

Title	Effects of annealing temperature and ambient on Metal/PtSe2 contact alloy formation
Authors	Mirabelli, Gioele;Walsh, Lee A.;Gity, Farzan;Bhattacharjee, Shubhadeep;Cullen, Conor P.;Ó Coileáin, Cormac;Monaghan, Scott;McEvoy, Niall;Nagle, Roger;Hurley, Paul K.;Duffy, Ray
Publication date	2019-10-10
Original Citation	Mirabelli, G., Walsh, L. A., Gity, F., Bhattacharjee, S., Cullen, C. P., Ó Coileáin, C., Monaghan, S., McEvoy, N., Nagle, R., Hurley, P. K. and Duffy, R. (2019) 'Effects of Annealing Temperature and Ambient on Metal/PtSe2 Contact Alloy Formation', ACS Omega, 4(17), pp. 17487-17493. doi: 10.1021/acsomega.9b02291
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1021/acsomega.9b02291
Rights	© 2019, American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
Download date	2025-08-29 19:56:18
Item downloaded from	https://hdl.handle.net/10468/9294

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Supporting Information:

Effects of annealing temperature and ambient

on metal-PtSe₂ contact alloy formation

Gioele Mirabelli¹, Lee A. Walsh¹, Farzan Gity¹, Shubhadeep Bhattacharjee¹, Conor P.

Cullen³, Cormac Ó Coileáin³, Scott Monaghan¹, Niall McEvoy³, Roger Nagle¹, Paul K.

Hurley^{1,2}, Ray Duffy¹

¹ Tyndall National Institute, University College Cork, Cork, Ireland,

² School of Chemistry, University College Cork, Ireland,

³ School of Chemistry, AMBER and CRANN, Trinity College Dublin, Dublin 2, Ireland

Figure S1: Representative cross-section TEM images of the PtSe₂ contacted with Ti/Au (a) before and (b) after annealing at 250 °C in FG, showing that the layered structure of the PtSe₂ is maintained after annealing.

Figure S2: Raman signal collected from the PtSe₂ region (not the alloy region) after each annealing variation. (a) and (c) show the Raman signal after annealing in forming gas for each temperature for the Ti/Au and Ni/Au samples respectively. (b) and (d) show the Raman signal after annealing at 250 °C and 350 °C in FG and inert environment for the Ti/Au and Ni/Au samples respectively. When the annealing condition is too harsh the PtSe₂ signal is lost.

Figure S3: Additional XPS spectra of as-deposited Ni/PtSe₂ samples. a) Ni $2p_{3/2}$, (b) O 1*s*, (c) C 1*s*, and (d) Si 2p spectra.

Figure S2 shows spectra of the as-deposited Ni on PtSe₂ in addition to those included in the main article. The Ni $2p_{3/2}$ spectra show a metallic Ni signal at 851.2 eV, and a broad peak centered at ~853 eV. This higher BE peak cannot be directly attributed to the formation of a NiSe_x due to the number of complex satellite peaks present at higher BE in a Ni 2p spectra, along with the multiple peak splitting which can occur for Ni compounds. The O 1*s* spectra shows an increase in oxidation (compared to bare PtSe₂) following Ni deposition. This is primarily due to oxidation of the Nickel surface. No significant change in the C 1*s* or Si 2psignal is observed between bare PtSe₂ and Ni on PtSe₂, indicating no C contamination, or thinning of the PtSe₂ layer (which would lead to an increased Si signal).

Figure S4: Additional XPS spectra of as-deposited Ti/PtSe₂ samples. a) Ti 2*p*, (b) O 1*s*, (c) C 1*s*, and (d) Si 2*p* spectra.

Figure S3 shows additional spectra of the as-desposited Ti on PtSe₂. The Ti 2p spectra show a no evidence of a metallic Ti signal rather the peak shape and position are that expected for TiO₂. This is expected given the very low formation energy of TiO₂, and the oxygen-gettering nature of Ti. This complete oxidation of the Ti (BE = 529.5 eV) can also be clearly seen in the drastic increase in the O 1*s* signal. No significant change in the C 1*s* or Si 2p signal is observed between bare PtSe₂ and Ti on PtSe₂, again indicating no C contamination, or thinning of the PtSe₂ layer.