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Abstract—With the resurgence of hardware for financial tech-
nology, several methods for accelerating financial option pricing
using reconfigurable hardware have been investigated. This paper
presents the first architecture and implementation of a two-asset
option pricer based on Pascal’s simplex, which takes advantage
of the parallelism and pipelining offered by FPGA technology.
The theory that this architecture is constructed from is based
on a recombining multinomial tree approach which in turn is a
generalization of the binomial tree model. Furthermore, we show
that while a significant difficulty exists in efficiently maintaining
the intermediate values required for the computation, a solution
exists in the form of FIFOs.

Our implementation, on an Intel Stratix 10 GX FPGA, is based
on the OpenCL framework and can compute 6250 two asset
option prices per second for a time step of 100 and the pipelining
of the option value computation show a 25 times improvement
when a 50-step pipeline is created.

Index Terms—Finance, FPGA, OpenCL, European Option,
Field programmable gate arrays, Acceleration, Pricing, Simplex,
Multiple Assets

I. INTRODUCTION

Hardware accelerators based on Field-Programmable Gate
Arrays (FPGA) have found many applications in finance
[1] [2]. The ability to create custom circuits for frequently
performed complex operations [3] as well as the ability to
parallelize financial applications on FPGAs [4] make them
attractive for acceleration purposes. Examples are discussed
in [5], [6], and [7].

Financial options are one tool that can be utilized by
businesses in increasing the potential for profit [8]. One of
the most popular models used for computing the value of an
option is the Black-Scholes model [9]. This approach allows
for generating a formula which provides an estimate of the
price of an option. An alternative model is the Binomial option
pricing model, created by Cox, Ross and Rubinstein [10]. The
two approaches (Black-Scholes and Binomial option pricing
model) provide for calculating the value of an option on a

single asset. In this paper, we are concerned with calculating
the value of an option on multiple assets [7].

The remainder of the paper is as follows: Section 2 discusses
related research in this area. In Section 3 we provide an
overview of financial options, the Binomial options pricing
model, and then we provide a summary of the theory under-
lying the computation of the price of a derivative on multiple
assets using recombining multinomial trees. Section 4 outlines
the architecture of the reconfigurable option pricing hardware
accelerator as well as detailing the OpenCL kernels required
to instantiate the architecture. Section 5 provides details on the
test environment as well as results from the implementation.
Finally, in Section 6, we review our conclusions.

II. RELATED WORK

Option pricing acceleration has been explored in the past
[11]. However, no implementation to date has implemented
two-asset option pricing using Pascal’s Simplex. In this sec-
tion, we review the existing research in this area to demon-
strate the novelty of our approach.

In [12] an OpenCL Option Pricer on an Altera Stratix IV
is presented which can achieve 2000 options/s for a depth of
1024. To reuse this implementation for two assets requires the
computation of all combinations of possible outcomes which
potentially results in a computation rate of 30 options/s (see
Section III-C for comparison method).

An alternative implementation for computing multi-asset
option prices on FPGA is presented in [13] where a Monte
Carlo approach is used. While this approach achieved a 123
times speedup on a single FPGA, the accuracy and conver-
gence issues that exist in the Monte Carlo method when com-
pared to the Binomial Model [14] were not addressed. Other
Monte Carlo implementations on FPGA are also presented
in [3] and [15] without accuracy comparisons however in [16]
it is noted that the Monte-Carlo solver is at least 100 times
less accurate than other pricing methodologies. Indeed, they
remark that their results show that the FPGA based Monte978-1-5386-5541-2/18/$31.00 ©2020 IEEE



Carlo solver should only be used when there are no other
solvers available.

Quadrature Methods for Option Valuation are considered
in [17] and [18]. This approach compares well against other
methods in terms of accuracy. However, as presented in [16],
the quadrature method does not compare favourably with the
tree-based approach as the time variable increases.

Other combinations of hardware acceleration of option
pricing also exist, e.g. CPU-GPU hybrid [19]. However, none
of these alternative approaches allows for multi-asset option
pricing.

In the prior research surveyed, CPU implementations gen-
erally compare poorly in terms of performance [20], and as
a result, we do not consider a CPU implementation in our
work. The same survey noted research that concluded that
FPGAs provide better performance portability in terms of
achieved percentage of device’s peak performance compared
to NVIDIA GPUs [21], and FPGA based option pricing
outperform GPU based option pricing [22] in terms of latency.

