EMD methods
is greater than when using L1-norm and L2-norm distance.

Figure 5.9 shows the number of patterns estimated by different methods. Over
the 50 runs, algorithms using EMD between centroids and EMD between agents
predicted the same number of patterns as ground truth. Although the method
using L1-norm distance predicts the number of patterns correctly 42 times, the
inferred number of patterns could be as high as 5.
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Algorithm 19: Adaptive asynchronous distributed clustering algorithm for
multiple patterns

1 Agents run local clustering to completion ;
2 Agents transmit summaries with agent ID to neighbours;
3 while not stabilised or messages received do
4 if Receive terminate message then
5 Update local knowledge (number of patterns, pattern assignment);
6 Transmit terminate message to all neighbours;
7 Terminated;
8 else if Receive final summary then
9 Compare the similarity between agents and infer the patterns (based

on some distance metrics);
10 Compute global view for each pattern;
11 Attach a timestamp to this produced model;
12 Send converge command to neighbours;
13 else
14 if Have not seen this message before then
15 Restore the summary received;
16 Transmit it;

Figure 5.8: Accuracy on data points against ground truth with different similarity
metrics

To summarise, an EMD based method is a potential way to represent the simi-
larity. This method does not assume that the number of clusters or data points
for different agents are necessarily consistent. The previous chapter considered
cases where we do not assume the number of clusters before we start. If we now
accept that agents may be receiving data from different distributions (e.g. dif-
ferent environmental conditions being reported by sensors in different locations),
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Figure 5.9: The number of estimated patterns with different similarity metrics

then it is also possible that there may be different numbers of clusters in each
distribution. If we relax the assumption that distributions have the same number
of clusters, then the standard versions of the L1- and L2-norm can no longer be
used.

5.2.2 Optimised EMD based method for similarity mea-
surement

In many practical applications, the number of cluster for different distributions
are not necessarily the same. In that case, L1- and L2-norm can no longer be
used. This motivates us to find a similarity measurement that works even when
the number of clusters are different. We propose a reversible EMD between points
and centroids to measure the similarity between agents. It computes the EMD
between the centroids of one agent and raw points of another agent, and vice
versa. The reversible EMD between points and centroids is defined as the average
distance of these two one-way EMD (refer to figure 5.10). We now evaluate the
performance of standard EMD, weighted EMD and reversible EMD, and compare
them to the state of the art Wavelet EMD [Shirdhonkar and Jacobs, 2008] and
Robust EMD [Pele and Werman, 2009].

Consider two agents A1 and A2. Each agent is denoted by some features, including
centroids Ci, counts ηi, and regenerated dataset Γi from summary description
received. Table 5.1 shows the description of the different methods compared in
the experiment.
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Figure 5.10: Reversible EMD between agents

Table 5.1: Description of different methods

Name Descriptions

Weighted EMD Compute the EMD between centroids C1
of agent A1 and C2 of agent A2

Reversible EMD Compute the average of EMD between A1’s
centroids C1 to A2’s sampled points Γ2, and the reverse

Standard EMD Compute the EMD between
sampled dataset Γ1 of agent A1 and Γ2 of agent A2

Wavelet EMD Compute the Wavelet EMD between
regenerated dataset Γ1 of agent A1 and Γ2 of agent A2

Robust EMD Compute the Robust EMD between
regenerated dataset Γ1 of agent A1 and Γ2 of agent A2

To evaluate these measures, we again run Algorithm 19 with each EMD measure
embedded inside, each agent starts after a random delay (uniformly in [0,0.3])
and the delay for sending a message is random selected from [0.5,1]. Note that in
the experiment agents know the size of network (S1) and agents must finish with
identical model (A2). Each agent is fixed to have 5 clusters. The experiment
is carried out in a 10-agent network and repeated for 50 runs, and two splits of
agents are tested: 7:3 and 6:4. The basic setting is as follows:

1. Dataset. Three different synthetic datasets, that generated from fully sym-
metric multi-dimensional Gaussians, partially symmetric multi-dimensional
Gaussians, and uniform distributions, are used to test the algorithm.

2. Measurement. Three different accuracies are measured:
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2.1. Accuracy against centralised method, denoted by Accc.

2.2. Accuracy against the ground truth, denoted by Accg.

2.3. Accuracy against patterns, denoted by Accp, which measures how ac-
curately the agents are put into the same pattern as ground truth.
Since in the current scenario and algorithm all agents finish with the
same global model, we simply compute the pairwise accuracy against
ground truth.

2.4. Convergence time.

The measurements used in previous chapter only consider the case of True
Positive, where only data points that are assigned to the same cluster as
centralised method or ground truth are counted. Here, we also consider the
Rand index method to calculate the accuracy in a pair-wise way. The Rand
index computes the percentage of correct decisions made by the algorithm
compared to the benchmark classifications as the following formula [Rand,
1971]:

RI = TP + TN

TP + FP + FN + TN
(5.2)

where TP is the number of true positives, TN is the number of true neg-
atives, FP is the number of false positives, and FN is the number of false
negatives. Note that RI assumes that TP and TN are equally important.
We also consider a weighted version of rand index WRI:

WRI = TP + δTN

TP + FN + δFP + δTN
(5.3)

where the δ ≥ 0 is the weight applied to pairs that should be negative.
Also, we want to balance the contribution of false negatives by weighting
recall through parameter δ, and the F-measure is used, and calculated by
the following formula [Sasaki et al., 2007]:

F = (δ2 + 1) ∗ P ∗R
δ2 ∗ P +R

(5.4)

where precision P is defined as P = TP
TP+FP and recall R is denoted by

R = TP
TP+FN . Note that how agents are split affects the parameter δ, and

we assume that δ is defined as the ratio of size of two patterns.

We only show the results when K-means is used as clustering algorithm, and
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the results on GMM and SG are attached in appendix 8.3, where the results
are similar. Figure 5.11 shows the accuracy against centralised method when
the underlying datasets are generated from fully symmetric Gaussians. EMD
achieves the highest accuracy against centralised K-means in all four measures,
followed by weighted EMD between centroids. But the difference is small (refer
to the actual result in table 5.2). Of all five methods, the accuracy obtained by
wavelet EMD is the worst. However, all measures are above 90%, which indicates
that all methods perform well when underlying datasets are generated from fully
symmetric Gaussians.

Figure 5.11: Accuracy measures against centralised k-means with symmetric
Gaussians

Table 5.2: Accuracy measures against centralised k-means

Name TP TP and TN WRI F-measure
Weighted EMD 97.28(5.33) 94.77(9.14) 94.78(8.59) 91.55(12.52)
Reversible EMD 97.26(5.08) 94.7(8.82) 94.52(9.00) 91.59(11.73)
Standard EMD 98.02(3.73) 96.02(6.49) 95.77(6.85) 93.43(8.38)
Wavelet EMD 96.9(5.27) 94.09(9.02) 94.22(8.31) 90.42(12.51)
Robust EMD 97.5(3.81) 95.11(6.58) 94.91(6.84) 92.12(8.49)

Compared to the accuracy against centralised K-means, all measures on accuracy
against ground truth dropped (see figure 5.12). Note that there are little differ-
ence in accuracy achieved by weighted EMD, Reversible EMD and EMD. But
still, these accuracies are higher than wavelet EMD and robust EMD.

Although there is little difference in accuracy against centralised method and
ground truth between various methods, we expect that accuracy against pattern
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Figure 5.12: Accuracy against ground truth with symmetric Gaussians

will vary with the distance methods. That is because similarity between agents
is critical for assigning agents to different groups. The distance method that
describe the similarity between agents well is more likely to predict the same
agent assignment as ground truth patterns. Figure 5.13 shows how accurately
the algorithm puts the agents into the correct groups. This time, weighted EMD
outperforms other methods, followed by EMD. Again, wavelet EMD performs the
worst.

Figure 5.13: Accuracy against pattern with symmetric Gaussians

Figure 5.14, 5.15 and 5.16 show the accuracy against centralised K-means, ground
truth and pattern separately when data points are generated from partially sym-

Asynchronous distributed clustering
algorithms for wireless mesh network

104 Cheng Qiao



5. Identifying multiple patterns in
distributed clustering

5.2 An EMD based method to measure the
similarity between cluster models

metric Gaussians. In terms of accuracy against centralised K-means, EMD is
slightly higher than other methods, followed by weighted EMD. EMD achieves
the highest accuracy against ground truth. Again, there is little difference in ac-
curacy against centralised K-means and ground truth between various methods.
When accuracy against pattern is measured, weighted EMD outperforms other
methods, followed by EMD. Again, wavelet EMD performs worst. Note that the
F-measure is low for Reversible EMD, Wavelet EMD and Robust EMD. That is
because those methods separate similar agents into different sub-patterns, and
the F-measure penalise those methods.

Figure 5.14: Accuracy against centralised k-means with asymmetric Gaussians

Figure 5.15: Accuracy against ground truth with asymmetric Gaussians
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Figure 5.16: Accuracy against pattern with asymmetric Gaussians

When the underlying datasets are generated from uniform distributions, it is a
challenge for K-means to cluster. Again, EMD achieves slightly higher accuracy
against centralised K-means and ground truth than other methods (see 5.17 and
5.18 ), and there is again little difference between all methods. When accuracy
against pattern is measured, weighted EMD outperforms other methods, followed
by EMD. Wavelet EMD and robust EMD perform worst in accuracy against
patterns.

Figure 5.17: Accuracy against centralised k-means with uniformly distributed
dataset

In addition to the measurement above, we also consider the computation cost
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Figure 5.18: Accuracy against ground truth with uniformly distributed dataset

Figure 5.19: Accuracy against pattern with uniformly distributed dataset

for weighted EMD, standard EMD, Wavelet EMD and Robust EMD. The com-
putation cost is measured by the convergence time, which measures the time
interval between the first agent initialising its work and the last agent finishing
the process.

Figure 5.20 shows the convergence time over 50 runs. It shows that wavelet EMD
converges fast, followed by weighted EMD. Robust EMD requires the longest time
to converge. The reason why the robust EMD is the slowest lies in the set-up
time. The wavelet EMD is the fastest, but as shown above, it performs worse
than EMD and weighted EMD in term of accuracy against patterns.
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Overall, weighted EMD performs similar in term of accuracy against centralised
method, ground truth and patterns, but converges faster than EMD. That is
because weighted EMD only computes the work of moving centroids while EMD
has to compute the work of moving all raw data points.

Figure 5.20: Comparison of convergence time

The experiments shows that the proposed weighted EMD is a potential way to
measure the similarity between agents. It performs better in accuracy on data
point and estimated number of patterns than Euclidean distance L1-norm and
L2-norm. Similar to standard EMD, it performs well in term of accuracy against
centralised method, ground truth and pattern, but converges much faster. Com-
pared to the state-of-arts, it converges faster than the robust EMD, and slightly
slower than Wavelet EMD. However, it achieves higher accuracy than robust
EMD and wavelet EMD. Since Weighted EMD performs better than Reversible
EMD, we will use Weighted EMD as distance metric to measure the similarity
between agents hereafter.

5.3 Sharing strategy for different scenarios

From now on, we will adopt that similarity measure and apply to the other sce-
narios. In this section, we go back the general question of how to understand the
environment if there are multiple patterns, and we will use the selected Weighted
EMD as the distance measure. On top of the two scenarios (S1 and S2: agents
know the size of network or agents are only aware of their neighbours) and two
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different assumptions (A1 and A2: final models may be different, or must be
identical) considered in previous chapters, we also consider two different poten-
tial requirements in the network. Suppose that a centralising agent Ai produces
the patterns and models for each sub-pattern after seeing all cluster models, and
it knows which particular sub-pattern each agent belongs to. After that, the
centralising agent Ai shares the patterns and cluster models for each sub-pattern
with its neighbours. There is then a question over how much information on each
individual agent to share with other agents. To respect privacy, it may restrict
shared information to just the number of patterns and corresponding summary
description of each sub-pattern, or it could also tell its neighbours the details of
which particular sub-pattern every agent belongs to. So two different require-
ments are assumed at the start:

R1: Each agent is told the number of patterns and summary description of each
pattern, but not the individual agent assignments to the patterns.

R2: Each agent is told the number of patterns, the pattern description and the
details of assignment of all agents.

Although R1 preserves some privacy for the agents, the disadvantage is that
agents have to infer which sub-pattern they belong to based on their own compu-
tation. Note that this computation may introduce errors that were not present
in the original inferred model that was communicated to the network. If R2 is
applied, agents are told their assignment, but its assignment is also known to
other agents.

Figure 5.21 shows the different scenarios considered in this chapter. For the
variants which push raw data points or a basic model to a central agent, we
assume that each agent is told the patterns and the group assignment of all
agents.

Next, we describe the sharing strategies and process steps for the different sce-
narios considered in this chapter. First, we consider the distributed methods. If
agents may finish with different models (A1), any agent that receives information
from all other agents before it receives a global model should compute a global
model. If it still has not received a global model from any of its neighbours, it then
transmits a description of the model it has discovered, including for each pattern
a description of the cluster centroids, count, shape and density. An agent may
receive multiple global patterns, in which case it should keep the first model it
received (or produced by itself), and it should only relay that model to its neigh-
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Figure 5.21: Different scenarios considered for multiple patterns

bours. When agents must finish with identical models (A2), each agent chooses
the model with the earliest timestamp as its final model. Any agent learned or
received a global model, should relay this model to its neighbours.

If agents are not told the group assignment of all agents (R1), each agent must
infer which sub-pattern it belongs to by:

V1: comparing its basic model with patterns received. Weighted EMD is used to
measure the difference between agent and sub-patterns. Each agent chooses
the pattern with the smallest distance as its final assignment.

V2: comparing its raw data with patterns received. Similarly, Standard EMD
between raw data points and sub-patterns is used to measure the differ-
ence. Each agent chooses the pattern with smallest distance as its final
assignment.

When agents know the group assignment of all agents (R2), both the basic de-
scription for each pattern and the assignment of agents to patterns must be
shared. In this case, each agent simply reads its assignment.

For centralised methods, since a tree-based structure is applied and information
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flows up to the root node, we assume that the centralising agent knows the size
of all network (S1). Also, the central agent is the only agent that produces a
final model, so each agent will converge with the same model (A2). After central
agent learns the global model, a second communication is initialised to broadcast
the model to all its child nodes. Thus all agents are told the number of patterns
and group assignment of all agents (R2).

5.4 Measurement

Measuring the accuracy against data points and ground truth is not enough when
there are multiple patterns in the network. Since now the aim of algorithm is
to assign agents to groups and to infer the data distribution for each group,
we need an additional measurement accuracy against pattern, which measures
how accurately the agents are assigned into groups or patterns compared to the
original ground truth. Since two new requirements (R1 and R2) are introduced,
accuracy against pattern under these new requirement is introduced.

5.4.1 Accuracy against patterns with known assignment
(R2)

Accuracy against pattern is an important quota to measure how accurately the
algorithm puts agent into the right groups against ground truth patterns. Note
that predicting the right number of patterns only is not enough. It is possible
that agents are put into the wrong sub-patterns, but the right number of patterns
has been preserved. When agent knows the details of assignment of all agents
(R2), we can compute the accuracy in a pair-wise way. The accuracy against
pattern is computed as:

Accp =
∑n
i=1(Accpi)

n
(5.5)

Where Accpi denotes the estimation by agent i. For each agent i, it computes the
estimation by comparing the inferred pattern with ground truth pattern directly,
and it could be computed by the following two methods:

Me1: For agent i and other agents in the same inferred group, are they assigned in
the same group as ground truth? Count the number of pairs {i, j} (j ∈ Gi

and j! = i) that are assigned in the same group as ground truth 2, or

2Gi denotes the a sub-group where agent i is in.
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Me2: For all agents in the learned pattern, are they assigned in the same group as
ground truth? Count the number of pairs {i, j} in sub-group Gm (j ∈ Gm,
i ∈ Gm and j! = i) that are in the same sub-group as ground truth.

The difference between these two methods is thatMe1 only considers an agent and
its neighbours that in agent’s group while all pairwise agents in the learned pat-
terns are considered in Me2. Suppose the pattern learned by A0 is [[A0, A1, A2],
[A3, A4]]. All pairwise agents in the first sub-group are considered: [A0, A1],
[A0, A2] and [A1, A2] if Me1 method is used. If Me2 is used instead, then all
possible pairwise agents are considered: [A0, A1], [A0, A2], [A1, A2] and [A3, A4].
The pair [A3, A4] is not considered in measurementMe1 but is taken into account
in measurement Me2.

