
DEVELOPMENT AND ASSESSMENT OF 

NEW SENSOR SYSTEMS IN FOOD 

PACKAGING APPLICATIONS 

 

 

 

 

 

A thesis submitted to the National University of Ireland, Cork 

in fulfilment of the requirements for the degree of Doctor of 

Philosophy by 

 

Nicolas Borchert, M.Sc. 
 

 

School of Food and Nutritional Sciences 

University College Cork 

November 2012 

 

Head of School: Prof. Kevin Cashman 

Supervisors: Dr. Joseph Kerry 

Prof. Dmitri Papkovsky 
 



 

Declaration 

This thesis has not been submitted in whole or part to this or any other university 

for any degree, and is, unless stated, the original work of the author. 

 

 

____________________________             __________________ 

Nicolas Borchert            April 2013 



Acknowledgements 

The writing of this dissertation has been the most significant academic challenge I 

have ever had. Without the endorsement, patience and guidance of the following people, 

this study would not have been completed. It is to them that I owe my deepest gratitude. 

 

• Dr Joe Kerry and Prof Dmitri Papkovsky who acted as my supervisors despite 

their many other academic and professional commitments. Their wisdom, 

knowledge and commitment to the highest standards encouraged and 

motivated me. 

• Dr Malco Cruz-Romero who was a grand project coordinator and a caring ally 

during my work. 

• Dr Michael Cronin and Mr Eddie Beatty who helped me with lab equipment 

and assisted me whenever I faced trouble. 

• My friends and colleagues of the Biochemistry Department and School of 

Food and Nutritional Sciences.  

• Finally, and most importantly, I would like to thank my wife Diana for her 

support, inspiration and quiet patience. 

 

This dissertation is dedicated to Diana and Charlotte, and to all my family. 

 

 



1 

 

Table of Contents 

Abstract ............................................................................................................. 5 

List of Abbreviations ........................................................................................ 6 

Chapter 1: Literature Review ........................................................................... 9 

1.1 Smart Packaging Developments ......................................................................... 9 

1.1.1 Food Packaging Functions ............................................................................ 9 

1.1.2 Active and Intelligent Packaging ..................................................................10 

1.2 Optochemical Sensors for Food Packaging ........................................................20 

1.2.1 O2 Sensors ..................................................................................................21 

1.2.1.1 Quenched Luminescence O2 Detection ................................................21 

1.2.1.2 O2-Sensitive Materials ..........................................................................23 

1.2.1.3 Measurement Formats ..........................................................................26 

1.2.1.4 O2 Sensing in Food Packaging .............................................................29 

1.2.2 pH Sensors ..................................................................................................30 

1.2.3 CO2 Sensors ................................................................................................32 

1.2.3.1 Principle of Optical CO2 Sensing ..........................................................33 

1.2.3.2 Sensing Schemes and Food Packaging ...............................................33 

1.2.3.3 Materials for CO2 Sensing ....................................................................38 

1.2.4 Multi-Parametric Systems ............................................................................40 

1.3 Microbial Sensors ...............................................................................................42 

1.3.1 Traditional Methods .....................................................................................42 

1.3.2 Rapid Microbial Tests and Biosensor Systems ............................................44 

Chapter 2: Development of a O2/pH Multi-Parametric Sensor .................... 46 

2.1 Introduction ........................................................................................................46 

2.2 Experimental ......................................................................................................47 

2.2.1 Materials ......................................................................................................47 

2.2.2 Methods .......................................................................................................48 



2 

 

2.2.2.1 Sensor Fabrication ...............................................................................48 

2.2.2.2 Optical Measurements ..........................................................................48 

2.2.2.3 Sensor Preparation ...............................................................................49 

2.2.2.4 pH Calibrations .....................................................................................49 

2.2.2.5 Oxygen Calibrations .............................................................................49 

2.3 Results & Discussion ..........................................................................................50 

2.3.1 Spectral Properties ......................................................................................50 

2.3.2 Oxygen & pH Sensing ..................................................................................51 

2.3.3 Cross-Sensitivity & Signal Changes .............................................................55 

2.3.4 Dual-Analyte Sensing Schemes ...................................................................56 

2.4 Conclusions ........................................................................................................57 

Chapter 3: A CO2 Sensor Based on Pt-Porphyrin Dye and FRET Scheme 

for Food Packaging Applications .................................................................. 59 

3.1 Introduction ........................................................................................................59 

3.2 Experimental ......................................................................................................61 

3.2.1 Materials ......................................................................................................61 

3.2.2 Sensor Fabrication .......................................................................................61 

3.2.3 Sensor Characterization ..............................................................................62 

3.2.4 Stability Studies ...........................................................................................62 

3.3 Results & Discussion ..........................................................................................64 

3.3.1 FRET Scheme of CO2 Sensing ....................................................................64 

3.3.2 Optimization of Sensor Composition ............................................................65 

3.3.3 Detailed Characterization and Stability Study of Sensor 1 Formulation ........68 

3.3.4 Sensor Fine-Tuning for Packaging Applications ...........................................74 

3.4 Conclusions ........................................................................................................77 

Chapter 4: Development of Rapid TVC Tests for Different Food Matrices 

Using Phosphorescent O2 Sensitive Probes ................................................ 79 

4.1 Introduction ........................................................................................................79 

4.2 Experimental ......................................................................................................82 

4.2.1 Materials ......................................................................................................82 

4.2.2 Methods .......................................................................................................83 



3 

 

4.2.2.1 Respirometric TVC Assays ...................................................................83 

4.2.2.2 Conventional TVC Test .........................................................................85 

4.3 Food Matrix: Fish................................................................................................85 

4.3.1 Experimental Design ....................................................................................85 

4.3.2 Selection and Preparation of Fish Samples .................................................87 

4.3.3 Statistical Analysis .......................................................................................87 

4.3.4 Results & Discussion ...................................................................................89 

4.3.4.1 Analysis of Fish Matrix Effects and Optimization of Assay Conditions ..89 

4.3.4.2 Establishment of Calibration .................................................................91 

4.3.4.3 Assessment of Assay Ruggedness .......................................................94 

4.3.4.4 Assay Validation ...................................................................................96 

4.3.5 Conclusions .................................................................................................98 

4.4 Food Matrix: Green Produce ..............................................................................99 

4.4.1 Experimental Design ....................................................................................99 

4.4.2 Selection and Preparation of Salad Samples ............................................. 100 

4.4.3 Results & Discussion ................................................................................. 102 

4.4.3.1 Development of Rapid TVC Assay for Green Produce ........................ 102 

4.4.3.2 Quality Assessment of Packaged Salads ............................................ 105 

4.4.4 Conclusions ............................................................................................... 107 

4.5 Comparison of Different Food Matrices ............................................................ 107 

4.6 Overall Conclusions ......................................................................................... 108 

Chapter 5: The Use of Optical Sensors for Monitoring Headspace O2 and 

CO2 in Packaged Mushrooms (Agaricus Bisporus) during Chilled Storage

 ........................................................................................................................ 110 

5.1 Introduction ...................................................................................................... 110 

5.2 Experimental .................................................................................................... 113 

5.2.1 Materials .................................................................................................... 113 

5.2.2 Sample Preparation and Experimental Set-up ........................................... 113 

5.2.3 Monitoring of O2 and CO2 ........................................................................... 114 

5.2.4 Quality Parameter Measurements .............................................................. 115 

5.2.4.1 Physico-Chemical Analysis ................................................................. 116 

5.2.4.2 Microbiological Analysis ...................................................................... 118 



4 

 

5.2.5 Statistical Analysis ..................................................................................... 119 

5.3 Results & Discussion ........................................................................................ 120 

5.3.1 O2 and CO2 Headspace Concentrations .................................................... 120 

5.3.2 Sensory Evaluation .................................................................................... 123 

5.3.3 Measurement of Polyphenol Oxidase (PPO) Enzyme Activity .................... 125 

5.3.4 Textural Analysis ....................................................................................... 126 

5.3.5 Colour Measurement ................................................................................. 127 

5.3.6 Product Weight Loss & pH Measurement .................................................. 130 

5.3.7 Fourier Transformed-Infrared Spectroscopy (FT-IR) .................................. 131 

5.3.8 Microbiological Analysis ............................................................................. 132 

5.3.9 Correlations of Headspace Gases and Mushroom Quality Parameters ...... 133 

5.4 Conclusions ...................................................................................................... 137 

Overall Discussion ........................................................................................ 138 

Overall Conclusions ..................................................................................... 143 

Thesis Outcomes .......................................................................................... 144 

Bibliography .................................................................................................. 147 

 

 



5 

 

Abstract 

The use of optical sensor technology for non-invasive determination of key quality 

pack parameters improved package/product quality. This technology can be used for 

optimization of packaging processes, improvement of product shelf-life and 

maintenance of quality. In recent years, there has been a major focus on O2 and CO2 

sensor development as these are key gases used in modified atmosphere packaging 

(MAP) of food. The first and second experimental chapters (chapter 2 and 3) describe 

the development of O2, pH and CO2 solid state sensors and its (potential) use for food 

packaging applications. A dual-analyte sensor for dissolved O2 and pH with one bi-

functional reporter dye (meso-substituted Pd- or Pt-porphyrin) embedded in plasticized 

PVC membrane was developed in chapter 2. The developed CO2 sensor in chapter 3 was 

comprised of a phosphorescent reporter dye Pt(II)- tetrakis(pentafluorophenyl) porphyrin 

(PtTFPP) and a colourimetric pH indicator α-naphtholphthalein (NP) incorporated in a 

plastic matrix together with a phase transfer agent tetraoctyl- or 

cetyltrimethylammonium hydroxide (TOA-OH or CTA-OH). The third experimental 

chapter, chapter 4, described the development of liquid O2 sensors for rapid 

microbiological determination which are important for improvement and assurance of 

food safety systems. This automated screening assay produced characteristic profiles 

with a sharp increase in fluorescence above the baseline level at a certain threshold time 

(TT) which can be correlated with their initial microbial load and was applied to various 

raw fish and horticultural samples. Chapter 5, the fourth experimental chapter, reported 

upon the successful application of developed O2 and CO2 sensors for quality assessment 

of MAP mushrooms during storage for 7 days at 4°C.  
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Chapter 1: Literature Review 

1.1 Smart Packaging Developments 

1.1.1 Food Packaging Functions 

Food packaging science is a discipline which applies principles from four different 

scientific areas, namely: a) material science, b) food science, c) information science and 

d) socioeconomics. The relationship between these areas results in a technology push 

and a market pull, which means that new products are created through advances in 

material, food and information science and are pushed forward to seek market 

acceptance and those market needs are created by the dynamics of socioeconomics 

which are to be satisfied by technology, respectively (Lee et al., 2008).  
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Figure 1.1: Dynamics of packaging science and technology (adapted from Lee et al., 2008). 

 

The fundamental aspects of all packaging materials is that in an economical 

manner, they must contain, protect, preserve, inform (throughout the entire distribution 

process from point of manufacture to point of consumer usage) and provide convenience 

(at many different levels) while acknowledging the constraints placed upon their usage 

from both legal and environmental perspectives. As these fundamental principles apply 

to all forms of packaging materials and systems, it follows that irrespective of the 
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specific level at which the packaging is industrially applied, all must conform to these 

same principles (Cruz-Romero and Kerry, 2008). 

 

1.1.2 Active and Intelligent Packaging 

As the world of consumer packaged goods becomes mature and the market 

becomes saturated, food packaging is expected to transform and adapt new packaging 

developments, beyond their original task of preventing external influences such as 

mechanical stress, microorganisms, oxygen, moisture, off-odours and light (Dainelli et 

al., 2008; Yam et al., 2005). Quality and safety of perishable goods need to be improved 

while enhancing and stabilising food composition and nutrition, leading to extended 

shelf-life, information and consumer convenience. Advanced packaging must provide a 

more compelling value position to the consumer, by leaving its passive role and entering 

a role which is considered active, as it starts to interact with food and its environment in 

a positive way (Dainelli et al., 2008). Therefore various terms were created to describe 

these new technologies, such as ‘active’, ‘interactive’, ‘clever’, ‘smart’, ‘intelligent’, 

‘diagnostic’, ‘functional’, ‘enhanced’, etc. (Dainelli  et al., 2008; Kerry and Butler, 

2008). Two main groups of technology that have been established in the literature and 

incorporated in new Framework Regulations on Food Contact Materials, are called 

‘active packaging’ (AP) and ‘intelligent packaging’ (IP). They are designed to extend 

shelf-life or achieve some characteristics that cannot be obtained otherwise and to sense 

and inform about the history of the package and quality of the food (Kerry and Butler, 

2008; Yam et al., 2005). In other words AP is the component which is taking some 

action while IP is the component for sensing and sharing the information (Yam et al., 

2005). Yam et al. (2005) created a model where AP was mantled around the protective 

area of food packaging and IP around the area of communication. This basically means 

that AP enhances the protection function and the uniqueness of IP lies in its ability to 

communicate (Fig. 1.2) (Yam et al., 2005). However, the term ‘smart packaging’ can be 

considered an overall term encompassing both active and intelligent packaging and 



11 

 

packaging systems and some technologies such as modified atmosphere packaging 

(MAP) which cannot be allocated to one or the other (Han, 2005; Robertson, 2006).  

 

 

Figure 1.2: Model of packaging functions (adapted from Yam et al., 2005). 

 

There are many published definitions for active and intelligent packaging which 

differ from each other slightly. The following definitions are given by the Framework 

Regulation EC (1935/2004) on Food Contact Materials which sets standards for food 

contact materials based on scientific fundamentals to support EU policies on food 

safety.  

A) ‘Active food contact materials and articles’ mean materials and articles that are 

intended to extend the shelf-life or to maintain or improve the condition of packaged 

food. They are designed to deliberately incorporate components that would release or 

absorb substances into or from the packaged food or the environment surrounding the 

food.  

B) ‘Intelligent food contact materials and articles’ mean materials and articles 

which monitor the condition of packaged food or the environment surrounding the food. 
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First introduced in mid 70s in Japan, active and intelligent packaging gained 

significant attention only in the mid 90s in Europe and the USA. In this period many 

patents were filed and market tests carried out with the outlook of strong growth of this 

field in the future, especially for such promising technologies as oxygen scavengers and 

moisture absorbers (Dainelli et al., 2008). 

 

Active Packaging 

Active packaging refers to the incorporation of certain additives into packaging 

with the objective of increasing food preservation and hence the shelf-life (Kirwan et 

al., 2003). This includes components capable of scavenging oxygen; absorbing carbon 

dioxide, moisture, ethylene, flavours and light; releasing carbon dioxide, ethanol, 

preservatives such as antioxidants and antimicrobial substances; controlling and 

compensating the temperature; anti fogging agents; gas permeating films and microwave 

susceptors (Kerry and Butler, 2008).  

As active food packaging is used with many food products, its main beneficial 

applications and their possible mechanisms are listed in Table 1.1. However, before 

applying this technique one must understand the different ways in which food 

deterioration occurs, including; extrinsic (storage temp, relative humidity, gas 

composition) and intrinsic factors (pH, water activity, nutrient content, antimicrobial 

compounds, redox potential, respiration rate, biological structure). These factors 

influence directly the chemical, biochemical, physical and microbial spoilage 

mechanisms and product shelf-life (Kirwan et al., 2003). 
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Table 1.1: Active packaging devices (adapted from Kerry and Butler, 2008 and 

Restuccia et al., 2010). 

Type of 
Application Principle or Mechanisms Foods 

Oxygen scavengers 

Enzyme based (glucose oxidase, alcohol oxidase); chemical based  
(powdered iron oxide, catechol, ferrous carbonate, iron-sulphur,  
sulfite salt-copper sulfate, photosensitive dye oxidation, ascorbic 
acid oxidation, catalytic conversion of oxygen by platinum 
catalyst) 

Ground coffee, bread, cakes,  
snack foods, dried foods,  
beverages, pizza, cured meats  
and fish 

Carbon dioxide  
  absorbers/emitters 

Iron powder-calcium hydroxide, ferrous carbonate-metal halide Coffee, fresh meats and fish 

Moisture absorbers 
Silica gel, propylene glycol, polyvinyl alcohol, PVA blanket, 
activated clays and minerals 

Dry and dehydrated products,  
fish, meats, poultry, snack foods, 
cereals 

Ethylene absorbers 
Activated charcoal, potassium permanganat, Kieselguhr, bentonite,  
Fuller's earth, silicon dioxide powder, zeolite, ozone 

Fruit and vegetables 

Ethanol emitters Encapsulated ethanol Bread, cakes, fish 

Antimicrobial 
releaser 

Sorbates, benzoates, propionates, ethanol, ozone, peroxide, sulphur  
dioxide, antibiotics, silver-zeolite, quaternary ammonium salts, 
spice and herb extracts 

Dried apricots 

Antioxidant releaser 
BHA, BHT, TBHQ, ascorbic acid, tocopherol, baking soda, active  
charcoal 

Cereals 

Flavour absorbers 
Baking soda, active charcoal/ clays/ zeolites, citric acid, cellulose  
triacetate, Ferrous salt 

Fruit juices, fried snack foods,  
fish, poultry 

Anti-fogging Biaxially orientated vinylon, compression rolled orientated HDPE 
Fresh fruit and vegetable 
packages 

Light absorbers UV blocking agents, hydrobenzophenone Pizza, milk 

Temperature control 
Non-woven plastic, double-walled containers, hydrofluorocarbon  
gas, ammonium nitrate/ water, calcium chloride/ water, super  
corroding alloys/ salt water, potassium permanganat/ glycerine  

Ready meals, meats, fish, poultry, 
beverages 

Temperature 
compensating  
films 

Side chain crystallisable polymers Fruit, vegetables 

Gas permeable/ 
breathable 

Surface treated, perforated or microporous films Ready-to-eat salads 

Microwave 
susceptors 

Metallized thermoplastics Ready-to-eat meals 
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Intelligent Packaging 

As a result of the growing usage of active components in food packaging, the need 

for monitoring certain packaging conditions increases. Changes inside the pack, 

including gas composition, humidity, microorganisms, ethylene, temperature, which are 

associated with active packaging devices, need to be monitored, especially in the 

process of development of these packaging devices. Traditional monitoring systems, 

such as Dansensor, gas chromatography (GC), microbial determination following the 

ISO:4833:2003 standard method or sensory evaluation are destructive, time consuming 

and/or expensive in general. 

A new technology, which can overcome these limitations, is based on indicators 

and sensors that can be incorporated inside the packages to provide fast, non-destructive 

and reliable determination of important packaging conditions. Indicators are devices that 

indicate the presence, absence or concentration of a substance or physical parameter 

through direct visual colour change. The majority of indicators were initially developed 

to test package integrity focused on visual detection of O2. Indicators for freshness, 

ripeness and time-temperature control are also gaining increasing attention.  

In contrast, sensors comprise receptor and transducer components which allow 

them to respond reversibly and quantitatively to the analyte of interest. While the 

physical or chemical information is measured by the receptor, the transducer is a device 

that is capable of transforming their signal into useful analytical information. Gas 

sensors, chemical sensors and biosensors have been developed rapidly in recent years, 

with optical O2 sensors as the most developed technology. A number of instruments and 

solid state materials for optical O2 sensing have been described in recent years 

(Papkovsky and Ponomarev, 1995; Trettnak et al., 1995). Progress has been observed 

with some other sensors which are coming close to industrial viability.  

Intelligent packaging contains components that sense internal compositions or 

transmit general information and informs researchers, manufacturers, retailers and 

consumers. It provides aspects of the history of the pack, provides information about the 
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function and properties of packaged food, assures pack integrity, provides tamper 

evidence, and assures product safety and quality (see Table 1.2 for overview).  

The following main types of intelligent systems can be defined (Robertson, 2006): 

a) Product quality and value improving systems, such as time temperature 

indicators (TTIs), quality indicators, chemical and gas sensors. 

b) Conveniences enhancing systems, such as microwave doneness 

indicators, thermochromic inks and radio frequency identification (RFID) 

tags. 

c) Tamper proof, anti-counterfeiting and anti-theft technologies. 

Category a: Quality indicators which determine temperature at certain time 

intervals are a well evaluated technology and commercially available. These TTI 

devices accumulate the effect of exposure to temperature over time and produce a 

change of colour or other physical characteristic. There are two categories which can be 

defined as ‘partial history indicators’ which do not respond unless the predetermined 

threshold temperature is exceeded, and ‘full history indicators’ which respond 

continuously to all temperatures. One example of a full history indicator is the TTI 

CheckPointTM (VITSAB A.B., Malmö, Sweden). This enzymatic system is based on 

colour change from bright yellow to orange red upon enzymatic hydrolysis of a lipid 

substrate causing a pH change (Hogan and Kerry, 2008; Robertson, 2006; Taoukis, 

2008). Other commercial systems are the full history indicator  Fresh-CheckTM TTI 

(Lifelines Technology, Morris Plains, New Jersey, USA) based on a 1,4-addition 

polymerization reaction of diacetylene crystals to a coloured polymer and the 3M 

MonitorMarkTM  TTI (3M Co., St Paul, Minnesota, USA) which is based on diffusion of 

a coloured fatty acid ester along porous wick (Robertson, 2006; Taoukis, 2008). 

Another group of indicators provides information about the quality of a product; for 

example, freshness or ripeness via microbial growth or chemical changes. The number 

of practical concepts is limited, but there is a potential for freshness indicators based on 

quality indicating metabolites, such as O2, CO2, diacetyl, ammonia, organic acids, 

ethanol, biogenic amines, hydrogen sulfide, food pathogens. One example is the 
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Ageless-EyeTH oxygen indicator (Mitsubishi Gas Chemical Co., Japan) which changes 

in colour from pink (no oxygen, 0.1% or less) to blue (0.5% or more) in about 5 minutes 

after contact with oxygen (Hogan and Kerry, 2008), but this system is expensive which 

makes it unattractive for industrial use. Other examples include CO2 indicators based on 

colorimetric films changing subsequently from violet (0% CO2) to yellow (100% CO2) 

(Mills and Skinner, 2010) and fizziness indicators for carbonated beverages which, 

depending on the headspace pressure of CO2 change their colour (Mills and Skinner, 

2011). These indicators can also be used for integrity checks of MAP and controlled 

atmospheres (CAs) packages providing non-destructive leak detection. One indicator for 

ammonia detection uses pH indicator bromocresol basic green incorporated in a 

cellulose acetate matrix. A visual colour change is reported within approximately 5 min 

when exposed to an ammonia step from 0 to 14.29 ppm and a shelf-life of up to four 

months when kept in dark and dry conditions. The sensor indicates the spoilage of the 

product through visual colour change for convenient use in food packages (Pacquit et 

al., 2006). 

The ripeness indicator RipeSenseTM works by detecting aroma components released 

by the fruit as it ripens. Originally developed for pears (Sharrock and Henzell, 2009) to 

quantify the changes in ethylene via colour changes, this allows the consumer to choose 

fruit that best appeals to their taste (Pocas et al., 2008; Robertson, 2006).  

In addition to the indicators, different gases, chemicals and microorganisms can be 

detected and quantified by sensors. O2 gas sensors are the most developed and already 

commercialized by PreSense, OxySense, Mocon and Luxcel Biosciences (Cork, 

Ireland). These sensors are based on luminescent quenching of phosphorescent 

platinum(II)-porphyrin complexes incorporated in polystyrene matrix giving signals in 

the microsecond range and optimized for O2 sensing in the range 0-21% O2. They have 

already been tested in many different food matrices, including meat (Smiddy et al., 

2002a), fresh produce (Borchert et al., 2012), cheese (Hempel et al., 2012b), beer 

(Hempel et al., 2012a). Other approaches being used successfully include resonance 

energy transfer and phase fluorimetric detection (Neurauter et al., 1999). 
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Several CO2 sensors are described in the literature as being feasible for food 

packaging. One common strategy is to use 1-hydroxypyrene-3, 6, 8-trisulfonate (HPTS) 

and Ru-(dpp) in a sol-gel matrix applying the Dual Luminophore Reference (DLR) 

scheme (Bültzingslöwen et al., 2002). This approach is compatible with established 

phase domain instrumentation for lifetime-based detection (described in chapter 

1.2.1.3). 

Furthermore, sensors for the detection of chemical compounds, such as ammonia 

and humidity are available as well. One approach for ammonia makes use of 

fluorescence energy transfer applying donor-acceptor complexes immobilized in PVC 

and a sol gel. This system comprises the use of rhodamine B which has a fluorescence 

intensity which is proportional to the concentration of the analyte and when exposed to 

ammonia it gets converted into a colourless, non-fluorescent lacton (Preininger and 

Mohr, 1997). An optical and inexpensive relative humidity (RH) optode was fabricated 

using the water-sensitive luminescent dye [Ru(phen)2(dppz)]2+ immobilized in 

poly(tetrafluoroethylene). This sensor was applied to aw measurements in foods; its 

operational range is reported from 4-100% RH and response and recovery times are 

shorter than 1.4 and 1.2 minutes, respectively. The sensor is validated in the temperature 

range 10-30°C; its stability is 2.5 years in discontinuous measurements (Bedoya et al., 

2006). 

Biosensors provide information about biological species and reactions. They 

consist of bioreceptors, such as enzymes, antigens, microbes, hormones or nucleic acids 

specific to target analyte, capable of detecting food pathogens, such as Staphylococcal 

enterotoxin A and B, Salmonella typhimurium, Salmonella group B, D and E, E.coli 

0157:H7, Campylobacter sp. and Listeria monocytogenes (Kuswandi et al., 2011). One 

commercially available product for pathogen detection is ToxinGuardTM (Toxin Alert, 

Ontario, Canada) based on the visual diagnostic system of incorporated antibodies 

printed on polyethylene-based plastic (Bodenhammer, 2002). Furthermore, a time-

temperature biosensor has been developed based on a chipless radio frequency circuit 

that can be read with a hand-held scanner. This can be integrated with the barcode and 
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simultaneously read with one scanner to keep track during refrigerated transports 

(http://www.aditus). 

Category b: Convenience represents a lifestyle that customers are willing to pay 

additionally. One example of this is thermochromic inks. They are printed on labels or 

containers and if heated or cooled they give colour indication on the optimal 

consumption temperature. Microwave doneness indicators (MDI) work on the same 

principle, indicating when the product is heated enough to be served. As the field 

distribution in microwave ovens is complicated optimal effects are not always provided. 

The observation as to whether or not the colour of the indicator has changed is also not 

easy to observe, especially when the microwave is still closed.  

Traceability and supply chain management has been strongly improved by the 

introduction of RFID. Small tags are incorporated in food packaging containing 

information about the history of the product and other useful details about storage and 

handling after manufacturing. Because RFID tags are still expensive, they are mainly 

used in secondary and tertiary packaging (Robertson, 2006). 

Category c: Theft and counterfeiting devices include holograms, special inks and 

dyes, laser label and electronic tags (Jotcham, 2005) so far have had limited use in food 

packaging because of cost reasons, but are actively developing. Tamper-evident 

technologies have been developed based on permanently colour changes or words such 

as ‘open’ becoming visible on labels or seals.  
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Table 1.2: Intelligent packaging devices. The indicators/sensors are ranked in order of 

appearance based on their commercialization and usage (adapted from Kerry and Butler, 

2008). 

Cat. Indicators/ 
Sensors Determination of Principle 

Packaging types 
(Products) 

 
Status Ref. 

 
a) 
 

TTI (external) Temperature 
Mechanical,  
chemical, 
enzymatic 

Chilled and frozen 
products 
(meats, poultry) 

 
Commerc. (Vaikousi et 

al., 2009) 

 
 
a) 

Freshness 
indicators 

Microbial growth, chemical 
changes (diacetyl, ammonia, 
organic acids, ethanol, 
biogenic amines, CO2, 
hydrogen sulfide) 

Biochemical 
Perishable foods 
(fish, meats) 

 
 
Commerc. 

