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Abstract 22 

The genus Lactobacillus is a widespread taxon, members of which are highly relevant to functional 23 

and fermented foods, while they are also commonly present in host-associated gut and vaginal 24 

microbiota. Substantial efforts have been undertaken to disclose the genetic repertoire of all 25 

members of the genus Lactobacillus, yet their species-level profiling in complex matrices is still 26 

undeveloped due to the poor phylotype resolution of profiling approaches based on the 16S rRNA 27 

gene. To overcome this limitation, an ITS-based profiling method was developed to accurately 28 

profile lactobacilli at species-level. This approach encompasses a genus-specific primer pair 29 

combined with a database of ITS sequences retrieved from all available Lactobacillus genomes and 30 

a script for the Qiime software suite that performs all required steps to reconstruct a species-level 31 

profile. This methodology was applied to several environments, i.e., human gut and vagina, cecum 32 

of free range chickens, as well as whey and fresh cheese. Interestingly, data collected confirmed a 33 

relevant role of lactobacilli present in functional and fermented foods in defining the population 34 

harbored by the human gut, while, unsurprisingly perhaps, the cecum of free range chickens was 35 

observed to be dominated by lactobacilli characterized in birds living in natural environments. 36 

Moreover, vaginal swabs confirmed the existence of previously-hypothesized community state 37 

types, while analysis of whey and fresh cheese revealed a dominant presence of single 38 

Lactobacillus species used as starters for cheese production. Furthermore, application of this ITS 39 

profiling method to a mock Lactobacillus community allowed a minimal resolution level of <0.006 40 

ng/µl. 41 

  42 
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Importance 43 

The genus Lactobacillus is a large and ubiquitous taxon of high scientific and commercial 44 

relevance. Despite the fact that the genetic repertoire of lactobacilli species has been extensively 45 

characterized, the ecology of this genus has been explored by metataxonomic techniques that are 46 

accurate down to the genus or phylogenetic group level only. Thus, the distribution of lactobacilli in 47 

environmental or processed food samples is relatively unexplored. The profiling protocol described 48 

here relies on the use of the Internally Transcribed Spacer to perform an accurate classification in a 49 

target population of lactobacilli with <0.006 ng/µl sensitivity. This approach was used to analyze 50 

five sample types collected from both human and animal host-associated microbiota as well as from 51 

the cheese production chain. Availability of a tool for species-level profiling of lactobacilli may be 52 

highly useful for both academic research and a wide range of industrial applications. 53 
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Introduction 54 

The genus Lactobacillus is a widespread and diverse taxon encompassing more than 170 55 

species and 17 subspecies, which are classified as Gram-positive, non-spore-forming and catalase-56 

negative facultative anaerobes (1, 2). Moreover, based on their metabolic capability to produce 57 

lactic acid as the main metabolic end product of carbohydrate fermentation, lactobacilli are 58 

classified as members of the Lactic Acid Bacteria (LAB). Notably, 16S rRNA gene-based 59 

phylogenetic analyses revealed the existence of 22 distinct phylogenetic groups of Lactobacillus 60 

species (24 including pediococci) (2-4). 61 

Regarding their ecological distribution, lactobacilli are found in a wide range of 62 

environments, including plants, water, soil, silage and different body sites of humans and other 63 

animals as members of host-associated microbiomes, such as those colonizing the oral cavity, the 64 

vagina and the gastrointestinal tract (GIT) (4, 5). Moreover, 37 species of this genus have been 65 

granted the Qualified Presumption of Safety (QPS) status by the European Food Safety Authority 66 

(EFSA) (6). Thus, they are extensively used in the food industry, in particular in fermented foods 67 

due to their high performance in lactic acid fermentation coupled with high tolerance for low pH, 68 

preservative and organoleptic properties, and production of exopolysaccharides that contribute to 69 

the texture of foods (2, 7). In this context, members of the genus Lactobacillus have in recent years 70 

gained significant scientific and commercial interest as health-promoting microorganisms, as 71 

evidenced by the fact that 22 species encompass strains patented as probiotics in Europe (8). 72 

The high commercial and scientific relevance of lactobacilli coupled to the recent 73 

introduction of next-generation sequencing technologies has recently led to genome decoding of all 74 

(then) known Lactobacillus species (3, 7). The retrieved genomic data has been exploited for 75 

comparative genomic analyses, and has allowed identification of many shared or distinct genetic 76 

features of this genus. Furthermore, this genomic information has permitted the reconstruction of 77 

their metabolic potential, has shed light on host-microbe interactions, such as adhesion to the mucus 78 
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layer and modulation of the immune system of the host, and has revealed particular microbe-79 

microbe interactions with other commensals or (opportunistic) pathogens (1, 7, 8). 80 

Despite the large body of data concerning the physiology and genetics of lactobacilli, 81 

knowledge about the ecology and distribution in environmental or host-associated niches of 82 

individual species relies mainly on culture-dependent studies. This is partly due to the resolution 83 

limit of currently used metagenomic approaches. Although microbial profiling based on partial 16S 84 

rRNA gene is able to discriminate between phylogenetic groups of lactobacilli due to the high 85 

phylogenetic diversity of this genus, it cannot provide an accurate species-level resolution. 86 

Moreover, the majority of the currebt exiting studies of lactobacilli populations based on 16S rRNA 87 

gene profiling do not even perform phylogenetic group-level analyses. To offer a more refined 88 

taxonomic view of lactobacilli in a given environment or sample, we developed a profiling 89 

approach based on amplification of the internally transcribed spacer (ITS) sequence. Notably, due 90 

to their high variability, ITS sequences have previously been exploited in a wide range of studies 91 

encompassing the identification of unique species-specific restriction patterns of lactobacilli, as well 92 

as the identification and characterization of Leuconostoc strains and for the genotyping of 93 

