
Title A holistic architecture using peer to peer (P2P) protocols for the
internet of things and wireless sensor networks

Authors Tracey, David

Publication date 2020-02

Original Citation Tracey D. 2020. A holistic architecture using peer to peer (P2P)
protocols for the internet of things and wireless sensor networks.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2020, David Tracey. - https://creativecommons.org/licenses/by-
nc-nd/4.0/

Download date 2025-07-26 12:16:20

Item downloaded
from

https://hdl.handle.net/10468/9932

https://hdl.handle.net/10468/9932


Ollscoil na hÉireann, Corcaigh 

National University of Ireland, Cork 
 

 

 

A Holistic Architecture using Peer to Peer (P2P) 
Protocols for the Internet of Things and Wireless 

Sensor Networks  

 

Thesis presented by 

David Tracey, B.E., M.Sc 

 

for the degree of 

Doctor of Philosophy 

 

 

University College Cork 

School of Computer Science and Information Technology 

 Head of School: Prof. Cormac Sreenan 

Supervisor(s): Prof. Cormac Sreenan 

 February 2020 



ii 

Contents 

List of Figures ........................................................................................................... vii 
List of Tables ............................................................................................................... ix 
Declaration .................................................................................................................. xi 
Acknowledgements ................................................................................................... xii 
Abstract .................................................................................................................... xiii 
Nomenclature ............................................................................................................. xv 
Introduction .................................................................................................................. 1 

1.1 Thesis Statement ......................................................................................... 1 
1.2 Background ................................................................................................. 1 
1.3 Motivation ................................................................................................... 4 
1.4 Research Approach ..................................................................................... 5 
1.5 Research Contributions ............................................................................... 7 
1.6 Publications ................................................................................................. 8 
1.7 Thesis Structure ........................................................................................... 9 

2 IoT and Wireless Sensor Networks .................................................................... 11 
2.1 Introduction ............................................................................................... 11 
2.2 Wireless Sensor Networks ........................................................................ 12 
2.3 Wireless Sensor Devices ........................................................................... 13 
2.4 Wireless Sensor Network Stack ................................................................ 16 

2.4.1 Wireless Interface Layers .................................................................. 17 
2.4.2 Network and Routing Layers ............................................................ 19 
2.4.3 Wireless Sensor Network Routing .................................................... 20 
2.4.4 Wireless Sensor Network Application Layer Protocols .................... 24 

2.5 Wireless Sensor Network Information Models ......................................... 26 
2.5.1 IPSO and OMA LWM2M ................................................................. 26 
2.5.2 Common Information Model (CIM) ................................................. 28 
2.5.3 SensorML .......................................................................................... 29 

2.6 Web of Things (WoT) ............................................................................... 30 
2.7 Characteristics of IoT Applications using Wireless Access ..................... 34 
2.8 Summary ................................................................................................... 37 

3 Distributed System Concepts ............................................................................. 39 
3.1 Introduction ............................................................................................... 39 



iii 

3.2 Architectural Approaches .......................................................................... 39 
3.2.1 RESTFul Architecture Style ............................................................. 39 
3.2.2 Middleware Approaches ................................................................... 40 
3.2.3 Autonomic and Cognitive Architectures ........................................... 43 

3.3 Big Data and NoSQL Approaches ............................................................ 44 
3.4 Cloud and Sensor Platforms ...................................................................... 45 
3.5 Fog and Edge Computing .......................................................................... 46 
3.6 Tuple Approaches ..................................................................................... 51 
3.7 Peer To Peer (P2P) Systems ...................................................................... 52 

3.7.1 Freenet ............................................................................................... 55 
3.7.2 JXTA ................................................................................................. 56 
3.7.3 Distributed Hash Table Based Networks .......................................... 57 
3.7.4 BitTorrent .......................................................................................... 66 

3.8 P2P in Wireless Sensor Networks ............................................................. 69 
3.8.1 WSN as a Peer via a Gateway to Mobile Network ........................... 69 
3.8.2 Distributed Hash Tables in WSNs .................................................... 70 
3.8.3 Tiered Chord (TChord) ..................................................................... 71 
3.8.4 Service and Resource Discovery using P2P ...................................... 72 
3.8.5 TinyTorrents ...................................................................................... 73 

3.9 Cache Algorithms ...................................................................................... 74 
3.9.1 Use Based Cache Algorithms (LRU, LFU, MRU) ........................... 76 
3.9.2 Web Cache Approaches .................................................................... 77 
3.9.3 Paging Algorithms ............................................................................ 77 
3.9.4 Summary of Cache Algorithm Performance ..................................... 80 
3.9.5 Caching in Wireless Sensor Networks .............................................. 80 

3.10 Summary ................................................................................................... 81 
4 Analysis, Architecture and Design ..................................................................... 83 

4.1 Analysis ..................................................................................................... 84 
4.1.1 Architectural Lessons ........................................................................ 84 
4.1.2 Architectural Requirements .............................................................. 85 
4.1.3 WSN Software Development Requirements ..................................... 87 
4.1.4 System Model .................................................................................... 88 
4.1.5 Security Considerations .................................................................... 89 
4.1.6 Findings from the Review of Prior Work ......................................... 90 

4.2 CacheL Algorithm ..................................................................................... 96 
4.3 Holistic Architecture and Abstractions ................................................... 102 



iv 

4.3.1 Service Abstractions ........................................................................ 105 
4.3.2 Object Space .................................................................................... 108 
4.3.3 Local Instrumentation (li) Layer ..................................................... 109 

4.4 HPP Overlay using Distributed Hash Table ............................................ 110 
4.5 HPP Protocol Design ............................................................................... 112 

4.5.1 HPP Forwarding and Routing ......................................................... 113 
4.5.2 HPP Actors ...................................................................................... 114 
4.5.3 HPP Message Header ...................................................................... 117 
4.5.4 HPP Message Types (or Commands) ............................................. 119 
4.5.5 HPP Message Flows ........................................................................ 122 
4.5.6 Decentralised Control ...................................................................... 125 
4.5.7 Energy Consumption ....................................................................... 126 
4.5.8 Resource Discovery ........................................................................ 127 

4.6 Summary ................................................................................................. 128 
5 Implementation ................................................................................................ 129 

5.1 Linux and Contiki Implementations ........................................................ 131 
5.2 HPP Implementation ............................................................................... 132 

5.2.1 Channel and Endpoint Communication Layers .............................. 132 
5.2.2 HPP Message Processing ................................................................ 134 
5.2.3 DHT Implementation ...................................................................... 136 

5.3 Data Model Implementations .................................................................. 137 
5.3.1 Data Model Service Layer .............................................................. 139 
5.3.2 Local Instrumentation Layer ........................................................... 140 
5.3.3 Integration with Erbium CoAP Implementation ............................. 142 
5.3.4 Contiki Implementation of OMA LWM2M ................................... 144 

5.4 HBase Integration .................................................................................... 147 
5.5 CacheL Implementation .......................................................................... 149 
5.6 Summary ................................................................................................. 151 

6 Experimental Evaluation .................................................................................. 153 
6.1 Consideration of Architectural Requirements ......................................... 154 
6.2 Architectural Comparison ....................................................................... 155 
6.3 Example Scenarios .................................................................................. 157 
6.4 Linux and Contiki Implementation ......................................................... 161 
6.5 Use of Abstractions ................................................................................. 163 

6.5.1 Data Models .................................................................................... 164 
6.5.2 HBase Integration ............................................................................ 165 



v 

6.6 Mapping of OMA LWM2M and CIM Data Models .............................. 165 
6.7 Memory Use ............................................................................................ 167 
6.8 HPP Performance .................................................................................... 170 

6.8.1 Node Functionality for Testing ....................................................... 170 
6.8.2 Constrained Device (Contiki) Tests ................................................ 173 
6.8.3 Linux Node Tests ............................................................................ 177 

6.9 CacheL .................................................................................................... 192 
6.9.1 Implementation Complexity ............................................................ 193 
6.9.2 Performance Comparison of LRU and CacheL using YCSB ......... 193 
6.9.3 Optimisations to CacheL ................................................................. 197 
6.9.4 Performance Characteristics of CacheL .......................................... 197 

6.10 Summary ................................................................................................. 201 
7 Conclusion ........................................................................................................ 203 





List of Figures 

Figure 1 The IoT leading to “Systems of Systems” [3] .......................................... 3 
Figure 2 Tmote Sky Device [22] ........................................................................... 15 
Figure 3 Zolerta Z1 Device [23] ........................................................................... 15 
Figure 4 Network Stack including RPL ................................................................ 17 
Figure 5 OMA LWM2M and IPSO ...................................................................... 27 
Figure 6 Abstract Architecture of W3C WoT [59] ............................................... 32 
Figure 7 Eclipse IoT Stacks [69] ........................................................................... 41 
Figure 8 OpenFog Architecture Scenario [96] ...................................................... 50 
Figure 9 OpenFog Reference Architecture Description with Perspectives [96] ... 50 
Figure 10 Example of Lookup in Chord ............................................................... 60 
Figure 11 Kademlia Binary Tree Example ........................................................... 63 
Figure 12 Clock Algorithm ................................................................................... 78 
Figure 13 CacheL Algorithm Lists Sweep ............................................................ 99 
Figure 14 Node Architecture ............................................................................... 104 
Figure 15 Holistic Architecture ........................................................................... 107 
Figure 16 Sample HPP Service Interaction ......................................................... 124 
Figure 17 Resource Access over HPP and CoAP ............................................... 138 
Figure 18 Local Instrumentation Structures ........................................................ 141 
Figure 19 YCSB Test Setup ................................................................................ 150 
Figure 20 MQTT Bridging .................................................................................. 158 
Figure 21 Federation of MQTT using HPP ......................................................... 158 
Figure 22 Vehicle Data Hub Architecture .......................................................... 159 
Figure 23 OpenFog Transportation:Smart Car & Traffic Control System [96] .. 160 
Figure 24 Smart Transport Fog System with HPP .............................................. 161 
Figure 25 Sample of Test Messages for Direct Test Node ................................. 173 
Figure 26 Simulation with 5 nodes ..................................................................... 175 
Figure 27 Simulations with 7 nodes and 9 nodes ................................................ 175 
Figure 28 Single Bootstrap Node Test Scenario ................................................. 178 
Figure 29 Multiple Bootstrap Peer Test Scenario ............................................... 179 
Figure 30 Request Processing Times on Bootstrap Peers ................................... 183 
Figure 31 Request Processing times for Multiple (50 or 100) Bootstrap Peers .. 183 
Figure 32 Times to Receive Replies on Non-bootstrap Peers ............................. 184 
Figure 33 Counts of key variables for Cache Size 100, Lease 0-100ms ............. 198 
Figure 34 Backhand Delete Counts per Cache Size, Lease 0-100ms ................. 199 
Figure 35 Lease Expired Counts per Cache Size, Lease 0-100ms ...................... 199 
Figure 36 Lease Counts for Cache Size 100, Lease 0-100ms ............................. 200 





List of Tables 

Table 1 Memory Usage of CIM Implementation ................................................ 167 
Table 2 Memory Usage of IPSO Implementation ............................................... 168 
Table 3 Memory Use of Nodes of Different Capability ..................................... 169 
Table 4 HPP Message Processing Times for 5 and 9 node tests (except node 5) 176 
Table 5 Variability of Get Message Times (ms) in 20 Node tests ...................... 185 
Table 6 Number of Requests handled by Bootstrap Peers .................................. 186 
Table 7 Counts for Bootstrap Peers .................................................................... 189 
Table 8 Counts for Non-bootstrap Peers ............................................................. 190 
Table 9 Counts for “1bs-direct-test” with Termination (kill) ............................. 192 
Table 10 20 Peer “1bs-direct-test” Hello times with and without Termination .. 192 
Table 11 YCSB Workloads ................................................................................. 193 
Table 12 LRU and CacheL (Without Leases) Hit Ratios per Workload ............ 195 
Table 13 CacheL (With Leases) Hit Ratios per Workload ................................. 196 





Declaration 

This is to certify that the work I am submitting is my own and has not been 
submitted for another degree, either at University College Cork or elsewhere. All 
external references and sources are clearly acknowledged and identified within the 
contents. I have read and understood the regulations of University College Cork 
concerning plagiarism.  

 

David Tracey 

February 2020 

  



xii 

Acknowledgements 

I would like to thank my supervisor Professor Cormac Sreenan for his guidance 
on research and reviewing of draft papers, as well as for brainstorming ideas with 
me during the course of this work. In addition to this, his support, understanding 
and encouragement were very important given this work was performed on a part-
time basis. I also appreciate his enthusiasm for me to explore a wide range of 
research as part of this work. 

Finally, I am so grateful to my wife Fiona and my daughters, Aisling, Hannah and 
Sinead for their support, including making all those cups of coffee that were 
needed along the way. 

  



xiii 

Abstract 

Wireless Sensor Networks (WSNs) interact with the physical world using sensing 
and/or actuation. The wireless capability of WSN nodes allows them to be 
deployed close to the sensed phenomenon. Cheaper processing power and the use 
of micro IP stacks allow nodes to form an “Internet of Things” (IoT) integrating 
the physical world with the Internet in a distributed system of devices and 
applications. Applications using the sensor data may be located across the Internet 
from the sensor network, allowing Cloud services and Big Data approaches to 
store and analyse this data in a scalable manner, supported by new approaches in 
the area of fog and edge computing. Furthermore, the use of protocols such as the 
Constrained Application Protocol (CoAP) and data models such as IPSO Smart 
Objects have supported the adoption of IoT in a range of scenarios. 

IoT has the potential to become a realisation of Mark Weiser’s vision of 
ubiquitous computing where tiny networked computers become woven into 
everyday life. This presents the challenge of being able to scale the technology 
down to resource-constrained devices and to scale it up to billions of devices. This 
will require seamless interoperability and abstractions that can support 
applications on Cloud services and also on node devices with constrained 
computing and memory capabilities, limited development environments and 
requirements on energy consumption. 

This thesis proposes a holistic architecture using concepts from tuple-spaces and 
overlay Peer-to-Peer (P2P) networks. This architecture is termed as holistic, 
because it considers the flow of the data from sensors through to services. The key 
contributions of this work are: development of a set of architectural abstractions to 
provide application layer interoperability, a novel cache algorithm supporting 
leases, a tuple-space based data store for local and remote data and a Peer to Peer 
(P2P) protocol with an innovative use of a DHT in building an overlay network. 
All these elements are designed for implementation on a resource constrained 
node and to be extensible to server environments, which is shown in a prototype 
implementation. This provides the basis for a new P2P holistic approach that will 
allow Wireless Sensor Networks and IoT to operate in a self-organising ad hoc 
manner in order to deliver the promise of IoT. 



xiv 

  



xv 

Nomenclature 

6LoWPAN IPv6 over Low power Wireless Personal Area Networks.  

API Application Programming Interface. 

BAN Body Area Network. 

BLE Bluetooth Low Energy. 

CoAP Constrained Application Protocol. 

CoRE Constrained RESTFul Environments.  

HATEOAS Hypermedia as the Engine of Application State.  

HTTP Hypertext Transfer Protocol. 

IANA Internet Assigned Numbers Authority 

IETF Internet Engineering Task Force. 

IoT Internet of Things. 

IPSO IP for Smart Objects. 

JVM Java Virtual Machine.  

LLN low-power lossy network. 

LWM2M OMA Lightweight M2M.  

M2M machine-to-machine. 

MQTT Message Queuing Telemetry Transport. 

OMA Open Mobile Alliance. 

PaaS Platform as a Service. 



xvi 

PAN Personal Area Network 

REST Representational State Transfer. 

RFID Radio-Frequency Identification. 

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks. 

SaaS Software as a Service. 

TLS Transport Layer Security. 

URI Uniform Resource Identifier. 

WoT Web of Things. 

WSN wireless sensor network.  

 



 

Introduction  

“Architecture starts when you carefully put two bricks together. 
There it begins", Ludwig Mies van der Rohe, June 1959 

This dissertation is concerned with creating a holistic architecture that provides 
simple, powerful abstractions for the end-to-end flow of data from constrained 
Wireless Sensor Network (WSN) devices to consuming services, possibly Cloud 
based in an Internet of Things. This in line with the Cambridge English Dictionary 
definition of holistic as “dealing with or treating the whole of something or 
someone and not just a part”. This architecture provides layers and abstractions 
that allow the provision of simple and consistent Application Programming 
Interfaces (APIs) to store and exchange sensor data. This architectural approach 
allows programmers to have a consistent approach in a variety of environments 
from software to send sensor data on constrained WSN devices to software for 
Cloud based services receiving, analysing and taking actions based on that data. 

This chapter provides the background, motivation and approach taken for this 
work and states the contributions made. 

1.1 Thesis Statement 

This thesis demonstrates that a holistic architectural approach with a consistent set 
of abstractions, implementable on both constrained wireless sensor devices and as 
part of advanced services, can provide the flexibility, simplicity, interoperability 
and scalability required to realise the potential of the Internet of Things (IoT). 

1.2 Background 

There are many definitions of IoT and the possible scope of IoT can be seen in the 
definition from the ITU-T in Recommendation ITU-T Y.2060 of “a global 



2 IoT and Wireless Sensor Networks 

 

2 

infrastructure for the information society, enabling advanced services by 
interconnecting (physical and virtual) things based on existing and evolving 
interoperable information and communication technologies” [1]. This Internet of 
Things (IoT) has been enabled by cheaper processing power, low power wireless 
and the use of micro IP stacks. This allows nodes to form an Internet of Things 
integrating the physical world with the Internet in a distributed system of devices 
and applications. Applications using the sensor data may be located across the 
Internet from the sensor network, allowing Cloud services and Big Data 
approaches to store and analyse this data in a scalable manner. This is supported 
by new approaches in the area of fog and edge computing to reduce the impact of 
network factors such as latency, intermittent connectivity and limited bandwidth 
by bringing at least some of the processing closer to the source of the data. 

This IoT distributed system may include Wireless Sensor Networks (WSNs), 
where the wireless capability of WSN nodes allows them to be deployed close to 
the sensed phenomenon. There are a wide range of scenarios in which Wireless 
Sensor Networks are used or for which they are targeted [2]. The limits of 
wireless technologies in these scenarios compared to wired technologies are 
acceptable given the flexibility offered by the wireless connection, although the 
deployment of a wireless network may not be straightforward due to factors in the 
environment, such as physical obstacles.  

Figure 1 from [3] shows the potential for IoT to move an existing product to a 
smart connected product, then a connected system to ultimately a “System of 
Systems” that links systems together. In the example given, a tractor company 
becomes part of a broader farm automation set of systems connecting farm 
machinery, irrigation systems, soil and nutrient sources with information on 
weather and crop prices.  

Although the term IoT has been in existence for a number of years, the potential 
of new applications and services to take advantage of IoT is, however, limited by 
the difficulties imposed by the heterogeneous nature, constrained capabilities and 
the limited development environments of WSN nodes and the use of proprietary 
or specialized software/protocols. This is exacerbated by where the nodes are 
deployed, e.g. WSNs are often deployed in situations, such as remote locations, 
where they must be able to operate autonomously, or at least unattended, for long 



1.2 Background 3 

 

3 

periods of time. The subsequent trade-offs of device lifetime versus device 
processing capability versus ease of software development and ease of 
deployment, however, still remain for WSN devices and are often solved in a one-
off and/or proprietary manner. 

 

Figure 1 The IoT leading to “Systems of Systems” [3] 

Without a few “killer applications” to drive volume and establish a number of 
large scale environments, IoT consists of a plethora of possible, separate solutions 
with distinct wireless technologies, operating systems for constrained devices, 
data models, architectural approaches and protocols or custom vendor solutions. 
Many solutions have limited, if any, interoperability beyond the use of the IP 
stack, slowing the growth and benefits that IoT could offer. 

