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1

Highlights

 Emulsification of different fat-filled milk formulations was investigated. 

 Emulsification was achieved using novel inline high-shear mixing technology. 

 The emulsification process was monitored inline using pressure drop analysis. 

 Pressure drop data allowed for the estimation of viscosity during emulsion formation.
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10 Abstract: 

11 The emulsification of refined palm oil (RPO) in a continuous phase consisting of skim milk 

12 concentrate (SMC) and maltodextrin with a dextrose equivalent value of 17 (MD17) to produce 

13 fat-filled milk emulsions (FFMEs), was studied. A novel inline high-shear mixing (IHSM) 

14 method was used to produce emulsions, and three protein contents were investigated at a fixed 

15 RPO content of 12%: low (7.7%), medium (10.5%) and high (13%). Pressure drop 

16 measurement was used as an inline approach to determine viscosity using the Hagen-Poiseuille 

17 equation. In addition, offline viscometry, particle size and emulsion stability analyses were 

18 performed. Emulsion fat droplet size decreased significantly (P < 0.05) as a function of number 

19 of passes through the IHSM, due to an effective increase in residence time. Furthermore, inline 

20 pressure drop data demonstrated that the emulsification process displayed two distinct stages: 

21 (i) oil injection, and (ii) reduction in fat droplet size, irrespective of protein content. 

22

23 Keywords: High solids emulsions, High-shear inline mixer, Pressure drop, Skim milk 

24 concentrate, Refined palm oil, Maltodextrin 
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25 1. Introduction

26 Milk is a highly versatile raw material and, over the past century, significant advances 

27 have been achieved in its fractionation into a wide variety of components (Fox, 2008; 

28 O’Sullivan & O’Mahony, 2016). These constituent-based ingredients are often recombined, 

29 sometimes with ingredients derived from other sources (e.g., plant-derived proteins, 

30 carbohydrates and lipids), to achieve different formulations, which can be utilised as final 

31 products by the consumer (e.g., enriched milk powders), or be further processed as ingredients 

32 by food manufacturers (e.g., protein concentrates/isolates or blends, for example in the 

33 manufacture  of infant formulae) (O’Connell & Flynn, 2007). One such example is fat-filled 

34 milk powders (FFMPs), which are dried protein-stabilised emulsions, typically produced by 

35 solids concentration (e.g., by evaporation) and homogenisation followed by spray drying. 

36 These systems are intended either for direct reconstitution by consumers, or as ingredients in a 

37 variety of recombined applications, such as beverages, ice cream, confectionary and bakery 

38 products (Sharma et al., 2012; Vignolles et al., 2007). 

39 The formulation of these fat-filled milk emulsions (FFMEs) prior to spray-drying 

40 typically involves blending of skim milk concentrate (SMC; i.e., a concentrated protein and 

41 lactose solution) with oils (i.e., often derived from plants, such as coconut or palm oils) to 

42 achieve the required ratio of protein to fat, and with additional carbohydrates added (Sharma 

43 et al., 2012). SMC is produced by removal of the fat from milk through centrifugation and 

44 concentrating the remaining stream to a solids content of >35% (w/w) (O’Connell & Flynn, 

45 2007). FFMEs are typically prepared by injecting fats into SMC, followed by emulsification 

46 using two-stage valve homogenisation. The fats that are used are typically derived from plants 

47 and are either solid or semi-solid at ambient temperature, in order to be comparable to milk fat. 

48 Thus, prior to injection, these fats need to be liquefied and dosed into the SMC at elevated 

49 temperatures, in the range 50-60oC usually (Vignolles et al., 2007). The ratio of protein with 
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50 respect to a fixed fat content is influenced by addition of carbohydrates (which reduces the 

51 protein content), often maltodextrins; these are polysaccharides of variable chain length 

52 produced by partial hydrolysis of starch, which are defined by their dextrose equivalent (DE) 

53 value (Drapala et al., 2016; Mulcahy et al., 2016; O’Mahony et al., 2017). Use of higher 

54 concentrations of protein (e.g., >5% w/w) in emulsion systems, in comparison to lower 

55 concentrations of protein, yields smaller emulsion droplets which are more resistant to 

56 emulsion instability, due to greater coverage of the droplet interface, reducing the propensity 

57 towards coalescence and increasing the electrostatic repulsive interactions between protein-

58 stabilised emulsion droplets (O’Sullivan et al., 2014; O’Sullivan, Park, & Beevers, 2016). 

