
Title LogSnap: Creating snapshots of OpenFlow Data Centre Networks
for offline querying

Authors Sherwin, Jonathan;Sreenan, Cormac J.

Publication date 2019-10-01

Original Citation Sherwin, J. and Sreenan, C. J. (2019) 'LogSnap: Creating
Snapshots of OpenFlow Data Centre Networks for Offline
Querying', 10th International Conference on Networks of the
Future (NoF), Rome, Italy 1-3 Oct., pp. 66-73. doi: 10.1109/
NoF47743.2019.9015187

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/9015187 - 10.1109/
NoF47743.2019.9015187

Rights © 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-05-06 17:41:50

Item downloaded
from

https://hdl.handle.net/10468/11305

https://hdl.handle.net/10468/11305

LogSnap: Creating Snapshots of OpenFlow Data
Centre Networks for Offline Querying

Jonathan Sherwin
Dept. of Computer Science

Cork Institute of Technology
Cork, Ireland

jonathan.sherwin@cit.ie

Cormac J. Sreenan
Dept. of Computer Science

University College Cork
Cork, Ireland
cjs@cs.ucc.ie

Abstract— Software-Defined Networking (SDN) has enabled

automated modification of the behavior of network devices to
match changes in network policy. This facility has driven adoption
of SDN in Data Centre Networks (DCNs), particularly multi-
tenant DCNs, where network policies are used extensively and can
change rapidly as tenants arrive, leave, and modify their resource
usage. It is useful for a DCN operator to have a way to query the
past state of a network, e.g. for debugging or verification. In a
multi-tenant DCN whose behaviour changes frequently under the
programmatic control of SDN, this is an important but complex
function to provide. While SDN makes the problem more
challenging, it also helps to provide the solution – changes in
network policy are communicated in packets sent from an SDN
controller to the network devices, and those packets are amenable
to capture and analysis to reveal the state of the network. Our
solution, LogSnap, records messages exchanged over time between
an SDN controller and switches in a network, and can quickly
recreate the network in an emulated environment for any point in
the recorded history. We have evaluated the system for its
accuracy, the speed with which it can recreate the network, and
quantified the storage implications of speeding up network
reproduction.

Keywords— Software-Defined Networking, Data Centre
Networks, Network Management, OpenFlow

I. INTRODUCTION
A multi-tenant DCN is a complicated environment, with

multiple paths, high traffic rates, a high flow-arrival rate, and a
turnover of tenants. The advent of SDN facilitated the growth
and operation of DCNs, by automating network configuration
tasks that had previously been mostly manual and disjointed, but
also further increased the difficulty for a DCN operator of
reasoning about and understanding what exactly is happening in
the network. Thus, SDN and DCNs have been productive area
of study for researchers – who have analysed and described the
characteristics of DCNs [1], [2], and have addressed different
aspects of using SDN to operate and manage a DCN [3-6].

One aspect that has not been adequately addressed to date is
the provision of a way for a DCN operator to investigate the past
behaviour of a network at some point in its history – e.g. ‘What
path did a packet take to get to this location at a particular time?’
– or the network’s potential behaviour under different conditions
– e.g. ‘If a switch was to fail at this time, what flows would have
been affected?’ Answering these types of questions requires the

state of the network to be accurately reproduced as it was at a
specific point in the past. Furthermore, reproducing the past state
of the network requires a historical record, going back for
months or even years, of all of the changes to the configuration
of the network. In an SDN, the historical record can be compiled
by continuously capturing the packets going between a
controller and the switches in the network, e.g. packets of the
OpenFlow protocol [7]. OpenFlow is a standard protocol used
in SDNs for controllers to exchange messages with switches in
order to implement the network policy. Capturing and
processing the sheer quantity of OpenFlow messages in a
historical log going back months or years presents a significant
challenge. Other researchers take the approach of measuring and
recording statistics to augment a DCN operator’s knowledge of
conditions in their network. However, recorded statistics are not
sufficient for reproducing a network to the level of detail
necessary to answer the types of questions we plan to support.

In this paper, we describe our work on a controller-
independent solution for logging OpenFlow messages between
one or more SDN controllers and switches in a DCN, to produce
a historical log of OpenFlow messages for an extended duration
of time. This log is processed to create snapshots of the state of
the network at intervals through the historical time covered by
the message log. Snapshots and log together are subsequently
used for the purpose, on request, of reproducing the network as
it was at any specific time (in terms of topology and set of flow-
rules), with the intention of being able to answer queries posed
by a DCN operator. We call our system ‘LogSnap’.

Our key contributions described in this paper are: firstly, a
solution to create succinct snapshots of the state of a network
(devices, links, OpenFlow rules) using an OpenFlow message
log, and secondly, using the data in a snapshot augmented with
log messages to quickly and efficiently create an emulated copy
of a network with the state that it had at any time covered by the
message log. Both are achieved with no onus on DCN operators
to provide any extra information to the system beyond the
OpenFlow messages that it captures itself. Compared to the state
of the art, we offer a more comprehensive, accurate reproduction
of a network in a historical state, using a non-intrusive,
controller-independent system to capture the historical data.