A report [4] highlights the importance of interoperability: “Of the total potential 
economic value the IoT enables, interoperability is required for 40 percent on 
average and for nearly 60 percent in some settings”. The potential to provide 
greater application interoperability can be seen in application layer protocols such 
as the Constrained Application Protocol (CoAP) [5], supplemented by the 
availability of data models such as IPSO Smart Objects [6] and the Open Mobile 
Alliance Lightweight Specification (OMA LWM2M) [7]. Similarly, the emerging 
area of fog computing should allow a service to be executed using components 
running in networks or different providers and this requires that fog and edge 
components be interoperable at the level of providers and architecture models and 
interfaces. 

Despite such potential, however, it can be said in general that the Internet of 
Things currently uses numerous and distinct protocols and standards at all levels 



4 IoT and Wireless Sensor Networks 

 

4 

of the communication stack and consists of a variety of purpose-built applications 
operating in a silo manner on network and system architectures often designed 
primarily for that application. Furthermore, these architectures may not be suited 
to wider use. 

1.3 Motivation 

The current situation in IoT with numerous and distinct protocols and standards at 
all levels of the communication stack is reminiscent of the early days of the 
adoption of Internet services, such as email. In that instance, the protocols and 
infrastructure for email were well understood with several implementations, but 
email use was generally limited to larger companies or academic institutions. It 
can be argued that it was the introduction of HTTP and particularly the Internet 
Browser, with supporting web-based email services, that drove the wider adoption 
of email. IoT is at a similar stage where it needs to break out of the limitations of 
its current situation.  

The availability of increased storage and processing power at a lower cost with 
greater bandwidth has resulted in the rise of Cloud computing services and Big 
Data techniques, such as HBase and MapReduce in the Hadoop stack. This has 
allowed the creation of some IoT applications using the Cloud and the idea of 
“Sensing As A Service” [8]. Similar to the early days of Internet services, 
however, WSNs and IoT have not been able to take full advantage of Cloud and 
Big Data services. Hence, there are isolated end-to-end solutions for relatively 
small islands of sensor networks, instead of sensor data and services being 
universally and conveniently available, interoperable and scalable in the Cloud for 
consumers or even for developers. 

A key challenge is whether the range of separate solutions with different 
approaches outlined earlier can enable the predicted growth in IoT to tens of 
billions of connected devices [9], both in terms of scaling the systems to store and 
analyse data, manage nodes and also in terms of developing services and node 
software in such a diverse environment. The scalability challenge requires not 
only being able to scale it up to billions of devices, but also to scale it down to 
resource-constrained devices in relatively small WSNs [10]. This requires 
seamless interoperability and a consistent set of abstractions and APIs/protocols, 



1.4 Research Approach 5 

 

5 

particularly at the application layer to realise Mark Weiser’s ubiquitous 
computing vision of tiny networked computers woven into everyday life [11]. 

This thesis is motivated by seeking to meet that key scalability and 
interoperability challenge and to consider which architectural approaches may 
accommodate the end-to-end flow of data and control in the Internet of Things in 
order to seamlessly include vast numbers of devices of varying capability and 
different WSN technologies into that distributed system.  

1.4 Research Approach 

There are a variety of possible IoT approaches and solutions including several 
micro-IP stacks on devices, a range of wireless protocols, a range of information 
models, different operating systems, different application protocols and 
custom/proprietary vendor solutions, e.g. for Cloud integration. These approaches 
generally target a particular scenario or a part of the end-to-end environment. 
Coupled with the lack of a dominant solution for hardware suppliers, device and 
application developers, this has hindered large-scale development, adoption and 
demand from potential customers. In contrast to this, the area of smartphone 
applications has flourished, even including the use of on-board sensors (or even 
external sensors) for applications such as fitness monitoring. In this case, the 
availability of a limited set of stable, well-known development environments and 
a large potential market has generated a wide range of applications and devices. 

In order to create such an environment for IoT and to meet the key scalability and 
interoperability challenges outlined earlier, the approach in this work is to develop 
a holistic architecture, with a supporting set of consistent abstractions. This 
architecture is designed to meet a set of requirements for WSNs and IoT for the 
complete end-to-end flow of data. That flow of data includes when data is sent 
(and aggregated/stored/acted on) from constrained devices to border routers or 
edge gateways to Cloud services for storage or analysis. It also includes the flow 
in the opposite direction. This thesis considers the Internet of Things as consisting 
of a multiplicity of distributed systems and it reviews which architectural 
approaches may be suitable to meet the heterogeneity and scalability challenges 
outlined above. In particular, it considers the RESTFul architectural style and 



6 IoT and Wireless Sensor Networks 

 

6 

BitTorrent as examples of systems that have achieved scale, for lessons to take 
from them in order to meet those requirements.  

The research in this thesis also considers the following computing concepts in the 
context of an architecture to realise the potential of IoT:  

• Tuple Spaces provide a repository of tuples (a finite list of elements) 
available for concurrent access into which producers post their tuples and 
from which consumers read those it wants. One benefit of using tuple 
spaces in a distributed system is the decoupling in time and space of tuple 
space communication, which enables interactions where applications can 
be added/removed independently.  

• Caching provides the ability to aggregate and analyse data closer to the 
source (rather than relying solely on analysis in a data centre or Cloud 
service). It is becoming important in scenarios such as the development of 
fog and edge computing. The use of caches in a WSN seems an obvious 
approach to reduce the response time, use of bandwidth and to extend 
node battery life by reducing the number of hops to retrieve data. The 
overhead involved in caching and the limited node memory to hold cached 
data must, however, be considered. 

• Peer to Peer (P2P) systems are mainly used for file sharing where their 
use is driven by advances in hard-disk capacity and bandwidth availability, 
P2P also has the potential to provide benefits in a general distributed 
system, such as decentralised control, support for nodes joining/leaving a 
group, robustness and scalability.  

• Distributed Hash Tables (DHT) are used in a number of peer to peer 
systems to provide efficient routing, without centralized control, to nodes 
that send, receive, retrieve and forward information over a network, e.g. 
BitTorrent [12] and its use of Kademlia [13]. Indeed, DHTs “appear to 
provide a general-purpose interface for location-independent naming upon 
which a variety of applications can be built. Furthermore, distributed 
applications that make use of such an infrastructure inherit robustness, 
ease of operation, and scaling properties” [14]. 



1.5 Research Contributions 7 

 

7 

A key part of the methodology adopted was to ensure that all the elements 
included in the holistic architecture could be implemented on constrained devices 
in a WSN, as well as on more powerful computing systems. 

1.5 Research Contributions 

A novel feature of this work is provided by its holistic architectural approach, 
where the same abstractions with a simple Peer to Peer (P2P) protocol are 
demonstrated running on constrained devices and more powerful servers. This 
holistic approach provides for the varied roles these entities may play in the flow 
of data from sensor to application, ranging from a simple source of a sensor 
reading to a Big Data store for that data. As such, the key contributions of this 
work are:  

. development of a set of architectural abstractions to provide application 
layer interoperability, based on requirements derived from analysing 
WSNs and applications. 

. a simple tuple space based datastore and API for both local and remote 
data that is able to hold data from information models such as the well-
known OMA LWM2M and the Common Information Model (CIM).  

. a novel, simple cache algorithm supporting leases, designed for 
constrained devices that provides a good cache hit ratio compared to the 
Least Recently Used (LRU) algorithm. 

. a Peer to Peer (P2P) application layer protocol termed HPP (Holistic Peer 
to Peer) supporting this architecture. 

. a novel use of a DHT in building an overlay network between peer nodes 
and in supporting data objects from remote devices. 

All of these elements are designed for implementation on a resource constrained 
node and to be extensible to server environments. This work also presents a 
prototype implementation of the core architecture, cache algorithm, data store and 
P2P protocol. The intention of this work is to provide the basis for a new P2P 
holistic approach designed to allow Wireless Sensor Networks to operate in a self-
organising ad hoc manner to deliver the promise of IoT, in contrast to the more 
common client-server and gateway approaches. 



8 IoT and Wireless Sensor Networks 

 

8 

1.6 Publications 

• D. Tracey, C. Sreenan, “A Holistic Architecture for the Internet of Things, 
Sensing Services and Big Data”, Proceedings of the 13th IEEE/ACM 
International Symposium on Cluster, Cloud and Grid Computing, May 
2013 
This paper presents an initial set of architectural requirements, a resulting 
layered architecture and abstractions for the data exchange roles taken by 
services on WSN nodes and in the Cloud. This forms the basis of the 
architectures considered in Chapter 3 and the architectural approach 
proposed in Chapters 4 and 5. It also outlines the initial proposal for the 
Holistic Peer to Peer (HPP) protocol described in its fully developed form 
in Chapters 5 and 6. It also presents an overview of an initial 
implementation, which is detailed in Chapter 6. 

• D. Tracey, C. Sreenan, “CacheL - A Cache Algorithm using Leases for 
Node Data in the Internet of Things”, Proceedings of the IEEE 4th 
International Conference on Future Internet of Things and Cloud 
(FiCloud-2016), August 2016 (Awarded best paper at the conference) 
This paper presents the contribution of the novel CacheL Algorithm 
suitable for constrained WSN nodes. This algorithm uses a cache 
replacement process inspired by the Clock algorithms for paging with the 
addition of lease management as part of the replacement process. Making 
lease management part of the cache replacement process removes the need 
for a separate periodic process to manage leases. This follows from the 
analysis of the role of caching in Chapter 4. The algorithm from the paper 
is described in detail in Chapter 5 and is evaluated in Chapter 6. 

• D. Tracey, C. Sreenan, “OMA LWM2M in a Holistic Architecture for the 
Internet of Things”, Proceedings of the IEEE 14th International 
Conference on Networking, Sensing and Control (ICNSC-2017), May 
2017 
This paper demonstrates that the holistic architecture and its service-based 
abstractions, presented in Chapter 4, can support rich data models such as 
OMA LWM2M. It presents an integration of the tuple based store in 
Chapter 5 with an existing implementation of the OMA LWM2M model 
on the Contiki3.0 operating system. This demonstrated that the data-



1.7 Thesis Structure 9 

 

9 

centric holistic approach’s set of abstractions were straightforward to 
implement even on a constrained node. This implementation and its 
subsequent development and evaluation are described in Chapters 5 and 6. 

• D. Tracey, C. Sreenan, “How to see through the Fog? Using Peer to Peer 
(P2P) for the Internet of Things”, Proceedings of the Globe-IoT 2019: 
‘Towards Global Interoperability among IoT Systems’ jointly held with 
the IEEE 5th World Forum on Internet of Things, April 2019 
This paper proposes that meeting the challenges presented by IoT requires 
an architecture and a set of consistent abstractions for all components in 
the entire flow of data in IoT. In particular, it proposes that the fog 
computing architectures described in Chapter 3 must consider constrained 
devices as part of that flow. It also proposes that a P2P overlay network 
can be used to achieve scalability and high availability, especially at the 
edges of the Internet. It also considers which architectural approaches may 
be suitable for IoT and how they relate to fog computing. This is described 
in Chapters 3 and 4, which emphasise the lessons to be learned from the 
RESTFul architectural style and BitTorrent. 

• D. Tracey, C. Sreenan, “Using a DHT in a Peer to Peer Architecture for 
the Internet of Things”, Proceedings of the IEEE 5th World Forum on 
Internet of Things (WF-IoT), April 2019 
This paper presents the detail of a Holistic Peer-to-Peer (HPP) application 
layer protocol and its support for the data-centric approach in the holistic 
architecture, presented in Chapter 4. In particular, it considers the 
contribution of an application overlay using a Distributed Hash Table 
DHT, based on Kademlia described in Chapter 3. This overlay can span 
the WSN and services over the Internet, as well as being suitable for fog 
computing. The implementation using a DHT is detailed in Chapter 5 with 
an evaluation of results in Chapter 6. 

1.7 Thesis Structure 

This chapter has introduced the problem area being addressed and provided 
background information on Wireless Sensor Networks and IoT, including the 
potential impact, application areas and the challenges to be addressed. It has also 
introduced the motivation, approach taken and the technologies investigated in 



10 IoT and Wireless Sensor Networks 

 

10 

this work. The contributions of this work have also been described. The rest of the 
dissertation is structured as follows: 

Chapter 2 provides further background information and related work on IoT, 
Wireless Sensor Networks and Wireless Sensor Devices, including their 
information models 

Chapter 3 provides background information and related work on distributed 
computing concepts that may be appropriate for use in IoT, including Big Data, 
tuple spaces, cloud and fog computing, peer-to-peer (P2P) systems and cache 
algorithms. It outlines related work in WSNs for these distributed computing 
concepts, particularly tuple spaces, P2P and cache algorithms.  

Chapter 4 describes the design of the holistic architecture and its components, 
particularly the data model service layer, the local instrumentation layer, the 
object space layer, the CacheL algorithm and the Holistic Peer to Peer (HPP) 
Protocol itself. 

Chapter 5 describes the methodology of the implementation of the holistic 
architecture components on Linux and Contiki, particularly the data model service 
layer, including its integration with the existing CoAP code on Contiki, the local 
instrumentation layer and the object space layer and library. It also presents the 
implementation of the CacheL algorithm and a HBase integration as an example 
of its integration with the Big Data solutions. 

Chapter 6 presents the results of experiments showing the effectiveness of the 
abstractions in modelling CIM and OMA LWM2M objects, the relative simplicity 
and size of the code and the scalability and robustness of HPP. It also presents 
results related to the use of a Kademlia based DHT with HPP. This chapter also 
presents results from tests on the performance of the CacheL algorithm compared 
to LRU.  

Chapter 7 concludes the dissertation with a summary of the work and describes 
the potential for future related work.  

 



 

2 IoT and Wireless Sensor Networks 

2.1 Introduction 

There are myriad definitions of IoT, including definitions from standardisation or 
industry bodies such as ETSI, OneM2M, ITU, IETF, NIST, OASIS and W3C 
[15]. Perhaps the broadest definition that indicates the scope envisaged for IoT 
comes from the ITU-T in Recommendation ITU-T Y.2060 “a global infrastructure 
for the information society, enabling advanced services by interconnecting 
(physical and virtual) things based on existing and evolving interoperable 
information and communication technologies” [1]. Such definitions of IoT 
generally share the idea that IoT relates to the integration of the physical world 
with the virtual world of the Internet [16]. As such, IoT is characterised by an 
interconnected set of individually addressed and constrained devices in a 
distributed system, with sensing for physical phenomena and/or actuation 
capabilities. The growth in IoT is expected to result in tens of billions of 
connected devices [9] and consuming/controlling services that must be 
programmed and managed.  

IoT’s use of the Internet allows the services using sensor data to be located across 
the Internet from the sensing device or WSN. This allows the use of Cloud 
services and Big Data approaches to provide the required scalability to store and 
analyse this data, supported by IoT services offered by Cloud providers. The 
volume of sensor data and network effects such as latency and bandwidth limits 
have, however, also resulted in the emergence of fog and edge computing to 
support some processing of the data closer to the device in order to reduce these 
effects and still retain the flexibility and scale of Cloud services for historical 
analysis or analysis across multiple WSNs. 

This chapter contains an overview of the constituent elements of IoT including 
wireless sensor devices, wireless protocols and WSNs, the characteristics of 



 IoT and Wireless Sensor Networks 

 

12 

applications and information models in WSNs. It also presents overviews of the 
Web of Things and wireless technologies to illustrate the role of constrained 
devices and WSNs in the wider scope of IoT. Later chapters will provide an 
overview of distributed computing concepts such as Big Data, tuple spaces, Cloud 
and fog computing for sensor data and services. Those later chapters will also 
consider these in the context of IoT and particularly the WSN aspects, such as the 
constraints and opportunities that arise. For example. the wireless capability 
allows the sensor nodes to be deployed close to the phenomenon being observed, 
but their limited processing capability may limit their ability to interoperate with 
other nodes and their role in fog computing. 

2.2 Wireless Sensor Networks 

The increasing availability of sensors together with advances in wireless 
technologies and particularly cheaper processing power has allowed the 
emergence of Wireless Sensor Networks (WSNs). WSNs are based on using low-
power radio chipsets to cover areas of interest with relatively inexpensive nodes. 
Combining WSNs with the use of IP has allowed nodes to form an “Internet of 
Things” (IoT), which is effectively a distributed system of devices and 
applications comprising sensing, computation and actuation. The role of sensing 
and WSNs in IoT can be seen in the following IEEE definition of IoT as “A 
network of items - each embedded with sensors which are connected to the 
Internet” [15]. WSNs have been deployed in a variety of application scenarios, 
such as environmental monitoring, surveillance and healthcare.  

WSNs consist of nodes that sense a particular entity, collect (and possibly parse or 
aggregate) the data and send the data over a wireless link to one or more 
destinations and ultimately to an application, with particular requirements on QoS 
such as latency, jitter, bandwidth. This involves a number of interactions 
including: 

• the sensing of the data 
• the delivery of data to the application 
• the sensor hardware interface to the radio or wireless layer on the node 
• the Media Access Control (MAC) layer to provide access to the shared 

wireless resource 



2.3 Wireless Sensor Devices  

 

13 

• the Network layer routing of the data across the WSN to the application, 
possibly using a gateway device from the WSN to an IP endpoint where 
the application resides. 

The wireless capability allows the sensor nodes to be deployed close to the 
phenomenon being observed and their limited processing capability results in 
relatively low-cost devices so allowing a larger number of such sensors to be 
used. WSN deployments are, however, often dedicated and proprietary or 
specialised to optimise one particular aspect such as lifetime. WSNs are 
characterised by having a (possibly large) number of devices with sensing 
capabilities, limited processing capability and wireless connectivity to other 
nodes, such as another sensor node or a higher function gateway node.  

It is important to point out, however, that a number of possible drawbacks to the 
use of wireless networks must be considered in a given scenario. For example, 
throughput. packet error rate, jitter and latency may experience significant 
fluctuations due to radio coverage, traffic load and interference. Also, there is a 
straightforward reduction in performance compared to a wired link, e.g. a short-
range link carried by IEEE 802.15.4 technology will support only 250 kb/s. With 
this particular technology, only low to moderate amounts of data can reasonably 
be sent to a handheld or other portable device. 

2.3 Wireless Sensor Devices 

A wireless sensor device exists to sense one or more physical phenomenon, e.g. 
light, humidity, strain, voltage or temperature. It may also collect (and possibly 
parse or aggregate) the sensor data and send the data to one or more destinations 
and ultimately to an application. The device is also aware of the capabilities of the 
sensor in terms of the frequency at which it can sense, any delays or latencies in 
the sensing and the hysteresis required when interpreting readings. It is also aware 
whether thresholds (upper or lower) can be set as boundaries for it to report on. 
Rather than being a purely sensing device, it may also be an actuator, which 
determines whether an application purely requests data from the device or also has 
some control over device actuation. The device will also be aware of how often it 
can send data (not necessarily at the same as the frequency at which the sink 
application wants it).  



 IoT and Wireless Sensor Networks 

 

14 

The challenges in designing a wireless sensor device are to “develop low power 
communication with low cost on-node processing and self-organising 
connectivity/protocols” and “another critical challenge is the need for extended 
temporal operation of the sensing node despite a (typically) limited power supply 
(and/or battery life)” [17]. 

