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Abstract— Software-Defined Networking (SDN) has enabled 

automated modification of the behavior of network devices to 
match changes in network policy.  This facility has driven adoption 
of SDN in Data Centre Networks (DCNs), particularly multi-
tenant DCNs, where network policies are used extensively and can 
change rapidly as tenants arrive, leave, and modify their resource 
usage. It is useful for a DCN operator to have a way to query the 
past state of a network, e.g. for debugging or verification. In a 
multi-tenant DCN whose behaviour changes frequently under the 
programmatic control of SDN, this is an important but complex 
function to provide. While SDN makes the problem more 
challenging, it also helps to provide the solution – changes in 
network policy are communicated in packets sent from an SDN 
controller to the network devices, and those packets are amenable 
to capture and analysis to reveal the state of the network. Our 
solution, LogSnap, records messages exchanged over time between 
an SDN controller and switches in a network, and can quickly 
recreate the network in an emulated environment for any point in 
the recorded history. We have evaluated the system for its 
accuracy, the speed with which it can recreate the network, and 
quantified the storage implications of speeding up network 
reproduction. 

Keywords— Software-Defined Networking, Data Centre 
Networks, Network Management, OpenFlow 

I. INTRODUCTION 
A multi-tenant DCN is a complicated environment, with 

multiple paths, high traffic rates, a high flow-arrival rate, and a 
turnover of tenants. The advent of SDN facilitated the growth 
and operation of DCNs, by automating network configuration 
tasks that had previously been mostly manual and disjointed, but 
also further increased the difficulty for a DCN operator of 
reasoning about and understanding what exactly is happening in 
the network. Thus, SDN and DCNs have been productive area 
of study for researchers – who have analysed and described the 
characteristics of DCNs [1], [2], and have addressed different 
aspects of using SDN to operate and manage a DCN [3-6]. 

One aspect that has not been adequately addressed to date is 
the provision of a way for a DCN operator to investigate the past 
behaviour of a network at some point in its history – e.g. ‘What 
path did a packet take to get to this location at a particular time?’ 
– or the network’s potential behaviour under different conditions 
– e.g. ‘If a switch was to fail at this time, what flows would have 
been affected?’ Answering these types of questions requires the 

state of the network to be accurately reproduced as it was at a 
specific point in the past. Furthermore, reproducing the past state 
of the network requires a historical record, going back for 
months or even years, of all of the changes to the configuration 
of the network. In an SDN, the historical record can be compiled 
by continuously capturing the packets going between a 
controller and the switches in the network, e.g. packets of the 
OpenFlow protocol [7]. OpenFlow is a standard protocol used 
in SDNs for controllers to exchange messages with switches in 
order to implement the network policy. Capturing and 
processing the sheer quantity of  OpenFlow messages in a 
historical log going back months or years presents a significant 
challenge. Other researchers take the approach of measuring and 
recording statistics to augment a DCN operator’s knowledge of 
conditions in their network. However, recorded statistics are not 
sufficient for reproducing a network to the level of detail 
necessary to answer the types of questions we plan to support. 

In this paper, we describe our work on a controller-
independent solution for logging OpenFlow messages between 
one or more SDN controllers and switches in a DCN, to produce 
a historical log of OpenFlow messages for an extended duration 
of time. This log is processed to create snapshots of the state of 
the network at intervals through the historical time covered by 
the message log. Snapshots and log together are subsequently 
used for the purpose, on request, of reproducing the network as 
it was at any specific time (in terms of topology and set of flow-
rules), with the intention of being able to answer queries posed 
by a DCN operator. We call our system ‘LogSnap’. 

Our key contributions described in this paper are: firstly, a 
solution to create succinct snapshots of the state of a network 
(devices, links, OpenFlow rules) using an OpenFlow message 
log, and secondly, using the data in a snapshot augmented with 
log messages to quickly and efficiently create an emulated copy 
of a network with the state that it had at any time covered by the 
message log. Both are achieved with no onus on DCN operators 
to provide any extra information to the system beyond the 
OpenFlow messages that it captures itself. Compared to the state 
of the art, we offer a more comprehensive, accurate reproduction 
of a network in a historical state, using a non-intrusive, 
controller-independent system to capture the historical data. 