The rest of our paper is structured as follows: In §II, we
outline our motivation and research challenges, and the
architectural requirements and design goals we set for LogSnap.

Jonathan Sherwin is funded by Cork Institute of Technology.
Cormac Sreenan is funded by Science Foundation Ireland, grant #13/RC2077

§III describes how our implementation addresses the goals and
requirements. §IV shows how LogSnap accurately reproduces
targeted aspects of a network solely from a log of OpenFlow
messages, how our approach of using snapshots shortens the
time taken to recreate a network, and how snapshot storage
space must be traded off against the maximum time to reproduce
a network. §V describes related work, and in §VI we summarise
our work and outline our plans for building on LogSnap.

II. MOTIVATION, CHALLENGES, ARCHITECTURE, AND DESIGN

A. Motivation
Multi-tenant DCNs operate under extensive and frequently-

updating policies. These policies define what host devices are
allowed to communicate with each other, and where traffic is
allowed to go. In an OpenFlow-based SDN, a changed policy
will result in changes to OpenFlow rules, which represent part
of the network state. When a problem occurs, by the time the
DCN operator has an opportunity to address it, the network state
most likely has changed, and it may never be possible to identify
the root cause of the problem, or the conditions under which it
occurred, without a means (e.g. a tool) to provide a view of the
network state at and around the time of the problem.

Understandably, DCN operators do not want a tool that will
increase their workload by requiring constant monitoring, or
require changes to switch or controller configurations to
accommodate the tool. Nor do they want a tool that consumes a
significant amount of resources. We have identified an
opportunity for a system that works efficiently and
unobtrusively, gathering information that is already present in a
network (OpenFlow messages), but that is usually not recorded.
Using a log of this information, we can rebuild the state of the
network at any time, to provide a platform for querying,
investigation and problem-solving. We have opted to use
OpenFlow messages as the basis for our historical log as
OpenFlow is the mostly broadly-used open standard SDN
protocol, but we believe our design applies to, and our
implementation could be adapted for, any control protocol used
between SDN controllers and network devices.

B. Research Challenges
Designing and implementing the system presents some

interesting challenges and scope for a novel contribution:

• How can we devise a scheme for passive, accurate
recording of the history of OpenFlow messages
exchanged on a network?

• How can a network be reproduced in a resource-efficient
manner?

C. Architectural Requirements
The key requirements that our system must address are:

• Capture of OpenFlow messages from a network, with
timing information for each message observed.

• OpenFlow message storage for later analysis / retrieval.

• Analysis of the stored messages to create snapshots of
the network (detailed record of topology and flow table
state) at specific points in time.

• Storage of snapshots for later retrieval,

• The ability to quickly create an emulated copy of the
network at any required point in time.

These requirements can be realised with components of an
architecture as illustrated in Fig. 1, and described below:

OpenFlow message logger. This component must un-
intrusively capture and log OpenFlow messages. All OpenFlow
messages exchanged between controller and switches should be
captured. However, the logger must detect if messages have
been missed, log the event, and continue capturing and logging.

OpenFlow message store. Every captured OpenFlow
message must be stored in full, with the associated timestamp.
The store must be searchable by timestamp, by date range, and
by OpenFlow message attribute.

Snapshot generator. A snapshot is a detailed record of the
observed topology of the network, i.e. the hosts, switches, host-
to-switch links, inter-switch links, and the contents of the switch
flow-tables at the time of the snapshot. The snapshot generator
must operate solely by processing the OpenFlow message log.

Snapshot store. The snapshot store must be searchable by
time and date, returning the closest snapshot at or after that time.

Network state recreator. Using a snapshot augmented with
messages from the OpenFlow message log, this component must
create an emulated network mirroring the topology and flow-
table state of the original network from which OpenFlow
messages were logged, for a specified time and date.

D. Design Goals
The logging and snapshot system is intended for use in a

DCN. With that in mind, these design goals must be addressed:

1) Scalability: A DCN contains potentially hundreds of
switches, connecting thousands of servers with each other, with
the Internet, and possibly with other data centres. Our logging
system must capture OpenFlow messages exchanged between
switches and controllers. Controllers address scalability by

Fig. 1: Architecture Diagram

SDN
Controllers

OpenFlow
Message Logger

Snapshot
Generator

Network State
Recreator

To Switches
in Original
Network

OpenFlow
Message Store

Snapshot
Store

Fig. 1: Architecture Diagram

Recreated
Network

clustering – running multiple instances of the controller, and
partitioning the set of switches so that each controller instance
only has to deal with a manageable number of them.
Furthermore, the number of interactions between controller and
switches is often reduced by having the controller proactively
configure most flow-rules rather than doing so reactively. The
proactive approach means that the controller does not need to
be consulted each time a new flow arrives at a switch, only
when a flow arrives for which it does not have a matching
proactively configured rule. In a multi-tenant DCN, rules are
likely to be proactively installed or removed when a new tenant
arrives, when an existing tenant leaves or changes their set of
leased resources, or when an existing tenant’s resources must
be redistributed within the DCN. Our system must be designed
to be scalable, but also to accommodate features of controllers
intended to improve their scalability.