(Barat et 
al., 2008) 

 
b) 

Thermochromic 
inks 

Temperature Visual 
Containers 
(heated or cooled) 

 
Commerc. 

(Vagina et 
al., 2009) 

 
a) O2, CO2 indicators 

Packages integrity, CO2 and 
O2 

 
Optochemical 

MAP (meats, 
cheese) 

 
Commerc. 

(Mills, 
2005) 

 
b) 

Microwave 
doneness 

Temperature Visual Microwave food 
 
Commerc. 

(O'Farrell et 
al., 2007) 

 
b) 

RFID tags Identification, tracking Electronic 
All packaging 
(meats) 

 
Commerc. 

(Michael 
and 
McCathie, 
2005) 

 
 
a) Ripeness 

indicators 

Volatile metabolites 
(diacetyl, ammonia, ethanol,  
amines, CO2, hydrogen 
sulfide 

Biochemical 
Perishable foods 
(pears, kiwis, 
apples) 

 
Commerc. 
for pears 

(Lang and 
Hübert, 
Sharrock 
and 
Henzell, 
2009) 

 
a) O2 gas sensors 

Packages integrity, 
permeability, O2 

Electrical, optical, 
 chemical 

MAP, CA (meats, 
cheese, salad) 

Commerc. 
for research 

(Papkovsky 
et al., 
2002b) 

 
a) Biosensors 

E.coli, Salmonella sp., 
Campylobacter sp., Listeria 
sp., temperature 

Biological  
reactions  

MAP, CA (meats, 
chilled and frozen 
products) 

Some 
establ. for 
research 

(Terry et 
al., 2005) 

 
 
a) Chemical sensors Humidity, ammonia, etc. Optochemical MAP, CA (fish) 

Some 
establ. for 
research 

(Preininger 
and Mohr, 
1997, 
Somani et 
al., 2001) 

 
 
a) 

Other gas sensors 
(except O2) 

Packages integrity, 
permeability, CO2, etc. 

Electrical, optical, 
 chemical 

MAP and CA 

 
 
In develop. 

(Bültzingslö
wen et al., 
2002) 
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1.2 Optochemical Sensors for Food Packaging 

An optical sensor is a device that produces optical response to the analyte of 

interest which can be read by an instrument or by visually detection. These sensors 

usually comprise an indicator dye in solution or in a suitable polymer matrix for 

improved sensitivity and selectivity. Of practical use for intelligent packaging are solid-

state sensors which can be easily incorporated on the inside of the package and read 

through the material.  

An ideal sensor for food packaging should fulfil a number of requirements. For 

example it should be inexpensive (i.e. ca. < 1.6 cents per cm2); it should not require an 

expensive piece of analytical instrumentation or specially trained persons for the 

measurement; it should be non-toxic and have non-water soluble components that have 

food contact approval; it should have a sufficiently long shelf-life under typical 

conditions of use and it should be easily incorporated in food packages (Mills, 2005). 

Very important is the monitoring of the main components of headspace gas, 

especially O2 and CO2, in MAP systems to optimize packaging conditions and improve 

shelf-life or relate their changes to food quality inside the pack. Other quality parameters 

signify food deterioration, particularly of microbial growth and enzymatic degradation, 

and these include RH, pH and ammonia.  

For example, the latter is a breakdown product of fish muscle proteins and hence a 

potential indicator for fish spoilage. The concentration of ammonia in fresh marine fish 

increases over time, depending on fish species, temperature and other storage conditions 

(atmosphere, water activity (aw), microbial cross-contamination, etc.). Increased water 

activity in packaged products promotes mould, yeast or bacteria growth and is hence 

unwanted. Sensors for RH detection find application in the research area (such as beef 

jerky) in order to optimize desiccant usage as an active packaging tool (ammonia and 

RH sensors are described in chapter 1.1.2). 
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1.2.1 O2 Sensors 

A number of detection methods for oxygen have been developed and used, such as 

the Winkler method (Broenkow, 1969; Winkler, 1888), manometric methods (Martin, 

1932), oxygen electrodes (Clark, 1956), GC (Mu et al., 2009) and mass spectroscopy 

(MS) (Boumsellek and Ferran, 2001). Their inherent limitations include intensive labour 

and cost, long measurement time, no real time analysis and impractical sample handling.  

Optical O2 sensors possess certain advantages over traditional methods and are able 

to overcome some of their limitations. Quenched luminescence oxygen sensing exploits 

the ability of molecular oxygen to quench luminescence of certain dyes, and this can be 

used for O2 quantification by applying a non-interfering and non-destructive technique. 

Samples can be measured in kinetic mode, where changing properties of luminophore 

due to oxygen variations can be monitored or simply end-point measurements can be 

carried out with no delay between measurement and results. In the 1980s, the first 

quantitative method based on this principle was described, using either solid state 

sensors (Lübbers and Opitz, 1983) or (mostly for biological applications) soluble probes 

(Vanderkooi et al., 1987).  

 

1.2.1.1 Quenched Luminescence O2 Detection 

Luminescence is the emission of light by a substance and occurs from electronically 

excited states (Lakowicz, 2006). Depending on the nature of the excited state, one can 

distinguish fluorescence and phosphorescence. The former is the emission of photons 

from the singlet and the latter from the triplet excited state. When a photon is absorbed 

by a molecule it is excited from the ground state (S0) to vibrational levels of excited 

singlet states (S1, S2…Sn). This occurs in approximately 10-15 seconds, if the energy of 

the photon matches the energy difference between the two states. Subsequent internal 

conversion passes the molecule to the lowest vibrational level of the first excited singlet 

state (S1) in ~10-12 seconds. Fluorescence is the emission of light due to transition from 

S1 to S0 (approximately in 10-9 seconds). Alternatively, molecules in the S1 state can 

undergo an intersystem crossing to the first triplet state T1. The emission from T1 to S0 is 
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termed phosphorescence. It typically occurs in millisecond time scale and shifts to 

longer wavelength (lower energy) relative to fluorescence. Due to the internal 

conversion of the emitted light, both fluorescence and phosphorescence, is of lower 

energy than the absorbed one, which is in literature described as ‘Stokes shift’ (Parker, 

1968). The entire process is described by a Jablonski diagram (Fig. 1.3). 

 

Figure 1.3: Jablonski diagram of energy transitions within molecules 

 

In addition to luminescence emission, excited state molecules can undergo dynamic 

(collisional) quenching by O2 and it is therefore diffusion limited. At a constant 

concentration of fluorophore and excitation intensity the molecule returns 

radiationlessly to the ground state resulting in a reduction of the luminescence intensity 

and lifetime (LT) according to the Stern-Volmer (SV) equation: 

I0/I = τ0/τ = 1+KSV*[O2] = 1+kq*τ0*[O2]  Eqn. 1.1 

Where I0 and I are the intensities and τ0 and τ are the lifetimes in the absence and 

presence of quencher, KSV is the SV quenching constant and kq is the bimolecular 
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quenching constant. O2 can be quantified by using the predetermined calibration 

function for luminescence intensity or LT: 

[O2] = (I0-I) / (I*k q*τ0) = (τ0-τ) / (τ*τ0*k q)   Eqn. 1.2 

Besides the collisional quenching by O2, a number of other quenching processes are 

known including photobleaching, inner filter effect, energy transfer and molecular 

rearrangement.  

For an ideal situation of homogeneous population of luminophore molecules, a 

linear SV plots reflect a single quenching process. However, many solid-state sensor 

systems display heterogeneity of their luminescence and quenching properties resulting 

in a non-linear behaviour (Fig. 1.4). Due to a number of quenching processes, these 

sensors require more complex mathematical models to describe. 

 

Figure 1.4: Linear (solid line) and non-linear (dashed line) SV plots. 

 

1.2.1.2 O2-Sensitive Materials 

Porphyrin dyes 

When choosing optimal dye for O2 sensing application several aspects should be 

considered, such as absorbance and emission spectra, quenchability, photostability, 

brightness, physical-chemical properties, availability and cost. The sensitivity of the dye 
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is determined by the non-quenched luminescence lifetime and the SV constant. The SV 

equation shows that a dye with a longer lifetime in the excited state has a greater 

possibility of being quenched by O2. Absorbance and emission spectra in the visible and 

red/near-infrared range allow one to use simple optoelectronic systems, whereas 

excitation in the UV range is more damaging and prone to optical interferences. High 

intensity illumination, exposure to ambient light and long term monitoring are key 

factors for their photostability.  

Phosphorescent metallo-porphyrins require less expensive instrumentation and have 

attractive photophysical properties for practical use in sensor systems (common O2-

sensitive dyes and their properties are shown in Table 1.3). Their chromophoric moiety 

consists of an aromatic tetrapyrolic macrocycle which can accommodate central ligands 

(metal ions, protons) and peripheral substituents in pyrrole and meso-positions. 

Modifications can involve the macrocycle itself giving rise to chlorins, porphyrin-

ketones, benzoporphyrins, aza-benzoporphyrins, etc. which have distinct (longwave-

shifted) spectral and lifetime characteristics (Dolphin, 1978; Kadish et al., 2010). These 

features provide flexibility in tuning the optical (absorption, emission) and physical-

chemical (functionality, hydrophilicity, linkers) properties of porphyrin dyes and in 

designing new reporter molecules for sensor applications (Borisov et al., 2010b; Briñas 

et al., 2005; Khalil et al., 2010). 

Pt(II) and Pd(II) based porphyrins have been actively exploited in phosphorescence 

lifetime based O2 sensing, providing simple, robust and versatile systems (McDonagh et 

al., 2008; Papkovsky and O'Riordan, 2005; Stich et al., 2010; Tian et al., 2010; 

Wolfbeis, 2008). They produce longer lifetime values than ruthenium based dyes (1-5 

µs), leading to a better sensitivity to oxygen quenching. Platinum based porphyrins 

possess lifetimes in the range of 40-100 µs, while it is increased by ~10 times for 

Palladium based porphyrins (400-1,000 µs). 
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Table 1.3: Different porphyrins -PtTFPP, PtOEPK, PtTBP- and some of their properties. 

Name Platinum(II) - 

tetrakis(pentafluorophenyl) 

porphyrin 

(in PS) 

Platinum(II)- 

octaethylporphyrinket

one 

(in PS) 

Platinum(II)-

tetrabenzoporphyrin 

(in PS) 

Abbreviation PtTFPP PtOEPK PtTBP 

Structure 

 
 

 

Exc./Em. 

(nm) 

395, 508, 541 / 650 397, 590 / 760 431, 566, 617 / 777 

Decay time 

(τ0, µs) 

~46 ~61 ~53 

Reference (Amao et al., 2000) (Papkovsky and 

Ponomarev, 1995) 

(Borisov et al., 2008) 

 

Soluble O2 probes 

Soluble oxygen probes usually consist of a hydrophilic oxygen-sensitive 

luminescent dye in solution (small molecule probes) or linked to hydrophilic 

macromolecular carriers such as proteins or PEGs. In recent years micro- and 

nanoparticle based probes have been under active development, since this approach 

provides greater flexibility with indicator dyes, higher photostability and brightness. 

Compared to thin film solid state sensors these probes are directly exposed to the 

sample, they are more susceptible to interference by sample components, they 

contaminate the sample and they cannot be reused. On the other hand this type of probes 
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allows flexibility, high throughput and automation with large number of samples 

analysed at the same time (on a 96-well plate). These probes have been successfully 

used in a number of biological applications: such as, microbial growth determination 

(O'Mahony and Papkovsky, 2006), enzyme and cell-based screening and respirometry 

(Hynes et al., 2006), and in food quality application such as rapid TVC (total viable 

count) determination in meat (O’Mahony et al., 2009), fish (Hempel et al., 2011) and 

green produce (Borchert et al., 2012a). 

 

Solid state sensors  

Solid-state O2 sensors consist of an oxygen-sensitive luminescent dye embedded in 

polymer material (usually hydrophobic which provides the desired sensitivity, 

selectivity and other operational requirements. They are usually fabricated by dissolving 

the components in organic solvent and applying such sensor ‘cocktail’ on a suitable 

support material followed by a drying or curing process. As these sensors need to 

produce a fast response to the analyte of interest, the polymer matrix needs to be 

permeable to oxygen. Many of such sensors have been reported and a few of them are 

produced commercially including the silicone rubber (Mills, 1997), modified sol-gel 

film (ormosils) (Basu, 2007), modified PVC (Papkovsky et al., 1997), polymethyl 

methacrylate (PMMA) (Mills and Thomas, 1997), PS (Papkovsky, 1995) and solvent 

crazed polymer based O2 sensors (Gillanders et al., 2010). This sensor approach has the 

advantage of not contaminating the sample, continuous (depending on their shelf-life) 

and disposable use (as their cost is very low), and high optical signals allowing 

contactless and non-destructive measurements which are important for food packaging 

applications.  

 

1.2.1.3 Measurement Formats 

The main O2 measurement formats are luminescence intensity at one wavelength, 

ratiometric intensity measurements and a more sophisticated luminescence lifetime 

measurement (Papkovsky, 2004). Luminescence intensity measurements on a single 
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wavelength are influenced by several factors such as luminophore concentration, 

scattering, detector performance and sample positioning (Demas et al., 1999). 

Furthermore, a serious problem is represented by photobleaching of the luminophore 

which reduces luminescent signals and accuracy of O2 determination. Compensation 

approaches include the use of luminophore with adequate photostability or the 

minimising of light exposure by reducing the intensity or duty cycle of excitation. 

However, alternative methodologies can be considered which are independent of these 

factors. 

Ratiometric intensity based probes typically contain an oxygen–sensitive indicator 

and a reference dye incorporated in the same polymer matrix. The two dyes should be 

excitable at one wavelength and their emission spectra should not overlap much to keep 

energy transfer between the dyes to a minimum. The ratio of the emission intensities of 

the indicator dye and the reference dye is used to quantify the O2 concentration, based 

on the pre-determined calibration. This improves system performance and stability but 

still cannot fully compensate for light scattering, reflection and differential sample 

absorbance influencing the measurement (Cywinski et al., 2009). 

Another approach consists of phosphorescence LT based methods for O2 detection 

which have been widely used. Luminescence LT (τ) is an average time which the 

luminophore stays in the excited state before emitting a photon and it can be measured 

by time domain (TD) or frequency domain (FD) methods (Lakowicz, 2006). 

In the time domain method the luminescence decay is excited by a short pulse of 

light (shorter than luminophore lifetime) and its kinetics is measured, and LT 

determined from the following equation: 

It = I0e
-kt = I0e

-t/τ    Eqn. 1.3 

I0 and It are fluorescence intensities at times zero and t, respectively, k is a radiative 

rate constant and τ is the LT. As this approach is rather complicated a more simple 

method called Rapid Lifetime Determination (Fig. 1.5) has been established which 

enables measurement of emission intensity signals (D1, D2) at two delay times (t1, t2) 

and LT calculation:  
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τ = (t2-t1) /ln(D1/D2)     Eqn. 1.4 

 

 

Figure 1.5: Principle of time-resolved fluorometry and Rapid Lifetime Determination 

method. 

 

FD measurements require luminophore excitation with modulated excitation light 

(single or square wave). The phase shift (Ф) between the excitation and emission signals 

is measured and related to the lifetime of the dye as follows (Demas et al., 1999): 

Ф = -arctan(ω*τ),    Eqn. 1.5 

ω = 2*π*f,    Eqn. 1.6 

where f is the frequency of excitation in Hz. This method allows simple and more 

robust measurement of emission lifetime, the principle of which is depicted in Fig. 1.6. 
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Figure 1.6: Scheme of phase modulation method (Bailey Jr and Rollefson, 1953) 

 

LT based sensing has the advantage of reduced susceptibility to instrumental 

fluctuations, luminophore degradation, sensor positioning and measurement geometry. 

 

1.2.1.4 O2 Sensing in Food Packaging 

O2 is the main cause of food spoilage by aerobic microorganisms as they use O2 for 

growth. Furthermore, many enzyme-catalyzed reactions, such as browning of fruit and 

vegetables or degradation of flavours and rancidity of fats are also caused by O2. 

Generally, oxygen should be excluded but in certain cases it is beneficial to have 

elevated O2 levels in packs, for example to maintain the natural red colour in meats, to 

maintain respiration (in fruit and vegetables) and to inhibit growth of anaerobic 

organisms (in some types of fish and in vegetables). The ability of continuous, non-

invasive and quantitative measurement of O2 using optical sensor technology during the 

shelf-life of a MAP product is therefore precious.A number of different O2 sensor 

systems have been developed for food packaging applications. 

Another system works with phosphorescent complexes of porphyrin-ketones which 

were designed for particular use of oxygen probes. By applying PtOEPK in thin film 

polymer coatings (PS) (Papkovsky, 1995) on a microporus light scattering support (e.g. 
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filter paper) (Ogurtsov and Papkovsky, 1998) a luminescence LT based O2 sensor can be 

fabricated which is suitable for food packaging. This approach was first introduced for 

food packaging by Papkovsky et al. (2000) using FD measuring method and found 

application in several food products, including vacuum packed raw and cooked meat, 

smoked fish, MAP sliced ham and bread (Fitzgerald et al., 2001), sliced ham products 

(Papkovsky et al., 2002a), vacuum packed beef (Smiddy et al., 2002a), MAP and 

vacuum packed chicken patties (Smiddy et al., 2002b), muscle-based sous vide products 

(O'Mahony et al., 2004) and cheddar cheese (O’Mahony et al., 2006). 

Furthermore, this system was optimized with an altered sensor cocktail (using 

benzoporphyrins incorporated into PS polymer media (www.luxcel)) and an improved 

scanning device called OptechTM working in the range of 0-30% with a resolution of 

0.001%. Finally commercialized by Luxcel BiosciencesTM and MoconTM, this system 

was used in various food quality studies, such as packaging containment failures in 

packaged cheese (Hempel et al., 2012b), to monitor residual oxygen in pre- and post-

pasteurized bottled beer (Hempel et al., 2012a) and as quality parameter for green 

produce (Borchert et al., 2012a). 

A commercially available system called OxyDotTM and is made of 

[Ru(dpp)3](ClO4)2 in silicone rubber dot (5 mm diameter, 0.2 mm thick) 

(http://www.oxysense). These sensors withstand pasteurisation and are produced to 

work in oil, water or air atmosphere. Oxysense system performs measurements in 0.1 

seconds with reproducibility better than 1% (0.2% O2). This system has already found 

application in oxygen scavenging studies (Li et al., 2008), in MAPed soy bread with and 

without chemical preservatives (Pascall et al., 2008), during investigations of oxygen 

indicators (Roberts et al., 2011), etc. 

 

1.2.2 pH Sensors 

pH is usually measured in the laboratory for the control of freshness of food during 

storage (e.g. meat (Young et al., 2004), water (Dybko et al., 1997)) and it is an 

important parameter in food processing (as in bioreactors (Jeevarajan et al., 2002; Kensy 
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et al., 2009)). For example, in beer brewing pH determines enzyme activity responsible 

for protein and saccharide degradation in mash (Briggs et al., 2004). 

Optical pH sensors offer the advantages of simplicity, immunity to electromagnetic 

interferences and they respond by changing their absorbance or fluorescence parameters. 

Typical absorbance based dyes are phenol red (Wu et al., 2009), bromophenol blue 

(Ferreira and Girotto, 2009) and cresol red (Truppo and Turner, 2010, Wu et al., 2010); 

and fluorescent - fluorescein (Jin et al., 2010), pyranine (Wong and Fradin, 2011) and 

azo dyes (Mohr and Wolfbeis, 1994). Measurement at a single wavelength suffers from 

dye photobleaching, drifts in optoelectronics and measurement geometry. Ratiometric 

detection can overcome some of these bottlenecks by measuring at two wavelengths. 

This has been reported for meso substituted Pt(II) or Pd(II) porphyrin dyes (Papkovsky 

et al., 1996) and measurement with two different LEDs (400/450 nm) providing pH 

detection in the range of pH = 2.5 to 7.5 (Borchert et al., 2010) (see also chapter 2). 

Another approach uses FITC conjugated quantum dots (QD) and fluorescence 

ratiometric pH determination (515/600 nm). QD possess resistance to photobleaching, 

high brightness, narrow emission bands and broad excitation spectra (Jin et al., 2010). 

Very little is reported on phosphorescent pH indicators and lifetime measurements 

(Gonçalves et al., 2008, Turel et al., 2008). Luminescence of these dyes is often low and 

quenchable by oxygen which needs to be accounted for (Borisov et al., 2010a; Niu et 

al., 2005). 

pH-sensitive indicator dyes are incorporated in a suitable polymer matrix which 

provides proton permeability to produce solid-state sensors. Good attachment to the 

support material and minimal sensor degradation and leaching of its component(s) are 

critical. Polyamine and polypyrrole have been found as suitable organic material for pH 

sensing aqueous solutions. These conducting polymers, which consist of spatially 

extended T-bonding, eliminate the need of organic dyes (Pringsheim et al., 1997). The 

pH sensitivity of polyaniline and its derivatives depends on the substituent and the size 

of the acidic anion dopant in electropolymerization. However, hysteresis observed in 

UV-VIS measurements with polyaniline membranes restricts their use as optical pH 

sensors to a narrow pH range of 5 to 8 (Lindfors and Ivaska, 2002). Other applied 
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polymers are: poly(hydroxyethylmethacrylate) (Ferguson et al., 1997), aminated 

polystyrene (quaternized) (Shakhsher et al., 1994) or aminoethylcellulose fibres (Posch 

et al., 1989).  

 

1.2.3 CO2 Sensors 

CO2 inhibits growth of many aerobic bacteria and moulds. In general, high level of 

CO2 extends product shelf-life. Also CO2 is absorbed by fats and water causing flavour 

tainting, drip loss or pack collapse. In MAP a balance needs to be struck between the 

commercially desirable shelf-life of a product and the degree to which its negative 

effects can be tolerated. Therefore, detection of CO2 is important for food packaging, 

shelf-life and freshness studies (Fu et al., 1992). Due to microbial growth the CO2 

concentration in packs can increase during storage, a correlation between CO2 

concentration and growth of microbes has been reported for aseptically packaged soup 

(Mattila et al., 1990). 

The main techniques for CO2 measurement include Severinghaus type electrode, 

infrared (IR) spectroscopy, gas chromatography (GC), mass spectroscopy (MS) and 

optochemical sensors. The Severinghaus CO2 sensor consists of a glass electrode 

immersed in bicarbonate buffer and covered with a hydrophobic gas permeable 

membrane, which detects pH changes (Severinghaus and Bradley, 1958). Its limitations 

are the use of liquid reagents, indirect detection or ionic form of CO2, interference by 

basic or acidic gasses, slow response times and high maintenance costs. IR absorption 

spectroscopy allows precise and direct CO2 detection via absorbance at 2.6 and 4.3 µm, 

however it suffers from strong interference by water vapour and enclosure materials 

(plastics) and requires rather sophisticated equipment and fixed measurement geometry 

(Schulz et al., 2004, Thrall et al., 1996). GC and MS techniques are also destructive, 

slow (~20 minutes), have limited throughput and require sampling and calibration 

(Sipior et al., 1996). 

Optochemical CO2 sensors have high application potential. Initially such systems 

relied on the principles of a Severinghaus electrode using a pH-optode instead of the 
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electrode. They demonstrated simplicity, portability, low cost, fast response and 

flexibility, but possessed weaknesses similar to the electrodes (Neurauter et al., 1999). 

This was overcome in 1992 by the approach proposed by A. Mills (Mills  et al., 1992, 

Mills and Chang, 1993, Mills et al., 1997), in which the pH sensitive dye was 

incorporated in a hydrophobic polymeric membrane together with hydrophobic phase 

transfer reagent (PTA) such as tetraoctylammonium hydroxide (TOA-OH). The PTA 

forms ion pairs with the indicator molecules preventing their leaching and also retaining 

some water necessary for system operation (Burke et al., 2006). To facilitate diffusion 

of CO2 and reduce response time, a plasticizer can be added to the polymeric membrane 

(Schröder and Klimant, 2005). 

 

1.2.3.1 Principle of Optical CO2 Sensing 

The majority of existing optochemical CO2 sensors are based on pH indicators. 

When water is present in the sensing system, CO2 can be detected due to its high 

solubility in water. Carbonic acid is formed and gets dissociated into hydrogen 

carbonate and carbonate ions (Mills and Skinner, 2011):  

CO2(g) � CO2(aq.)    Eqn. 1.7 

CO2(aq.) + H2O � H2CO3   Eqn. 1.8 

H2CO3 � H+ + HCO3
-    Eqn. 1.9 

HCO3
- � H+ + CO3

2-    Eqn. 1.10 

As water becomes acidic through this reaction, the pH change is detected and is 

converted into CO2 concentration using calibration. 

 

1.2.3.2 Sensing Schemes and Food Packaging 

Several CO2 sensors, based on different sensing schemes, have been developed, 

characterized and described with the potential for food application. 
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Intensity based 

Absorbance or fluorescence/phosphorescence based measurements usually rely on 

measurement of changes in absorbance or luminescence intensity. One absorbance 

based system incorporates m-cresol purple or cresol red in EC plastic film. These 

sensors are water insoluble, have long shelf-life, response and recovery time of less than 

3 seconds (Mills et al., 1992). A pCO2 sensor for marine sediments is described which 

uses HPTS and TOA-OH in an EC matrix with a Teflon outer coating to eliminate 

interferences by ionic species (protons). The sensor shows a fast response in a range of 

0.05 -7 hPa pCO2 with a detection limit of 0.04 hPa (Neurauter et al., 2000).  

One recent example of fluorescence based CO2 sensor uses internal referencing 

scheme, thus reducing the drawbacks of single wavelength systems (see chapter 1.2.1.3). 

The sensor comprises of sol-gel incorporation of HPTS and TOA-OH using two LEDs 

with emission peaks at 405 and 450 nm, quantitative CO2 determination was achieved in 

the range of 0 – 30%. Response and recovery times were 39 seconds and 1.8 minutes, 

respectively, and limit of detection was 35 ppb (Wencel et al., 2010). 

 

Dual Luminophore Referencing (DLR) 

A DLR-type CO2 sensor consists of two luminophores incorporated in one sensing 

membrane. The indicator dye has typically a short lifetime whereas the reference dye 

has a long lifetime and ideally is unaffected by CO2 and O2. To use one excitation light 

source, photodetector and filter combination, the luminophores need to have overlapping 

excitation and emission spectra. Each dye generates its own luminescence signal, which 

can be represented as two sine waves (shown in Fig. 1.7), resulting in superposed 

amplitude and phase signals (total signal).  
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Figure 1.7: Total sine wave signal, generated by superposition of the indicator and 

reference dye signals (adapted from Bültzingslöwen, 2004). 

 

The phase shift, φind for the indicator dye is close to zero due to its very short 

lifetime, and φref for the reference dye is determined by the modulation frequency f and 

decay time. The resulting phase is a superposition of these two signals and is expressed 

as total measured signal φtotal. If the indicator signal changes its amplitude due to an 

alteration of the CO2 concentration, this affects the measured phase shift 

(Bültzingslöwen et al., 2002). This detection scheme is compatible with the well-

established phase-fluorometric oxygen sensor technology and allows robust lifetime-

based detection of CO2 with all the advantages of this method (see 1.2.1.3). 