Streptococcus pneumoniae strains (9-11). The developed methodology in the current work is able to 94 

determine the composition of lactobacilli-containing communities down to the species level. The 95 

method was validated through the analysis of a sample artificially constituted by DNA of 14 96 

lactobacilli taxa at known concentration. Furthermore, we applied this methodology for the precise 97 

investigation of bacterial communities harbored by human-, animal- and food-associated matrices 98 

that were previously explored down to the genus-level only.  99 
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Results and discussion 100 

Analysis of ITS variability within the Lactobacillus genus. 101 

Genomes of 1523 strains assigned to the genus Lactobacillus and corresponding to 176 species 102 

were retrieved from the NCBI genome database, and then processed using the MEGAnnotator 103 

software (12) for prediction of rRNA genes in order to ensure the same high-quality standard for all 104 

sequences of ribosomal loci included in this study (Table S1). Notably, the genomic sequences of 105 

892 Lactobacillus strains, representing the 58.6 % of the total strain pool analyzed, did not harbor 106 

complete rRNA loci, i.e. encompassing complete 5S, 16S and 23S rRNA genes. In contrast, at least 107 

one complete ribosomal rRNA genes locus was identified for 631 of the 1523 analyzed strains, 108 

corresponding to 70 species and a custom script was then used to extract a total of 1788 Internally 109 

Transcribed Spacer (ITS) sequences. Assembly of draft genomes generally generates the collapse of 110 

reads that correspond to rRNA genes into a single rRNA locus. However, availability of multiple 111 

draft sequences of a given Lactobacillus taxon, complemented with analysis of 217 complete 112 

genomes of Lactobacillus species, allowed us to retrieve an average of 25.5 ITS sequences per 113 

species. Interestingly, 137 of the 1788 retrieved ITS sequences include stretches of >3 undefined 114 

(N) nucleotides, thus highlighting a high rate of assembly-related issues and/or low-quality regions 115 

in genomes deposited at the NCBI genome database. Comparative analysis of the 1651 complete 116 

ITS sequences without multiple contiguous nucleotide ambiguities revealed that 92.5 % of the ITS 117 

sequences range between 200 and 500 bp. 118 

As previously observed for bifidobacteria (13, 14), alignment of ITS sequences from Lactobacillus 119 

genomes shows a high level of diversity, probably due to a high mutation frequency, and 120 

corresponding to a high evolutionary rate, as reflected by multiple substitutions at a given 121 

nucleotide position and indicative of mutational saturation of such ITS sequences. While this 122 

particularly high mutation frequency prevents phylogeny inference (15), it is suitable for 123 

metagenomic amplicon-based profiling below the genus level, as previously validated for members 124 

of the genus Bifidobacterium (13). 125 
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 126 

Design of a PCR primer pair for ITS-profiling of the Lactobacillus genus. 127 

Many profiling approaches have been developed to accurately reconstruct the taxonomic 128 

composition of complex bacterial communities. These include methods based on low-coverage 129 

sequencing of full-length 16S rRNA genes and the use of technologies providing long reads, i.e. 130 

Sanger and PacBio. Nevertheless, despite the fact that full-length sequencing of the 16S rRNA gene 131 

allows high accuracy in taxonomic assignment, the low sequencing coverage permits the detection 132 

only of dominant taxa and prevents profiling of bacteria present at low relative abundance in a 133 

given population (10). Furthermore, the use of alternative marker genes has also been proposed, 134 

though their use remains limited due to difficulties in the definition of universal primers as well as 135 

in the lack of a complete reference database. The advent of next-generation sequencing, 136 

characterized by high coverage and short reads, facilitated the amplification and sequencing of 137 

partial 16S rRNA genes, i.e. 16S rRNA gene profiling. This metagenomic method has in recent 138 

years been used as the gold standard for taxonomic characterization of environmental and host-139 

associated microbiomes. While this methodology covers all bacterial biodiversity, it is generally 140 

only accurate for the reconstruction of taxonomic profiles down to genus level (16) or down to 141 

phylogenetic groups in case of genera with a high level of phylogenetic diversity, e.g. the genus 142 

Lactobacillus (3, 4) since it relies on sequencing of a small region of the whole 16S rRNA gene 143 

through next-generation sequencing. To overcome this limitation and to obtain species-level 144 

resolution, the use of the ITS sequence as an alternative molecular marker has been proposed (13). 145 

In order to develop a universal primer pair suitable for profiling of all members of the Lactobacillus 146 

genus, we aligned the 16S and 23S rRNA genes flanking the 1651 complete ITS sequences without 147 

stretches of undefined nucleotides that were retrieved from lactobacilli genomes deposited at the 148 

NCBI database. Manual inspection of the alignments allowed the identification of ‘universal’ 149 

primers located at the 5’-end of the 16S rRNA gene and at the 3’-end of the 23S rRNA gene, i.e., 150 

Probio-lac_Uni (CGTAACAAGGTAGCCGTAGG) and Probio-lac_Rev 151 
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(GTYVCGTCCTTCWTCGSC), respectively (Figure 1). Sequence conservation amongst the 152 

aligned 16S and 23S rRNA genes is reported in Figure 1 through a WebLogo representation. These 153 

primers generate an amplicon of an average length of 380 bp covering the complete ITS region and 154 

suitable for 2 X 250 bp paired-end Illumina sequencing followed by single-end bioinformatic 155 

analysis of both paired reads (see below). Analysis of single-end reads provided reliable assignment 156 

to species level even in cases where a tRNA gene was located within the ITS region (see below). 157 