5.4.2 Accuracy against patterns without known assign-
ment (R1)

When each agent only knows the number of patterns and which sub-pattern it
belongs to (R1), how should we measure the accuracy? It is a challenge since
the prediction of the assignment for agents may be based on different models.
Suppose that in a 5-agent network (Ai, Aj, Ak, Al, An), agent Ai and Aj produced
final models (mi and mj) at some timestamp tr. Then these two different models
are broadcasted to the other agents.

When agents must finish with identical model, the centralising agent Ai may
have put agent Aj and Ak into the same group, but agent Ak has put itself into
a different group. The accuracy measurement depends on which agent’s view
is used. Things are even worse when agents may finish with different models.
Agent Ak receives model mi, which puts agent Ai, Aj and Ak into a group G1,
and agent Ak puts itself in that group. Agent Al receives model mj, which had
a group G2 contains Ai, Al and An, and Al puts itself in that group. Now the
accuracy measurement depends on all centralising agents’ view. In this section,
we propose three different potential solutions to measure the accuracy against
pattern.

The first one is to build a symmetric table based on agents’ prediction. It could be
used in scenario with identical model or different models. Based on the prediction,
agents who make the same prediction are grouped together. Figure 5.22 shows
one example to build the symmetric matrix in a 5-agent network. Agent A4

produced the final model and broadcast its model to the rest of agents. Then
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each agent makes a prediction based on the model received. Agent A4 produced
the model, so it knows which sub-pattern it is in. Agent A2, A3 and A5 predict
they are in sub-pattern P2, so they are grouped together. Agent A1 predict it is
in sub-pattern P1, so it is alone. Thus, the final table is :

[[A1], [A2, A3, A5], [A4]]

Then, this table is compared to ground truth patterns:

[[A1], [A3, A4], [A2, A5]]

By this method, the common knowledge of predictions is considered, and agents
who make the same prediction are grouped together.

Figure 5.22: Symmetric table built by agents’ prediction

The first method is not working if it is further extended to the case when there
are multiple different models in the network, and it inspires us to propose a
new method. The second method is to build an asymmetric table (denoted by
MD1). Algorithm 20 shows the algorithm to build an asymmetric table. First,
the actual sub-pattern s of patterns computed by centralising agent which this
agent i belongs to is obtained. Then this index s is compared to the prediction p.
If agent i made a correct prediction (p = s), then agents that together with and
apart from this agent within model M are stored. However, agent i may make
the wrong prediction. In this case, agent i is inserted to the pth sub-pattern of
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model M . Actually, agent i is put in another sub-pattern p̄ by the centralising
agent. So agent i is removed from sub-pattern p̄. Again, the agents that together
with and apart from agent i are stored. Then the asymmetric table is built when
all agent find out who they are together with and apart from.

Algorithm 20: Method to estimate the relationship with other agents for
individual agent

1 Input: Prediction p, Model received M ;
2 Output: Ts: set of agents together with agent i, Ta: set of agents apart

from agent i ;
3 Find the index s of agent i in the received Model M ;
4 if s == p then
5 Add agents that together with agent i to Ts ;
6 Add agents that apart from agent i to Ta;
7 else
8 Insert agent i in the pth pattern of model M ;
9 Remove agent i in other patterns (not in pth pattern) of model M ;

10 Add agents that together with agent i to Ts ;
11 Add agents that apart from agent i to Ta;

Figure 5.23 shows one example to build an asymmetric table. Agent A2 and A4

computed the final mode m2 and m4. Then model m2 is sent to agent A1 and m4

is sent to agent A3 and agent A5. Agent A1 predicts that it is in the sub-pattern
P1. Based on the centralised agent A2, the prediction is right and the agents
that together with and apart from A1 should be consistent with that in model
m2 (together with [A3] and apart from [A2, A4, A5]). However, agent A3 made
the wrong prediction: it predicts it is in second sub-pattern, but actually it is in
the third sub-pattern of model m4. By inserting agent A3 to the predicted sub-
pattern and deleting the actual location of agent A3, now agent A3 is assumed
to together with [A2, A5] and apart from [A1, A4], which differs significantly from
the model m4.

By this method, the correlation between agents is ignored. Two agents that
made the same prediction based on same models may have different estimations.
However, different from the symmetric table, both agent’s prediction and the
centralised method are considered. It is suitable for the case that there are
multiple different patterns in the network.

The last method compares the patterns learned by centralised agent with the
ground truth directly (denoted by MD2). Take agents in figure 5.23 as an ex-
ample, agents A2 and A4 learned the global patterns [[A1, A3], [A4], [A2, A5]] and
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Figure 5.23: Asymmetric table built by agents’ prediction

[[A1], [A2, A5], [A3, A4]]. So we compare them with the ground truth:

[[A1], [A3, A4], [A2, A5]]

By this method, the errors introduced by prediction by agents have been avoided.
To evaluate the how accurately the algorithm puts agents into the same group as
ground truth, method MD1 and MD2 are used.

5.5 Time Complexity

In this section, we analyse the time complexity. Compared to the proposed
algorithms in last chapter, there are two new steps: computing the similarity
between different cluster models and doing spectral clustering. Given N data
points, computing the similarity (Earth Mover’s Distance) takes time in O(N2)
and the time complexity of doing spectral clustering is bounded by O(N3).

In last chapter, we have shown that, no matter whether the size of network is
known or not, the time complexity for the three distributed clustering algorithm
variants is bounded by O(N2), and the time complexity for the two centralised
methods is also bounded by O(N2). We can conclude that the time complexity
for distributed algorithms and centralised algorithms is bounded by O(N3).
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5.6 Empirical Evaluation

In this section, we show the experimental result when K-means, GMM and SG are
used as the clustering algorithm on a 10-agent sparse or dense graph. Each node
is given 200 data points and the ground truth number of clusters in all simulations
is 5. Each message transmission delay is generated uniformly from the range [0.5,
1.0], and nodes begin their work at time randomly selected in [0, 0.1s]. Three
different underlying 2-dimensional datasets are tested: fully symmetric Gaussians,
partially symmetric Gaussians and uniformly distributed datasets. Four different
splits of agents are tested: three with two patterns (5:5, 7:3, 9:1) and one with
three patterns (5:3:2). In addition to convergence time, the number of transmitted
message, number of clusters, number of patterns learned and accuracy against
data points, we also measure the accuracy against patterns, where both the same
number of clusters and different number of clusters in ground truth distributions
are used.

In chapter 4 (refer to 4.6), we have shown that the extent of overlapping of clusters
affects how accurate the learned number of clusters is and accuracy against data
points. In the following sections, we show the results on well-separated clusters
first, then on overlapped clusters.

5.6.1 Experiment on well-separated clusters

Figure 5.24 shows the result when K-means is used to cluster data points gener-
ated from fully symmetric Gaussians 3. Centralising raw data points to a central
agent C_r_R2 takes longer time than other methods. In terms of amount of in-
formation received, S2_A1_R1 and S2_A1_R2 require much more exchanged
information. As before, this is because agent has to do repeated clustering when-
ever receives new information and share it with neighbours.

When the number of clusters in each pattern in the ground truth distribution used
to generated data points are the same, the learned number of clusters are close
to the ground truth number of clusters (the third row) and estimated number of
patterns are close to the ground truth number of patterns (the fourth row). The
accuracy on data points against centralised method and ground truth are reaching
98%. This is as expected, since we have shown that our algorithms perform nearly
perfectly when clusters are not overlapped. Note that there is little difference in

3Since GMM and SG also perform well when clusters are well-separated, so we omit the
result with GMM and SG
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accuracy on data points and patterns between proposed algorithms. When the
number of clusters in each ground truth pattern are different, the accuracy against
patterns is improved and the accuracy reaches as high as 99%. This is because the
distance between agents with different numbers of clusters in their model is high,
and we have already shown that we get high accuracy for detecting the number
of clusters, and so it becomes easy to identify agents from different groups.

The last four rows shows the accuracy against patterns by MD1 and MD2 sepa-
rately. When there is no difference between estimated number of patterns (same
or different number of clusters), the accuracy against patterns are similar (see the
first columns). The difference occurs when there is a gap between the estimated
number of patterns (especially the last column). Compared to accuracy achieved
by same number of clusters, accuracy against pattern when there are different
number of clusters is round 18% higher.

When data points from partially symmetric Gaussians are used (figure 5.25), the
learned number of clusters are close to the ground truth number of clusters and
estimated number of patterns (except the case of three patterns) are close to
the ground truth patterns. Again, there is little difference between the proposed
algorithms. Even when the estimated number of patterns are wrong (the last
column), the accuracy against patterns are still above 70%. That is because two
sub-patterns are merged incorrectly into a big sub-pattern, and so there is only
a slightly decrease of accuracy.

Figure 5.26 shows the result when data points are generated from a uniform
distribution. As before, the learned number of clusters and estimated number of
patterns are nearly perfect when compared to the ground truth. Again, accuracy
against patterns is higher when the number of clusters in the patterns is different
(improved by as much as 20%).

To summarise, our proposed method performs well when clusters are well sep-
arated. The learned number of clusters and estimated number of patterns are
close to the ground truth. In addition, the accuracy on data point and patterns
are high, reaching accuracy level of 98%. The performance improves when the
number of clusters in the patterns is different.

5.6.2 Experiment on overlapped clusters

In this section, we show the experimental results when there is substantial over-
lapping between clusters. Again, we only describe the main results and a table of
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Figure 5.24: K-means on multiple patterns dense network with fully symmetric
well separated clusters
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Figure 5.25: K-means on multiple patterns dense networks with partially sym-
metric well separated clusters
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Figure 5.26: K-means on multiple patterns dense networks with uniformly well
separated clusters
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significant testes will be given at the end 4. Compared to that with well-separated
clusters, we expect that the performance will degrade, based on the results pro-
duced in Chapter 4. We only show the results on dense networks. The results
on sparse network are similar and are attached in appendix 8.5. In addition, the
comparison of two methods V1 and V2 (refer to section 5.3) to predict the sim-
ilar sub-pattern is also in that appendix, where we show that predicting which
sub-pattern an agent is in by comparing the weighted EMD between centroids
performs better than the other method.

5.6.2.1 K-means as clustering algorithm

Figure 5.27 shows the results on dense networks when K-means is used as clus-
tering algorithm. Compared to the ground truth number of patterns, there is no
significant difference in learned number of patterns between the same and differ-
ent settings of number of clusters k. However, we observe a significant difference
in accuracy against patterns(except the case with a singleton agent).

As before, centralising raw data points to a central agent C_r_R2 converges
slower than other methods and S2_A1_R1 and S2_A1_R2 require much more
message transmissions. C_r_R2 outperform other methods in predicting the
number of clusters. Again, that is because no errors (for instance, caused by
regeneration) are introduced compared to the distributed methods.

On the fourth row of figure 5.27, we show the result with same (solid bar) and
different (slashed white bar) number of clusters in the patterns. It shows that
when there are only two patterns, no matter what the actual split of agents
are, both methods can predict the same number of patterns as ground truth.
However, the estimated number of patterns are different when there are three
patterns (5:3:2). When the number of clusters in the patterns in the ground truth
distributions are the same, the algorithms predict there are still two patterns.
But the algorithms estimate that the number of patterns are close to 3 (2.8 on
average) when the number of clusters in the patterns are different. As before, it
is a challenge for the algorithm to separate agents when the number of clusters
over patterns are same, and those clusters overlap, so two patterns are merged
into a big pattern.

When there is no difference between estimated number of patterns (same or dif-
ferent number of clusters), the accuracy against patterns are similar (see the first

4We only report the significant study on dense graph with K-means as clustering algorithm,
since the results with GMM and SG are similar.

Asynchronous distributed clustering
algorithms for wireless mesh network

121 Cheng Qiao



5. Identifying multiple patterns in
distributed clustering 5.6 Empirical Evaluation

three columns). The accuracy against pattern is up to 15% higher when the
number of patterns is close to the ground truth (see last column). As before, the
number of clusters is different, it is easier to detect the different patterns, and so
assigning agents to groups is more consistent.

When the underlying datasets are sampled from partially symmetric Gaussians
(see figure 5.28), we observe there is no significant difference in learned number
of patterns with the setting of different k. The learned number of patterns with
different k is much likely to close to the ground truth value. However, there is a
significant difference in accuracy against patterns between same k and different
k.

The learned number of pattern with different number of clusters outperforms
that by same number of clusters. In the first three columns (5:5, 7:3 and 9:1),
the number of patterns are overestimated by the number of clusters is the same
for each pattern. As expected, the corresponding accuracy against patterns over
the setting of same number of clusters are lower. The reason lies in the fact that
K-means may fail in fitting the partially symmetric Gaussians.

Figure 5.29 shows the result with uniformly distributed data. Compared to the
ground truth number of patterns, the learned patterns with the same and different
k differ slightly. The learned number of patterns by both settings are close to
the ground truth value. However, we observed there are substantial difference in
accuracy against pattern when the split of agents are 7:3 and 5:3:2.

Again, the number of patterns estimated for the cases with the same number of
clusters is overestimated except for the case of three patterns (5:3:2). Note that
when there are three sub-patterns (fourth row of last column), it is performance
is better on predicting the number of patterns when the k-value is the same. This
is different to previous results.

Compared to that with Gaussians, no matter fully or partially symmetric, the
accuracy against pattern dropped to around 50% when one of the patterns is a
singleton agent (9:1). This caused by the spectral clustering method we used to
divide agents into groups, which prefers to generate large clusters. Unless the
singleton agent pattern is very distinct, the method will prefer to group that
agent with others.
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Figure 5.27: K-means on dense network with multiple patterns and symmetric
multi-dimensional Gaussians
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Figure 5.28: K-means on dense network with multiple patterns and asymmetric
multi-dimensional Gaussians
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Figure 5.29: K-means on dense network with multiple patterns and uniformly
distributed dataset
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5.6.2.2 GMM as clustering algorithm

In this section, we show the experimental results when GMM is used as the clus-
tering algorithm. As before, there is no significant difference in learned number
of patterns between the same and different settings of number of clusters k. How-
ever, there is a significant difference in accuracy against patterns(except the case
with a singleton agent).

Compared to the results with K-means, the convergence time is much shorter
(see the first row of figure 5.30 and figure 5.27), as in previous results. As before,
centralising all raw data is slower than other methods and more messages are
required if agents are only aware of their neighbours.

Figure 5.30 shows the results when the underlying datasets are generated from
fully symmetric Gaussians. The results show the expected behaviour.

Figure 5.31 shows the result with data points generated from partially symmetric
Gaussians as underlying datasets. Again, the results are similar as that using
k-means as the clustering algorithm.

When uniformly distributed data is used, the number of patterns learned by
different number of clusters is much more accurate (refer to figure 5.32) than
when using K-means. Thus, the corresponding accuracy against pattern is higher.
When there is a singleton agent (9:1), the accuracy against pattern dropped
noticeably to the other types of ground truth data.

5.6.2.3 SG as clustering algorithm

In this section, we show the experimental result when SG is used as the clustering
algorithm. Similarly, there is no significant difference in learned number of pat-
terns between the same and different settings of number of clusters k. However,
we observe a significant difference in accuracy against patterns(except the case
with a singleton agent).

Figure 5.33, figure 5.34 and figure 5.35 show the result on data points generated
from fully symmetric Gaussians, partially symmetric Gaussians and uniform dis-
tribution, separately. The result is similar to that with GMM as clustering algo-
rithm.
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Figure 5.30: GMM on dense network with multiple patterns and symmetric multi-
dimensional Gaussians
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Figure 5.31: GMM on dense network with multiple patterns and asymmetric
multi-dimensional Gaussians
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Figure 5.32: GMM on dense network with multiple patterns and uniformly dis-
tributed dataset
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Figure 5.33: SG on dense network with multiple patterns and fully symmetric
multi-dimensional Gaussians
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Figure 5.34: SG on dense network with multiple patterns and partially symmetric
multi-dimensional Gaussians
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Figure 5.35: SG on dense network with multiple patterns and uniformly dis-
tributed dataset
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5.6.3 Summary

In this section, first we compared the result on overlapped clusters with well-
separated clusters. When the clusters overlap with each other, the learned number
of clusters is smaller and further away from ground truth, than that with well-
separated clusters. This was expected because data points in the boundary of
two clusters mean that clusters will tend to be merged together. In addition,
the learned number of patterns is less accurate and the corresponding accuracy
against pattern is as much as 20% lower. Note that the accuracy against pattern
is above 80% and can reach 99% even there is a singleton agent when clusters are
well separated. It indicates that the underlying datasets affect the performance
of proposed algorithms.