2) Controller- and switch-independence: Logging should
work independently of which controller is in use within the
DCN. This rules out the use of a controller-based application to
log OpenFlow messages, or use of non-OpenFlow information,
e.g. through the use of controller APIs. Logging should not
depend on which type(s) of switches are in use. We restrict our
system to an environment where all controllers and switches
use OpenFlow, however there are different versions of
OpenFlow, and not all features are implemented universally.

3) Fast reproduction of network state: In order to make the
system usable for a DCN operator, the time taken to reproduce
the network should be reasonable. We envisage that our system
could be recording OpenFlow messages for weeks, months, or
even years, and that a DCN operator could require the network
state to be replicated for any point in that history in order to
query some aspect or behaviour of the network. With message
logs stretching over months or years, clearly it will take some
time to generate the state information to replicate a network as
it was at a specific date and time. However, the time taken
should be deterministic – not simply proportional to the
difference between the date and time at which OpenFlow
message recording started and the desired date and time for
which to reproduce the network state.

4) Passive operation: Logging should not require any
change to the setup or configuration of the controller or
switches, and should have minimal impact on their operation.
E.g. a proxy-based design would require controller and switch
configuration to route OpenFlow messages through the proxy,
and risk the proxy becoming a bottleneck as the network scales.

III. IMPLEMENTATION
We implemented LogSnap with the software components

shown in Fig. 2 and outlined below, to meet the architectural
requirements and design goals identified in the previous section.

A. Logging Subsystem
Our OpenFlow Packet Filter uses the libpcap packet-capture

library [11] to passively capture packets containing OpenFlow
messages as layer 2 frames, achieving our design goal of
controller- and switch-independence. Captured frames are

tagged with their capture time, and enqueued to a RabbitMQ [8]
message queue for subsequent parsing and further processing by
the OpenFlow Message Extractor & Logger. Separating
capturing from logging has several benefits: Only the OpenFlow
Packet Filter needs to run on the same physical or virtual host as
the OpenFlow controller, minimising use of resources that might
be needed by the controller, and supporting our design goal of
passive operation. The clustered controller scenario mentioned
earlier can be leveraged for our design goal of scalability by
deploying an OpenFlow Packet Filter instance for each
controller instance. Our implementation accommodates a single
controller or a cluster of controllers running on a single physical
server. Extending the solution to support distributed controllers
would require time-synchronisation between servers, for
example by using the Precision Time Protocol (PTP).

Recent revisions of the OpenFlow Switch Specification (e.g.
[29]) state that “The OpenFlow channel is usually encrypted
using TLS, but may be run directly over TCP.” The authors of
[30] provide reasons for not using TLS in a DCN. Our
implementation currently assumes TLS is not in use, however it
could be extended to decrypt captured packets if necessary using
the DCN TLS keys, as can be done with Wireshark, for example.

With a passive capture approach there is a risk of packets
being missed at very busy times, with no option to request packet
retransmission, or to exercise flow-control. Since a missed
OpenFlow packet could seriously impact accurate reproduction
of network state, we stress-tested our capture filter code by
generating packets using the D-ITG traffic generator [28]. In our
test environment, the filter reliably captured packets at 355
Mb/s, more than an order of magnitude greater than the data
rates seen in the verification experiments described in §IV.
While we have confidence in our packet filter, nevertheless it
detects if a packet has been missed and the event is logged in the
message log in order to subsequently notify the DCN operator.

A DCN operator should be aware that hardware OpenFlow
switches vary in how quickly they update their flow-tables under
heavy load [31], although the high-end switches more likely to

Fig. 2: Implementation Diagram

OpenFlow
Packet Filter RabbitMQ

OpenFlow
Controller OpenFlow

Message
Extractor &

Logger

NIC Filebeat

To Switches
in Original
Network

Logstash

Snapshot
Generator

Network
State

Recreator

Floodlight

MaxiNet

Loxi

Loxi

Fig. 2: Implementation Diagram

Logging Subsystem

Snapshot
Generation
Subsystem

Network State Recreation Subsystem

component implemented by authors

‘off-the-shelf’ component

Log File

ElasticSearch
DB

PostgreSQL
DB

be used in DCNs perform best. LogSnap could be extended to
take switch performance into account – this would require a
profile for each type of switch used. An alternative approach,
proposed in our previous work [32], leverages a software switch
(Open vSwitch, which is immune to the update issues) to mask
the problems of the hardware switches in the original network.

The OpenFlow Message Extractor & Logger reassembles
the TCP stream for each switch-controller connection from the
captured frames, and extracts OpenFlow messages from the
streams. Each message is parsed using the Loxi OpenFlow
protocol library [9] before being serialised and logged to a text-
encoded log file. A single instance of the OpenFlow Message
Extractor & Logger process can be used, or as many as one
instance per switch, for the purpose of scalability. Each instance
will emit messages to a separate log file. A new line added to a
log file by the Extractor & Logger describes a single OpenFlow
message. Filebeat ships each line to LogStash for processing and
storage in ElasticSearch (Filebeat, LogStash and ElasticSearch
are part of the Elastic Stack family of projects [10]).