Notably, the final sequence of the primers was defined after multiple iterative alignments to the 158 

Silva SSU and LSU databases (17) using the Silva TestProbe v. 3.0 tool (https://www.arb-159 

silva.de/search/testprobe/). The latter approach led to introduction of specific IUPAC bases in order 160 

to maximize alignment of the primers to all currently available 16S and 23S rRNA gene sequences 161 

of lactobacilli corresponding to all known species of this genus, while minimizing alignment to 162 

non-lactobacilli ribosomal RNA genes. The usefulness of the Probio-lac_Uni/Probio-lac_Rev 163 

primer pair was in vitro validated through successful amplicon generation in the case of 31 164 

lactobacilli species belonging to the 23 phylogenetic groups identified previously in the genus 165 

Lactobacillus (3, 4) (Figure S1). In contrast, no amplification was observed when the Probio-166 

lac_Uni/Probio-lac_Rev primer pair was used to amplify DNA extracted from nine non-167 

Lactobacillus taxa (Figure S1). Interestingly, for all tested lactobacilli we observed two PCR 168 

fragments, each with a molecular size ranging from 300 to 350 bp, and 500 to 550 bp, 169 

corresponding to the ITS region with and without a tRNA gene (see below for details), respectively 170 

(Figure S1) (Figure 1). Such ITS patterns confirmed those displayed in previous studies targeting 171 

the amplification of the ITS region of lactobacilli (18). Notably, for few taxa we observed a faint 172 

amplification fragment of 500 to 550 bp, which might suggest a lower copy number of ITS regions 173 

encompassing tRNA genes in the same genome. 174 

The Probio-lac_Uni/Probio-lac_Rev primer pair was employed for in silico PCR amplification of 175 

the 631 genomes of the genus Lactobacillus encoding at least one rRNA genes locus. This approach 176 

facilitated the development of a database encompassing 1651 complete ITS sequences without 177 
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multiple ambiguous nucleotides, and flanked by partial 16S and 23S rRNA sequences, together 178 

constituting the Lactobacillus ITS Amplicon database (LITSA database). 179 

Cross-alignment of all retrieved LITSA sequences using MatGAT software (19) was performed in 180 

order to evaluate the level of identity between predicted amplicons (Table S2) and to evaluate 181 

possible limits imposed by actual lactobacilli taxonomy to the proposed ITS profiling methodology. 182 

Notably, this analysis highlighted cases in which comparison of multiple LITSA sequences from 183 

the same strain showed low identity. In-depth investigation revealed that 46 of the 62 lactobacilli 184 

species included in the LITSA database contain at least one ITS sequence that harbors two tRNA 185 

genes (for Alanine and Isoleucine) (Figure 1). Notably, despite the fact that this prediction is limited 186 

due to the small number of complete genomes available, the presence of tRNA genes in one or 187 

multiple rRNA loci appears to be a common feature of genomes from members of the Lactobacillus 188 

genus. 189 

Furthermore, cross-alignment analysis also revealed that the majority of the 62 Lactobacillus 190 

species, for which a complete LITSA sequence was available, can be discriminated (Table S2), with 191 

the exception of putatively misclassified strains and/or species (see below). In this context, despite 192 

the fact that lactobacilli are known to possess a very high level of phylogenetic diversity (3, 4), 193 

strains corresponding to 18 species showed an average LITSA sequence identity of >97 % with at 194 

least one other Lactobacillus species, thus showing a very close phylogenetic relationship between 195 

such taxa (Table 1). Amongst lactobacilli, Lactobacillus casei and Lactobacillus paracasei strains 196 

possess an average LITSA sequence identity of 99 %, while the amplicon sequences of 197 

Lactobacillus pentosus, Lactobacillus plantarum and Lactobacillus paraplantarum strains show up 198 

to 100 % identity (Table S2). An in-depth analysis of each strain revealed that 23 of the 25 strains 199 

classified as L. casei share an average LITSA sequence identity ≤96.1 % with the type strain L. 200 

casei ATCC 393, while the average identity with the type strain L. paracasei ATCC 394 is ≥99.7 % 201 

(Table S2). In contrast, the putative lactobacilli species Lactobacillus sp. FMNP02 shares 99.7 % 202 
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identity with L. casei ATCC 393 (Table S2), thus representing a possible misclassification of the 203 

latter strain. 204 

In our attempts to obtain insights into the phylogeny of L. pentosus, L. plantarum and L. 205 

paraplantarum, we observed an average LITSA sequence identity of 98.9 % between L. pentosus 206 

and L. plantarum strains (Table S2). Moreover, the two strains of L. paraplantarum, for which we 207 

were able to predict an rRNA gene locus, show an average LITSA identity of 99.5 % with L. 208 

plantarum strains (Table S2), thus indicating that such taxa may belong to the same species and 209 

therefore cannot be discriminated using metataxonomic techniques. Nevertheless, evaluation of the 210 

average nucleotide identity is needed to confirm this hypothesis. Furthermore, we could not retrieve 211 

an in silico Probio-lac_Uni/Probio-lac_Rev-corresponding amplicon for the type strains of L. 212 

pentosus and L. paraplantarum due to absence of a complete ITS region in the deposited genomes, 213 

and we were therefore unable to evaluate their amplicon identity with the LITSA sequences of L. 214 

plantarum strains. 215 

Notably, these observations suggest that major issues in the classification of the genus 216 