This DLR scheme has been applied to the determination of ions (Huber et al., 

2000), pH (Liebsch et al., 2001), amines (Mohr et al., 2001) and CO2 (Bültzingslöwen 

et al., 2002). Such CO2 sensor for the range up to 100% CO2 uses fluorescent pH 

indicator 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) and long-decay reference dye 

Ru(dpp)3
2+ immobilized in a hydrophobic organically modified silica (ORMOSIL) 

matrix. By changing the PTA TOA-OH to CTA-OH it was possible to increase 

measurable range to 100% CO2 with a 13.5 degrees change of the phase shift between 0-

100% CO2. This is appropriate for modified atmosphere packaging (Bültzingslöwen et 

al., 2002), however spectral characteristics of the sensor are not quite optimal.  
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A commercially available DLR based system developed by PreSens with sensors 

designed for the monitoring of dissolved CO2 (beverages) within a concentration of 10-

250 hPa. Such sensors spots can be located inside of glass or plastic bottles and 

measured non-destructively through the vessel applying fibre optic technology 

(http://www.presens). 

 

Inner Filter Quenching 

Absorption of excitation light and/or fluorescence by the sample called inner filter 

effect was also used in solid-state CO2 sensors (Leese and Wehry, 1978). When using 

long-decay indicator dyes, the sensor material needs to be O2 impermeable to eliminate 

O2 quenching (see chapter 1.2.1.1). One such system consists of a phosphorescent 

platinum octaetylporphyrin (PtOEP) and a pH-sensitive α-naphtholphthalein (NP) dye in 

poly(vinylidene chloride-co-vinyl chloride-ethyl cellulose) (PVCD-EC) thin films or 

microparticles having low permeability to oxygen (de Vargas-Sansalvador et al., 2009). 

These sensors showed fast response times (<9 s), reproducibility and shelf-life of > 4 

months. A low-cost handheld optoelectronic device with a paired emitter–detector diode 

arrangement acts as a colorimetric detector for these sensors (Carvajal et al., 2010, de 

Vargas-Sansalvador et al., 2011).  

 

Förster Resonance Energy Transfer (FRET) 

As the number of luminescent pH indicators with long lifetimes, suitable pKa 

values for CO2 detection on low cost instrumentation is limited, FRET scheme can be 

used to couple colourimetric pH indicators with lifetime based sensors (see chapter 

1.2.1.3). In this case, the signal from a colourimetric pH indicator is converted into 

lifetime information using the reporter dye. In the FRET scheme of CO2 detection, a pH 

indicator is interacting with a long decay reference dye which is pH and CO2 insensitive. 

To produce efficient energy transfer, the emission band of the reference dye (donor) 

needs to have high overlap with absorption band of the pH indicator (acceptor) (as 

shown in Fig. 1.8) and the two dye molecules be in close proximity (usually between 
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20Å and 60Å) to each other. Then interaction occurs between the electronic excited 

states of the two dye molecules via dipole-dipole forces resulting in a transfer of energy 

from the donor to the acceptor molecule without emission of a photon (i.e. 

radiationless). The acceptor pH-sensitive dye is typically combined with a PTA such as 

TOA-OH to form ion pairs. Such ion-pairing sensor design usually shows robust optical 

response to CO2 and allows tuning of sensitivity by changing the pH-sensitive dye (pKa 

value), the PTA (Bültzingslöwen et al., 2002), readout modality (absorbance or 

fluorescence) or spectral characteristics by selecting the pair of pH indicator and 

reporter dye. The interaction with CO2 is described as follows:  

A-Q+ xH2O + CO2 � AH + Q+ HCO3
- (x-1) H2O   Eqn. 1.11 

Where AH is protonated indicator form, A- - deprotonated form, Q+ - quaternary 

ammonium base. Thus, A- gets stabilized in the matrix by Q+, whereas CO2 neutralises 

Q+ and forms a lipophilic hydrocarbonate ion pair within the polymer matrix. High CO2 

levels produce more protonated neutral form AH which has low absorption and FRET, 

while low CO2 concentrations produce the opposite. 

 

 

Figure 1.8: Fluorescence emission spectrum of the Ru(dpp)3(TSPS)2 complex (solid 

line) and absorption spectra of Sudan III in the absence (dashed line) and presence 

(dotted line) of carbon dioxide (100%). The hatched area demonstrates the overlap of 

donor and acceptor spectra (adapted from Bültzingslöwen et al., 2003). 
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The FRET approach allows the measurement of luminescence intensity or LT (in 

FD or TD), and exhibits all the advantages of the lifetime based sensing. Thus far, one 

FRET sensor for measurement dissolved CO2 was described which uses 

tetraphenylporphyrin (TPP) and NP in a poly(isobutyl methacrylate) (P(IBM)) matrix 

and fluorescence intensity measurements (Amao and Nakamura, 2004b). Its response 

and recovery times were < 6 s, and no hysteresis was observed during the measurement 

(Amao and Nakamura, 2004a; Amao and Nakamura, 2004b; Amao and Komori, 2005). 

However, decay time based systems are more suitable for CO2 sensing and food 

packaging due to less susceptibility to disturbing factors. Fluorescent dyes, such as 

sulforhodamine 101 (SR101) (Preininger and Mohr, 1997) or ruthenium complexes 

(Bültzingslöwen et al., 2003; Kramer et al., 2009) have relatively short lifetimes of only 

a few nano- or microseconds. Metallo-porphyrins exhibit longer lifetimes (see chapter 

1.2.1.2) and promoting the conversion of an absorbance based signal into a 

phosphorescence decay time signal. Furthermore, a higher sensitivity, selectivity and 

compatibility with cheap light sources and detectors can be obtained.  

 

1.2.3.3 Materials for CO2 Sensing 

Since optochemical CO2 sensors have been introduced by applying an ion transfer 

system using a PTA incorporated into a polymeric membrane for protection (Mills et al., 

1992), several systems were developed. In general sensors consist of:  

a) dye(s), 

b) PTA, 

c) polymer(s), 

d) plasticizer and 

e) support material. 
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a) Typical indicators used are HPTS (Borisov et al., 2006; Bültzingslöwen et al., 

2002; Burke et al., 2006; Cajlakovic et al., 2006; Cajlakovic et al., 2009a; Schroeder et 

al., 2007; Wencel et al., 2010; Wolfbeis et al., 1988), NP (Amao and Nakamura, 2004a; 

Amao and Nakamura, 2004b; Amao and Komori, 2005; Amao et al., 2005; Carvajal et 

al., 2010; de Vargas-Sansalvador et al., 2011), thymol blue (Ali et al., 2011; Borisov et 

al., 2007; Nakamura and Amao, 2003; Neurauter et al., 1999), bromthymol blue 

(Borisov et al., 2007), m-cresol purple (Liebsch et al., 2000; Mills et al., 1992; Sipior et 

al., 1996), phenol red (Cajlakovic et al., 2009b), cresol red (Mills et al., 1992) and 

recently Sudan III (Bültzingslöwen et al., 2003). Depending on the sensing scheme 

more than one dye can be used (Cajlakovic et al., 2009a). Two dyes can also be 

separated in two different polymer films (de Vargas-Sansalvador et al., 2009). For 

example in the FRET or the DLR scheme the second luminophore is incorporated as 

reference molecule (section 1.2.3.2 Sensing schemes), in particular TPP (Amao and 

Nakamura, 2004a; Amao and Nakamura, 2004b; Amao and Komori, 2005; Amao et al., 

2005), PtOEP (Carvajal et al., 2010; de Vargas-Sansalvador et al., 2011; de Vargas-

Sansalvador et al., 2009), Ru(II)-complexes (Borisov et al., 2007; Bültzingslöwen et al., 

2003; Burke et al., 2006; Cajlakovic et al., 2006; Cajlakovic et al., 2009a; Cajlakovic et 

al., 2009b; Liebsch et al., 2000; Schroeder et al., 2007), Eu (III)-complexes (Nakamura 

and Amao, 2003), sulforhodamine (SR 101) (Sipior et al., 1996) or nile red (Ali et al., 

2011). Ideally, these dyes are insensitive to CO2 and produce long lived emission for 

convenient detection. The reasons for separating them may be to protect a dye from ions 

or gas, or to create a spatial hindrance to avoid close proximity.  

b) Phase transfer agents prevent dye leaching and retain water in the system which 

is necessary for system operation. To build ion pairs with the indicator, most of the 

developed systems use TOA-OH as PTA. To tune the measurable range of CO2 

concentrations cetyltriammonium hydroxide (CTA-OH) (Bültzingslöwen et al., 2002; 

Burke et al., 2006) and tetrabutylammonium hydroxide (TBA-OH) (Bültzingslöwen et 

al., 2002) were used.  

c) Ethyl cellulose (EC) is among the most frequently used matrix for CO2 sensors 

(Ali  et al., 2011; Amao and Nakamura; 2004a, Borisov et al., 2006; Cajlakovic et al., 
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2009b; Liebsch et al., 2000; Mills et al., 1992; Mills and Chang, 1993; Mills et al., 

1998; Nakamura and Amao, 2003; Neurauter et al., 1999; Schroeder et al., 2007; Sipior 

et al., 1996) as this polymer shows good protection properties and CO2 permeability. 

Some other polymeric membranes with similar characteristics were used, for example, 

PVCD in combination with EC (de Vargas-Sansalvador et al., 2009), sol gel matrices 

(Bültzingslöwen et al., 2002; Wencel et al., 2010) or their mixtures with EC 

(Bültzingslöwen et al., 2003), P(IBM), hydrogel (Wolfbeis et al., 1988), Eudragit 

RL100 (Cajlakovic et al., 2006), PDMS (Burke et al., 2006), P(TMSP) and silicone 

polymers (Borisov et al., 2007).  

d) Plasticizers are additives gelling the polymer, improving processability and 

flexibility of plastics by decreasing the viscosity, glass transition temperature and 

elasticity modulus of the final membrane, without alteration of the chemical 

composition of the polymer (Rahman and Brazel, 2004). Tributyl phosphate (TBP), 

dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, dioctyl 

phthalate and diisodecyl phthalate plasticizers were used (Mills et al., 1998). In the latter 

study, plasticizer/polymer compatibility for EC-based sensing films was assessed 

including its effects on sensor sensitivity, response and recovery times. 

e) A CO2 sensor support material should facilitate sensor handling and have no 

influence on the performance. Typical materials are glass (Amao and Nakamura, 2004a; 

Borisov et al., 2006; Cajlakovic et al., 2006; Mills et al., 1992; Nakamura and Amao, 

2003; Sipior et al., 1996), Mylar (Borisov et al., 2007; de Vargas-Sansalvador et al., 

2009) and PET (Burke et al., 2006; Ali et al., 2011) films. Not only the working 

characteristics determine the choice, the intended application needs to be considered as 

well. For example, an optimal support material of CO2 sensors for food packaging 

would be the packaging material itself, with the sensor exposed inside the package 

headspace.  

 

1.2.4 Multi-Parametric Systems 

Multi-parametric-systems combine the measurement of at least two parameters with 

one sensor system, usually by incorporating several dyes in one polymer encapsulating 
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media. Since O2 is omnipresent and plays an important role during chemical, biological 

or enzymatic reactions, O2 sensors are often employed in multi-sensors, such as 

O2/Temp, O2/CO2, O2/pH, O2/CO2/Temp, O2/pH/Temp.  

For determination of different parameters, different detection modalities can be 

applied or the signals need to be differentiated in spectral or time domains. The use of 

one sensor for more than one parameter will increase their practicality and cost 

efficiency. A variety of different systems have been developed but none of them have 

been used in food packaging so far.  

An O2/Temp sensor can be realized using two metalloporphyrins: PtTFPP-lactone 

which is highly sensitive to O2 but also to temperature and MgTFPP which is unaffected 

by O2 but responds to temperature (Gouterman et al., 2004).  

An approach to O2/CO2 sensing makes use of PtTFPP in PS for O2 detection and 

HPTS (ion paired with TOA-OH) in EC microparticles incorporated in a PDMS rubber 

as second layer. Another sensing scheme uses DLR method where the reference 

molecule is composed of iridium(III) curmarin complex microparticles in a PAN-PAA 

matrix (Borisov et al., 2006). 

Dual sensing of O2 and pH is from material point of view more difficult as the O2 

sensing requires usually materials that are highly sensitive to O2 but impermeable to 

protons and for pH sensing the contrary is the case. This problem was solved in a sensor 

for natural marine sediments based on time-resolved luminescence pH/pO2 mapping 

with a lipophilic fluorescein derivative and PtTFPP immobilized in a hydrogel matrix. 

As the pH sensitive fluorescein is lipophilic enough not to get washed out from the 

polymer it is permeable to both O2 and ions (Schröder et al., 2006). Alternatively, two 

different sensing modalities can be applied to detect the pH and O2 individually. An 

approach has been recently developed based on meso metallo-porphyrins which is 

described in detail in chapter 2. 
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1.3 Microbial Sensors 

Most natural foods have limited shelf-life and deteriorate quickly. Food spoilage 

can happen due to moulds, yeast or bacteria or natural degradation and make the product 

unsuitable for intake as it could cause serious illnesses and death as a result. Enzymes 

present in food also induce chemical changes and cause loss of flavour, colour and 

texture, due to breakdown of tissue and other components resulting in oxidation, 

browning and ripening. 

Endogenous microorganisms as well as dangerous pathogens can also be present in 

food products which can cause their spoilage and serious harm to consumers. Therefore, 

development on food safety is focused on detection of microbial pathogens Salmonella, 

Listeria, E.coli and other hazardous microorganisms. TVC determination provides a 

general estimate of the microbial population. Microbial testing is done by many food 

microbiology laboratories for the purpose of revealing important information about the 

status of a food product, whether it can be consumed without causing food poisoning, 

whether it was handled correctly, and whether it is old or fresh. 

 

1.3.1 Traditional Methods 

Conventional microbial tests are based on aerobic plate count methods, which are 

specified as the standard ISO 4833:2003 method in the food industry (ISO:4833:2003, 

2003). Briefly, food homogenate is produced using 10 g of a sample diluted with 90 ml 

of a non-selective medium (1:10), and a series of ten-fold dilutions are prepared and 

aliquots and spread on solid agar plates. The plates are incubated for 48-72 hours at 

30ºC and colonies formed are counted. This is used to calculate the microbial load 

(cfu/g) on the basis of the dilution factor used. Instead of using traditional agar plates, 

direct culture-based methods use rehydrated media contained as sheets or films. These 

films are covered with a fabric layer or a membrane and subsequently rehydrated by a 

liquid sample (e.g. food homogenate) and incubated for development of colonies on the 

surface. Those colonies can also be counted by using a chromogenic medium (with a 
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redox indicator), such as tetrazolium chloride, which produces red colonies. These 

methods rely on the formation of visible colonies and include incubations of at least 48 

hours and counting. Examples are Compact Dry TC (Kodaka et al., 2005) from Nissui 

Pharmaceuticals (http://www.nissui-pharm, 2009) and RIDA®COUNT Total made by 

R-Biopharm (Salo et al., 2006; http://www.r-biopharm). 

Several alternative culture-based methods are available. The SimPlate® system 

from BioControl (Ferrati et al., 2010; http://www.biocontrolsystems) has 84 wells built 

in to the plate and the medium contains a patented “Binary Detection Technology” 

which is able to detect certain bacterial enzymes and produce a colour change. The 

bacteria can be determined by the assessment of the colour change pattern within 24 

hours. TEMPO® from bioMerieux (Paulsen et al., 2006; biomerieux, 2008), an 

automated quality indicator system, employs a miniaturized most probable number 

(MPN) technique on a multi-well card to enumerate bacteria in food samples. A 

fluorescent indicator is present in the media for easy and fast detection and calculation 

of colony forming units (cfu/g) by a reader, 500 samples can be processed within 24-48 

hours. Soleris™ system by Neogen® Corporation (http://www.neogen) also monitors 

colour changes caused by bacterial growth, using a specially designed vial containing 

growth medium and colour indicators which respond to pH or other biochemical 

parameters. The system utilises an LED and a photo detector to monitor the vials and 

record the time taken to produce a detectable colour change. A result for the initial 

microbial count can be produced within 18 hours. The RABIT® system by Don Whitely 

Scientific (http://www.dwscientific) and BacTrac® by Sy-Lab (Hattula et al., 2002; 

http://www.sylab) both apply impedance-based methods. When the microbial amount 

increases in the growth medium the impedance is changing, measured by a pair of 

electrodes. The direct epifluorescent filter technique (DEFT) by Perceptive Instruments 

Ltd (http://www.perceptive) uses a polycarbonate filter, which is stained with 

fluorescent dye. Liquid sample is filtered through and then examined by epifluorescent 

microscopy. The flow cytometric BactiFlow® ALS real time analyzer by AES 

Chemunex (Vollmer et al., 2011; http://www.aeschemunex) uses fluorescent labelling 

technique. This method detects directly viable cells, but is limited to liquid samples and 
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to medium to high microbial populations. Results can be obtained within minutes or 

hours. 

 

1.3.2 Rapid Microbial Tests and Biosensor Systems 

Some biosensor systems for quick determination of microorganisms in food 

samples based on fluorescent dye technology are available. MicroFossTM by Biosys, 

Inc., developed by Ann Arbor, includes a computerized instrument with disposable vials 

based on the detection of metabolic processes of organisms. An optical sensor allows 

screening results in as little as 7-18 hours, depending on microbial contamination 

(Odumeru and Belvedere, 2002; http://www.foodsafetymagazine). 

A microtitre-plate TVC test based on monitoring of bacterial respiration using 

phosphorescent oxygen sensing probes and fluorescent plate reader detection (Fig 1.9) 

was described by O’Mahony et al. (2006) and applied to analysis of aerobic bacteria in 

complex samples such as broth and food homogenates (O'Mahony and Papkovsky, 

2006).  

 

 

Fig. 1.9: Microtitre-plate assay format. 

 

Initially (at relatively low cell numbers) the sample remains oxygenated and the 

probe fluorescent signal stays flat and low as it is quenched by dissolved oxygen. As 

bacteria grow the sample undergoes rapid deoxygenation (seen as steep increase of 

probe fluorescence) followed by leveling off when dissolved oxygen is depleted 

(unquenched probe). These prominent changes in probe fluorescence are due to 
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microbial growth and allow unambiguous identification of positive samples and 

quantification of their microbial load (TVC or selective) on the basis of measured 

threshold times (TT). At this threshold the sample containing rapidly proliferating 

micro-organisms starts to rapidly deplete the dissolved oxygen (producing typical 

profiles as seen in Fig. 1.10). The TT is related to the initial microbial population and 

can be used for microbial determination within 1-12 hours after instrumental calibration.  

 

 

Figure 1.10: Typical profile of oxygen depletion in a food homogenate. 

 

These assays are validated in aqueous media with different bacteria including E. 

coli, M. luteus and P. fluorescence (O'Mahony and Papkovsky, 2006), and with the 

enumeration of total viable counts in different food matrices such as meat (O’Mahony et 

al., 2009), fish (Hempel et al., 2011) and salad (Borchert et al., 2012) (see chapter 4). 

This approach has been commercialised by Luxcel BiociencesTM and Mocon Inc. and is 

now sold as GreenLight™ system. 
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Chapter 2: Development of a O2/pH Multi-Parametric 

Sensor 

 

2.1 Introduction 

Optochemical sensors have advanced remarkably in recent years, many of them are 

used in different areas and applications (McDonagh et al., 2008; Wolfbeis, 2008). 

Sensor research is now shifting towards the development of multi-parametric sensing, 

particularly of core analytes such as O2, pH, CO2, temperature, humidity, ions, as well as 

of more simple, robust, versatile and cost-efficient systems tailored to specific 

applications (Stich et al., 2010). Internal referencing schemes, such as the ratiometric 

absorbance/reflectance/fluorescence and luminescence lifetime based sensing 

represented by direct quenching, DLR or FRET formats, are preferred detection 

modalities for such systems (Stich et al., 2010). Rapid development of imaging 

techniques and low-cost optoelectronics provide information-rich data, miniaturization 

and integration, while still retaining sensor accuracy, reliability and affordable costs 

(Sax et al., 2009; Schröder et al., 2007; Wang et al., 2010).  

On the chemistry side, the use of arrays of discrete sensors and/or composite 

materials with several indicator dyes has proved efficient for O2/T, O2/pH, O2/T/CO2, 

O2/T/pH and some other analyte panels (Stich et al., 2010; Tian et al., 2010). However, 

increased number of ingredients, wide bands of most of the indicators which tend to 

overlap in the usable spectral region (350-1000 nm), cross-sensitivity and multiple 

practical restrictions, limit multiplexing potential, compromise performance and boost 

manufacturing costs of such sensors. 

One way to overcome these bottlenecks is to apply multi-functional reporter 

molecules together with multiple detection modalities. Here, supramolecular structures 

possessing long-decay luminescence, large spectral shifts, and internal referencing 
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capabilities are particularly advantageous, providing greater scope for multiplexing. We 

demonstrate this concept with a dual-analyte O2/pH sensor based on a single 

phosphorescent porphyrin dye.  

Porphyrins have attractive photophysical properties for use in sensor systems 

(Borisov et al., 2010; Briñas et al., 2005; Dolphin, 1978; Kadish et al., 2010; Khalil et 

al., 2010; Papkovsky, 2004; Papkovsky and O'Riordan, 2005; Zhang et al., 2007), 

especially platinum(II) and palladium(II) complexes are known to exhibit strong 

phosphorescence at room temperature and quantum yields of  >10%. Their aromatic 

tetrapyrolic macrocycle can be modified by different peripheral substituents in pyrrole 

and meso-positions. These features provide flexibility in tuning the optical and physical-

chemical properties of porphyrin dyes. In particular, meso-substituted porphyrins have 

been actively exploited in phosphorescence lifetime based O2 sensing, providing robust 

and versatile systems (Borisov et al., 2011; Vasil’ev and Borisov, 2002). 

Herein, we present new solid-state materials based on the bi-functional 

phosphorescent porphyrin dyes, which provide simultaneous, reversible sensing of the 

two principal analytes - dissolved O2 and pH, and potential for further multiplexing. 

 

2.2 Experimental 

2.2.1 Materials 

Pt-octaethylporphyrin Schiff-base (PtOEP-SB) and Pd-coproporphyrin-I tetraester 

Schiff-base (PdCP-SB) were synthesized at the Institute of Biomedical Chemistry, 

Moscow as described previously (Papkovsky et al., 1997). Tetrahydrofuran (THF), 

chloroform, high molecular weight poly(vinyl chloride), bis(2-ethylhexyl) sebacate 

(DOS), sodium sulfite were from Sigma Aldrich. The PTAs TCPB, TBPB and TTB 

were from Fluka. Standard gas mixtures (O2 balanced with N2) were from Irish Oxygen.  
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2.2.2 Methods 

2.2.2.1 Sensor Fabrication 

Sensors were fabricated by dissolving 120 mg of PVC and 240 mg DOS in 3 g 

THF, and adding PtOEP-SB or PdCP-SB dye and PTA (borate salt) in the required 

quantities (Table 2.1). The cocktail was spotted in 2 µl aliquots on polyester film 

Mylar® and dried to produce thin film sensors of ~10 mm in diameter. 

 

Table 2.1: Sensor cocktail and coating composition.  

Components Cocktail Sensor Coating 

  [%] 

Solvent ~94,75% (w/w) - 

PVC 1.75% (w/w) 30.8-32.55 (w/w) 

Plasticizer 3.5% (w/w) 61.6-65.09 (w/w) 

PtOEP-SB or 

PdCP-SB 

0.25 mM 

0.1 mM 

0.36 (w/w) 

0.16 (w/w) 

PTA 2.5-8 mM 2.36-7.6 (w/w) 

 

2.2.2.2 Optical Measurements 

UV-Vis absorption spectral measurements (range 350 – 700 nm) were carried out 

on a HP8453 diode-array spectrophotometer (Agilent). Phosphorescence spectral 

measurements (range 350 – 600 nm for excitation and 600-750 nm for emission) were 

carried out on Cary Eclipse fluorescence spectrometer (Varian). Time resolved 

fluorescence (TR-F) measurements were performed on Victor2 multilabel reader (Perkin 

Elmer), using 340 nm excitation and 665 nm emission filters. Phosphorescence lifetime 

measurements on the Victor reader were carried out by taking TR-F intensity readings at 

two different delay times, 30 and 70 µs with a window time of 30 µs and calculating the 

lifetime according to following formula: τ = t1-t2/ln(F1/F2) (O'Riordan et al., 2007). 
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Measurements on a Cary Eclipse fluorometer were made using a built-in short 

phosphorescence decay option and lifetime determination by single or double 

exponential fits.  

 

2.2.2.3 Sensor Preparation 

Measurement of optical responses of the dual-analyte sensors to pH and O2 were 

conducted using 13 x 60 mm pieces of sensor membranes inserted diagonally in a 

standard 1 cm quartz cell or placed in the wells of a 24-well plate (Costar) and 

submerged in an aqueous buffer.  

 

2.2.2.4 pH Calibrations 

pH calibrations were conducted by adjusting the pH of the buffer inside the cuvette 

or micro-well to different pH values (using calibrated pH meter Jenway 3310) and 

measuring after ~10 min equilibration changes in sensor absorption on the UV-Vis 

spectrophotometer or changes in emission intensity on the Victor2 reader. From this 

data, sensor pKa values were determined by plotting intensity vs. pH and to find the 

inflection point that will point to the pKa value. This is done at a certain wavelength 

after correcting the intensity values. To reduce influence of the sensor matrix, control 

sensors were prepared and a blank reading without dye was performed. Sensor response 

time to changes in pH was typically around 3 min.   

 

2.2.2.5 Oxygen Calibrations 

Oxygen calibrations were performed on Cary Eclipse spectrometer. The cuvette 

with sensor and buffer of known pH was bubbled with standard O2/N2 gas mixtures (0-

21 kPa oxygen) produced and delivered by precision gas mixing unit (LN Industries 

SA). Temperature control was set at 30 or 37˚C. Upon gas equilibration, 

phosphorescence decay was measured and lifetimes calculated from double exponential 

fits with subsequent calculation of average lifetime. 
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2.3 Results & Discussion 

2.3.1 Spectral Properties 

The reporter dyes comprise the derivatives of hydrophobic Pt-octaethylporphyrin 

(PtOEP) and Pd-coproporphyrin-I tetraester (PdCP) which contain an additional pH-

responsive moiety - Schiff-base group (SB) at one meso-position proximal to the 

macrocyle (Fig. 2.1A). In unprotonated state these dyes display normal porphyrin type 

of electronic spectra, with intense Soret and several minor visible absorbance bands, and 

bright room temperature phosphorescence in the red region which is readily quenched 

by O2. Like for normal porphyrins, the spectra of PdCP-SB are slightly red-shifted 

compared to PtOEP-SB (Fig. 2.1B), and the emission lifetime is several-fold longer 

(Table 2.2). At the same time, protonation of the peripheral SB group is accompanied by 

a major change in electronic spectra due to the formation of a delocalised carbocation 

(Papkovsky et al., 1997). This process shifts absorption maximum from approximately 

398 nm to 443 nm, with the disappearance of porphyrin-type spectra and 

phosphorescence. The protonation is reversible (though very high pH can degrade the 

dye), thus allowing sensing of pH by absorbance or phosphorescence measurements. 
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Figure 2.1: A) General chemical structures of the PtOEP-SB (Me = Pt2+, R1-R8= 

CH2CH3) and PdCP-SB (Me = Pd2+, R1,R3,R5,R7=CH3, R2,R4,R6,R8 = 

CH2CH2COOCH3) showing interaction sites for H+ and O2. B) Changes in absorption 

spectra in methylene chloride upon the addition of trifluoroacetic acid (1-PdCP-SB, 2-

PdCP-SB + TFA, 3-PtOEP-SB, 4-PtOEP-SB + TFA). 