Our two-asset option pricer based on Pascals Simplex is
shown to be novel based on the current state of the art.
Furthermore, based on our survey, the FPGA based Simplex
based multi-asset option pricer also has clear differences
compared to alternative approaches such as using a single asset
option pricer, Monte Carlo based multi-asset option pricer, or
Quadrature based multi-asset option pricers.

III. FINANCIAL OPTIONS

The most common definition of an option is an agreement
between two parties, the option seller and the option buyer,
whereby the option buyer is granted a right (but not an
obligation) to carry out some operation (or exercise the option)
at some moment in the future. There are also options with
more general payoffs; usually these can be approximated
by an appropriate portfolio of call and put options. The
predetermined price is referred to as strike price, and the future
date is called the expiration date [23]. There are two main
types of options. A call option grants its holder the right to
buy the underlying asset at a strike price at some moment in
the future. A put option gives its holder the right to sell the
underlying asset at a strike price at some moment in the future.

The question is, what determines option values? We know
the value of an option when it matures, but how do we
compute the value initially? Several variables are relevant to
these calculations [23], including the price of the asset, the
exercise price, delay in paying the exercise price, the volatility
of the asset price over time, and the term of the option. These
variables are considered in the Binomial Option Price Model.

A. Binomial Option Price Model

The binomial model is a discrete-time model for pricing
options in which it is assumed that price changes in the
underlying assets occur only after regular time intervals [24]. It
involves constructing a binomial tree that represents different
possible paths that the price of the underlying asset might
follow. Let ZT be the stock price at the expiration time T

and K the strike price. Then the pay-off of a European call
option is c(T ) = max(ZT −K, 0), which reflects the fact that
an option might be exercised if ZT > K and might not be
exercised if SZ ≤ K. The payoff of a European put option is
p(T ) = max(K−ZT , 0), which reflects the fact that an option
might be exercised if ZT < K and might not be exercised if
ZT ≥ K.

Consider a non-dividend paying stock whose price is ini-
tially Z0. Divide time into small time intervals of length δt. A
time interval will be referred to as a period. Denote by Z the
initial stock price at the beginning of a time interval. Assume
that in each time interval the stock price moves either to d1Z
(an “up” movement) or to d2Z (a “down” movement). The
parameters d1 and d2 are equal to one plus the realized return
during the time interval. In general, d1 > 1 and d2 < 1. Let
q be the probability of an “up” movement and (1− q) be the
probability of a “down” movement.

In 1979, Cox, Ross, and Rubinstein introduced a method
to approximate the value of options on a single asset Z via
a binomial tree [10]. The goal is to construct a recombining
binomial tree with N levels to approximate the price process
of an asset Z and the price of an option. In each time-step,
the value of the asset can go either up or down (although
0 < d2 < d1 is all that is required), where the asset price at
time 0 equals Z0. Each node in the tree represents a possible
outcome of the asset price and has a certain probability.

B. Recombining Multinomial Trees Based on Pascal’s Simplex

This method is a generalization to options on several assets
of the well-known binomial tree method, which is used for
option prices with one underlying asset. An advantage of the
method introduced in [25] is that it has a minimal number
of successor nodes at each node in the tree. Therefore, the
proliferation of nodes in the case of several assets is less severe
than in other tree-based approaches (such as using a separate
binomial tree for each asset where all combinations of possible
outcomes need to be computed).

By exploiting the fact that the simplex-trees have close
connections to polynomial algebra (i.e. each node can be
associated with a multi-index ν = (ν1, ν2, . . . , νk+1), with
corresponding time step index t = |ν| :=

∑k+1
j=1 νj , which in

turn can be associated with a monomial xν = xν11 x
ν2
2 . . . x

νk+1

k+1

of auxiliary variables x1, x2, . . . , xk+1) we can use monomial
ordering [26] to help with the bookkeeping of the values
attained at the nodes of the tree and the relation with the
values at the neighbouring nodes.