The rest of our paper is structured as follows: In §II, we 
outline our motivation and research challenges, and the 
architectural requirements and design goals we set for LogSnap. 

Jonathan Sherwin is funded by Cork Institute of Technology. 
Cormac Sreenan is funded by Science Foundation Ireland, grant #13/RC2077 



§III describes how our implementation addresses the goals and 
requirements. §IV shows how LogSnap accurately reproduces 
targeted aspects of a network solely from a log of OpenFlow 
messages, how our approach of using snapshots shortens the 
time taken to recreate a network, and how snapshot storage 
space must be traded off against the maximum time to reproduce 
a network. §V describes related work, and in §VI we summarise 
our work and outline our plans for building on LogSnap. 

II. MOTIVATION, CHALLENGES, ARCHITECTURE, AND DESIGN 

A. Motivation 
Multi-tenant DCNs operate under extensive and frequently-

updating policies. These policies define what host devices are 
allowed to communicate with each other, and where traffic is 
allowed to go. In an OpenFlow-based SDN, a changed policy 
will result in changes to OpenFlow rules, which represent part 
of the network state. When a problem occurs, by the time the 
DCN operator has an opportunity to address it, the network state 
most likely has changed, and it may never be possible to identify 
the root cause of the problem, or the conditions under which it 
occurred, without a means (e.g. a tool) to provide a view of the 
network state at and around the time of the problem. 

Understandably, DCN operators do not want a tool that will 
increase their workload by requiring constant monitoring, or 
require changes to switch or controller configurations to 
accommodate the tool. Nor do they want a tool that consumes a 
significant amount of resources. We have identified an 
opportunity for a system that works efficiently and 
unobtrusively, gathering information that is already present in a 
network (OpenFlow messages), but that is usually not recorded. 
Using a log of this information, we can rebuild the state of the 
network at any time, to provide a platform for querying, 
investigation and problem-solving. We have opted to use 
OpenFlow messages as the basis for our historical log as 
OpenFlow is the mostly broadly-used open standard SDN 
protocol, but we believe our design applies to, and our 
implementation could be adapted for, any control protocol used 
between SDN controllers and network devices. 

B. Research Challenges 
Designing and implementing the system presents some 

interesting challenges and scope for a novel contribution: 

• How can we devise a scheme for passive, accurate 
recording of the history of OpenFlow messages 
exchanged on a network? 

• How can a network be reproduced in a resource-efficient 
manner? 

C. Architectural Requirements 
The key requirements that our system must address are: 

• Capture of OpenFlow messages from a network, with 
timing information for each message observed. 

• OpenFlow message storage for later analysis / retrieval.  

• Analysis of the stored messages to create snapshots of 
the network (detailed record of topology and flow table 
state) at specific points in time. 

• Storage of snapshots for later retrieval, 

• The ability to quickly create an emulated copy of the 
network at any required point in time. 

These requirements can be realised with components of an 
architecture as illustrated in Fig. 1, and described below: 

OpenFlow message logger. This component must un-
intrusively capture and log OpenFlow messages. All OpenFlow 
messages exchanged between controller and switches should be 
captured. However, the logger must detect if messages have 
been missed, log the event, and continue capturing and logging. 

OpenFlow message store. Every captured OpenFlow 
message must be stored in full, with the associated timestamp. 
The store must be searchable by timestamp, by date range, and 
by OpenFlow message attribute. 

Snapshot generator. A snapshot is a detailed record of the 
observed topology of the network, i.e. the hosts, switches, host-
to-switch links, inter-switch links, and the contents of the switch 
flow-tables at the time of the snapshot. The snapshot generator 
must operate solely by processing the OpenFlow message log. 

Snapshot store. The snapshot store must be searchable by 
time and date, returning the closest snapshot at or after that time. 

Network state recreator. Using a snapshot augmented with 
messages from the OpenFlow message log, this component must 
create an emulated network mirroring the topology and flow-
table state of the original network from which OpenFlow 
messages were logged, for a specified time and date. 