Lactobacillus still exist, resulting in the unfeasibility of distinguish a number of species through ITS 217 

profiling. Thus, as has been proposed previously, it is desirable that a re-evaluation of the taxonomy 218 

of lactobacilli is undertaken based on a phylogenomic approach (20, 21), as was also corroborated 219 

by recent studies (3, 4, 7). 220 

 221 

Development of a bioinformatic tool for ITS-profiling of the Lactobacillus genus. 222 

The length of the amplicon produced by the Probio-lac_Uni/Probio-lac_Rev primer pair may 223 

exceed 600 bp, particularly when tRNA-encoding sequences are present in the ITS sequence. Thus, 224 

sequencing produced non-overlapping paired-end reads even with the maximum length obtainable 225 

using Next-Generation Illumina sequencing, i.e. 2 X 250 bp paired-end reads, using the MiSeq 226 

Reagents Kit v3 600 cycles chemistry. Nevertheless, each forward and reverse read covers 42 and 227 

60 nucleotides corresponding to the 16S rRNA gene 3’-end and the 23S rRNA gene 5’-end, 228 
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respectively, which are followed by 190-208 bp of hyper-variable ITS sequence suitable for 229 

profiling at species-level (Figure 1). Thus, we developed a package for QIIME software suite v1.9.1 230 

(22) that encompasses the LITSA database and a bash script for analysis of both forward and 231 

reverse reads of the Lactobacillus ITS profiling data (probiogenomics.unipr.it/pbi). Notably, the 232 

LITSA database will be updated regularly to include additional ITS sequences as new lactobacilli 233 

genome sequences become available, thus increasing the number of lactobacilli species that can be 234 

profiled. The script performs quality-filtering, de novo OTU clustering at 100 % identity and 235 

taxonomic classification of OTU reference sequences through RDP classifier with a confidence 236 

level of 0.80. Notably, these cut-off values permit discrimination of closely related taxa. Due to the 237 

average size of the amplicon, the paired-end reads are not joined prior classification. Instead, the 238 

script analyzes both the forward and the reverse reads altogether and provides an average profile. 239 

Notably, the different number of rRNA loci predicted in the genomes of Lactobacillus species may 240 

generate biases in the retrieved profiles. Thus, we evaluated the average number of ITS regions 241 

present in the 217 available complete Lactobacillus genomes. This analysis provided data for 242 

normalization of 45 of the 62 species of lactobacilli for which a LITSA sequence could be retrieved. 243 

Moreover, the average number of rRNA genes loci of the remaining 17 species with only draft 244 

genomes was set at 5.6, i.e., the average obtained for all the species with at least a complete 245 

genome. Notably, the Lactobacillus ITS profiling analysis script includes a normalization step 246 

based on the number of rRNA genes loci predicted for all the 62 Lactobacillus species for which a 247 

LITSA sequence could be retrieved. The output produced by the script is summarized in the 248 

“output” folder, which contains the predicted taxonomic profile based on the LITSA database (both 249 

non-normalized and normalized for the number of rRNA loci) and the OTU table in tabular text 250 

format that reports the reference sequence and associated taxonomy. All Lactobacillus ITS profiles 251 

reported in this manuscript correspond to the average between forward and reverse read profiles 252 

after normalization for the number of predicted rRNA genes loci. 253 

 254 
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Assessing detection sensitivity and accuracy using the Lactobacillus ITS profiling protocol 255 

In order to provide an evaluation of the sensitivity and accuracy of the Probio-lac_Uni/Probio-256 

lac_Rev primer pair, 14 Lactobacillus type strains were employed to artificially compose a mock 257 

community (Table S3). The DNA extracted from each taxon grown in pure culture was added to the 258 

mix at known amount, ranging from 0.006 ng to 50 ng of DNA, corresponding to 0.006 % to 50 % 259 

of the total DNA pool (Figure 2). Sequencing of the mock sample was performed using an Illumina 260 

MiSeq with 2X250 bp chemistry, producing 45,146 quality-filtered paired-end reads. Interestingly, 261 

Lactobacillus ITS profiling of this dataset successfully profiled all Lactobacillus species included in 262 

this sample, except Lactobacillus vaginalis and Lactobacillus pontis, for which we could not 263 

retrieve a LITSA sequence from analysis of available genome sequences (Figure 2). Thus, even 264 

though the Probio-lac_Uni/Probio-lac_Rev primer pair produces an amplicon for these species, the 265 

latter cannot be taxonomically classified due to absence of L. vaginalis and L. pontis in the present 266 

version of the LITSA database. This is a temporary limitation and the LITSA database will be 267 

updated regularly (probiogenomics.unipr.it/pbi) to include LITSA sequences of newly sequenced 268 

genomes in order to cover all the lactobacilli species that currently cannot be profiled. Moreover, 269 

comparison of the retrieved profile with the expected composition revealed a strong correlation for 270 

each taxon with few discrepancies (Figure 2). The causes of such differences between expected and 271 

observed relative abundance may be imputed to the lack of sufficient information in the LITSA 272 

database, at this time, regarding the average number of rRNA loci per genome used for 273 

normalization of the ITS profiling data. 274 

Furthermore, since PCR amplicon size has been identified as a source of bias in ITS-based profiling 275 

studies of fungi (23), we evaluated the presence of possible biases introduced by amplification of 276 

lactobacilli ITS sequences of different length due to the presence or absence of tRNA genes (see 277 

above). The 14 Lactobacillus species that constitute the mock community (Table S3) were 278 

subjected to manual characterization of corresponding rRNA loci. Notably, the ten species for 279 

which a complete genome was available, confirmed what had been observed for the in vitro PCR, 280 
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i.e. presence of longer ITS sequences that encompass two tRNA genes (Figure 1; Figure S1). 281 