 

2.3.2 Oxygen & pH Sensing 

For optochemical sensing of physiological O2 concentrations (range 0-25 kPa or 0-

250 µM) and pH (range 5-9) in a convenient format, the reporter dye has to be 

embedded in a polymeric matrix which provides the desired sensitivity and selectivity 

for the two analytes and robust optical responses (McDonagh et al., 2008; Wolfbeis, 

2008). Hydrophobic polymers with moderate O2 permeability commonly used in O2 

sensors (e.g. polystyrene and alike) are not very suitable as they are impermeable to 

protons. Likewise, many polymers employed in conventional pH sensors show 

inadequate O2 quenching (in ethyl cellulose Pt-porphyrins are quenched too much by 

ambient O2 producing low phosphorescent signals). After testing several different 

polymeric matrices, we found plasticized PVC to possess the required characteristics, 

and selected it as sensor matrix. Plasticizer content is known to affect O2 quenching in 

polymers (Hartmann and Trettnak, 1996), therefore it was maintained constant 

(63+1.5% w/w). The availability of two phosphorescent dyes with different lifetimes 

and sensitivity to O2 facilitated the development of O2/pH sensitive materials and tuning 

their characteristics. Possible self-quenching in semi-liquid PVC membranes was also 
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assessed to optimize dye concentration. Phase transfer additive such as potassium 

tetrakis(4-chlorophenyl)borate (TCPB) was introduced to allow proton transfer 

(McDonagh et al., 2008; Wolfbeis, 2008). Following the initial selection, sensors of 

different composition were prepared and studied with respect to their photophysical, O2 

and pH sensing properties and operational performance. Sensors were made by 

dissolving their components in organic solvent (THF and CHCl3) and casting the 

cocktail on polyester Mylar® film, to produce ~5 µm thick coatings (Table 2.1). 

 

Table 2.2: Main characteristics of the PtOEP-SB and PdCP-SB sensors. 

Reporter

Dye/sensor

No

Absorbance

Maximum

[nm]

Phase Transfer

Agent

[%] (w/w)

pK * Emission 

Lifetime **

[μs]

PtOEP-SB

N1

N2

N3

N4

N5

N6

398 (pH 8.0)

443 (pH 2.0) 2.4 (TCPB)

4.1 (TCPB)

5.7 (TCPB)

7.6 (TCPB)

7.6 (TBPB)

7.6 (TTB)

5.9

6.5

7.0

6.1

<4.0

<4.0

32.8

31.0

n.m.

n.m.

n.m.

n.m.

PdCP-SB

N7

N8

398 (pH 8.0)

443 (pH 2.0) 4.1 (TCPB)

5.7 (TCPB)

6.9

7.2

60.3

n.m.
 

* Phosphorescent measurements in 0.1 M K2HPO4, 21 kPa O2, 30˚C; Standard deviations were 

~0.2 µs or 0.1 pH, respectively, (N = 3); n.m. – not measured.  

** Quenched emission LTs. 

 

When embedded in plasticized PVC membranes, the two dyes showed similar 

spectral characteristics (absorption and emission), while their sensitivity to O2 was 

different. Both sensor types produced the anticipated spectral response in the useful 

range of pH. Fig. 2.2A shows absorption spectral changes associated with dye 

protonation and Fig. 2.2B - pH calibration produced by ratiometric absorption 

measurements (443/397 nm). The nature and concentration of PTA (and temperature) 
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had a profound influence on sensor response to pH. Thus, PtOEP-SB sensors increased 

their pKa from 5.9 to 7.0 when TCPB content increased from 2.4 to 5.7 %, but then 

decreased to 6.1 at 7.6 % TCPB. Two other phase transfer reagents - potassium tetrakis 

(4-tert-butylphenyl)borate (TBPB) and sodium tetra(p-tolyl)borate (TTB) - produced 

significantly lower pKa values. Similar dependence was observed for PdCP-SB sensors 

with slightly more basic pKa than for PtOEP-SB. Such dependence of calibration on the 

nature and concentration of PTA can be due to different access of protons to the dye 

(also seen in other ion-selective membranes) (Hartmann and Trettnak, 1996; Papkovsky 

et al., 1997). Therefore, by selecting the indicator dye and PTA, pH sensitivity of the 

sensor can be tuned, to cover the range of practical interest (pH5-8 in this case). Based 

on these results, PtOEP-SB N2 and N3 and PdCP-SB N7 and N8 sensors (Table 2.2) 

were selected for further testing of their O2 sensitivity and phosphorescent 

characteristics. 

According to the mechanism of protonation (Fig. 2.1), the changes in absorption 

were accompanied by a marked reduction in phosphorescence intensity signals (Fig. 

2.2B). At low pH values in air-saturated buffer at 30˚C, the intensity of the PtOEP-SB 

sensors decreased by almost 70%. Residual phosphorescence was attributed to 

incomplete protonation of the dye in polymer membrane.  

With respect to the sensitivity to dissolved O2, the PtOEP-SB sensors showed a 

moderate response. Phosphorescence lifetime of the sensor with unprotonated dye in O2-

free buffer was 84 µs at 30˚C (92 µs at 24˚C), and reduced by ~70% in air-saturated 

solution.  
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A)                                                                                                  B)

C)                                                                                                  D)  

Figure 2.2: A) Absorption spectra of PtOEP-SB N1 sensor at different pH, 24oC. The 

bars show the bands of standard 400 nm and 450 nm LEDs. B) pH calibrations for the 

PtOEP-SB sensor in ratiometric absorbance (▲) and phosphorescence intensity (�) 

scale, 0.1M acetate buffer, 24˚C and 30˚C, respectively. C) O2 calibrations of the PdCP-

SB (�) and PtOEP-SB (▲) sensors in phosphorescence lifetime scale, 23°C. Lifetime 

values were produced from double-exponential fits. D) Stern-Volmer O2 calibrations for 

the PtOEP-SB (▲) and PdCP-SB (�) sensors, in 0.1M K2HPO4, pH 8.5, 30˚C.  

 

The PdCP-SB sensors showed several-fold longer unquenched lifetimes (360 µs at 

24˚C and 340 µs at 30˚C) and therefore stronger quenching by O2. Phosphorescence of 

the PtOEP-SB and PdCP-SB sensors showed double-exponential decay and a 

pronounced non-linearity of Stern-Volmer calibrations (Fig. 2.2D and 2.2C). Such 

behavior is similar to the other O2 sensors based on Pt and Pd porphyrins (Hartmann and 

Trettnak, 1996; Papkovsky, 2004; Papkovsky and O'Riordan, 2005). Both sensor types 

were deemed suitable for lifetime-based sensing of physiological O2 concentrations (0-

250 µM), while PdCP-SB sensors better suited for the low O2 range. Importantly, upon 
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protonation the sensors showed practically no changes in emission lifetime, variations 

were within measurement error (2-3%). 

 

2.3.3 Cross-Sensitivity & Signal Changes 

Like for the traditional pH and O2 sensors based on similar principles (Leiding et 

al., 2009; Niu et al., 2005), operational performance of the new sensors was seen to be 

influenced by a number of factors. Temperature has a prominent effect on both pH and 

O2 calibrations, while pH calibrations were also influenced by ionic strength. These are 

inherent features of the sensing schemes, which need to be considered during sensor 

operation. Sensor photostability was moderate: bleaching under illumination with 150 

W Xe-lamp was in the region of 4% per hour (Fig. 2.3). Although not as good as for 

traditional O2 sensors based on highly photostable dyes, this parameter is not critical for 

the sensing schemes used. Response times to pH and O2 were within the anticipated 

range (2-3 min). 

 

 

Figure 2.3: Kinetics of photobleaching of PtOEP-SB sensor. Excitation – 398 ± 5 nm, 

emission – 670 ± 10 nm, 0.1M phosphate buffer, pH 8.5, 23˚C. 
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2.3.4 Dual-Analyte Sensing Schemes 

The above results show that PtOEP-SB and PdCP-SB sensors perform very 

satisfactory covering the ranges of high practical significance (pH 6-8 and 0-200 µM 

O2). In absorbance (or reflectance) modality, sensor response to pH is independent on 

O2, while ratiometric measurement (400/450 nm) provide internal referencing with 

stable calibration, reduced dependence on sensor alignment, measurement geometry and 

dye concentration. Likewise, in phosphorescence lifetime modality sensing of dissolved 

O2, with internal referencing and no cross-sensitivity to pH was secured. Thus, the two 

analytes can be measured independently and continuously with one sensor.  

Practical realization of such dual O2/pH sensor system can be achieved with 

relatively simple optical schemes. Fig. 2.4A shows a setup with one LED and one 

photodiode with an optical filter to monitor phosphorescence intensity and lifetime (in 

time or frequency domain (McDonagh et al., 2008; Wolfbeis, 2008)) signals from the 

sensor. By applying known relationships (calibrations for each analyte, compensation 

algorithms which account for dual sensitivity of the intensity signal), the two readings 

can be related to pH and O2. Since the intensity signal is not referenced, this scheme 

requires fixed alignment and consideration of possible signal fluctuations (detector, 

sample optical properties, dye photobleaching (McDonagh et al., 2008; Wolfbeis, 

2008)).  
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A)                                                                     B)  

Figure 2.4: Proposed optical setups for the dual-analyte pH/O2 sensing. A) 

Phosphorescence intensity (O2, pH) and lifetime (O2) measurements via one optical 

channel. B) Alternating ratiometric absorption/reflection (pH) and phosphorescence 

lifetime (O2) measurements. 

 

The alternative scheme (Fig. 2.4B) involves two LEDs shining sequentially coupled 

with ratiometric absorbance/reflectance based sensing of pH via PD1 and 

phosphorescence lifetime based sensing of O2 via PD2. This scheme does provide 

interference-free, dual-analyte O2/pH sensing with internal referencing being more 

advantageous than the first one. It can be implemented with two common LEDs 

matching the excitation and absorption maxima of the neutral and protonated forms of 

the dye (see e.g. Fig. 2.2A and http://www.roithner-laser). 

 

2.4 Conclusions 

This study demonstrates realization of a simple dual-analyte optochemical sensor 

for dissolved O2 and pH with one bi-functional reporter dye - meso-substituted Pd- or 
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Pt-porphyrin Schiff-base derivative - embedded in plasticized PVC membrane. Such 

sensor chemistry allows sensing of each analyte in internal referencing mode and with 

no cross-sensitivity. Moreover, it leaves wide spectral windows (500-650 nm and 800-

1000 nm) for further multiplexing with other indicator dyes including fluorescent 

lanthanide chelates (Fu et al., 2005) and inorganic phosphors (Chen et al., 2008). This 

approach can be applied to other types of sensor materials (e.g. nanosensors (Borisov 

and Klimant, 2008; Peng et al., 2010), magnetic particles (Mistlberger et al., 2010)), 

analytes (temperature, CO2, NH3, ions, enzyme biosensors based on O2 and pH 

transducers (McDonagh et al., 2008)), sensing schemes (de Silva et al., 2009; 

McDonagh et al., 2008; Wolfbeis, 2008); and also integrated with optical imaging 

systems. 
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Chapter 3: A CO2 Sensor Based on Pt-Porphyrin Dye and 

FRET Scheme for Food Packaging Applications 

 

3.1 Introduction 

Several analytical techniques for CO2 detection are available, which provide 

accurate and reliable data, including the Severinghaus type electrode, infrared (IR) 

spectroscopy, gas chromatography (GC) and mass spectrometry (MS). Their main 

drawbacks however are slow response time, high complexity and cost, destructiveness, 

limited throughput and the requirement of sampling and calibration (Severinghaus, 

1958; Schulz et al., 2004; Sipior et al., 1996; Thrall et al., 1996). 

Optochemical CO2 sensors can overcome these limitations demonstrating 

simplicity, portability, low cost, fast response and flexibility (Neurauter et al., 1999). 

The working principle is described in detail in chapter 1.2.4. They show high potential 

for food packaging and require the sensitivity to cover the range 0-100% CO2 

(McMillin, 2008) which can be realized using indicator dyes with relatively high pKa 

values. In contrast, for environmental applications and process control high sensitivity to 

CO2 is usually required. To achieve fast diffusion of CO2 and response time, a 

plasticizer can be added to the polymeric membrane (Schröder and Klimant, 2005).  

With respect to signal readout from a CO2 sensor, basic qualitative and semi-

quantitative systems can use simple visual detection via colour change. However for 

accurate quantitative detection instrumental readout is usually required and in this case 

photoluminescence based sensors offer a significant potential. Classical approaches rely 

on fluorescence intensity measurements (Neurauter et al., 1999), but these are affected 

by drifts in optoelectronic system, dye photobleaching, sample properties and 

measurement geometry. This can be circumvented by the schemes with internal 

referencing (Oter et al., 2008; Petrova et al., 2007; Wencel et al., 2010). Thus, in 

ratiometric luminescence intensity scheme signals at two different wavelengths are 

measured, one is analyte-sensitive while the other is analyte-insensitive, and related to 



60 

 

each other. This improves system performance and stability but still cannot fully 

compensate for light scattering, reflection and differential sample absorbance 

influencing the measurement.  

Instead of measuring changes in fluorescence intensity (Amao and Komori, 2005; 

Bültzingslöwen et al., 2003; de Vargas-Sansalvador et al., 2009; Lakowicz et al., 1993), 

the use of long-decay phosphorescent indicator dyes and analyte-dependent changes in 

luminescence lifetime (LT) of the sensor (Neurauter et al., 1999) can provide accurate 

CO2 quantification with relatively simple instrumentation similar to the one developed 

for O2 measurement. Such systems are demanding for many industrial applications, 

particularly food packaging (Papkovsky et al., 2005). The FRET scheme for CO2 

detection is based on sensor materials with microsecond lifetimes, such as a long-decay 

Ru(II) complex as fluorescent donor (CO2 insensitive) and a pH/CO2-sensitive acceptor 

dye co-immobilized in a host matrix together with a PTA (Amao and Komori, 2005; 

Bültzingslöwen et al., 2003; de Vargas-Sansalvador et al., 2009; Lakowicz et al., 1993). 

To produce optimal FRET, the two chromophores should be in close proximity and have 

good overlap of acceptor excitation and donor emission spectra. In this case, LT based 

detection with a single excitation source and photodetector can be realized (Burke et al., 

2006). However, systems accomplished with Ru(II) complexes have relatively short 

lifetimes and lifetime changes (Kosch et al., 1998; Neurauter et al., 1999). 

In this work, we describe a polymeric solid-state CO2 sensor which uses 

phosphorescent Pt-porphyrin (PtTFPP) reporter and pH-sensitive acceptor (NP) dye 

pair, solution FRET scheme and LT measurements. The sensor material was optimized 

for food packaging applications and underwent detailed characterization with respect to 

its CO2 sensitivity, response and recovery times, stability, cross-sensitivity to oxygen 

and temperature. Sensor behaviour upon storage and operational stability in packaged 

foods were evaluated, and migration of sensor compounds into food was examined 

using standard panel of food simulants.  
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3.2 Experimental 

3.2.1 Materials 

PtTFPP dye was from Frontier Scientific (Carnforth, UK). α -naphtholphthalein 

(NP), poly(Isobutyl methacrylate) (P(IBM)), ethyl cellulose (EC), 

cetyltrimethylammonium hydroxide (CTA-OH), tetraoctylammonium hydroxide (TOA-

OH), tributyl phosphate, acetic acid, lactic acid, NaHCO3, NaCl, sucrose, olive oil, 

ethanol, hexane, ethyl acetate, trifluoroacetic acid (TFA), toluene, acetonitrile were from 

Sigma- Aldrich. Mylar® polyester film was from Du Pont. 1.5 ml HPLC vials with caps 

were from Agilent (Ireland). Aqueous solutions were prepared using Milli-Q grade 

water (Millipore). White trays for MAP with the dimensions 203 mm x 146 mm x 47 

mm (L x B x H) made of polystyrene-EVOH- polyethylene were from Bachmann 

Forming AG (Hochdorf, Switzerland) and Satina® sealing film was from Cryovac 

(UK). Oxygen, nitrogen and carbon dioxide gases were supplied by BOC (Cork, 

Ireland). 

 

3.2.2 Sensor Fabrication  

Optimized CO2 sensors were prepared by mixing 0.05 mM PtTFPP and 2.8% w/w 

P(IBM) dissolved in toluene with NP (13.44 mM and 36 mM) dissolved in methanol 

containing TOA-OH and CTA-OH (2.4% and 3.0% w/w, respectively). The resulting 

cocktail was applied with a micropipette in 2 µl aliquots on Mylar foil and allowed to 

dry overnight in a fume hood. Thus, uniformly coloured sensor spots (approximately 8 

mm in diameter and ~2 µm thick) were produced. Other CO2 sensor formulations were 

produced using the same fabrication method and different concentrations of the 

ingredients (specified in the text).  
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3.2.3 Sensor Characterization 

Sensor spots on Mylar support were cut out as 13 mm x 30 mm pieces and fitted 

inside a quartz cuvette or in 13 mm x 13 mm pieces and fitted in a metal flow cell 

connected with PEEK tubing to a precision gas mixing unit (LNI Industries, 

Switzerland). The flow-cell with the sensor was inserted in an absorbance or 

fluorescence spectrometer where optical measurements were conducted. Absorbance 

measurements were carried out on a HP8453 diode-array UV-Vis spectrophotometer 

(Agilent). Phosphorescence excitation and emission spectra and lifetimes were recorded 

on a fluorescence spectrometer Cary Eclipse (Varian). Phosphorescence decay was 

measured under the following settings: excitation wavelength - 390 nm, emission 

wavelength – 647 nm, slits – 5 nm, and lifetimes were determined from single 

exponential fits. For calibration, sensors were flushed sequentially with 0%, 1%, 2%, 

5%, 10% and 100% of CO2 (correspond to 0 kPa, 1 kPa, 2 kPa, 5 kPa, 10 kPa, 100 kPa; 

in the following text percentage values will be given) at constant temperature (4°C, 

14°C or 24°C). After sample equilibration with CO2, a standard phosphorescence decay 

curve was recorded and then fitted.  

 

3.2.4 Stability Studies  

In shelf-life stability studies, sensors were stored at -20°C, 4°C and 22°C (RT) for 

the specified time, then brought to RT for 30 min, measured at this temperature and 

compared with freshly made sensors. Each sensor was measured repeatedly at several 

different storage times and then average signals were used to construct profiles.  

In the food trials sensors were exposed to ready-to-eat mixed salads in white 

polystyrene-EVOH- polyethylene trays (dimension: 203 mm x 146 mm x 47 mm (L x B 

x H), volume: 750 ml). The commercially Florette salad pouch, contained the leaves 

frisee, lambs, lettuce and radicchio, was purchased from a local retailer. After 

incorporation in packs (3 sensors and 30 g of salad in each pack) the packs were sealed 

with Satina film under O2 = 21.55% and CO2 = 6.6%, 100% humidity and stored at 
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3.5°C. During storage gas composition inside the packs was controlled with a needle-

type Checkmate 9900 O2/CO2 gas analyzer (PBI Dansensor). On days 0, 11 and 26, one 

pack was sacrificed, sensors were extracted and their characteristics were analyzed 

under standard conditions on the Cary spectrometer.  

Migration of sensor components was studied as described previously (O’Riordan et 

al., 2005), using standard set of food simulants and analysis of migrating components 

(PtTFPP and NP) by HPLC. Sensors were submerged in 1 ml of each simulant and 

incubated in a capped vial for up to three weeks at 37°C on a shaker. From aqueous 

simulants hydrophobic PtTFPP was recovered by extraction with equal volume of 

hexane: mixing 600 µl of each, agitating on a shaker overnight, separating the organic 

layer and analyzing it by normal phase HPLC. The more polar NP dye was analyzed 

directly by reversed phase HPLC. 

An HPLC 1100 series system (Agilent) consisted of a quaternary pump, 

autosampler, and diode-array UV-Vis detector was used. PtTFPP was analyzed on a 

normal phase column SGMS-250 HILIC WPSD (4.5 mm x 100 mm, 2 µm) equillibrated 

with hexane, in which 5 µl aliquots of samples were injected and eluted with an 

ascending gradient of ethyl acetate (0-20% over 15 min). PtTFPP peak was identified by 

spectral analysis and quantified based on the peak hight and calibration produced with 

the standard.  

Similarly, NP migration was assessed on a reversed phase column ZORBAX 

eclipse XDB –C18 (4.6 mm x 50 mm, 5 µm) (Agilent), in which 5 µl aliquots were 

injected in water/1% TFA (solvent A) and eluted with an ascending gradient of 

acetonitrile: 0-100% over 15 min.  
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3.3 Results & Discussion 

3.3.1 FRET Scheme of CO2 Sensing  

In the FRET scheme of CO2 sensing, PtTFPP is acting as a donor from which 

emission energy (band at 650 nm) is transferred to the deprotonated form of NP 

absorbing in the same region (Fig. 3.1). The NP dye, which has pKa of about 8.0, is 

combined with a PTA such as TOA-OH to form ion pairs, as it has previously been used 

in CO2 sensors (Amao and Komori, 2005; de Vargas-Sansalvador et al., 2009). The 

interaction with CO2 is described as: A-Q+ xH2O + CO2 � AH + Q+ HCO3
- (x-1)H2O, 

were AH is protonated indicator form, A-  - deprotonated form, Q+ - quaternary 

ammonium base. Thus, A- gets stabilized in the matrix by Q+, whereas CO2 neutralizes 

Q+ and forms a lipophilic hydro carbonate in the polymer.  

 

 

Figure 3.1: Overlap of the absorption spectrum of NP (dashed line - in 100% N2 and 

solid line – in 100% CO2) with emission spectrum of PtTFPP (dotted line). 

 

For this system acceptor absorption is high when NP is ion-paired with TOA-OH 

(A- which exists at low CO2 concentrations), while at high CO2 NP converts into 

protonated neutral form AH which does not absorb at 650 nm. Therefore FRET from 

PtTFPP to NP is highest in the absence of CO2 and decreases to negligible values at 

high CO2 concentrations. Such ion-pairing sensor design usually shows optical response 

to CO2 and allows tuning of sensitivity by changing pH-sensitive dye or their pKa value, 
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the PTA (Bültzingslöwen et al., 2002), readout modality (absorbance or fluorescence) 

and spectral characteristics by selecting the reporter dye. 

 

3.3.2 Optimization of Sensor Composition  

For the new FRET based CO2 sensing scheme PtTFPP was chosen as reference 

dye. Ruthenium dye, although showing a good spectral overlap with the indicator and 

reduced cross-sensitivity to O2, has much shorter LT, smaller response to CO2 (< 2 µs) 

(Bültzingslöwen et al., 2002; Kosch et al., 1998), and higher hydrophilicity which may 

result in significant leaching. Firstly, it was necessary to optimize sensor composition to 

produce sufficiently high phosphorescent signals, significant LT changes which are easy 

to measure and which occur within the desired CO2 range (ideally 0% - 100%). Very 

high concentrations of the dyes can interfere with reporter emission (PtTFPP) due to 

excessive FRET or self-quenching. Whereas at low concentrations, phosphorescent 

signals, FRET efficiency and lifetime changes become small and hard to measure. We 

therefore prepared sensor formulations with different concentrations of PtTFPP, NP and 

quaternary ammonium base. Two different polymers: P(IBM), with and without tributyl 

phosphate plasticizer and EC were assessed.  

From this screening (results not shown), P(IBM) was chosen as preferred 

encapsulation matrix,  (one component matrix), hydrophobic and producing 

reproducible results. The use of plasticizers was abandoned as they produced sticky, 

semi-liquid structures, not very suitable for food and packaging applications. We then 

produced P(IBM) based sensors having different composition (Table 3.1) and examined 

their spectral characteristics, response to CO2 (at room temperature and constant O2 = 

0%) and physical properties (appearance, liquidity, etc.).  



66 

 

Table 3.1: Composition of optimal sensor formulation (sensor 1) and sensors with 

altered PtTFPP (sensors 1, 2, and 3), NP (sensors 1, 4 and 5) and TOA-OH (sensors 1, 6 

and 7) content in dry material. 

Solid 
state 

sensor 

Sensor 1 

[mM] 

Sensor 2 

[mM] 

Sensor 3 

[mM] 

Sensor 4 

[mM] 

Sensor 5 

[mM] 

Sensor 6 

[mM] 

Sensor 7 

[mM] 

PtTFPP 1.0 2.0 6.0 1.1 0.9 1.0 1.0 

NP 270 270 270 74 444 270 270 

TOA-OH 789 763 759 835 725 395 1578 

 

In the first place the response to CO2 can be seen as a colour change from blue to 

colourless (Fig. 3.2). This feature is advantageous for semi-quantitative visual detection 

of CO2 leaks in packages. Notably, most of the changes in sensor absorption occurred 

within 0% - 10% CO2 range, at higher CO2 levels no further color changes were seen 

(flat response).  

 

 

Figure 3.2: The colour change in Sensor 1 mainly takes place in the range of 0 – 10% 

CO2, but is depicted for the entire range up to 100% CO2. 

 

Fig. 3.3A shows phosphorescence intensity signals at 650 nm under 390 nm 

excitation (correspond to PtTFPP, NP is non-luminescent) from Sensor 1 at different 

CO2 %. The phosphorescence intensity is increasing at higher CO2 concentrations and 

higher PtTFPP concentrations. The sensors were also exposed to alternating CO2 

concentrations (100% and 0% CO2, at RT) while monitoring their phosphorescence 
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intensity signal. Fig. 3.3B shows that they responded in a reversible manner changing its 

phosphorescent signal from 32.5 to 6.5 intensity units. Sensor response time when 

changing from 0% to 100% CO2 was 1 min (99.9%) and recovery time - 4 min (99.9%). 

Smaller steps of CO2 concentration were seen to produce similar response times (not 

shown). Signal drift during the measurement was minor. Under intense constant 

illumination the sensor showed a drift of 6.5% per hour, which was quite acceptable for 

the application. 

 

 

Figure 3.3: A) Changes in phosphorescence intensity (λ = 650 nm) in response to CO2 

concentration for three different sensor formulations, R2
� = 0.946, R2� = 0.961, R2� = 

0.921 (exponential fit). B) Response and recovery time of sensor 1 to alternating of 

100% CO2 and 100% N2. 

 

The observed changes in phosphorescence intensity signal can be due to FRET 

and/or reabsorption of PtTFPP emission by NP. The contribution of FRET to the 

quenching can be devised by measuring changes in phosphorescence lifetime at 

different CO2 levels (reabsorption does not affect the lifetime). And indeed, this system 

showed significant changes in the LT of PtTFPP in response to changing CO2 

concentration. Fig. 3.4A illustrates the changes in phosphorescence LT for the different 

sensors from Table 1 measured at 100% CO2 and 100% N2. One can see, that increased 

PtTFPP concentration (sensors 1,2,3) had a small effect on the sensor, causing a 

moderate increase in LTs at 100% CO2 and 100% N2 but changing substantially the 
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sensitivity. The NP (sensors 1,4,5) and TOA-OH (Sensors 1,6,7) concentration 

dependence of the response produced a bell shape, with the optimum close to Sensor 1 

composition. From Fig. 3.4B one can conclude that a PtTFPP concentration of 1.0mM 

provides the most appopriate sensitivity and phosphorescent signals. Based on these 

results, sensor 1 formulation was selected for more detailed investigation.  