59 Furthermore, dairy-derived carbohydrate sources, such as lactose or permeate from 

60 ultrafiltration of skim milk, are widely employed to vary the protein content with respect to fat 

61 in a similar fashion to maltodextrin addition. Plant-derived oils and maltodextrin ingredients 

62 are commonly used owing to their lower overall cost and reduced powder stickiness challenges 

63 during spray-drying, respectively (Gonzalez-Perez & Arellano, 2009; Vega & Roos, 2006).

64 After oil injection and emulsification, these formulations are spray-dried to yield FFMP 

65 (Sharma et al., 2012). To the authors’ knowledge, there are no studies available in the published 

66 literature detailing the formation of these high solids emulsion systems, the role of protein-to-

67 fat ratio in their formation and stability, and the inline monitoring of this process from fat 

68 injection through to formation of the final emulsion. This study aims to investigate the emulsion 

69 formation process for high solids emulsions, using an inline high-shear mixer (IHSM) for 

70 emulsification, in a recirculation configuration (i.e., semi-continuous), and to assess the 

71 suitability of using a pressure drop approach to monitor the process in real-time, from fat 

72 injection through to final emulsion formation. 

73 High-shear mixers are widely used for emulsification applications and the dissolution 

74 of powders to form homogeneous solutions (Hall et al., 2013; O’Sullivan et al., 2017). The 
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75 configuration of these mixers is that of a rotor-stator, and they can be used in an inline 

76 configuration for either continuous processing (i.e., single-pass mode) or semi-continuous 

77 processing (i.e., multiple-pass mode), and are highly energy efficient (Hall et al., 2011). The 

78 shear rate range for high-shear mixers is typically within the range 20,000 – 100,000 s-1, 

79 depending on factors such as tip speed, rotor-stator geometry (e.g., single or double screen) 

80 and physical properties (e.g., viscosity, presence of particulates, etc.) of the material being 

81 processed (Pacek et al., 2007). Pressure drop across a section of pipeline, for a flowing fluid, 

82 can be measured using a pair of pressure transducers, separated by a known distance. Pressure 

83 drop data provides useful information as to how a process is performing in real-time, as the 

84 data can be used to calculate a theoretical viscosity value from the Hagen-Poiseuille equation 

85 (Douglas et al., 2005; Mihailova et al., 2015). O’Sullivan et al. (2017) demonstrated the 

86 suitability of a pressure drop approach for monitoring the induction of dairy powders in real-

87 time, observing different aspects of the process, such as initial contact of the powder with water, 

88 and the disintegration of powder particles as a function of processing time. 

89 The overall objective of this research was to evaluate the suitability of the IHSM 

90 technology and discern differences in emulsification behaviour based on FFME formulation, 

91 in terms of emulsion fat droplet size distribution, emulsion viscosity and accelerated physical 

92 stability, as a function of processing time. Moreover, the emulsification process was monitored 

93 inline using a pressure drop approach, by applying the Hagen-Poiseuille equation. This 

94 approach allows for real-time monitoring of industrial emulsification processes, and provides 

95 information as to when dosing of oils is complete, as well as the progression of the 

96 emulsification process. 

97 2. Materials and methods

98 2.1. Materials
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99 Skim milk concentrate (SMC) and refined palm oil (RPO) were kindly provided by 

100 Dairygold Food Ingredients (Mitchelstown, Ireland). Maltodextrin with a dextrose equivalent 

101 (DE) value of 17 (MD17) was supplied by Corcoran Chemicals Ltd. (Dublin, Ireland). The 

102 composition of the SMC is presented in Table 1. The water used throughout this study was 

103 deionised water, unless stated otherwise. 

104 2.2. Emulsion formulation and preparation 

105 Emulsification was conducted at three protein concentrations, 7.7, 10.5 and 13% (w/w), 

106 with a fixed fat content of 12.1 ± 0.1% (w/w), whereby the % (w/w) level is based on total 

107 solids within a given system (i.e., formulated emulsion or projected FFMP). Variations in 

108 emulsion formulation to meet these protein concentrations were achieved through addition of 

109 a fixed quantity of RPO and varying quantities of MD17 and water to SMC, as detailed in 

110 Table 1, with a target solids content of 52.3 ± 0.2% (w/w) in all cases. These protein contents 

111 were selected as the range in protein content for typical FFMP products is 14 to 24% (w/w) for 

112 the low to high protein contents, respectively (Sharma et al., 2012). The predicted protein 

113 content of powders produced from the prepared emulsions would be 14.2, 19.2 and 23.7% 

114 (w/w) for the low-, medium- and high-protein systems, respectively, assuming that the final 

115 moisture content of the powder was 4% (w/w) in all cases (Table 1). 