Interestingly, the different intensities observed in the PCR fragments, i.e. 300-350 bp and 500-550 282 

bp (Figure S1), did not influence  283 

expected relative abundance of the mock community (Figure 2). Notably, detection of Lactobacillus 284 

rhamnosus whose concentration in the mock community is 0.006 ng/µl indicates that the limit of 285 

detection of the lactobacilli ITS profiling is <0.006 ng/µl, corresponding to 1.85*10
3
 cells/ µl. 286 

 287 

Validation of the Lactobacillus ITS profiling protocol through analysis of samples from 288 

multiple environments. 289 

Lactobacillus is a highly diverse microbial genus, members of which are found in a wide range of 290 

environments (5). To perform a comprehensive testing of the performances of the Lactobacillus ITS 291 

profiling protocol, we analyzed a total of 25 samples encompassing five human faecal samples, five 292 

human vaginal swab samples , five free range chicken cecal samples, five whey samples  and five 293 

parmesan cheese samples  (Table S4). Sequencing was performed with an Illumina MiSeq 294 

instrument using 2x250 bp chemistry, producing an average of 15,529 forward and 15,293 reverse 295 

quality-filtered reads per sample (Table S4). 296 

Interestingly, analysis of the human faecal samples revealed the presence of human gut colonizers, 297 

such as Lactobacillus rhamnosus, along with a range of lactobacilli used in functional or fermented 298 

foods that are typically part of the human diet, such as L. plantarum, Lactobacillus helveticus, 299 

Lactobacillus delbrueckii and Lactobacillus sakei (Figure 3).  300 

Moreover, the obtained profiles of the five human vaginal swab samples confirmed the proposed 301 

existence of community state types (CSTs) of the vaginal microbiota dominated by specific 302 

Lactobacillus taxa (24, 25). In fact, HV1 is dominated by Lactobacillus gasseri, while 303 

Lactobacillus iners and Lactobacillus crispatus are the most abundant lactobacilli taxa in HV2/HV5 304 

and HV3/HV4, respectively (Figure 3). Furthermore, in all five reconstructed human vaginal 305 

profiles, L. helveticus is the second most abundant Lactobacillus species, as observed in the 306 
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aforementioned CSTs (24, 25) (Figure 3). Thus, based on the classification proposed by DiGiulio et 307 

al. (24), HV1 can be classified as a CST 2, while HV2/HV5 falls within the CST 3, whereas 308 

HV3/HV4 can be attributed to CST 1. 309 

To demonstrate the relevance of an efficient methodology for precise cataloguing of the 310 

Lactobacillus species for which a complete LITSA sequence is available in different environments, 311 

we analyzed five free range chickens cecal samples. The retrieved profiles revealed a high relative 312 

abundance (ranging from a total of 53.1 % to 96.8 %) of Lactobacillus species previously 313 

characterized in poultry or other birds, such as Lactobacillus salivarius, Lactobacillus reuteri, 314 

Lactobacillus ingluviei, Lactobacillus amylovorus, Lactobacillus agilis, Lactobacillus aviarius and 315 

Lactobacillus johnsonii (26-33) (Figure 3). Notably, samples FRC1, FRC2 and FRC3 showed a 316 

similar profile with high abundance of L. salivarius, L. ingluviei and L. amylovorus, reflecting the 317 

fact that they were kept in the same hen house (Figure 3). Accordingly, samples FRC4 and FRC5, 318 

collected in two additional hen houses, showed different profiles characterized by high abundance 319 

of L. aviarius and L. johnsonii, respectively (Figure 3). 320 

For milk and milk-related products, profiling of five whey and five fresh parmesan cheeses (at 1 321 

day of ripening) samples revealed, as expected, similar profiles dominated by L. helveticus and L. 322 

delbrueckii (Figure 3), which represent two lactobacilli species typically used as starter cultures for 323 

the production of cheese (34). These data indicate that the Lactobacillus ITS profiling approach also 324 

represents a valuable tool for monitoring the population of lactobacilli across the cheese production 325 

chain. 326 

Results obtained from ITS-profiling were also compared to profiles reconstructed through analysis 327 

of OTUs generated at 99 % identity from 16S rRNA profiling data (Figure 3) (Table S5). Notably, 328 

only OTUs classified as lactobacilli have been included in the representation, thus the relative 329 

abundance of unclassified lactobacilli reported in the bar plot do not include additional OTUs that 330 

could not be attributed to this genus. Moreover, lactobacilli species whose relative abundance is 331 

below 5 % in each sample were collapsed under “Others <5 %” in the bar plot representation. 332 
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Interestingly, the ITS profiling approach provided a more accurate species-level reconstruction of 333 

the lactobacilli populations when used to analyze human faecal and vaginal samples as well as free 334 

range chicken faecal samples. Moreover, it confirmed and partially improved the simple lactobacilli 335 

community of whey and fresh Parmesan cheese samples observed through 16S rRNA gene 336 

profiling. In fact, differences in the profiles obtained through 16S rRNA gene and ITS profiling can 337 

be observed in all cases (Figure 3) (Table S5). Such differences are caused by the limited number of 338 