 

0 20 40 60 80 100

0

10

20

30

40

50

60

70

 1.0mM

 2.0mM

 6.0mM

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

100% CO2

0% CO2

LT
 (μ

s)

LT
 (μ

s)

CO2 (%)SensorA)                                                                                       B)  

Figure 3.4: A) LTs of different sensor formulations (see sensor 1-7 in Table 1), 

measured in 100% CO2 and 0% CO2 (T = 24°C) and B) Calibrations for sensor 1, 2 and 

3. N = 3.  

 

3.3.3 Detailed Characterization and Stability Study of Sensor 1 

Formulation 

Sensor UV-Vis absorption and spectral changes at increasing CO2 concentrations in 

the gas phase are shown in Fig. 3.5. One can see that absorption is dominated by NP 

which produces a large reduction in absorbance in the region of PtTFPP emission (650 

nm) by converting from the charged deprotonated form into uncharged protonated form: 

A- (coloured) + H+ ↔ AH (colourless). The changes in absorbance at varying CO2 

concentrations are concurrent with the changes in phosphorescence intensity of the 

sensor. Soret absorption band of PtTFPP can also be seen as a small shoulder at 390 nm. 
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Figure 3.5: Changes in UV-Vis absorption for Sensor 1 formulation at different CO2 

concentrations. Inset shows A650 as a function of CO2 %. 

 

For the long-decay emitting PtTFPP, we anticipated cross-sensitivity to O2, which 

can penetrate the polymer matrix and quench the phosphorescence lifetime. 

Phosphorescence lifetime-based sensing of CO2 was the main goal of this study. We 

therefore conducted detailed lifetime calibrations of the CO2 sensor at several different 

temperatures (4, 14 and 24°C) and O2 concentrations (0-21%). This allowed us to 

reconstruct the 3-dimensional calibration map. The results are shown in Fig. 3.6.  
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Figure 3.6: Lifetime calibrations for Sensor 1: A) At different O2 levels (T = 4°C), 

exponential fit: R²� = 0.983, R²� = 0.989, R²� = 0.945 and R²� = 0.981; B) At 

different temperatures (O2 = 0%), exponential fit: R²� = 0.998, R²� = 0.995 and R²� = 

0.983; and C) CO2 3-D surface for different CO2 & O2 concentrations (T = 4°C). All 

points represents N = 3. 

 

The majority of existing CO2 sensors are known to have limited shelf-life, and the 

reason of that is not very well understood (Fernandez-Sanchez et al., 2007; Mills and 

Skinner, 2010). We therefore investigated this feature for the new sensors under 

different storage conditions. Firstly, batches of sensors were incubated at different 

temperatures over several weeks in air atmosphere and tested measuring their basal 
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lifetime and CO2 calibration every 3 days for the first 3 weeks, then once a week. 

Increased basal lifetime in pure nitrogen and visual color change can be used for the 

assessment of sensor deterioration. Figure 3.7A shows that at RT the sensors are stable 

for up to 8 days, but then quickly go off within ~3 days. At 4°C they were usable for up 

to 2 weeks and then started to deteriorate but at a much slower rate (several weeks). 

Finally, at -20°C no deterioration occurred and even after 50 days the sensors remained 

usable.  

 

 

  
A)                                                                            B) 

Figure 3.7: A) Storage stabilityof the FRET CO2 sensors at RT, 4°C and -20°C. B) 

Headspace gas composition in food packs during the food trial. X symbols show in both 

figures the sensor characteristics during the food trial (in μs).  

 

Secondly, the sensors were brought in gas contact with food products (green salad 

leaves), sealed under the defined O2 and CO2 composition and monitored over 3 week 

period (Fig. 3.7B). Gas composition inside the packs was monitored by means of a 

needle-type Dansensor analyzer (residual O2 and CO2). At certain time intervals the 

sensors were extracted from the packs and tested. The results on day 0 and 11 showed 

no loss in CO2 sensitivity, and even on day 26 the lifetime signal, measured in pure N2, 

was only slightly increased (see symbol X in Fig. 3.7A). These results demonstrate that 

exposure of the sensors to food and standard packaging conditions (at least the ones 

used in this particular trial) did not affect much the sensors which remained operational 

even after several weeks. This is a promising result for food packaging application 
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which typically requires the same time scale. At the same time, more detailed 

investigation with other product types, packaging and storage conditions is deemed 

necessary.  

Sensors inside the packs can have contact with the food. Therefore, migration of 

sensor components into food was evaluated. For this purpose a representative panel of 

food simulants suggested by FDA/EU guidelines (Food and Drug Administration, 2002; 

European Economic Community, 1985 and 1997) was taken in which simulants the 

sensors were incubated for a period of up to 3 weeks while monitoring their 

characteristics. The two main components of the sensor - PtTFPP and NP- were 

analyzed by HPLC to determine the amounts migrating into these simulants (Table 3.2). 

Prior to this analysis, retention times were determined for these materials and 

calibrations were generated resulting in linear functions: Intensity[PtTFPP] = 

3.4538*[Concentration in µg/ml] (R² = 0.9896, 3.4 min at 390 nm) and Intensity[NP] = 

1.5517*[Concentration in µg/ml] (R² = 0.9969, 7.5 min at 310 nm). 

In all six aqueous simulants no traces of test substances were detected over the 21 

day incubation period. Both components were tested positive in 95% ethanol, and 

PtTFPP was less prone to migrate than NP. In olive oil and 95% ethanol PtTFPP was 

found to leak out progressively reaching a maximum of about 70% (0.12-0.13 µg/ml) of 

the total amount in the sensor on day 21. Similar results were obtained for NP in 95% 

ethanol, starting at a slightly higher level of 74% (16.08 µg/ml) on day 7 and reaching 

100% (21.65 µg/ml) on day 21. In 50% ethanol it kept constant over the 21 day period at 

about 50% (9.86-10.57 µg/ml). At the same time, according to the directives alcoholic 

food is usually represented by 10% ethanol, and in such simulant no sensor leaching of 

sensor components. It is worth noting that 95% ethanol was used as positive control and 

as a substitute simulant to assess the migration into fatty food since olive oil was not 

possible to use in reversed phase cromatography analysis.  
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Table 3.2: Migration of PtTFPP and NP into different media over a period of 21 days. 

The values in brackets represents the percentage of the component migrated. 

Dye PtTFPP, [µg/ml, %] NP, [µg/ml, %] 

Incubation time 
[days] 7 14 21 7 14 21 

Simulants       

EtOH, 95% 0.07 (41) 0.06 (35) 0.12 (69) 16.08 (74) 18.66 (86) 21.65 (100) 

EtOH, 50% ND ND ND 9.86 (46) 10.57 (49) 10.15 (47) 

EtOH, 10% ND ND ND ND ND ND 

Olive oil 0.10 (59) 0.11 (65) 0.13 (72) NM NM NM 

Acetic Acid, 5% ND ND ND ND ND ND 

Lactic Acid, 3% ND ND ND ND ND ND 

NaHCO3, 3% ND ND ND ND ND ND 

NaCl, 3% ND ND ND ND ND ND 

Sucrose, 20% ND ND ND ND ND ND 

H2O ND ND ND ND ND ND 

ND- Not detectable, NM- Not measured 

 

The risk of exposure to chemicals has been well documented and LD50 values of 

6400 mg/kg (oral intake of rats) are stated (www.chemyq.com). For humans, EU 

guidelines (Commision Directive 2002/72/EC, 2002) do not give a specific migration 

limit (SML) specifically for IBM monomer, however, methacrylic acids have an SML = 

0.05 mg/kg. The amount of P(IBM) in one sensor is only 80 µg, hence the level of IBM 

that can potentially migrate into food is too low to be significant (even when assuming 

that all P(IBM) converts into its monomer IBM). Dyes are normally not used in food 

packaging so there are no guidelines for SML or specifications regarding daily tolerable 

intake or LD50. The amounts leaching from the sensor in 95% (50%) ethanol and olive 

oil were quite high, however such conditions do not occur in practice as the developed 

sensors are not intended to have much contact with food. They are normally used in the 

headspace and can be protected from food with a gas-permeable membrane or coating.  
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3.3.4 Sensor Fine-Tuning for Packaging Applications 

Temperature sensitivity, although representing a major issue for sensor operation, 

can be dealt with by conventional means. For example maintaining samples at known 

temperature or measuring temperature with a T-probe or a built-in contactless IR sensor 

(Buydens et al., 2006). Sample O2 content is another variable parameter which can 

affect the signals from the CO2 sensor . For example in food products packaged under 

modified atmosphere residual O2 can fluctuate over time (Fig. 3.7B) as a result of O2 

permeation through the package (Kim et al., 2005; Wang et al., 2010), uptake by the 

product (Simpson et al., 2009), microbial spoilage (Kim et al., 2011) or package 

damage. The strong dependence of sensor response on O2 concentration therefore 

necessitates its parallel assessment and compensation during operation of the CO2 

sensor. In particular, this can be realized as a tandem sensor, in which the CO2 sensor is 

paired with the PtTFPP based O2 sensor that can be measured with the same instrument. 

Phosphorescence lifetime based O2 sensing is a well-established approach and therefore 

we produced PtTFPP-P(IBM) sensor and calibrated it at different temperatures. The 

calibrations are shown in Fig. 3.8, both in lifetime scale and Stern-Volmer plots.  
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Figure 3.8: O2 calibrations at temperatures of 24, 14 & 4°C. Inset: Stern Volmer plots 

show good linearity, R²� = 0.9813, y = 0.3129x; R²� = 0.9818, y = 0.2534x; R²� = 

0.9827, y = 0.207x. 

 

Based on these experiments, algorithms for the calculation of CO2 levels in 

unknown samples can be worked out for the tandem CO2/O2 sensor. As a result, from 

lifetime readings from the two sensors and respective calibrations (e.g. those shown in 

Fig. 3.6C and 3.8), both O2 and CO2 levels can be determined. At the same time, one 

should keep in mind that performance of the CO2 sensor deteriorates at high O2 levels 

(above 10%), and CO2 concentrations above 10%, since in these conditions calibration 

functions become flat. Furthermore, the lifetime of the sensor stored at higher 

temperature (RT) was significantly reduced. 

Trying to extend the range of CO2 concentrations that can be measured accurately 

and reliably, we produced sensors with CTA-OH additive. The size and shape of the 

ammonium cation may influence the sensitivity of the sensor depending on how strongly 

the positive charge is shielded from the protonable group. By applying a PTA with a 

smaller or less spherical group (Bültzingslöwen et al., 2002), for example using CTA-

OH instead of TOA-OH, the sensitivity can be reduced like it was reported for CO2 

sensors consisting of 1-hydroxypyrene-3,6,8-trisulfonate (HPTS). Fig. 3.9A and B 

depicts that the use of CTA-OH in the FRET sensor formulation (CTA-OH: 1230 mM, 
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PtTFPP: 0.8 mM, NP: 564 mM in solid sensor) broadened the range of measurable LT 

values reduced the sensitivity to CO2. This comes along with a lower sensitivity in the 0 

- 2% region but a broader measurable CO2 range spanning up to 40%. The response and 

recovery time to CO2 for this sensor were 3.5 min (99.9%) showing an increase of 2.5 

min and decrease of 0.5 min with respect to sensor 1. When stored at RT these sensors 

remained stable for up to 2 days and then quickly went off within a few days. At 4°C the 

sensors were usable for up to 9 days and then went off gradually until day 19. Finally, at 

-20°C no deterioration occurred and even after 85 days the sensors remained usable 

(Fig. 3.9D). The CO2 sensitivity possessed by the TOA-OH sensors is suitable for 

MAPed fruits and vegetables (0-10% with some exceptions), fresh pasta (0%), dairy 

cakes (0%), dried/roasted foods (0%). On the other hand, high CO2 levels of above 50% 

CO2 normally used red meat, poultry, white and oily fish (McMillin, 2008; Parry, 1993; 

Sandhya, 2010; Sivertsvik et al., 2002) are not possible to analyse with the current 

sensors. It is still desirable to extend the measurement range furter to 100% CO2, 

however the current FRET system suffers from the lack of suitable acceptor dyes for 

covering the whole range of CO2 concentrations 0-100%. 
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Figure 3.9: A) Calibrations of the CTA-OH sensors at different CO2 and O2 

concentrations, at 4°C; B) Calibration at differnt temperatures 4°C, 14°C and 24°C, 0% 

O2. (N = 3); C) Response and recovery time of CO2 sensor with CTA-OH to alternating 

of 100% CO2 and 100% N2; D) Storage stabilityof the CO2 sensor with CTA-OH at RT, 

4°C and -20°C.  

 

3.4 Conclusions 

The new FRET based CO2 sensor (with TOA-OH) is described which shows 

potential for food packaging applications on disposable basis. When the sensors are 

stored at -20°C their shelf-life exceeds 50 days but decreases gradually at higher 

temperatures to a few weeks at +4°C and less than a week at room temperature. Because 

of its intended use in packaged foods the sensor was tested for migration of its 

components which was undetectable for both dyes in water based simulants and 
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detectable only in olive oil and high percentage ethanol. These disposable sensors show 

robust changes in phosphorescence LT of the PtTFPP dye in response to CO2 

concentration, fast response and recovery times. Compared to the absorbance or 

fluorescence intensity based CO2 sensors, the long-decay FRET system is advantageous 

since it enables stable calibration and simple readout of the optical signal. The use of a 

long-decay phosphorescent indicator dye, such as PtTFPP, and an absorbance pH 

indicator dye, like α-naphtholphthalein, provides accurate readout of CO2 content with 

relatively simple instrumentation. At the same time, it shows significant cross-sensitivity 

to O2 and temperature, which can be compensated by parallel measurements with a 

tandem O2 sensor or a T-probe. By changing the PTA from TOA-OH to CTA-OH it is 

possible to shift the sensitivity of the sensor from high to low tuning it to the desirable 

range. These sensors possesses slightly changed response and recovery times and shelf-

lifes at different storage conditions. They also produce a colour change, which can be 

detected visually. 
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Chapter 4: Development of Rapid TVC Tests for Different 

Food Matrices Using Phosphorescent O2 Sensitive Probes  

 

4.1 Introduction 

Food is generally a highly perishable product owing to its high aw (Abbas et al., 

2009), relatively high pH and the presence of autolytic enzymes (Robertson, 2006). 

Microbiological criteria for all packaged food products are subject to health and safety 

regulations. In particular, shelf-life of food products is controlled by the Regulation 

(EC) No 2073/2005 (Ireland) by applying the total aerobic viable counts (TVC) method 

which provides quantification of viable microorganisms in a sample. Traditionally, TVC 

has been done by agar plating technique which normally takes 24-48 h to generate 

results (ISO:4833:2003, 2003). This macro-method involves multiple dilutions of 

sample and manual or semi-automated readout (counting of grown colonies). When 

dealing with rapidly deteriorating products such as raw meat, fish or green produce, a 

more rapid, simple and automated micro-method which provides determination of TVC 

in large number of samples is highly desirable. 

A number of tests and systems for TVC determination alternative to the 

conventional agar plating method (ISO:4833:2003) have been described. These methods 

utilize different chemistries, detection principles and instrumentation, and include 

Petrifilm TEMPO® by bioMerieux (Blackburn et al., 2008), Simplate® by BioControl 

(Townsend and Naqui, 1998), impedance based systems RABIT® by Don Whitely 

Scientific and BacTrac® by Sy-Lab (Hattula et al., 2002); and optical MicroFoss 

(Odumeru and Belvedere, 2002) and oxygen respirometry (O'Mahony et al., 2005; 

Papkovsky, 2004). 

In particular, optical micro-respirometry uses phosphorescence based oxygen 

sensing probes, standard 96-well plates and fluorescent reader detection to monitor 

growth of aerobic cells and micro-organisms via their respiration. Its initial food safety 

application has been developed for raw meat (O’Mahony et al., 2009), in which TVCs 
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of meat samples are determined directly in crude homogenates prepared in peptone 

buffered water (PBW) medium by standard stomaching method. This screening assay 

has been successfully validated with different types of meat samples (raw beef, pork, 

lamb and poultry) and also certified by the American Organization of Analytical 

Chemists (AOAC) for use in food industry. It has now been adopted by a number of 

meat producing companies and food safety labs.  

Fresh fish by nature has a low microbial load both internally and externally. The 

muscle tissues are usually sterile in healthy fish, while large populations of bacteria are 

present on the external surfaces, gills and intestines. There may be as many as 102-106 

bacteria per cm2 on skin surfaces (Gram and Dalgaard, 2002; Robinson, 2000). As soon 

as fish is caught and processed, a series of bacteriological, chemical, physical, and 

histological changes develop in the muscle tissue (Jeremiah, 1996). Significant 

microbial spoilage and chemical changes in fish cause sensory changes to a degree that 

it becomes unacceptable to the consumer. Autolytic, chemical and microbiological 

processes produce undesirable sensory changes in fish, which include discoloration, 

changes in texture, odour and flavour as well as slime and gas formation. Microbial 

growth is the main reason for the development of off flavours and odours rendering fish 

products unacceptable or spoiled (Gram and Huss, 1996; Robinson, 2000). The high 

degree of perishability of fish has limited its consumption in a fresh state to areas close 

to capture. To preserve the freshness of fish products, especially during prolonged 

transportation and storage, and extend their shelf-life, various packaging and holding 

temperature techniques are used, including freezing, cooling, refrigeration (Davies et al., 

2009), vacuum and modified atmosphere packaging (Ibrahim et al., 2008; Sivertsvik et 

al., 2002). At the same time, prolonged storage and transportation requires efficient 

control measures, to ensure high quality and safety of fish products (whole fish and cut 

pieces). In particular, their microbial load has to be carefully controlled and maintained 

below the acceptable threshold levels.  

The fresh produce market has changed dramatically over the last 2 decades, 

reflecting the new consumer demands and technological innovations in harvesting, 

production and packaging. Consumers are eating more fresh produce, purchasing a 



81 

 

broader variety and demanding more convenience products such as ready to eat salads 

(Dimitri  et al., 2003). Since fresh produce is still alive and respiring post harvest, it 

requires rapid processing, adequate packaging and controlled storage conditions. A 

number of techniques can be applied to increase the shelf-life and sensory quality and 

reduce microbial degradation, including genetic variation (Hayes and Liu, 2008), 

chilling (Lee, 2008), rational choice of packaging materials (Kim et al., 2005, Lee, 

2008, Seglina, 2009), the use of biodegradable films (Del Nobile et al., 2008),warm 

chlorinated water treatment (McKellar et al., 2004) and modified atmosphere packaging 

(MAP) (Allende et al., 2004; Jacxsens et al., 2001; Rojas Graü et al., 2009; Wang et al., 

2010). MAP, in combination with refrigerated temperature, seems to be the most 

efficient and well understood strategy to maintaining product quality and enhancing 

shelf-life. Traditionally, reduced O2 (1-5%) and elevated CO2 (5-10%) levels are used to 

reduce respiration, product transpiration and ethylene production (Rojas Graü et al., 

2009). In recent years, elevated O2 levels (>70%) combined with elevated CO2 

concentrations (10-20%) (Amanatidou et al., 1999; Jacxsens et al., 2001; Van der Steen 

et al., 2002) have been applied to inhibit growth of naturally occurring spoilage 

microorganisms, prevent undesired anoxic processes and maintain freshness. Using 

optimized packaging material it was possible to control tissue browning and senescence 

by matching the oxygen transmission rate (OTR) of the package and oxygen 

consumption by the product (Kim et al., 2005). On the other hand, to assure good taste, 

visual appearance and low microbial load (total viable counts, TVC) of MAP green 

produce, it is necessary to deploy adequate control systems. In particular, headspace gas 

composition and TVC are the key quality parameters which can inform on the physico-

chemical and microbiological status of individual packs, respectively. 

In this study we applied the optical oxygen micro-respirometry assay methodology 

(Papkovsky et al., 2006) using a commercial GreenLightTM probe to develop a similar 

TVC test for fresh fish and salad samples. In such a test, the probe produces a large 

increase in phosphorescence upon the depletion of dissolved oxygen by growing 

microorganisms, which occurs when a certain level of respiration is reached (threshold). 

For different samples fluorescent profiles are expected to be similar in shape, but shifted 
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with respect to each other according to their initial TVC load: samples with higher TVC 

values break the signal threshold earlier, with low TVC - later. The samples are partially 

sealed with mineral oil to reduce back diffusion of atmospheric oxygen. Using different 

food matrices, we investigated matrix effects on assay performance, performed 

optimization of assay parameters (dilutions, volumes, timing) and generated calibrations 

for each type of food matrix. The assays were validated with a panel of unknown fish 

and salad samples and benchmarked against conventional agar plating TVC test. 

 

4.2 Experimental 

4.2.1 Materials 

Samples of salmon, cod, whiting, plaice and mackerel filets were purchased from 

local retailers in Cork. Salad samples were provided by a local fresh fruit and vegetable 

company based in Dublin, Ireland. Sterile PBW was prepared fresh using the ingredients 

from Sigma-Aldrich Corp. (St Louis, MO) and Milli-Q water (Millipore, Billerica, MD). 

A Stomacher machine and sterile stomacher bags were from Seward, Ltd (London, UK). 

Sterile 96-well flat-bottom microplates with lid made of clear polystyrene were from 

Sarstedt (Nümbrecht, Germany). The GreenLightTM oxygen probe and mineral oil were 

from Luxcel Biosciences (Cork, Ireland). Plate Agar was from Merck (Darmstadt, 

Germany). White trays for MAP (203 x 146 x 60mm) made of polystyrene-EVOH- 

polyethylene were from Bachmann Forming AG (Hochdorf, Switzerland) and the 

Satina® sealing film was from Cryovac (St Neots, UK). Oxygen, nitrogen and carbon 

dioxide gases supplied by BOC (Cork, Ireland) were fed into the MAP tray sealer (type: 

VS100BS) from Gustav Müller & Co. KG (Bad Homburg, Germany) connected through 

a gas mixer (type: KM1003MEM) from WITT-GASETECHNIK GmbH & Co. KG 

(Witten, Germany).  
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4.2.2 Methods 

4.2.2.1 Respirometric TVC Assays  

The assay was performed as follows: A GreenLightTM probe was reconstituted in 10 

ml of sterile PBW to produce stock solution. Food samples (10 g) were placed in a 

stomacher bag together with 90 ml of PBW and homogenized for 1 minute. After this, 

100 µl aliquots of the homogenate were transferred to the wells of a 96 well plate. 

Subsequently, 100 µl aliquots of probe stock and 100 µl of mineral oil (seal from 

ambient oxygen) were dispensed in each well. The plate was then placed in the 

fluorescent reader and monitored at 30ºC using the settings recommended for each 

instrument (see below) to determine threshold time (TT) for each sample. The 

Phosphorescence intensity threshold was set to be 400 FU (fluorescence units) and 

lifetime threshold - 32 µs. To summarize, the respirometric TVC assay includes six 

simple steps according to the flow chart shown in Scheme 4.1. Compared to the 

previously described assay for raw meat (O’Mahony et al., 2009) the procedure has 

been rationalized to three 100 µl pipetting steps requiring just one micropipette. The 

homogenization step and medium used are the same as in conventional agar plating 

TVC method. Plate preparation time should be kept to a minimum (typically 15-20 

minutes).  
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1. Take 10 g of each Food Sample and 90 ml of sterile PBW, 

homogenize in stomacher bag for 1 minute 

↓ 

2. Dispense 100 µl aliquots of homogenates into wells of a sterile 96WP 

↓ 

3. Reconstitute a vial of GreenLightTM  probe in 10 ml PBW and 

dispense 100 µl into sample wells (negative control is usually included)  

↓ 

4. Dispense 100 µl of mineral oil to each well (seal from air oxygen) 

↓ 

5. Read the plate on Fluorescent reader at 30ºC for 2-12 hours 

↓ 

6. Analyze measured fluorescence profiles, determine (using software) 

the TT values and cfu/g load for each sample  

Scheme 4.1: Flow chart of the respirometric TVC assay. 

 

The respirometric assay can be run on different fluorescent readers, for example 

Safire (Tecan), Victor2 (Perkin Elmer) and Omega (BMG) readers which are spectrally 

compatible with the probe and allow temperature control and measurements in kinetic 

mode in 96 well plates. To generate TT data with food matrices, we used the first 2 plate 

readers with the following settings:  

A) Safire (Tecan, Switzerland): measurement mode - fluorescence; excitation filter 

– 380 nm; emission filter – 650 nm; gain - 60. 
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B) Victor2 (Perkin-Elmer): emission filter - D642, excitation filter - D340, delay 

time 1 – 30 µs, delay time 2 – 70 µs, window time – 100 µs, integration time – 

1000 µs. 

 

4.2.2.2 Conventional TVC Test  

Conventional TVC test on agar plates was performed according to the standard 

ISO: 4833:2003 method, using PBW medium, incubation at 30ºC and counting the 

colonies of bacteria after 48 hours (ISO:4833:2003, 2003). 

 

4.3 Food Matrix: Fish 

4.3.1 Experimental Design 

During the initial set-up of the assay, positive controls (medium spiked with E.coli) 

and blanks (medium without probe) were included to ensure sufficient sensitivity and 

proper operation of the instrument. At later stages these controls are not necessary. Plate 

preparation time should be kept to a minimum (< 20 minutes). Where appropriate, the 

same homogenates were also used in agar plating TVC test (see below).  

To determine possible matrix effects, respirometric measurements were conducted 

at several different dilutions of fish homogenates: 1:20, 1:40, 1:80 and 1:160 dilutions. 

Spiking with E.coli was also used to assess matrix effects on microbial growth and 

calibration. In this case, frozen cod filet (has low TVC as tested by agar plating) was 

thawed for 3 hours at room temperature, homogenized in PBW, then spiked with E.coli 

stock to produce concentrations between 5*101  and 5*107 cfu/g, and measured as above.  

To generate TVC calibration, sets of samples of the different types of fish were 

prepared and analyzed in parallel by the respirometric test (using 1:20 dilution of 

homogenates) and by conventional ISO test. The results were plotted against each other 

(TT vs cfu/g) and fitted with linear regression function to produce combined calibration.   
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To validate the new TVC assay, a panel of fresh fish samples with unknown levels 

of microbial contamination (salmon, cod, mackerel, whiting, N = 169) was obtained 

from local retailers on different days, several samples each day. Each sample was tested 

by the new respirometric test and their cfu/g values were determined by applying the 

combined calibration. In parallel, the samples were analyzed by the conventional TVC 

test (ISO:4833:2003 method) and the results were compared and plotted against each 

other to establish correlation. 

To test the ruggedness of the respirometric assay, two different types of errors were 

introduced: pipetting volume and probe concentration (Table 4.1). Since standard 

protocol involves 3 consecutive additions of 100 µl volumes (Probe + Sample + Oil), an 

error in each was introduced applying a lower (70 µl) and higher (120 µl) pipetting 

volume. An error in probe concentration was introduced using a lower (50%) and higher 

(150%) probe dilution compared to the standard conditions. The effects of these errors 

were tested at two different contamination levels: 104-105 cfu/g (low) and 106 cfu/g 

(high), with negative controls (media only, < 103 cfu/g) included in each test. Samples 

were taken from cod filets which were stored at 24ºC for 2 days (high cfu/g) and at 4ºC 

(low cfu/g), and analyzed in 5 repeats (N = 5).  

 

Table 4.1: Ruggedness test parameters. 

No. Assay Variable Standard Protocol Test Parameters 

1 Pipetting volume (µl) 100+100+100 70+70+70 120+120+120 

2 Probe concentration (%) 100 50 150 

 

In the storage trials, fish samples were kept at 4ºC, 14ºC and 24ºC, and analyzed 

periodically by the respirometric and conventional TVC test: daily for 4ºC and 14ºC 

tests and hourly for 24ºC (due to fast deterioration).  
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4.3.2 Selection and Preparation of Fish Samples 

Fish samples (stored at 4˚C, 14˚C or 24˚C) were taken by cutting 10 g squares from 

the edges of each fillet containing skin on the outside. One fillet per type of fish 

represents a fish sample (one 10 g replicate) and was used per testing day, analyzed in 

triplicate by the respirometric method and in duplicate by conventional TVC. Negative 

controls (PBW with probe) and blanks (PBW without probe) were also included. 