116 The configuration used for emulsification is shown in Fig. 1. The emulsification process 

117 was started by filling the closed-loop liquid system with the required amount of SMC to achieve 

118 the desired protein content for the investigated emulsion systems (Table 1), and initialising the 

119 progressive cavity pump (Torqueflow, Sydex, UK) at a volumetric flowrate of 675 L h-1. Next, 

120 the inline high-shear mixer (IHSM), a YTRON-Z (1.50FC, YTRON Process Technology 

121 GmbH, Germany) operating at 100% capacity, yielding ca. 6,000 rpm, was initialised, and the 

122 custom-fabricated heat exchanger (Liam A. Barry Ltd., Cork, Ireland), in counter-current 
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123 configuration, was set to a temperature of 50oC. An overhead stirrer (RZR 2021, Heidolph 

124 Instruments GmbH & Co. KG, Schwabach, Germany) at a speed of 1,000 rpm was used to 

125 ensure rapid dispersion of MD17 powder and added water, and retained in place for the duration 

126 of the emulsification process. The required mass of MD17 and water were carefully added to 

127 the feed vessel over the top once the temperature of the recirculating SMC had reached 50oC 

128 and the mixture was allowed to circulate through the system for a minimum of 30 min. 

129 Subsequently, RPO was liquefied at a temperature of 50oC, the required mass was added to the 

130 feed vessel over the top, and the mix was emulsified for up to 15 min (>50 passes through the 

131 IHSM). 

132 2.3. Emulsion droplet size characterisation

133 The changes in fat droplet size as a function of pass number (1, 3, 5, 10, 25 and 50 

134 passes) through the IHSM were measured by static light-scattering using a Mastersizer 3000 

135 (Hydro EV, Malvern Instruments, UK). Emulsion fat droplet size was reported as d4,3 (i.e., 

136 volume-weighted mean droplet size), d10 (i.e., cumulative 10% point of diameter), d50 (i.e., 

137 cumulative 50% point of diameter), d90 (i.e., cumulative 90% point of diameter), droplet size 

138 distribution data (DSD; volume vs. size class), and span (i.e., width of the droplet size 

139 distribution). Eq. 1 was used in order to determine the times required to achieve the desired 

140 number of passes of the emulsion through the IHSM (O’Sullivan et al., 2015):

141 (1)𝑡 =  
𝑉 ×  𝑃𝑎𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑄

142 where t is the residence time (s), V is the volume within the system (m3), and Q is the volumetric 

143 flow rate (m3 s-1). 
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144 2.4. Viscosity determination: comparison of calculated and experimental approaches

145 Viscosity was calculated from experimentally measured pressure drop (ΔP) readings, 

146 and compared to experimentally measured viscosity, in order to validate the calculated 

147 viscosity results, using a similar approach to that described by O’Sullivan et al. (2017). 

148 Pressure drop was recorded for the emulsification process, at all protein:fat ratios, and was 

149 recorded using a pair of pressure transducers (PR-33X, Keller, UK), positioned 1.08 m apart 

150 (Fig. 1). Pressure differential data was collected before dosage of molten RPO and for up to 15 

151 min during the emulsification process. Calculated viscosity values were determined from Eq. 

152 2, the Hagen-Poiseuille equation, using experimentally-measured pressure drop values, as 

153 follows (Douglas et al., 2005; O’Sullivan et al., 2017): 

154 (2)𝜂𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =  
𝜋∆𝑃𝑑4

128𝐿𝑄

155 where ηcalculated is the calculated viscosity (Pa.s), ΔP is the pressure differential across a given 

156 straight section of pipeline (Pa), d is the internal diameter (19.05 mm), L is the length over 

157 which the pressure drop was recorded (1.08 m), and Q is the volumetric flow rate (m3 s-1).  