There are a number of relatively low-cost hardware platforms that are used in 
Wireless Sensor Networks. These usually contain a micro-controller, such as one 
of the MSP ultra, low-power 430 family or an ARM Cortex-M3 processor, an RF 
chip, such as the Chipcon 2420, 2500 or 2650 and possibly some on-board 
sensors. These simple nodes often use low level operating systems like TinyOS 
[18] or Contiki [19] or TI's Simpliciti RF protocol stack [20]. In terms of their 
interface, sensor devices generally need support for the following operations: 

• set their configuration (such as the thresholds at which to send alerts),  
• get their data from local sensors and respond to get requests for it  
• send alerts based on sensor events  
• execute actions, e.g. in an actuator device or to reset sensor configuration 

An interesting discussion and definition of classes of these devices is provided in 
[21], where the class indicates a device’s capabilities, as below: 

• Class 0 has much less than 10 KiB of RAM for data and less than 100 KiB 
of Flash/ROM for code. Such devices are so constrained in memory and 
processing capabilities that while they may be able to communicate 
directly to the Internet, it will probably not be done securely and will 
require a more powerful gateway/proxy to support secure connectivity to 
the Internet. Examples include the original Tmote Sky [22] in Figure 2 and 
the TI SensorTag family of motes. The Tmote Sky only had 48KiB of 
ROM and 10KiB of RAM, allowing it to run a micro IP stack and CoAP, 
but not to support the cryptography code for security. 

 



2.3 Wireless Sensor Devices  

 

15 

 

Figure 2 Tmote Sky Device [22] 

• Class 1 has approximately 10 KiB of RAM for data and 100 KiB of 
Flash/ROM for code. They are able to use a protocol stack specifically 
designed for constrained nodes to limit memory use and power 
consumption, such as uIP on Contiki with the Constrained Application 
Protocol (CoAP) over UDP as an upper layer. As such they may not need 
a separate gateway. The Zolertia Z1 device [23] shown in Figure 3 is a 
typical node with a 16-bit RISC MSP430F2617 low power microcontroller 
with a 16MHz clock speed, 8KB RAM and a 92KB Flash memory using 
the CC2420 transceiver and is IEEE 802.15.4 compliant. It also comes 
with a built-in programmable accelerometer and a digital temperature 
sensor with ports for external sensors. 

 

Figure 3 Zolerta Z1 Device [23] 

• Class 2 has approximately 50 KiB of RAM for data and 250 KiB of Flash 
for code. Such devices are able to run, within limits (such as connections, 
routes), the same protocol stacks as general purpose servers, but the use of 
the stacks designed for more constrained devices would leave more 
resources such as memory for application code and data. 



 IoT and Wireless Sensor Networks 

 

16 

There are constrained devices with capabilities beyond those of Class 2, but still 
the environmental constraints such as power consumption and form factor must be 
considered. For example, SunSPOT [24] was a more powerful hardware platform 
able to run Java and while it reduced the difficulty associated with programming 
embedded network devices, it had limited lifetime and did not achieve sufficient 
use for continued development. Another example is the Raspberry Pi [25], which 
does provide a useful test and development environment as it is relatively low-
cost and able to run Raspbian, which is a Debian-based Linux distribution. The Pi 
2 Model B offers a 900MHz quad-core ARM Cortex-A7 CPU with 1GB RAM 
with USB, HDMI and GPIO ports (useful for attaching sensors). This processing 
capability allows the use of high level languages such as Python and applications 
such as the Mosquitto MQTT broker can be run on a Pi. Indeed, the newer Pi 3 
Model B+ and Pi Zero W include Bluetooth Low Energy capability. 

The types of sensor device found in a LoRa network could be considered as a 
class of device less capable than Class 0, as it is generally running a very simple 
application above a custom MAC layer to connect to a gateway device. LoRa is a 
spread spectrum modulation technique, which provides a long range and low 
power wireless network usually run by specific operators. One company 
(Semtech) provides the radio chips featuring LoRa Technology and a separate 
LoRa Alliance drives the standardisation of the LoRaWAN protocol [26]. This 
thesis is concerned with providing a holistic architecture for a seamless set of IoT 
services and so support for a proprietary model such as this would be provided by 
a custom component to integrate into the holistic architecture. 

2.4 Wireless Sensor Network Stack 

A wireless sensor network will use a communication stack consisting of a number 
of layers, with an example IP stack, including CoAP, shown in Figure 4. This 
section outlines some of the options for WSNs, particularly the wireless layers. 



2.4 Wireless Sensor Network Stack  

 

17 

 

Figure 4 Network Stack including RPL  

2.4.1 Wireless Interface Layers 

Many WSN nodes use either IEEE802.15.4 or Bluetooth Low Energy for their 
Wireless interface. IEEE 802.15 wireless personal area technologies are designed 
for short-range, targeted applications, operating on unlicensed bands at lower 
power levels than the 802.11 standards. Bluetooth [27] (conforming to IEEE 
802.15.1) operates at power levels from 1mW to 100mW and data rates of 1Mbps 
to 3Mbps using an Adaptive Frequency Hopping approach. Bluetooth Low 
Energy is designed for very low power operation, using a frequency-hopping 
spread spectrum approach supporting data rates from 125 Kbps to 2 Mbps. 

Zigbee [28] evolved from IEEE Standard 802.15.4-2006 and is designed for low 
data-rate, low-power applications like sensor readings and interactive devices. 
Ultra-Wideband (UWB) [29] is a wireless technology proposed for several Body 
Area Network (BAN) and WSN scenarios, offering the ability to provide location 
information accurate to between 10 and 20cm. Narrowband IoT (NB-IoT) is a 
Low Power Wide Area Network (LPWAN) radio technology standard developed 
by 3GPP [30]. NB-IoT uses a subset of the LTE standard and is designed for 
indoor coverage, low cost, long battery life, and high connection density. 

The evolution of 5G networks is increasingly becoming a driving force for IoT 
adoption and the design of platforms to utilise its emergence. 5G is expected to 



 IoT and Wireless Sensor Networks 

 

18 

have extended coverage, lower latency, higher throughput and bandwidth (of the 
order of Gbps in specific scenarios) and allow the deployment of tens of billions 
of devices (and sensors) over the Internet with improvements in the quality of 
service perceived by users [31].  

Each of these wireless technologies has particular characteristics that determine 
their suitability for a given scenario. For example, Bluetooth would be suitable for 
a small-scale network requiring high data throughput and where connectivity to a 
standard mobile phone is desired. Zigbee might be chosen where lower data 
throughput is acceptable (up to 250Kbps) and lower power consumption is 
required. UWB would be chosen if its accuracy in determining location was 
required for an application. In particular, if a WSN is installed in a remote 
location, it must rely on battery power or energy harvesting such as solar to run 
for extended periods of months or years, making it necessary to use low-power 
radio chipsets and processors and implement power efficient Media Access 
Control schemes, where the device sleeps as long as possible. 

A Body Area Network (BAN) is a short-range wireless network for consumer and 
healthcare applications. IEEE 802.15.6 defined MAC and physical layer standards 
for BANs and had an emphasis on ultra-low power consumption to extend the 
node's lifetime. It also addressed the issues caused by the challenging radio 
environment of the body area, aiming to provide a range of QoS support for a 
variety of applications and meeting form factor requirements for the wireless 
devices in wearable applications. 

The open nature of the radio environment leads to the possibility of eavesdropping 
by malicious users and will require appropriate security algorithms to ensure data 
privacy, data integrity and protection against denial of service attacks. This need 
for security needs to be accommodated as a basic part of the communication 
protocols at the physical and data link layers, but also at the higher layers to 
determine if devices should interwork or collaborate at all. Four basic security 
requirements can be stated as Confidentiality (guarantee the contents of the 
message are disclosed only to authorized individuals/endpoints), Authorization 
(guarantee the sender is authorized to send a message), Data integrity (guarantee 
the message was not modified in transit, by accidental or deliberate means), 



2.4 Wireless Sensor Network Stack  

 

19 

Refutability (guarantee the message was sent by a properly identified sender and 
is not a replay of an earlier message). 

2.4.2 Network and Routing Layers  

WSNs are limited by the short radio range between nodes and hence they are 
often deployed in a structured manner using star or clustered topologies with 
appropriate routing strategies. In such cases, nodes are arranged around a 
coordinator a single hop away (as in Zigbee) with those co-ordinators connected 
among themselves or the nodes use multi-hop routes with each node routing 
requests/responses. Alternatively, some WSNs are deployed in an ad-hoc manner 
with sensors scattered over an area of interest such as a battlefield area. These 
deployed sensors then self-organise to form a network establishing hierarchies, 
clusters, routing strategies, radio channels and would be expected to work for a 
period of time without human intervention, probably until the battery powering 
the sensor device is exhausted [32].  

Whether deployed in a structured or ad-hoc manner, the wireless interface is 
responsible for providing: 

• discovery of wireless devices in the surrounding environment. 
• establishment of appropriate (e.g. sufficiently reliable) communication 

links with all or a subset of sensors in the network. 

Other layers in the communication stack must then provide (possibly in a way 
specific to a given wireless interface) 

• routing as required to forward information to/from the sensors. 
• establishing connection(s) to external network(s), if a node is a gateway. 

User applications usually communicate to a sensor network via a dedicated node 
or nodes that handle user requests for information and forward the responses to 
them. This sink node may act as a gateway to another network, such as a mobile 
network and is generally more powerful, in terms of processing and memory, than 
the sensor nodes themselves. Furthermore, such a gateway node may be mains 
rather than battery powered or be able to be recharged easily, so lessening the 
electrical power constraints that the battery powered sensor nodes operate under. 



 IoT and Wireless Sensor Networks 

 

20 

A smartphone is a suitable platform in terms of processing and network 
connectivity for such a sink, particularly in consumer applications. This 
centralised node has full knowledge/control of its network and responsibility for 
establishing and maintaining the network to the sensor nodes, including MAC 
level functionality. This sink node also provides the WSN with an interface to the 
external mobile network, including appropriate security support such as access 
control. The sink is, however, a potential single point of failure as may happen 
when it is out of range of the sensing node(s). Other scenarios, such as high-
performance links from a static WSN to the Internet or some medical applications 
would require a dedicated gateway to an external wireless network. 

The use of IP in constrained devices provides scalability and simplifies the 
development and deployment of both applications and networks by the use of 
existing protocols and tools. Contiki provides the open-source uIP stack which 
requires less than 5KB of code space and a few hundred bytes of RAM. The use 
of IP is complemented by initiatives such as the IP Smart Objects (IPSO) Alliance 
which uses IPv6 LoWPAN to introduce an adaptation layer to enable efficient (i.e. 
less power consuming) IPv6 communication over IEEE 802.15.4 LoWPAN links 
[33]. The IETF Routing Over Low power and Lossy network (ROLL) working 
group also defines routing solutions for Low power and Lossy Networks (LLNs), 
specifically stating that “LLNs are transitioning to an end-to-end IP-based 
solution to avoid the problem of non-interoperable networks interconnected by 
protocol translation gateways and proxies” [34]. In particular, the IETF has 
defined RPL as the IPv6 routing protocol for low power and lossy networks. 

2.4.3 Wireless Sensor Network Routing 

WSNs may be broadly classified as  

• static with sensor nodes that are not mobile and/or join/leave infrequently, 
e.g. smart grid systems. 

• dynamic in nature where nodes are mobile and/or join/leave frequently, 
providing information in possibly different contexts, locations and as 
members of different WSNs that may collaborate. 

Routing can be categorised similarly into static, dynamic or hybrid: 



2.4 Wireless Sensor Network Stack  

 

21 

• static routing uses fixed paths to route packets to their desired destination, 
regardless of the state of the network. IP networks select the destination on 
a hop-by-hop basis using a statically-constructed routing table, e.g. using 
utilities such as iptables, to forward the packet, rather than computing the 
entire path in advance. For end user devices this usually consists of simply 
forwarding packets to the gateway of that particular network as determined 
by its IP address. The main advantage of static routing is its simplicity. As 
such, it is appropriate for small networks or for larger networks with 
defined hierarchies and subnets (each with assigned address ranges and 
delegated authority for address assignment). Maintenance of these routing 
tables becomes difficult as the (sub)networks get larger or more dynamic 
particularly in terms of interconnection with other networks. 

• dynamic routing reacts to changes in the status of the network and 
removes/reduces the role of the system administrator in route maintenance 
by using routing protocols to exchange routing information. Each router 
sends the destinations it can reach to its neighbours, which can then update 
their own routing tables accordingly. In this way, dynamic routing should 
make larger networks easier to configure and maintain, but also more 
adaptable to topological changes such as when nodes/links fail or 
configuration changes occur. These changes are more likely to occur in 
wireless networks where nodes are mobile and/or where there are possibly 
frequent changes in the network topology. The improved scaling 
properties of dynamic routing are, however, offset by the increased 
implementation complexity and the increased (routing) traffic as each 
node in the network routes data packets to/for other nodes. In the context 
of WSNs, the increased complexity of dynamic routing makes demands on 
the node hardware (and software) and the routing traffic must be 
minimised to reduce power consumption. 

• hybrid routing uses both static and dynamic routing schemes in different 
parts of the network, e.g. static routing in the access network where the 
topology changes are more limited and dynamic routing in the core 
network, allowing the use of cheaper/simpler devices in the access 
network and reducing the routing traffic overhead as network capacity is 
more likely to be limited there than in the core network (and this is 
especially true if the access network is wireless). 



 IoT and Wireless Sensor Networks 

 

22 

A Wireless Sensor Network specific categorisation of routing is as follows [17]: 

• Data-centric – this is based on combining the data from multiple, different 
sources en-route to the eventual destination and contrasts with the normal 
address-centric approach of sending data between pairs of endpoints. 
WSNs using data centric approaches may not have unique identifiers for 
each node, making direct queries problematic and requiring a data centric, 
aggregated approach, e.g. directed diffusion. 

• Hierarchical - this overcomes the issues of a single centralised gateway by 
using layers of clusters, with a cluster head for each and using multi-hop 
communication within a cluster and possibly aggregating at the cluster 
head. Examples include Low Energy Adaptive Clustering Hierarchy 
(LEACH) [35] and Power Efficient Gathering in Sensor Information 
Systems (PEGASIS) [36]. 

• Location-based – location information (such as from GPS) is used to 
calculate the distance between two nodes and so determine/estimate the 
energy consumption in routing. Greedy Perimeter Stateless Routing 
(GPSR) [37] is based on forwarding packets based on location to nodes 
that get the packets closer to the eventual destination. It is greedy as the 
node always forwards to the node (within its radio range) that is closest to 
the destination. Geographic Hash Tables (GHTs) [38] allow data queries 
to be sent to the node storing the named data, but can potentially hash 
outside the geographic boundaries.  

• QoS-oriented – these consider the end-to-end delay requirements in setting 
up paths in the sensor network. Examples include Stateless Protocol for 
End-End Delay (SPEED) [39]. 

RPL is the IPv6 Routing Protocol for Low Power and Lossy Networks. The 
design of RPL used defined routing requirements from the application areas of 
home automation [40], building automation [41], urban networks [42] and 
industrial networks [43]. Even in the home scenario, the heterogeneity and 
number of devices is noteworthy with devices ranging from resource constrained 
smoke alarms to home health monitoring devices for blood pressure to video 
capture devices and from tens of devices to hundreds in an industrial setting to 
tens of thousands in an urban setting. This resulted in RPL supporting multipoint-
to-point, point-to-multipoint and point-to-point, where multipoint-to-point is for 



2.4 Wireless Sensor Network Stack  

 

23 

the typical monitoring use case of reporting sensor readings to a central point. 
Point-to-multipoint is more used for sending control commands for actuators or 
for processing queries. Point-to-Point is more used where devices can share local 
information and react accordingly, e.g. nearby machines in a closed loop control 
system [43]. The scenarios driving these requirements showed devices being 
mostly fixed, with limited mobility as in mobile workers or moving vehicles [43], 
but the requirement was that the moving device re-established communications 
with a static device.  

RPL is a proactive distance vector protocol, which builds Destination Oriented 
Directed Acyclic Graphs (DODAGs) rooted towards one sink node or Local 
Border Router (LBR), which has a unique identifier. Each node is given a rank to 
determine its relative position and distance to the LBR (higher rank for nodes 
further away) in the DODAG. The DODAGs are optimized using an Objective 
Function using metrics such as hop count, latency, expected transmission count 
and energy used. RPL uses the Trickle algorithm [44] to maintain consistency 
between neighbours due to topology changes while also reducing the transmits to 
achieve this. A network may have several independent RPL instances and an RPL 
node may belong to more than one RPL instance and also act as a router. 

A specific recognition of the constrained resources in WSN nodes in RPL is the 
provision of storing and non-storing modes of operation, where storing mode 
means a node keeps a routing table. In non-storing mode only the root node holds 
a routing table, meaning that for nodes to communicate the packet has to go via 
the root, whereas it can go via a common node higher in the graph for storing 
mode. It is important to note that RPL does not currently allow both modes to 
operate in the same network. 

Although the acknowledged de-facto routing standard, an article in 2016 
considered RPL in the light of experience from implementations and emerging 
IoT application requirements [45]. For example, it cites the need for work being 
carried out on “Reactive Discovery of Point-to-Point Routes in Low-Power and 
Lossy Networks (P2P-RPL)” in RFC 6697, due to the overheads, latency and 
congestion by having point to point communications routed via a node higher in 
the graph. It also highlights the limits of mobile devices having to re-establish 
communication with a static device resulting in obsolete routing information and 



 IoT and Wireless Sensor Networks 

 

24 

packet loss. It also points out that the use of IPv6 addresses (and compression in 
6LoWPAN) combined with not being able to run both storing and non-storing 
modes restricts its use in very limited nodes, e.g. the routing table was limited to 
50 entries on a TMote Sky with 10KB of RAM and the code size of RPL is almost 
double that of AODV. Furthermore, this limited scalability due to having to store 
routes (particularly for nodes close to the root node) and maintain links in a 
changing radio environment (due to static Trickle thresholds) adversely affects the 
reliability of the downward paths and point to point communications as the 
number of nodes increases and the table is held to a set size (e.g. 50). This is 
particularly important as [45] points out that point-to-multipoint and point-point 
communications in scenarios involving mobile devices are the emerging use cases 
as IoT applications develop. Based on this, this article suggests that a single 
routing standard is unlikely to be able to handle such a range of device 
heterogeneity and application requirements, meaning that RPL should become a 
framework able to include specific applications and device requirements in an 
interoperable manner. 

2.4.4 Wireless Sensor Network Application Layer Protocols 

2.4.4.1 Constrained Application Protocol (CoAP) 

The micro IP stacks developed for constrained WSN nodes combined with IPv6 
over low power wireless (6LowPAN) [46] have enabled the development of 
application level protocols such as the Constrained Application Protocol (CoAP). 
CoAP has been developed by the Internet Engineering Task Force (IETF) and is 
targeted at the IoT area [5]. It is a standard for a specialised web transfer protocol 
for constrained nodes and constrained (e.g. low-power, lossy) networks. It is built 
on top of UDP and uses a small, simple header of less than 10 bytes, including a 
16 bit message identifier. It also uses a UDP binding with reliability, using ACKs, 
and multicast support, although recent work has extended it to TCP, TLS and 
WebSockets in RFC8323 [47]. It uses web concepts such as URI’s and media 
formats for easy integration of such constrained environments into HTTP. It 
addresses issues such as the overhead of HTTP headers and TCP performance 
over lossy links and the handling of sensor node duty cycles. It uses the REST 
architectural style [48], where resources (such as sensors) are represented in a 
number of formats using a subset of the IANA Internet media types and accessed 



2.4 Wireless Sensor Network Stack  

 

25 

by their Universal Resource Identifier (URI) using its own schema, coap://. It has 
a limited set of verbs, such as GET, POST, PUT, DELETE in HTTP, as it is 
designed to be easy to proxy to/from HTTP. Unlike HTTP, CoAP is a binary 
format. The RESTFul based style facilitates application development and 
scalability as a result of its decoupled nature. 

CoAP also provides Resource discovery via the Resource Directory (RD) and 
specific message types such as Confirmable (CON) to provide reliability. The use 
of an “observe” flag in the CoAP GET Request provides observe/notify on a 
given resource, effectively offering a Publish/Subscribe model. 

