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A Rigorous Exposition of the LEMMA
Method for Analog and Mixed-Signal Testing

Adrian Wrixon and Michael Peter Kennedy,Fellow, IEEE

Abstract—The linear error-mechanism modeling technique is
an effective tool for testing analog and mixed-signal devices which
minimizes the number of measurements required to characterize
the static transfer function of a circuit by determining a small
number of parameters of a linear error model and then predicting
the entire response error.

This work focuses on optimizing the linear error-mechanism
model algorithm (LEMMA), introducing novel refinements which
are shown to improve its performance significantly. We outline
the implementation of the algorithm in a tutorial manner, paying
due consideration to the underlying theory where required.

Index Terms—Analog testing, error-mechanism, linear model-
ing, mixed-signal testing, test development.

I. INTRODUCTION

T HE objective of testing is to verify that a circuit meets
the specifications for which it has been designed [1]. The

goal of the test engineer is to ensure that this is achieved with
maximum reliability and at minimum cost. This task ultimately
leads to a compromise between the required accuracy and the
cost of testing, where the latter can generally be specified in
terms of on-line test time and the number of test stations.

The most obvious test procedure is to measure the entire
response of the circuit under test (CUT). This method is
called afull-factorial experiment and, while it is undoubtedly
reliable, it is not feasible for devices with a large number
of significant inputs.1 Consider, for example, the problem of
determining the integral nonlinearity2 (INL) of a 12-bit digital-
to-analog converter (DAC). An all-codes static test of this
circuit involves measuring the output voltage for 2(4096)
different input codes and finding the worst-case deviation from
the ideal response [2].

Full-factorial testing is extremely inefficient when the num-
ber of error sources which contribute to a measured response
is much smaller than the number of significant inputs. In this
case, a more efficient solution may be obtained by decompos-
ing the response into a weighted linear sum of responses due
to independent error mechanisms and determining the weights

Manuscript received December 20, 1996. The first author was supported
by Analog Devices, Ireland. The second author was supported by Enterprise
Ireland under the Applied and Strategic Research Grants Schemes Contracts
HE/1997/190 and ST/1998/110.

The authors are with the Department of Electronic and Electrical
Engineering, University College Dublin, Dublin 4, Ireland (e-mail:
peter.kennedy@ucd.ie).

Publisher Item Identifier S 0018-9456(99)06682-6.
1A significant input is one for which the CUT output has a specified

error-limit.
2The integral nonlinearity of a DAC is the largest output deviation from

ideality over the entire input range.

associated with each error using a reduced set of test-points [3].
This is called the Linear Error-Mechanism Model Algorithm
(LEMMA).

The LEMMA method is based on the assumption that
the response of a circuit is determined primarily by a small
number of variables and that it depends linearly on the
deviation of these variables from their nominal values. Instead
of measuring the entire response of the circuit, a limited
number of measurements is made at carefully selected test-
points and these are used to determine the coefficients of the
underlying linear error-mechanism model. This model is used
to predictthe entire response of the CUT, and a parametric test
may then be carried out on the basis of the predicted response
[4], [5].

The performance of the LEMMA method is a tradeoff
between the completeness of the model and the confidence of
the predicted response. There are many degrees of freedom in
implementing the method: how many error sources to model,
which ones, and how to model them; how many test-points
to select and how to choose them; and how to minimize
the computation of the predicted response. In this paper, we
develop near-optimal solutions to each of these questions. We
divide the problem into two parts: model development and
production testing. We first consider model development.

The LEMMA model may be thought of as representing the
sensitivities of the measured response to the significant error-
producing mechanisms. The model may thus be constructed
directly from the a priori error signatures associated with
each error source. If a good SPICE [6] model of the CUT
exists, these sensitivities may be calculated directly. Other
suitablea priori basis vectors for mixed-signal circuit include
Rademacher and Walsh functions [7]. An important property
of a priori basis vectors is that they arenoise-free.

Unmodeled process variations often give rise to significant
errors whose error signatures are difficult, if not impossible,
to determine by simulation. In this case, the LEMMA model
must be augmented with, or built entirely from,empirical
data which are inherently noisy. In addition, each measured
response is acombinationof error signatures associated with
the underlying error sources, so it is not possible to isolate the
contributions of individual errors.