Lactobacillus species that could be discriminated based on partial16S rRNA gene sequence respect 339 

to ITS sequence (Figure 3) (Table S5). 340 

Altogether, these results confirm the performance of the Lactobacillus ITS profiling protocol 341 

observed from analysis of the artificial sample and validate their use, complemental to 16S rRNA 342 

gene profiling, for analysis of a wide range of complex environmental and host-associated matrices. 343 

 344 

Conclusions 345 

We developed a newly designed method for characterization of the Lactobacillus population in 346 

complex environments based on the use of the internally transcribed spacer (ITS), which represents 347 

a hypervariable region located between the 16S and the 23S rRNA genes that allows high-accuracy 348 

species-level profiling. The accuracy and sensitivity of this method allowed profiling of complex 349 

communities of lactobacilli with a successful identification of taxa with abundance of 1.85*10
3
 350 

cells/ µl, which is even lower to what was previously identified for a similar approach developed for 351 

the profiling of bifidobacterial communities (13). Notably, despite the fact that the current LITSA 352 

database allows the precise profiling of just 62 species, the ITS-profiling approach represents a new 353 

metagenomic tool for species-level profiling of complex lactobacilli communities that complements 354 

phylogenetic group assignments that can be obtained from 16S rRNA gene profiling data. 355 

Moreover, the database will be regularly updated to represent additional lactobacilli species as 356 

genomes encompassing complete LITSA sequences are becoming available. When the ITS 357 

lactobacilli profiling method was applied to different biological samples, encompassing the stool of 358 
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human as well as birds, vaginal swabs and cheese, it allowed the reconstruction of the cataloguing 359 

of lactobacilli communities residing in these environments. Altogether, these results highlight that 360 

ITS-mediated profiling of populations of lactobacilli could be useful not only for academic 361 

purposes, but also for industrial applications such as tracing the microbial composition of probiotic 362 

products based on lactobacilli as well as of starter cultures in food manufacture. 363 

 364 

Material and methods 365 

Sample collection 366 

In the frame work of a more extensive bacterial cataloguing project, this study enrolled stool, 367 

vaginal swab, fresh parmesan cheese (one day of ripening), whey and cecal (from free range 368 

chickens) samples.  369 

Five fresh stool samples obtained from human healthy volunteers and five cecal samples retrieved 370 

from free range chickens were immediately frozen upon collection at -80°C until processing for 371 

DNA extraction. The DNA extraction was performed using the QIAamp DNA Stool Mini Kit 372 

following the manufacturer’s instructions (Qiagen, Manchester, UK). Additionally, five vaginal 373 

swab samples were collected in sterile tubes containing 1 ml of DNA-RNA shield from ZYMO 374 

Research until bacterial DNA extraction using ZymoBIOMICS
TM

 DNA Miniprep Kit (ZYMO 375 

Research). Furthermore, 10 ml samples of whey and 2-4 gr of fresh parmesan cheese were collected 376 

in sterile tubes and the DNA was extracted using the DNeasy Mastitis Mini Kit (Qiagen Ltd, 377 

Strasse, Germany) following the manufacturer’s instructions (Qiagen Ltd). Notably, whey samples 378 

and cheese samples at one day of ripening were collected from the same Parmesan cheese producer 379 

in Parma, Italy. 380 

Ethical statement. This study was carried out in accordance with the recommendations of the 381 

ethical committee of the University of Parma and was approved by the “Comitato di Etica 382 

Università degli Studi di Parma”, Italy. All animal procedures were performed according to national 383 

guidelines (Decreto legislativo 26/2014). 384 
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Bacterial growth conditions and DNA extraction. Type strains of several lactobacilli taxa (Table 385 

S3) were growth in Man-Rogosa-Sharpe (MRS) medium (Scharlau Chemie) supplemented with 386 

0.05 % (w/v) L-cysteine hydrochloride and incubated in an anaerobic atmosphere (2.99 % H2, 387 

17.01 % CO2 and 80 % N2) in a chamber (Concept 400; Ruskin) at 37°C for 24 h. In addition, nine 388 

non-lactobacilli microorganisms were used in this study. These included Bifidobacterium bifidum 389 

LMG11041, which was cultivated in MRS broth as Lactobacillus strains; Collinsella intestinalis 390 

DSM 13280, Escherichia coli LMG 2092, and Klebsiella pneumoniae CECT 143, which were 391 

grown in de MRS broth (Difco, Detroit, MI) supplemented with 0.05% (w/v) l‐cysteine (MRSC; 392 

Sigma, St. Louis, MO). Prevotella copri DSM 18205 and Blautia coccoides DSM 935 were 393 

cultivated in a combination of Reinforced Clostridial Broth (Merck, Darmstadt, Germany) and 394 

Brain‐Heart Infusion (Difco), supplemented with 5% (v/v) heat‐inactivated fetal bovine serum 395 

(LabClinics, Barcelona, Spain) respectively. For Bacteroides thetaiotaomicron DSMZ 2079, the 396 

latter medium was supplemented with 0.005 % hemin (Sigma) and 0.005 % Vitamin K1 (Sigma). 397 

Faecalibacterium prausnitzii DSM 17677 was grown in Wilkins‐Chalgren Anaerobe broth (Merck), 398 

following the recommendations included in the DSMZ medium 339. Finally, an active culture of 399 

Methanobrevibacter smithii DSM 861 grown in Methanobacterium medium (DSMZ 119) was 400 

directly supplied by DSMZ. 401 

Bacterial DNA was extracted using GenEluteTM Bacterial Genomic DNA kits (SIGMA-402 