B. Snapshot Generation Subsystem
The Snapshot Generator queries Elasticsearch for OpenFlow

messages, and processes them in chronological order. As it
processes the messages, it learns about the topology of the
network that the messages came from. It learns about the
existence (and continued existence) and identities of switches
and controllers from the messages that they exchange with each
other. It learns about links between switches from the messages
generated by the topology discovery process of the controller,
e.g. LLDP packets contained in PACKET_IN messages. It
learns about hosts, and how the hosts are connected to switches
from ARP request packets contained in PACKET_IN messages.
The Snapshot Generator also maintains a flow-table for each
switch. As FLOW_MOD messages are processed, rules are
added, modified or deleted from the relevant flow-table. Table I
lists some types of OpenFlow messages that contain key
information used by the Snapshot Generator.

Snapshots, written to a PostgreSQL [12] database, consist of
the set of controllers, switches, hosts, links, and flow-table
contents that were known and valid at the time of the snapshot.
A new snapshot is written when a certain number of OpenFlow
messages have been processed since the last snapshot. This
number is an operator-configurable parameter. Setting it lower
reduces the maximum time taken to reproduce a network, but
increases storage requirements because snapshots are recorded
more frequently. The trade-off between reproduction time and
snapshot storage requirements is explored further in Section IV.

C. Network State Recreation Subsystem
A data centre operator uses the Network State Recreator to

replicate an original network for a specific date and time covered
by the logged set of OpenFlow messages. The Network State
Recreator searches the PostgreSQL DB for the closest snapshot
at or before the specified date and time. If there is a snapshot
with that exact timestamp, then that is all the information
required to recreate the network. If there is a difference between
the snapshot timestamp and the specified time and date, then the
Elasticsearch DB is queried for all OpenFlow messages with
timestamps later than the snapshot timestamp but earlier than or
matching the specified time and date, and the snapshot data is

updated to represent the state of the network at the later point in
time. In this way, we achieve our design goal of fast
reproduction of network state - the system can quickly replicate
the original network at any date and time without having to start
from the very beginning of the OpenFlow message history.

Of course, it is quickest to reproduce the network state for a
date and time that matches the timestamp of a snapshot, and
slowest to reproduce the network state for a date and time just
before the timestamp of a snapshot. This is illustrated and
considered further in Section IV.

The network is reproduced with MaxiNet [14], a distributed
extension of the Mininet [15] network emulator. MaxiNet
allows us to create very large networks (towards our goal of
scalability) in emulated form. To populate switch flow-tables,
we use Floodlight [13], modified to act purely as a delivery
mechanism for flow-rules captured from an original network.
Any OpenFlow controller could be adapted for this purpose, but
Floodlight was a natural choice as it uses the same Loxi protocol
library used in our Logging Subsystem.

TABLE I. INFORMATION IN OPENFLOW MESSAGES

OpenFlow Message Type Encapsulated Information

FEATURES_REPLY Switch DPID

STATS_REPLY Switch ports

PACKET_IN Inter-switch links; host-switch links

FLOW_MOD Flow-rule additions / modifications /
deletions

IV. EVALUATION

A. Test Environment
We devised a DCN topology for which to test LogSnap,

illustrated in Fig. 3. This network consisted of six racks of
twenty hosts and one top-of-rack switch each. The six top-of-
rack (also referred to as leaf) switches were connected in a
folded-clos topology to six spine switches to create a spine-leaf
network architecture, as is commonly used in a DCN.

The use of MaxiNet described so far has been to host the
recreated network. However, for our experimental testing we

Fig. 3: DCN Topology

Spine
Switch

Spine
Switch

Spine
Switch

Spine
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Spine
Switch

Spine
Switch

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Fig 3: DCN Topology

also used MaxiNet to first host the original network – an
emulated network design to reflect the topology and conditions
of a busy DCN. This allowed us to capture OpenFlow messages,
and also to verify that LogSnap accurately recreates a network
from the log of OpenFlow messages.

Our test environment consists of three physical machines,
connected via two Ethernet switches. Three MaxiNet worker
VMs were hosted on a single server (Intel Xeon E5506,
2.13GHz, 8 cores, 32GB RAM). The worker VMs ran Ubuntu
Server 18.04, with MaxiNet 1.2, Mininet 2.2.2, and Open
vSwitch [16] 2.9.0 installed. A PC (Intel Core 2 Quad Q9400,
2.66GHz, 4 cores, 8GB RAM) was used to control experiments,
host a controller VM, run the MaxiNet FrontEnd server,
RabbitMQ 3.7.8, and Filebeat 6.3.1. Depending on the stage of
an experiment, it also ran the OpenFlow Packet Filter and
OpenFlow Message Extractor & Logger, or the Snapshot
Generator, or the Network State Recreator. A second PC (Intel
Core 2 6400 2.13GHz, 2 cores, 4GB RAM) hosted a database
VM running Ubuntu Server 18.04, with Elasticsearch 6.4.3,
Logstash 6.4.3, and PostgreSQL 10 installed. The three physical
machines each had two NICs, each of which was connected to a
Gigabit Ethernet switch. One of these networks was used for
control of experiments, and communication with databases, the
other solely for the exchange of OpenFlow messages between
controller and switches.