In an analog or mixed-signal circuit, many factors may
contribute to the response error. It is not always clear how
many of these are “significant.” Souders and Stenbakken
[4], [5] and later Huertas [1], proposed heuristic formulae
for estimating thenumber of significant error sources in a
LEMMA model. In Section IV of this paper, we show how
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Singular Value Decomposition (SVD) [8], [9] may be used to
determine, using measured data, a lower bound on the number
of significant error sources.

In Section V, we demonstrate the equivalence ofa priori
and empirical models, and stress the importance of minimizing
the noise-level in the model. We exploit total least-squares
(TLS) to develop a rigorous noise-reduction procedure for
selecting basis functions.

Section IV addresses the choice of the number of testpoints.
Souders and Stenbakken showed how QR decomposition

(QRD) could be used to select an almost D-optimal set of test-
points for the LEMMA method [4]; we review their procedure
in Section VII.

We present a model development algorithm in detail in
Section VIII and provide lower bounds in Sections IX and
X for the on-line measurement and computation time of the
LEMMA method in production testing.

All of the results presented in this work are based on all-
codes measurements of 200 Analog Devices AD7528 8-bit
current-mode DAC’s. Half of the measured response error
vectors have been used for model development and the other
half for simulated production testing. To quantify the effects
of measurement noise in Section IV, the production data has
been artificially “cleaned” and a controlled amount of noise
added, using the procedure described in the Appendix.

II. THEORETICAL FOUNDATION OF THE

LEMMA M ETHOD: WHY IT WORKS

The LEMMA method is based on the assumption that the
components within the CUT lie sufficiently close to their
nominal values that the response error may be approximated by
afirst-orderTaylor series expansion, in terms of the underlying
error-producing mechanisms, about the ideal response [5]. In
this case, a linear model may be used to characterize the
circuit. We form the linear model by assuming that the overall
response error is the superposition of the response errors of
each mechanism acting alone, with all other components at
their nominal values.

For example, the transfer characteristic of a resistive ladder
DAC is determined by the values of the resistors in the ladder.
Deviation of a resistor from its nominal value produces a
characteristicerror signature. For sufficiently small errors in
the resistors, the deviation of the measured response from
its ideal value (the so-calledresponse error) will be a linear
combination of these error signatures.

In matrix form, the response error of the CUT may
be written as a linear combination of linearly independent
column vectors :

(1)

where the columns of are the basis vectors
and is some -vector of real-valued weights.3 Instead of
measuringthe components of the total response error, one

3In the special case where an explicit model of the CUT exists, the basis
vectors could be error signatures, in which case the components ofx would
be the errors in the corresponding error sources.

instead determines the vector of weights from
measurements andpredicts .

In the case of a data converter, the number of error-
producing mechanisms typically scales linearly with the num-
ber of bits, while the number of significant inputs grows
exponentially. Thus, , and significant savings in test
effort are possible.

III. LEMMA M ETHOD: IMPLEMENTATION ISSUES

The first issue to be addressed is the choice of, the
dimension of the model. This problem has been studied widely
in the system identification literature (see, e.g., [10]) and in
the statistics literature (see, for example, the discussion of
principal component analysis in [11], [12]). We use SVD [9] to
determine the rank of a matrix comprising sensitivity vectors
and measured error signatures; we then follow the parsimony
principle [10] in constructing .

The system of equations (1) isoverdeterminedin that we
have equations in unknowns, where . Furthermore,
the presence of measurement noise in bothand renders
the equationsinconsistent. To counter this, we measure
components of , where , and estimate the vector
of weights by means of a least-squares fit .

The problem of determining which points in the response
error to measure is calledtest-point selection. If we let

denote the selected test-points, and let
be the vector of associated response error measurements, then
we obtain by minimizing

where is the reduced model formed from rows
of .4

Finally, we estimate the entire response error by writing

An optimal selection of and
yields an estimate which is “close” to the

true response error and, with appropriate guard-banding,
may be used for verifying conformance to specifications. This
is the principle of the LEMMA method.

In the following sections, we develop techniques for select-
ing the key parameters of the LEMMA method.