Figure 1 presents a visualization of a projection of the
random walk of the recombining trinomial tree in three di-
mensions to two dimensions with three-time steps of length δt
on two assets Z1 and Z2. The random walk starts at the black
node on top, which is projected on the black node on the two-
dimensional plane. From this node, there are three possible
moves to time δt, which are represented by the red nodes and
lines. The moves from δt to 2δt are represented by the blue
lines, and the green lines represent the moves from time 2δt
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Fig. 1. Example of 3-dimensional to 2-dimensional projection

to time 3δt, and the possible outcomes at time T = 3δt are
represented by the green nodes and the black node.

The option price computation is performed as follows: at
final time T the asset price vector Z(T ) has a value on each
of the

(
T+2
2

)
(in general

(
T+k
k

)
) nodes ν on the tree at the final

time. Let values of Z,F on the tree at node ν now be denoted
as Z(ν), F (ν)(F denotes the pay-off function) respectively.
We also define F (v) as the value F (t, Z) where (t, Z) are
the values of the time and of the process Z at node v. For
each ν with |ν| = T the option value V (ν) = F (Z(ν))
is calculated (V (v) defined in equation 1). The value (for a
European option) at node ν at time t = |ν| < T, given the
values at time t+1 at the successor nodes ν+ej , j = 1, 2, 3,
where ej stands for the standard basis row vector with entry
1 on position j and zeros elsewhere, is given by

V (ν) =

3∑
j=1

pjV (ν + ej)e
−r, (1)

where r stands for the interest rate per time unit. So the task
to be carried out by the acceleration device is (1) to generate
the asset price vectors Z(ν), |ν| = T in case of European
options (and Z(ν), |ν| = 0, 1, 2, . . . , T in case of American
options, which we do not treat here, however), (2) to compute
the option prices V (ν) = F (Z(ν)) at the final time |ν| = T ,
and (3) to iteratively compute the option values V (ν), for
decreasing values of |ν|, for all |ν| with |ν| ≤ T, ending up
with V (0) which is the desired option value approximation.

C. Comparison against using Binomial Trees for Multi-Asset
Computation

The number of nodes required to construct the binomial
trees when compared to the simplex based approach has an
implication on the computation effort required to calculate the
option price. Assuming the case where binomial trees are used
there is the need to construct a tree for each of the two shares
individually as all combinations of nodes from each tree must
be computed at every time step. Assuming a tree depth of N,
our trinomial tree requires N+3

3
1
2 (N + 1)(N + 2) nodes and

a recombining binomial tree consists of 1
2 (N + 1)(N + 2)

nodes then we need 2N+3
3

1
2 (N+1)(N+2) nodes when using

binomial trees for a trinomial problem. As an illustration,
consider where N = 768. Using multiple binomial trees
will require 151881345 nodes, whereas the multinomial tree
approach requires 76088705 nodes (half as much).

IV. ARCHITECTURE

The architecture (illustrated in Figure 2) which achieves
pipelining and parallelism is described in this section. The
parallelism is possible since the European option price allows
us to compute the stock value (the root nodes of the multi-
nomial tree) directly without storing the intermediate values.
This is the task (1) as described in section III-B (i.e. generation
of the asset price vectors Z(ν), |ν| = T ). For simplicity, we
align the tree depth N with the expiration time T , i.e., the tree
depth corresponds with the expiration time in our architecture.

Our implementation of the task (2) and task (3) from section
III-B iteratively computes the option values V (ν). This is
carried out by the pipelined stages of our architecture. Once
the first three leaf nodes (V (ν)) are computed, the pipeline
stage can start. The remaining V (ν) is not required for initial
intermediate European value calculations. The pipeline can
be extended up to the limits of the hardware. The buffer is
required to store intermediate option values until required -
this organized as a FIFO.

All red arrows in Figure 2 are “channels” used for passing
data between kernels which are analogous to “pipes” in the
OpenCL standard. While “pipes” are a part of the OpenCL
standard, “channels” are an extension of pipes and are specific
to the Intel implementation of the OpenCL standard and
therefore are not useable on platforms that do not support the
Intel OpenCL SDK.

The required OpenCL kernels are presented in Table I and
are described in detail in subsection IV-D. The producer and
consumer kernels are not shown in Figure 2. However, these
are simply used to interface with the host code running on
CPU.