DCT2Gen [17] generates traffic based on profiles created
from DCN traces. To verify LogSnap, we use a test profile and
traffic generator made available by the DCT2GEN authors. The
profile contains details of 3667 TCP connections that the traffic
generator normally schedules over a 10 second period between
120 hosts (arranged evenly in six racks). The traffic generator
can be configured with a time-dilation factor to compress or
expand the time over which the TCP connections are scheduled.

In our original network, we use ONOS [18] 1.13, but any
OpenFlow controller could be used. ONOS and OpenDayLight
are the two controllers most likely to be found in a DCN. As
mentioned earlier, we expect mostly pro-active forwarding to be
used in a multi-tenant DCN, and the arrival and departure of
tenants or modification of tenant resource requirements to
trigger the majority of OpenFlow rule changes. Since we do not
have traces or configurations from a multi-tenant DCN, we have
reactive forwarding enabled in ONOS to reflect the level of rule
changes that we would expect in a large, multi-tenant DCN.

B. Testing Approach
To evaluate LogSnap, we devised two different types of test.

Firstly, we needed to verify the correct functioning of the
system, by showing that a recreated network matches the
original network. This is important because the recreated
network is generated solely from the information gleaned from
OpenFlow messages, and not, for example, from any externally
provided model of the network. Secondly, we show the benefit
of snapshots in setting an upper bound to the time it takes to
compile the state information required to recreate the network.

C. Testing - Functional Verification
To provide confidence in the correct functioning of

LogSnap, we needed to verify that a recreated network matches
the original network for a number of fundamental conditions.

TABLE II. LOGSNAP FUNCTIONAL VERIFICATION

Network Elements
Checked

What was confirmed between Original
and Recreated Network

Switches Number of switches; switch DPIDs

Links between switches Pairs of DPIDs; port numbers

Flow Tables Number of flow-rules on each switch;
flow-rule content

Hosts Number of hosts; host IP addresses

Host Connectivity ICMP success or fail between host pairs

In order to verify that the original and recreated networks
were the same, we ran experiments gathering extra information
from the original network at a specific point in the experiment
while our Logging Subsystem captured and logged OpenFlow
messages. Recreating the network for that specific point in time,
we collected the same set of information again, and compared
with the first set.

ONOS’ REST API was used to obtain the list of inter-switch
links, hosts and host-switch links that ONOS learned about on
the original network. Open vSwitch’s ovs-ofctl tool gave a dump
of the flow-table from each switch on the network. Linux fping
was used to test connectivity between all pairs of hosts on the
network. Note that connectivity between a pair of hosts depends
on whether flow-rules have been installed to allow packets flow
between the hosts. Our verification check was not that all host
pairs tested could communicate, rather that the result of a
connectivity test between a pair of hosts in the recreated network
was the same as the result of a connectivity test between the
same pair of hosts in the original network (whether that result
was a pass or a fail). On a network containing 120 hosts, this
generated 14280 results on the original network to compare with
the results of the same tests on the recreated network. As an
example, the output of one set of connectivity tests on an original
network showed connectivity between 48 host-pairs. Repeating
the tests on a recreated network gave the same results.

The modified Floodlight controller used to populate flow-
tables on a recreated network also has a REST API, through
which a list of inter-switch links, and a list of hosts and host-
switch links was extracted. The output was compared with the
data collected from ONOS. We used ovs-ofctl and fping as we
had done on the original network, and compared those results.

Each verification experiment ran with traffic generated for
120 seconds, split into four 30-second intervals. At the end of a
30-second interval, the traffic generator was stopped to free up
resources on the MaxiNet workers to allow us to gather
information. At the start of the next interval, the traffic generator
started again, but with TCP connections shifted between racks.
This was to ensure that the same set of flows was not running
unchanged in each interval. Between traffic generation intervals,
we quiesced the controller, waited for switches to deal with any
outstanding FLOW_MOD requests, and gathered switch flow-
table contents and topology and connectivity information – this
sequence of actions took around 2 minutes. Since there were
four traffic-generation intervals, in each experiment we had
three verification points. For the full duration of the experiment,
our Logging Subsystem was capturing OpenFlow messages.
Having run the Snapshot Generation Subsystem on the log of

captured messages, we then recreated the network separately
for each verification point, and gathered and compared
information.

The set of verification checks is listed in Table II. The
results we recorded over many cycles of experiments confirm
the correct operation of LogSnap, although the results of our
host checks initially gave us pause: while a recreated network
consistently had the same number of switches as the original
network, sometimes it had fewer hosts. This happens more
often on a network that was recreated for a time close to the
startup-time of the original network. The difference is because
a host is only learned of at the control plane when that host
actively sends data or has a packet addressed to it.