D. Design Goals 
The logging and snapshot system is intended for use in a 

DCN. With that in mind, these design goals must be addressed: 

1) Scalability: A DCN contains potentially hundreds of 
switches, connecting thousands of servers with each other, with 
the Internet, and possibly with other data centres. Our logging 
system must capture OpenFlow messages exchanged between 
switches and controllers. Controllers address scalability by 
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clustering – running multiple instances of the controller, and 
partitioning the set of switches so that each controller instance 
only has to deal with a manageable number of them.  
Furthermore, the number of interactions between controller and 
switches is often reduced by having the controller proactively 
configure most flow-rules rather than doing so reactively. The 
proactive approach means that the controller does not need to 
be consulted each time a new flow arrives at a switch, only 
when a flow arrives for which it does not have a matching 
proactively configured rule. In a multi-tenant DCN, rules are 
likely to be proactively installed or removed when a new tenant 
arrives, when an existing tenant leaves or changes their set of 
leased resources, or when an existing tenant’s resources must 
be redistributed within the DCN. Our system must be designed 
to be scalable, but also to accommodate features of controllers 
intended to improve their scalability. 

2) Controller- and switch-independence: Logging should 
work independently of which controller is in use within the 
DCN. This rules out the use of a controller-based application to 
log OpenFlow messages, or use of non-OpenFlow information, 
e.g. through the use of controller APIs. Logging should not 
depend on which type(s) of switches are in use. We restrict our 
system to an environment where all controllers and switches 
use OpenFlow, however there are different versions of 
OpenFlow, and not all features are implemented universally. 

3) Fast reproduction of network state: In order to make the 
system usable for a DCN operator, the time taken to reproduce 
the network should be reasonable. We envisage that our system 
could be recording OpenFlow messages for weeks, months, or 
even years, and that a DCN operator could require the network 
state to be replicated for any point in that history in order to 
query some aspect or behaviour of the network. With message 
logs stretching over months or years, clearly it will take some 
time to generate the state information to replicate a network as 
it was at a specific date and time. However, the time taken 
should be deterministic – not simply proportional to the 
difference between the date and time at which OpenFlow 
message recording started and the desired date and time for 
which to reproduce the network state. 

4) Passive operation: Logging should not require any 
change to the setup or configuration of the controller or 
switches, and should have minimal impact on their operation. 
E.g. a proxy-based design would require controller and switch 
configuration to route OpenFlow messages through the proxy, 
and risk the proxy becoming a bottleneck as the network scales. 

III. IMPLEMENTATION 
We implemented LogSnap with the software components 

shown in Fig. 2 and outlined below, to meet the architectural 
requirements and design goals identified in the previous section. 

A. Logging Subsystem 
Our OpenFlow Packet Filter uses the libpcap packet-capture 

library [11] to passively capture packets containing OpenFlow 
messages as layer 2 frames, achieving our design goal of 
controller- and switch-independence. Captured frames are 

tagged with their capture time, and enqueued to a RabbitMQ [8] 
message queue for subsequent parsing and further processing by 
the OpenFlow Message Extractor & Logger. Separating 
capturing from logging has several benefits: Only the OpenFlow 
Packet Filter needs to run on the same physical or virtual host as 
the OpenFlow controller, minimising use of resources that might 
be needed by the controller, and supporting our design goal of 
passive operation. The clustered controller scenario mentioned 
earlier can be leveraged for our design goal of scalability by 
deploying an OpenFlow Packet Filter instance for each 
controller instance. Our implementation accommodates a single 
controller or a cluster of controllers running on a single physical 
server. Extending the solution to support distributed controllers 
would require time-synchronisation between servers, for 
example by using the Precision Time Protocol (PTP). 

Recent revisions of the OpenFlow Switch Specification (e.g. 
[29]) state that “The OpenFlow channel is usually encrypted 
using TLS, but may be run directly over TCP.” The authors of 
[30] provide reasons for not using TLS in a DCN. Our 
implementation currently assumes TLS is not in use, however it 
could be extended to decrypt captured packets if necessary using 
the DCN TLS keys, as can be done with Wireshark, for example. 

With a passive capture approach there is a risk of packets 
being missed at very busy times, with no option to request packet 
retransmission, or to exercise flow-control. Since a missed 
OpenFlow packet could seriously impact accurate reproduction 
of network state, we stress-tested our capture filter code by 
generating packets using the D-ITG traffic generator [28]. In our 
test environment, the filter reliably captured packets at 355 
Mb/s, more than an order of magnitude greater than the data 
rates seen in the verification experiments described in §IV. 
While we have confidence in our packet filter, nevertheless it 
detects if a packet has been missed and the event is logged in the 
message log in order to subsequently notify the DCN operator. 