 

4.3.3 Statistical Analysis 

The possibility of the calibration relation between TVC (cfu/g) and TT (h) being 

modulated by other factors such as species of fish or trial effects was investigated by 

fitting a general linear model in the form: 

( ) ( )
( ) ( )

log  + + log  

+ log + + log  

ijk ijk i j i ijk

j ijk ij ij ijk ijk

th b TVC TVC

TVC TVC

µ α β γ

δ φ ϕ ε

= + +

+
  Eqn. 4.1 

Where thijk stands for the threshold recorded on the k-th sample on the j-th trial for 

the i-th species and similarly for TVCijk. Here µ stands for overall mean TT values, b 

(TVC) for the overall slope of the regression of TT and log(TVC), ai (Species) and βj 

(Trial) for the main effect on the mean of the i-th species and j-th trial respectively, γi 

(TVC:Species) and δj (TVC:Trial) for the effect on the slope of the i-th species and j-th 

trial respectively, Φij (Species: Trial) for the interaction (combined) effect on the mean 

of the i-th species and j-th trial, φij (TVC:Species:Trial) for the interaction (combined) 

effect on the slope of the i-th species and j-th trial; and εijk (Error) for measurement 

error. For estimation and hypothesis testing, measurement errors were assumed to have a 

Gaussian distribution with identical variance and be mutually independent. The 

significance of effects in model (Eqn 4.1) was measured using F-tests computed by a 

three factor analysis of variance (ANOVA) (Zar, 2000). The acronyms in parentheses 

are used to represent each effect in the ANOVA table. Based on the significant terms 

identified by the ANOVA procedure, a reduced model of the form: 
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( )log  ijk ijk ijkth b TVCµ ε= + +    Eqn. 4.2 

was fitted to the data by the least square method. The fitted calibration model was 

examined for adequacy by examining the residuals (estimated errors) for outliers and 

constancy of variability. Outliers identified by this process were removed for estimating 

the final calibration model. The assumption of Gaussianity of measurement error was 

checked using a quantile quantile plot (Venables and Ripley, 2002). The quality of fit 

was quantified by the R2 statistic.  

The respirometric TVC assay (TVCR) was computed using the relation: 

                                          R

th
TVC

b

µ−=                                            Eqn. 4.3 

Where th is the observed TT. The quantities µ and b are obtained from the final 

calibration model in (Eqn 4.2). For validation, we compare TVCR values against 

standard TVC values using agar plating across a range of validation samples i = 1,..., 

169, by linear regression: 

 Ri iTVC c mTVC ε= + +    Eqn. 4.4 

For a perfect validation, we would expect c = 0 and m = 1 (the line y = x), but the 

actual values are likely to be different due to sampling variability. However, we can 

check for adequacy of the validation by checking if 95% of the data values are within ± 

1.96 standard deviation (SD) of the ideal line, where SD due sampling variability is 

estimated from the residual error of the fitted regression model in (Eqn 4.4) (Zar, 2000).  

Analysis of ruggedness testing was performed using a two factor ANOVA (Zar, 

2000) where the factors were: 1) the level of sample contamination (high and low cfu/g), 

and 2) either the assay volume (70, 100 and 120 µl) or the probe concentration (50, 100 

and 150 ml). Significance of effects was measured by standard ANOVA F-tests (Zar, 

2000). Statistical analysis was done using the R package (cran.r-project.org). 
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4.3.4 Results & Discussion 

4.3.4.1 Analysis of Fish Matrix Effects and Optimization of Assay Conditions 

To assess matrix effects in the respirometric assay, fish samples with relatively low 

level of contamination (105-104 cfu/g range, verified by conventional TVC) were 

initially measured at different dilutions of the homogenates. Representative respiration 

profiles for one such salmon sample are shown in Fig. 4.1A. As with pure microbial 

cultures (O'Mahony and Papkovsky, 2006) and raw meat homogenates (O’Mahony et 

al., 2009), the samples showed characteristic sigmoidal profiles. In contrast, negative 

samples produce flat profiles, as their oxygen concentration is not changing.  

From these profiles a good linearity between measured TT values and sample dilution is 

seen (Fig. 4.1B processed data). The threshold is the point at which the fluorescence 

signal shows a sharp increase above the basal level. Corresponding TT is compared with 

the results of conventional TVC cfu/g results which show that sample matrix has no 

significant effect on assay performance and that at different sample dilutions the 

microorganisms proliferate at about the same rate (exponential growth). 

  

A)                                                               B) 

Figure 4.1: A) Typical profiles of food samples (e.g. salmon homogenate) measured at 

different dilutions: 1:20, 1:40, 1:80 and 1:160 (from left to right) and negative control 

(flat line), B) relationship between TT (at 400 FU) and sample dilution. Doubling time 

(DT) calculated from the slope is shown on the graph. 
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To mimic the responses at different initial microbial load, homogenate of cod sample 

with low levels of microbial contamination (< 102 cfu/g, 1:20 homogenate dilution) was 

spiked with increasing concentrations of E.coli and measured. Fig. 4.2 shows that spiked 

homogenates produce consistent profiles in the assay and give a linear relationship 

between TT and E.coli concentration (cfu/ml). In this matrix, doubling time of E.coli, 

the limit of detection and maximal monitoring time were determined: 25.6 minutes, 50 

cfu/g, and 10-12 hours, respectively. 

 

  

A)                                                                         B) 

Figure 4.2: A) Respiration profiles of cod homogenate samples (~102 cfu/g) spiked with 

different concentrations of E.coli. B) Resulting relationship between TT and E.coli 

concentration. 

 

From these experiments, 1:20 dilutions of fish homogenates was selected as 

standard for further work, as it provides convenience with pipetting (standard 100 µl 

aliquots throughout) and no undesirable matrix effects.  
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4.3.4.2 Establishment of Calibration 

To establish the relationships between the TVC (cfu/g) and TT (h) and generate 

calibrations which can be used for the analysis of samples with unknown microbial load, 

we analyzed panels of samples of different fish types (fresh salmon, cod, whiting, plaice 

and mackerel). The selection of fish was made to cover the spectrum of different types 

of tissue, i.e. white and red tissue, fresh and seawater fish, flat and thick body, low-fat 

and oily fish. Each sample homogenate underwent parallel analysis by conventional agar 

plating TVC method and by the respirometric assay. Accounting for potentially slower 

growth rates of microorganisms present in fish samples, plate monitoring time was 

extended to 12-16 hours. 

From the ANOVA analysis (Table 4.2) it was apparent that the only significant 

source of variation in the calibration relation is TVC level. More specifically, the 

calibration relation is not significantly different across species or trial or any 

combination of factors. This justifies a simple regression model of Eqn 4.2, in where 

other factors are not included. 

 

Table 4.2: ANOVA Table of general linear model for calibration data 

Source D.F. Sum of 
Squares 

Mean Sq F-statistic P-value 

TVC 1 251.43 251.43 97.65 <0.0001 

Species 3 11.46 3.82 1.48 0.26 

Trial 16 40.95 2.56 0.99 0.51 

TVC: Species 3 6.41 2.14 0.83 0.50 

TVC: Trial 16 49.27 3.08 1.20 0.37 

Species: Trial 19 29.82 1.57 0.61 0.84 

TVC: Species: Trial 2 3.59 1.80 0.70 0.51 

Error 14 36.09    

 

Fig. 4.3 shows the combined calibration for the four fish species (salmon, cod, 

whiting and mackerel), after exclusion of the top two outliers. We see that the majority 
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of points lie within the ± 1.39SD band, as expected. However, the R2 value is moderate, 

indicating the presence of substantial variability in the data. The relationship obtained 

from the fitting and analytical equation for conversion of measured TT values into cfu/g 

is given in Fig. 4.4. It is worth noting that inclusion of the two outliers significantly 

changes the calibration relation (it becomes TT =– 2.40(cfu/g) + 18.69). By individually 

treatment of these fish types the R2 and the parameters of equation are as follows, for 

salmon (TT = -2.94(cfu/g) + 21.35, R² = 0.72) and whiting (TT = -2.36(cfu/g) + 18.73, 

R² = 0.70) is a higher R2 obtained and for cod (TT = -2.41(cfu/g) + 19.01, R² = 0.53) 

and mackerel (TT = -1.49(cfu/g) + 13.00, R² = 0.39) a lower one.  

 

Figure 4.3: Combined calibration curve (solid line) for the fish samples (N = 75; cod: 

23, Mackerel: 8, Salmon: 23, Whiting: 21), TT (hours) vs log (cfu/g). Dotted lines 

denote one standard deviation (SD = 1.39) band around the calibration curve. 

 

As already mentioned fish is a quite difficult product to work with. It is less known 

about the chemical and physical changes what a fish is developing in his muscle tissue 
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post mortem and how this is influencing the respirometric method. In an earlier work 

performed on different types of raw meat (beef, pork, lamb and poultry) by the same 

method (O’Mahony et al., 2009), a combined R2 = 0.86 was obtained, as compared to R2 

= 0.56 for the fish. 

 

At the same time, certain fish samples, particularly fresh plaice, were seen to 

produce high scattering of results of the respirometric assay and worse correlation with 

conventional TVC test (Fig. 4.4). We explain this by plaice being a flat fish with a low 

ratio of muscle tissue volume to skin surface, resulting in a less predictable sampling of 

surface bacteria than for the other fish species tested. Likewise, the scattering of results 

from frozen fish samples was significantly greater than for fresh fish, although the 

calibration equation was similar. This suggests that freezing impacts the bacteria in fish 

tissue and affects their normal growth during the assay. Particular reasons may include 

freeze damage to microorganisms by the crushing and spearing action of ice crystals as 

well as lethality resulting from cell dehydration effects. The rate of freezing, storage 

temperature and temperature fluctuations during storage influence the extent of sub 

lethal injury and death of microorganisms. Thawing is more injurious to microorganisms 

than freezing, and the effects vary according to species. Even simple thawing of a frozen 

microbial population without intervening storage causes slight to moderate reduction in 

number of live organisms (Robinson, 2000). Due to the large variance of results, plaice 

and frozen fish samples were excluded from further testing in the respirometric TVC 

assay. 
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Figure 4.4: The relationship between the respirometric TT values and cfu/g in the 

standard TVC test for plaice (▲, y = -1.0597x + 9.1813, R² = 0.295) and frozen fish (■, 

y = -2.1725x + 19.92, R² = 0.639) samples. 

 

4.3.4.3 Assessment of Assay Ruggedness 

The results of assay ruggedness test with respect to pipetting volume are 

summarized in Table 4.3. Using this data, ruggedness was tested against two factors: 1) 

the level of sample contamination (high and low cfu/g), and 2) the pipetting volume (70, 

100 and 120 µl). To examine the relative contributions of these factors to measurement 

variation, we modeled log(Response) as a function of them, yielding the analysis of 

variance (ANOVA) results shown in Table 4.4.  
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Table 4.3: Experimental data for pipetting volume ruggedness test. 

Pipetting Volume error Pipetting Volume error Pipetting Volume error 

Log10 sample (High CFU) Log10 sample (Low CFU) Log10 sample (Neg Contr) 

Replicate 70µl 100µl 120µl Replicate 70µl 100µl 120µl Replicate 70µl 100µl 120µl 

1 6.79 6.96 6.98 1 3.75 3.88 3.99 1 <3 <3 <3 

2 6.79 6.96 6.97 2 3.66 3.77 3.93 2 <3 <3 <3 

3 6.79 6.95 6.97 3 3.57 3.66 3.84 3 <3 <3 <3 

4 6.79 6.94 6.96 4 3.48 3.57 3.66 4 <3 <3 <3 

5 6.79 6.94 6.96 5 3.11 3.38 3.66 5 <3 <3 <3 

AV 6.79 6.95 6.97 AV 3.51 3.65 3.82 AV - - - 

SD 0.00 0.01 0.01 SD 0.25 0.19 0.15 SD - - - 

 

Table 4.4: Two factor ANOVA for sample volume ruggedness experiment. 

Factor Degrees of 
freedom 

Sum of  

Squares 

Mean 

Squares 

F-statistic P-value 

Microbial load 
cfu/g  

1 78.83 78.83 3976 <0.001 

Assay volume 2 0.29 0.147 7.4 0.002 

Error 26 0.52 0.02   

 

As expected, Table 4.4 shows that the main source of variability is sample 

microbial load (cfu/g), whereas variability due to pipetting volume and residual error 

appear to be negligible by comparison (relative means square of 0.1% and 0.02% 

respectively). Further analysis showed a marginally significant trend (p-value = 0.04) in 

measurements due to change in assay volume. We note that the significance occurs due 

to the very small value of residual error (due to replication). 

Probe concentration ruggedness test produced similar results (Table 4.5). The main 

source of variability (Table 4.6) was again sample microbial load (cfu/g), whereas 

variability due to probe concentration and residual error appear to be negligible by 

comparison (relative means square of 0.2% and 0.01% respectively). Further analysis 

showed a significant trend (p-value = 0.003) in measurements due to change in probe 
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concentration. We note that the significance occurs due to the very small value of 

residual error (due to replication). 

 

Table 4.5: Experimental data for probe concentration ruggedness test. 

Probe Concentration error Probe Concentration error Probe Concentration error 

Log10 sample (High CFU) Log10 sample (Low CFU) Log10 sample (Neg Contr) 

Replicate 50% 100% 150% Replicate 50% 100% 150% Replicate 50% 100% 150% 

1 7.12 6.97 6.87 1 4.21 4.03 3.98 1 <3 <3 <3 

2 7.12 6.96 6.86 2 4.21 4.00 3.98 2 <3 <3 <3 

3 7.11 6.96 6.86 3 4.12 3.99 3.84 3 <3 <3 <3 

4 7.10 6.96 6.85 4 4.03 3.90 3.75 4 <3 <3 <3 

5 7.10 6.95 6.85 5 3.80 3.84 3.61 5 <3 <3 <3 

AV 7.11 6.96 6.86 AV 4.07 3.95 3.83 AV - - - 

SD 0.01 0.01 0.01 SD 0.17 0.08 0.16 SD - - - 

 

Table 4.6: Two factor ANOVA for probe concentration ruggedness experiment. 

Factor Degrees of 
freedom 

Sum of 
Squares 

Mean 
Squares 

F-statistic P-value 

Microbial load 
cfu/g  

1 68.55 68.55 7336 <0.001 

Probe Conc. 2 0.31 0.15 16.37 <0.001 

Error 26 0.24 0.01   

 

4.3.4.4 Assay Validation 

Fig. 4.5 shows correlation between the two methods. A diagonal line shows the 

ideal correlation between the two methods (predicted = observed line). Although the 

validation trend line produced by linear regression fit of all the data points does not 

match this ideal line, one can see that 93.5% of data points (158/169) lie within ± 

1.96SD of the ideal line. This is close to the expected 95%. One can see that 

respirometric assay provides the accuracy of TVC determination in fish samples of 

approximately ± 1 log(cfu/g). For a simple, fast, high throughput screening test, this 
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analytical performance is considered to be reasonably good (though not as good as for 

raw meat samples). 

 

 

Figure 4.5: Assay validation with unknown fish samples from different retailers. Solid 

line was produced using linear regression fit of the respirometric and standard TVC test 

values. Dotted line shows the ideal case, y = x. From regression SD = 0.97 cfu/g. 

Dashed lines indicate sampling variability range (ideal ± 1.96SD). 

 

In addition, storage trials were carried out to ascertain the natural spoilage rates of 

fish at different temperatures. It is known that bacteria grow faster at high temperatures. 

The Q10-rule implies that for every 10ºC increase in temperature the growth doubles, 

i.e. Q10 = 2 (Dworkin, 2006; Tjoelker et al., 2008). Of course this can vary depending 

on bacteria and sample used. Representative data for salmon are shown in Fig. 4.6. 
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Figure 4.6: Time profiles of microbial load (log(cfu/g) for salmon filets stored at 

different temperatures: 24ºC (●), 14ºC (■) and 4ºC (▲). 

 

After linearization of the three curves slopes were observed which increase from 

4ºC to 24ºC with a factor of Q10 = 2.5, particularly 4ºC = 0.31, 14ºC = 0.78 and 24ºC = 

1.97.  

 

4.3.5 Conclusions 

A simple, rapid and robust screening test for TVC in raw fish sample was 

developed which relies on fluorescence based micro-respirometry in standard 96-well 

plates. Assay conditions including pipetting volumes, sample dilution, matrix effects 

were optimized to streamline the procedure and produce reliable results. The test was 

applied to five different fish types: fresh cod, salmon, whiting, mackerel and plaice as 

well as frozen fish (all used as crude homogenates in PBW) for which individual 

calibrations and combined calibration were generated. The test showed good correlation 

with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness 

with respect to variation of key assay parameters (probe concentration and pipetting 

volume). Although linear regression fit was not perfect (R² = 0.56), vast majority of data 
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points lay within 1.39SD. At the same time, plaice and frozen fish showed lower 

correlation with conventional TVC method which can be explained by generic structure 

of these fish samples resulting in a less predictable sampling and higher scattering of 

data. The respirometric test was then validated with a panel of unknown fish samples (N 

= 169), where it correlated well with conventional TVC test. Although correlation trend 

line produced by linear regression does not match the ideal line, 93.5% of points lie 

within ± 1.96SD, i.e. very close to the anticipated 95%. 

 

4.4 Food Matrix: Green Produce 

4.4.1 Experimental Design  

The experimental design was similar to the fish study and included the assessment 

of matrix effects, followed by the calibration and validation. A standard sample 

preparation method was used, which involves preparation of crude homogenates (1:10) 

of salad samples in PBW on a stomacher, followed by further dilution steps: 1:2, 1:4, 

1:8 and 1:16 and subsequent monitoring of their respiration profiles. Non-linear profiles 

would indicate some kind of matrix effect of the probe what is interfering the faultless 

functioning of the method. For quantitative determination of TVC in salad samples 

(cfu/g), calibration was established by preparing homogenates of a representative panel 

of samples and their parallel analysis by the GreenLight assay (at constant 1:20 dilution) 

and by standard agar-plating TVC method (ISO:4833:2003, 2003). Once the calibration 

has been established (combined for different types of salads/green produce), it was 

validated by analyzing another set of salad samples. Their TVC values were determined 

using the above calibration equation. The resulting TVC values were compared to those 

produced by the agar plating test conducted in a parallel blind experiment. 

A total of 206 samples were assessed in this way divided into two groups of 

calibration and validation. All measurements for the calibration trial and the parts of the 

validation trial (packed at 5%, 21%, 45% and 60% O2) were conducted at days 1, 3, 7 

and 10 after packaging; the additional five salads of the validation part were assessed 
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only at day 3 and 7. After averaging the resulting threshold time of the triplicates for 

each sample the TVC was calculated and compared to the conventional agar plating 

values (triplicates). The number of samples measured for each type and batch of salad is 

stated in Table 4.7. 

Blanks (homogenates without probe) and negative controls (PBW with probe) were 

also incorporated on the plate. To establish the calibration and validate the new assay, 

the same homogenates of food samples were also analyzed by conventional agar plating. 

 

4.4.2 Selection and Preparation of Salad Samples  

All salad samples, freshly manufactured, packaged and delivered in industrial 

environment were provided by a local fresh fruit and vegetable company based in 

Dublin, Ireland. They were received in conventional plastic pouches (90 g) packed 

under 5% O2 or in air. Ten different salad types were chosen for the development of a 

new test for rapid TVC determination in various types of green produce. These samples 

were analyzed at different storage time to generate a combined calibration and assess the 

performance of the new assay. For the validation of the TVC assay determination, three 

salad types - Italian leaf mix salad, Caesar salad and Iceberg lettuce packaged under 5%, 

21%, 45% and 60% of O2, were selected. On day 1 some of the samples were repacked 

using a small scale packaging device operating with white Polystyrene-EVOH- 

Polyethylene trays (dimension: 203 mm x 146 mm x 60 mm (L x B x H), volume: 1000 

ml) and Satina sealing film. Five further salad types packed in air were also included in 

the validation trial. A total of 27 batches of different salad types packaged under 

different conditions were prepared and analyzed. The samples were stored in a cold 

room set at 4˚C. 
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Table 4.7: Batches of salad samples used for rapid TVC assay development and 

validation.  

 Salad type (O2%) N   

C
al

ib
ra

tio
n 

Italian Mix (5%) 12 

10
6 

Italian Style (5%) 12 

Secret garden (air) 12 

Rocket (air) 11 

Spinach and Rocket (air) 8 

Caesar (5%) 12 

Spinach (air) 3 

Iceberg (5%) 12 

Irish Summer Leaf Salad (air) 12 

Aromatic Herb Salad (air) 12 

V
al

id
a

tio
n 

Italian Mix (5%) 7 
10

0 

Italian Mix (21%) 7 

Italian Mix (45%) 6 

Italian Mix (60%) 6 

Caesar (5%) 7 

Caesar (21%) 7 

Caesar (45%) 6 

Caesar (60%) 6 

Iceberg (5%) 8 

Iceberg (21%) 8 

Iceberg (45%) 6 

Iceberg (60%) 6 

Aromatic Herb Salad (air) 4 

Baby Leaf Spinach (air) 4 

Spinach & Rocket (air) 4 

Sweet & Crunchy Salad (air) 4 

Wild Rocket (air) 4 
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4.4.3 Results & Discussion 

4.4.3.1 Development of Rapid TVC Assay for Green Produce 

To assess possible interferences of the food matrix on the results of GreenLightTM 

TVC assay, crude homogenates of salad samples were analysed at several different 

dilutions (1:20, 1:40, 1:80, 1:160) in PBW by monitoring their respiration profiles and 

TT which reflect microbial growth. For the different dilutions of the same sample a 

linear relationship between the threshold time (TT) and logarithm of dilution factor was 

observed, as seen for the example in Fig. 4.7 for sweet & crunchy salad (in the inset the 

coefficient of determination is revealed for the other salads). At different dilutions these 

samples showed a similar shape of respiration profiles, with a robust change (increase) 

in the probe phosphorescent signal (intensity of lifetime) correlating with the initial 

number of viable bacteria (cfu/g).  

 

 

Figure 4.7: The relationship between the TT and dilution factor for the sweet & crunchy 

salad. The inset shows R2 for the other salad types (linear regression fits). 

 

Taken together, this indicates that salad matrices and their components have no 

significant effect on the GreenLight TVC assay, and that low working dilution of the 

samples (1:20) can be used. Green produce is usually rich in chlorophyll and has 

absorption and/or fluorescence characteristics overlapping with those of the 
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phosphorescence based O2 probe GreenLight (Chen et al., 2010). This can potentially 

cause interferences with the respirometric measuring technique used in the rapid TVC 

test. Other factors and ingredients of the sample (and other natural pigments, matrix 

effects) can also influence the measurements. On the other hand, the long-decay 

emission of GreenLight probe and time-resolved phosphorescence lifetime based 

detection provide high sensitivity, selectivity and signal to blank ratio, and this allows 

reliable monitoring of dissolved oxygen and microbial growth/respiration in complex 

samples such as food homogenates (O’Mahony et al., 2009). Nonetheless, when 

developing a new TVC assay for a new group of products, these factors have to be 

assessed carefully.  

 

To produce a TVC calibration curve for ready-to-eat salads, we analyzed a total of 

106 salad samples, which differ in their type and freshness and cover a broad range of 

TVC levels and matrices. For each sample both the TT values (hours) and TVC counts 

(cfu/g) were generated. Fig. 4.8A illustrates the correlation of the results of the two 

assays for the samples measured on 4 different days. One can observe that TVC values 

are increasing at longer storage time. From this experiment, the following analytical 

relationship (equation) was determined which can be used for the determination of TVC 

values in salad samples based on the TT values of the respirometric assay:  

TVC(log(cfu/g)) = 0.544*TT(h) + 9.02.    Eqn. 4.5 

This new test is applicable to different types of ready-to-eat salads and potentially 

to other types of green produce. This assay shows a dynamic range of 3.5-8.3 log cfu/g, 

good linearity between TT and log(cfu/g) values, and correlation coefficient R2 = 

0.6231. The SD for the 106 samples was SD = 0.685 while 92% of all points lie within 

the 2SD band (being close to the anticipated 95%). 

At the same time, not all the samples tested delivered usable data. Eleven samples 

showed very high bacterial load producing respiration profiles with a very early signal 

increase for which TT values cannot be determined. Three other samples were identified 

as clear outliers and also disregarded when processing the calibration data. 
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Correlation of the results of the newly established rapid TVC test for green produce 

with the ISO TVC test (48 hours) is shown in Fig. 4.8B which exhibits a good 

agreement between the two tests (plotted against each other with x-axis: ISO method, y-

axis: respirometric method). The ideal correlation shown as dotted line should have the 

same TVC values on both axes. However, in the lower part of the correlation graph the 

points are slightly below this line indicating that the respirometric method slightly 

underestimates the TVC values. On the other hand, at high TVC values the results get 

rather close to the theoretical line crossing it at about log(cfu/g) = 7. Linear regression 

fit gave the following equation: Respirometric TVC(GreenLight) = 1.28(ISO TVC) – 

2.08, with R2 = 0.7749 and SD = 0.689 and 91% of all points lie within the margin of 

2SD. We can therefore conclude that the new TVC assay works reliably over the TVC 

range 4-8 log(cfu/g), giving a linear relationship with TT and SD of less than ± 0.7 

log(cfu/g).  

 

  

A)                                                             B) 

Figure 4.8: A) Combined calibration of the respirometric TVC assay produced using for 

10 different salad types, N = 106. Dashed lines denote ± 2SD (1.37) band around the 

calibration curve. Different symbols correspond to different storage time. B) Validation 

of the respirometric method using 8 different salad types, N = 100. Dashed lines indicate 

± 2SD (1.38). The dotted line is the ideal line. 
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4.4.3.2 Quality Assessment of Packaged Salads 

Profiles of microbial load over storage time for the three lettuces determined from 

the rapid TVC test and corresponding doubling times (DT) and R2 values are shown in 

Fig. 4.9. Each salad type shows characteristic initial TVC load and pattern of microbial 

growth, with the same general trend - increase in cfu/g over time. So, different ready-to-

eat salads exhibit characteristic bacterial counts which correlate with their type, age and 

packaging conditions. The highest TVC values (log(cfu/g) > 7) were obtained for the 

salads packed under air, while MAP salads show reduced TVC values, i.e. better 

freshness and quality.  

 

 

Figure 4.9: Growth rate (log(cfu) vs time) of Italian mix, Caesar and Iceberg salad (N = 

12 for each sample and day) with R2 and linear equation and doubling time. 

 

While the O2 was varied the CO2 was kept on a moderate/high level of 5%. Except 

the O2 concentration all the other storage parameters were kept the same for the different 

batches of salad. Comparing the results, Iceberg shows much lower bacteria counts than 

Italian mix and Caesar salad (Fig. 4.10). Iceberg starts with a log(cfu/g) = 3.55 while the 

others - with 4.69 (Caesar) and 4.96 (Italian mix) respectively. When focusing on the 

results at day 10 for all the salads, it is not obvious that higher oxygen levels inhibit or 

reduce the growth of microorganisms for either of the used samples. On the other hand, 

samples packed at 5% O2 develop lowest TVCs. Caesar and Iceberg lettuce illustrate 
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close results at 21, 40 and 60% O2 building a step to 5%, which is higher for Iceberg 

(~11.5%) compared to Caesar (~6%). For Italian mix 21% O2 give highest TVC (9.5% 

more) whereas 45% and 60% oxygen are very close to 5% oxygen.  
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Figure 4.10: TVC results for MAP packed Italian mix, Caesar and Iceberg salad (N = 3) 

at different days (x-axis) and initial oxygen concentrations (5%, 21%, 45% and 60%). 