CoAP has been implemented on Contiki [49] and this implementation is also used 
as the basis for the implementation work on Contiki presented in later sections. 
An example IP and RESTFul approach with CoAP is an end-to-end IP based 
architecture for greenhouse monitoring by integrating CoAP over a 6LowPAN 
WSN using Contiki [50].  

2.4.4.2 Message Queue Telemetry Transport (MQTT) 

The Message Queuing Telemetry Transport (MQTT) [51] is a Machine to 
Machine (M2M) asynchronous protocol that is an alternative to Web-like 
protocols. It is an open standard from the OASIS consortium. It was designed to 
be bandwidth-efficient and use little battery power. It uses binary messages to 
exchange information with low overhead, but unlike the original CoAP it uses 
TCP, or other network protocols that provide ordered, lossless, bi-directional 
connections, for transmission. It is designed to be easy to implement and requires 
a small code footprint, e.g. being able to run on a controller with 256KB of RAM. 

It is based on a publish/subscribe approach that allows messages from devices to 
be sent (published) to interested (subscribed) services in contrast to the HTTP 
request/response paradigm. MQTT uses a central broker, where messages are 
published to a broker on a topic and the broker filters messages based on topic and 
distributes messages to subscribers for that topic. There is no direct TCP 
connection between a publisher and subscriber. Publish and subscribe packets 
contain a PacketId that is unique between client and broker. It also provides three 
qualities of service for message delivery; "At most once", "At least once" and 
"Exactly once”. 



 IoT and Wireless Sensor Networks 

 

26 

Use of the publish/subscribe message pattern provides one-to-many message 
distribution and a degree of decoupling of applications from the sources/sinks of 
data, although its simplicity and lack of prescription means it relies on 
publishers/subscribers to agree on topics (including uniqueness). MQTT clients 
must be configured with a dedicated broker service and this tight coupling limits 
extensibility and limits its adaptability to an evolving environment [10]. MQTT is 
used in occasional dial-up connections with healthcare providers and in a range of 
home automation and small device scenarios [51]. It is also used as part of 
Amazon’s IoT Services. 

2.5 Wireless Sensor Network Information Models 

An important aspect to be considered in a WSN is how to store and represent the 
variety of data on often constrained devices so that application software can 
understand data from sensors and actuators in the way people using browsers 
understand information on the Web [52]. This section considers information 
models that have been used for sensors. 

2.5.1 IPSO and OMA LWM2M 

IP for Smart Objects (IPSO) is an alliance of interested parties. It promotes and 
documents the use of IP-based technologies, defined by standard organizations 
such as IETF, for smart objects (such as sensors for light, pressure, temperature, 
vibration, actuators and other similar objects) and to support a range of 
interoperation use cases [6]. IPSO objects can be used to encapsulate sensor data, 
links and metadata and be accessed using a URI. IPSO objects do not require the 
use of CoAP and the Open Mobile Alliance Lightweight Specification (OMA 
LWM2M) [53] is used to develop interoperable solutions. The current IPSO 
Smart Object definitions are mostly for sensors/actuators rather than the broader 
range of smart objects envisaged in [54], where smart objects can act on their own 
and exchange information with humans, with an agent based middleware layer 
supported by Cloud services to create sets of cooperative smart objects. 

OMA Lightweight Machine to Machine (LWM2M) uses a RESTFul approach 
with CoAP. In an IoT context it swaps “server” and “client” roles so that a node 
runs at least a CoAP Server and a LWM2M Client, rather than being simply a 



2.5 Wireless Sensor Network Information Models  

 

27 

client. This requirement to act as a server may be limiting in some circumstances, 
e.g. where a security policy only allows outgoing connections. 

LWM2M provides a simple and reusable object model with a set of interfaces for 
managing constrained devices, which includes Bootstrap, Registration, 
Information Reporting, Device Management and Service Enablement. IPSO 
Smart Objects are extensible objects based on the LWM2M data model, which 
includes objects for a range of entities, including basic sensors and actuators. 
These basic objects are represented using a simple common data model and 
resource template. The model consists of Object Instances, Resources (instances) 
with reusable resource and object identifiers combined into a URI to identify a 
resource, e.g. the URI 3303/0/5700 represents a “Sensor Value” (resource 
identifier 5700) in a “Temperature Sensor” (object identifier 3303) instance (id of 
0). More complex objects can be composed to represent items that contain 
multiple resources, e.g. an IPSO Thermostat (8300) may have IPSO temperature 
sensors, (3303), IPSO Setpoint (3308) and IPSO Actuation (3306) [55]. 

 

Figure 5 OMA LWM2M and IPSO  

Figure 5 shows how IPSO Smart Objects, LWM2M, CoAP and 6LOWPAN form 
a protocol stack that can provide end to end interoperability between constrained 
devices and services. 



 IoT and Wireless Sensor Networks 

 

28 

These data models have the potential to give greater application interoperability 
and to ease the difficulties imposed by the heterogeneous nature, limited 
development environments and interfaces of existing solutions if adopted 
sufficiently widely. A general point regarding the use of IP as promoted by IPSO 
is that it not only enables integration with the Internet and IoT, but also with the 
Web of Things (WoT) and the REST architectural style [56]. Furthermore, the use 
of IPv6 makes it possible to provide IP addresses for individual devices. 

2.5.2 Common Information Model (CIM) 

Although not specific to WSNs, the Common Information Model (CIM) [57] is a 
rich information model that does include sensors. It is defined by the Desktop 
Management Taskforce (DMTF) as the management information for systems, 
networks, applications and services. Its schema (version 2.49, released in 2017) 
provides a comprehensive object oriented model for managing the components 
found in computer systems. It defines a CIM_Sensor object with the following 
generic attributes/properties, using qualifiers for these attributes to cater for a 
specific sensor. 

• SensorType – example values are Temperature, Voltage, Current, 
Tachometer, Counter, Switch, Lock, Humidity, Other. 

• OtherSensorTypeDescription - used when the SensorType property is set 
to "Other" 

• PossibleStates - specific to a sensor type, e.g. a NumericSensor supporting 
thresholds can report states such as "Normal", "Upper Fatal", "Lower Non-
Critical". 

• CurrentState - must be one of the PossibleStates 
• PollingInterval 

The CIM_Sensor also inherits from the following higher layer objects: 

• CIM_Logical_Device - for identifying and descriptive information and 
information related to how long it has been powered on 

• CIM_EnabledLogicalElement – for information related to state changes 
• CIM_ManagedSystemElement - for current status information, such as 

"OperationalStatus " 
• CIM_ManagedElement - for instance identifier and name 



2.5 Wireless Sensor Network Information Models  

 

29 

A CIM_Sensor also inherits a number of methods from its superclasses, such as 
Reset, SaveProperties, RestoreProperties RequestStateChange. The subclass 
CIM_NumericSensor (returns numeric readings and optionally supports 
thresholds settings) was designed to replace a range of specific sensor classes such 
as CIM_CurrentSensor, CIM_TemperatureSensor, CIM_VoltageSensor by setting 
the appropriate SensorType property from CIM_Sensor.  

Data defined using CIM can be accessed in a protocol independent manner using 
CIM-XML, which can operate over protocols such as HTTP. The basic operations 
supported are for Read/Write on properties, classes and instances (e.g. 
GetProperty, SetProperty , GetClass, GetInstance, EnumerateInstances, 
EnumerateClass), Instance Manipulation (e.g. DeleteInstance, CreateInstance), 
Schema Manipulation (e.g DeleteClass), Association traversal (Associators, 
References) and Methods defined in specific classes. 

The use of XML and the string based nature of many of the attributes and of CIM-
XML itself make it too verbose for use in the constrained WSN environment, but 
its definitions align well with the earlier description of sensors in WSNs. Thus, 
the basic functionality required by a management application is the same in a 
WSN as in a more traditional sensor application. Hence, the emphasis should not 
be on redefining the use of sensors or the sensors themselves, but in doing so as 
efficiently as possible given the WSN constraints and in a way which can map 
easily to formats used by the higher level applications. 

2.5.3 SensorML 

Unlike OMA LWM2M and CIM which define the sensor and its attributes 
including the actual readings, SensorML provides models and an XML encoding 
for describing a process, particularly the process of measurement by sensors and 
instructions for deriving higher level information. Processes define their inputs, 
outputs, parameters and method, as well as providing relevant metadata. Header 
information defines the schema and namespaces, an identifier contains a unique 
identifier (a UUID, URN, URL, or simple text) for any service or resource 
associated with this sensor and a sensor description saying “what it measures” and 
"where it is". [58]. It does not encode measurements taken by sensors; 
measurements can be represented in TransducerML. SensorML provides the 
ability to describe a sensor (or other online processing component) and to provide 
a link to the real-time values from it. 



 IoT and Wireless Sensor Networks 

 

30 

2.6 Web of Things (WoT) 

The Web of Things (WoT) architecture is presented in [59] as a W3C candidate 
recommendation. It uses the concept of Web things, which are used by 
consumers. A thing is the abstraction of a physical or virtual entity (e.g. a device) 
and the W3C WoT specifies that its metadata must be described by a standardised 
WoT Thing Description (TD) to provide the external representation of a thing. A 
TD describes an individual thing's functions and interfaces, including information 
models, transport protocol description and security information. The TD is based 
on the JSON representation format and is machine-understandable.  

Consumers must be able to parse and process the TD format. It is designed to 
allow consumers to discover and interpret the capabilities of a thing (through 
semantic annotations) and adapt to different implementations when interacting 
with a thing, providing interoperability across different IoT platforms and 
standards. This recommendation identifies the following building blocks to 
improve the interoperability and usability of IoT: 

• Web of things (WoT) Thing Description [60] 
• Web of things (WoT) Binding Templates [61] 
• Web of things (WoT) Scripting API [62] 
• Web of things (WoT) Security and Privacy Considerations [63] 

This recommendation [59] also describes a set of use cases with common patterns 
and application domains (similar to those described in section 2.7) and a set of 
requirements for WoT implementations. The requirements are broken into 
common principles and a subsequent set of functional requirements. The common 
principles are as follows: 

• “WoT architecture should enable mutual interworking of different eco-
systems using web technology.” 

• “WoT architecture should be based on the web architecture using RESTful 
APIs.” 

• “WoT architecture should allow to use multiple payload formats which are 
commonly used in the web.” 

• “WoT architecture must enable different device architectures and must not 
force a client or server implementation of system components.” 



2.6 Web of Things (WoT)  

 

31 

• “WoT architecture should be able to be mapped to and cover all of the 
variations of physical device configurations for WoT implementations.” 

• “WoT should provide a bridge between existing and developing IoT 
solutions and Web technology based on WoT concepts. The WoT should 
be upwards compatible with existing IoT solutions and current standards.” 

• “WoT must be able to scale for IoT solutions that incorporate thousands to 
millions of devices.” 

• “WoT must provide interoperability across device and cloud 
manufacturers. It must be possible to take a WoT enabled device and 
connect it with a cloud service from different manufacturers out of the 
box” 

The functional requirements provide more granularity in the areas of thing 
functionalities, search and discovery, description mechanism, description of 
attributes, description of functionalities, network, deployment, application and 
legacy adoption. For example, the search and discovery functional requirement 
specifies that  

• “WoT architecture should allow clients to know thing's attributes, 
functionalities and their access points, prior to access to the thing itself.” 

• “WoT architecture should allow clients to search things by its attributes 
and functionalities.” 

• “WoT architecture should allow semantic search of things providing 
required functionalities based on a unified vocabulary, regardless of 
naming of the functionalities.” 

It also specifies that a thing’s functionality requirements are: 

• “WoT architecture should allow things to have functionalities such as 
reading thing's status information” 

• “updating thing's status information which might cause actuation” 
• “subscribing to, receiving and unsubscribing to notifications of changes of 

the thing's status information.” 
• “invoking functions with input and output parameters which would cause 

certain actuation or calculation.” 



 IoT and Wireless Sensor Networks 

 

32 

• “subscribing to, receiving and unsubscribing to event notifications that are 
more general than just reports of state transitions.” 

It is worth pointing out in the context of devices that WoT is very specific in 
stating that “information models defines device attributes, and represent device’s 
internal settings, control functionality and notification functionality. Devices that 
have the same functionality have the same information model regardless of the 
transport protocols used.” 

The architectural approach of WoT uses the concept of interaction affordances to 
make the TD metadata self-descriptive. An affordance is an abstract model of 
consumer interaction with the thing and is not particular to a given network 
protocol or data encoding. This allows consumers to identify the capabilities of a 
thing and how to use those capabilities.  

 

Figure 6 Abstract Architecture of W3C WoT [59] 

A web thing has the following architectural aspects shown in Figure 6: 

• interaction affordance, which can consist of the thing’s properties, actions 
and events. A Property exposes the thing’s state. An action invokes a 
function of the thing and an event asynchronously pushes state transitions 
from a thing to a consumer.  



2.6 Web of Things (WoT)  

 

33 

• behaviour, possibly autonomous, and the handlers for the interaction 
affordances 

• security configuration to control access to the interaction affordances and 
to manage related metadata 

• protocol bindings map the interaction affordances to messages within a 
protocol. 

A servient is a term used for a software stack that implements the WoT building 
blocks. It may host/expose things and/or host consumers that consume things, 
possibly supporting multiple protocol bindings to allow different IoT platforms to 
interact with each other. 

The recommendation [59] shows the following deployment scenarios for WoT, 
which can also be seen in the abstract architecture in Figure 6: 

• consumer and thing on the same network. This is the simplest case, where 
an intermediary is not required. 

• consumer and thing connected via intermediaries, which may be proxies or 
digital twins. The intermediary plays both thing and consumer roles. A 
proxy intermediary must get a TD of a thing and creates a consumed thing 
for the exposed thing it communicates with. It must then create a proxy 
object of the thing as a software implementation with a TD for the proxy 
object. This proxy object may have a new identifier and new 
communications metadata. The final step is for the intermediary to create 
its own exposed thing for the original thing, which consumers can 
communicate with (possibly using a different protocol to the actual thing). 

• discovery using a thing directory. The directory holds the TDs of local 
devices implemented as things that registered with a thing directory 
service. A client application can query this directory to obtain the metadata 
to contact local devices. 

• service-to-service connections across multiple domains. This allows cloud 
eco-systems based on different IoT platforms to be interoperable and 
create a larger system-of-systems, where this is done by either 
synchronising the thing directories or synchronizing proxies. 



 IoT and Wireless Sensor Networks 

 

34 

2.7 Characteristics of IoT Applications using Wireless 
Access  

There are a wide range of scenarios in which wireless access via mobile networks 
(and 5G in the future) and/or Wireless Sensor Networks are used, usually where 
the limits of wireless technologies such as limited range or device lifetime are 
acceptable [64], particularly given the flexibility offered by the wireless 
connection to be deployed close to physical phenomena and not require cabling. 
Such scenarios include those of military (e.g. situation awareness, battlefield 
sensing), emergency (e.g. disaster management, hazardous chemical monitoring), 
environmental (e.g. soil, water, habitat, monitoring), medical (e.g. respiratory rate, 
oxygen measurement), industrial (e.g. equipment monitoring), home (meter 
reading, appliances), automotive (e.g. Tyre pressure monitors) [17].  

Traditionally, applications using wireless access (and sensor networks in general) 
are concerned with “dumb” data collection, where the sensor network is treated as 
a peripheral network to provide data to external domains such as the Internet or 
LANs. Specific topologies, such as star, with limited, possibly fixed, numbers of 
nodes may be used to make configuration simpler in scenarios such as 
environmental monitoring in a fixed geographic area, infrastructure monitoring or 
monitoring temperature or light in a house. These scenarios are characterised by 
fixed types and fixed numbers of sensors, short range and limited interworking.  

More advanced scenarios exist and are characterised by a greater number of 
(possibly heterogenous) nodes or nodes that enter/leave the wireless network or 
networks that have to interwork and collaborate. This is particularly true in the 
IoT and 5G scenarios, which envisage that sensor networks will increasingly 
feature a greater variety of applications in some of the areas above, i.e. urban 
sensing, smart homes, smart cities, body sensor networks and healthcare, home 
automation and industrial networks. An example of such an advanced scenario is 
where first responders enter a building and want to get information from the 
building's WSN and use the mobile network to collaborate or even where 
firefighters deploy the nodes when they enter the building [65]. By taking 
advantage of the potential of IoT, such applications challenge many of the 
simplifying assumptions currently made for WSNs, as these applications will have 



2.7 Characteristics of IoT Applications using Wireless Access  

 

35 

wider deployment, greater scale, heterogeneity of sensors, high data rate and 
multiple users.  

These applications can be classified on the basis of the network characteristics 
they require and how they relate to the Quality of Service, as has been done for 
medical applications by IEEE 11073 [66]. IEEE 802.15.6 broadened these 
requirements as part of its BAN studies and examined a range of applications [64] 
under the categories of safety, radio regulation, topology, data link speed 
symmetric/asymmetric, data rate, number of devices, duty cycle, range, co-
existence, robustness/reliability, power consumption, the possibility of energy 
scavenging, error sensitivity, latency sensitivity, setup time, location awareness, 
form factor, privacy, power source, cost, standards compliance required. It also 
divided BAN applications into the broad categories of medical and non-medical. 
The medical area can be divided into wearable BAN (e.g. EEG, ECG, 
Temperature), implant BAN (e.g. drug delivery) and remote control of devices 
(e.g. insulin pump). The non-medical applications can be broken into real-time 
audio streaming, real-time video streaming, file transfer, stream transfer and 
entertainment (gaming, social networking) [64]. As an example of the potential 
benefits of IoT, its use with BAN wireless technology leads to the possibility of 
widespread untethered medical and health monitoring without the need for the use 
of cables for such systems. This will provide greater flexibility in placing 
equipment, allowing the collection of patient data to no longer be limited to the 
bedside or wired points so enabling patient mobility in hospital and home 
monitoring. These benefits would allow earlier release from hospital and the 
development of new monitoring and alerting applications, subject to deploying 
with appropriate simplicity, security and reliability.  

The approaches above are examples of mapping application requirements to 
specific network parameters, but it is also useful to consider the nature of the 
applications that use the data delivered by sensors and WSNs: 

• Data Flow –sensed data is usually sent to a single sink/application and that 
data is usually time stamped as it is time dependent (to a degree 
determined by the entity being sensed and/or the application's 
requirements). Data transmission can be initiated by the sensor (it reports 
on a periodic basis to a sink or sends an alert) or will be sent as a result of 



 IoT and Wireless Sensor Networks 

 

36 

an application's action, such as a query/request or a command to the device 
(e.g. to set thresholds, control an actuator). 

• Local Data Processing - depending on the application scenario (e.g. the 
extent of geographic locality of devices, time limits on reporting of data) 
and the node capabilities, data may be processed locally on the node so 
that it is aggregated, encrypted on the sensor node before being transmitted 
or simply stored for query by the application. An application should be 
aware of the capabilities of the device in this regard. 

• Data Reporting – this may be performed at a fixed rate or may vary as the 
sensed phenomena changes, e.g. more frequent readings may be required 
in an emergency situation, or it may vary depending on the requirements 
of different applications or it may be limited by the ability of the sensor 
itself. Depending on the nature of the data reporting, it may be possible for 
the application to schedule data reads (or sends by the sensors) as part of 
configuration or agreed as part of initialisation (by configuration or 
negotiation). Note the data received by the application does not have to be 
data from a single actual sensor, i.e. it could be aggregated data. 

• Event Generation - sensing can result in unexpected events such as alerts 
on thresholds being exceeded that need to be handled and reported to the 
appropriate sink/application. There may be a latency requirement on 
handling such events, which will impose requirements on lower layers to 
ensure that all nodes on a route to deliver that event can be woken up or 
are scheduled to wake up in time. 