A DCN operator should be aware that hardware OpenFlow 
switches vary in how quickly they update their flow-tables under 
heavy load [31], although the high-end switches more likely to 
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be used in DCNs perform best. LogSnap could be extended to 
take switch performance into account – this would require a 
profile for each type of switch used. An alternative approach, 
proposed in our previous work [32], leverages a software switch 
(Open vSwitch, which is immune to the update issues) to mask 
the problems of the hardware switches in the original network.  

The OpenFlow Message Extractor & Logger reassembles 
the TCP stream for each switch-controller connection from the 
captured frames, and extracts OpenFlow messages from the 
streams. Each message is parsed using the Loxi OpenFlow 
protocol library [9] before being serialised and logged to a text-
encoded log file. A single instance of the OpenFlow Message 
Extractor & Logger process can be used, or as many as one 
instance per switch, for the purpose of scalability. Each instance 
will emit messages to a separate log file. A new line added to a 
log file by the Extractor & Logger describes a single OpenFlow 
message. Filebeat ships each line to LogStash for processing and 
storage in ElasticSearch (Filebeat, LogStash and ElasticSearch 
are part of the Elastic Stack family of projects [10]). 

B. Snapshot Generation Subsystem 
The Snapshot Generator queries Elasticsearch for OpenFlow 

messages, and processes them in chronological order. As it 
processes the messages, it learns about the topology of the 
network that the messages came from. It learns about the 
existence (and continued existence) and identities of switches 
and controllers from the messages that they exchange with each 
other. It learns about links between switches from the messages 
generated by the topology discovery process of the controller, 
e.g. LLDP packets contained in PACKET_IN messages. It 
learns about hosts, and how the hosts are connected to switches 
from ARP request packets contained in PACKET_IN messages. 
The Snapshot Generator also maintains a flow-table for each 
switch. As FLOW_MOD messages are processed, rules are 
added, modified or deleted from the relevant flow-table. Table I 
lists some types of OpenFlow messages that contain key 
information used by the Snapshot Generator.  

Snapshots, written to a PostgreSQL [12] database, consist of 
the set of controllers, switches, hosts, links, and flow-table 
contents that were known and valid at the time of the snapshot. 
A new snapshot is written when a certain number of OpenFlow 
messages have been processed since the last snapshot. This 
number is an operator-configurable parameter. Setting it lower 
reduces the maximum time taken to reproduce a network, but 
increases storage requirements because snapshots are recorded 
more frequently. The trade-off between reproduction time and 
snapshot storage requirements is explored further in Section IV. 

C. Network State Recreation Subsystem 
A data centre operator uses the Network State Recreator to 

replicate an original network for a specific date and time covered 
by the logged set of OpenFlow messages. The Network State 
Recreator searches the PostgreSQL DB for the closest snapshot 
at or before the specified date and time. If there is a snapshot 
with that exact timestamp, then that is all the information 
required to recreate the network. If there is a difference between 
the snapshot timestamp and the specified time and date, then the 
Elasticsearch DB is queried for all OpenFlow messages with 
timestamps later than the snapshot timestamp but earlier than or 
matching the specified time and date, and the snapshot data is 

updated to represent the state of the network at the later point in 
time. In this way, we achieve our design goal of fast 
reproduction of network state - the system can quickly replicate 
the original network at any date and time without having to start 
from the very beginning of the OpenFlow message history. 

Of course, it is quickest to reproduce the network state for a 
date and time that matches the timestamp of a snapshot, and 
slowest to reproduce the network state for a date and time just 
before the timestamp of a snapshot. This is illustrated and 
considered further in Section IV. 

The network is reproduced with MaxiNet [14], a distributed 
extension of the Mininet [15] network emulator. MaxiNet 
allows us to create very large networks (towards our goal of 
scalability) in emulated form. To populate switch flow-tables, 
we use Floodlight [13], modified to act purely as a delivery 
mechanism for flow-rules captured from an original network. 
Any OpenFlow controller could be adapted for this purpose, but 
Floodlight was a natural choice as it uses the same Loxi protocol 
library used in our Logging Subsystem. 