When the patterns have the same number of clusters, the performance degrades
when there are overlapping between clusters. The accuracy against pattern
dropped noticeably, especially when there is a singleton agent (9:1). When the
number of clusters is different, it is easier to detect the different patterns, and so
assigning agents to groups is more consistent.

Figure 5.29, 5.32 and 5.35 show that accuracy against data points is higher when
K-means is used to cluster the underlying data points generated from a uniform
distribution. That is because bounding boxes outperforms SG and GMM over
the regeneration. When the underlying dataset is uniformly distributed, data
points are spread out rather than gathered together. Note that the accuracy
against pattern is the worst when there is a singleton agent (around 40%). That
is because spectral clustering used to divide the agents into separated groups
prefers large groups when the similarity between agents is not so distinct.

5.7 Increasing accuracy against pattern when
there is a singleton agent

In last section, we showed the experimental result when clusters are well sepa-
rated and overlapped. When there are some overlapping between clusters, the
accuracy against pattern is low if only one agent is sampling data from different
distributions (9:1). That is because the similarity between agents are quite high
and it makes the algorithm difficult to tell the singleton agent from the rest of
agents. In spectral clustering, the similarity and size of groups play an important
role in grouping and it prefers large clusters. This raises the question of how to
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boost the accuracy against pattern when the similarity between agents is high
and there are very small agent groups?

5.7.1 Cluster model between different agents are similar

First, we consider the scenario that the cluster models are similar. The main
idea is to detect the singleton agent before proceeding to the spectral clustering.
The singleton agent is detected by measuring the deviation of each agent from
the rest of agents. After that, the deviation based distance (DBD) is measured
by IQR. IQR is defined as the difference between Q3 and Q1. Data points that
locate outside [Q1- 1.5*IQR, Q3+1.5*IQR] are considered as outliers.

Figure 5.36 shows the performance achieved by DBD when K-means is used to
fit data points generated from partially symmetric Gaussians. The left column
m shows the performance without DBD method, the middle column m shows
the performance with DBD method, and the right column shows the difference
between them ( the difference of solid bar and slash bar between column m and
column m are measured by D1 and D2 respectively). There is little difference in
convergence time, information, learned number of patterns and learned number
of clusters. The accuracy against patterns is increased by around 10% on average
by the DBD method. Note that the DBD method has little effect on the accuracy
against patterns when the number of clusters over multiple patterns is different
(the accuracy decreased by around 2%). This appears to be because the number of
patterns estimated on the middle column is worse, which cause the corresponding
accuracy against pattern to drop as well.

Figure 5.37 shows that performance by DBD method when K-means is used to fit
the uniformly distributed dataset. Again, there is little difference in measurement
except for accuracy against patterns. When the number of clusters is the same,
the accuracy against patterns is improved by as much as 8% on average. The
accuracy against patterns is also slightly increased when the number of clusters
over patterns is different (less than 1% on average). The most likely reason for
this is that the similarity between agents is low in this case and detecting the
singleton agent is not needed.

Figure 5.38 and 5.39 show the performance when GMM is used as clustering algo-
rithm. The results are similar to those using k-means as the clustering algorithm.

Figure 5.40 and 5.41 show the comparison result when SG is used as the clustering
algorithm. Again, the results show the same behaviour.
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Figure 5.36: Performance achieved by DBD with K-means as clustering algorithm
and asymmetric Gaussians as underlying dataset
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Figure 5.37: Performance achieved by DBD with K-means as clustering algorithm
and uniformly distributed dataset as as underlying dataset
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Figure 5.38: Performance achieved by DBD with GMM as clustering algorithm
and asymmetric Gaussians as underlying dataset
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Figure 5.39: Performance achieved by DBD with GMM as clustering algorithm
and uniformly distributed datasets as underlying dataset
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Figure 5.40: Performance achieved by DBD with SG as clustering algorithm and
asymmetric Gaussians as underlying dataset
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Figure 5.41: Performance achieved by DBD with SG as clustering algorithm and
uniformly distributed datasets as underlying dataset
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To summarise, the low accuracy against patterns caused by a singleton agent
pattern could be improved when: 1) the proposed DBD method is applied when
the number of cluster over ground truth distribution are same, or 2) the number
of clusters over ground truth distribution is different.

5.7.2 Cluster model between different agents are dissimi-
lar

In last section, we considered the case that cluster models between different agents
are similar. In this section, we consider the case that cluster models are dissimi-
lar. Note that cluster models with different number of clusters over ground truth
distributions has been considered in preceding sections. We now consider clus-
ter models with the same number of clusters but the centroids of clusters differ
substantially in locations compared to other patterns in this section.

We focus on the case of three patterns (5:3:2) and underlying data points are
generated from fully symmetric Gaussians. Previously, the ground truth distri-
bution for the second sub-pattern and third sub-pattern is similar. We rotate the
ground truth distribution for the second-pattern around the grid, and create a
different ground truth distribution. The agents in the third sub-pattern sample
data points from this rotated and different ground truth distribution. Figure 5.42
shows one example of dataset before and after rotation, with a noticeable differ-
ence between the two patterns. It shows that the dataset differs noticeably from
the previous dataset after rotation. However, the number of clusters still remains
the same. Again, the experiment is tested on 10-agent network and different
assumptions and requirement are applied.

Figure 5.42: Dataset before and after rotation (left to right)

Figure 5.43 shows the accuracy against patterns with different levels of similarities
of the data distribution in the patterns. There is little difference in accuracy
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against pattern Me1 between similar and dissimilar agents (blue and green line).
It indicates that agents are put into the same group as they were in for the ground
truth. When accuracy against pattern Me2 is computed, accuracy is much higher
when ground truth data distributions are dissimilar. That is because two similar
patterns are merged into a big pattern if agents are similar.

Figure 5.43: Accuracy against patterns with different similarities between agents

Figure 5.44 shows the corresponding number of clusters and patterns learned.
The number of clusters learned is much closer to ground truth number of clusters
when agents are dissimilar. In addition, the learned number of patterns is much
closer to the ground truth. Based on the result of accuracy, number of clusters
and patterns, we can infer that two small clusters are merged to a big cluster
when agents are similar. It is challenge for the algorithm to distinguish these two
clusters. However, those two small clusters can be separated when agents are
dissimilar.

To summarise, the underlying datasets, for instance, the overlapping between
clusters and the ground truth distributions that used to generate data points,
play a vital role in the performance of proposed algorithms. When the clusters
are well separated, our proposed algorithms perform well. The learned number of
patterns and number of clusters are close to the ground truth. The performance
degrades when there is some overlapping between clusters and one question occurs
when there is a singleton agent: the accuracy against patterns are low. This
question can be partially addressed by the proposed DBD method, where the
accuracy against patterns are increased by as much as 20%.

Moreover, our proposed methods are capable of separating agents that differ
substantially from each other even when the number of clusters are same. In
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Figure 5.44: Accuracy against patterns with different similarities between agents

addition, our proposed methods perform well when agents have different number
of clusters. Our method only struggles when agents are highly similar to each
other (both the number of clusters and location of centroids are same).

5.8 Significance Study

In this section, we show the significance study of experimental results. Again,
we use the Shapiro-Wilk’s test to test the assumption of normality. Results show
that not all assumptions are hold, but we still show the significant study for all
scenarios.

Table 5.3 shows the one sample t-test for learned number of patterns with the
same number of clusters and different number of clusters. The Nan value in the
table means all the values in the testing list are identical and equal to the test
mean while the inf value means all the values in the testing list are identical and
not equal to the test mean. It shows that the estimated mean is much likely to
be equal to the test mean if the number of clusters k over patterns is different
(the corresponding p-value is Nan or greater than 0.05).

Table 5.4 shows the tukey test for accuracy against patterns with the same k

and different k. It shows that there is significant difference in accuracy against
patterns with the same k and different k (most p-values is less than 0.05), except
the case that there is a singleton agent (9:1). As we mentioned before, the most
possible reason is that the spectral clustering, we used to detect the patterns,
prefers large size of patterns. It is a challenge to detect the patterns with a
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Table 5.3: One sample t-test for learned number of patterns, only the results on dense
graph with K-means as clustering algorithm is compared

Symmetric Gaussians Asymmetric Gaussians

Learned Patterns 5:5 7:3 9:1 5:3:2 5:5 7:3 9:1 5:3:2
with same k (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.0, 0.343) (3.674, 0.005) (4.714, 0.001) (-3.28, 0.01)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.0, 0.343) (4.583, 0.001) (3.207, 0.011) (-4.583, 0.001)
S2_A1_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.5, 0.168) (4.583, 0.001) (3.25, 0.01) (-2.714, 0.024)
S1_A2_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.5, 0.168) (4.583, 0.001) (1.406, 0.193) (-3.674, 0.005)
S1_A1_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.964, 0.081) (3.674, 0.005) (2.666, 0.026) (-3.28, 0.01)
S2_A1_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.964, 0.081) (3.674, 0.005) (3.873, 0.004) (-6.0, 0.0)
C_r_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (2.449, 0.037) (4.0, 0.003) (3.28, 0.01) (-3.28, 0.01)
C_b_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-inf, 0.0) (1.0, 0.343) (2.449, 0.037) (4.265, 0.0) (-inf, 0.0)

Learned Patterns 5:5 7:3 9:1 5:3:2
Uniform distributions

with same k (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (Nan, Nan) (1.964, 0.081) (2.689, 0.025) (-0.557, 0.591)
S1_A2_R1 (1.0, 0.343) (2.236, 0.052) (1.964, 0.081) (-1.0, 0.343)
S2_A1_R1 (1.0, 0.343) (Nan, Nan) (1.964, 0.081) (0.612, 0.555)
S1_A2_R2 (Nan, Nan) (3.0, 0.015) (2.372, 0.042) (0.557, 0.591)
S1_A1_R2 (1.0, 0.343) (3.674, 0.005) (1.5, 0.168) (-1.406, 0.193)
S2_A1_R2 (1.5, 0.168) (1.35, 0.21) (3.25, 0.01) (-1.152, 0.279)
C_b_R2 (1.5, 0.168) (2.449, 0.037) (1.809, 0.104) (0.318, 0.758)
C_r_R2 (1.0, 0.343) (2.449, 0.037) (2.236, 0.052) (0.0, 1.0)

Symmetric Gaussians Asymmetric Gaussians

Learned Patterns 5:5 7:3 9:1 5:3:2 5:5 7:3 9:1 5:3:2
with different k (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0, 0.0)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0, 0.0)
S2_A1_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-12.696, 0.0)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0, 0.0)
S2_A2_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0,0.0)
S1_A1_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0, 0.0)
S2_A1_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0, 0.0)
C_r_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0,0.0)
C_b_R2 (Nan, Nan) (Nan, Nan) (Nan, Nan) (-1.5, 0.168) (Nan, Nan) (Nan, Nan) (Nan, Nan) (-9.0,0.0)

Uniform distributions

Learned Patterns 5:5 7:3 9:1 5:3:2
with different k (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (Nan, Nan) (Nan, Nan) (2.236, 0.052) (-4.0, 0.003)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (2.236, 0.052) (-3.28, 0.01)
S2_A1_R1 (Nan, Nan) (Nan, Nan) (2.449, 0.037) (-inf, 0.0)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (2.236, 0.052) (-6.0, 0.0)
S1_A1_R2 (Nan, Nan) (Nan, Nan) (1.809, 0.104) (-6.0, 0.0)
S2_A1_R2 (Nan, Nan) (Nan, Nan) (1.5, 0.168) (0.31, 0.83)
S1_A1_R1 (Nan, Nan) (Nan, Nan) (1.5, 0.168) (-6.0, 0.0)
C_b_R2 (Nan, Nan) (Nan, Nan) (2.449, 0.037) (-inf, 0.0)
C_r_R2 (Nan, Nan) (Nan, Nan) (1.964, 0.081) (-6.0, 0.0)

singleton agent.

5.9 Conclusion

In this chapter, we relax the assumption that all agents are receiving data from
the same source and instead we assume that there are multiple different pat-
terns of data being observed by different subgroups of agents. The aim was for
agents to be able to identify the different patterns and their associated clusters,
rather than combine the multiple patterns into a single description. To reduce
the computational effort in assessing similarity of cluster models, we proposed
two EMD based methods Weighted EMD and Reversible EMD to measure the
similarity between cluster models and infer the number of patterns based on the
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Table 5.4: Tukey test for accuracy against patterns with same k and different k. Only
the results on dense graph with K-means as clustering algorithm is reported. � denotes
the difference of mean

Symmetric Gaussians Asymmetric Gaussians

5:5 7:3 9:1 5:3:2 5:5 7:3 9:1 5:3:2
Accuracy (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (Nan, Nan) (Nan, Nan) (1.053, 0.306) (-1.275, 0.218) (-3.076, 0.007) (-5.293, 0.0) (-6.764, 0.0) (2.913, 0.042)
S1_A2_R1 (Nan, Nan) (Nan, Nan) (-1.129, 0.274) (-2.512, 0.022) (-3.211, 0.005) (-3.747,0.001) (-3.887, 0.001) (1.071, 0.299)
S2_A1_R1 (Nan, Nan) (Nan, Nan) (-0.236, 0.816) (-5.507, 0.0) (-4.004, 0.001) (-3.144, 0.006) (-2.832, 0.011) (1.864, 0.079)
S1_A2_R2 (Nan, Nan) (Nan, Nan) (-0.062, 0.951) (-2.512, 0.022) (-2.722, 0.036) (-4.554, 0.0) (-4.223, 0.001) (8.577, 0.0)
S1_A1_R2 (Nan, Nan) (Nan, Nan) (-0.313, 0.758) (-2.512, 0.022) (-2.722, 0.014) (-4.619, 0.0) (-4.817, 0.0) (3.066, 0.007)
S2_A1_R2 (Nan, Nan) (Nan, Nan) (-1.964, 0.065) (-1.206, 0.243) (-2.99, 0.008) (-3.669, 0.002) (-4.271, 0.0) (1.862, 0.079)
C_r_R2 (Nan, Nan) (Nan, Nan) (0.493, 0.628) (0.156, 0.878) (-3.344, 0.004) (-4.359, 0.0) (-8.833, 0.0) (2.629, 0.017)
C_b_R2 (Nan, Nan) (Nan, Nan) (0.087, 0.932) (nan,nan) (-2.194, 0.041) (-3.047, 0.007) (-8.258, 0.0) (2.973, 0.008)

Uniform distributions

5:5 7:3 9:1 5:3:2
Accuracy (�, P value) (�, P value) (�, P value) (�, P value)
S1_A1_R1 (-2.013, 0.059) (-4.579, 0.0) (-1.712, 0.104) (3.505, 0.003)
S1_A2_R1 (0.071, 0.945) (-2.874, 0.01) (-1.683, 0.11) (4.773, 0.0)
S2_A1_R1 (-1.923, 0.07) (-1.837, 0.083) (-0.318, 0.75) (2.173, 0.0)
S1_A2_R2 (-1.381, 0.184) (-4.092, 0.001) (-0.103, 0.919) (2.539, 0.021)
S1_A1_R2 (-1.859, 0.08) (-4.252, 0.0) (-0.938, 0.36) (3.485, 0.003)
S2_A1_R2 (-2.187, 0.042) (-3.752, 0.001) (0.098, 0.923) (2.19, 0.042)
C_b_R2 (-1.934, 0.069) (-2.417, 0.027) (-1.642,0.118) (12.321, 0.0)
C_r_R2 (-1.85, 0.081) (-3.442, 0.003) (-2.719, 0.014) (3.6, 0.002)

computed similarity. The experiments shows that weighted EMD is a potential
way to measure the similarity between agents. The algorithms that use it perform
well in terms of accuracy against centralised method, ground truth and pattern,
but they converge faster than when using standard EMD. Compared to the state
of art distance measures, it converges faster than the robust EMD and slightly
slower than Wavelet EMD, but it achieves higher accuracy than robust EMD and
wavelet EMD.