• Data Priority – some applications may require that the data they generate 
is treated at a higher priority than other data and require special treatment 
at the lower layers of the protocol stack, e.g. alarms from medical devices. 

• Energy – the application scenario may impose particular lifetime 
requirements that must be met, e.g. a node must last for a certain period 
before requiring its batteries to be replaced such as in habitat monitoring 
applications. 

These higher layer characteristics of applications in IoT influence directly the 
nature of the network and architecture, e.g. the volume of data and need for local 
data processing are reasons for the emergence of fog and edge computing. In 
terms of WSNs specifically, these characteristics affect the network, data link and 



2.8 Summary  

 

37 

physical layers, e.g. the number of nodes may rule out certain topologies (such as 
STAR for large numbers) or if the sensor readings are regular and can be 
scheduled across the sensor devices in a given network then a TDMA based MAC 
scheme is appropriate. On the other hand, if they are less predictable such 
reservation of time slots may be wasteful of power (or introduce latencies for 
waiting nodes) and a contention-based scheme may be more appropriate. 
Similarly, the use of a heartbeat (as in a generic wireless protocol such as Zigbee) 
to keep a connection open and/or its availability known is appropriate where data 
can be sent at any time. It may not, however, be required in certain WSN 
scenarios where the data is sent infrequently and the power used in 
sending/receiving a heartbeat would be wasteful, although it may be required to 
counter clock drift between nodes and ensure time synchronisation. 

2.8 Summary 

This chapter has given an overview of IoT and the role of Wireless Sensor 
Networks, their device hardware, software and network stack, including routing 
and application layer protocols. The developments in device hardware and 
supporting software have resulted in the deployment of small scale WSNs with 
relatively few sensors connected in a star or clustered topology with a gateway 
node to connect to the Internet or a mobile network. In these scenarios, the types 
and number of sensors are fixed, the range is short and interworking between 
WSNs is limited. It is expected that more of these applications will be deployed 
with the increasing availability of the software and hardware, together with 
reductions in cost, although limitations in interoperability and difficulties in 
predicting suitable sensor location for radio coverage are proving to be limiting 
factors in deploying WSNs. More advanced application scenarios are emerging in 
IoT and an overview of their characteristics was given. An overview of current 
technologies such as CoAP, MQTT and WoT was given, which will be considered 
further in following chapters in order to develop the holistic architecture. 

This chapter has also considered defined information models for sensors and IoT, 
such as IPSO Smart Objects and the Open Mobile Alliance Lightweight 
Specification (OMA LWM2M) and also a more general purpose information 
model (CIM). These models showed that a node’s sensor capabilities can be 



 IoT and Wireless Sensor Networks 

 

38 

defined as they are determined by the nature of the sensor and are not unbounded 
(as in other network endpoints). Furthermore this definition of capabilities could 
be advertised to other nodes and applications for their use in working with sensors 
in the network or dynamically handling new sensors that are added to the network. 
The IPSO and LWM2M models have the potential to provide greater application 
interoperability for services using this sensor data than point solutions using 
proprietary data models. As such, the ability to support the implementation of 
these models will be an important test for the proposed holistic architecture in 
terms of the code size required and the quality of abstractions provided to the 
application programmer to add and use those information models. 

It can also be assumed that battery technology will improve and that lower power 
processors and radio components will be developed. Without corresponding work 
on approaches to match the application, network dynamics, routing and sensor 
node parameters it is likely that these technology gains will be exploited in 
specific point solutions for those limited scenarios outlined above. 

Furthermore, if large numbers of WSNs or BANs develop as envisaged, there will 
be more sensors and actuators than there are Internet hosts currently. In this 
scenario, treating these networks of sensors (or other constrained devices) as 
peripheral devices and connecting them to the Internet via proxies or sinks will 
limit performance and scalability [67].  

In summary, it can be said that the requirements for a WSN consist of ensuring 
adequate device lifetime, providing ease of software development, supporting 
autonomous operation and providing ease of deployment, especially on 
heterogenous nodes. These nodes have limited device processing and storage 
capability and limited (or proprietary) development environments and interfaces. 
These requirements provide significant software development challenges. The 
next chapter will consider architectural and technology approaches that may be 
able to address these challenges and following chapters will consider these in the 
specific context of WSNs and present an analysis resulting in a holistic 
architecture and implementation. 



3.1 Introduction  

 

39 

3 Distributed System Concepts 

3.1 Introduction 

Earlier chapters have shown that IoT and WSNs can be considered as distributed 
systems comprising WSNs, gateways, proxy devices and services with 
heterogenous device, networking and software technologies. This chapter 
considers a number of approaches in distributed computing and their current use 
to handle the heterogeneity and scale of IoT and WSN systems and data. It 
considers the RESTFul architectural style given its success in terms of adoption 
and scale in HTTP and web applications. It considers P2P systems from the 
viewpoint of their robustness, scalability and implementation complexity. It 
considers cache algorithms in terms of their effectiveness and implementation 
complexity. It outlines tuple-spaces as a possible basis for decoupling elements of 
the system and providing a simple API for developers. This consideration of these 
distributed system approaches has the goal of determining if these benefits can be 
realised in a holistic architecture for WSNs and other IoT scenarios, which will be 
analysed in Chapter 4. 

3.2 Architectural Approaches 

3.2.1 RESTFul Architecture Style 

The Constrained Application Protocol (CoAP) was outlined in section 2.4.4.1 as 
an example of a RESTFul approach. The RESTFul architectural style uses a 
resource as a key abstraction of information that can be represented in a number 
of representations using the Internet media types. It is based on five interface 
constraints as follows [48]:  

• All important resources are identified by a single resource identifier 
mechanism, usually a Universal Resource Identifier (URI). This constraint 
leads to the interface being simple, visible, and reusable. 



 Distributed System Concepts 

 

40 

• Access methods have the same semantics for all resources. For HTTP, this 
results in a limited set of verbs, such as HEAD, GET, POST, PUT, 
DELETE with well understood semantics. This constraint leads to the 
interface being visible, scalable, and available (by enabling the use of 
layered system, cacheable, and shared caches). 

• Resources are manipulated through the exchange of representations. This 
constraint leads to the interface being simple, visible, reusable, cacheable, 
and evolvable using information hiding. 

• Representations are exchanged via self-descriptive messages. This leads to 
the interface being visible, scalable, available and evolvable. 

• Hypertext as the engine of application state (HATEOAS). This leads to the 
interface being simple, visible, reusable, and cacheable through data-
oriented integration, evolvable via loose coupling, and adaptable though 
late binding of application transitions.  

The RESTFul architectural style also includes processing elements that are 
determined by their roles in an overall application action, i.e. origin server (e.g. 
Apache), gateway proxy, user agent (e.g. Web browser). A recent paper reflecting 
on the RESTFul architectural style [68], including the original authors, considers 
that there have been different interpretations of the term REST, but reiterates that 
“REST is not an architecture, but rather an architectural style. It is a set of 
constraints that, when adhered to, will induce a set of properties; most of those 
properties are believed to be beneficial for decentralized, network-based 
applications, while others are the negative trade-offs that can result from any 
design choice”. Importantly it also states that “REST does not directly constrain 
the Web’s architecture. Rather, an application developer may choose to constrain 
an architecture in accordance with the REST style”. The RESTFul style has been 
shown to facilitate application development and scalability as a result of its 
decoupled nature. 

3.2.2 Middleware Approaches 

One middleware approach is to provide separate components and abstractions for 
different parts of the overall system as the functionality required increases and the 
hardware becomes more capable. A good example of this approach is the Eclipse 
IoT architecture, shown in Figure 7 as three distinct software stacks [69]. The first 



3.2 Architectural Approaches  

 

41 

stack is for constrained devices, containing OS, Hardware Abstraction and 
Communication layers, with remote management across layers. The second stack 
is for gateways, which aggregate data and coordinate the connectivity of these 
devices to each other and to an external network. It includes layers to support IoT 
protocols, network management and data management/messaging. It will run on 
an OS with more functionality and may provide containers or specific application 
environments, e.g. for Java or Python. The third stack is for IoT Cloud platforms 
and is expected to provide horizontal scalability to support a large number of 
devices and vertically to support a variety of IoT scenarios and devices, including 
layers for device management, data management and storage, event management 
and analytics. A number of other middleware approaches that have been proposed 
for Cloud-Sensor integration are discussed in section 3.4. 

 

Figure 7 Eclipse IoT Stacks [69] 

Sensation [70] is an example middleware solution for WSNs, where the sensor 
network as a whole is considered as an information source similar to a database. 
Its middleware acts as an integration layer between applications and networks 
using high level APIs. The API is supported by its Unified Sensor Language and a 
proxy in front of drivers for particular WSNs to hide device and network 
heterogeneity. While interesting in terms of allowing WSNs to collaborate, the 
approach of developing a proxy for each network and the requirement for a priori 



 Distributed System Concepts 

 

42 

configuration of network profiles (to conceal the underlying heterogeneity of 
WSNs) means that it does not meet a number of the requirements for a seamless, 
interoperable architecture. For example, while it is independent of particular node 
hardware, it does not provide a way to model a range of node functional 
capabilities. It is an extensible system, but does not provide abstractions in each 
WSN that could be used to handle the channel and environmental factors that will 
be encountered. It also does not provide a consistent means to exchange sensor 
information independent of the underlying technology, as this requires a proxy 
with a priori configuration rather than providing a means for the sensor node to 
advise other nodes and services of its capabilities.  

Agent based middleware approaches have been proposed that use a set of services 
to provide abstractions and a language to compose sensing tasks from the 
services, where the service code can move across nodes autonomously. Such 
systems are suitable for monitoring moving and dynamic phenomena, but require 
particular node computational capability due to their complexity and the code 
mobility reduces node lifetime due to the additional network traffic [71]. 

TinyDB [72] and Cougar [73] essentially consider the WSN as a distributed 
database, with a table where each column represents a sensor reading or node data 
and a SQL like query language (extended for periodic or continuous requests) 
with nodes supporting aggregation of data. This is powerful, but is limited by its 
table based approach and relational queries, especially in handling events. 

Directed diffusion is a method for data dissemination which can be considered as 
a superset of routing where the nature of the data and its usage is exploited as part 
of the routing of data. A WSN may be requested to provide information from a 
group of nodes or any node in a particular region, rather than a request being 
made to a particular node. Directed diffusion was designed to be more suitable in 
such cases [74] than ad-hoc routing techniques from IP networking, which 
generally use links between 2 unique addresses. Directed diffusion aims to extend 
the lifetime of the network by reducing message exchanges between nodes [75]. It 
does this by localizing exchanges within a limited network area, but still provides 
multipath delivery and adaptability to a minimal subset of network paths and also 
allows nodes to aggregate responses to queries.  



3.2 Architectural Approaches  

 

43 

Directed diffusion uses a publish and subscribe information model where a node 
expresses an interest in data items using a set of attribute-value pairs. This sink 
node broadcasts this periodically to its neighbours and the message propagates 
throughout the network. Each node keeps an interest cache with entries for each 
interest (containing timestamp, a “gradient” of data rate derived from interest 
requests and neighbour direction for reply, duration) and sets its sampling to meet 
the intervals in its interest cache entries. The interest cache is built based on 
interest requests from sink nodes which are used to create new entries or update 
the gradient, timestamp or duration of the existing entries. Nodes which can 
provide the relevant data will reply with it. The diffusion of data and establishing 
reply paths (as gradients) allows the discovery and establishment of paths between 
sinks interested in particular data and sources of that data. Nodes also keep a data 
cache, and they add to this when they receive data from a neighbouring node that 
matches an entry in their own interest cache (i.e. they received a request from a 
node interested in such data). An originating sink may have multiple paths to 
sources of data and it can favour (or reinforce) certain routes by sending its 
interest requests more frequently to one or more of its neighbours. Directed 
diffusion has the potential for energy savings, relatively high performance and 
stability for a range of network dynamics [17], but it is tightly coupled to a query 
on demand data model where applications can accept aggregated data and this 
limits its applicability. 

3.2.3 Autonomic and Cognitive Architectures 

Autonomic architectures are another approach to realizing complex, loosely-
coupled, decentralised, dynamic systems as required for IoT. These architectures 
are characterized by self-configuration, self-healing, self-optimization and self-
protection and aim to improve overall performance [76] by using cognitive 
approaches with information based on past experience. Cognitive entities in these 
architectures have reasoning capabilities and can cooperate, but may also act 
selfishly to exploit knowledge of their functionality. 

Example frameworks for use in IoT, which are inspired by autonomic and 
cognitive principles include Cascadas, Focale, Inox and I-Core [76]. These 
frameworks are generally not concerned with creating an end-to-end holistic 
approach, but they are concerned with higher layer functions such as translating 



 Distributed System Concepts 

 

44 

vendor specific data into a vendor-neutral form or semantics around state 
transitions, reasoning engines, automatic management functions, perhaps using 
virtualisation. As such, they could be complementary to a holistic architecture, 
using it to gather data which it can then use for its higher-level functions. 

3.3 Big Data and NoSQL Approaches  

As the number of WSNs and nodes in IoT increases, the volume and variety of 
data to be collected, parsed and analysed increases correspondingly. The use of 
Big Data is well established in commercial and research environments to analyse 
large amounts of data in order to make timely decisions, e.g. in retail for analysing 
consumer behaviour and preferences. Big Data can be characterised by the 3 Vs of 
Volume (size of the data), Variety (range in type and source of data) and Velocity 
(frequency of data generation) [77]. There are a range of NoSQL data stores, such 
as simple key value ones like Redis [78] or document stores, e.g. MongoDB [79].  

Apache HBase is an example of a Big Data store. It is a part of the Hadoop stack 
and uses the Hadoop Distributed File System (HDFS) to store its data. It is a 
distributed, versioned, column-oriented, data store, derived from Google BigTable 
[80]. HBase stores data into tables, rows and cells. Rows are sorted by row key 
and each cell in a table is specified by a row key, column key and a version, with 
the content held as an uninterpreted array of bytes. HBase can be considered 
suitable for WSN data based simply on its scalability and ability to store large 
amounts of replicated data. Its key value nature, handling of sparse rows and 
flexible data access provide other reasons for its suitability. The data access is 
provided by a rapid query using a get with a row key and a scan using an arbitrary 
combination of selected column family names, qualifier names, timestamp, and 
cell values. The support of sparse tables is appropriate for cases where not all 
WSN nodes can provide all the columns defined. Columns belong to a particular 
column family and are identified by a qualifier. Column families must be declared 
at schema definition time, but individual columns can be added to a family at run 
time. This provides flexibility to handle the varied data that sensors may send, i.e. 
whether a particular sensor sends all the attributes in a particular object. The 
associated MapReduce model has been shown to be appropriate for processing 
sensor data [81]. Modelling very large sensor network data as an ontology-based 



3.4 Cloud and Sensor Platforms  

 

45 

Continuously Changing Data Object (CCDO) has been shown successfully for 
BigTable [82]. Section 6.5.2 illustrates how seamlessly the proposed holistic 
architecture can accommodate the use of Apache HBase to store sensor data. 

3.4 Cloud and Sensor Platforms 

The NIST has proposed three main Cloud service types/models of Infrastructure 
as a Service (IAAS), Platform as a Service (PAAS), and Software as a Service 
(SaaS) [83]. Their definitions capture the fact that these resources can be rapidly 
provisioned and released with minimum effort on demand, providing reduced 
upfront expenditure, but with high availability, fault-tolerance and what appears to 
consumers as infinite scalability.  

Sensing as a Service has been proposed, with elements of an IAAS solution [8], 
but more often it is proposed as a kind of PAAS. The rationale for this interaction 
is to allow the huge storage, computing capabilities, data analytics, resource 
elasticity, and scalability provided by Cloud computing to form a key part of the 
IoT ecosystem. This allows more sources of data to be collected and for the data 
to be held for a longer time and to be processed by powerful Cloud based 
applications and Big Data techniques. 

A number of Middleware approaches have been proposed for Cloud-Sensor 
integration. Sensor-Cloud [84] uses SensorML to describe sensor metadata and 
manages sensors via the cloud, rather than providing their data as a service. The 
OpenIoT [85] middleware platform comprises an IoTCloudController, a JMS 
style message broker, sensors (with a module to publish to OpenIoT) and clients 
(which subscribe to or consume sensor data). Another approach uses a data 
channel to hide the underlying network protocols and a Sensor Server on the 
wireless network’s master node to filter sensor data and to deliver it to Cloud 
services [86]. This file based approach and use of existing technologies such as 
SSH tunnels, FTP servers presents a simple approach (with a connector-GUI and 
web server), but it is simple and limited in its flexibility. Another integration 
approach uses a content-based publish-subscribe model for event publications and 
subscriptions for asynchronous data exchange, requiring a gateway at the edge of 
the cloud to receive sensor data, a Pub/Sub broker to process and deliver events to 
registered users and a range of components to support SaaS applications [87], e.g. 



 Distributed System Concepts 

 

46 

System Manager, Provisioning Manager, Service Registry, Mediator, Policy 
Repository, Collaborator Agent. These middleware approaches to cloud 
integration all require specific application gateways/proxies at the edge of each 
wireless network and often their own sensor data definition. 

Commercial offerings such as Amazon’s IoT [88] and Google Cloud IoT [89] 
services allow users to upload their sensor data to the Cloud for storage, querying 
and analysis using their suite of Cloud databases, NoSQL stores and Machine 
Learning (ML) toolsets. These offerings use a proxy/gateway to provide the 
integration with a Cloud service, usually limiting it to a given Cloud provider and 
perhaps to a given environment on a device, e.g. Amazon’s IoT service uses its 
own MQTT based software on a client device and uploads data to Amazon. 

3.5 Fog and Edge Computing 

The increasing amounts of data available from the Internet of Things (IoT) and 
the adoption of Cloud computing with its potential benefits in terms of scale, 
flexibility and cost have resulted in Cloud becoming a key part of IoT. There are, 
however, a number of issues with the approach of simply sending data to the 
Cloud and using it to handle all data from WSNs: 

• Response Time – certain applications may require more rapid response 
time than the latency introduced by sending data to the Cloud will allow, 
e.g. connected vehicles.  

• Intermittent Connectivity –  this would prevent timely processing of the 
data (or cause it to be lost if device storage was exceeded) as required in 
application areas like telemedicine. 

• Bandwidth – the amount of data sent by a large number of sensors 
connected to a given WAN link may exceed the bandwidth available. 

• Device Connection – many devices in the Internet of Things (IoT) will 
need to be connected directly to each other, e.g. wearable health 
monitoring devices, connected vehicles. 

• Data Security and Privacy – regulation may limit the countries or the data 
centres in which the data can reside, e.g. health data may require specific 
physical security guarantees. 



3.5 Fog and Edge Computing  

 

47 

One method to address these concerns is to push some of the applications to the 
edge of the network and process data there, possibly using concepts from mesh 
computing, grid computing or peer-to-peer computing.  

Fog computing aims to tackle these challenges and “Fog Computing is a highly 
virtualized platform that provides compute, storage, and networking services 
between end devices and traditional Cloud computing data centres, typically, but 
not exclusively located at the edge of network” [90]. The processing at the edge 
may analyse, filter or aggregate the data and subsequently send it to the Cloud for 
further use. [91] gives the example of cameras in an autonomous vehicle which 
capture a huge amount of video data and which must be processed in real time to 
yield good driving decisions, making the response time from the Cloud too long. 
Furthermore, it also points out that a large number of autonomous vehicles in an 
area would further increase the pressure on network performance and reliability.  

Such devices at the edge may both consume from and produce data to the Cloud, 
as well as load balancing that traffic. In such a federated system, a service may be 
executed using components running in different networks/providers, requiring fog 
and edge computing components to be interoperable at the level of providers and 
architecture models and interfaces. 