TABLE I.  INFORMATION IN OPENFLOW MESSAGES 

OpenFlow Message Type Encapsulated Information 

FEATURES_REPLY Switch DPID 

STATS_REPLY Switch ports 

PACKET_IN Inter-switch links; host-switch links 

FLOW_MOD Flow-rule additions / modifications / 
deletions 

IV. EVALUATION 

A. Test Environment 
We devised a DCN topology for which to test LogSnap, 

illustrated in Fig. 3. This network consisted of six racks of 
twenty hosts and one top-of-rack switch each. The six top-of-
rack (also referred to as leaf) switches were connected in a 
folded-clos topology to six spine switches to create a spine-leaf 
network architecture, as is commonly used in a DCN. 

The use of MaxiNet described so far has been to host the 
recreated network. However, for our experimental testing we 
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also used MaxiNet to first host the original network – an 
emulated network design to reflect the topology and conditions 
of a busy DCN. This allowed us to capture OpenFlow messages, 
and also to verify that LogSnap accurately recreates a network 
from the log of OpenFlow messages. 

Our test environment consists of three physical machines, 
connected via two Ethernet switches. Three MaxiNet worker 
VMs were hosted on a single server (Intel Xeon E5506, 
2.13GHz, 8 cores, 32GB RAM). The worker VMs ran Ubuntu 
Server 18.04, with MaxiNet 1.2, Mininet 2.2.2, and Open 
vSwitch [16] 2.9.0 installed. A PC (Intel Core 2 Quad Q9400, 
2.66GHz,  4 cores, 8GB RAM) was used to control experiments, 
host a controller VM, run the MaxiNet FrontEnd server, 
RabbitMQ 3.7.8, and Filebeat 6.3.1. Depending on the stage of 
an experiment, it also ran the OpenFlow Packet Filter and 
OpenFlow Message Extractor & Logger, or the Snapshot 
Generator, or the Network State Recreator. A second PC (Intel 
Core 2 6400 2.13GHz, 2 cores, 4GB RAM) hosted a database 
VM running Ubuntu Server 18.04, with Elasticsearch 6.4.3, 
Logstash 6.4.3, and PostgreSQL 10 installed. The three physical 
machines each had two NICs, each of which was connected to a 
Gigabit Ethernet switch. One of these networks was used for 
control of experiments, and communication with databases, the 
other solely for the exchange of OpenFlow messages between 
controller and switches. 

DCT2Gen [17] generates traffic based on profiles created 
from DCN traces. To verify LogSnap, we use a test profile and 
traffic generator made available by the DCT2GEN authors. The 
profile contains details of 3667 TCP connections that the traffic 
generator normally schedules over a 10 second period between 
120 hosts (arranged evenly in six racks). The traffic generator 
can be configured with a time-dilation factor to compress or 
expand the time over which the TCP connections are scheduled. 

In our original network, we use ONOS [18] 1.13, but any 
OpenFlow controller could be used. ONOS and OpenDayLight 
are the two controllers most likely to be found in a DCN. As 
mentioned earlier, we expect mostly pro-active forwarding to be 
used in a multi-tenant DCN, and the arrival and departure of 
tenants or modification of tenant resource requirements to 
trigger the majority of OpenFlow rule changes. Since we do not 
have traces or configurations from a multi-tenant DCN, we have 
reactive forwarding enabled in ONOS to reflect the level of rule 
changes that we would expect in a large, multi-tenant DCN. 

B. Testing Approach 
To evaluate LogSnap, we devised two different types of test. 

Firstly, we needed to verify the correct functioning of the 
system, by showing that a recreated network matches the 
original network. This is important because the recreated 
network is generated solely from the information gleaned from 
OpenFlow messages, and not, for example, from any externally 
provided model of the network. Secondly, we show the benefit 
of snapshots in setting an upper bound to the time it takes to 
compile the state information required to recreate the network. 

C. Testing - Functional Verification 
To provide confidence in the correct functioning of 

LogSnap, we needed to verify that a recreated network matches 
the original network for a number of fundamental conditions. 