IV. CHOICE OF : HOW MANY BASIS VECTORS?

When a good model for a circuit exists, the number of
“significant” error-producing mechanisms may be determined
analytically or by simulation. In practice, process variations
and unforeseen error sources may produce a response er-
ror which deviates significantly from that predicted by an
incomplete design model.

The LEMMA technique is robust in the sense that all
significant errors may be accounted for in the linearized model,
whether they can be interpreted as sensitivities with respect to
circuit components or not. Indeed, unforeseen errors may be
included in the model simply by adding column vectors

4A weighted least squares approach could also be used here.
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Fig. 1. RMS error between predicted values and measured values for the
AD7528 with additive white Gaussian measurement noise having an rms value
of 0.003 LSB, averaged over 100 data sets.

Fig. 2. RMS error (averaged over 100 data sets) between predicted values
and true values for simulated data with additive measurement noise having
an rms value of 0.003 LSB.

corresponding to measured response errors one at a time until
the columns of are no longer linearly independent.

Model development is complicated by the presence of
measurement noise in the measured basis vectors. In addition
to compromising the overall integrity of the model, such noise
makes it difficult to determine whether or not the columns of

are linearly independent.

A. Noise-Free Case

Starting with a small number of sensitivity vectors or
response errors as our model, we augment the model one
basis vector at a time until the columns are deemed, using
SVD [9], to be linearly dependent.

In practice this can be far from easy, and the penalty
for selecting too many basis vectors is that the performance
of the algorithm is compromised both in terms of on-line
measurement time and accuracy (see Figs. 1 and 2).

Picture the ideal scenario with no measurement noise and
exactly error-producing mechanisms. Let denote
a model comprising basis vectors. At each step we would
calculate

using SVD. For we would find that , a matrix,
would satisfy:

For we would find

In the noise-free case, the optimum number of basis vectors
is simply the number of nonzero singular values of. When

measurement noise is present, we no longer have this useful
rule of thumb.

B. Real Case

Noise manifests itself by pushing each signature from the
subspace in which it should lie out into space. Thus the

diagonal elements of never reach zero because the model
explores every direction in to some extent.

One approach to selectingis to augment with measured
response errors until the last diagonal element ofdips
below the “noise floor.” Assuming measurement noise with
a variance of , this amounts to selecting as the largest
number satisfying

Note that is the rms value of the diagonal elements of
in the case where contains only noise. In our experience,

this provides a reliable guideline for estimating theminimum
number of columns in the model [1].

C. Optimal Choice of

In practice, more basis vectors than suggested by the
above procedure may be permitted because, when forming

, the test-points are specifically selected to
minimize noise effects, implying that noise is more significant
in the model as a whole than in our judiciously chosen subset.
Moreover, Souders and Stenbakken [5] have correctly shown
that the optimal number of basis vectors varies with the
number of test-points. Hence any procedure to select an
optimal number of basis vectors should take into account the
number of test-points. Such a procedure does not exist as yet,
and at present the only way to be entirely sure of the optimum
number of basis vectors for a given number of test-points
seems to lie in laboriously producing plots such as Figs. 3 and
4. These graphs show, using real data only, the ability of the
LEMMA method to predictmeasuredresponse errors, both in
terms of rms prediction error and maximum prediction error.

Figs. 1 and 2 confirm the key observation by Souders and
Stenbakken [5] that the optimal model size for the difference
between the predicted values and thetrue values occurs at the
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Fig. 3. RMS error (averaged over 100 data sets) between predicted values
and real measured values versus number of signatures, with number of
test-points as a parameter.

Fig. 4. Max. error (averaged over 100 data sets) between predicted values
and real measured values versus number of signatures, with number of
test-points as a parameter.

same location as the optimal size for the difference between
the predicted values andmeasured(true plus noise) values. In
a practical situation, the true values cannot be determined, but
we can use this result to locate the optimal model size with
confidence.

Our experimental observations lead us to conjecture that
the optimal model size in terms of rms error is also optimal
in terms of the maximum error (see Figs. 3 and 4).