Fog and edge computing essentially differ in the emphasis on how close the 
processing is to the source, where edge computing performs computing on an 
edge device like a programmable controller and fog computing performs it at the 
local network level where the processing can be done by a gateway or specialized 
node, although these distinctions are quite fluid. 

An edge device is a computing or networking resource somewhere between the 
data sources and Cloud services, where the end device may both consume and 
produce data and provide storage/caching, processing on data sent to and from the 
Cloud, as well as load balancing that traffic. The range of entities considered in 
edge computing can be seen by the classes of edge computing presented in [92]. 
These classes are “resource rich servers deployed close to the end-devices”, 
“heterogeneous nodes at the edge” and “federation of resources at the edge and 
centralised data centers”. 



 Distributed System Concepts 

 

48 

As fog and edge computing are still emerging areas, it has a number of challenges 
to be addressed: 

• Scalability - Individual edge systems will manage the data of a particular 
set of nodes which will have to scale as more nodes are added, but the 
overall system will also have to scale to manage, deploy and run large 
numbers of applications as more edge networks are added to cater for 
billions of IoT devices. Ideally, the edge networks will be able to use local 
resource pooling to achieve better scalability locally. 

• Heterogeneity - An edge system should handle the storage, computational 
and operational requirements of heterogenous nodes and services, e.g. the 
different data formats used by devices. 

• Management - Nodes and edge systems will require discovery and 
monitoring for the Cloud services to be aware of their status. A key 
question is whether this will be orchestrated in the Cloud and to what 
degree the nodes and edge systems will be autonomic and decentralised. 
Other management areas such as application provisioning and task 
scheduling, resource management and cloud/edge federation, including 
content storage/distribution have to be considered depending on the degree 
of centralisation used. 

• Data Security - Edge nodes will have different capabilities and this will 
have to be considered in where data is to be stored or processed. 

It is, however, important that the platforms, applications or services developed or 
configured for edge computing contribute to the seamless interoperability desired 
in IoT and not create more islands of isolated data and services. Such an 
expansive view of fog and edge computing has been proposed as Osmotic 
computing [93] to support Internet of Things (IoT) services and applications at the 
network edge. This paradigm is based “on the need for a holistic distributed 
system abstraction enabling the deployment of lightweight microservices on 
resource-constrained IoT platforms at the network edge, coupled with more 
complex microservices running on large-scale data centres”. It proposes to use the 
increase in resource capacity at the network edge to create edge micro data centres 
to form a federated environment of public/private cloud, edge cloud and devices 
with microservices in both, including a microservice engine to deploy containers 
running microservices on IoT and edge devices. It anticipates the use of an 



3.5 Fog and Edge Computing  

 

49 

interoperability layer for remote orchestration of heterogeneous edge devices, e.g. 
exploiting Software Defined Networking (SDN) and Network Function 
Virtualization (NFV) capabilities, accessible through an API. 

Another proposed use of the increased processing power that can now be made 
available at the edge is to provide mobile edge computing for IoT to handle data 
streams at the mobile edge [94]. In this approach, each base station is connected to 
a fog node to provide local computing resources and a proxy Virtual Machine 
(VM), which collects, classifies, and analyses the raw data streams from devices, 
converts them into metadata, and transmits the metadata to the corresponding 
application VMs (owned by IoT service providers). A Software Defined 
Networking (SDN) based cellular core is used to forward packets among fog 
nodes. 

The OpenFog Consortium (amalgamated with the Industrial Internet Consortium) 
[95] published an OpenFog Reference Architecture [96] as a basis on which to 
develop and test an open fog-enabled architecture. Such a model is also required if 
developers are to be able to handle the heterogeneity of fog computing and IoT. 
Figure 8 shows the OpenFog view of an N-tier IoT environment. It illustrates how 
the volume of data is reduced as the intelligence derived from the data is increased 
at each level. The OpenFog Reference Architecture has the following layers: 

• Devices (sensors, actuators, cameras). 

• Monitoring and Control (control logic using the sensor telemetry, 
e.g. to generate alerts and events). 

• Operational Support (operational analytics). 

• Business Support (such as large-scale historic analysis).  

The three upper layers may be deployed only on fog nodes (e.g. where security 
concerns may rule out Cloud) or only on cloud nodes (e.g. where the physical 
infrastructure may not support fog nodes).  



 Distributed System Concepts 

 

50 

 

Figure 8 OpenFog Architecture Scenario [96] 

Figure 9 shows a more detailed architectural description, including the cross-layer 
perspectives. It shows three views of the architecture - the “Software” view in the 
top three layers, the “System” view in the middle layers and the “Node” view in 
the lower layers.  

 

Figure 9 OpenFog Reference Architecture Description with Perspectives [96] 

The OpenFog Reference architecture considers “Sensors, Actuators, and Control” 
as hardware or software-based devices, where several hundred or more of these 
items could be associated with a single fog node. Some of these nodes may have 
significant processing capability and are able to implement some basic fog 



3.6 Tuple Approaches  

 

51 

functions. The protocol abstraction layer exists to bring these devices under the 
supervision of a fog node so that their data can be provided to higher layers. The 
OpenFog Reference Architecture states that future versions will describe 
“Minimum Viable Interfaces”, with more detail about the protocols and 
abstraction layers. It currently identifies protocols such as CoAP and MQTT for 
node-cloud and node-node communications. 

It is worth mentioning that the emergence of 5G networks overlaps with Fog and 
edge computing in ways yet to be fully determined. For example, [97] considers 
that powerful nodes will be required at the edge of the network for 5G in order to 
offload traffic from the core, adjust the network resources for application data 
flow and to process the raw information from sensors/devices. Furthermore, it 
highlights the role of software based implementations and virtualisation (probably 
in the Cloud) to provide cost and deployment flexibility. [97] also considers the 
challenges for middleware from 5G are cloud-based Big Data management, 
interoperability of heterogenous devices and applications, scalability, context-
based smart services provision, dynamic device discovery and management and 
security and privacy. 

3.6 Tuple Approaches 

A tuple space is a distributed computing concept, which provides a repository of 
tuples (a finite list of elements) available for concurrent access into which 
producers post their tuples and from which a consumer reads those tuples it wants. 
Linda [98] is an example which uses a tuple space model of parallel programming 
and considers its data objects as tuples and uses a small set of simple primitives:  

• in atomically reads/removes a tuple from tuple space 
• rd non-destructively reads a tuple from tuple space 
• out writes a tuple into tuple space 
• eval evaluates tuples, creating processes if required and writes the result 

into tuple space 

The concepts behind Linda can be seen in the following: “If two processes need to 
communicate, they don’t exchange messages or share a variable; instead, the data 
producing process generates a new data object (called a tuple) and sets it adrift in 



 Distributed System Concepts 

 

52 

a region called tuple space. The receiver process may now access the tuple. 
Creating new processes is handled in the same way: a process that needs to create 
a second, concurrently executing process generates a “live tuple” and sets it adrift 
in tuple space. The live tuple carries out some specified computation on its own, 
independent of the process that generated it, and then turns into an ordinary data 
object tuple [99].  

Javaspaces [100] extended these ideas to Java objects. The decoupling in time and 
space of tuple space communication enables interactions where applications can 
be added/removed independently and do not have to be available simultaneously 
to transfer data between themselves. The tuple space approach allows different 
processes to use a limited number of simple operations to insert, read, and 
withdraw tuples from a tuple space and provide asynchronous notifications for 
data of interest being added to the shared tuple space.  

TeenyLIME [101] is a high level tuple space based approach, derived from 
concepts used in Linda. TeenyLIME is built on top of TinyOS and inherits the 
nesC component model and can run on constrained devices. TeenyLIME also 
provides WSN-specific features, e.g. to hold system-level information about 
neighbours. A node’s local tuple space is only shared with the nodes within 
communication range. TeenyLIME has been deployed in a real-world application 
which has shown the usefulness of a tuple space approach in WSNs [102]. LighTS 
[103] is part of the LIME environment and provides a reduced tuple space holding 
context (location) information using the same primitives. LIME extended the local 
tuple space on every node by merging them into a federated tuple space into 
which tuples can be added/removed, when the nodes are in range of each other, 
i.e. tuples can only be exchanged when the sender of a tuple space operation is in 
range of the device offering the requested tuple. LIME is implemented in Java, 
limiting its applicability to more capable nodes. 

3.7 Peer To Peer (P2P) Systems 

P2P systems are used for file sharing, communication, collaboration, computation 
and distributed storage/databases. The most commonly known P2P systems are 
used primarily for music file sharing and sharing storage and bandwidth, such as 
BitTorrent systems. Applications have been driven by technology advances 



3.7 Peer To Peer (P2P) Systems  

 

53 

allowing greater storage and bandwidth, enabling a home computer's processing 
and storage to be used for shared computing, such as SETI@Home. In a P2P 
network, these home computers connect to each other to form groups and 
collaborate to become clustered computers or shared filesystems, effectively a 
robust distributed system composed of inexpensive computers in unrelated 
administrative domains. Although the dominant mode of the Internet is client-
server where browser clients access content servers, the original Internet was 
designed as a P2P system where it provided a communication means for (trusted) 
computer systems to share resources with each other as equals and indeed 
Usenet's decentralised model of control shares aspects of P2P systems [104].  

One of the most appealing features of P2P for a large distributed system is the 
potential scalability that some P2P architectures provide, where the overall system 
capabilities (processing and storage) increase as the number of peers increase. 
This in contrast to some client/server architectures where increasing the number 
of clients may overload servers. 

Napster was an early file-sharing P2P system, but it actually used a centralized 
server. Gnutella used a distributed file location and decentralised file lookup, but 
its use of multicasting a request from a node to all neighbours provided robustness 
at the cost of limited scalability (even with a TTL for a request), because of the 
bandwidth consumed by broadcast messages and the computing resources used by 
the many nodes handling these messages [104]. Another P2P system called 
Freenet [105] was designed to allow the exchange of files with the original source 
of the file remaining anonymous.  

P2P architectures can be categorised based on the degree of centralisation, i.e. 
whether the architecture relies on one or more centralised servers as well as the 
edge nodes/peers. Three categories can be identified [106]: 

• Purely decentralised – all nodes perform the same tasks, acting as servers 
and clients as appropriate. There is no central coordination of their 
activities, e.g. Freenet. The difficulties with these P2P systems include 
ensuring data consistency, manageability (as a completely ad-hoc self-
managed system it may not align with wider policies such as charging, 
security), overhead as a result of the interaction between nodes to co-



 Distributed System Concepts 

 

54 

ordinate (and exchange information) and reliability (may provide only a 
best-effort service).  

• Partially centralised - this is similar to purely decentralised systems, 
except that there is a hierarchy where some nodes (supernodes) perform a 
larger role, such as holding central indices for files shared by local peers. 
These supernodes are not single points of failure because they are 
dynamically assigned and the role can be taken by other nodes in case of 
failure or attack. These supernodes will take a higher load and as such are 
likely to be more expensive and more capable compute nodes, e.g. later 
versions of Gnutella. 

• Hybrid decentralised - these use a central server to maintain directories 
of the shared files stored on the edge nodes. The end-to-end interaction is 
between two peers, but this is set up using these central servers to look up 
the respective nodes holding the files. These central servers do, however, 
present a single point of failure and as such are vulnerable to failures, 
attacks or censorship. It is arguable whether these are “real” P2P systems, 
given this usage of a standard client-server relationship, e.g. BitTorrent 
when not using a DHT tracker or Napster. 

P2P can also be categorised by the extent of structure in the topology in the P2P 
network. The topology of  this overlay P2P networks can be very different to the 
physical network connecting the different nodes. P2P can be classified as follows 
using network structure: 

• Unstructured Networks - the location of data is independent of the P2P 
topology. This lack of structure means that such systems can handle nodes 
entering/leaving relatively easily, but searches for data consist of nodes 
being probed (in a random manner) for the data being requested and this 
limits scalability as many nodes may need to be queried.  

• Structured Networks - this type of network addresses the scalability 
issues of unstructured systems by controlling the overlay P2P network's 
topology by placing data (or pointers to it) at specific locations based on 
some criteria to form a distributed routing table. This should result in the 
efficient routing of queries to the node with the data. Such networks are 
suitable for queries where a complete identifier of the data object is given 



3.7 Peer To Peer (P2P) Systems  

 

55 

in the request. They do, however, incur overhead to maintain their 
structure, particularly where nodes enter/leave at a high rate. 

• Loosely structured - data is placed using routing hints, rather than exact 
specifiers. This reduces the maintenance overhead, but also means that not 
all searches will succeed. Freenet is an example of such a network. 

In general, structured P2P overlay networks, e.g. implemented with a Distributed 
Hash Table (DHT) provide efficient data storage and lookup, whereas 
unstructured overlays rely on flooding or multicast approaches for message 
routing.  

3.7.1 Freenet 

Freenet is a purely decentralised and loosely structured system, operating as a 
self-organising P2P network. Freenet was designed to hide the origin or 
destination of a file passing through it, with the responsibility for data on a node 
being separated from the operator of that node. This was done to support the 
exchange of information in countries where this may be difficult or dangerous for 
those originating the information [105]. Providing this anonymity means that 
Freenet does not associate a file with any predictable server or have a predictable 
topology of servers. This also means that unpopular (infrequently accessed) 
documents may disappear from the system as there is no server responsible for 
maintaining replicas and so a search may traverse a large fraction of the Freenet 
network [104]. Also, as it did not check the files being shared, Freenet was 
vulnerable to viruses and infiltration attacks.  

Unlike BitTorrent, Freenet is a file-storage and not a file-sharing service and files 
are pushed to other nodes for storage not only when these nodes request them. A 
Freenet node has a dynamic routing table containing the addresses of other nodes 
and the file identifier keys and it also has its own local datastore, which is 
available to other nodes to read and write. 

Freenet Messages have an identifier (for loop detection), a hops-to-live, source 
and destination, and a type, which is Data request (with a Key field), Data reply 
(with a Data field), Data failed (with fields for Location and reason) or Data 
insert (with fields for key and data). A user searches for a file by sending a 
request message with the file identifier key and a hops-to-live. 



 Distributed System Concepts 

 

56 

A new node joins the Freenet network by discovering the address of one or more 
existing nodes and sending messages. To add a file (and so announce its 
presence), this new node sends a Data Insert message to add a file to its own 
node and this message holds the binary key calculated for the file and the hops-to-
live. When received, this key in the insert message is checked and if in use, the 
node returns the associated file, but if not found the node looks up the nearest key 
in its routing table and forwards the message to the corresponding node. 

Freenet does not broadcast requests and requests for keys are passed from node to 
node with each node deciding where to send the request to. If a node has stored a 
requested file, then it sends the data back to the requester, otherwise it forwards 
the data to the node it knows about with the “closest” file identifier key. The hops-
to-live in the message avoids long forwarding chains. 

A Freenet node stores a file, the next hop where it forwarded the file and the file 
identifier key of the requests passed on by it. This means that on receiving a 
request failed message from the node it forwarded to, it can forward the request to 
the “next best” node from its routing stack. When all nodes in its routing table 
have replied with request failed, this node itself will send back a request failed 
message to the node it got the request from. On the other hand, if the file is found 
at a node, the reply is sent back by the path which forwarded the request. 
Importantly, all of these intermediate nodes will cache the actual data in the data 
reply message, meaning that a reply to a future request will use the cached data.  

3.7.2 JXTA 

JXTA [107] is a P2P system with a suite of protocols specifically designed for ad 
hoc, pervasive, and multi-hop P2P computing. It allows peers to form self-
organized and self-configured peer groups without a centralized management 
infrastructure. Its use of Java, its heavy use of strings and XML limit its 
applicability in resource constrained devices, but the following abstractions are 
useful to consider in the context of an end to end system including WSNs:  

• Peers - JXTA considers any network device as an autonomous peer having 
a unique identifier and interacting with a small number of other peers. 
Peers may join or leave the network at any time. It has the concept of a 
peer group, with a unique identifier, for peers with common interests. 



3.7 Peer To Peer (P2P) Systems  

 

57 

• Network Services - peers cooperate to publish, discover and invoke 
network services, either peer services accessible on that peer only or peer 
group services running on multiple peers in a group. Peers discover 
network services via the Peer Discovery protocol. 

• Pipes - these are a network abstraction (a similar concept to a Unix pipe) 
over the peer endpoint transport and connect one or more endpoints. A 
pipe can operate in a point to point manner or in a propagate manner 
(connects one output pipe and multiple input pipes). 

• Messages - information is packaged as self-describing messages defined in 
XML, using an envelope to transfer data with an arbitrary number of 
named sub-sections holding any form of data. 

• Advertisements – these describe network resources, such as peers, peer 
groups, pipes and services. Advertisements are published with a lifetime 
that specifies their availability and can be republished to extend it. 

The JXTA protocols do not require a particular network transport or topology or 
the use of a particular authentication, security or encryption model, as the format 
of JXTA messages enables the carrying of metadata, such as credentials (an 
opaque token to be presented each time a message is sent), digests, certificates 
and public keys. Messages may also be encrypted and signed for confidentiality 
and refutability. The JXTA protocols standardize the manner in which peers: 

• Self-organize (publish, discover, join, and monitor) into peer groups. Peers 
wanting to join a peer group need to discover at least one member of the 
group and request to join. This request is either rejected or accepted by the 
collective set of current members or a membership service may enforce a 
vote of peers or elect a member to accept/reject new membership requests. 

• Advertise their own and discover other peer's network services and 
resources (CPU, storage, databases, documents etc.).  

• Communicate with each other and route messages across multiple network 
hops to any destination in the network (each message carries with it an 
ordered list of gateway peers through which the message might be routed). 

3.7.3 Distributed Hash Table Based Networks 

Distributed Hash Tables (DHT) are used in a number of structured P2P systems. 
They use consistent hashing algorithms, which ensure that the routing of requests 



 Distributed System Concepts 

 

58 

is deterministic with an upper bound on the number of hops, although this implies 
some overhead to manage the peers in the overlay. They provide efficient routing 
without centralized control, e.g. BitTorrent’s [12] use of Kademlia [13]. 

A hash-table is suitable for distributed lookup as it only requires that data can be 
identified using unique numeric keys, and that nodes store keys for each other. 
Nodes store information about neighbouring nodes, forming an overlay network 
and route messages in the overlay to store and retrieve keys. Data items are 
inserted into a DHT and found by specifying a unique key for a data item. A DHT 
algorithm determines which node is responsible for storing the data associated 
with a key, using a lookup(key) call that returns the node identity (perhaps its IP 
address). In the case of storing files, the key may be derived by applying a hash 
function to the file name and inserted into the store using that key. A subsequent 
lookup(key) builds the key using the same hash applied to that file name. DHT 
lookup algorithms have to address the following [14]: 

• Mapping keys to nodes - nodes and keys are mapped using a hash function 
into a string of digits. The node for a data item's key is assigned based on 
its identifier being the “closest” (perhaps numerically or with the longest 
matching prefix) to the key. 

• Forwarding a lookup for a key - on receiving a lookup for a key, a node 
must be able to forward to a node with a “closer” identifier to that key (not 
necessarily the final destination, but closer to it).  

• Building routing tables – different forwarding rules and different 
information is held on successor nodes depending on the DHT. Each node 
keeps a routing table for selected nodes, where it holds their identifier and 
so can determine which one to forward to, based on their closeness to the 
key (or if it is the closest node itself). 