TABLE II.  LOGSNAP FUNCTIONAL VERIFICATION 

Network Elements 
Checked 

What was confirmed between Original 
and Recreated Network 

Switches Number of switches; switch DPIDs 

Links between switches Pairs of DPIDs; port numbers 

Flow Tables Number of flow-rules on each switch; 
flow-rule content 

Hosts Number of hosts; host IP addresses 

Host Connectivity ICMP success or fail between host pairs 

 

In order to verify that the original and recreated networks 
were the same, we ran experiments gathering extra information 
from the original network at a specific point in the experiment 
while our Logging Subsystem captured and logged OpenFlow 
messages. Recreating the network for that specific point in time, 
we collected the same set of information again, and compared 
with the first set. 

ONOS’ REST API was used to obtain the list of inter-switch 
links, hosts and host-switch links that ONOS learned about on 
the original network. Open vSwitch’s ovs-ofctl tool gave a dump 
of the flow-table from each switch on the network. Linux fping 
was used to test connectivity between all pairs of hosts on the 
network. Note that connectivity between a pair of hosts depends 
on whether flow-rules have been installed to allow packets flow 
between the hosts. Our verification check was not that all host 
pairs tested could communicate, rather that the result of a 
connectivity test between a pair of hosts in the recreated network 
was the same as the result of a connectivity test between the 
same pair of hosts in the original network (whether that result 
was a pass or a fail). On a network containing 120 hosts, this 
generated 14280 results on the original network to compare with 
the results of the same tests on the recreated network. As an 
example, the output of one set of connectivity tests on an original 
network showed connectivity between 48 host-pairs. Repeating 
the tests on a recreated network gave the same results.  

The modified Floodlight controller used to populate flow-
tables on a recreated network also has a REST API, through 
which a list of inter-switch links, and a list of hosts and host-
switch links was extracted. The output was compared with the 
data collected from ONOS. We used ovs-ofctl and fping as we 
had done on the original network, and compared those results. 

Each verification experiment ran with traffic generated for 
120 seconds, split into four 30-second intervals. At the end of a 
30-second interval, the traffic generator was stopped to free up 
resources on the MaxiNet workers to allow us to gather 
information. At the start of the next interval, the traffic generator 
started again, but with TCP connections shifted between racks. 
This was to ensure that the same set of flows was not running 
unchanged in each interval. Between traffic generation intervals, 
we quiesced the controller, waited for switches to deal with any 
outstanding FLOW_MOD requests, and gathered switch flow-
table contents and topology and connectivity information – this 
sequence of actions took around 2 minutes. Since there were 
four traffic-generation intervals, in each experiment we had 
three verification points. For the full duration of the experiment, 
our Logging Subsystem was capturing OpenFlow messages. 
Having run the Snapshot Generation Subsystem on the log of 



captured messages, we then recreated the network separately 
for each verification point, and gathered and compared 
information. 

The set of verification checks is listed in Table II. The 
results we recorded over many cycles of experiments confirm 
the correct operation of LogSnap, although the results of our 
host checks initially gave us pause: while a recreated network 
consistently had the same number of switches as the original 
network, sometimes it had fewer hosts. This happens more 
often on a network that was recreated for a time close to the 
startup-time of the original network. The difference is because 
a host is only learned of at the control plane when that host 
actively sends data or has a packet addressed to it. 

D. Testing - Demonstrating the Benefit of Snapshots 
For a large DCN, with a sizeable number and a turnover of 

tenants, the OpenFlow message history well be of significant 
volume. Recreating a network from that history can be time, 
memory, and compute intensive. Fig. 4 compares how long it 
took to recreate a network for different points in its history with 
and without the facility of being able to build the network state 
starting from a snapshot. 

Clearly, from the figure, the time to recreate a network 
without the use of snapshots increases for later network 
recreation times. It grows almost linearly with the number of 
OpenFlow messages that need to be processed in order to 
generate the state of the network at the required recreation time. 
It is not exactly linear as some OpenFlow messages require more 
processing than others - e.g. PACKET_IN messages are fully 
parsed because they may contain information about the network 
topology, FEATURES_REQUEST messages are only taken as 
confirmation that the controller that sent the message still exists. 

Conversely, there is an upper limit on how long it takes to 
recreate a network starting from a snapshot. The limit is at the 
point just before the next snapshot, and so depends on the 
frequency of snapshots. In these experiments, a snapshot was 
taken every 75K OpenFlow messages. 