V. CHOICE OF : WHICH BASIS VECTORS?

In our discussion of the LEMMA method in Section III,
we mentioned that the CUT model could be constructed from
a combination of sensitivity vectors and empirical response
errors. The former have the advantage of being free of mea-
surement noise, although difficult to derive, but cannot account
for unmodeled process-induced errors. The latter capture such
errors but are necessarily corrupted by measurement noise.

Fig. 5. Using a model of 20 basis vectors in both cases, this plot shows the
performance (in terms of mean rms error) of models comprising measured
vectors alone and a mixture of measured vectors and Rademacher functions.

There is no reason why a model must be entirely one or the
other, however. A model with vectors of both types is equally
valid, and may constitute an improvement if the overall noise
in the model is reduced.

In this section we consider the choice of basis vectors for
the matrix and derive a procedure for selecting basis vectors
from a combination ofa priori and measured response errors.

A. Other Useful A Priori Model Vectors

In addition to simulated error signatures, a second type of
a priori basis vector is available. Such vectors can be derived
by considering particular errors which will appear due to the
functionality, rather than the constituent parts, of a device.

An important example is the set of Rademacher functions
[7] in the case of DAC’s. Vectors formed from these functions
describe errors that manifest themselves according to the state
of switches within the DAC, and are based upon device con-
siderations at the system level rather than the component level.
The Rademacher functions can be generated by computer and
are guaranteed to be noise-free, thus constituting a good choice
as model vectors, when applicable.

Figs. 5 and 6 compare the performance of models with
and without a priori Rademacher functions for the 8-bit
AD7528 DAC. Since the Rademacher functions are noise-
free, the model comprising Rademacher functions augmented
with measured response errors clearly performs better (for the
same size of reduced model) than that composed exclusively
of measured response errors.

How can this observation be used to define a procedure for
selecting an optimum set of basis vectors from a choice of
measured error responses anda priori vectors? We address
this question in the following subsections.

B. Noise Reduction Using Total Least-Squares

A valuable noise-reduction procedure arises from examining
the linear algebra method of total least-squares (TLS) [13].
This is a technique for obtaining a least squares solution of
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Fig. 6. Using a model of 20 basis vectors in both cases, this plot shows
the performance (in terms of mean maximum error) of models comprising
measured vectors only and a mixture of measured vectors and Rademacher
functions.

the overdetermined problem when both
and are imprecisely known. It deals specifically
with the case

or

under the assumption that all elements of are
independently and identically distributed with zero mean.

A useful application of TLS in the LEMMA method arises
during model development. Suppose it is found, either the-
oretically or by experimentation, that a set ofsignatures
constitutes the optimum model, . Consider that another
linearity plot is available, so that the augmented system

constitutes a slightly worse model than alone. We
know that should ideally consist of vectors of
which only are linearly independent. However the presence
of noise augments the rank of to .

Now TLS tells us that if we perform SVD as follows:

then the first columns of constitute a
better basis for the true dimensional subspace than
alone. Therefore, a model formed from these columns is an
improvement on .

Taking this as far as possible, suppose we are forming an
-column model but there are candidate basis vectors,

, from which we must choose. Our best option
is to decompose

and to take the first vectors from as our model .
These vectors define the unique subspace that minimizes the
perpendicular distances to all of the candidate vectors, thereby
averaging out the effects of noise.

Fig. 7 shows model performance versus the number of
vectors used to build the model for the case . Here

ranges from 20 to 80.

Fig. 7. Thex-axis shows the number of vectors used in the SVD, after
which only the most significant twenty are chosen. Performance in terms of
prediction error (averaged over 100 data sets) lies along they-axis.

C. Rigorous Procedure for Selecting Basis Vectors

The question now arises about how to combine the above
facts into a robust basis vector selection procedure. Work by
Souders and Stenbakken [5] has shown the importance of an
orthonormal model , and in particular one derived by SVD
instead of QRD.5 We want to avoid placing our noise-freea
priori vectors in the large SVD at the start of the basis selection
procedure; otherwise they will be “drowned out” by noise in
the measured basis vectors. We suggest the following solution.