ALDRICH) following the manufacturer’s instructions. Taxonomic identity of the microorganisms 403 

was validated by sequencing the V3 variable region of the 16S rRNA gene using primer pair 404 

Probio_Uni and/Probio_Rev (14). 405 

Lactobacillus mock community 406 

The cultures of fourteen different Lactobacillus strains were grown separately on Man-Rogosa-407 

Sharpe (MRS) medium (Scharlau Chemie) supplemented with 0.05 % (w/v) L-cysteine 408 

hydrochloride and incubated in an anaerobic atmosphere (2.99 % H2, 17.01 % CO2 and 80 % N2) 409 

in a chamber (Concept 400; Ruskin) at 37°C until they reached late log phase. The bacteria were 410 
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enumerated by counting colonies on solid medium and the optical density at 600 nm was 411 

determined. The final bacterial cell concentration was approximately 10
7
 cfu/ml. Chromosomal 412 

DNA of each strains was extracted as previously described and subsequently mixed. 413 

Specifically, the mock community consists of a pool of known concentration of fourteen different 414 

Lactobacillus strains to obtain the final quantity of DNA indicated in Table S3. Furthermore, the 415 

mix was prepared by combining equal volumes (20 μL) of DNA.  416 

The DNA from the mix was diluted to produce a final DNA concentration of 2 ng/μL, and 4 μL of 417 

these dilutions were used in each PCR reaction. For the PCR reaction, the primer pair Probio-418 

lac_Uni/Probio-lac_Rev was used and the generated amplicons were sequenced using Illumina 419 

MiSeq as described below. 420 

Lactobacillus ITS-specific primer design and gene amplification 421 

The bioinformatics platforms MEGAnnotator (10) and METAnnotatorX (unpublished data) were 422 

used to perform 16S and 23S rRNA genes prediction in all 1523 sequenced lactobacilli genomes 423 

deposited at the NCBI Genomes database. Primers Probio-lac_Uni 424 

(CGTAACAAGGTAGCCGTAGG)/Probio-lac_Rev (GTYVCGTCCTTCWTCGSC) were 425 

manually designed based on the alignment of all 16S and 23S rRNA sequences to generate an 426 

amplicon encompassing the 3’-end of the 16S rRNA gene, the ITS region and the 5’-end of the 23S 427 

rRNA gene. Specificity test was performed using the Silva TestProbe v. 3.0 tool (https://www.arb-428 

silva.de/search/testprobe/) that allows alignment of primers sequences to the Silva SSU and LSU 429 

databases (15). A custom bioinformatics script was then used to create a database of all the Probio-430 

lac_Uni/Probio-lac_Rev-generated lactobacilli ITS amplicon sequences (LITSA database), 431 

encompassing the Internally Transcribed Spacer (ITS) region and partial 16S and 23S rRNA genes.  432 

The PCR conditions used for Lactobacillus ITS profiling using the Probio-lac_Uni/Probio-lac_Rev 433 

primer pair were 5 min at 95 °C, 30 cycles of 30 s at 95 °C, 30 s at 58 °C, and 40 s at 72 °C, 434 

followed by 10 min at 72 °C. Amplification was carried out using a Verity Thermocycler (Applied 435 

Biosystems). The integrity of the PCR amplicons was analyzed by gel electrophoresis. An 436 

 on M
ay 10, 2018 by U

N
IV

 C
O

LLE
G

E
 C

O
R

K
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


19 
 

additional specificity test was performed by PCR using the DNA extracted from all known 437 

Lactobacillus species as well as B. bifidum ATCC11041, C. intestinalis DSM 13280, E. coli LMG 438 

2092, K. pneumoniae CECT 143, P. copri DSM 18205, Bl. coccoides DSM 935, Bc. 439 

thetaiotaomicron DSMZ 2079, F. prausnitzii DSM 17677 and M. smithii DSM 861. 440 

WebLogo representation of primer sequence conservation among the retrieved 16S and 23S rRNA 441 

genes flanking complete ITS sequences was obtained through the WebLogo website 442 

(http://weblogo.berkeley.edu/) (35). 443 

Illumina MiSeq sequencing of ITS gene-based amplicons 444 

Illumina adapter overhang nucleotide sequence was added to the PCR amplicons obtained following 445 

amplification of the ITS region, as previously described (13). The library of ITS amplicons was 446 

prepared following the 16S Metagenomic Sequencing Library Preparation Protocol (Part No. 447 

15044223 Rev. B-Illumina). Sequencing was performed using an Illumina MiSeq sequencer with 448 

MiSeq Reagent Kit v3 chemicals. 449 

ITS-based microbiota analysis 450 

Fastq files obtained from metagenomic sequencing of each sample were analyzed using a custom 451 

script for QIIME software suite (22) and the LITSA database available at 452 

(http://probiogenomics.unipr.it/pbi/index.html).  453 

Input data were processed in the following steps: filtering of the reads based on length > 100 nt 454 

(primers included) to avoid primer dimers, overall quality > 25 and the presence of forward and 455 

reverse primers in the forward and reverse reads, respectively, creation of OTUs constituted by 456 

identical sequences using prefix_suffix method and removal of OTUs represented by < 10 457 

sequences. Taxonomy assignment was performed using RDP method (RDP classifier with a 458 

confidence level of 0.80) and the LITSA database constituted by ITS sequences retrieved from the 459 

1523 Lactobacillus genomes available at the NCBI Genome database. This script is easily 460 

modifiable to obtain a profiling based on a different sequence, though will depend on the 461 

availability of a corresponding database. 462 
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Evaluation of the sensitivity of the Probio-lac_Uni/Probio-lac_Rev primer pair 463 