 

Changes in headspace gas composition (CO2 & O2) in salad packs was monitored 

over a period of 10 days with the Optech (O2) and Dansensor (CO2) instruments. They 

showed a downward change in O2 and an increase of CO2. It is known that rapid 

depletion of O2 and elevation of CO2 can promote undesired fermentation processes, 

with production of ethanol and acetaldehyde leading to product deterioration and 

development of undesirable off-flavours and odours (Van der Steen et al., 2002) and 

also microbial growth. The latter can be assessed by looking at the TVC data. Indeed, 

clusters of data points in Fig. 4.8A which correspond to salad samples of different age 

reveal that TVC were increasing with storage time. A clear separation is seen between 

days 1, 3, 7 and 10.  

For the different salad packs the TVC were assessed, leading to the conclusion that 

MA packs exhibit lower cfu/g counts than air packed pouches, with 5% O2 producing 

the lowest microbial counts (in 5% CO2). This can be partly explained by bacteriostatic 

and fungistatic properties of CO2 which air does not have. Higher O2 content in packs is 

normally avoided due to its metabolic use by aerobic spoilage microorganisms and plant 
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tissue, but in the case of fresh fruit and vegetable products O2 is needed for their 

respiration. The levels of O2 in such packs depend on many parameters including the 

type of packing material, the relation between air volume and vegetable mass, 

illumination intensity, the type of product, proliferation rate of aerobic bacteria (as we 

observed for Caesar salad, Italian mix leaf salad and Iceberg lettuce). High O2 (80-

100%) was seen to reduce growth of the aerobic microbiota of fresh-cut baby spinach 

(Allende et al., 2004), however other effects of high O2 on fresh-cut mixed salads were 

also reported (Allende et al., 2002). 

 

4.4.4 Conclusions 

The new analytical system GreenLightTM demonstrates good working 

characteristics in the assessment of MAP green produce. The simple, rapid and high 

throughput TVC test with GreenLightTM probe was applied to a panel of salads to 

generate combined calibration with a linear relationship between measured TT and 

log(cfu/g). This test was validated with unknown salad samples (N = 100) proving that it 

is widely applicable to this type of food. Each salad type showed characteristic initial 

TVC load and pattern of microbial growth. The lowest TVC and highest preference in 

visual assessment were achieved for salads packed at 5% O2. The simple, rapid and high 

throughput TVC test with GreenLightTM probe exhibits good working performance with 

a variety of different salad types.  

 

4.5 Comparison of Different Food Matrices 

The rapid TVC test for green produce was compared to similar tests described 

previously for raw meat (O’Mahony et al., 2009) and fish (see 4.4) samples. As can be 

seen in Fig. 4.11, TVC calibrations of the three food matrices, reproduced from the 

corresponding analytical functions, are very similar (shifted against each other by less 

than 1.0 log(cfu/g)). This leads to a conclusion that the respirometric TVC detection 

method is applicable to a wide variety of food products and matrices. At the same time, 
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for new products basic assessment of possible matrix effects on calibration and possible 

interference on the optical measurement is still necessary while the use of existing or 

combined TVC calibration is not recommended and this may reduce the accuracy of the 

assay.  

 

Figure 4.11: Comparison of three different food matrices, salad leaves (dotted line), fish 

(dashed line) and meat (solid line),using respirometric TVC method. Linear equations 

are shown in graph. 

 

4.6 Overall Conclusions 

The respirometric TVC test provides general simplicity (homogenization and 

pipetting) and miniaturization, a dynamic range (104-107 cfu/g), accuracy of ± 1.0 

log(cfu/g), high speed and automation. Highly contaminated samples can be identified 

quickly (2-12 hours depending on the level of contamination), positive samples can be 

seen as the measurement progresses (real-time data output). Theoretical sensitivity of 

the respirometric assay is 1 cfu/well (O'Mahony and Papkovsky, 2006), however, assay 

volume (0.1 ml) and sample dilution during the homogenization (1:10) should be 

factored in for food samples. Statistical variability at low cell numbers (1-10 cells), 

possible matrix effects and data scattering reduce the sensitivity down to 103 -104 cfu/g 

(limit of detection, LOD), which is still very good and relevant to food testing and safety 
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assessment. Samples producing flat profiles with low phosphorescent signals are defined 

as negative (below the LOD). Up to 96 samples can be analyzed on a plate in one run. 

Its ability to assess highly perishable products such as fish and green produce in < 12 

hours shows good application usage for industry in testing samples far quicker and 

reliably and making safety and quality assessments in large number of samples. The test 

offers simple set-up (conventional microplates and fluorescent reader), significant 

savings on labor, lab space and waste requirements, and it overcomes many drawbacks 

of conventional TVC testing. If required the sensitivity can be enhanced by using larger 

assay volumes (e.g. performing the assay in 1.5 ml and 15 ml vials) or reducing sample 

dilution during homogenization. 

Application of this technique to quality assessment of different food products such 

as fresh salads or fish showed high practical utility for shelf-life stability studies, MAP 

process optimization and for assessing the efficiency of antimicrobial active packaging. 

Therefore, this system can find use in many food research, safety and QC labs, for both 

small and large users. 
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Chapter 5: The Use of Optical Sensors for Monitoring 

Headspace O2 and CO2 in Packaged Mushrooms (Agaricus 

Bisporus) during Chilled Storage  

 

 

5.1 Introduction 

Mushrooms (Agaricus bisporus L.) are very perishable horticultural products. They 

do not have a protective skin cover which leads to high moisture loss and a short shelf-

life of 1-3 days at ambient temperature (Mahajan et al., 2008). Mushrooms are very 

sensitive to humidity levels: high water levels favour microbial growth and 

discoloration; and low water levels lead to loss of weight (and thus economic value) and 

undesirable textural changes. Their respiration rates are high and special care should be 

taken to avoid anoxia which leads to rapid deterioration of tissue (Iqbal et al., 2009). As 

a result, mushrooms are usually marketed in trays wrapped with perforated stretchable 

polyvinylchloride (PVC) film (Simón et al., 2005) with little or no atmosphere 

modification being carried out. The perforations prevent anoxia and condensation inside 

the packages; therefore selection of optimal packaging material, density and size of 

micro-perforations and atmosphere within the packs is critical for maintaining 

mushroom quality over time. 

A modified atmosphere (MA) is created inside the package and the specific 

atmosphere created is dependent upon a variety of factors interacting, namely; 

respiration rate of the mushrooms, gas permeability of the film, size and number of 

perforations present in the packaging materials, product to package ratio, the breathable 

film area and storage temperature (Mahajan et al., 2007). For whole mushrooms, usually 

in pack O2 concentrations are kept at 1-5 %, but not less than 1% to avoid anaerobic 

respiration and growth of pathogens (Tano et al., 1999). In pack CO2 concentrations 

should be maintain at relatively higher levels, but below 12 % to avoid physiological 

injuries such as browning (Parentelli et al., 2007). Micro-perforated films are used for 
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achieving the appropriate gaseous composition in MA packs of fresh horticultural 

produce, especially for highly respiring products such as mushrooms (González et al., 

2008). Mahajan et al. (2009) reported that the degree of perforations affected final gas 

contents inside the packages, with a level of perforations between 2 to 8 holes of 0.25 

mm diameter. Oliveira et al. (2012b) reported that 2 perforations (0.33 mm in diameter) 

were optimal for 110 grams of sliced mushrooms at 10°C, yielding 3.6% of O2 and 

11.5% of CO2 at equilibrium. However, these parameters may vary for different package 

size, type of mushrooms, packaging and storage conditions.  

Mushroom quality is determined by a combination of factors, but among the most 

important is consumer preference. An ideal mushroom is white, unblemished, possess a 

firm texture and is present in an immature state (i.e. the veil is totally closed). A loss of 

mushroom quality can be expressed through the measurement of several parameters, 

including; water loss, pH, texture, colour (L*, a*, b*), microbial counts and polyphenol 

oxidase (PPO) activity. Colour change is one important measurable parameter with a 

proposed limit of acceptance of L* = 80 (Gormley, 1975). Another parameter is mottled 

brown discolouration caused by microorganisms, primarily Pseudomonas tolaasii 

(Simón et al., 2005). PPO enzyme (Mohapatra et al., 2008) produces brown melanin 

pigments when it makes contact with the mushrooms substrate. This reaction leads to a 

breakdown of mushroom fibers and causes further softening of mushroom caps. The 

shelf-life of mushrooms may be prolonged by slowing product respiration, thereby 

delaying microbial activity and preventing excessive water loss (Mahajan et al., 2008). 

Brennan and Gormley. (1998) reported that chilled storage (4°C) of mushrooms from 

harvest to cooking helps to maintain quality by reducing the rate of bacterial growth and 

enzyme activity. Low temperature storage, together with low O2 and high CO2 levels, 

are known to reduce the respiration rate of fresh mushrooms and extend their shelf-life. 

Non-invasive measurement of O2 and CO2 can be performed with optical sensors. 

Both absorbance and fluorescence based sensors for O2 detection have been reported 

with a high suitability for food packaging applications. The response of absorbance 

based sensors is typically indicated by colour change, enabling semi-quantitative O2 

detection with no need for spectroscopic equipment (Eaton, 2002). Alternatively, 
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luminescence based sensors provide quantitative O2 detection by using an external 

detector which allows a more precise evaluation of packaging headspace. These sensors 

usually consist of a phosphorescent dye incorporated in a polymer membrane which is 

quenched by headspace O2. Optical CO2 sensors consist of a CO2 sensitive polymeric 

membrane based on a pH-sensitive indicator dye producing changes in colour or 

fluorescence which correlate with CO2 concentration. These sensors were initially 

described by Mills (Mills et al., 1992) in which the pH sensitive dye was incorporated in 

a hydrophobic polymeric membrane together with a hydrophobic phase transfer agent 

(PTA). By changing the PTA from tetraoctylammonium hydroxide (TOA-OH) to 

cetyltrimethylammonium hydroxide (CTA-OH) sensitivity to CO2 in the range 0-40% 

can be achieved (Borchert et al., 2012b). Current optochemical CO2 sensors are not as 

developed as the phosphorescent O2 sensors and require significant improvement of 

their stability, accuracy and robustness. While not quite ready for large scale industrial 

applications, they are suitable for food research and non-destructive headspace gas 

analysis in MAP packs. A handheld scanning device, similar to the one used for O2 

detection, has not been developed so far for CO2 sensors. However; these sensors show 

colour change due to a pH-sensitive indicator dye, and can be used for semi-quantitative 

CO2 detection. To the best of our knowledge, neither O2 nor CO2 optical sensors have 

been applied to study the headspace gas composition in packaged mushrooms. 

The aim of this study was to non-destructively monitor the changes in gas 

composition with optochemical O2 and CO2 sensors and assess their impact on relevant 

microbiological and physicochemical quality parameters of packaged fresh white 

mushrooms during chilled storage at 4°C for up to 7 days. 
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5.2 Experimental 

5.2.1 Materials 

Button mushrooms (Agaricus bisporus) were supplied by a fresh produce supplier 

(Total Produce, Togher, Cork). Commercially used blue mushroom trays were 

purchased from Quinn Packaging (Dublin), cling film was obtained from Bunzl Irish 

Merchants (Dublin). Disposable O2 sensor stickers and handheld detector OptechTM 

were from Mocon (Minneapolis, MN) and Platinum(II)- tetrakis(pentafluorophenyl) 

porphyrin (PtTFPP) was obtained from Frontier Scientific (Carnforth, UK). Alpha-

naphtholphthalein (NP), poly(isobutyl methacrylate) (P(IBM)), 

cetyltrimethylammonium hydroxide (CTA-OH), tetraoctylammonium hydroxide (TOA-

OH), toluene, sodium phosphate buffer, polyvinylpyrrolidone (PVP-40) and catechol 

were purchased from Sigma- Aldrich. Mylar® polyester film was from Du Pont and 25 

mL polystyrene screw cap tube were obtained from Sarstedt (Germany). Whatman paper 

(No. 1) was from Whatman Ldt (Maidstone, UK). Maximum recovery diluent, ringer 

solution, brilliance E. Coli/coliform Selective Agar, Pseudomonas agar base and CFC 

supplement were purchased from Oxoid (Basingstoke, UK). Total count plates were 

from Nissui Pharmaceutical (Co. Ltd., Japan) and stomacher bags were obtained from 

Seward (UK). 

 

5.2.2 Sample Preparation and Experimental Set-up 

Whole mushrooms of similar size were packed within 6 hours post-harvesting. 

Mushrooms were weighed (250 g ± 1%) into commercial blue tray 

(polypropylene/recycled high density polyethylene (PP/rHDPE), mushroom punnet 250 

g, P3-57, w: 11.9 cm x l: 16 cm x h: 5.8 cm). Prior to over wrapping the mushrooms 

punnets with cling film (oxygen transmission rate: 6000/8000 cm3/m2/24hr and carbon 
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dioxide transmission rate: 40,000/60,000 cm3/m2/24hr), two O2 sensors were fixed to the 

inside of the package wrapping film separated ~2 cm between them and two CO2 

sensors having different formulations were fixed to the punnet sidewall. The micro-

perforation system for mushrooms is well established, to prevent excessive CO2 

accumulation and O2 depletion in packaged mushrooms; therefore, the size and number 

of micro-perforation were estimated from the respiration rate and mathematical 

modelling principle as reported by Mahajan et al. (2007) and later applied for whole 

mushrooms (Mahajan et al., 2009). Accordingly, to achieve an equilibrium modified 

atmosphere inside the package, it was perforated with two holes using a needle of 0.25 

mm diameter. Packed mushrooms were stored in a cold room at an average temperature 

of 4°C ± 0.51 for the whole duration of the trial. Two trials were performed each 

consisting of 15 punnets. For quality determination 5 packs were opened on days 0, 2, 5 

and 7. 

 

5.2.3 Monitoring of O2 and CO2 

The O2 content inside the packs were measured non-invasively with disposable O2 

sensor stickers and OptechTM Platinum O2 handheld detector. An optical contact was 

created between the instrument and the sensor (5-10 mm distance) to produce the O2 

reading (% of O2, compensated for temperature and pressure variation). Single 

measurement takes about 1 second and can be repeated as many times as necessary. In 

the first 2 days the O2 levels were measured twice a day and once a day afterwards. 
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A)  

B)  

Figure 5.1: Standard colour score card used with the CO2 sensors. A) Sensor 

formulation containing TOA-OH was used for lower CO2 concentrations, B) Sensor 

formulation containing CTA-OH was used for higher CO2 concentrations. 

 

Headspace CO2 concentration was determined with the colourimetric CO2 sensors 

(Borchert et al., 2012b) by comparing them to a standard colour score card (Fig. 5.1). 

Low concentrations were recognized immediately by sensor formulation consisting PTA 

TOA-OH (0-3%, Fig. 5.1A) whereas higher concentrations were determined by the 

second sensor formulation consisting PTA CTA-OH (up to 40%, Fig. 5.1B). For each 

sensor formulations a colour code card was used covering the corresponding CO2 

region.  

The performance of the optical sensor systems was verified with destructive gas 

analyzer Checkmate 9900 (PBI-Dansensor, Denmark). 

 

5.2.4 Quality Parameter Measurements 

For measurement of the microbiological and physico-chemical quality parameters, 

5 mushroom packs, each containing 250 g of produce were opened on each measuring 

day. Each sample was used for one measurement only. 
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5.2.4.1 Physico-Chemical Analysis 

Product weight loss (WL) in each package was determined by transferring the 

mushrooms into a new tared tray and weighed on scales (Mettler Toledo B303, 

Switzerland). It was expressed as percentage of the initial weight: 
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Wi is the initial weight of the mushrooms and Wt is the weight of the mushrooms at 

the sampling point.  

 

Sensory evaluation of mushrooms throughout the storage was undertaken by a 

panel of 10 internally trained members (6 males/4 females, aged from 20 to 35 years) of 

the School of Food and Nutritional Sciences, University College Cork (conforms with 

ISO standard, 1998), using a 10 cm line scale with 0 at the extreme left and 10 at the 

extreme right and rating scores subsequently in cm from the left. Each panelist was 

presented with one white plate containing three randomly coded samples. The 

parameters evaluated by the assessors on the mushrooms during storage were: overall 

appearance (0 = extremely poor to 10 = excellent), degree of browning (0 = no 

browning to 10 = intense browning), veil development (0 = totally open to 10 = totally 

intact), texture (0 = extremely soft to 10 = extremely firm), sliminess (0 = not slimy to 

10 = slimy), aroma (0 = non typical aroma to 10 = full typical aroma) and overall 

acceptability (0 = dislike extremely to 10 = like extremely). 

 

Mushroom texture was measured using a texture analyzer TA-XT2i (Texture 

Technologies, USA) equipped with a 35 mm diameter cylindrical aluminium probe. 13 

whole mushrooms of uniform size were selected for textural analysis (with stem 

removed) and compressed by 50% of the sample height by using following settings: pre-

test speed: 5 mm/s, test speed: 5 mm/s, post-test speed: 10 mm/s, load cell: 5 kg. The 

firmness of the whole mushrooms was expressed in Newtons (N). 
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The colour of the mushroom cap and extract was determined based on the CIE 

colour parameters (L*, a* and b*) using a chroma meter (CR-400,) connected to data 

processor (DP-400), both from Konica Minolta, Japan. Browning index (BI) as reported 

by Maskan (2001) was calculated using eq. (Eqn. 5.2) and (Eqn. 5.3): 
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Whiteness index (WI) was calculated using eq. (Eqn. 5.4) (TAPPI, 2007). 

 

)3()3( abLWI +−=     Eqn. 5.4 

 

Total colour difference (∆E) and hue were also calculated as reported by (Cruz-

Romero et al., 2007). 

 

An average of 10 measurements per mushroom sample were taken on the surface of 

the mushroom cap. For the measurement of colour of the mushroom extract, the extract 

was prepared by mixing mushrooms without stems with Ringer solution in a ratio of 1:4 

and stomaching (Seward, UK) for 2 minutes. The homogenates were centrifuged at 

12,000 x g (Model J2-21, Beckman Co., USA) for 15 minutes at 4°C and the supernatant 

was transferred in a 25 ml polystyrene screw cap tube. The colour was measured on the 

surface of the clear solution. For each measurement day, four extracts were made and at 

least 10 measurements were taken for each sample. 

 

Spectrophotometric measurement of PPO activity was introduced by Galeazzi et 

al. (1981). In order to obtain a representative sample, a number of subsamples of the 

outer skin of three mushrooms without stems were taken using sterile scalpels from 
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different parts of the mushrooms cap into a sterile stomacher bag, pooled and thoroughly 

mixed and 10 ± 0.02 g of the pooled mushrooms samples were weighted into a beaker 

and 20 ml of 0.5 M sodium phosphate buffer (pH 6.5) containing 1 g of 

polyvinylpyrroline were added. The samples were homogenized under ice using an 

ultra-turrax homogenizer (T 25, IKA –Werke GmbH & Co KG, Germany) at 8,000 rpm 

for 1 minute. Subsequently the homogenates were centrifuged at 12,000 x g for 30 

minutes at 4°C in a Beckman centrifuge (Model J2-21, Beckman Co., USA). The 

supernatant was filtered using a Whatman filter paper and the filtrate was used as crude 

enzyme extract and the enzymatic activity measured immediately. PPO activity was 

assessed, based on oxidation of catechol. The absorbance was measured at 400 nm by 

UV–Vis Spectrophotometer  

 

FT-IR analysis of the extract (as used for PPO activity) was performed on a Varian 

660 FT-IR spectrometer using ATR Golden Gate (Specac). Spectra were taken using 32 

scans in absorbance mode at 4 cm-1 resolution in a wavenumber range from 4000 to 500 

cm-1. To obtain IR spectrum of the sample, the spectrum of the 0.5 M sodium phosphate 

buffer pH 6.5 was measured and subtracted. Each sample was measured in duplicate. 

 

The pH of mushrooms was determined by mixing 10 g of mushroom (without 

stem) with 90 ml of distilled water and homogenizing for 2 minutes in a stomacher and 

taking 5 measurements per sample on a pH meter (Mettler Toledo, Switzerland). Prior to 

the measurements the pH meter was calibrated with standard buffers of pH 4 and 7. 

 

5.2.4.2 Microbiological Analysis 

Microbiological analyses of mushrooms during storage at 4°C were performed in 

triplicate on each measurement day. In order to obtain a representative sample, six 

mushrooms without stems were taken aseptically using sterile forceps and scalpels from 

different parts of the pack, placed into a sterile stomacher bag, pooled and thoroughly 

mixed for 3 minutes using a stomacher (Seward, UK). 10 g of the pooled mushrooms 
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samples were weighted aseptically into a stomacher bag in a vertical laminar-flow 

cabinet and a primary 10-fold dilution was performed by the addition (90 ml) of sterile 

maximum recovery diluent (Oxoid, Basingstoke, UK). Following homogenization in a 

stomacher for 3 minutes, homogenates were serially diluted 10-fold in maximum 

recovery diluent, and 1 ml of each appropriate dilution was inoculated on duplicated 

plates in the centre of compact dry-total count plates (20 cm2) (Nissui Pharmaceutical, 

Co. Ltd., Japan) for enumeration of total mesophilic aerobic bacteria following 

incubation at 30°C for 48 hours. Total coliforms and E.coli were enumerated on 

Brilliance E. Coli/coliform Selective Agar (Oxoid) following incubation at 37°C for 24 

hours. Oxoid Brilliance E. coli/coliform Selective Agar is a chromogenic medium for 

the detection and enumeration of E. coli and other coliforms (important hygiene 

indicators) from food. Chromogenic agents in the medium were used to detect the ß-

glucuronidase activity of E. coli and the ß–galactosidase activity of coliforms (including 

E. coli), allowing them to be clearly differentiated on the culture plate (coliforms – pink, 

E. coli – purple). Pseudomonas spp. was enumerated after 2 days incubation at 30°C on 

Pseudomonas agar base (Oxoid) to which CFC (cetrimide, fucidin, cephaloridine; 

Oxoid) supplement was added. Bacterial numbers were converted to log10 colony-

forming units per gram sample (cfu/g sample) prior to statistical analyses. 

 

5.2.5 Statistical Analysis 

Statistical analysis was carried out using IBM SPSS statistics software, version 20. 

To determine differences between samples measured at different storage time, Duncan 

tests were applied and significant differences were established at P < 0.05. The degree 

of correlation of quality parameters and gases (CO2 and O2) was estimated using the 

Pearson test; at the level of significance was set at P < 0.05. 
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5.3 Results & Discussion 

5.3.1 O2 and CO2 Headspace Concentrations 

 

Figure 5.2: Changes in O2 and CO2 concentrations in the headspace of packaged 

mushrooms during storage at 4°C measured with optical sensors. Error bars represent 

standard deviations of data from duplicate trials (n = 10).  

 

Changes in O2 concentration in packaged mushrooms simulating commercial 

packaging practices are shown in Fig. 5.2. The concentration of O2 decreased 

significantly (P < 0.05) over the first 18.5 hours reaching a concentration of 11.4%. 

After this a slow increase in the O2 levels was observed but this increase was not 

significant. Therefore, equilibrium of O2 levels in the packaged mushrooms was reached 

after 18.5 hours storage. This is lower than reported in the study by Oliveira et al. 

(2012a), in which equilibration time was determined to be around 24 hours at 5°C. The 

difference can be due to variations in product weight, number of ventilation holes 

present in package materials, storage temperature, ratio weight/packaging volume, 

mushrooms size and method of measurement. A two-stage respiration process, the first 

being rapid and the second slower, has been extensively reported in the literature 

(Halachmy and Mannheim, 1991; Tano et al., 1999; Oliveira et al., 2012a). The initial 

stage of fast respiration is probably due to the high concentration of O2 in the pack and 
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high temperature of the mushrooms (~12°C). It becomes slower at lower temperature 

and availability of O2. The plateau was attained when equilibrium was reached. At the 

end of the storage (161.5 hours) the concentration of O2 reached the value of 11.2%. 

Fonseca et al. (2002) reported that during storage of mushrooms lowered O2 

concentration is normally preferred in order to slow down respiration processes and 

oxidative breakdown of complex substrates. However, very low O2 leads to anaerobic 

condition and this condition can promote the growth of some pathogenic bacteria such 

as Clostridium spp. (Tano et al., 1999). In this study, the concentration of O2 stayed 

above 0% throughout the storage time (Fig. 5.2), therefore, avoiding anaerobic 

conditions. In order to assess the quality parameters and correlate it to gas composition; 

it is essential to determine continuously the gas composition of the headspace during the 

entire storage life. 

CO2 concentration increased (P < 0.05) significantly from 0.04% (air 

concentration) reaching equilibrium level of 10.7% after 41.5 hours and then remained 

practically unchanged and not exceeding 12%. Tano et al. (1999) reported that CO2 

concentrations of 12% and higher are known to cause loss of firmness and increase 

browning in mushrooms. In mushrooms, CO2 concentration has also been reported to 

have an inhibitory effect on the respiration rate (Fonseca et al., 2002).   
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Figure 5.3: Correlation of readings from the optical O2 (A) and CO2 (B) sensors and 

commercial DansensorTM instrument. Dashed lines represent the ideal correlation and 

solid lines represents linear trendlines. 
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For comparison purposes, the O2 gas composition in the headspace of packaged 

mushrooms was determined using a well-established method (DansensorTM) and non-

invasive measurement using optical sensors (OptechTM system). The correlation 

obtained between the two methods showed a coefficient of correlation of R2 = 0.91 (Fig. 

5.3A) with slightly higher oxygen concentration (~1% O2) being determined when 

measured using the OptechTM system. 

The correlation obtained for the CO2 concentration measurement between both CO2 

optical sensors and DansensorTM was R2 = 0.89 (Fig. 5.3B). Despite the fact that CO2 

was determined semi-quantitatively using a visual assessment via a colour score card 

(Fig. 5.1), the prediction of CO2 was found to be quite reliable. 

 

Therefore, both O2 and CO2 in the headspace of packaged mushrooms can be 

measured rapidly and non-invasively using optical sensors what is of horticultural 

industrial interest. As these sensors were attached to the sidewall and lid of the package 

they did not interfere with the product headspace at any time when concentration of 

gases was measured during shelf-life. 
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5.3.2 Sensory Evaluation 

 

Figure 5.4: Changes in the sensory scores during storage of packaged mushrooms at 

4°C. Each point is an average of 60 observations (n = 60).  

 

The results of the quantitative descriptive analysis of packed whole mushrooms are 

presented in a spider plot (Fig. 5.4), where each corner contributes to an attribute and 

each line to the scores using 10 levels of classification. Throughout the storage time (7 

days) all 7 quality parameters assessed changed in score intensity.  

The sensory analysis of the packaged mushrooms showed that the overall 

appearance decreased (P < 0.05) significantly during storage. This attribute correlated 

well with the degree of browning of the mushroom caps (R2 = 0.982) which was 

significantly higher (P < 0.05) at day 7 compared to samples at day 0. Browning is an 

important quality parameter responsible for quality loss in mushrooms. Major changes 

in both parameters, overall appearance and browning intensity, occurred within the first 

2 days of storage. It has been reported that the significantly decrease in O2 concentration 

causes a decrease in activity of oxidases, such as PPO and that the increase in CO2 

concentration increase the bacteriostatic effect on microorganisms and various 
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enzymatic reactions (Kader, 1986; Daniels et al., 1985). The aroma of the packed 

mushrooms changed significantly during the storage time, the intensity of full typical 

aroma was lower at the end of the storage. No significant changes in veil development 

were observed in the sensory analysis of the packaged mushrooms. The firmness of the 

mushrooms determined by the texture analyser decreased during storage at 4°C; the 

mushrooms were significantly (P < 0.05) softer at day 7 compared to day 0. However, 

the sensory analysis results of firmness did not correlate to the measured firmness 

determined by the texture analyser (chapter 5.3.4). 