A. Computation of the Direction Vectors and Risk-Neutral
Probability Vector

Recall the parameters q, d1 and d2 from the Binomial
Option Price Model. Conceptually, for the multinomial case,
we also have these parameters; however, they do not describe
an up and down movement and the probability of those
movements in the same fashion as the binomial case. Instead,



Fig. 2. The block diagram of the proposed system architecture

they need to describe the probabilities of these movements
for both assets in a multidimensional movement. Similarly, to
the binomial case, however, we can compute this matrix and
vector once, in advance of running the computation of the
final option value. The computation of the direction matrix d
and probability vector q is described in detail in [25] Section
3.3. Furthermore, the elements di, where 0 ≤ i ≤ k of d, are
called direction vectors and the elements in these vectors are
addressed as di,j , where 0 ≤ j ≤ k.

B. Parallel Computation of Leaf Node Asset Prices

Being able to introduce parallelism into our architecture
is only possible because for European options, there is no
possibility of an early exercise. Therefore, the intermediate
values of the multinomial process are not required. The
assetPrice computes Z(ν). This kernel is instantiated for each
number of underlying assets.

C. Pipelined Computation of Final Option Value

In Figure 2 we make use of two kernels to compute each
node value on the return traversal of the tree, dataSorter and
optionValue. On the return traversal, we need to compute V (v)
for decreasing values of |v| (equation 1). As we can see, there
is one input to the dataSorter kernels, which is the option value
from the previous level of the tree. We need three such values
to compute the value of the next level, and the dataSorter has
knowledge of the correct order, i.e. monomial ordering [26],
that the previous values must be arranged into. The size of
the pipeline has a significant impact on performance and the
dataSorter/optionValue block can be duplicated as many times
as the hardware can support.

Kernel Description

producer Takes values from host kernel

assetPrice Asset price calculation Z(ν)

(duplicated, running in parallel)

optionValue European Value Calculation V (ν)

payout Computes payout F (ν)

muxPayout Maintains order of payout values

muxTreeDepth Maintains tree depth value

dataSorter Reads values from previous calculations

and determines correct usage for value

returnBuffer Used to buffer intermediate values

consumer Consumer of final value calculation

TABLE I
OPENCL KERNELS

D. OpenCL Kernels

Table I gives a brief overview of the kernels required to
compute the option value, and we describe those kernels in
more detail in this section.

1) producer: The producer kernel acts as both an interface
between the host system and the FPGA and distributes the
inputs to the appropriate channels. The inputs provided by the
host system to the device are described in Table II.

2) assetPrice: The value (or price) of the underlying assets
at each node can be computed directly without constructing
the entire tree. This kernel computes Z(ν), |ν| = N which is
the price of an asset at final time T using the precomputed
values in the end node values and init step vectors. For
European options this approach is suitable as the storage of the



Kernel Description

N Tree depth

max min Whether to call/put on max or min (boolean value)

end node values defined as a 2-element vector containing{
(d0,0)NZ0, (d1,0)NZ1

}
where the two assets are

multiplied by the first two elements in the direction

vector to the power of N .

init step defined as a 2x2 element matrix containing{
d1,2

d1,1
,
d1,1

d1,0

}
,

{
d0,2

d0,1
,
d0,1

d0,0

}
mult coeff 3-element multiplicative coefficient vector containing

(1/R) ∗ q2,(1/R) ∗ q1,(1/R) ∗ q0 where

R is defined as er∗(1/N) (r is the risk neutral rate)

share coeff 2-element share coefficient vector containing{
1

d1,1
,

1

d0,1

}
strike vector 2-element vector containing the strike prices K.

TABLE II
OPENCL KERNEL INPUTS

intermediate asset prices are not necessary as the possibility of
early exercising of the option is not possible for the European
case however this direct computation is not possible if we were
interested in American options. The asset price calculation
uses the end node values vector and the init step matrix to
compute the asset prices Z(ν).

3) optionValue: This kernel is used to determine the option
value V (ν) at a given node ν by implementing Equation 1.
We leverage the mult coeff (containing 1

R ∗ q) to compute the
option value in conjunction with the payout values passed into
the kernel.

4) payout: Computes the payout which is defined as

F (N) =

{
max(K − ZN , 0), if European option
max(ZN −K, 0), otherwise

(2)

5) muxPayout: Reads payout initially from the asset price
computations until all asset price computations are consumed.
After this, it only reads values from the option value pipeline.

6) muxTreeDepth: This kernel acts as a “control” kernel
maintaining the current tree depth during the reverse traversal
of the value tree. Once the traversal reaches the root node, this
kernel signals the other running kernels to complete.