158 The experimental viscosity (ηexperimental) was measured for all emulsion systems, after 1 

159 and 50 passes, using a rotational viscometer (RST-CC Touch™, Brookfield AMETEK, 

160 Middleboro, MA, USA) equipped with a cup-and-bob geometry. Apparent viscosity was 

161 measured at 50°C (i.e., the mean temperature at which emulsification was conducted; Section 

162 2.2). A shear rate of 300 s-1 was used for viscosity determination, as this was determined to be 

163 similar to the shear rate in the pipeline between the pair of pressure transducers; the calculated 

164 shear rate within the 1.08 m section from which the pressure drop was recorded was 275 s-1, 

165 determined using Eq. 3 (Douglas et al., 2005):

166 (3)𝛾 =
8𝑣
𝑑 , 𝑤h𝑒𝑟𝑒 𝑣 =  

𝑄
𝐴
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167 where  is the shear rate (s-1), d is the internal diameter (19.05 mm), v is the average velocity  𝛾

168 (m s-1), Q is the volumetric flowrate (m3s-1), and A is the cross-sectional area (m2). 

169 2.5. Accelerated physical stability analysis of emulsions

170  Separation rates of FFMEs collected after 1 and 50 passes of aqueous and oil phases 

171 through the IHSM were measured using an analytical centrifuge (LUMiSizer, L.U.M. GmbH, 

172 Berlin, Germany). The principle of analysis by LUMiSizer has been detailed by Lerche and 

173 Sobisch (2011). Stability of emulsions to separation (i.e., creaming and sedimentation) driven 

174 by difference in the density between fat globules, undissolved powder and protein aggregates 

175 and the aqueous phase was determined at 23°C and 563 g over 500 min (i.e., 8 h 20 min) as 

176 detailed by Shimoni et al. (2013). Separation rates were calculated from integral transmission 

177 (IT) profiles using the initial linear (R2 ≥ 0.95) region of the slope of the plot of integral 

178 transmission vs. measurement time. Separation profiles (i.e., the Space- and Time-resolved 

179 Extinction Profiles, STEP; Lerche and Sobisch, 2011) were collected at 10 min intervals during 

180 accelerated testing of emulsions to give information on changes in the light transmission 

181 through the measurement cell as a function of the specific position in the cell and, effectively, 

182 indicating progressive migration of emulsion components (i.e., creaming and/or 

183 sedimentation). 

184 2.6. Statistical analysis

185 Presented data are the average and standard deviation of at least three repeat 

186 measurements, and from a single production run of SMC, RPO and MD17. Student’s t-test 

187 with a 95% confidence interval analysis was performed using Microsoft Excel and was used to 

188 assess the significance of the results obtained, whereby t-test differences with P < 0.05 were 

189 considered statistically significant. 
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190 3. Results and discussion

191 3.1. Effect of pass number through the inline high-shear mixer (IHSM) on fat droplet size 

192 distribution

193 The effect of pass number through the IHSM (i.e., residence time within the shear field) 

194 on fat droplet size distribution was assessed for low-, medium- and high-protein FFMEs (Fig. 

195 2 and Table 2). After a single pass through the IHSM, large fat droplets were found; the 

196 medium-protein FFME yielded the smallest initial droplets (d4,3 of 6.67 ± 0.31 µm), while the 

197 high-protein FFME yielded the largest initial droplet size (d4,3 of 9.62 ± 0.79 µm). This may 

198 be explained by the fact that moderate concentrations of protein allow for more efficient 

199 adsorption and stabilisation of oil-water interfacial layers, yielding smaller emulsion droplets 

200 (Beverung et al., 1999; O’Sullivan, Beevers et al., 2015). As these samples were further 

201 processed (i.e., with increasing pass number), the size of the fat droplets (in particular d50 and 

202 d90; Table 2) decreased significantly (P < 0.05), for all protein contents investigated. 

203 Furthermore, the extent of droplet size reduction was greatest for the low-protein 

204 emulsions, in terms of d50 and d90, throughout the entire process. This behaviour was attributed 

205 to the higher viscosity of the continuous phase of those systems in comparison to that of the 

206 medium- and high-protein samples, allowing for greater ease of disruption of fat droplets (Lee 

207 et al., 2013; Walstra, 1993). A higher viscosity difference between the continuous and 

208 dispersed phases (i.e., viscosity ratio), results in enhanced droplet breakup within the turbulent 

209 flow regimes observed for the IHSM (Walstra & Smulders, 2000). Furthermore, the primary 

210 mode of droplet breakup within the IHSM results from the high degree of turbulence, which 

211 causes chaotic velocity fields, resulting in turbulent eddies, characterised by the Kolmogorov 

212 length scale (Walstra, 1993). 
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213 In addition, in all cases, and for any given time point in the process, a bimodal size 

214 distribution was observed (Fig. 2), in which the micron-sized peak (ca. 5 µm after 50 passes) 

215 was ascribed to emulsion fat droplets, whereas the submicron peak (ca. 250 nm) was associated 

216 with casein micelles, the dominant protein fraction of SMC (O’Sullivan et al., 2017). After 25 

217 passes through the IHSM, the low-protein (7.7% w/w) emulsion had droplets ≤ 10 µm (Fig. 