When deriving an -column model from a selection of
measured signatures, , and a priori

vectors, , we decompose

and take the first vectors from to form . Then we
decompose

and take the first vectors from to form our model .
The resulting model contains a low-level noise contribution
from vectors instead of a high-level noise contribution from

vectors.
Once the model has been chosen, one must decide how

many measurements to make and how to select the test-points.
We address these questions in the following two sections.

VI. CHOICE OF : HOW MANY TEST-POINTS?

By contrast with the number of basis vectors, increasing
the number of test-points for a given number of basis vectors
alwaysimproves the accuracy of the prediction. In general, the
“optimum” number of test-points is arrived at as a compromise
between the permitted measurement time and the maximum

5Having orthonormal columns forE minimizes the probability that any
submatrix matrixER will be singular or almost singular. In particular, an
SVD-derived model best describes the directions in which errors manifest
themselves and has been shown to produce better results than QR-derived
models [5].
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tolerable prediction error. This is a specification which will
vary from application to application.

VII. CHOICE OF : WHICH TEST-POINTS?

The next question is how to select the test-points, i.e. how to
choose the best subset of . Why not, for example, simply
choose the first few rows, or else use a random selection?

Suppose that is subject to measurement error so that our
equation is actually

where is the true response error and the components
are normally distributed with zero mean and

variance . The vector of variances of the predictions of the
response error is given by

(2)

Souders and Stenbakken [4] favor selecting the submatrix
such that the determinant of is maximized; this

has the effect of minimizing the maximum element of .
This form of optimization is calledD-optimality.

How does one maximize ? Testing the deter-
minants of all possible subsets of is clearly too
large a task to undertake, butQR factorizationof provides
an efficient means of choosing a nearly optimal set oftest-
points. A detailed treatment of this procedure may be found
in [4].

If further test-points are desired to improve accuracy, it is a
good idea to augment with the row of corresponding to
the maximum prediction variance [14]. This can be repeated
until the maximum prediction variance is sufficiently low.

Whether D-optimality is the best form of optimality to apply
for the LEMMA method is questionable. From (2) we can
form a vector of prediction errors based upon the acceptable
level of confidence. If we let denote the predicted response
error and let be a vector of the specified error-limits at each
significant input, then a device is deemed good if

If we assume that a device is equally likely to fail the above
test for any , then it is preferable to minimize the sum of
the prediction variances, thereby achieving a “closest fit” to
the actual response, rather than minimizing the maximum
prediction variance. In this manner fewer good devices are
incorrectly diagnosed as faulty. A set of test-points which
minimizes the sum of the prediction variances isA-optimal,
and the A-optimality criterion is

minimize

The theory and performance of A-optimal test-points are
examined in [15].

VIII. A LGORITHM I: MODEL DEVELOPMENT

In this section, we summarize the model development
algorithm for the LEMMA method [16]. These steps are
performed off-line so we ignore the associated measurement
and computation costs.

Algorithm I:

Given: Measured response error vectors and a
priori vectors , where all vectors are .
The rms measurement noise level is assumed to be.

Step 1) Compute the SVD,
.

Step 2) Determine the largest such that .
Step 3) Compute the SVD and

form from the first columns of .
Step 4) Compute the SVD

and form the model from the first vectors of .
Step 5) Decompose as using QRD with

pivoting. Form from the first rows of .
Step 6) Using (2), determine whether the maximum pre-

diction variance is within the desired level. If not,
augment with the row corresponding to the max-
imum prediction variance. Repeat until the maximum
prediction variance is sufficiently low.

Step 7) If the number of test-points is greater than the test
time allows, try varying the number of model vec-
tors and repeat from Step 3. If this does not work
the specifications cannot be met using the LEMMA
method.

Step 8) Calculate the pseudo-inverse of using the equa-
tion .

IX. PRODUCTION TESTING: WHAT DOES IT COST?

Since model development is performed off-line, we have
ignored the costs associated with measurement and compu-
tation. In the case of production testing, however, the time
required for on-line measurement and computation will deter-
mine the throughput. Depending on the speed of the hardware,
a further tradeoff may be required between measurement and
computation time.

X. ALGORITHM II: PRODUCTION TESTING

In this section, we summarize the on-line step of the
LEMMA method. We present the relevant steps with the asso-
ciated costs in time. We assume that each measurement takes

s and that each floating-point operation (multiplication,
addition, or comparison) takes s.