The following sections consider a number of DHTs and their scalability to large 
numbers of nodes, low latency to find keys, ease of maintaining node routing 
tables and balancing the distribution of keys. They differ in how they build and 
maintain their routing tables as nodes join and leave. They may provide bounded 
times for data lookups by limits on the number of hops meaning that response 
times could be guaranteed in wired sensor networks (although the higher 
probability of link failure limits this in wireless networks). Ensuring that the 
number of hops in a P2P overlay network maps to bounded latency does require 
structuring the P2P overlay based on the actual routing topology [108].  



3.7 Peer To Peer (P2P) Systems  

 

59 

In terms of the dynamic nature of the network and the frequency of join/leave 
events, it can be seen that the effect of relatively frequent node joins and 
departures in large systems could end up dominating overall performance and the 
following sections describe how the DHTs handle the join/leave events 

3.7.3.1 CAN 

CAN [38] partitions a fixed d-dimensional Cartesian coordinate space into hyper-
rectangles, called zones with a node being responsible for a zone. A key is 
mapped onto a point within a zone and its data is stored at the node for that zone. 
A node's routing table holds all of its neighbours in that coordinate space, i.e. they 
share a (d-1) dimensional hyperplane. A node forwards messages to its neighbour 
closest in the coordinate space to the target node storing the key. With d 
dimension CAN knows of d nodes and has O(dN1/d ) lookup and O(dN1/d + d 
logN) join. 

When a node j wants to join the network, it chooses a random point in the 
coordinate space and asks an existing node to find the node r with the zone 
containing that point. That node r then checks the size of its neighbour's zones - 
the neighbour with the largest zone (or itself if it has the largest) splits its zone in 
two, assigning one of the halves to the joining node j. The new node j initialises 
its routing table to contain all of node r's neighbours (except itself) and announces 
itself to its neighbours which update their routing tables to include it. The reverse 
occurs when a node leaves the network voluntarily as it hands its zone to one of 
its neighbours. If a node leaves involuntarily, the neighbour with the smallest zone 
takes over its zone. Multiple failures can cause fragmentation resulting in some 
nodes handling a number of disjoint zones and CAN uses a background algorithm 
to combine adjoining zones to the same node. 

3.7.3.2 Chord 

Chord [108] uses a one-dimensional space to assign identifiers randomly for both 
keys and nodes and this space wraps to form a circle. The node responsible for 
key k has the identifier most closely following k. Chord was designed for use over 
the Internet and its focus is on robustness and correctness. Each node holds a 
“finger table” containing the IP addresses of nodes halfway, quarter way and 



 Distributed System Concepts 

 

60 

successive powers of 2 around the ring from it, so the finger table holds log N 
entries for N nodes. 

A node forwards a request for key k to the node in its “finger table” whose 
identifier is the highest one less than the key k and the selection may also consider 
the link latency. The power of 2 structure of the finger table means that the query 
is forwarded to at least half of the remaining identifier space to the node holding k 
and so there will be O(log N) messages sent by Chord. 

An example lookup for key 81using Chord is shown in Figure 10, using reduced 
node identifiers. It shows the use of the finger table, until node 71 determines that 
its direct successor node 81 is responsible for that key 81 (and an associated 
value) and then node 71 forwards the request to node 81.  

 

Figure 10 Example of Lookup in Chord 

When a new node j wants to join, it requests an existing node to look up the 
identifier for node j and then its own and its predecessor update their successor 
lists. The updates to the finger tables for node j and existing nodes are done in the 
background rather than at joining (as they are done to improve performance and 
not for correctness of routing). The new node j must also acquire the existing data 



3.7 Peer To Peer (P2P) Systems  

 

61 

associated with the keys it is now responsible for and it does this by fetching it 
from its successor (which previously held them). 

Chord handles node failures as nodes also store the IP address of a number of 
nodes and so packets can be forwarded to one of these successors even if the node 
selected using the finger table is not available. Hence forwarding failure would 
only occur if all the successors and all those in the finger table failed 
simultaneously. For this reason, node identifiers are assigned randomly and nodes 
in the successor list are unlikely to suffer independent, simultaneous failures. 

3.7.3.3 Pastry 

Pastry [109] assigns a node a random identifier indicating its position on a circle 
of identifiers. Messages are routed to the node identifier (numerically) closest to 
the search key. Each node keeps a routing table with each row holding identifiers 
for nodes sharing a number of digits in their identifier with this node. Nodes also 
keep a “leaf set” (analogous to Chord's successor list) of nodes either side of its 
identifier. The leaf set is checked first and if no match, then it checks the routing 
table for a node identifier with a longer shared prefix. If such a node is not in the 
routing table, then it tries a node with a shared prefix at least as long as this node’s 
and which is (numerically) closer to the key – this should only occur at the desired 
node or its immediate neighbour (otherwise such an entry would have been in the 
leaf set). Each forwarding of the message increases the number of shared digits 
between the key and the node identifier. This use of different routing algorithms is 
problematic according to [13] as nodes close by the second can be quite far by the 
first. Pastry also uses heuristics based on network proximity, e.g. number of hops, 
to forward a query when there is more than 1 possible node in the routing table. 

A new node is given a random identifier and builds its leaf set and routing table 
using information from the node with the identifier closest to its one. When a 
node leaves, only the leaf sets of effected nodes are updated and the routing table 
information is only updated when a node tries to reach the departed node. 

3.7.3.4 Tapestry 

Tapestry [110] maps node and key identifiers into strings of numbers, but has a 
greater focus on proximity in a network sense than CAN, Chord or Pastry with the 
goal of reducing latency in forwarding queries. This comes at the cost of increased 



 Distributed System Concepts 

 

62 

complexity, particularly when handling nodes joining and leaving. Tapestry 
forwards queries to nodes closer to the target a single digit at a time. This requires 
nodes to maintain lists of nodes matching its own prefix but differing by the next 
digit and to do this for each prefix of its own identifier. A node 697512 would 
keep lists of nodes with prefixes 6x (where x is not 9) to forward to a node 
matching a 2nd digit of a query and lists up to 69751x (where x is not 2). 
Maintenance of these lists by all nodes in a dynamic network can be seen to be 
demanding. For example, a query for node 697512 could be forwarded from 
697892 to a “closer” node such as 697598 with 4 matching initial digits. 

3.7.3.5 Kademlia 

Kademlia is a peer-to-peer system to store and lookup key value pairs [13]. 
Kademlia keys are opaque, 160-bit entities and each peer has such an entity as its 
identifier. For two such 160-bit identifiers, Kademlia defines the distance between 
them as their bitwise exclusive or (XOR), i.e. closer nodes have more common 
bits in their prefix. Where d(x, y) is the distance between two points, d(x, x) = 0, 
so that d(x, y) > 0 if x != y. The use of XOR also means that d(x, y) + d(y, z) >= 
d(x, z). Kademlia is also symmetric in that d(x, y) = d(y, x) for all x and y, whereas 
Chord is not symmetric and Pastry is. Another important property of Kademlia is 
that it is unidirectional, i.e. for point x and for any distance D > 0, there is exactly 
one point y such that d(x, y) = D [13]. This means that all lookups for the same 
key will converge along the same path even if the lookups came from different 
nodes. This means that caching along the path will reduce the issue of hot spots, 
as the cached value can be returned for subsequent requests. 

In a fully populated binary tree of 160 bit identifiers, the distance between two 
identifiers is the height of the smallest subtree which contains both identifiers. If 
the tree is partially populated, the leaf closest to a given identifier x is the leaf 
with an identifier sharing the longest common prefix with that given identifier x. 
In the case of partially populated trees there may be empty branches giving more 
than one closest leaf. In that case Kademlia, flips the bits in x corresponding to 
those empty branches to give x’ and selects the leaf closest to x’.  



3.7 Peer To Peer (P2P) Systems  

 

63 

A node using Kademlia can find its closest peer nodes and route queries, while 
every message exchanged has information which can be used to update the 
address details for nodes. Its key benefits are: 

• it minimises the number of configuration messages required for nodes to 
discover each other, as this information is also carried in messages used to 
lookup keys, e.g. every message includes the sending node’s identifier. 
XOR is symmetric, so Kademlia peers will receive lookup queries from 
the same distribution of nodes that are in their routing tables and this also 
provides benefits if used with caching. 

• nodes can use metrics to route queries through low-latency paths, based on 
storing	⟨key, value⟩	pairs on nodes with identifiers “close” to the key. 

• it uses the XOR based routing algorithm from start to finish in locating 
nodes close to a particular identifier. 

• it avoids timeout delays from failed nodes by using parallel, asynchronous 
queries (not necessarily useful in a WSN). 

Figure 11 shows an example binary tree for Node 0011, with the subtrees of 
interest to nodes with identifiers 0011aaaabbbbccccdddd, i.e. those subtrees 
derived from changing a bit in the 0011 prefix. 

 

Figure 11 Kademlia Binary Tree Example 

Kademlia nodes keep a list of ⟨IP address,	UDP port,	Node ID⟩	triples for nodes of 
distance between 2i	and 2i+1	from itself for each 0	≤	i	<	160. These lists are termed 
k-buckets in Kademlia and they are sorted by time last seen. Lists are allowed to 



 Distributed System Concepts 

 

64 

grow up to a system defined limit of size k, with least recently seen entries 
replaced with the proviso that active nodes are not replaced by newer ones. This 
was based on behaviour seen in Gnutella, where it was noticed that the longer a 
node has been up, the more likely it is to remain up another hour. The value of k is 
chosen for a particular use case so that k	nodes are very unlikely to fail within one 
hour (the refresh period) of each other, i.e. the value of k is set according to the 
number of simultaneous failures anticipated in the refresh period, because after a 
refresh, a node has k closest nodes to it or every node within range if there are less 
than k nodes within range [13]. 

Kademlia uses four messages: 

• PING – this checks to see if a node identifier is available 
• FIND NODE – contains a target identifier which a node responds to with 

the ⟨IP address, UDP port, Node ID⟩ for the k nodes closest to that target 
identifier or all its nodes if it has less than k in its buckets. 

• FIND VALUE – contains a target key identifier to which a node responds 
with a value from an earlier STORE or the ⟨IP address, UDP port, Node 
ID⟩ triples for nodes as with FIND_NODE 

• STORE – this sends a key value pair to a node for storage 

On receiving a message, a node updates the times in the k-bucket for the sender’s 
node identifier and the contents of the bucket. A node identifier already in the 
bucket is moved to the list’s tail. A node identifier not in the bucket is inserted if 
the bucket is not full, i.e. holds less than k items. If the bucket is full, the least 
recently seen node is sent a PING message and if it responds, then it is moved to 
the tail of the list (as for any received message) and if not it is replaced with the 
sender of the message that started this process placed at the tail. It is expected that 
normal message usage between nodes will keep the buckets up to date, but a node 
will also refresh a bucket in which no identifier has been looked up in the last 
hour, by sending a FIND_NODE for a random identifier in the bucket’s range. 

A node wanting to join the network does a lookup for its own node identifier to a 
known node in the network, resulting in its identifier being inserted into that 
known node’s bucket, and receiving address triples for other nodes in the 



3.7 Peer To Peer (P2P) Systems  

 

65 

response. It continues informing other nodes about itself and adding entries from 
responses into its own buckets until no closer nodes can be found. 

Kademlia “node lookup” is the term for finding the k closest nodes to an identifier 
[13]. This begins with the initiating node picking α nodes (from its closest non-
empty k-bucket or if that bucket has too few it uses the α closest nodes in its 
buckets) and sending a FIND_NODE to each of them (can be done in parallel), 
where α=3 is suggested. It then recursively sends FIND_NODE messages to 
nodes it has learned about from previous messages, picking nodes it has not sent 
requests to. If this does not produce a node any closer than the closest already 
seen, the initiator resends the FIND NODE to all of the k closest nodes it has not 
already queried and this lookup finishes when it has received responses from the k 
closest nodes it has seen (possibly from more than one bucket). As per [13] using 
α = 1 this lookup algorithm resembles Chord’s in terms of message cost and the 
latency of detecting failed nodes.  

STORE operates in a similar manner, with STORE messages sent to the k closest 
nodes to the key. A node re-sends the STORE to refresh those values and a 
frequency of every hour is suggested, with a limit of 24 hours before a value is 
removed. 

FIND_VALUE is sent similarly to the k closest nodes, but it stops when any node 
returns the value. On a successful lookup, the requesting node also stores the 
⟨key,value⟩ pair at the closest node it observed to the key that did not return the 
value. Furthermore, the unidirectionality of the topology means that future 
searches for the same key are likely to hit cached entries before querying the 
closest node. It sets an expiry time in the cache exponentially inversely 
proportional to the number of nodes between the current node and the node whose 
identifier is closest to the key identifier, rather than using LRU eviction as it does 
not know how many values it should store.  

Kademlia must republish key-value pairs periodically for nodes which may join or 
leave (in the case of mobile or failing nodes) the network. Kademlia republishes 
each key-value pair once an hour. It does not do this by each of k nodes 
performing a node lookup followed by k-1 STORE messages every hour as this 
would be expensive, particularly as the number of nodes increases. It optimises 



 Distributed System Concepts 

 

66 

republishing by each node assuming that a STORE was also issued to the other k-
1 closest nodes and so this receiving node will not republish the key-value pair in 
the next hour. It is expected that the republish periods are not synchronised, so 
that only one node will republish a given key-value pair an hour. Another 
optimisation is for a node to refresh all k buckets, before republishing key-value 
pairs as it will be able to determine the k closest nodes to that key that are still in 
the network. When a new node joins the network, other nodes should issue a 
STORE to send relevant key-value pairs into the network, but this can be 
optimised to avoid redundant STORE messages by a node only sending a key-
value pair if its own identifier is closer to that key than the identifier of other 
nodes that it knows of. 

3.7.4 BitTorrent 

BitTorrent [12] is a protocol for efficiently distributing static data, primarily files, 
broken into pieces with a SHA-1 hash. It uses a URL to identify content and is 
designed to integrate seamlessly with the web. A metadata file (.torrent) is 
distributed to all peers with a tracker reference, the SHA-1 hashes of all pieces 
and a mapping of the pieces to files. A swarm is the set of peers taking part in 
distributing the same files. The tracker is a central server, which holds a list of all 
peers in the swarm, where a peer joins a swarm by asking the tracker for a peer 
list and then it connects to those peers. The use of a central server as a tracker, 
however, is a single point of failure and may create a bottleneck for publishers. 
For this reason, Trackerless Torrents were added and one of the approaches for 
this is a DHT based on Kademlia over UDP. BitTorrent refers to peers as being a 
client/server listening on a TCP port that implements the BitTorrent protocol, 
whereas it terms a "node" as a client/server listening on a UDP port implementing 
the DHT protocol.  

In the Trackerless torrent, BitTorrent peers include a DHT node, which holds the 
location of peers to download from using the BitTorrent protocol. The key is the 
info-hash (the hash of the metadata), which uniquely identifies a torrent and the 
value is a peer list of the peers in the swarm, containing the contact information 
for those peers [111].  



3.7 Peer To Peer (P2P) Systems  

 

67 

BitTorrent wants only “good” nodes in the routing tables, where that means it has 
responded to a query from a node within the last 15 minutes or if it has ever 
responded to one of its queries and has sent it a query within the last 15 minutes. 
It is deemed questionable after 15 minutes of inactivity and bad after failing to 
respond to multiple queries. It uses buckets as per Kademlia, with the 15 minutes 
being used to determine the last seen recency, i.e. a node is selected to be pinged 
and possibly replaced if it has not sent or received any messages in the last 15 
minutes. Similarly, buckets that have not been changed in 15 minutes should be 
"refreshed."  

Peers supporting the DHT trackerless torrent set the last bit of the 8-byte reserved 
flags in the BitTorrent protocol handshake. On receiving a handshake indicating 
the remote peer supports the DHT, a BitTorrent peer sends a PORT message. On 
receipt of this, that peer should ping the DHT node on the received port and IP 
address of the remote peer and then handle the response as per Kademlia. 

BitTorrent uses the KRPC protocol consisting of binary encoded dictionaries sent 
over UDP and there is no retry. There are query, response, and error messages. 
For the DHT protocol, there are four queries: PING, FIND_NODE, GET_PEERS 
and ANNOUNCE_PEER:  

• A PING query has a 20 byte "id" string containing the sender’s node 
identifier and the response has an "id" containing the node identifier of the 
responding node. 

• FIND_NODE has an "id" containing the node identifier of the querying 
node, and "target" containing the identifier of the node sought by the 
query. The receiver should respond with a key value pair of key "nodes" 
and value as a string containing the compacted node information for the 
target node or the k (8) closest good nodes in its own routing table. 

• GET_PEERS retrieves the peers associated with a torrent info-hash. It has 
"id" for the node identifier of the querying node and "info_hash" for the 
info-hash of the torrent.  

o If the queried node has peers for the info-hash, it returns a key  
value pair of key "values" and a value consisting of a list of strings. 
Each string holds compacted peer information for a single peer.  



 Distributed System Concepts 

 

68 

o If the queried node has no peers for the info-hash, it returns a key 
value pair of key "nodes" and “value” of the compacted node 
information for the k nodes closest to the info-hash in the queried 
node’s routing table.  

o a "token" key is always included in the response for use in a future 
ANNOUNCE_PEER query.  

• ANNOUNCE_PEER - announces that the peer, controlling the querying 
node, is downloading a torrent on a port. It has four arguments: "id" 
containing the node identifier of the querying node, "info_hash" 
containing the info-hash of the torrent, "port" containing the port and the 
"token" received in a GET_PEERS response. The queried node receiving 
this ANNOUNCE_PEER must verify that the token was previously sent to 
the same IP address as the sender of this ANNOUNCE_PEER query and 
should store the IP address of the querying node and the supplied port 
number under the info-hash in its store of peer contact information. 

Each BitTorrent peer announces itself with the distributed tracker by looking up 
the 8 DHT nodes closest to the info-hash of the torrent and sends an announce 
message to them. Those 8 nodes add the announcing peer to the peer list stored at 
that info-hash as above. 

It is important to note that a BitTorrent peer uses the DHT to know more about 
“good” peers close to it, i.e. it favours the storage of peers close to it and does not 
store all peers. Peers that are deemed “good” (have sent a message to this peer 
within a specified period as above) are kept in the bucket on the assumption that 
good peers are long-lived and should not be replaced so long as they remain 
“good”. It builds up its knowledge of close peers by starting with a single bucket 
and splits that bucket when it is full of “good” peers and it is determined that a 
new peer is to be added. That determination is based on whether the new peer 
identifier is in range of the identifier for the peer holding the bucket and the first 
identifier in the next bucket, except in the case of it only having one bucket where 
a split is done into buckets for identifiers 0 to 2159 and 2159 to 2160. Otherwise the 
split is done with a new bucket having a middle identifier of the existing bucket as 
its first identifier and peers allocated to each bucket according to whether their 
identifier is less than or greater than that middle identifier. If the determination 
above deemed that the peer is out of range, then the current bucket will not be 



3.8 P2P in Wireless Sensor Networks  

 

69 

split and an existing entry will not be replaced. It is also important to note the lazy 
nature of entry replacement, i.e. if a bucket is full of bad peers, the bad entries are 
only replaced when a new add is received for an identifier within range. 

BitTorrent uses PING to find nodes close to a peer when: 

• adding to a bucket in order to determine what to do if the bucket is full, i.e. 
it pings a peer in the bucket that has not sent a message to this peer in the 
specified period and removes it from the bucket if it does not reply.  

• starting up, when a peer sends ping  
• refreshing a randomly selected peer identifier 

It is worth noting that BitTorrent extended the messages in Kademlia and 
introduced its own separation of node identifier and info-hash, but that it retained 
the essentials of the node lookup and associated buckets. It also changed the 
refresh behaviour and set k to 8 as this was considered sufficient to reduce the 
probability of that number of nodes disappearing from the network within the 
refresh periods. 