The results shown in Fig. 4 were based on a message log 
containing approximately 500K OpenFlow messages. The log is 
of roughly three minutes of data. Fig. 5 shows the number of 

OpenFlow messages logged each second, generated based on 
the message timestamps. Traffic generation started about 45 
seconds after message logging began, as can be observed by the 
spike to ~6K OpenFlow messages per second: the spike consists 
largely of ARP request packets in PACKET_OUT messages 
sent by the controller to switches, to determine the locations of 
destination hosts that have not been learned of previously. 

E. Message Log and Snapshot Storage Requirements 
The space required to store the message log relates to the 

number of messages in the log, although not all messages are the 
same size. Our 3 minute ~500K message log took 318MB of 
space in Elasticsearch, without any optimisation to reduce disk 
usage. Extrapolating, this grows to 153GB per day, or 56TB per 
year. 

Storage requirements for snapshots can be calculated from 
some key parameters. A snapshot consists of information about 
controllers, switches, hosts, links, and the flow-rules for each 
switch. On any given network, the number of controllers (C), 
switches (S), hosts (H), and links (L) is known and is reasonably 
static – with infrequent changes due to DCN maintenance or 
reconfiguration. The set of flow-rules is more dynamic, 
depending mostly on how many traffic flows are active (F) at 
the time of the snapshot. Most flow-rules are only configured on 
switches on the path that packets need to follow to get from 
source to destination. According to [1], approximately 75% of 
Cloud DCN traffic is rack-local, so packets only need to traverse 
one top-of-rack switch to get to their destination. The remaining 
25% of traffic must traverse three switches (two leaf and one 
spine) in our network to reach their destination. Assuming that 
the storage requirement for one device (controller, switch or 
host) or link is represented by a mean constant value J, and for 
a flow-rule is represented by a mean constant value K, we can 
calculate the storage requirement B for a single snapshot as: 

 B = J * (C + S + H + L) + K * (F * 0.75 + F * 0.25 * 3)  

In our test network, with C = 1, S = 12, H = 120 and L = 156, 
approximately F = 100 flows active at one time, and with J = 
235 bytes and K = 760 bytes (figures calculated from our 
experimental data), this yields an estimated storage requirement 
B = 182 KB for one snapshot. 

 
Fig. 4: CPU time required to recreate a network as it was 

at a specific time 

 
Fig. 5: OpenFlow messages captured per second by capture filter 



The number of snapshots per day depends on the total 
number of OpenFlow messages that will be captured in one day, 
which in turn depends on the size of the network (controllers, 
switches, hosts, links) and on either the flow arrival rate and 
mean flow duration in a reactive OpenFlow network, or on the 
rate of policy changes in a proactive OpenFlow network. Taking 
the figure of 500K messages in 3 minutes mentioned earlier: If 
the snapshot interval is 75K messages, then a snapshot will be 
taken approximately every 27 seconds, resulting in 3,200 
snapshots in 24 hours and requiring approximately 583 MB of 
storage for that day of snapshot data. 

Reducing the snapshot interval increases the number of 
snapshots taken. E.g. halving the snapshot interval doubles the 
number of snapshots, and intuitively this should result in double 
the storage requirement. However, we have applied an 
optimisation to the snapshot database which reduces duplication 
between snapshots. Our approach is to track the range of time 
over which we have known about elements of the network – 
switches, hosts and links, for example. When an element is 
recorded in the database (as part of writing a snapshot), the time-
range is recorded in the row for that element as a field of 
PostgreSQL’s timestamp range (TSTZRANGE) data-type. If 
the element is still in the network at the time of the next 
snapshot, and has been there uninterrupted for the duration, the 
time-range field is updated rather than a new row being written. 
Reading a snapshot from the database is then a matter of 
searching for rows with time-ranges within which the snapshot 
time and date falls. We have observed, as a result of this 
optimisation, that halving the snapshot interval causes a 50% 
increase in the snapshot storage requirement.  

V. RELATED WORK 
SDN data-plane activity monitoring and logging tools (e.g. 

Planck [19], SketchVisor [20]) generally either sample data-
plane packets, or simply gather statistics. The data they collect 
does not describe the topology of the network, or reveal the 
forwarding logic of network devices. NetSight [21] is of 
particular note, recording complete packet histories for 
debugging purposes. A packet history is a record of the path 
followed by a packet during its lifetime, and could be used to at 
least partially infer the topology and forwarding logic of a 
network, if collected for all packets. However, NetSight is not 
passive, requiring extra work to be done by switches, and 
imposes a proxy between switches and controllers. 