In addition, the similarity between agent cluster models plays a vital role in the
prediction of sub-patterns. The proposed algorithm performs well when agent
models are dissimilar, or the number of clusters are the same and the number of
clusters for agents over patterns is different. The only scenario that the proposed
algorithm struggles is when agents’ cluster models are similar to each other in
both the number of clusters and the locations of centroids. In that case, it
is challenge for the algorithm to predict the number of sub-patterns as ground
truth patterns.

Moreover, the underlying datasets (for instance, the extent of overlapping be-
tween clusters and the ground truth distributions used to generate data points)
affect the performance of proposed algorithms. When the clusters are well sep-
arated, our proposed algorithms perform well. The learned number of patterns
and number of clusters are close to the ground truth, and accuracy on data points
and patterns are nearly 98%. The performance degrades when there is some over-
lapping between clusters and one question occurs when there is a singleton agent:
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the accuracy against patterns are low. This question could be partially addressed
by the proposed DBD method, where the accuracy against patterns is increased
by as much as 20%.

Overall, the cluster models learned by individual agents are accurate, no mat-
ter whether they are in single pattern or multiple patterns. But whether the
estimated number of patterns are correct depends on the extent of overlapping
between clusters and how similar of the clusters models learned by individual
agents.
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Chapter 6

Detecting single or multiple
patterns

In preceding chapters, we focused on in-network clustering for wireless mesh net-
works. Agents do clustering of their local data and share the summary description
with neighbours. Agents must combine the summary descriptions, and eventu-
ally all agents should end up with the same understanding of the environment
(i.e. of the global data patterns). In some cases, there may be two or more dis-
tinct patterns, or distributions of data, each received by distinct groups of agents.
We presented methods allowing agents to infer the number of patterns, to group
agents according to the patterns they received, and to generate appropriate clus-
ter models for each pattern. Note that the proposed methods do not require the
number of clusters as input, nor did they need to know the number of pattens
in advance. However, the methods did assume that there was more than one
pattern. That is not always justified, and so there is a need for methods which
are able to distinguish between an environment with a single pattern (which may
still contain multiple clusters) and one with multiple patterns. In this chapter,
we tackle that problem and develop such a method, and evaluate it in the same
style as previous chapters.

The outline of this chapter is as follows: in section 6.1 we show the research
problem and the main algorithm to address that problem. Then two types of
methods to detect the number of patterns are proposed in section 6.2 and 6.3.
After that, the comparison results are shown in section 6.4, and the conclusion is
given in section 6.6.
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6.1 Research Problem

Flow chart 6.1 shows the algorithm when we relax the assumptions that the
number of patterns is known at the start. Whenever individual agent i receives
all information (scenario S1 where the size of the network is known) or new
information (scenario S2 where each agent is only aware of its neighbours) from
its neighbours, it uses that information to decide whether there is one pattern
or many. If a single pattern is inferred, it simply aggregates all the information,
using the method of chapter 4. Otherwise, it applies the method of Chapter 5.

Figure 6.1: Flow chart

That still leaves the question of how determine whether or not the observed data
is made up of a single pattern (i.e., all agents are seeing data sampled from
the same distribution) or multiple patterns. The basic idea is whether or not
there are some agents that are significantly dissimilar to other agents, which is
similar to the definition for outlier detection: "given a set of N data points, and
n, the expected number of outliers, find the top n points that are considerably
dissimilar with respect to the remaining data"[Han et al., 2011]. For outlier
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detection technologies, the number of outliers n is fixed in advance. However, we
have no idea about the number of outliers, n, or even if there are any outliers.

Given n cluster models m1,m2, . . . ,mn, the question is are these cluster models
generated from a single distribution or multiple distributions? In this chapter,
we consider two different similarity measurements between agents: cluster-level
similarity and agent-level similarity. In the following sections, cluster-level simi-
larity based methods are described first, followed by agent-level similarity based
methods.

6.2 Cluster-level similarity based methods

Hamerly and Elkan proposed a method G-means to learn the k for k-means
[Hamerly and Elkan, 2004]. This hierarchical algorithm assumes that a subset of
data that follows a Gaussian distribution is more likely to form a group and a
statistical test is used to test whether or not data points belongs to a cluster. It
starts with one cluster, then keeps splitting clusters until the points assigned to
each cluster have a Gaussian distribution. Here each agent is represented by a set
of centroids. Given centroid sets from n different agents, G-means is used to group
those centroids into clusters. Any agent is considered from the same pattern if the
number of centroids (formed by centroids from different agent models) estimated
by G-means is the same as the number of centroids from its agent model.

Figure 6.2 shows an example of detecting single or multiple patterns in a 5-agent
network. Obviously, there are more than one pattern in the left figure and only
a single pattern in the right figure. Figure 6.3 shows the clusters obtained by
G-means using the centroids from different agent models in figure 6.2. On the
right side of figure 6.3, there is a single pattern since the number of clusters on
centroids from agents’ models are the same as the number of centroids before
G-means clustering. However, the distance between centroids is ignored. It is
possible that centroids that stay close but fit badly to a Gaussian distribution
are not assigned to the same cluster.

Ester et al.[Ester et al., 1996] proposed a distance and density based algorithm
density-based spatial clustering of applications with noise (DBSCAN) to group
points together. Points that are in low-density regions are marked as outliers.
This algorithm, which has a low computation cost, is robust to noise and out-
liers and there is no need to specify the number of desired clusters in advance.
However, it requires 2 parameters: the radius of neighbourhood around a point
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Figure 6.2: One example of detecting single and multiple patterns

Figure 6.3: Application of G-means to agents’ clusters

to define ’neighbours’ and the minimum number of points to form a dense region.
Even if DBSCAN solved the issue suffered by G-means, selecting the optimal
parameters can be difficult since it is very sensitive to any of the two parameters.

Figure 6.4 and 6.5 show that result of pattern detection using the same examples
in figure 6.2. Ideally, the coordination of cluster centroids are similar if all agents
are sampled from the same distributions. In that case, there are no outliers. If
there are multiple patterns, the coordination of cluster centroids are dissimilar,
and outliers are detected.

6.3 Agent-level similarity based method

In this section, we describe the agent-level similarity based method. The similar-
ity is calculated based on the representation of agent, such as centroids, size of
clusters and shape of clusters. Here distance-based similarity is used to describe
the similarity between agents. Figure 6.6 shows an example of similarity matrix
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Figure 6.4: Application of DBSCAN to agents’ clusters (1)

Figure 6.5: Application of DBSCAN to agents’ clusters (2)

for a 5-agent network. The distance between an agent to itself is zero. A large
value means the two agent descriptions are far apart. For instance, for agent A1,
it is far away from agent A3 and A4 but close to A2 and A0. For single pattern
detection, we use the upper-triangle of this symmetric similarity matrix as the
data.
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Figure 6.6: Agent-level similarity for a 5-agent network

Taking the symmetric matrix of figure 6.6 as an example, now the question be-
comes: given a data sequence which represents the euclidean distance based sim-
ilarity between agents, is it possible to identify whether or not there is more than
one pattern?

[0.0219, 0.1888, 0.1861, 0.0214, 0.187, 0.1960, 0.0239, 0.1368, 0.1857, 0.1838] (6.1)

6.3.1 Kernel Density Estimation

First, we introduce a agent-level similarity method: Kernel Density Estimation
(KDE). KDE is a commonly used technique to estimate the probability density
function of observations in the data and it is defined as:

Pn(x) = 1
nh

∑
i=1

nK(Xi − x
h

) (6.2)

where K(x) is called the kernel function that is generally a smooth, symmetric
function, h is the bandwidth of bins, n is number of points and Xi is the i-th
observations. Silverman and Bernard provided a detail review about the density
estimation in their work [Silverman, 1986]. However, the choice of bandwidth has
a strong influence on the estimation. Small bandwidth causes a large variance
while a large bandwidth leads to large bias. In addition, data characteristics,
such as sample size, distribution smoothness and skewness, makes it difficult to
choose an optimal bandwidth [Heidenreich et al., 2013].

Taking the data sequence 6.1 as an example again, figure 6.7 shows the one
dimensional data and its density estimation. Note that the density estimation is
based on a bandwidth 0.1. The density curve will vary with different bandwidths.
By intuition, there should be two clusters: one cluster is centred around 0.175
and the other cluster is centred around 0.025. The clusters are founded by local
minimum of density curve. Figure 6.8 shows the local minimum found (the red
dot) with different bandwidths. If the bandwidth is 0.01, there are three clusters:
points that located on the left side of 0.08 are grouped as one cluster, points that
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Figure 6.7: Data sequence and its density estimation

located between 0.08 and 0.16 are clustered as one cluster, and the remaining
points are grouped into one cluster. When the bandwidth is increased to 0.05,
only two clusters are found and those two clusters are divided by 0.08. If the
bandwidth is 0.2, only one cluster is found. There is an under-fitting problem
if the bandwidth is too small ( for instance, bandwidth = 0.01 here) and an
over-fitting problem if the bandwidth is too large ( for instance, bandwidth = 0.2
here).

Figure 6.8: Clusters found by KDE

Choosing the optimal bandwidth is widely explored in this area. There are two
classes of approaches to this problem. In the statistic community, reference rules
are often used to find the optimal bandwidth, such as Silverman’s rule and Scott’s
rule. By Scott’s rule, the bandwidth is defined as [Scott, 2015]:

B = cAn−1/5 (6.3)

where c = 1.059, n is the length of data sequence and A is smaller of standard
deviation or normalised Interquartile range method (IQR), where IQR is defined
as the difference between Q3 and Q1. Silverman’s rule assumes Gaussian distri-
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bution for the unknown density. Silverman’s rule and Scott’s rule are normally
used as a first estimator since they are computationally fast. However, if the
sample size is small, it gives too few bins to mine information from the data.

In the machine learning world, an empirical approach, such as cross validation
(CV), is widely used. The procedures for cross validation is as follows: 1), ran-
domly partition the original observations into L equal sized subsets, 2), for each
subset, a single subset is retained as test data, and the remaining L-1 subsets are
used as training data, and 3) repeat L times, average L results to produce a single
estimation. Alternatively, a CV based bandwidth parameter could be adopted
from statistics, where the optimal bandwidth could be achieved by maximising
the likelihood or minimising the squares. Although, the CV based method is
computationally expensive, it is quite useful to avoid the problem of over-fitting.

To address this issue, we proposed selecting the optimal bandwidth via a cross-
validation approach such that the mean square distance between the clusters
found by KDE is minimal (refer to algorithm 21). For a given search space, do
repeated density estimation and the optimal bandwidth is set to be the step with
minimum Mean Square Error. We could criticise this method for the repeated
process of density estimation, which may increase the overhead for the individual
agent. However, only the upper-triangle of similarity matrix is used in our algo-
rithm. Even for a 100-agent network, the data sequence only contains 4,950 one
dimensional data, which is an easy job for KDE to handle.

Algorithm 21: Optimised KDE for pattern detection
1 Require: Data Sequence D;
Input : Search Space S (Sn ≤ S ≤ Sm), search step St
Output: Optimal Bandwidth b

2 Sco ← {} ;
3 for Each St in S do
4 Fit D with St as bandwidth (kernel function is Gaussian);
5 Compute the the Mean Square Error for each cluster;
6 Add Averaged Mean Square Error to Sco;
7 b ← St with minimum Averaged Mean Square Error;
8 Return b;

Figure 6.9 shows the comparison of various bandwidth estimations with sequence
6.1 as input data. In this example, density estimation by Silverman and Scott
bandwidth are much closer to the true PDF curve, followed by our method Es-
timated bandwidth. However, the results for multiple runs of experiments shows
that bandwidth by Silverman and Scott is the worst.
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Figure 6.9: Comparative of various bandwidth estimation

6.3.2 Information criterion

In this thesis, we use the AIC to perform model selection. It estimates the
relative distance between fitted likelihood function of the model and unknown
true likelihood function of the observations, so that a lower AIC means a model is
considered to be closer to the truth. When fitting models, it is possible to increase
the likelihood by adding parameters, but doing so may result in overfitting. AIC
attempts to resolve this problem by introducing a penalty term for the number
of parameters in the model.

Note that AIC and KDE make no assumption about the underlying distribution
of data points [Anderson and Burnham, 2006]. For AIC, by definition, it is a
likelihood function based method to perform model selection and the Gaussian
likelihood is most frequently used. There are also some other distributions avail-
able, such as Bernoulli distribution, weighted Gaussian distribution and Poisson
distribution. By equation 5.4, KDE is a kernel function based method. Generally,
a kernel function has two features: 1) K(x) is symmetric, and 2)

∫
K(x)dx = 1.

Possible kernel functions include the Gaussian, Uniform and Epanechnikov. Sim-
ilarly, KDE does not make any assumption about the underlying distribution,
although the Gaussian Kernel function is widely used. In addition, the kernel
function of KDE does not play a key role in theory, but the selection of band-
width really matters [Sheather and Jones, 1991].
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6.4 Comparison of different methods.

In this section, a comparison of different methods, including DBSCAN, KDE,
optimised KDE, G-means and AIC, are described. As before, different cluster-
ing algorithms and three different datasets (fully symmetric Gaussians, partially
symmetric Gaussian and Uniformly distributed dataset) are used in the experi-
ment. The experiment runs the full algorithm a shown in the flow chart 6.1 and
these five methods are used to detecting single or multiple patterns. For each
method, it was repeated for 50 runs on a 10-agent dense network to get a more
accurate performance.

We consider a 10 agent network (dense or sparse). Each node is given 200 data
points and the ground truth number of clusters in all simulations is set to 5. Each
message transmission delay is generated uniformly from the range [0.5, 1.0], and
nodes begin their work at time randomly selected in [0, 0.1s]. As before, three
different underlying 2-dimensional datasets are tested: fully symmetric Gaussians,
partially symmetric Gaussians and uniformly distributed datasets. The splits of
agents tested are the same as that in Chapter 6: multiple patterns: (5,5), (7,3),
(9,1) and (5,3,2) and single pattern (10:0). We are interested in how accurate the
algorithms are in predicting whether there is a single pattern or multiple patterns.
Note that it is unnecessary to know the exact number of patterns. If multiple
patterns have been confirmed, how agents are split will be further estimated by
the hierarchical clustering method from Chapter 5.

6.4.1 K-means as clustering algorithm

Figure 6.10 shows the performance when underlying datasets are generated from
fully symmetric Gaussians and K-means is used as the clustering algorithm. Op-
timised KDE and AIC perform better than other methods in predicting there are
multiple patterns, and the accuracy is around 98%. When the ground truth is a
single pattern, G-means outperforms other methods, and the accuracy to predict
it is a single pattern is up to 78%. When the number of clusters over patterns is
different, there is little difference between accuracies of predictions.

When the underlying datasets are generated from partially symmetric Gaussians,
Optimised KDE and DBSCAN achieve higher accuracy than other methods in
predicting there are multiple patterns (around 97% on average). In term of ground
truth single pattern, KDE outperforms other methods. The accuracy achieved
by KDE is about 58%, nearly 3 times as much as that achieved by DBSCAN and
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Figure 6.10: Accuracy achieved with symmetric Gaussians when K-means is used

G-means. The performance is improved noticeably when the number of clusters
over patterns are different.

Figure 6.11: Accuracy achieved with asymmetric Gaussians when K-means is
used

Figure 6.12 shows the performance when underlying datasets are uniformly dis-
tributed. The highest accuracy in predicting there are multiple patterns is ob-
tained by optimised KDE and DBSCAN. However, they perform the worst in
detecting there is a single pattern. The highest accuracy in predicting the single
pattern is obtained by AIC (around 65%), followed by KDE (about 52%).

6.4.2 GMM as clustering algorithm

In this section, we show the performance when GMM is applied as clustering
algorithm. Figure 6.13 shows the performance when underlying datasets are
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Figure 6.12: Accuracy achieved with uniformly distributed dataset when K-means
is used

generated from fully symmetric Gaussians. As before, the results are showing the
same behaviour.

Figure 6.13: Accuracy achieved with symmetric Gaussians when GMM is used

When datasets sampled from partially symmetric Gaussians are used as under-
lying dataset (refer to figure 6.14), the result is similar to that with K-means as
the clustering algorithm.