The artificial sample used for the evaluation of the detection sensitivity and accuracy of the Probio-464 

lac_Uni/Probio-lac_Rev primer set was generated using known DNA amounts, ranging from 50 to 465 

0.006 ng, of 14 different Lactobacillus taxa (Table S3).  466 

Microbiota identification by 16S rRNA gene- amplification, -sequencing and data analysis. 467 

Partial 16S rRNA gene sequences were amplified from extracted DNA using primer pair 468 

Probio_Uni / Probio_Rev, which target the V3 region of the 16S rRNA gene sequence (16). 16S 469 

rRNA gene amplification and amplicon checks were carried out as previously described (16). 16S 470 

rRNA gene sequencing was performed using a MiSeq (Illumina) at the DNA sequencing facility of 471 

GenProbio srl (www.genprobio.com) according to a previously reported protocol (16). Following 472 

sequencing, the .fastq files were processed using a custom script based on the QIIME software suite 473 

(22). Paired-end read pairs were assembled to reconstruct complete Probio_Uni / Probio_Rev 474 

amplicons. Quality control retained sequences with a length between 140 and 400 bp and mean 475 

sequence quality score >20 while sequences with homopolymers >7 bp and mismatched primers 476 

were omitted. 16S rRNA gene Operational Taxonomic Units (OTUs) were defined at ≥ 99 % 477 

sequence homology using uclust (36) and OTUs with less than 10 sequences were filtered. All reads 478 

were classified to the lowest possible taxonomic rank using QIIME (37) and a reference dataset 479 

from the SILVA database (Quast et al., 2013). 480 

 481 

Nucleotide sequence accession numbers 482 

The raw ITS and 16S rRNA gene sequences reported in this article have been deposited in the 483 

NCBI Short Read Archive (SRA) under the accession number PRJNA434072. 484 
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Table 1: List of Lactobacillus species with LITSA sequence identity ≥97 % with another 611 

Lactobacillus species. The percentage reported corresponds to the highest identity observed among 612 

all LITSA sequences identified in strains of the two species compared. 613 

Species 
LITSA % identity with the closest 

species 
Closest species  

Lactobacillus acidophilus 
98 Lactobacillus amylovorus  

97 Lactobacillus crispatus  

Lactobacillus amylovorus 
98 Lactobacillus acidophilus 

97 Lactobacillus crispatus  

Lactobacillus buchneri  99 Lactobacillus parabuchneri 

Lactobacillus casei  
99 Lactobacillus paracasei  

100 Lactobacillus rhamnosus  

Lactobacillus crispatus  
97 Lactobacillus acidophilus 

97 Lactobacillus amylovorus  

Lactobacillus curvatus  98 Lactobacillus sakei  

Lactobacillus gallinarum 99 Lactobacillus helveticus  

Lactobacillus gasseri 99 Lactobacillus johnsonii 

Lactobacillus helveticus  99 Lactobacillus gallinarum 

Lactobacillus johnsonii 99 Lactobacillus gasseri 

Lactobacillus parabuchneri  99 Lactobacillus buchneri  

Lactobacillus paracasei  
99 Lactobacillus casei 

100 Lactobacillus rhamnosus  

Lactobacillus paraplantarum 
100 Lactobacillus pentosus  

100 Lactobacillus plantarum 

Lactobacillus pentosus  
100 Lactobacillus paraplantarum 

99 Lactobacillus plantarum 

Lactobacillus plantarum 
100 Lactobacillus paraplantarum 

99 Lactobacillus pentosus  

Lactobacillus rhamnosus  
100 Lactobacillus paracasei  

100 Lactobacillus casei 

Lactobacillus sakei  98 Lactobacillus curvatus  

  614 
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Figure legends 615 

Figure 1: Genetic map of the Internally Transcribed Sequence (ITS) region of Lactobacillus with 616 

and without tRNA genes. Panel a depicts the genetic organization of the five complete ITS regions 617 

predicted in the complete genome of Lactobacillus rhamnosus ATCC 8530, used here as a test case. 618 

Primer sequence conservation is shown through a WebLogo representation where the overall height 619 

of the stacks indicates the sequence conservation at that position, while the height of symbols within 620 

the stacks indicates the relative frequency of nucleic acids at that position. Panel b illustrates the 621 

details of ITS regions identified in the complete genomes of species included in the mock sample 622 

for which a complete genome was available. ITS sequences without tRNA genes are highlighted in 623 

green, while ITS regions encoding tRNA genes are marked in blue. Black and red text indicates 624 

forward and reverse strand orientation, respectively. 625 

 626 

Figure 2: Evaluation of the sensitivity and accuracy of the Lactobacillus ITS profiling protocol. 627 

The graph shows the expected and observed relative abundance of 14 Lactobacillus taxa 628 

constituting an artificial sample. An exponential trendline is reported for the expected and observed 629 

data. 630 

 631 

Figure 3: ITS and 16S rRNA gene profiling of Lactobacillus species in five ecological niches. The 632 

profile of the Lactobacillus population obtained for: a) five human faecal samples (HG); b) five 633 

human vaginal swab samples (HV); c) five free range chicken faecal samples (FRC); d) five whey 634 

samples (WH), and e) five parmesan cheese samples (PC) is depicted in the corresponding bar 635 

plots. Only species with relative abundance >5% in at least a sample are reported. Species below 636 

5% are collapsed in “Others <5 %. 637 
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