Several papers have been published on systems to monitor 
the control-plane in OpenFlow networks. In common with data-
plane tools, though, most of these (e.g. OFMon [22], 
OpenNetMon [23], OpenTM [24]) gather statistics, rather than 
recording OpenFlow messages. 

Logentries [25] collects both data-plane and control-plane 
log data for central storage. However, it is used for event logs 
such as those emitted by controllers and switches as part of their 
normal operation, rather than a log of OpenFlow messages. 

Most production-quality SDN controllers do not offer a 
built-in facility to record OpenFlow messages, with the 
exception of Floodlight, through its PacketStreamer module. 
Messages can be filtered (e.g. by OpenFlow field values) before 
being streamed via a brokered message service to a waiting 

client. PacketStreamer is a Floodlight-specific module. The 
ONOS controller offers statistics, through its CPMan app. 
Similarly, OpenDaylight produces statistics via its Time Series 
Data Repository project. A non-intrusive approach has benefits 
over approaches requiring integration with a specific controller. 

OFRewind [26] provides some functionality similar to 
LogSnap: recording and replay of OpenFlow control-plane 
traffic in (in their case) a campus network. OpenFlow message 
recording is effected via a proxy between switches and 
controller(s), i.e. it is not a non-intrusive solution like ours. 
Furthermore, OFRewind does not recreate a network from the 
recorded data - the target network must be provided by the 
network operator: either the original physical network, or an 
emulated network created by some means not integral to 
OFRewind. OFRewind guarantees to maintain the order of 
OpenFlow messages as they were recorded, it does not record 
the actual timestamps. Lastly, OFRewind does not create regular 
snapshots to speed up reproduction of network state for a 
particular time. 

ForenGuard [27] logs and monitors OpenFlow messages to 
identify root causes of forwarding problems in an SDN network. 
ForenGuard is controller-specific, implemented on top of the 
Floodlight controller. 

In comparison, LogSnap provides this unique combination 
of features, which makes it particularly attractive to a DCN 
operator looking for a passive solution for post-hoc analysis of 
network configuration: 

• It is designed to work with any OpenFlow controller. 

• OpenFlow messages are captured passively, with no 
impact on controller and switch communication. 

• Automated reproduction of the original network, using a 
network emulator and topological data extracted from 
the OpenFlow message history. 

• Fast reproduction of the original network for any time 
covered by the OpenFlow message history, based on 
snapshots created from that history. 

• Complete sets of rules generated for each switch in the 
network at a particular time, representing the forwarding 
logic of that network at that time. 

VI. CONCLUSIONS AND FUTURE WORK 
We have shown that it is possible to recreate the topology 

and state of a DCN in an emulated environment, by only using 
a complete historical log of OpenFlow messages captured from 
the original network, and we designed and implemented a 
solution for the task. The DCN topology and state can be 
recreated for any time and date that falls within the period of 
history covered by the historical log. We presented LogSnap, the 
solution we designed and implemented to non-intrusively log 
OpenFlow messages, create snapshots, and recreate a network. 
We illustrated the results of our experiments verifying that 
LogSnap correctly recreates a network, and showing the benefit 
of snapshots in capping at a deterministic value the time taken 
to recreate the network. Since the maximum time to recreate a 
network depends on the frequency of snapshots, we quantified 
the cost of more frequent snapshots versus their storage 



requirements, as guidance for a DCN operator who may want to 
cap the network recreation time at some preferred value. 
Compared to the state of the art, LogSnap offers a more 
comprehensive, accurate reproduction of a DCN in a historical 
state, using a non-intrusive approach to capture historical data. 

The next phase of our research is to build on the foundation 
provided by LogSnap. We are in the process of extending the 
system by adding a query engine. This will provide a mechanism 
for a DCN operator to investigate the historical record and 
uncover insights into the past behaviour of the constituent parts 
of the network. The query engine will use the OpenFlow 
message log, snapshots, and recreated networks, individually or 
combined, to answer queries as appropriate. 
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