Figure 6.15 shows that G-means and Optimised KDE are likely to predict there
are multi patterns even when the ground truth is a single pattern while KDE
and AIC are prone to predicting there is single pattern even when ground truth
has multiple patterns when underlying dataset are sampled from uniform distri-
butions.
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Figure 6.14: Accuracy achieved with asymmetric Gaussians when GMM is used

Figure 6.15: Accuracy achieved with uniformly distributed dataset when GMM
is used

6.4.3 SG as clustering algorithm

When SG is used as the clustering algorithm, Optimised KDE, DBSCAN and AIC
achieve a really high accuracy to detect multiple patterns when the underlying
datasets are generated from fully symmetric Gaussians. The highest accuracy in
detecting the single pattern is achieved by G-means. However, it performs worse
in detecting multiple patterns.

Figure 6.17 shows the performance when datasets generated from partially sym-
metric Gaussians are used. The results show the same behaviour as that with
K-means as the clustering algorithm.

When datasets are sampled from uniform distributions (refer to figure 6.18), the
results are similar to that with GMM as clustering algorithm.
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Figure 6.16: Accuracy achieved with symmetric Gaussians when SG is used

Figure 6.17: Accuracy achieved with asymmetric Gaussians when SG is used

Figure 6.18: Accuracy achieved with uniformly distributed dataset when SG is
used
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6.4.4 Summary

Overall, Optimised KDE and DBSCAN performs better in detecting multiple
patterns, and AIC and KDE outperforms other methods in predicting single
pattern.

Note that the accuracy against data points could be as high as that in single
pattern even when multiple patterns are predicted. It happens when the similarity
between agents is not so distinct. We will consider accuracy against data points
in the next section.

6.5 Accuracy against data point with different
predictions

At the end of the last section, we noted that a poor prediction of single or mul-
tiple patterns might not affect accuracy against data clustering, if the agents in
different patterns are still similar. In this section, we explore this, and evaluate
accuracy against data points. Since optimised KDE and DBSCAN perform well
in detecting multiple patterns, we compared the accuracy against data points by
these two methods. In previous chapters, we used two methods to measure the
accuracy against data points: one is fitting the learned model to agent’s local
data points (denoted by m1), the other one is fitting the learned model to a new
test data obtained by sampling from the same ground truth distribution (denoted
by m2). The performance of these two methods is measured over 20 runs.

Figure 6.19 shows the accuracy against data points achieved by optimised KDE
when the ground truth has a single pattern. Right prediction covers the cases
where the algorithm predicts the pattern is single, and the ground truth pattern
is single. Wrong prediction covers the cases where the algorithm predicts there
are multiple patterns. The x ticks show the three different clustering algorithms
applied to three different underlying datasets. For instance, Kmeans(s) shows
that k-means algorithm is used to fit the datasets generated from fully symmetric
Gaussians.

Comparing red bars with green bars, we can see there is little difference between
the right prediction and wrong prediction. The blue and pink bars show that the
accuracy m2 by wrong predictions is slightly higher than that by right prediction.
Note that we have shown the accuracy to detect the single pattern is quite low in
previous chapter. Taking asymmetric Gaussians as an example, the accuracy was
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less than 10%. Over the 20 runs, it only predicts a single pattern twice. That
is the reason why accuracy against data points is slightly higher even when the
prediction is wrong.

Figure 6.19: Accuracy against data points achieved by Optimised KDE when
ground truth pattern is single

Figure 6.20 shows the accuracy against data points achieved by DBSCAN. There
is little difference over accuracy m1 and m2 between different predictions. In
some cases, the accuracy achieved by wrong prediction is a little higher than the
right prediction. It indicates that the accuracy against data remains stable even
when the prediction is wrong and the ground truth single pattern is divided into
sub-patterns.

Figure 6.20: Accuracy against data points achieved by DBSCAN when ground
truth pattern is single

To summarise, the accuracy against data points remains stable even when the
ground truth pattern is single and it is divided into multiple patterns. We have
shown that predicting the correct number of patterns is crucial for high accuracy
against pattern in previous chapter. Since the prediction of number of patterns
is wrong, we expected that the accuracy against pattern is low.
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6.6 Conclusion

Overall, KDE and AIC outperform other methods in detecting single pattern,
but they perform worse in detecting multiple patterns. Optimised KDE and
DBSCAN perform better than other methods in detecting multiple patterns, but
they are not good at detecting a single pattern. Which method should be used to
detect the number of patterns depends on the frequency of pattern occurrence.
Optimised KDE and DBSCAN should be considered if there is a high frequency
of multiple patterns.

Note that it is challenging to detect that there is only a single pattern. The high-
est accuracy to detect single pattern is only around 65%. However, the proposed
methods Optimised KDE and DBSCAN perform well in detecting multiple pat-
terns, and the highest accuracy to detect multiple patterns is nearly 99%. Based
on the basic procedure of algorithm, we expect the accuracy against patterns to
drop but accuracy against data points to remain the same even if the single pat-
tern is divided into sub-patterns. Experimental results show that there is little
difference in accuracy m1 and m2 against data points between right prediction
and wrong prediction. It indicates that our algorithm could always predict how
data points are clustered even if there are multiple patterns. But the prediction
of sub-communities is not reliable, since it is likely that it divides one big com-
munity into two or more similar communities. A further comparison of those
sub-communities is needed if the detection of communities really matters.
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Chapter 7

Conclusions and Future Work

7.0.1 Conclusions

In this thesis, we consider a problem motivated by Wireless Mesh Networks: how
should the agents (or nodes in the network) act and communicate so that all
agents end up with the same understanding of the environment? Transmitting
all data to the centre allows strong data analytics algorithms to be applied, but
consumes battery power for the nodes, may cause network congestion, and may
breach the privacy of the original data. To avoid this, distributed methods try
to learn within the network, allowing each sensor to learn a global picture and
take appropriate actions. The hypothesis defended in this thesis is: distributed
clustering in wireless mesh networks is possible by using an asynchronous adaptive
clustering algorithm without transmitting raw data, and without incurring high
latency or high energy costs, but can achieve high clustering quality and even
when extended to scenarios where there are sub-groups of agents are receiving
data from different environments.

Firstly, we assume that all agents are receiving data from the same environment
(i.e from the same data distribution) and the number of clusters is known by
agents in advance. We consider two levels of agents’ knowledge: agents know the
number of nodes in this network and agents know their direct neighbours only.
We also consider two different underlying clustering algorithms: K-means and
GMM. A bounding box based method is proposed to describe the shape infor-
mation of clusters if K-means is used as the clustering algorithm. Experimental
results show that the algorithms, which exchange cluster shape and density de-
scriptions, require fewer messages and give higher accuracy relative to centralised
methods. Compared to the state of the art, our proposed algorithms reduce the
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misclassification rate from 12% to 1.7%, reduce the message count by 20%, and
reduce elapsed time by 75%.

Then, we relax the assumptions that the number of clusters is known by agents
in advance. We consider two new assumptions about the network: either that
all agents may finish with slightly different models or all agents must finish with
identical models. An agent estimates the number of clusters locally, then use
the silhouette method to infer the number of clusters from the re-generated data.
Two centralising methods, centralising raw data points to a designated central
agent or transmitting a basic model to the designated central agent, are also
considered. Experimental results show that the extent of overlapping between
clusters has a big effect on the learned number of clusters. When clusters are
well separated from each other, all proposed methods learn the same number of
clusters as ground truth. For distributed methods, more information is required
to be transmitted if it is required that agents must finish with identical models.

After that, we extend our algorithm to scenarios where there are sub-group of
agents are receiving data from different environments. The aim is now to identify
all of these patterns and to associate each agent with the appropriate pattern.
We assume that there is more than one pattern. A weighted Earth Mover’s
Distance (EMD) is proposed to measure the similarity or difference between two
cluster models. We can then use this to search for clusters of similar agents. An
additional measurement accuracy against pattern, which measures how accurately
the agents are assigned into groups or patterns compared to the original ground
truth, is proposed. We also consider two new requirements for communicating
the final inferred model: each agent is told the number of patterns and summary
description of each pattern only or each agent is told the number of patterns, the
pattern description and the details of assignment of all agents. The experiments
show that the proposed algorithm performs well when agent models are dissimilar,
or the number of clusters are the same and the number of clusters for agents over
patterns is different.

Finally, we tackle the problem of how to distinguish an environment with a single
pattern and one with multiple patterns. Two types of methods are proposed:
cluster-level and agent-level. Experimental results show that KDE and AIC out-
perform other methods in detecting single pattern, but they perform worse in
detecting multiple patterns. Optimised KDE and DBSCAN perform better than
other methods in detecting multiple patterns, but they are not good at detect-
ing a single pattern. Note that the accuracy against data points remains stable
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even when the ground truth pattern is single and it is divided into multiple pat-
terns. Which method should be used to detect the number of patterns depends
on the frequency of pattern occurrence. Optimised KDE and DBSCAN should
be considered if there is a high frequency of multiple patterns.

Overall, we proposed asynchronous distributed clustering algorithms, which do
not require the number of clusters as input, nor did they need to know the number
of pattens in advance. Two levels of agent’s knowledge, two assumptions of final
models, and two requirements of sharing strategies are considered. Experimental
results show that the proposed algorithms can learn how data points are clustered
even when there are multiple patterns in the network. In addition, the estimated
number of clusters is close to the ground truth clusters.

7.0.2 Future work

Note that there are some assumptions about the algorithms. Firstly, the under-
lying network is connected and agents are only allowed to share message with
their neighbours. Secondly, the network ensures reliable delivery of message, but
there is a message-specific delay. Finally, all agents initialise their work at a
pre-scheduled time. However, the process of message transmission in the network
is complex. A potential further direction would be testing the algorithms with
some real testbeds, for instance, NS3. The convergence time measured by NS3
will consider both the real transmission time and computation cost for processing
the raw data.

First, we will extend the evaluation, to consider larger networks and different data
distributions. In this thesis, we considered data points that generated from fully
symmetric Gaussians, partially symmetric Gaussians and rectangle uniform dis-
tributions. In some practical applications, there are some other distributions. For
different distributions, an appropriate clustering algorithm and efficient method
to describe the shape of clusters are needed. We will extend algorithms to sce-
narios that the network topology changes over time. Some agents may turn to
sleep or turn down for lacking of battery. In that case, agent, who is running out
battery, has to inform all the neighbours. Neighbours will update their knowledge
about immediate neighbours and stop forwarding message to this agent.

We will extend our approaches to more than 2-dimensional spatial datasets. We
will address application scenarios where the distributions change over time. In
addition, we will extend our methods to handle different inference problems,
identifying which problems can or should be handled in the network, and which
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require transmission to a central server for more extensive analysis.
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8.1 Evaluation of information exchange method

In this section, we evaluate the performance of method proposed to describe the
clusters. The performance is measured by comparing the summary description
of generated data points with the ground truth summary description. To mea-
sure how close the new summary description is to the ground truth summary
description, we calculate the difference of three measurements before and after
regeneration:

1. Euclidean Distance between the original centroids and new centroids,

2. Shift distance of bounding box (measures the shift distance of four coordi-
nates (leftmost, rightmost, bottom, top) of the box), and

3. Rotation degree from old PCs to new PCs.

Actually, the arrows plotted in figure 3.3 should be two-way arrows, which means
we could rotate the PCs from both direction. We define the rotation degree as
the minimum rotate degree of the four directions of two PCs to remap new PCs
from old PCs. For each case, data points are generated from fixed distributions
and different distributions. The results shown below are the averaged values over
multiple runs.

8.1.1 Measurement with Dataset Generated on Standard
Basis

First, we consider the scenario that data points are generated from one binormal
distribution (N(−0.2, Sig1) and N(0, Sig2). The dataset is scaled to [0,1].

Table 8.1 shows the measurement on over 20 runs, for different values of the vari-
ances. Note that the mean in the table is absolute value, including mean abso-
lute distance, mean absolute rotation. Compared with the original centroids and
bounding box, the generated centroids and bounding boxes has slightly changed.
The centroids move by only a small distance. The shift distance between original
centroids and generated centroids is below 0.06 with a small standard deviation
(around 0.03). The shift distance for the three bounding boxes are around 0.09
on average. The bounding boxes are also stable, although the outer boxes are
moving a little further, particularly as the cluster shapes moves away from being
circular.

In term of rotation degree, the worst average rotation is less than 2 degree, which
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indicates that the new PCs are quite faithful to the original PCs. The re-created
PCs are only a small rotation away from the original PCs when there is a large
difference in the variance of two axis. For example, when the difference is 0.5,
it only requires to rotate 0.23 degree over multiple runs with a small standard
deviation 0.86. But it requires to rotate 1.89 degree to remap the new PCs when
the range is decreased to 0.1.

When the two variances of the binormal are similar, the standard deviation is
higher (over 10), and so sometimes the PCs may have rotated by a noticeable
amount. This result could be expected. A minimal difference in the variances
means the original cluster was approximately circular, and so small changes in
the distribution points could have a significant effect on the principal component;
a large difference means the cluster was elliptical, and small changes to the data
points are less likely to change the PC.

Table 8.1: Measurement for fixed distributions with standard basis
Data Measures Mean S.D

N(-0.2,0.6),N(0,0.1)
Distance between centroids 0.057 0.031

Rotation degree 0.23 0.86
Distance between 100% box [0.06, 0.112,0.059, 0.061] 0.037

Estimated variance: Distance between 80% box [0.096,0.09,0.06,0.064 ] 0.055
(0.685, 0.108) Distance between 40% box [0.07, 0.061, 0.058, 0.06] 0.04

N(-0.2,0.5),N(0,0.2)
Distance between centroids 0.059 0.026

Rotation degree 0.40 2.55
Distance between 100% box [0.06, 0.081,0.059, 0.062] 0.044

Estimated variance: Distance between 80% box [0.096,0.106,0.073,0.065 ] 0.065
(0.538, 0.212) Distance between 40% box [0.09, 0.059, 0.066, 0.061] 0.034

N(-0.2,0.4),N(0,0.3)
Distance between centroids 0.042 0.029

Rotation degree 1.89 11.67
Distance between 100% box [0.043, 0.071,0.044, 0.063] 0.04

Estimated variance: Distance between 80% box [0.052,0.115,0.077,0.053 ] 0.04
(0.421, 0.311) Distance between 40% box [0.047, 0.055, 0.058, 0.046] 0.03

Then dataset generated from different distributions is evaluated, where both the
mean and standard deviation are varied. Table 8.2 shows the result. We get a
similar result as the previous case. Again, the shift distance of centroids and
bounding boxes have slightly changed. The shift distance of boxes increase when
the range of variance decrease. Meanwhile, the rotation degree required to remap
new PCs increase when the range of variance decrease.

To conclude, the summary descriptions do appear to be stable after data regen-
eration, changing the coordinates, shape and rotation by only small amounts.
Descriptions for clusters that are elliptical are more stable than those for circular
clusters.
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Table 8.2: Measurement for different distributions with standard basis
Standard deviation Measures Mean S.D

Sig1= 0.6,Sig2= 0.1

Distance between centroids 0.063 0.043
Rotation degree 0.175 0.87

Distance between 100% boxes [0.117, 0.099,0.076, 0.074] 0.062
Distance between 80% boxes [0.087,0.085,0.047,0.043 ] 0.046
Distance between 40% boxes [[0.086, 0.063, 0.075, 0.072] 0.052

Sig1= 0.5,Sig2= 0.2

Distance between centroids 0.044 0.031
Rotation degree 0.76 2.85

Distance between 100% boxes [0.101, 0.137,0.081, 0.071] 0.065
Distance between 80% boxes [0.114,0.14,0.081,0.079 ] 0.07
Distance between 40% boxes [[0.077, 0.071, 0.068, 0.071] 0.041

Sig1= 0.4,Sig2= 0.3

Distance between centroids 0.050 0.031
Rotation degree 3.51 11.71

Distance between 100% boxes [0.191, 0.327,0.17, 0.258] 0.21
Distance between 80% boxes [0.177, 0.251, 0.165, 0.22 ] 0.18
Distance between 40% boxes [[0.187, 0.205, 0.179, 0.205] 0.14

8.1.2 Measurement with Different Number of Data Points

In this section, we use different number of data points to test the performance.
Data points are generated from different distributions but with a fixed standard
deviation (0.5, 0.2). Table 8.3 shows that the shift distance between centroids
increase when the number of data points decrease from 200 to 50. But for N=
50, the shift distance is still low. The rotation is low and the boxes have moved,
though, so 50 is close to the lower limit. Note that although the mean of rotation
is low for N=50, the standard deviation is higher, and increases as N decreases.