218 2a), while droplets > 10 µm were still present in the medium- (Fig. 2b) and high-protein (Fig. 

219 2c) emulsions even after 50 passes through the IHSM. It is also worth noting that the low-

220 protein emulsion had the narrowest droplet size distribution (DSD; Fig. 2a), irrespective of the 

221 number of passes through the IHSM, as also evident from the lowest span values for this 

222 emulsion (Table 2), compared to medium- and high-protein emulsions. This is thought to be 

223 associated with the higher viscosity of the continuous phase of the low-protein content FFME, 

224 in comparison to the other protein contents. The reduction of emulsion droplet size as a function 

225 of pass number was similarly demonstrated for a range of other emulsification processes, 

226 including IHSMs (Hall et al., 2011), continuous ultrasonic processors (O’Sullivan et al., 2015), 

227 high-pressure valve homogenisers (Lee & Norton, 2013) and microfluidizers (Lee & Norton, 

228 2013). 

229 3.2. Inline assessment of emulsification using the pressure drop approach

230 The calculated viscosity (ηcalculated) as a function of pass number (up to 50 passes) was 

231 investigated and is shown in Fig. 3 for FFMEs prepared at low-, medium- and high-protein 

232 concentrations. Upon addition of molten RPO to the emulsification system (Fig. 1), there was 

233 a significant increase (P < 0.05) in ηcalculated for all of the investigated formulations, where this 

234 behaviour was ascribed to the increased solids content within the system, resulting in an 

235 increased pressure differential and thus ηcalculated (Douglas et al., 2005; O’Sullivan et al., 2017). 

236 Following the addition of fat, ηcalculated decreased marginally as a function of pass number, in 

237 particular for the medium-protein FFME. This behaviour was attributed to the reduction of fat 
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238 droplet size, which is known to result in a reduced viscosity for emulsion systems 

239 (McClements, 2005). Thus, the emulsification process exhibited two distinct stages in all 

240 instances, an initial significant (P < 0.05) increase, followed by a gradual reduction to a final 

241 viscosity value. These distinct stages correspond to: (i) an increase in the solids content of the 

242 system due to the introduction of molten fat to the skim milk concentrate (SMC), and (ii) size 

243 reduction of fat droplets with successive passes through the IHSM. 

244 Furthermore, when comparing ηcalculated values after 50 passes for each FFME 

245 formulation, the low-protein emulsion exhibited, unexpectedly, the highest viscosity value 

246 (36.5 ± 1.3 mPa.s), followed by the high-protein emulsion, with a marginally lower viscosity 

247 value (34.7 ± 2.2 mPa.s), and the medium-protein sample, which had a significantly lower (P 

248 < 0.05) viscosity (29.2 ± 0.7 mPa.s), in comparison to both the low- and high-protein systems. 

249 Even though all of the systems had the same solids content (52.5% w/w; Table 1), the factor 

250 which dictated the resultant value of ηcalculated was thought to be the concentration of MD17, 

251 rather than the protein content. MD17 has an average molecular weight of 24.9 kDa (Chen & 

252 O’Mahony, 2016; Rong et al., 2009), and maltodextrin has a highly branched structure 

253 consisting of D-glucose monomer units (Avaltroni et al., 2004; Chronakis, 1998; Wang & 

254 Wang, 2000); in addition, individual molecules of MD17 interact with one another, 

255 contributing to increases in viscosity with increasing concentration (Avaltroni et al., 2004; 

256 Morris et al., 1981). The intrinsic viscosity ([η]; i.e., hydrodynamic volume) of MD17 is 

257 significantly greater than that of the proteins in SMC, ca. 80:20 mixture of casein micelles and 

258 whey protein, the same as observed in milk protein isolates (MPI) (O’Connell & Flynn, 2007; 

259 Vos et al., 2016), whereby the [η]MD17 was 3.5 dL g-1, in comparison to [η]MPI which had a 

260 value of 0.59 dL g-1 (Avaltroni et al., 2004; O’Sullivan et al., 2014). The significantly (P < 

261 0.05) higher value of [η]MD17 highlights that MD17 would have a more pronounced effect on 

262 the resultant viscosity of FFMEs than the protein component. Thus, the higher concentration 
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263 of MD17 in the low-protein content emulsion yielded the highest viscosity and, as the 

264 concentration of MD17 decreased, and that of protein increased, there was a significant (P < 

265 0.05) decrease in viscosity. Moreover, as the concentration of MD17 further decreased, and the 

266 concentration of protein increased, the protein component becomes the dominant influencer of 

267 viscosity, in comparison to MD17; nevertheless, the resultant viscosity remained lower than 

268 that of the low-protein emulsion system (Fig. 3). 