The sliminess of the mushroom caps increased significantly (P < 0.05) during 

storage; the mushroom caps were slimier at day 7 compared to day 0. It has been 

reported that the increase in the microbiological counts, especially Pseudomonas spp., 

produces exopolysaccharides and form a biofilm on the mushrooms surface, making the 

mushrooms slimier (Fett, 1995 ). The results showed that the intensity of the sliminess 

increased over time, so as the microbial load of Pseudomonas spp. (chapter 5.3.8). To 

the best of our knowledge, this parameter was not used previously in sensory analysis of 

mushrooms and the sensory data on the sliminess attribute correlated well with the 

microbiological spoilage of the mushrooms. 

A general significant (P < 0.05) decrease in the overall acceptability was noticed 

throughout the storage time with a score of 5.3 obtained at day 7 which was close to the 

limit of acceptability (score 5) for the average consumer. The overall liking of the 

mushrooms decreased over time. Mohapatra et al. (2011) reported that the parameter of 

overall acceptability was an appropriate indicator by which other mushroom quality 

indicators such as maturity and cap hardness could be determined. 
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5.3.3 Measurement of Polyphenol Oxidase (PPO) Enzyme Activity 
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Figure 5.5: Changes in the polyphenol oxidase activity during storage of packaged 

mushrooms at 4°C. Letters a and b above the data points indicate significant differences 

(P < 0.05). 

 

The pattern of the PPO enzyme activity (Fig. 5.5) showed a decrease in activity 

during the storage, with significant decreases (P < 0.05) on day 2. However, no 

significant changes were observed after day 2. Beaulieu et al. (1999) reported that PPO 

produced black, brown or red pigments (polyphenols) causing fruit browning. The 

presence of PPO in the mushrooms correlated well with sensory results. High PPO 

activity makes mushrooms prone to browning. The early decrease in PPO activity is 

unusual as it typically increases over time (Tao et al., 2007), even when analysis is 

performed at different temperatures (Mohapatra et al., 2008). The results showed that 

the decrease in enzymatic activity was correlated to the increase of CO2 concentration in 

the first 2 days. However, after 2 days storage little changes in the enzymatic (PPO) and 

CO2 concentration were noticed. Enzymatic inhibition effect due to increased CO2 

concentration has been reported by Farber (1991) and includes direct inhibition of 

enzymes and decrease on enzyme reactions rate.  
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5.3.4 Textural Analysis 
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Figure 5.6: Changes in the firmness of packed mushrooms during storage at 4°C. Error 

bars represent standard deviation of n = 13 replicates; letters a and b above the bars 

indicate significant differences (P < 0.05). 

 

A non-significant increase in the firmness of the mushrooms was noticed up to day 

5; however, after day 5 a significant (P < 0.05) decrease in firmness on the mushroom 

caps were noticed (Fig. 5.6). These results did not correlate with the results found in 

sensory analysis: in which a significant (P < 0.05) decrease on firmness decrease was 

noticed on day 5 by the sensory panel. Tano et al. (1999) reported an initial increase in 

firmness, and this increase was correlated to cap expansion due to growth related chitin 

production in the mushroom tissue during the first 6 days of storage at 4°C. 

Furthermore, it has been reported that texture changes are also related to protein and 

polysaccharide degradation, hyphae shrinkage, central vascuole disruption and 

expansion of intracellular space (Zivanovic et al., 2000). Mohapatra et al. (2011) 

reported that variability in the sensory evaluation of the cap hardness was affected 

significantly by batch variability than by sensory panel variability. Furthermore, a 

correlation between texture and CO2 concentration has been proposed; this being that as 

CO2 concentration increases, textural loss decreases (Briones et al., 1992). In this study, 

the headspace gas composition correlated well with sensory data; however,  significant  
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(P < 0.05) decrease  in the firmness measured using a texture analyser was detected after 

day 5. 

 

5.3.5 Colour Measurement 
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Figure 5.7: Changes in the A) whiteness index (WI), B) browning index (BI), C) total 

colour difference (∆E) and D) hue of mushroom cap during storage at 4°C. Error bars 

represent standard deviation of n = 40; letters a, b and c above the data points indicate 

significant differences (P < 0.05). 
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Figure 5.8: Changes in the A) whiteness index (WI), B) browning index (BI), C) total 

colour difference (∆E) and D) hue of mushroom extract during storage at 4°C. Error 

bars represent standard deviation of n = 40; letters a, b, c and d above the data points 

indicate significant differences (P < 0.05). 

 

Changes in the whiteness index (WI), browning index (BI), total colour difference 

(∆E) and hue values are shown in Fig. 5.7 for the caps and in Fig. 5.8 for the extract. For 

both WI decreased significantly (P < 0.05) throughout the storage. For mushroom caps, 

the WI parameter is directly correlated to a higher L* values that represents whiter 

samples and reciprocal to the browning index. Over time, the whiteness of mushrooms 

decreased: mushroom caps were darker at day 7 compared to samples at day 0 (Fig. 

5.7A). Our results are in agreement with the results reported by Sapers et al. (2001) and 

Oliveira et al. (2012a) where L* values decreased in whole and sliced mushrooms stored 

at 4 or 5°C, respectively. Sapers et al. (2001) reported a decrease of L* values for whole 

mushrooms from 93.3 to 89.6 on day 8 of storage at 4°C which are in agreement with 
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our results (decrease from 92.58 ± 1.31 to 89.76 ± 1.53 on day 7 of storage at 4°C). 

Both, WI and L* values of mushroom caps decreased significantly in the first 2 days of 

storage and this changes correlated to significant increase in CO2 and decrease in O2 

concentration. Changes in WI and L* values were minimal after day 2 as a 

corresponding equilibrium of gas concentration in the headspace was reached. 

The BI of mushroom caps (Fig. 5.7B) increased significantly (P < 0.05) up to day 

5; however, no significant changes were noticed after day 5. The BI of the mushroom 

extract (Fig. 5.8B) did not increase significantly up to day 5; however, significant 

changes were noticed after this time point. The results of changes in the BI of mushroom 

caps are in agreement with those of Mohapatra et al. (2010), who found that the BI 

increased during storage from 11 at day 0 to 13 at day 7.  

The ∆E values, an indicator of total colour difference, showed that there were 

significant differences (P < 0.05) in the colour of mushroom caps (Fig. 5.7C) and 

extracts (Fig. 5.8C) during storage. The smaller the value of ∆E, the closer samples are 

in colour. Values of ∆E between 0 and 0.2 indicate an imperceptible colour difference; 

0.2–0.5 a very small difference, 0.5–1.5 a small difference, 1.5–3.0 a distinct difference, 

3.0–6.0 for a very distinct change, 6.0–12.0 for a great change and values >12 

representing a very great difference. Using this classification scale for total colour 

difference reported by Cruz-Romero et al. (2007), it can be concluded that distinct 

changes in colour were obtained for mushrooms stored up to 2 days. Very distinct 

differences in the colour of the mushrooms were observed following 2 days storage. For 

the extracts, the ∆E values obtained up to day 5 indicated that these were very distinct 

changes compared to samples at day 0, and a great difference in colour was observed 

following 5 days storage. The changes in the ∆E values are in agreement with the 

changes in ∆E values reported by Oliveira et al. (2012a) who found increased ∆E values 

during the storage of sliced mushrooms. 

In general, the hue angle of the mushroom cap and extract decreased significantly 

(P < 0.05) with increasing storage time, corresponding to a decrease in the intensity of 

greenness and an increase in yellowness (Little, 1975). The results indicated that the 

changes in colour indices of the mushroom cap and extract followed the same pattern 
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(Fig. 5.7D and 5.8D), indicating that the measurement of these colour parameters during 

storage at refrigeration temperature can be measured in the mushrooms extract, giving a 

more representative measurement of the colour of the whole mushroom instead of 

specific point measurement on the individual mushroom obtained in the mushroom cap. 

 

5.3.6 Product Weight Loss & pH Measurement 

Table 5.1: Changes in pH and weight loss (WL) during a storage at 4°C of packed 

mushrooms* 

Day pH WL (%) 

0 6.44 ± 0.03 
a
 - 

2 6.94 ± 0.11 
b
 0.86 ± 0.14 

a
 

5 6.83 ± 0.19 
c
 1.45 ± 0.09 

b
 

7 7.19 ± 0.06 
d
 1.75 ± 0.21 

c
 

a,b,c,d: different letters in the same row indicate significant differences (P < 0.05). 

*Values are means ± standard deviation. pH (n=4) and WL (n=10)  

 

The pH of fresh mushrooms was 6.44, in agreement with previous reported data 

(Jaworska et al., 2010; Oliveira et al., 2012b). The pH increased significantly (P < 0.05) 

over storage time (Table 5.1). Conversely, Oliveira et al. (2012b) reported a slight pH 

decrease in sliced mushrooms due to the production of organic acids by 

microorganisms. However, the pH increase in this study might be due to the production 

of aldehydes and ammonia due autolytic reactions and deamination of amino acids 

(Eady and Large, 1971) by bacteria species such as Pseudomonas that possess amine 

dehydrogenase, which predominantly are present in mushroom samples during 

prolonged storage, accompanying bacterial decay.  

Significant (P < 0.05) increases in WL were observed during the storage of 

packaged mushrooms and highest WL values were observed over the first two days of 

storage (Table 5.1). Simon et al. (2005) reported a higher WL after 7 days storage, 2.0 

or 2.5% for non-perforated or perforated PVC films, respectively. These findings were 
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also dependent upon the relative humidity inside the package and the water vapour 

transmission rate of the packaging film used. Non-perforated films usually present some 

condensation due to water loss of the mushrooms, therefore, micro-perforation is 

recommended for packaging mushrooms. However, the number and size of micro-

perforation needs be to be optimized considering both recommended gas levels and 

relative humidity inside the package. For sliced mushrooms, a WL of 3.8% after 6 days 

of storage at 5°C was obtained in packs of 110 g and 1 perforation (Oliveira et al., 

2012a). This increased WL was due to a greater surface to volume area which caused 

increased transpiration. 

 

5.3.7 Fourier Transformed-Infrared Spectroscopy (FT-IR) 

60010001400180022002600300034003800

Wavenumber (cm-1)

A
b

so
rb

a
n

ce
 (

a
.u

.)

2980 1640

1080

 

Figure 5.9: FT-IR spectra of mushroom extract at various storage times: day 0 (―), day 

2 (---), day 5 (···) and day 7 (-·-). 

 

Three major bands have been identified in the mushroom extract spectra which 

varied with storage time (Fig. 5.9). While the first two were sharp and narrow bands in 

nature at 1080 cm-1 (indicative of S=O or OH-groups) and at 1640 cm-1 (indicative of 

aromatics and alkenes), the third one was rather broad at 2980 cm-1 (indicative of 

aromatics and alkenes) (Silverstein and Webster, 1998) and exhibited a plateau with 

some minor peaks on top (day 0 and day 7). The peak heights correlated with the 
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polyphenol oxidase activity: day 0 > day 5 > day 2 > day 7 from highest to lowest 

activity. By using FT-IR some characteristic functional groups can be identified which 

might be produced in the presence of enzymes by degrading mushroom tissue 

(hydroxylation and oxidation processes) (Mayer, 2006). As this approach for the 

quantification of enzyme concentration is quite new, we can speculate that the higher the 

enzymatic activity present in mushrooms, the greater the number of functional groups 

that might be present in the extract. Thus, the use of FT-IR has good potential for 

assessing rapidly enzymatic activity of mushrooms during storage and need to be 

explored further. 

 

5.3.8 Microbiological Analysis 
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Figure 5.10: Microbiological changes occurring during the storage of packed 

mushrooms. Error bars represent standard deviation of n = 4 replicates; letters a and b 

above or below the data points indicate significant differences (P < 0.05). 

 

Initial microbiological counts and changes in TVC, Pseudomonas spp., and total 

coliforms during chilled storage are shown in Fig. 5.10. On day 0 the TVC, 

Pseudomonas spp. and total coliforms were determined to be 5.6, 5.5 and 2.2 log cfu/g 

sample, respectively. At the end of the storage (day 7), TVC, Pseudomonas spp. and 
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total coliforms were 7.0, 6.9 and 4.5 log cfu/g sample, respectively. Pseudomonas spp. 

was the main spoilage microorganism at the end of storage (comprising 98.6% of the 

total microbiological flora). A high percentage of the strictly aerobic Pseudomonas spp. 

being present in mushrooms has been previously reported (Simón et al., 2005, 

González-Fandos et al., 2000). According to Dainty and Mackey (1992) environmental 

conditions with residual oxygen is theoretically sufficient to support the growth of these 

bacteria. The gas composition during storage reached a headspace equilibrium value of 

11.4% and 10.7% for O2 and CO2 concentration, respectively. This concentration of 

oxygen is enough to support the growth of Pseudomonas spp. The bacteriostatic effect 

of CO2 with increasing CO2 concentration, thus during the first 2 days storage, 

correlated well with the bacterial growth rate (Fig. 5.10). This is in general noticed with 

an increased lag phase and generation time during growth of microorganisms (Phillips, 

1996). It has been reported that aerobic bacteria, such as Pseudomonas are inhibited by 

moderate levels of CO2 (10-20%) (Farber, 1991). 

 

5.3.9 Correlations of Headspace Gases and Mushroom Quality 

Parameters 

The correlation of different mushroom quality parameters and headspace gas 

composition is shown in Table 5.2. Pearson correlation analyses of the quality 

parameters and gases indicated a strong positive or negative relation between CO2 or O2 

and the most of the assessed quality parameters (such as PPO, TVC, Pseudomonas, total 

coliforms, pH, WL; Colour indexes BIcap, WIcap, ∆Ecap, Huecap , WIextract, ∆Eextract and 

Hueextract, and sensory parameters (overall appearance, degree of browning, texture, veil 

development, sliminess, aroma and overall acceptability)) with a significance level of P 

< 0.05 (Table 5.2). 
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Table 2: Pearson correlations of quality parameters and colour indexes to headspace gas 

(CO2 & O2) composition of packaged mushrooms stored at 4°C. 

 CO2 O2 

PPO -.692** .649** 

TVC .884** -.911** 

Pseudomonas .735** -.712** 

Total Coliforms .704** -.757** 

pH .841** -.834** 

WL .886** -.862** 

Texture -.037 .037 

S: O. Appearance -.941** .961** 

S: L. Browning .978** -.947** 

S: Veil development -.788** .815** 

S: Texture -.688** .703** 

S: Sliminess .750** -.690** 

S: Aroma -.813** .845** 

S: O. Acceptability -.875** .900** 

BI cap -.882** .909** 

WI cap .843** -.861** 

ΔE cap -.871** .895** 

Hue cap .652** -.643** 

BI extract -.230 .308 

WI extract .574* -.576* 

ΔE extract -.739** .765** 

Hue extract .637** -.632** 

 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
S- Sensory. 

Due to mushroom respiration process, CO2 concentration increased over time while 

O2 concentration decreased. Therefore, a negative correlation was observed for CO2 and 

overall appearance (R = -0.941, P = 0.000) and O2 and degree of browning (R = -0.947, 

P = 0.000). However, a lower correlation was observed between gas composition (O2: R 

= 0.649; P < 0.01 and CO2: R = -0.692; P < 0.01) and PPO enzyme activity. It has been 

reported that increased concentrations of CO2 have an enzymatic inhibitory effect 

(Farber, 1991) and this was observed in the first 2 days of storage (Fig. 5.2). 

Furthermore, there was not significant correlation between the headspace gas (CO2 and 

O2) content and instrumental texture; however, good correlations of these gases to 
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texture obtained by sensory means of mushrooms were observed (Table 5.2). Texture 

loss was related to increasing CO2 concentration (Briones et al. 1992). The large 

negative correlation of CO2 and texture indicated that the increased CO2 concentration 

resulted in a texture loss. The colour indexes of the caps (except Hue) and the colour 

index ∆E of the extract correlated very well to the changes in the headspace gas 

composition (Table 5.2). 

 

Table 3: Correlation of quality parameters of packaged mushrooms stored at 4°C. 

 Pearson Correlation 

S: D.Browning/PPO .707** 

S: D.Browning/TVC .883** 

S: D.Browning/Pseudomonas .806** 

S: D.Browning/S: O.Appearance -.945** 

S: Sliminess/TVC .700** 

S: Sliminess/Pseudomonas .749** 

S: Texture/texture .634** 

S: O.Appearance/S: O.Acceptability .967** 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
S- Sensory. 

 

Correlation of quality parameters are presented in Table 5.3. A good correlation of 

TVC (R = 0.700, P < 0.01) and Pseudomonas (R = 0.749, P < 0.01) to the sensory 

parameter sliminess were observed. The increased values of sliminess may be due to the 

production of exopolysaccharides produced by Pseudomonas spp. (Fett, 1995 ). TVC, 

Pseudomonas and PPO activity correlated well to the degree of browning of the 

mushroom cap, indicating that possibly bacteria and enzymes were responsible for the 

browning. The sensory attribute overall appearance revealed a very strong positive 

correlation to the overall acceptability (R = 0.967, P = 0.000) and degree of browning 

(R = -0.945, P = 0.000). This result indicates that the degree of browning influenced 

overall appearance and this attribute influenced the overall acceptability of mushrooms. 

The instrumental firmness of the mushrooms did not correlate well to any of the other 
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assessed quality parameters, however, the instrumental firmness texture correlated to 

firmness obtained by sensory analysis (R = 0.634, P < 0.01). 
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5.4 Conclusions 

This study showed that headspace gases in the packed mushrooms can be measured 

using a non-expensive, simple non-destructive, non-disturbing method through the 

application of optical sensors. The concentration of CO2 and O2 in package headspace 

correlated well with a well-known destructive method (DansensorTM), and this is of 

particular interest to the fresh produce industry. Good correlation of quality parameters 

to headspace gas (CO2, O2) composition of packaged mushrooms was observed. 

Pseudomonas spp. was the main spoilage microorganism at the end of storage 

comprising 98.6% of the total microbiological flora which also correlated well with 

sensorial determined sliminess in mushroom caps. The results in this study showed that 

an increase in CO2 concentration was directly correlated to partially inhibition of 

enzymatic activity. Beside the traditional spectrophotometric method to assess 

enzymatic activity, FT-IR has a good potential for assessing rapidly enzymatic activity 

of mushrooms during storage and need to be explored further. Furthermore, the new 

method developed for colour measurement using a mushroom extract, giving a more 

representative measurement of the colour of the whole mushroom instead of a specific 

spot measurement on the individual mushroom obtained in the mushroom cap showed 

great potential as an alternative colour measurement method for product evaluation, as 

this may make the measurement of colour more representative. 
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Overall Discussion 

Safety of food products need to be constantly improved, leading to extended shelf-

life, information and consumer convenience and to protect the food against an 

increasing amount of hazards. In first instance that means to transform and adapt new 

packaging developments, such as intelligent packaging, and secondly to quick test food 

itself before further processing. Intelligent packaging devices are able to monitor certain 

conditions inside the pack in a more eloquent way than traditional systems can do by 

applying new sensor technology to measure the inside gas composition. This technology 

is based on indicators and sensors comprising dyes incorporated into polymer matrices 

dissolved in organic solvents. Of practical use for intelligent packaging are solid state 

sensors which can be easily incorporated on the inside of the package and be read 

through the material. Their advantages against traditional methods, such as Dansensor or 

gas chromatography is to provide fast, non-destructive and reliable determination of 

important packaging conditions. These optical sensor spots can be measured as many 

times as necessary without any change of the inside conditions.  

O2 and CO2 are beside the filling agent N2 the most important gas components in 

MAP. For example, a change in O2 or CO2 concentration can indicate the growth of 

microorganisms (Mattila et al., 1990) or packaging damage and can be important for 

freshness and shelf-life studies (Fu et al., 1992) by relating their changes to food quality 

inside the pack. Optical O2 gas sensors are the most developed and already 

commercialized by PreSense, OxySense, Mocon and Luxcel Biosciences. These sensors 

are based on luminescent quenching of phosphorescent platinum(II)-porphyrin 

complexes incorporated in polystyrene matrix giving signals in the microsecond range 

and optimized for O2 sensing in the range 0-21% O2. They have already been tested in 

many different food matrices, including meat (Smiddy et al., 2002a), fresh produce 

(Borchert et al., 2012), cheese (Hempel et al., 2012b), beer (Hempel et al., 2012a). 

Several CO2 sensors are described in the literature as feasible for food packaging but 

less of them have been technically applied. One common strategy is to use 1-
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hydroxypyrene-3, 6, 8-trisulfonate (HPTS) and Ru-(dpp) in a sol-gel matrix applying the 

Dual Luminophore Reference (DLR) scheme (Bültzingslöwen et al., 2002).  

Instead of using two single sensors, one for O2 and one for CO2 detection, a 

measurement system of both gases at the same time and in the same spot would be 

revolutionary for food pakaging as it safes time, space and money. Such multi-

parametric-systems combine the measurement of at least two parameters within one 

sensor system, usually by incorporating several dyes in one polymer encapsulating 

media. In my knowledge dual systems for O2 and CO2 sensing for food packaging have 

not been realized so far. Nevertheless, there are some sensors available with the 

potential for food packaging. One approach of O2/CO2 sensing makes use of PtTFPP in 

PS for O2 detection and HPTS (ion paired with TOA-OH) in EC microparticles 

incorporated in a PDMS rubber as second layer (Borisov et al., 2006).  

As these cocktails are often quite complicated the use of only one dye would 

simplify the mechanism and preparation. One dual analyte O2/pH sensor is described in 

Chapter 2 comprising a typical O2 sensitive dye PtOEP or PdCP. Through the 

modification of the structure, a Schiff-base group (SB) has been attached at one meso-

position proximal to the macrocycle, the dye became sensitive to protons by constant O2 

sensitivity. The sensor allows the detection of the two analytes with just one 

phosphorescent reporter dye, with internal referencing schemes and no interfering cross-

sensitivity. This concept can be applied to other types of sensor materials (e.g. 

nanosensors (Borisov and Klimant, 2008; Peng et al., 2010), magnetic particles (Mistlberger 

et al., 2010)), analytes (temperature, CO2, NH3, ions, enzyme biosensors based on O2 and 

pH transducers (McDonagh et al., 2008)), and sensing schemes (de Silva et al., 2009; 

McDonagh et al., 2008; Wolfbeis, 2008) and integrated with optical imaging systems. In 

the medium and long term this approach can be of high use for the food packaging 

industry, although it still requires more development to improve performance and pH 

range. As the majority of existing optochemical CO2 sensors are based on pH indicators 

this sensor system was developed to show similar sensitivity to gaseous CO2. When 

water is present in the sensing system, being that by using PTA, CO2 can be detected 

due to its high solubility in water. Carbonic acid is formed and gets dissociated into 
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hydrogen carbonate and carbonate ions (Mills and Skinner, 2011). As water becomes 

acidic through this reaction, the pH change is detected and is converted into CO2 

concentration using calibration. As this system lacks of sensitivity to gaseous CO2, other 

sensor schemes were tested, such as intensity based systems, DLR, inner filter 

quenching and FRET, being the latter one as most appropriate. A CO2 sensor based on 

this scheme make use of two dyes in one matrix with one being short lived and CO2 

sensitive (NP) and the other one being long lived (PtTFPP) but insensitive to CO2. 

Chapter 3 describes the development of a FRET based CO2 sensor with robust changes 

in phosphorescence LT of the PtTFPP dye in response to CO2 concentration with fast 

response and recovery time. The use of long-decay emitting dye is advantageous 

compared to the absorbance or fluorescence-based CO2 sensors since it enables stable 

calibration and simple readout of the optical signal in phosphorescence lifetime mode. 

These sensors show potential for food packaging applications on disposable basis, but 

further investigation is needed to extend the measurement range up to 100% CO2 from 

the current 0 to 40%.  

Chapter 5 describes the use of two optical sensors to detect the two headspace gas 

concentrations O2 and CO2 in continuous mode on the example of mushrooms. In here, 

the established optical O2 sensor developed in earlier projects by our team and the in 

chapter 3 described optical CO2 sensors has been applied to the inner atmosphere of 

fresh whole mushrooms. The CO2 content was measured semi-quantitatively by 

applying a colour score card and O2 by applying a handheld instrument OptechTM. Good 

correlation with standard Dansensor method was achieved for these optical sensors, thus 

proving their ability to determine accurately and non-invasively the CO2 and O2 content 

in individual packs. O2 supports growth of bacteria and activity of enzymes while CO2 

inhibits growth, at high concentration they can rapidly damage the product. Therefore, 

optical CO2 and O2 sensors are well suited for food quality assessment. Potentially, both 

analytes can be measured with one device but currently this is only feasible for O2 

concentration using the OptechTM system. 

The quality of some food products need to be determined before they can be further 

processed by the industry. Beside identification of specific pathogenic microorganisms, 
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the determination of the TVC is important for general quality estimations. TVC 

determination provides a general estimate of the microbial population. Microbial testing 

is done by many food microbiology laboratories for the purpose of revealing important 

information about the status of a food product, whether it can be consumed without 

causing food poisoning, whether it was handled correctly, and whether it is old or fresh. 

With this information one can distinguish between good or bad products in order of 

origin, age and handling. Conventional microbial tests are based on aerobic plate count 

methods, which are specified as the standard ISO 4833:2003 method in the food 

industry (ISO:4833:2003, 2003). They are time consuming and space, waste and 

material intensive. 

Some biosensor systems for quick determination of microorganisms in food 

samples based on fluorescent dye technology are available. MicroFossTM by Biosys, 

Inc., developed by Ann Arbor, includes a computerized instrument with disposable vials 

based on the detection of metabolic processes of organisms. An optical sensor allows 

screening results in as little as 7-18 hours, depending on microbial contamination 

(Odumeru and Belvedere, 2002). A microtitre-plate TVC test based on monitoring of 

bacterial respiration using phosphorescent oxygen sensing probes and fluorescent plate 

reader detection was described by O’Mahony et al. (2006) and applied to analysis of 

aerobic bacteria in complex samples such as broth and food homogenates (O'Mahony 

and Papkovsky, 2006), and in meat samples for the enumeration of total viable counts 

(O’Mahony et al., 2009). Compared to different meat samples we have demonstrated its 

ability to assess other highly perishable products such as fresh fish and green produce 

(chapter 4) to test such samples quickly (< 12 hours) and reliably and perform safety and 

quality assessments of large number of samples. The test offers simple set-up 

(conventional microplates and fluorescent reader), significant savings on time, labour, 

lab space and waste. Application of this technique to quality assessment of different 

food products showed high practical utility for shelf-life stability studies and MAP 

process optimization. Therefore, this system can find use in many food research, safety 

and QC labs.  
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Further development of optical sensor technology is expected to continue with 

emphasis on flexibility (multiple systems), easy handling and integration into packaging 

systems, improvement of performance and development of dedicated instrumentation. 
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Overall Conclusions 

� Realization of a dual-analyte optochemical sensor for dissolved O2 and pH 

with one bi-functional reporter dye, which is technically applicable for food 

packaging. 

� The new FRET based CO2 sensor (with TOA-OH) shows potential for food 

packaging applications on disposable basis in the range of 0 - 40% CO2. 

� The respirometric TVC test can be applied for quality assessment of 

different food products such as fresh salads or fish and showed high 

practical utility for shelf-life stability studies and MAP process optimization. 

� The concentration of CO2 and O2 in package headspace correlated well with 

a well-known destructive method (DansensorTM). Therefore, packed 

mushrooms can be measured using a simple non-destructive, non-disturbing 

method through the application of optical sensors.  
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