Table 8.3: Measures varied with number of data points
N Measures Mean S.D

50

Distance between centroids 0.071 0.039
Rotation degree -0.014 4.468

Distance betweenbounding box [0.12, 0.243, 0.114, 0.14] 0.116
Distance between 80% box [0.129, 0.189, 0.121, 0.126 ] 0.091
Distance between 40% box [0.121, 0.139, 0.137, 0.121] 0.077

100

Distance between centroids 0.051 0.026
Rotation degree 0.06 2.98

Distance between bounding box [0.076, 0.144, 0.075, 0.086 ] ] 0.066
Distance between 80% box [0.126, 0.11, 0.082, 0.076 ] 0.087
Distance between 40% box [0.08, 0.076, 0.071, 0.07] 0.049

200

Distance between centroids 0.039 0.020
Rotation degree 0.78 1.98

Distance between bounding box [0.079, 0.099, 0.065, 0.057] 0.049
Distance between 80% box [0.098, 0.087, 0.075, 0.053] 0.048
Distance between 40% box [0.065, 0.06, 0.06, 0.057] 0.032
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(a) Original data (Normal)] (b) Original data (Uniform)

Figure 8.1: Data generated by normal and uniform in same range

8.1.3 Measurement with Different Underlying Distribu-
tions

Previously, data points generated from normal distribution are considered, and
in this section data points generated from uniform distributions are considered as
well. To ensure that the comparison is fair, data points generated from normal
or uniform distributions should be located in same range. Each time a set of
data is generated from normal distributions, the 100% bounding box are saved,
and it is used to generate another set of data uniformly. Figure 8.1a shows that
data created from normal distributions and its 100% bounding box. Based on the
green bounding box, another set of data was generated uniformly(refer to figure
8.1b), so both generated data are ready to compare.

Following the steps we have done in the pervious section, the next step is gener-
ating new set of data based on the summary description of created original data.
Here we consider two different methods to generate data points here:

1. Randomly generate an x coordinate and find its right place by comparing
with the percentiles, then generate a random number in the corresponding
place of the percentile value. Data points are uniformly generated in 5 * 5
cells. This method is denoted by M1.

2. The second method is quite similar to the M1 but data points are randomly
generated in only one cell (the 100% bounding box), and it was denoted by
M2.
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(a) re-generated data by M1 (Normal)] (b) re-generated data by M2 (Normal)

Figure 8.2: Data re-generated by M1 and M2 (Normal)

(a) re-generated data by M1 (uniform)] (b) re-generated data by M2 (uniform)

Figure 8.3: Data re-generated by M1 and M2 (uniform)

Figure 8.2a and 8.2b show the re-generated data by method M1 and M2 sepa-
rately according to the summary description of data points created from normal
distributions in figure 8.1a. It shows that the re-generated data by M1 is similar
to the created data. Figure 8.3a and 8.3b show the re-generated data by method
M1 and M2 separately according to the summary description of data points cre-
ated from uniform distributions in figure 8.1b. Results shows that there is a little
difference between the data generated by M1 and M2.

Table 8.4 shows that shift distance of bounding boxes and centroids of data points
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generated by normal distributions is larger than that by uniform distributions.
However, the standard deviation of rotation degree is much smaller. Compared
normal (M1) with normal (M2), we can see that the M1 performs better than M2,
it makes senses since more information are provided. However, there is a little
difference between uniform (M2) and uniform (M1). It makes senses since we
consider the fact that here is a little difference between randomly generate data
points in a big box and randomly generate data points in multiple sub-boxes
when the underlying dataset is uniform.

Table 8.4: Measures varied with underlying distributions
Distributions Measures Mean S.D

Normal (M1)

Distance between centroids 0.047 0.029
Rotation degree 0.03 2.559

Distance between bounding box [0.078, 0.089, 0.061, 0.062 ] 0.048
Distance between 80% box [0.091, 0.109, 0.072, 0.06 ] 0.051
Distance between40% box [0.068, 0.078, 0.052, 0.048] 0.037

Normal (M2)

Distance between centroids 0.137 0.106
Rotation degree 1.67 2.96

Distance between bounding box [0.055, 0.053, 0.123, 0.123 ] 0.073
Distance between 80% box [0.262, 0.482, 0.199, 0.204 ] 0.131
Distance between 40% box [0.207, 0.388, 0.178, 0.171] 0.111

Uniform (M1)

Distance between centroids 0.045 0.027
Rotation degree 0.100 4.270

Distance between bounding box [0.038, 0.04, 0.036, 0.035] ] 0.025
Distance between 80% box [0.055, 0.075, 0.04, 0.047 ] 0.036
Distance between 40% box [0.075, 0.078, 0.056, 0.06] 0.042

Uniform (M2)

Distance between centroids 0.095 0.064
Rotation degree 0.668 4.656

Distance between bounding box [0.036, 0.043, 0.086, 0.086] ] 0.047
Distance between 80% box [0.095, 0.08, 0.104, 0.098 ] 0.067
Distance between 40% box [0.125, 0.136, 0.1, 0.115] 0.078

8.1.4 Measurement with Different Percentiles

In this section, we investigate how different percentiles for the bounding boxes
affect the measures. Data points are generated from different distribution but
with a fixed standard deviation (0.5,0.2).

Table 8.5 shows that performance achieved by different percentiles. Comparing
the first four experiments, the overall performance achieved by percentile arrays
[0.0,0.1,0.3 0.7,0.9,1.0] and [0.0,0.1,0.3,0.7,0.9,1.0] are a little better. The rotation
degree by [0.0,0.2,0.4,0.6,0.8,1.0] is higher and the standard deviation is higher as
well. Comparing the shift distance of the 100% bounding boxes, we could know
shift distance for [0.0,0.05,0.3,0.7,0.95,1.0] is smaller than the others, followed
by [0.0,0.1,0.3,0.7,0.9,1.0]. However, the rotation degree required is higher. The
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most likely reason lies in percentile value we choose. The PCs are mainly effected
by the boundary points, which located inside the 100% bounding box but outside
the second inner bounding boxes.

In the later two rows, we increase the number of bounding boxes. We see that
the rotation degree, shift distance of centroids, shift distance of bounding boxes
are worse when we increase the number. There appears to be little advantage in
generating more bounding boxes in the summaries.

Table 8.5: Measures varied with percentiles
Percentile Measures Mean S.D

Shift Distance between centroids 0.057 0.03
Rotation degree -0.472 2.67

[0.0,0.1,0.3 Shift distance of bounding box [0.073, 0.096, 0.063, 0.065] ] 0.043
0.7,0.9,1.0] Shift distance of 80% box [ 0.099, 0.092, 0.071, 0.073 ] 0.06

Shift distance of 40% box [0.079, 0.08, 0.065, 0.062] 0.043
Shift Distance between centroids 0.054 0.03

Rotation degree -0.692 3.37
[0.0,0.05,0.3 Shift distance of bounding box [0.048, 0.077, 0.049, 0.051] ] 0.044
0.7,0.95,1.0] Shift distance of 90% box [ 0.184, 0.231, 0.11, 0.084] 0.082

Shift distance of 40% box [0.078, 0.067, 0.066, 0.06] 0.04
Shift Distance between centroids 0.038 0.022

Rotation degree 0.329 2.72
[0.0,0.2,0.4, Shift distance of bounding box [0.08, 0.096, 0.051, 0.049] 0.064
0.6,0.8,1.0] Shift distance of 60% box [0.162, 0.157, 0.061, 0.078] 0.042

Shift distance of 20% box [0.074, 0.061, 0.041, 0.044] 0.025
Shift Distance between centroids 0.042 0.019

Rotation degree 1.02 3.87
[0.0,0.3,0.4, Shift distance of bounding box [0.092, 0.082, 0.054, 0.061] 0.054
0.6,0.7,1.0] Shift distance of 40% box [0.113, 0.166, 0.068, 0.064 ] 0.03

Shift distance of 20% box [ 0.052, 0.071, 0.047, 0.04] 0.023
Shift Distance between centroids 0.217 0.032

Rotation degree 0.519 3.51
[0.0,0.1,0.3,0.4 Shift distance of bounding box [0.091, 0.179, 0.203, 0.21 ] ] 0.054
0.6,0.7,0.9,1.0] Shift distance of 80% box [ 0.15, 0.445, 0.204, 0.279] 0.072

Shift distance of 40% box [0.1, 0.385, 0.204, 0.25] 0.037
Shift Distance between centroids 0.259 0.046

Rotation degree -0.43 2.69
[0.0,0.1,0.2,0.4 Shift distance of bounding box [0.119, 0.148, 0.24, 0.245 ] ] 0.061
0.6,0.8,0.9,1.0] Shift distance of 80% box [ 0.128, 0.438, 0.245, 0.3] 0.079

Shift distance of 60% box [ 0.144, 0.447, 0.244, 0.294] 0.046

8.1.5 Possible issue caused by regeneration

Based on the previous sections, regenerating data from the bounding box de-
scriptions does seem to be feasible, and would allow an agent to generate similar
clusters of data. But there may be an issue if this is done repeatedly. If a bound-
ing box extends to exactly the bounds of the extreme points, when we regenerate
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points inside the box, we are unlikely to generate points on the edges, and so the
spread of the cluster shrinks after each regeneration, and repeated regeneration
will make it worse.

Based on the received summary description of k clusters, agent can recover the
data. However, there is a shrink of generated data compared to the original data.
In order to address this issue, we considered four potential solutions:

1. Do nothing

2. Impose 4 data points on the extremes of the outer box during regeneration

3. Adjust the bounding boxes on creation by expanding the inner boxes to
midway to the next relevant point

4. Combine step 3 and 4 above

To measure the performance of the four potential solutions to address the shrink
problem, we run experiments on a 2-gent network and K-means is used as clus-
tering algorithm. Each agent initial their algorithm randomly ([0,0.3]) and the
delay for sending a message is random as well ([0.5,1]). Data points inside each
cluster are randomly generated from a binormal distribution ( µ = [1, 5, 8, 13,
19, 3, 8, 2, 21, 14] ) and they are scaled to the range [0,1] before assigning to
network nodes randomly. Each nodes have 200 data points and the number of
clusters in all simulations is set to 5. Figure 8.4 shows the four test datasets used
in the experiment.

In addition to the shift distance of centroids, bounding boxes, rotations, we also
measure the convergence time and accuracy against centralised method. The
convergence time records the time interval from the first agent initial its work until
the last agent finish its work. We use the percentage of membership mismatch
(PMM) as our formal measure of accuracy.

PMM (i) = 100
|~x ∈ X(i) : Lc(~x) 6= Lip(~x)|

|X(i)|
(8.1)

where Lc(~x) denotes the label of the cluster to which ~x is assigned at the end
of centralized K-means and Lip(~x) denotes the label of the cluster to which ~x is
assigned once the node reaches the termination state.

For different datasets, the shift distance, rotation and moving distance for three
bounding boxes for each agent is measured. For accuracy measurement, min,
max and median are also included in the brackets.
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(a) σ1 = 0.8, σ2 = 2.0 (b) σ1 = 1.2, σ2 = 2.0

(c) σ1 = 2.0, σ2 = 0.8 (d) σ1 = 2.0, σ2 = 1.2

Figure 8.4: Dataset used in the experiment

Compare table 8.6 with table 8.7, table 8.8 and table 8.9, we can see that pro-
posed algorithm without any make-up plan and with bounding line extension
outperforms other schemes. Comparing to table 8.6, there is little difference in
convergence time, but the moving distance of three bounding boxes and rotation
increase, and accuracy decreases when we make up the shrink of outer box only
(table 8.7). If we extend the inner boxes to midway to the next relevant point,
the convergence time decreases. Although there is slightly increase in rotation
(but with a higher standard deviation), shift distance of centroids and bounding
boxes distance, the accuracy still remains high. When step 3 and 4 combined, the
rotation increases with a higher standard deviation and accuracy decrease. The
most possible reason lies in the re-generated data. Without any shrink make-up
plan, data points of different clusters are tender to be more separated from each
other, that is the reason why the clustering accuracy is high by this scheme.

Comparing table 8.6 with table 8.8, we can see that proposed algorithm without
any plan to make up the shrink outperforms that with bounding line extension
when clusters are well separated from each other (the first two rows). However,
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Table 8.6: Default initial centroids, full K-means initialisation, No scheme to
make up the shrink

Data Measures Mean S.D

σ1 = 0.8

Centroids [0.03, 0.012, 0.014, 0.019, 0.01] [0.09, 0.01, 0.02, 0.03, 0.01]
[0.015, 0.012, 0.029, 0.012, 0.017] [0.01, 0.01, 0.07, 0.01, 0.04]

Rotation [-0.939, -0.574, 0.596, -0.139, -0.955] [9.33, 2.72, 3.49, 2.38, 3.24]
[-1.235, -0.155, -1.901, -0.058, 1.093] [3.31, 2.38, 7.52, 2.35, 2.62]

σ2 = 2.0

Bounding

[[0.864, 0.832, 0.818], [1.109, 1.097, 1.094] [[0.39, 0.39, 0.38], [0.4, 0.38, 0.38]
1.15, 1.138, 1.135], [1.412, 1.389, 1.379] [0.34, 0.33, 0.31], [0.38, 0.36, 0.35]

[0.625, 0.609, 0.603]], [[0.861, 0.826, 0.808] [0.29, 0.27, 0.27]], [[0.42, 0.4, 0.4]
boxes [1.13, 1.115, 1.107], [1.199, 1.182, 1.169] [0.4, 0.39, 0.38], [0.27, 0.27, 0.27]

[1.413, 1.377, 1.36], [0.668, 0.646, 0.632]] [0.41, 0.39, 0.39], [0.27, 0.27, 0.26]]
Time 2.18 0.164

Accuracy 98.8 [87.0 100.0 100.0] 3.61

σ1 = 1.2

Centroids [0.019, 0.015, 0.009, 0.01, 0.029] [0.03, 0.02, 0.01, 0.01, 0.09]
[0.01, 0.008, 0.009, 0.013, 0.011] [0.01, 0.0, 0.0, 0.01, 0.01]

Rotation [2.146, -1.162, 0.45, -0.34, -1.329] [9.17, 5.51, 4.19, 3.23, 7.94]
[1.501, 0.301, 0.007, -1.045, 0.511] [3.08, 2.79, 2.89, 3.74, 4.63]

σ2 = 2.0

Bounding

[[1.123, 1.115, 1.107], [1.101, 1.089, 1.085] [[0.45, 0.44, 0.44], [0.44, 0.45, 0.45]
[1.198, 1.185, 1.179], [1.107, 1.1, 1.094] [0.34, 0.35, 0.36], [0.26, 0.26, 0.26]

[0.625, 0.62, 0.617]], [[1.033, 1.033, 1.031] [0.23, 0.22, 0.21]], [[0.44, 0.44, 0.44]
boxes [1.097, 1.089, 1.085], [1.194, 1.184, 1.178] [0.45, 0.45, 0.45], [0.38, 0.38, 0.38]

[1.118, 1.108, 1.097], [0.618, 0.612, 0.611]] [0.27, 0.26, 0.26], [0.22, 0.21, 0.21]]
Time 2.19 0.16

Accuracy 99.33 [86.5 100.0 100.0] 2.942

σ1 = 2.0

Centroids [0.019, 0.022, 0.017, 0.037, 0.036] [0.03, 0.03, 0.03, 0.11, 0.11]
[0.016, 0.014, 0.01, 0.036, 0.011] [0.03, 0.02, 0.01, 0.11, 0.01]

Rotation [1.831, -1.996, -5.232, -1.817, -4.576] [12.71, 12.84, 16.18, 16.83, 11.55]
[2.545, 2.182, 1.963, -1.326, -0.09] [15.67, 11.0, 8.64, 17.24, 13.02]

σ2 = 0.8

Bounding

[[0.563, 0.555, 0.55], [0.478, 0.468, 0.459] [[0.25, 0.24, 0.24], [0.24, 0.23, 0.23]
[0.607, 0.583, 0.572], [0.551, 0.526, 0.514] [0.31, 0.31, 0.31], [0.38, 0.37, 0.37]
[0.412, 0.402, 0.392]], [[0.584, 0.574, 0.567] [0.47, 0.47, 0.47]], [[0.27, 0.27, 0.27]

boxes [0.47, 0.466, 0.461], [0.582, 0.571, 0.564] [0.34, 0.33, 0.33], [0.33, 0.33, 0.32]
[0.463, 0.452, 0.449], [0.342, 0.342, 0.33]] [0.37, 0.37, 0.37], [0.44, 0.44, 0.44]]

Time 2.17 0.173
Accuracy 98.25 [78.0 100.0 100.0] 5.439

σ1 = 2.0

Centroids [0.059, 0.027, 0.013, 0.051, 0.014] [0.15, 0.04, 0.01, 0.13, 0.01]
[0.065, 0.015, 0.017, 0.029, 0.024] [0.16, 0.02, 0.02, 0.07, 0.05]

Rotation [8.137, -7.688, 8.652, 8.791, 14.181] [39.8, 42.66, 32.01, 34.51, 26.78]
[-2.949, -8.15, 7.109, 2.533, 8.885] [32.28, 32.39, 43.19, 22.61, 28.47]

σ2 = 1.2

Bounding

[[0.46, 0.437, 0.416], [0.551, 0.517, 0.494] [[0.31, 0.3, 0.29], [0.3, 0.3, 0.29]
[0.533, 0.515, 0.5], [0.566, 0.558, 0.554] [0.19, 0.18, 0.18], [0.25, 0.24, 0.23]
[0.438, 0.419, 0.4]], [[0.503, 0.472, 0.449] [0.2, 0.19, 0.19]], [[0.27, 0.26, 0.25]

boxes [0.395, 0.373, 0.357], [0.553, 0.535, 0.506] [0.25, 0.23, 0.22], [0.24, 0.23, 0.21]
[0.595, 0.577, 0.565], [0.547, 0.524, 0.503]] [0.14, 0.14, 0.15], [0.34, 0.33, 0.32]]

Time 2.19 0.208
Accuracy 97.38 [73.0 100.0 100.0] 6.769

when there are overlaps among clusters, the later scheme outperforms the previ-
ous scheme (the last two rows). In some practical applications, there are slightly
overlap, even huge overlap between clusters, we used the scheme that extend-
ing the bounding line to half way to the closet points to address the shrink up
problem.