269 The validity of the ηcalculated results was assessed through direct comparison of 

270 experimentally obtained viscosity values measured at a shear rate of 300 s-1, a value close to 

271 that at which the pressure drop was measured (275 s-1), and at the average temperature recorded 

272 during emulsification (50oC). The values of ηcalculated and experimental viscosity (ηexperimental) 

273 for all of the investigated FFME systems, after 1 and 50 passes, are shown in Table 3. The 

274 trend of ηexperimental for all of the FFMEs is comparable to that of ηcalculated, whereby the low-

275 protein system possessed the highest apparent viscosity and the medium-protein emulsion 

276 exhibited the lowest viscosity, for the same reasons as previously discussed, associated with 

277 differences in MD17 concentration. Furthermore, the viscosity values for 1 pass were 

278 significantly (P < 0.05) lower than those at 50 passes, which is in agreement with ηcalculated 

279 values as a function of time (Fig. 3). This behaviour is ascribed to either the fact that the RPO 

280 has not had sufficient time to form a uniform emulsion after a single pass (< 14 s), or potential 

281 increased levels of hydration of MD17 resulting from the shearing process. 

282 A comparison of the ηcalculated and ηexperimental values for all FFME systems highlight that 

283 there is a discrepancy in the values, by a factor of ca. 1.25, whereby the calculated value 

284 represents an overestimation in all instances. This observed difference between calculated and 

285 experimental values was ascribed to the nature of the Hagen-Poiseuille equation, which 

286 assumes that the fluid exhibits Newtonian behaviour, whereas it has been established that 

287 highly concentrated (52.5% solids, w/w) emulsion systems demonstrate pseudoplastic 
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288 rheological behaviour (O’Sullivan et al., 2016; Pal, 1996, 2011). A similar trend was observed 

289 by O’Sullivan et al. (2017) for the induction and dissolution of dairy powders, whereby the 

290 difference between calculated and experimental viscosity values was a factor of 2, which was 

291 also ascribed to the non-Newtonian behaviour of dairy solutions. 

292 3.3. Accelerated physical stability of emulsions

293 Differences in the extent of phase separation in FFME systems after 1 and 50 passes 

294 through the IHSM tested under accelerated conditions (563 g for 500 min) were clear from the 

295 space- and time-resolved extinction profiles (STEP; Fig. 4). After the 1st pass through the 

296 IHSM, only limited differences in phase separation were observed between all emulsions. More 

297 pronounced differences in separation were observed for emulsions after 50 passes through the 

298 IHSM, where the low-protein (7.7%, w/w) emulsion displayed lowest separation, followed by 

299 emulsions with high- (13%, w/w) and medium-protein (10.5%, w/w) levels (Fig. 4). Separation 

300 of formulations was identified as being mostly due to the migration of fat globules towards the 

301 top of the measuring cell (i.e., creaming) as evidenced by a progressive appearance of a cream 

302 layer and only a limited sediment build-up in all samples (Fig. 4). Creaming and sedimentation 

303 were reduced on progressive recirculation through the IHSM system, due to decreases in the 

304 size of fat globules and enhanced hydration of the MD17 powder (O’Sullivan et al., 2016).

305 Similar emulsion separation trends were observed for the integral transmission (IT) 

306 profiles (Fig. 5); the IT represents separation in the samples due to both creaming (upward 

307 movement of the less dense phase, i.e., fat droplets, and downward movement of the more 

308 dense solutes, i.e., maltodextrin and protein). The evolution of separation increased in the order 

309 of low-protein 50th pass < high-protein 50th pass < medium-protein 50th pass < high-protein 1st 

310 pass < medium-protein 1st pass < low-protein 1st pass. Despite lack of significant differences 

311 in the initial (i.e., first 45 min) slopes of increasing transmission for emulsions after 50 passes 
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312 through the IHSM (Table 2), the overall (i.e., during 500 min) separation of the low-protein 

313 emulsion was lower than that of both medium- and high-protein emulsions after 50 passes (Fig. 