D. Testing - Demonstrating the Benefit of Snapshots
For a large DCN, with a sizeable number and a turnover of

tenants, the OpenFlow message history well be of significant
volume. Recreating a network from that history can be time,
memory, and compute intensive. Fig. 4 compares how long it
took to recreate a network for different points in its history with
and without the facility of being able to build the network state
starting from a snapshot.

Clearly, from the figure, the time to recreate a network
without the use of snapshots increases for later network
recreation times. It grows almost linearly with the number of
OpenFlow messages that need to be processed in order to
generate the state of the network at the required recreation time.
It is not exactly linear as some OpenFlow messages require more
processing than others - e.g. PACKET_IN messages are fully
parsed because they may contain information about the network
topology, FEATURES_REQUEST messages are only taken as
confirmation that the controller that sent the message still exists.

Conversely, there is an upper limit on how long it takes to
recreate a network starting from a snapshot. The limit is at the
point just before the next snapshot, and so depends on the
frequency of snapshots. In these experiments, a snapshot was
taken every 75K OpenFlow messages.

The results shown in Fig. 4 were based on a message log
containing approximately 500K OpenFlow messages. The log is
of roughly three minutes of data. Fig. 5 shows the number of

OpenFlow messages logged each second, generated based on
the message timestamps. Traffic generation started about 45
seconds after message logging began, as can be observed by the
spike to ~6K OpenFlow messages per second: the spike consists
largely of ARP request packets in PACKET_OUT messages
sent by the controller to switches, to determine the locations of
destination hosts that have not been learned of previously.

E. Message Log and Snapshot Storage Requirements
The space required to store the message log relates to the

number of messages in the log, although not all messages are the
same size. Our 3 minute ~500K message log took 318MB of
space in Elasticsearch, without any optimisation to reduce disk
usage. Extrapolating, this grows to 153GB per day, or 56TB per
year.

Storage requirements for snapshots can be calculated from
some key parameters. A snapshot consists of information about
controllers, switches, hosts, links, and the flow-rules for each
switch. On any given network, the number of controllers (C),
switches (S), hosts (H), and links (L) is known and is reasonably
static – with infrequent changes due to DCN maintenance or
reconfiguration. The set of flow-rules is more dynamic,
depending mostly on how many traffic flows are active (F) at
the time of the snapshot. Most flow-rules are only configured on
switches on the path that packets need to follow to get from
source to destination. According to [1], approximately 75% of
Cloud DCN traffic is rack-local, so packets only need to traverse
one top-of-rack switch to get to their destination. The remaining
25% of traffic must traverse three switches (two leaf and one
spine) in our network to reach their destination. Assuming that
the storage requirement for one device (controller, switch or
host) or link is represented by a mean constant value J, and for
a flow-rule is represented by a mean constant value K, we can
calculate the storage requirement B for a single snapshot as:

 B = J * (C + S + H + L) + K * (F * 0.75 + F * 0.25 * 3)

In our test network, with C = 1, S = 12, H = 120 and L = 156,
approximately F = 100 flows active at one time, and with J =
235 bytes and K = 760 bytes (figures calculated from our
experimental data), this yields an estimated storage requirement
B = 182 KB for one snapshot.

Fig. 4: CPU time required to recreate a network as it was

at a specific time

Fig. 5: OpenFlow messages captured per second by capture filter

The number of snapshots per day depends on the total
number of OpenFlow messages that will be captured in one day,
which in turn depends on the size of the network (controllers,
switches, hosts, links) and on either the flow arrival rate and
mean flow duration in a reactive OpenFlow network, or on the
rate of policy changes in a proactive OpenFlow network. Taking
the figure of 500K messages in 3 minutes mentioned earlier: If
the snapshot interval is 75K messages, then a snapshot will be
taken approximately every 27 seconds, resulting in 3,200
snapshots in 24 hours and requiring approximately 583 MB of
storage for that day of snapshot data.

Reducing the snapshot interval increases the number of
snapshots taken. E.g. halving the snapshot interval doubles the
number of snapshots, and intuitively this should result in double
the storage requirement. However, we have applied an
optimisation to the snapshot database which reduces duplication
between snapshots. Our approach is to track the range of time
over which we have known about elements of the network –
switches, hosts and links, for example. When an element is
recorded in the database (as part of writing a snapshot), the time-
range is recorded in the row for that element as a field of
PostgreSQL’s timestamp range (TSTZRANGE) data-type. If
the element is still in the network at the time of the next
snapshot, and has been there uninterrupted for the duration, the
time-range field is updated rather than a new row being written.
Reading a snapshot from the database is then a matter of
searching for rows with time-ranges within which the snapshot
time and date falls. We have observed, as a result of this
optimisation, that halving the snapshot interval causes a 50%
increase in the snapshot storage requirement.