8.1.6 Summary

We proposed representing a cluster by its centroids, percentiles and PCs. Simply
use centroids to represent a cluster is not enough, because we only know the
central place but have no idea about how data points spread inside this cluster.
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Table 8.7: Default initial centroids, full K-means initialisation, make up the shrink
of 100% bounding box only

Data Measures Mean S.D

σ1 = 0.8

Centroids [0.185, 0.038, 0.031, 0.087, 0.233] [0.31, 0.05, 0.04, 0.19, 0.31]
[0.267, 0.163, 0.064, 0.046, 0.278] [0.38, 0.33, 0.11, 0.08, 0.38]

Rotation [-3.909, -1.292, -4.503, 5.6, -0.415] [20.76, 10.83, 13.84, 13.33, 21.07]
[3.883, -0.267, -5.787, -2.398, -12.016]] [14.62, 9.64, 9.06, 8.43, 14.63]

σ2 = 2.0

Bounding

[[1.587, 1.405, 1.256], [1.237, 1.17, 1.109] [[0.56, 0.58, 0.62], [0.37, 0.38, 0.39]
[1.348, 1.242, 1.226], [1.614, 1.509, 1.456] [0.52, 0.46, 0.4], [0.28, 0.3, 0.37]
[1.433, 1.181, 0.988]], [[1.516, 1.316, 1.182] [0.45, 0.44, 0.45]], [[0.44, 0.5, 0.54]

boxes [1.319, 1.26, 1.175], [1.509, 1.475, 1.395] [0.37, 0.36, 0.38], [0.57, 0.53, 0.56]
[1.627, 1.547, 1.552], [1.242, 1.014, 0.907]] [0.55, 0.61, 0.58], [0.54, 0.56, 0.54]]

Time 2.12 0.143
Accuracy 91.42 [77.5 100.0 91.0] 7.42

σ1 = 1.2

Centroids [0.07, 0.111, 0.019, 0.074, 0.125] [0.14, 0.26, 0.02, 0.19, 0.21]
[0.131, 0.207, 0.069, 0.068, 0.2] [0.27, 0.35, 0.21, 0.08, 0.34]

Rotation [-0.104, -0.771, 4.863, -0.95, 8.911] [10.11, 8.41, 9.43, 11.3, 20.78]
[-0.013, 4.812, -0.523, 2.542, 2.9] [11.01, 13.58, 11.39, 12.92, 20.48]

σ2 = 2.0

Bounding

[[1.441, 1.282, 1.159], [1.339, 1.269, 1.218] [[0.3, 0.36, 0.5], [0.41, 0.45, 0.5]
[1.335, 1.324, 1.271], [1.208, 1.106, 1.065] [0.28, 0.26, 0.31], [0.21, 0.24, 0.28]
[1.24, 1.011, 0.865]], [[1.368, 1.274, 1.19] [0.41, 0.36, 0.41]], [[0.37, 0.42, 0.48]

boxes [1.473, 1.327, 1.245], [1.328, 1.285, 1.271] [0.3, 0.44, 0.54], [0.28, 0.33, 0.32]
[1.404, 1.311, 1.284], [1.167, 1.027, 0.951]] [0.58, 0.62, 0.66], [0.48, 0.51, 0.53]]

Time 2.13 0.203
Accuracy 92.13 [79.0 100.0 90.75] 5.94

σ1 = 2.0

Centroids [0.102, 0.114, 0.315, 0.071, 0.348] [0.29, 0.34, 0.48, 0.23, 0.47]
[0.141, 0.123, 0.098, 0.118, 0.508] [0.37, 0.27, 0.24, 0.32, 0.55]

Rotation [-4.338, -12.95, -8.427, -9.997, -14.016] [20.62, 21.62, 23.41, 23.59, 27.37]
[-4.781, -12.943, -9.903, -1.845, -17.031] [19.92, 27.3, 25.67, 21.24, 23.13]

σ2 = 0.8

Bounding

[[1.041, 0.879, 0.767], [0.858, 0.698, 0.622] [[0.56, 0.52, 0.5], [0.77, 0.66, 0.66]
[1.199, 1.054, 1.017], [0.755, 0.711, 0.667] [0.81, 0.79, 0.8], [0.54, 0.54, 0.53]
[1.427, 1.314, 1.21]], [[0.903, 0.811, 0.739] [0.81, 0.87, 0.92]], [[0.5, 0.48, 0.47]

boxes [1.137, 0.792, 0.692], [0.948, 0.822, 0.709] [0.63, 0.55, 0.55], [0.58, 0.49, 0.51]
[0.873, 0.818, 0.767], [1.711, 1.595, 1.566]] [0.69, 0.7, 0.68], [0.85, 0.94, 0.96]]

Time 2.07 0.131
Accuracy 88.35 [81.5 93.5 90.5] 4.591

σ1 = 2.0

Centroids [0.165, 0.34, 0.175, 0.137, 0.267] [0.35, 0.52, 0.32, 0.28, 0.37]
[0.057, 0.058, 0.107, 0.167, 0.224]] [0.06, 0.08, 0.21, 0.34, 0.37]

Rotation [-3.511, -7.871, 13.386, 20.445, 12.057] [37.23, 35.27, 39.67, 41.93, 36.7]
[-1.176, 0.506, 13.576, 6.833, 16.004] [39.22, 40.32, 39.59, 32.54, 34.44]

σ2 = 1.2

Bounding

[[1.135, 1.001, 0.89], [1.318, 1.181, 1.06] [[0.92, 0.93, 0.93], [0.91, 0.94, 0.97]
[0.979, 0.751, 0.635], [1.073, 0.894, 0.796] [0.39, 0.21, 0.13], [0.73, 0.71, 0.73]
[1.511, 1.25, 1.132]], [[1.17, 0.921, 0.734] [0.88, 0.97, 1.03]], [[0.56, 0.57, 0.5]

boxes [1.028, 0.874, 0.772], [0.931, 0.782, 0.644] [0.74, 0.75, 0.76], [0.35, 0.22, 0.16]
[0.805, 0.698, 0.612], [1.303, 1.086, 0.877]] [0.3, 0.22, 0.19], [0.73, 0.71, 0.74]]

Time 2.12 0.13
Accuracy 88.6 [76.5 100.0 90.0] 8.64

Percentiles and PCs are introduced to describe where data points are located
and how data points spread. Experiments show that, compared to the original
cluster, the new cluster we generated is similar. Descriptions for clusters that
are elliptical are more stable than those for circular clusters. The rotation degree
required to remap the new PCs from old PCs is heavily relying on the boundary
points. One possible approach to improve the quality of generated cluster is
choosing an appropriate percentile.

To conclude, we could generate a similar cluster based on its summary description
generated by our method. However, there is a shrink problem about the bounding
boxes of regenerated data points. To address this problem, we proposed that
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Table 8.8: Default initial centroids, full K-means initialisation, extend the bound-
ing line to half way to its closet point

Data Measures Mean S.D

σ1 = 0.8

Centroids [0.041, 0.061, 0.045, 0.039, 0.053], [0.1, 0.13, 0.1, 0.1, 0.11],
[0.008, 0.01, 0.015, 0.011, 0.012] [0.01, 0.01, 0.01, 0.01, 0.01]

Rotation [-1.785, -2.08, -1.155, -1.22, -2.88], [7.97, 10.13, 12.24, 5.18, 7.37],
[-0.768, 0.416, 0.438, -0.706, -0.484] [3.22, 3.19, 1.71, 2.96, 2.06]

σ2 = 2.0

Bounding

[[1.132, 0.171, 0.139], [0.891, 0.209, 0.172], [[0.39, 0.21, 0.18], [0.35, 0.25, 0.21],
[1.287, 0.191, 0.166], [1.324, 0.316, 0.282], [0.42, 0.24, 0.21], [0.43, 0.51, 0.5],
[0.902, 0.31, 0.283]], [[1.109, 0.098, 0.078], [0.53, 0.48, 0.48]], [[0.38, 0.16, 0.14],

boxes [0.891, 0.18, 0.14], [1.29, 0.178, 0.141], [0.35, 0.24, 0.19], [0.44, 0.23, 0.19],
[1.202, 0.182, 0.145], [0.758, 0.147, 0.121]] [0.39, 0.22, 0.2], [0.39, 0.2, 0.18]]

Time 2.05 0.13
Accuracy 97.6 [87.5 100.0 100.0] 4.68

σ1 = 1.2

Centroids [0.037, 0.037, 0.018, 0.044, 0.05] [0.09, 0.09, 0.02, 0.09, 0.11]
[0.013, 0.032, 0.012, 0.033, 0.016] [0.02, 0.09, 0.01, 0.08, 0.03]

Rotation [-0.011, -3.917, -4.047, -2.21, -1.209] [7.14, 11.67, 12.49, 11.35, 10.73]
[-0.138, -3.271, -0.525, -0.532, -3.61] [5.74, 7.57, 2.54, 4.61, 8.99]

σ2 = 2.0

Bounding

[[1.179, 0.159, 0.119], [1.001, 0.211, 0.176], [[0.44, 0.22, 0.17], [0.45, 0.27, 0.22],
[1.185, 0.241, 0.199], [1.302, 0.455, 0.388], [0.41, 0.27, 0.22], [0.35, 0.49, 0.49],
[0.821, 0.283, 0.22]], [[1.158, 0.125, 0.089], [0.28, 0.28, 0.22]], [[0.46, 0.19, 0.14],

boxes [1.045, 0.276, 0.239], [1.151, 0.132, 0.102], [0.42, 0.34, 0.31], [0.38, 0.18, 0.16],
[1.133, 0.266, 0.192], [0.771, 0.195, 0.153]] [0.37, 0.3, 0.23], [0.29, 0.23, 0.2]]

Time 1.99 0.129
Accuracy 97.3 [ 84.5 100.0 100.0] 5.96

σ1 = 2.0

Centroids [0.036, 0.014, 0.008, 0.01, 0.018], [0.11, 0.02, 0.01, 0.01, 0.04]
[0.008, 0.009, 0.009, 0.009, 0.008] [0.0, 0.0, 0.0, 0.01, 0.01]

Rotation [-6.068, 3.23, 1.566, 0.117, 0.649] [23.63, 15.39, 23.6, 7.12, 7.51]
[-4.632, 7.785, -0.19, -1.469, 1.916] [24.0, 19.15, 24.39, 9.97, 13.7]

σ2 = 0.8

Bounding

[[0.414, 0.209, 0.177], [0.473, 0.185, 0.145] [[0.28, 0.17, 0.15], [0.26, 0.19, 0.15]
[0.437, 0.189, 0.158], [0.487, 0.256, 0.201] [0.31, 0.17, 0.15], [0.25, 0.23, 0.18]
[0.364, 0.188, 0.158]], [[0.378, 0.15, 0.126] [0.35, 0.34, 0.32]], [[0.31, 0.16, 0.14]

boxes [0.464, 0.165, 0.131], [0.426, 0.185, 0.153] [0.28, 0.15, 0.13], [0.28, 0.17, 0.15]
[0.448, 0.213, 0.168], [0.323, 0.163, 0.129]] [0.24, 0.22, 0.18], [0.24, 0.17, 0.14]]

Time 2.08 0.26
Accuracy 99.42 [88.5 100.0 100.0] 2.506

σ1 = 2.0

Centroids [0.01, 0.014, 0.036, 0.014, 0.018] [0.0, 0.01, 0.1, 0.01, 0.04]
[0.008, 0.022, 0.012, 0.013, 0.034] [0.01, 0.04, 0.01, 0.01, 0.1]

Rotation [5.703, 0.541, -8.263, 14.825, -10.378] [26.56, 14.9, 26.18, 26.99, 29.97]
[-0.533, -8.295, -15.307, 11.843, -4.959] [23.55, 19.28, 22.95, 33.49, 27.54]

σ2 = 1.2

Bounding

[[0.836, 0.248, 0.202], [0.768, 0.284, 0.239] [[0.38, 0.2, 0.17], [0.32, 0.19, 0.16]
[0.792, 0.211, 0.184], [0.626, 0.217, 0.174] [0.51, 0.26, 0.24], [0.37, 0.18, 0.16]
[0.581, 0.278, 0.238]], [[0.777, 0.233, 0.197] [0.22, 0.22, 0.2]], [[0.46, 0.21, 0.18]

boxes [0.749, 0.301, 0.266], [0.774, 0.229, 0.19] [0.33, 0.3, 0.29], [0.53, 0.2, 0.16]
[0.616, 0.235, 0.192], [0.586, 0.307, 0.258]] [0.41, 0.19, 0.17], [0.19, 0.21, 0.18]]

Time 2.08 0.176
Accuracy 98.42 [86.0 100.0 100.0] 4.157

extend bounding line of inside boxes to half way to the closet points. One effect
way to generate a similar cluster is to choose the appropriate percentile.
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Table 8.9: Default initial centroids, full K-means initialisation, combination of
scheme 2 and 3

Data Measures Mean S.D

σ1 = 0.8

Centroids [0.159, 0.078, 0.034, 0.075, 0.231] [0.25, 0.2, 0.03, 0.23, 0.39]
[0.121, 0.152, 0.109, 0.11, 0.29] [0.23, 0.27, 0.27, 0.27, 0.39]

Rotation [3.78, -5.591, -1.771, 1.85, -5.899] [22.96, 13.05, 13.21, 7.69, 14.16]
[-2.1, -5.029, -1.147, 0.292, -5.574] [21.37, 9.06, 15.28, 11.62, 21.97]

σ2 = 2.0

Bounding

[[1.592, 0.897, 0.731], [1.408, 0.49, 0.298], [[0.45, 0.72, 0.74], [0.38, 0.47, 0.28],
[1.172, 0.505, 0.319], [1.461, 0.438, 0.291], [0.44, 0.46, 0.32], [0.31, 0.36, 0.25],
[1.461, 1.067, 0.937]], [[1.379, 0.807, 0.557], [0.65, 0.91, 0.97]], [[0.43, 0.63, 0.55],

boxes [1.544, 0.737, 0.62], [1.282, 0.445, 0.328], [0.47, 0.72, 0.73], [0.41, 0.5, 0.49]
[1.559, 0.664, 0.563], [1.477, 1.054, 0.879]] [0.45, 0.82, 0.82], [0.56, 0.79, 0.84]]