314 5). This can be explained by the greater population of smaller particles (i.e., fat globules; Fig. 

315 2, Table 2) in the low-protein content emulsion after 50 passes, compared to the other 

316 emulsions after 50 passes, causing divergence of the IT profiles after initial movement of the 

317 larger particles (i.e., bigger particles move first and smaller particles move more slowly). 

318 The results for the accelerated emulsion separation closely correlate with those obtained 

319 for DSD and apparent viscosity of the FFME systems, whereas, in accordance with Stoke’s 

320 Law, emulsions with largest droplet size and lowest viscosity also displayed the most rapid 

321 separation. The low-protein emulsion after 50 passes had the highest apparent viscosity, 

322 compared to the other emulsions (Table 3), further enhancing stability of the emulsion to 

323 density-driven separation. 

324 4. Conclusions

325 Inline high-shear mixing (IHSM) was shown to be an effective approach for the 

326 preparation of fat-filled milk emulsions (FFMEs). The most effective emulsification, as a 

327 function of pass number, was achieved for the low-protein FFME, as observed by the formation 

328 of smaller emulsion droplets, which was ascribed to the enhanced droplet breakup due to the 

329 increased viscosity differential between the dispersed and continuous phases. Inline 

330 measurement of pressure drop is thus an effective approach for monitoring real-time 

331 emulsification kinetics of refined palm oil (RPO) in skim milk concentrate (SMC). Pressure 

332 drop data was used to determine real-time viscosity, by means of the Hagen-Poiseuille 

333 equation; after emulsification, the low-protein FFME exhibited the highest viscosity in 

334 comparison to the other systems, which was ascribed to lower and narrower DSD and to the 

335 higher content of MD17 and its associated higher intrinsic viscosity in comparison to the 
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336 protein component of the formulations. The lowest viscosity was exhibited by the medium-

337 protein FFME, associated with the reduction in MD17 concentration. The emulsification 

338 process exhibited two distinct phases as observed by pressure drop results: (i) initial injection 

339 of fat, and (ii) fat droplet reduction in the shear mixing field. 

340
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1

1 Figure captions

2 Fig. 1. Schematic representation of the experimental configuration employed, showing the 

3 inline high-shear mixer, heat exchanger, pressure transducers, batch vessel and pump. 

4 Fig. 2. Changes in oil droplet size distribution as a function of pass number through the inline 

5 high-shear mixer, showing data for 1 (solid line), 5 (long-dashed line), 25 (medium-dashed 

6 line), and 50 (short-dashed line) passes after dosing of refined palm oil for: (a) low-protein fat-

7 filled milk emulsions (FFME), (b) medium-protein FFME, and (c) high-protein FFME. The 

8 concentration of refined palm oil in all cases was 12% (w/w). 

9 Fig. 3. Calculated viscosity upon addition of molten refined palm oil to the system as a function 

10 of time for low-protein fat-filled milk emulsions (FFME) (solid line), medium-protein FFME 

11 (long-dashed line), and high-protein FFME (short-dashed line). The concentration of refined 

12 palm oil in all cases was 12% (w/w). 

13 Fig. 4. Emulsion separation profiles for low- (L), medium- (M) and high-protein (H) fat-filled 

14 milk emulsions (FFMEs) after 1 and 50 passes through the inline high-shear mixer. The profiles 

15 demonstrate changes in the transmission of light trough the sample cell due to migration of its 

16 component under centrifugal acceleration. The sample is contained between the position 110 

17 mm (top of the cell) and position 129 mm (bottom of the cell). The evolution of the transmission 

18 profiles over the duration of the analysis is represented by the arrow (b), where the phase 

19 boundary progressively moves towards the bottom of the cell while the thickness of the cream 

20 layer increases (a) and the sediment layer builds-up (c). Colours indicate the sequence of the 

21 profiles (RED profiles were collected early, first profile at time 0 min; GREEN profiles were 

22 collected late in separation, last profile collected at time 500 min – please refer to on-line 

23 version for full colour Figure).
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24 Fig. 5. Separation profiles expressed as integral transmission as a function of time for fat-filled 

25 milk emulsions (FFMEs) with low- (circle), medium- (triangle) and high-protein (square) after 

26 1 (solid fill) and 50 (no fill) passes through the inline high-shear mixer as measured using the 

27 LUMiSizer analytical centrifuge. 
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1 Table 1. 

2 Composition of skim milk concentrate (SMC), low-, medium- and high-protein fat-filled milk 

3 emulsions (FFME), and calculated composition of resultant low-, medium- and high-protein 

4 content fat-filled milk powders (FFMP). 