V. RELATED WORK
SDN data-plane activity monitoring and logging tools (e.g.

Planck [19], SketchVisor [20]) generally either sample data-
plane packets, or simply gather statistics. The data they collect
does not describe the topology of the network, or reveal the
forwarding logic of network devices. NetSight [21] is of
particular note, recording complete packet histories for
debugging purposes. A packet history is a record of the path
followed by a packet during its lifetime, and could be used to at
least partially infer the topology and forwarding logic of a
network, if collected for all packets. However, NetSight is not
passive, requiring extra work to be done by switches, and
imposes a proxy between switches and controllers.

Several papers have been published on systems to monitor
the control-plane in OpenFlow networks. In common with data-
plane tools, though, most of these (e.g. OFMon [22],
OpenNetMon [23], OpenTM [24]) gather statistics, rather than
recording OpenFlow messages.

Logentries [25] collects both data-plane and control-plane
log data for central storage. However, it is used for event logs
such as those emitted by controllers and switches as part of their
normal operation, rather than a log of OpenFlow messages.

Most production-quality SDN controllers do not offer a
built-in facility to record OpenFlow messages, with the
exception of Floodlight, through its PacketStreamer module.
Messages can be filtered (e.g. by OpenFlow field values) before
being streamed via a brokered message service to a waiting

client. PacketStreamer is a Floodlight-specific module. The
ONOS controller offers statistics, through its CPMan app.
Similarly, OpenDaylight produces statistics via its Time Series
Data Repository project. A non-intrusive approach has benefits
over approaches requiring integration with a specific controller.

OFRewind [26] provides some functionality similar to
LogSnap: recording and replay of OpenFlow control-plane
traffic in (in their case) a campus network. OpenFlow message
recording is effected via a proxy between switches and
controller(s), i.e. it is not a non-intrusive solution like ours.
Furthermore, OFRewind does not recreate a network from the
recorded data - the target network must be provided by the
network operator: either the original physical network, or an
emulated network created by some means not integral to
OFRewind. OFRewind guarantees to maintain the order of
OpenFlow messages as they were recorded, it does not record
the actual timestamps. Lastly, OFRewind does not create regular
snapshots to speed up reproduction of network state for a
particular time.

ForenGuard [27] logs and monitors OpenFlow messages to
identify root causes of forwarding problems in an SDN network.
ForenGuard is controller-specific, implemented on top of the
Floodlight controller.

In comparison, LogSnap provides this unique combination
of features, which makes it particularly attractive to a DCN
operator looking for a passive solution for post-hoc analysis of
network configuration:

• It is designed to work with any OpenFlow controller.

• OpenFlow messages are captured passively, with no
impact on controller and switch communication.

• Automated reproduction of the original network, using a
network emulator and topological data extracted from
the OpenFlow message history.

• Fast reproduction of the original network for any time
covered by the OpenFlow message history, based on
snapshots created from that history.

• Complete sets of rules generated for each switch in the
network at a particular time, representing the forwarding
logic of that network at that time.

VI. CONCLUSIONS AND FUTURE WORK
We have shown that it is possible to recreate the topology

and state of a DCN in an emulated environment, by only using
a complete historical log of OpenFlow messages captured from
the original network, and we designed and implemented a
solution for the task. The DCN topology and state can be
recreated for any time and date that falls within the period of
history covered by the historical log. We presented LogSnap, the
solution we designed and implemented to non-intrusively log
OpenFlow messages, create snapshots, and recreate a network.
We illustrated the results of our experiments verifying that
LogSnap correctly recreates a network, and showing the benefit
of snapshots in capping at a deterministic value the time taken
to recreate the network. Since the maximum time to recreate a
network depends on the frequency of snapshots, we quantified
the cost of more frequent snapshots versus their storage

requirements, as guidance for a DCN operator who may want to
cap the network recreation time at some preferred value.
Compared to the state of the art, LogSnap offers a more
comprehensive, accurate reproduction of a DCN in a historical
state, using a non-intrusive approach to capture historical data.

The next phase of our research is to build on the foundation
provided by LogSnap. We are in the process of extending the
system by adding a query engine. This will provide a mechanism
for a DCN operator to investigate the historical record and
uncover insights into the past behaviour of the constituent parts
of the network. The query engine will use the OpenFlow
message log, snapshots, and recreated networks, individually or
combined, to answer queries as appropriate.

REFERENCES

[1] T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics of
data centers in the wild," in Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC, 2010, pp. 267-280, doi:
10.1145/1879141.1879175.

[2] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, "Inside the
Social Network's (Datacenter) Network," presented at the Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015.

[3] T. Cucinotta, D. Lugones, D. Cherubini, and E. Jul, "Data centre
optimisation enhanced by software defined networking," in IEEE
International Conference on Cloud Computing, CLOUD, 2014, pp. 136-
143, doi: 10.1109/CLOUD.2014.28.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, "DevoFlow: Scaling flow management for high-performance
networks," in Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM'11, 2011, pp. 254-265.

[5] D. Arora, T. Benson, and J. Rexford, "ProActive routing in scalable data
centers with PARIS," in DCC 2014 - Proceedings of the ACM
SIGCOMM 2014 Workshop on Distributed Cloud Computing, 2014, pp.
5-10.