7) dataSorter: The dataSorter kernel arranges the outputs
of each block into the correct order for the optionValue
computation using a reverse monomial ordering scheme. This
order is optimized such that values that are required for
multiple node computations are rearranged for the option value
computation just in time.

8) returnBuffer: This buffer kernel is required if the depth
of the tree is greater than the number of computing blocks
supported by the FPGA. The maximum size of this buffer is
defined at compile time with the knowledge of the number of
computing blocks.

Tree Time Time Time Ratio Ratio

Depth (usecs) X50 (usecs) X25 (usecs) X1 X1/X50 X1/X25

100 160 190 1220 7.62 6.42

200 580 617 8347 14.39 13.52

300 1441 1639 27296 18.94 16.65

400 2862 3430 63928 22.36 18.65

500 4985 6225 124092 24.89 19.93

TABLE III
LATENCY PERFORMANCE AND PIPELINING IMPACT

Ours Tavakkoli [27] Wynnyk [28] Jin [6]

Tree 96 96 96 96

Depth

Precision Double Fix 16.16 Double Fix 16.16

FPGA Stratix 10 Virtex-4 Stratix III Virtex-4

s10gx xc4vsx55 ep3se260 xc4vsx55

Clock 320 224 150 82.7

(MHz)

LUTs 18% logic 85% logic 10% logic 22% logic

RAMs 700 (5%) 401 (78%) 84% bits 252

DSPs 158 (2%) 11 (3%) 148 (19%) 112 (22%)

Latency 133 162.5 507 21970

usecs (estimated) (estimated) (estimated)

TABLE IV
PERFORMANCE-AREA RESULTS

9) consumer: When the final option value is computed, this
kernel passes the value from the FPGA to the host.

V. RESULTS

The device used for this experiment was the Intel Stratix
10 GX. The Intel FPGA SDK for OpenCL supplied (version
19.2) with the Stratix 10 supports the OpenCL 1.0 Standard.
The host machine was a Dell Precision 7810. We measured
the latency of all the running kernels using the OpenCL event
profiling information. The pipeline was implemented using 64-
bit floating-point precision (double data type).

The pipelining of the dataSorter and optionValue
block is significant regarding the overall latency. We
measured three different levels of pipeline sizes: us-
ing only one dataSorter/optionValue block, using twenty-
five dataSorter/optionValue blocks and using fifty data-
Sorter/optionValue blocks. In Table III, we present these
latencies. The ratio of depth to pipeline size illustrates the
benefit of the larger pipeline when computing for deeper trees
and the X50 pipeline helps reduce the latency by a factor of
25 when computing two-asset option values for depth 500.

Also noteworthy is the system utilization which was only
18% of flip-flops, 5% of RAMs, and 2% of DSPs for the
50x deep pipeline design and requires an estimated 39.3 Watts
(using maximum power characteristics).



The performance demonstrated by our approach when com-
pared to the implementation by Tavakkoli [27] (which is
implemented using systolic arrays), Wynnyk [28] (which uses
a pipelined architecture, and Jin [6] (which also implements a
pipelined architecture using “HyperStreams”) as illustrated in
Table IV shows that using a single option pricer to achieve the
same goal has a higher latency when we consider that using a
binomial tree for each share individually requires significantly
more computation effort. Note, the estimated latencies of the
alternative implementations are solely based on the number of
nodes required however they do not account for the complexity
of the recombining operation, therefore it is expected the actual
latencies will be higher in practice. Furthermore, our approach
uses greater precision when compared to fixed precision.

VI. CONCLUSION

Two-asset option pricing based on Pascal’s simplex is an
efficient method for computing the fair price of an option
based on two underlying assets. Taking advantage of the
pipelining and parallel aspects of the computation lends it-
self to hardware acceleration via FPGA. In this paper we
present such an acceleration architecture implemented using
the OpenCL framework. Our implementation takes advantage
of the channel’s extension provided by the Intel FPGA SDK.
This approach allowed us to achieve a performance of 200
two-option value calculations per second for a time step of
500 steps.

The underlying theory that our architecture is based on can
be extended to greater than two underlying assets. Future
work in this area will focus on this extension to where
the architecture can support computation using an arbitrary
number of assets.
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