Time 2.05 0.121
Accuracy 90.42 [81.0 100.0 91.0] 5.88

σ1 = 1.2

Centroids [0.177, 0.146, 0.082, 0.065, 0.278] [0.3, 0.27, 0.24, 0.17, 0.34]
[0.044, 0.136, 0.069, 0.046, 0.216] [0.04, 0.24, 0.2, 0.09, 0.31]

Rotation [-6.054, 4.113, 1.265, -4.891, -4.489] [18.75, 16.4, 15.89, 18.13, 21.94]
[0.344, 2.099, 3.232, -0.412, 1.755] [16.91, 17.98, 11.76, 12.23, 19.19]

σ2 = 2.0

Bounding

[[1.298, 0.67, 0.568], [1.628, 0.908, 0.806] [[0.6, 0.81, 0.81], [0.57, 0.88, 0.89]
[1.259, 0.338, 0.219], [1.119, 0.376, 0.248] [0.35, 0.26, 0.2], [0.35, 0.35, 0.22]
[1.504, 1.23, 1.062]], [[1.325, 0.68, 0.524] [0.57, 0.8, 0.87]], [[0.39, 0.57, 0.53]

boxes [1.398, 0.542, 0.405], [1.285, 0.414, 0.255] [0.28, 0.54, 0.48], [0.34, 0.29, 0.2]
[1.231, 0.512, 0.364], [1.437, 1.083, 0.841]] [0.45, 0.59, 0.56], [0.45, 0.66, 0.71]]

Time 1.99 0.11
Accuracy 91.8 [77.5 100.0 91.5] 6.67

σ1 = 2.0

Centroids [0.249, 0.109, 0.172, 0.101, 0.52] [0.43, 0.28, 0.39, 0.3, 0.49]
[0.202, 0.058, 0.126, 0.02, 0.694] [0.36, 0.07, 0.27, 0.03, 0.57]

Rotation [-5.391, 0.829, -0.044, -3.497, -10.434] [26.96, 23.58, 24.61, 24.06, 28.77]
[-1.942, -4.779, 1.456, -1.148, -4.535] [35.12, 27.12, 32.19, 23.34, 35.62]

σ2 = 0.8

Bounding

[[1.243, 0.969, 0.911], [1.106, 0.794, 0.691] [[0.86, 1.05, 1.06], [1.01, 1.04, 1.05]
[1.025, 0.795, 0.743], [0.645, 0.374, 0.336] [0.87, 1.01, 1.03], [0.58, 0.57, 0.56]
[1.061, 0.927, 0.805]], [[0.968, 0.613, 0.535] [0.73, 0.77, 0.81]], [[0.58, 0.67, 0.66]

boxes [0.842, 0.632, 0.529], [0.867, 0.456, 0.382] [0.71, 0.73, 0.68], [0.59, 0.5, 0.48]
[0.69, 0.431, 0.329], [1.787, 1.635, 1.541]] [0.51, 0.56, 0.55], [0.92, 1.08, 1.14]]

Time 2.06 0.252
Accuracy 86.35 [78.5 100.0 84.25] 5.229

σ1 = 2.0

Centroids [0.214, 0.293, 0.019, 0.232, 0.317], [0.38, 0.47, 0.01, 0.37, 0.48]
[0.127, 0.171, 0.017, 0.321, 0.36] [0.28, 0.24, 0.02, 0.45, 0.49]

Rotation [-0.437, -1.631, 2.609, -3.575, -7.883] [27.69, 29.45, 28.92, 33.01, 29.5]
[-14.968, -7.464, -7.468, 3.374, 8.479] [25.76, 27.63, 24.11, 29.91, 35.68]

σ2 = 1.2

Bounding

[[1.245, 0.623, 0.538], [1.508, 1.231, 1.157] [[0.66, 0.71, 0.73], [0.93, 1.06, 1.09]
[0.973, 0.426, 0.319], [1.265, 0.805, 0.692] [0.42, 0.24, 0.16], [0.99, 1.07, 1.09]
[1.28, 1.038, 0.922]], [[1.179, 0.542, 0.496] [0.85, 0.96, 0.99]], [[0.56, 0.69, 0.71]

boxes [1.335, 0.971, 0.907], [1.027, 0.398, 0.277] [0.82, 1.0, 1.01], [0.47, 0.38, 0.21]
[1.344, 0.901, 0.763], [1.386, 1.13, 0.976]] [0.6, 0.74, 0.74], [0.7, 0.84, 0.89]]

Time 2.01 0.137
Accuracy 86.33 [71.0 100.0 84.0] 7.025

Asynchronous distributed clustering
algorithms for wireless mesh network

181 Cheng Qiao



8. Appendices
8.2 Comparison result on single pattern

sparse networks

8.2 Comparison result on single pattern sparse
networks

8.2.1 K-means as clustering algorithm

Figure 8.5, 8.6 and 8.7 below show the results on data generated from fully sym-
metric Gaussians, partially-symmetric Gaussians and rectangular uniform distri-
butions when the underlying network is sparse. The density of the network mainly
affects the number of messages received. Comparing figure 8.5 with figure 4.6, all
distributed methods require fewer messages for the sparse networks, since each
agent has fewer neighbours to share information with. However, for centralised
methods, C_B and C_R, there is little difference because the amount of mes-
sage transmission depends on the predefined tree topology. Regarding accuracy
on data points against centralised algorithm and ground truth, they appear quite
similar.

Figure 8.5: K-means with fully symmetric Gaussians on sparse network
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Figure 8.6: K-means on sparse network with partially symmetric Gaussians
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Figure 8.7: K-means on sparse network with uniform distributed dataset
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8.2.2 SG as clustering algorithm

The following three figures 8.8, 8.9, 8.10 show the comparison result when the
underlying networks are sparse. As with dense networks, the number of message
transmissions decreased.

Figure 8.8: SG on sparse network with fully symmetric Gaussians
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Figure 8.9: SG on sparse network with partially symmetric Gaussians
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Figure 8.10: SG on sparse network with uniform distributed dataset
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8.2.3 GMM as clustering algorithm

The following three figures 8.12, 8.12, 8.13 show the comparison result when the
underlying networks are sparse. The results are showing the same behaviour as
that with SG as the clustering algorithm.

Figure 8.11: GMM on sparse network with fully symmetric Gaussians
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Figure 8.12: GMM on sparse network with partially symmetric Gaussians
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Figure 8.13: GMM on sparse network with uniform distributed dataset
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8.3 Comparison result on similarity measure-
ments

In this section, we show the comparison result on similarity measurements when
GMM and SG are used to cluster data points that generated from fully symmetric
Gaussians and uniform distributions. The results on partially symmetric Gaus-
sian are omitted since they show the same behaviour as that with fully symmetric
Gaussians.

8.3.1 GMM as clustering algorithm

First, we show the performance when GMM is used as the clustering algorithm.
Figure 8.14 shows the comparison result of accuracy against centralised GMM
when data points are generated from fully symmetric Gaussians. There are little
difference between all measures of all methods. But Weighted EMD and Re-
versible EMD perform slightly better than other methods (by around 2%).

Figure 8.14: Accuracy against centralised GMM with fully symmetric Gaussians

Figure 8.15 shows that accuracy against ground truth. Again, Weighted EMD
and Reversible EMD perform a little better than other methods.

Figure 8.16 shows that accuracy against pattern. Weighted EMD achieves higher
accuracy than EMD. And both weighted EMD and EMD perform much better
than other methods. wavelet EMD performs worst in all methods.

Figure 8.17 shows the accuracy against centralised GMM when uniformly dis-
tributed datasets are used. Compared that with fully symmetric Gaussians, the
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Figure 8.15: Accuracy against ground truth with fully symmetric Gaussians

Figure 8.16: Accuracy against pattern with fully symmetric Gaussians

accuracy drops. We expected this since the clustering algorithm is not suitable for
the underlying dataset. Similarly, accuracy against ground truth dropped as well
(refer to figure 8.18). In terms of accuracy against pattern, EMD and weighted
EMD perform much better. Note that there is little difference between EMD
and weighted EMD. Of all methods, wavelet EMD and robust EMD perform the
worst.
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Figure 8.17: Accuracy against centralised GMM with datasets generated from
uniform distributions

Figure 8.18: Accuracy against ground truth with uniformly distributed dataset

8.3.2 SG as clustering algorithm

In this section, we show the comparison result when SG is used as the clustering
algorithm. As we expected, there is little difference between all measurements in
terms of accuracy against centralised SG (refer to figure 8.20).

Figure 8.21 shows that, compared to the accuracy against centralised SG, the
accuracy against ground truth drops. Again, all measurements follow the same
pattern and there is little difference between them.

Regarding accuracy against pattern, weighted EMD performs slightly better than
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Figure 8.19: Accuracy against pattern with uniformly distributed dataset

Figure 8.20: Accuracy against centralised SG with fully symmetric Gaussians

EMD (refer to figure 8.22). And both weighted EMD and EMD outperform the
rest of methods.
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Figure 8.21: Accuracy against ground truth with fully symmetric Gaussians

Figure 8.22: Accuracy against pattern with fully symmetric Gaussians

Figure 8.25: Accuracy against pattern with uniformly distributed dataset
Asynchronous distributed clustering
algorithms for wireless mesh network

195 Cheng Qiao



8. Appendices
8.3 Comparison result on similarity

measurements

Figure 8.23: Accuracy against centralised SG with uniformly distributed dataset

Figure 8.24: Accuracy against ground truth with uniformly distributed dataset

Figure 8.23, 8.24 and 8.25 show the accuracy against centralised SG, ground truth
and pattern with uniformly distributed dataset, separately. Again, there are
little differences between both accuracy measures on data points. Regarding the
accuracy against pattern, EMD outperforms other methods, followed by weighted
EMD. Wavelet EMD and robust EMD perform the worst in all methods.
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8.4 Predict the sub-pattern assignment of agent

In this section, we show the comparison result on the two proposed methods (V1
and V2) to predict which sub-pattern the agent belongs to. When agents are not
told the group assignment of all agents, agents have to compute the similarity
between its cluster model and the cluster model inside the patterns. It could
compare the cluster model with the cluster model of patterns (V1), or compare
the raw data points with the cluster model of patterns (V2).

This experiment is tested on 10-agent network and repeated for 20 runs. The
underlying datasets are generated from fully symmetric Gaussians and K-means
is used as the clustering algorithm. We also compare the two different ways to
build the similarity tables: build a symmetric table based on agent’s prediction
(denoted by MD) and build an asymmetric table that agent always go back to
the models received and check who it is together with and apart from (MD1). In
the experiment, we only focus on the three patterns networks (5:3:2).

Figure 8.26 shows the result when the ground truth distributions to generate data
points in the second and third sub-patterns are similar. We expected that the
estimated number of patterns are close to 2, since the cluster model by agents in
these two sub-patterns are similar and it is difficult for the proposed algorithms
to predict the same number of patterns as ground truth. It shows that comparing
agent’s basic models (V1), rather than raw data points (V2), with cluster model
of patterns performs better. The most possible reason is that the local raw data
point may not fit well with the learned final models.

Figure 8.26: Performance on datasets generated from fully symmetric Gaussians
with K-means as clustering algorithm (1)

Figure 8.27 shows the result when the ground truth distributions to generate
data points in the second and third sub-patterns are dissimilar instead. Since the
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cluster models are dissimilar, we expected that the number of patterns are close
to the ground truth number 3 (above 2.8). Again, the accuracy against pattern
with method V1 is higher than that with V2.

Figure 8.27: Performance on datasets generated from fully symmetric Gaussians
with K-means as clustering algorithm (2)

Figure 8.28 and 8.29 show the results when a symmetric table is built to measure
the similarity between agents. Compared to figure 8.26, the accuracy against
pattern in figure 8.28 is a little higher (see V1 of S1_A2_R1). That is because
agents know the size of network and all agents finish with the same model. If there
is only one pattern in the network and all agents infer the pattern assignment
based on the same model, we expected that accuracy achieved by symmetric table
is much accurate.

Similarly, when an asymmetric table is built (figure 8.27 and 8.29), the accu-
racy against pattern by V1 and V2 are similar and the only difference occurs
in S1_A2_R1, where the accuracy against pattern by V1 in figure 8.29 is 0.8%
higher. That is because it is not difficult for the proposed algorithms to predict
the correct group assignment of all agents when the ground truth distributions
to generate data points in different sub-patterns are distinct.

To summarise, when agents are not told the group assignment of all agents and
have to predict its group assignment, measuring its cluster models (V1) with
patterns received performs better. In addition, there is little difference in these
two methods ( less than 1% in accuracy against patterns).
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Figure 8.28: Performance on datasets generated from fully symmetric Gaussians
with K-means as clustering algorithm (3)

Figure 8.29: Performance on datasets generated from fully symmetric Gaussians
with K-means as clustering algorithm (4)

8.5 Comparison result on multiple sparse net-
works

In this section, we show the experimental results on sparse networks. Similarly,
three different clustering algorithms are used to cluster the data points that gener-
ated from fully symmetric Gaussians, partially symmetric Gaussians and uniform
distributions. The main difference between dense network and sparse network lies
in the amount of transmitted information. Compared to that with dense graph,
fewer information is required.

8.5.1 K-means as clustering algorithm

When the network is sparse, figure 8.30, 8.31 and 8.32 show the experimen-
tal result with data points generated from fully symmetric Gaussians, partially
symmetric Gaussians and uniformly distributed dataset, separately. When data
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points are sampled from fully symmetric Gaussians, again, there is little difference
in the number of patterns with different number of clusters when there are only
two patterns. When there are three patterns (the fourth column), the number
of patterns by the same number of clusters is underestimated, but the estimated
number of patterns by different number of clusters is close to the ground truth
patterns (see the horizontal dashed line). That is because it is difficult for algo-
rithm to separate two similar clusters apart and it merges these two clusters into
a big cluster.

When the underlying datasets are generated from partially symmetric Gaussians,
the number of patterns predicted by different number of clusters is perfect when
there are only two patterns. However, both algorithms with the same and different
number of clusters are struggling to learn the correct number of patterns when
there are three patterns.

Figure 8.32 shows the result with underlying datasets generated from uniformly
distributions. Again, the number of patterns estimated by the same number of
clusters is overestimated except the case of three patterns (5:3:2). However, when
there are three patterns, the number of patterns estimated by the same number of
clusters is much close to the ground truth. So we expected that the corresponding
accuracy against pattern is much higher (refer to the last four rows). Note that
the accuracy again pattern is the worst for the 9:1 split (the third column), where
the accuracy against pattern is around 48%.

8.5.2 GMM as clustering algorithm

Figure 8.33 shows the result when datasets that generated from fully symmetric
Gaussians are tested. The results show the same behaviour.

When the underlying datasets are generated from partially symmetric Gaussians
(refer to figure 8.34), the results are similar to that with K-means as clustering
algorithm.

Figure 8.35 shows the result when underlying datasets are generated from uniform
distributions. As before, the results show the same pattern.

8.5.3 SG as clustering algorithm

Figure 8.36, 8.37 and 8.38 show the experimental result with datasets that gener-
ated from fully symmetric Gaussians, partially symmetric Gaussians and uniform
distributions, separately. Again, the results show the same behaviour.
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Figure 8.30: K-means on sparse network with multiple patterns and fully sym-
metric multi-dimensional Gaussians
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Figure 8.31: K-means on sparse network with multiple patterns and partially
symmetric multi-dimensional Gaussians
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Figure 8.32: K-means on sparse network with multiple patterns and uniformly
distributed dataset
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Figure 8.33: GMM on sparse network with multiple patterns and fully symmetric
multi-dimensional Gaussians
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Figure 8.34: GMM on sparse network with multiple patterns and partially sym-
metric multi-dimensional Gaussians
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Figure 8.35: GMM on sparse network with multiple patterns and uniformly dis-
tributed dataset
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Figure 8.36: SG on sparse network with multiple patterns and fully symmetric
multi-dimensional Gaussians
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Figure 8.37: SG on sparse network with multiple patterns and partially symmetric
multi-dimensional Gaussians
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Figure 8.38: SG on sparse network with multiple patterns and uniformly dis-
tributed dataset
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