[6] P. Peresini, M. Kuzniar, and D. Kostic, "Monocle: Dynamic, Fine-
Grained Data Plane Monitoring," in CoNEXT'15 - Proceedings of the
2015 ACM International Conference on Emerging Network Experiments
and Technologies, 2015.

[7] N. McKeown et al., "OpenFlow: enabling innovation in campus
networks," SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-
74, 2008.

[8] RabbitMQ Open Source Message Broker. [Online]. Available:
https://www.rabbitmq.com/

[9] Loxi OpenFlow Protocol Library. [Online]. Available:
https://github.com/floodlight/loxigen

[10] Elastic Stack Open Source Distributed Log Management. [Online].
Available: https://www.elastic.co/products/

[11] libpcap network traffic capture library. [Online]. Available:
https://www.tcpdump.org

[12] PostgreSQL Open Source Database. [Online]. Available:
https://www.postgresql.org/

[13] Floodlight Open Source OpenFlow Controller. [Online]. Available:
http://www.projectfloodlight.org/

[14] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. Hassan Zahraee,
and H. Karl, "MaxiNet: Distributed Emulation of Software-Defined
Networks," presented at the IFIP Networking Conference (Networking
2014), 2014.

[15] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: Rapid
prototyping for software-defined networks," in Proceedings of the 9th
ACM Workshop on Hot Topics in Networks, Hotnets-9, 2010.

[16] B. Pfaff et al., "The design and implementation of Open vSwitch," in
Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2015, 2015, pp. 117-130.

[17] P. Wette and H. Karl, "DCT2Gen: A traffic generator for data centers,"
Computer Communications, Article vol. 80, pp. 45-58, 2016.

[18] P. Berde et al., "ONOS: towards an open, distributed SDN OS," presented
at the Proceedings of the third workshop on Hot topics in software defined
networking, Chicago, Illinois, USA, 2014.

[19] J. Rasley et al., "Planck: Millisecond-scale monitoring and control for
commodity networks," in SIGCOMM 2014 - Proceedings of the 2014
ACM Conference on Special Interest Group on Data Communication,
2014, pp. 407-418.

[20] Q. Huang et al., "Sketchvisor: Robust network measurement for software
packet processing," in SIGCOMM 2017 - Proceedings of the 2017
Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 113-126.

[21] N. Handigol, B. Heller, V. Jeyakumar, D. Mazi, and N. McKeown, "I
know what your packet did last hop: using packet histories to troubleshoot
networks," presented at the Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation, Seattle, WA, 2014.

[22] W. Kim, J. Li, J. W. K. Hong, and Y. J. Suh, "OFMon: OpenFlow
monitoring system in ONOS controllers," in 2016 IEEE NetSoft
Conference and Workshops (NetSoft), 6-10 June 2016, pp. 397-402.

[23] N. L. M. Van Adrichem, C. Doerr, and F. A. Kuipers, "OpenNetMon:
Network monitoring in OpenFlow software-defined networks," in
IEEE/IFIP NOMS 2014 - IEEE/IFIP Network Operations and
Management Symposium: Management in a Software Defined World,
2014.

[24] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, "OpenTM: Traffic Matrix
Estimator for OpenFlow Networks," in Passive and Active Measurement
Conference (PAM 2010), 2010.

[25] B. Siniarski, C. Olariu, P. Perry, T. Parsons, and J. Murphy, "Real-time
monitoring of SDN networks using non-invasive cloud-based logging
platforms," in Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2016 IEEE 27th Annual International Symposium on, 2016:
IEEE, pp. 1-6.

[26] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, "OFRewind:
enabling record and replay troubleshooting for networks," presented at the
Proceedings of the 2011 USENIX Annual Technical Conference,
Portland, OR, 2011.

[27] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
"Towards Fine-grained Network Security Forensics and Diagnosis in the
SDN Era," presented at the Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, Toronto,
Canada, 2018.

[28] A. Botta, A. Dainotti, and A. Pescapé, "A tool for the generation of
realistic network workload for emerging networking scenarios,"
Computer Networks, vol. 56, no. 15, pp. 3531-3547, 2012.

[29] OpenFlow Switch Specification Version 1.5.1, Standard. Open
Networking Foundation, 2015. [Online]. Available:
https://www.opennetworking.org/software-defined-
standards/specifications/

[30] P. Goransson, C. Black, and T. Culver, Software Defined Networks: A
Comprehensive Approach, 2nd ed. Morgan Kaufmann, 2016, pp. 94.

[31] M. Kuźniar, P. Perešíni, D. Kostić, and M. Canini, "Methodology,
measurement and analysis of flow table update characteristics in hardware
openflow switches," Computer Networks, vol. 136, pp. 22-36,
2018/05/08/ 2018.

[32] J. Sherwin and C. J. Sreenan, "Reducing the latency of OpenFlow rule
changes in data centre networks," in 2018 21st Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), 19-22 Feb. 2018
2018, pp. 1-5.