Algorithm II:

Given: Model , test-points , associated submatrix
pseudo-inverse .

Step 1) Measure the response error at the test-points
and construct the reduced error vector

. This takes s.
Step 2) Calculate the coefficient vector . This

takes s.
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Step 3) Calculate . This takes s.
Step 4) Check that every component of the predicted response

error is within the specified error-limits. This could
cost up to s.

A. Speed-Up of Algorithm II When Only the
Largest Element of is Required

Note that the computational cost of Algorithm II is domi-
nated by Step 3, in which the response error is predicted by
evaluating the product . In many cases, such as testing
the INL of a DAC, the objective is to determine if thelargest
component of is less (in magnitude) than some upper
bound .

To accelerate the computation, we exploit the Cauchy-
Schwarz inequality [17] which states that

(3)

where is the th row of and denotes the Euclidean
norm. This inequality permits us to eliminate from our compu-
tation all rows of which satisfy . This
can be achieved very quickly if we presort the rows ofwith
respect to the norm during the model development phase [15].

XI. CONCLUDING REMARKS

In this work, we have developed a tutorial exposition of
the LEMMA method for analog and mixed-signal testing. The
technique provides an efficient way of predicting the entire
response error of a circuit based on a limited number of
measurements at judiciously chosen test-points. The method is
particularly suited to problems where the number of significant
inputs is very much greater than the number of error-producing
mechanisms.

There are many degrees of freedom in implementing the
method: how many error sources to model, which ones, and
how to model them; how many test-points to select and how
to choose them; how to minimize the computation of the
predicted response. We have shown how to resolve these
questions.

We have discussed the theoretical underpinnings of the
LEMMA method, and provided a technique for determining
the numberof significant error sources in measured responses
using SVD. By invoking TLS, we have justified a novel algo-
rithm for constructing a low-noise model from a combination
of a priori and measured basis vectors and we have recalled
how to select the test-points by means of QR factorization.

We have provided detailed algorithms for both the model
development and production testing phases of the LEMMA
method. In addition, we have developed estimates of the
on-line measurement and computation time and outlined a
speed-up for the production testing phase when only the worst-
case response is required.

Although we have resolved in this paper most of the
issues involved in implementing the LEMMA method, further
theoretical work is required to establish with greater rigor the
relationship between the number of test-points, the choice of

, and the resulting prediction error. This is the subject of
ongoing research [18], [19].

APPENDIX

DATA MANIPULATION FOR

QUANTIFYING THE EFFECTS OFNOISE

All of the results presented in this work are based on all-
codes measurements of 200 Analog Devices AD7528 8-bit
current-mode DAC’s. Half of the measured response error
vectors have been used for model development and the other
half for simulated production testing. To quantify the effects
of measurement noise in Section IV, the production data was
artificially “cleaned” and a controlled amount of noise added,
as described below.

Since any measured data sets are inherently noisy to begin
with, we designed the following procedure toemulate a
system of independent error mechanisms, with all
measurements subjected to additive Gaussian noise with an
rms value of 0.003 LSB.

1) A set of 200 measured response errors was split into
two groups—set A with thirty vectors and set B with
the remainder.

2) The vectors from set A were placed into a matrix
which was subsequently assumed to be entirely noise-
free; it can be viewed as a perfect sensitivity matrix for
the devices.

3) To construct a “clean” model of a desired size,
was formed using vectors from set B, which were
then projected onto the subspace defined by. This
was accomplished as follows:

where denotes the pseudo-inverse
of [9].

4) Next, the desired level of Gaussian noise was added to
the model and the required steps of the LEMMA method
performed.

5) For each response error tested, we calculated the
“true” error and the “measured” error

, where is Gaussian noise with an rms
value of 0.003 LSB.

6) The LEMMA method was performed using test-points
from . Letting denote the response error as
predicted by LEMMA, we gauge the performance by
comparing: (a) the rms and maximum difference be-
tween the predicted andmeasuredresponse errors

, and (b) the rms and maximum difference between
the predicted andactual response errors .
These results are summarized graphically in Figs. 1 and
2.
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