Fat-Filled Milk Emulsions Fat-Filled Milk Powders

SMC Low Medium High Low Medium High

Protein (%) 16.2 7.7 10.5 13 14.2 19.2 23.7

Fat (%) 0.4 12.2 12.2 12 22.4 22.3 22.1

Lactose (%) 23.1 11.4 14.9 18.6 21 27.2 34

Maltodextrin (%) 0 20.3 14.2 8 37.4 26 14.6

Lactose + 
Maltodextrin (%)

23.1 31.7 29.1 26.6 58.4 53.2 48.6

Ash (%) 1.1 0.5 0.7 0.9 1 1.3 1.6

Water (%) 59.2 47.9 47.5 47.5 4 4 4

5
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6 Table 2. 

7 Effect of pass number (1, 5, 25 and 50) through the inline high-shear mixer on d3,2 (i.e., Sauter diameter), d4,3 (i.e., volume-weighted mean 

8 diameter), d10, d50, d90, span, and separation rates, calculated from the initial linear response (R2 ≥ 0.95) of the slope of plots of integral transmission 

9 vs. measurement time, for low-, medium- and high-protein fat-filled milk emulsions (FFMEs).

Protein Content 

(% w/w)

Pass 

(-)
d4,3 (µm) d10 (µm) d50 (µm) d90 (µm) Span (-)

Rate of initial 

transmission increase 

(%/h)

7.7 1 9.62 ± 0.79 0.45 ± 0.01 9.65 ± 0.05 17.4 ± 0.13 1.91 ± 0.02 7.69 ± 0.43

5 5.47 ± 0.32 0.51 ± 0.01 4.91 ± 0.03 10.5 ± 0.04 2.04 ± 0.01 -

25 3.08 ± 0.09 0.49 ± 0.02 2.65 ± 0.04 6.35 ± 0.05 2.17 ± 0.03 -

50 2.31 ± 0.03 0.49 ± 0.03 2.11 ± 0.02 4.41 ± 0.03 1.82 ± 0.02 5.60 ± 0.05

10.5 1 6.67 ± 0.31 0.43 ± 0.04 5.76 ± 0.07 16.8 ± 0.09 2.89 ± 0.05 6.85 ± 0.35

5 4.89 ± 0.08 0.51 ± 0.05 3.73 ± 0.04 12.3 ± 0.02 3.16 ± 0.02 -

25 4.05 ± 0.02 0.52 ± 0.03 2.83 ± 0.02 8.21 ± 0.05 2.73 ± 0.01 -

50 3.99 ± 0.06 0.65 ± 0.03 2.82 ± 0.01 6.85 ± 0.06 2.26 ± 0.02 5.47 ± 0.03

13 1 9.41 ± 0.87 0.37 ± 0.01 6.58 ± 0.09 15.4 ± 0.13 2.34 ± 0.06 6.16 ± 0.07

5 6.22 ± 0.51 0.39 ± 0.01 4.15 ± 0.04 10.8 ± 0.05 2.42 ± 0.08 -

25 4.52 ± 0.31 0.41 ± 0.01 3.04 ± 0.02 8.11 ± 0.07 2.57 ± 0.05 -

50 3.74 ± 0.19 0.36 ± 0.01 2.52 ± 0.04 7.09 ± 0.06 2.74 ± 0.11 5.35 ± 0.12
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11 Table 3. 

12 Comparison of calculated viscosity (1 and 50 passes after dosing of molten refined palm oil) 

13 and experimentally measured viscosity (at a shear rate of 300 s-1) for fat-filled milk emulsions 

14 with low-, medium- and high-protein contents. The concentration of refined palm oil in all 

15 cases was 12% (w/w).

Number of 

Passes

Protein Content ηcalculated ηexperimental 

(-) (% w/w) (mPa.s)

7.7 29.1 ± 1.1 22.6 ± 0.2

1 10.5 21.8 ± 0.8 13.5 ± 0.5

13 23.9 ± 1.7 26.5 ± 2.9

7.7 36.5 ± 1.3 33.4 ± 0.5

50 10.5 29.2 ± 0.7 15.9 ± 1.5

13 34.7 ± 2.2 27.6 ± 3.2

16