3.8 P2P in Wireless Sensor Networks 

Section 3.7 showed P2P systems that can act in an autonomic, self-organising and 
dynamic manner (with no centralised authority). The following sections consider 
some P2P approaches that have been used in WSNs. 

3.8.1 WSN as a Peer via a Gateway to Mobile Network 

One approach is to use P2P as a means of interacting between sensor networks 
and gateways to a wider network. In an example of this approach [112], the sensor 
network is viewed as one peer in the P2P network and is represented by its 
gateway in the mobile network, allowing users to access each network over the 
mobile network. This is a similar topology to the network routing based RPL 
approach, but it also provides a Sensor Network Abstraction layer and defines 
sensors using a sensor profile consisting of an attribute profile for basic sensor 
features such as type and a data profile for the data formats. It provides P2P 
protocols for the sensor networks to publish available services, query all peer 



 Distributed System Concepts 

 

70 

sensor nodes and to search for available services using a Service Discovery 
protocol. The Sensor Network Abstraction layer provides a higher layer 
application with access to all sensors in a given WSN and an object based API to 
communicate with and control a sensor or group of sensors. 

This approach is interesting as it confirms that sensor characteristics can and 
should be catered for using abstractions and supporting layers, but the assumed 
use of a sink to interface to an external network limits the scalability and 
deployment of the overall network (unless all the gateways shared networking and 
sensor abstractions). 

3.8.2 Distributed Hash Tables in WSNs 

The lookup times achievable by DHTs suggest that their use may be appropriate 
in sensor networks. Use of DHT based approaches in WSNs has been argued 
against for reasons of difficulties in topology mapping (the nodes that DHT 
connects logically as neighbours may in fact be physically far apart), the overhead 
of route maintenance (among all pairs of nodes), sensor names and their 
identifiers and the computational cost of computing DHTs. These arguments can 
be countered as follows [113]: 

• the P2P overlay topology can be aligned with the physical topology (using 
virtual rings) so that the P2P neighbour is the physically closest node.  

• Virtual Ring Routing (VRR) allows a DHT-inspired routing protocol to sit 
directly on top of the link layer, where nodes are organized into a virtual 
ring and every node maintains a small number of routing paths to its 
neighbours in the ring [114]. 

• it is usually a requirement in real deployments to assign a globally unique 
identifier to nodes (as also required by DHT) for reasons of network 
management/configuration and debugging (and expediency for data 
collection, event handling), rather than their being named using 
data/application attributes. It is important, however, to minimise the 
address size of network-wide unique sensor network addresses (possibly 
by assigning addresses dynamically from small, locally-unique addresses). 

• DHT computation is within the capabilities of simple WSN nodes. 



3.8 P2P in Wireless Sensor Networks  

 

71 

DHTs are location independent, unlike Geographic Hash Tables (GHTs) and so 
are more suited to applications where a priori knowledge of geographic boundary 
areas is not available or where the areas themselves change. 

3.8.3 Tiered Chord (TChord) 

Tiered Chord (TChord) [113] is a Distributed Hash Table (DHT) based P2P 
overlay for sensor networks with the goal of eliminating sinks and proxies. Chord 
was chosen for its predictable lookup time, its relative simplicity, its robustness as 
illustrated earlier and its efficient handling of concurrent node joins and failures 
(even though it is structured, which is often seen as an impediment in handling 
high levels of dynamicity in networks).  

TChord used a SHA-1 hash on the unique 64 bit MAC address of each sensor 
node for its node identifier. It also generated metadata keys from the data stored 
on the nodes and hashed them to create key identifiers. TChord simplified the 
mapping of Chord onto Sensor networks by categorising nodes as master and 
slave nodes. The master nodes are connected in a ring with all messages routed 
clockwise. Every ring has a master node to hold information on its slave nodes 
and other O(logN) master nodes (in its finger table like Chord). Master node 
information for the other master nodes in the ring is updated on nodes leaving or 
failing and a master node’s data is replicated on neighbouring masters.  

A received query is handled by use of the finger table as with Chord, but using the 
finger table on the master nodes rather than the power of 2 approach used in 
Chord. If a master node or its own slaves cannot resolve the query, it uses its 
finger table to locate the master node with that key and forwards the query to the 
master node storing the data or to the master node closest to the target according 
to the finger table. In order to improve simplicity, slave nodes are not connected in 
a ring and do not hold information on their neighbours. Consequently, a slave 
node will check its data on receiving a query and if this does not match, it 
forwards the query to its master node. TChord was designed to co-exist with the 
SensorNet Protocol (SP), which sits between the network and data link layers to 
enable data-processing at each hop and not just at end points [115].  



 Distributed System Concepts 

 

72 

3.8.4 Service and Resource Discovery using P2P 

Scalable service and resource discovery is a key part of being able to deploy 
applications and services in IoT. In CoAP, service discovery is the process used 
by a client to discover the end-points available on a server. A self-configuring P2P 
based architecture is proposed in [116] to automate this discovery with the aim of 
removing the need for human intervention. This architecture distinguishes 
between local and global service discovery. Local service discovery works within 
a single network and global service discovery works across different, perhaps 
geographically separate, networks. It was experimentally tested on Contiki for 
local service discovery and used a Java implementation for global service 
discovery. This paper also considers a number of previous service discovery 
approaches using RESTFul approaches or grouping nodes with border routers and 
a central border router, but they consider P2P to be the most scalable and robust. 

This architecture uses a special “IoT Gateway” node at the boundary between a 
local WSN and a larger P2P overlay network. This gateway gathers information 
on the resources in that WSN using CoAP. The performance of global service 
discovery is dependent only on the size of the P2P overlay and not of the entire 
IoT containing all the nodes. The authors of [116] state that the approach of every 
peer being in the overlay is not suitable for IoT, as many nodes are constrained in 
terms of their processing capabilities. The IoT Gateway implements IP gateway 
and CoAP to HTTP proxy functionality, but also provides caching to reduce load 
on WSN devices and protects the constrained nodes in the WSN from denial-of-
service attacks.  

The Distributed Location Service (DLS) used in its global service discovery is 
based on a DHT, which provides a name resolution service for the binding 
between a URI for a resource and the information on how to access that resource. 
Interestingly this information includes an expiration time. In addition, they 
provide a Distributed Geographic Table (DGT) to locate information near a 
geographic location. This uses a structured overlay where geographically close 
nodes are neighbours in the overlay network. Their implementation of the local 
service discovery on Contiki in linear and grid topologies showed that the query 
time on the server was almost constant, but that the time for a client to receive a 
response depended heavily on the number of hops involved. The global service 



3.8 P2P in Wireless Sensor Networks  

 

73 

discovery was a logarithmically increasing function with the number of peers, 
indicating the scalability of their approach. 

A similar view regarding the limitations of constrained devices is expressed in 
[117], where the WSN and external P2P network are treated separately due to the 
“ad-hoc, costly and difficult-to maintain, scale and extend” nature of WSN 
applications. A programming abstraction based on “feedback loops” to describe 
self-managing behaviours is proposed in an architecture with some more powerful 
nodes being in both the WSN and in the P2P overlay. It does not, however, 
consider large scale deployment, energy efficiency, discovery or provide detailed 
design or implementation or results. 

3.8.5 TinyTorrents 

TinyTorrents is an interesting example of an approach where a gateway is used to 
bridge nodes in a WSN to nodes in a wider network. In this case, the WSN nodes 
are represented as peers in the BitTorrent network. TinyTorrents aims to provide 
"reliable, redundant and distributed dissemination of WSN data across the WSN 
and Internet" [118]. It allows end-user applications to access, consume and 
aggregate data from multiple WSN sources. A gateway node runs the 
TinyTorrents software and a BitTorrent client such as Vuze [119]. This gateway 
can then communicate with a WSN node using TinyTorrents and communicate 
with peers in the BitTorrent network using BitTorrent. The integration with Vuze 
allows remote BitTorrent clients to access the data in the WSN.  

It uses its own specific routing layer (TinyHop) to provide reliability in the 
wireless network and to reduce energy use. TinyHop assumes that any node can 
act as an on-demand sink, where a sink is a gateway that can integrate with a 
gateway to the Internet. This is done in order to share the traffic load and avoid 
excessive load on nodes that may result in those nodes running out of power and 
so cause network partitions. TinyHop uses flooding, but with specific measures to 
reduce overhead and prevent cycles. 

The TinyTorrents P2P protocol is used to communicate between two peers. 
TinyTorrents uses concepts from BitTorrent for the transfer of files and it retains 
the use of a torrent file. A torrent descriptor holds the number of pieces, the 
checksums for each piece, the unique key for the torrent and the length of the file 



 Distributed System Concepts 

 

74 

to be transferred. This key may indicate attributes such as the type of data (e.g. 
temperature), rather than a straight SHA1 hash as in BitTorrent. Application 
agents give access to the torrents in the WSN, e.g. those related to temperature 
readings, and may filter or aggregate the data returned from the WSN. A 
TinyTorrents peer holds a bit vector to indicate the file pieces it holds and 
exchanges this with other peers rather than exchanging messages for each piece it 
has. TinyTorrents uses a tracker node in the WSN, which holds the address of 
each peer in a particular torrent and a node can get this peer list from the tracker. 
Testing showed that the node doing the initial seeding of the file bears most of the 
load and a strategy was necessary to adjust a node's seeding duty, e.g. to maximise 
battery life [118]. Tests also showed the load on the tracker node was relatively 
insignificant, but the cost of the initial flooding was significant. It was also found 
that caching file pieces on intermediate nodes on a route reduced the number of 
messages sent, with potential benefits in reducing power consumption on nodes.  

It can be said that TinyTorrents' findings on caching data and its use of a torrent 
approach are interesting, but it uses file pieces rather than a more natural query for 
sensor data. Furthermore, it shows the potential of a full integration of a WSN 
with an external application layer as part of an overlay network, albeit it is limited 
to BitTorrent. Its use of a centralised tracker proved, however, to be problematic. 
They did not pursue a DHT based tracker, believing it to be inefficient in sensor 
networks based on [120]. That paper, however, focuses on wireless ad-hoc 
networks and presents a DHT using clusters of nodes supported by position based 
routing, where it uses the hash to determine the cluster to hold a value (unlike the 
WSN case where the data starts on a source node). Furthermore, while Kademlia 
existed at the time of the TinyTorrents paper, the possible use of Kademlia as a 
trackerless torrent in BitTorrent is not shown. 

3.9 Cache Algorithms 

Caches are used to improve performance by serving data from faster local 
memory rather than from slower disk memory in the case of OS paging or from 
remote servers in the case of Web Caching (and proxy caches). Given the volume 
of sensor data, the limits on bandwidth and possible constraints on response time, 
in IoT in general and the cost of sending data over a wireless network in a WSN 



3.9 Cache Algorithms  

 

75 

in particular, the use of caches may be appropriate and this section considers a 
number of cache techniques. 

Important considerations in the design of caching algorithms are the nature of 
what is being cached, i.e. how frequently is it updated, what size it is, what 
consistency is required, where to cache and when the data is to be removed. 
Strong cache consistency is usually required in paging or in a cache supporting a 
database. Web caches generally use weak consistency to reduce the network 
related overheads. This is often realised using a TimeToLive (TTL) set using the 
HTTP Expires header and where a request for a document in the cache longer than 
the TTL results in a HTTP IfModifiedSince GET request. 

The data to be removed is determined by the cache replacement policy, which 
aims to maximise the use of available resources. The success of a cache algorithm 
in a given scenario is generally measured by the hit ratio, i.e. how many requests 
are served from cache. In a sensor node, the amount of memory will be 
constrained, so the cache replacement policy is important in terms of managing 
the cache to achieve a reasonable hit ratio, without requiring a large overhead in 
code size or processing time. Three main approaches for cache replacement are 
used [121]: 

• Applications provide future access hints, e.g. based on a query to be 
performed.  

• Explicit detection of access patterns unfriendly to cache algorithms like 
Least Recently Used (LRU) and which results in a switch to other 
replacement strategies.  

• Tracing and history of accesses, which are only useful if past accesses are 
likely to be reflected in future accesses. 

Rather than selecting entries to remove on some access history, alternative 
strategies include Random Replacement (RR) or expiring cache items after a time. 
An example of expiring cache items can be seen with Redis [78], which is used as 
an in-memory cache. In Redis 2.x, a key is actively expired when a client tries to 
access it and the key has timed out. For expired keys that will not be accessed, it 
periodically(10s) tests 100 random keys with an expiry time. All the expired keys 
are deleted from the keyspace and it selects another set of random keys if more 



 Distributed System Concepts 

 

76 

than 25 keys were expired, continuing until less than 25 expired keys are found. 
This assumes that these random samples represent the whole key space. 

The following sections consider use-based cache, web cache and paging cache 
replacement algorithms. 

3.9.1 Use Based Cache Algorithms (LRU, LFU, MRU) 

The Least Recently Used algorithm replaces the LRU item, i.e. the one which has 
not been accessed for the longest time. It uses a list of items ordered by their last 
access time, with the LRU item at the bottom. Its simplicity makes it widely used, 
although there is a cost to maintaining the order on every access. It is suitable for 
workloads showing locality, where an item is accessed shortly after a previous 
access, i.e. there is a small reuse distance. It does not distinguish a recently added 
(and never accessed) cache entry from one accessed frequently but not recently. 
This reduces its effectiveness when there is less locality, e.g. a scan accessing a 
series of items once only has no hits, but flushes other pages which may have 
been accessed again. 

To improve its effectiveness, LRU/k gives priority to items based on their kth 
most recent access, i.e. the normal LRU is LRU/1 using only the most recent 
access. LRU/k does, however, require log N work (for N pages) to manage a 
priority queue for each page access. Another LRU variant is Pseudo-LRU (PLRU) 
used in CPU caches with large associativity where LRU's implementation cost is 
too high. 2Q [122] is another of the LRU family of algorithms and was designed 
to provide constant overhead per access as in LRU, while achieving a similar page 
replacement performance to LRU/k. 2Q places a page (or its reference) in the A1 
FIFO queue on its first access. If the page is accessed while on A1, it is termed 
hot and moved to the main Am queue, which is LRU. If it is not accessed while 
on Am, it is considered cold and removed. 

The Most Recently Used (MRU) algorithm removes the most recently used items 
first and as such it is most useful when the older an item is, the more likely it is to 
be accessed, e.g. it outperforms LRU for random access or repeated scan patterns. 

In contrast to LRU, the Least-Frequently Used (LFU) algorithm increments a 
reference for count on access and removes first those items with the lowest count, 



3.9 Cache Algorithms  

 

77 

i.e. used least often. It is not efficient to implement with a single linked list as 
removal or insertion would be O(n) and has the disadvantage that a previously 
frequently accessed item may remain in the cache a long time and not be replaced 
by more recent items. 

3.9.2 Web Cache Approaches 

Web caches and proxies are concerned with managing caches in order to ensure a 
good hit ratio and to achieve reduced access latency and better bandwidth usage. 
LFU-Aging extends LFU with the recency of last access of a cached document to 
overcome the LFU issue above. LFU with Dynamic Aging (LFUDA) uses a 
dynamic aging policy, where a cache age factor (less than or equal to minimum 
value in the cache) is added to the reference count when a document is added to or 
updated in the cache to avoid documents that were previously popular and have a 
high count staying in the cache too long [123].  

The Greedy Dual-Size (GDS) policy takes into account size and a cost function 
associated with fetching objects [124]. The GDS-Frequency variant of the Greedy 
Dual-Size includes frequency of reference in a key for more popular, smaller 
items. Its key also includes the size and the cache age factor to handle previously 
popular documents to reduce the LFUDA issue above. 

The Squid web proxy [125] uses an LRU list with a scheduled process to 
periodically remove objects. It also keeps cache disk usage between low and high 
water marks with a LRU threshold adjusted according to the cache size proximity 
to a watermark, i.e. it measures how long it would take to fill the cache at the 
current request rate. It also uses GDS-F and LFUDA. 

3.9.3 Paging Algorithms 

Paging algorithms tend to be simple to reduce the overhead so as to not adversely 
affect performance. Their relative simplicity, low overhead and small code size 
make them worth consideration for use in resource constrained nodes. 



 Distributed System Concepts 

 

78 

3.9.3.1 CLOCK Algorithms 

The original CLOCK algorithm [126] uses a circular list of fixed sized pages to 
avoid moving data when re-arranging the list. A page reference bit is set when a 
page in the list is accessed. This circular list can be considered as a clock, where a 
hand of the clock points to the oldest page in the list, as shown in Figure 12.  

 

Figure 12 Clock Algorithm 

On a page fault, the reference bit of the page at the clock hand is checked. If it is 
not set, the page is replaced by the faulting page, otherwise it is reset and the hand 
moves through the list clearing page reference bits until it finds a page reference 
bit of zero and replaces that page. The clock algorithm approximates LRU and 
avoids its ordering of the list, but shares its lack of scan resistance. 

The WSClock Algorithm [127] is a variant where the task’s virtual time and a 
page’s last reference time are used as part of determining if the page should be 
replaced. GCLOCK [128] has a counter per page which is incremented if a page is 
hit and the clock hand sweeps the pages decrementing the counters until selecting 
a page with a zero count to be replaced. Linux used page aging, where the sweep 
increased the page age by a constant if its reference bit is set and decreased it by a 



3.9 Cache Algorithms  

 

79 

constant if not, but setting these values has proven problematic across workloads. 
CLOCK-Pro [129] is another variant that manages a list on page faults and also 
keeps track of a limited number of replaced pages to overcome the LRU problems 
with scan and loop. CLOCK-Pro uses the replacement policy principle from LIRS 
(Low Inter-reference Recency Set) [130] of replacing a page with a high reuse 
distance (the time in terms of the number of other distinct pages accessed since its 
last access) even if it is recent. A single list of pages is ordered so small recencies 
are at the head and large recencies at the tail. It uses three hands to sweep the list: 
one pointing to the list tail (the last hot page), one pointing to the last cold page 
and a third pointing to the last cold page in a test period. Cold pages remain in the 
list for a test period, becoming hot if accessed during that period. The test period 
is the largest recency of the hot pages, unlike the constant threshold used in 2Q 
and CAR to distinguish hot and cold pages.  

Clock with Adaptive Replacement (CAR) [131] is self-tuning and incorporates 
frequency with two clock lists, where T1 contains pages with “recency” and T2 
contains pages with “frequency”. New pages are inserted into T1 and move to T2 
based on a test of long-term utility or frequency. It also uses a list with history of 
recently evicted pages from T1 and T2 to adaptively determine the list sizes. It has 
a cost close to CLOCK, but with similar performance to ARC and better scan 
resistance than LRU. 

3.9.3.2 ARC 

ARC [132] uses two variably-sized lists (with a combined size of twice the 
number of pages) to hold the history access information for referenced pages. One 
list holds cold pages (touched once recently) and the other holds hot pages 
(touched at least twice recently). The key idea is that the space allocated to the 
pages in each list is managed based on which list had the most recent misses using 
a ratio of cold/hot page accesses. It does not handle the locality of pages in the 
two lists, so a page that is regularly accessed with a reuse distance a little more 
than the memory size may get no hits. 



 Distributed System Concepts 

 

80 

3.9.3.3 MultiQueue (MQ) 

MQ [133] has m lru queues, where queue i contains pages that have been seen 
between 2i times and 2i-1 times recently. It increments the page frequency on a 
hit and the page becomes the MRU in the relevant queue with an expire time in 
that queue using a lifetime parameter which is tuned based on a temporal 
distribution. On each access, the expire time is checked for the LRU in each queue 
and it is moved to the next queue’s MRU if expired. Hence, MQ has constant-time 
overhead, but this check for m queues per request means it has higher overhead 
than LRU, ARC, and 2Q 

3.9.4 Summary of Cache Algorithm Performance 

LRFU [121], LRU-K [134] and MQ [133] have been found to be more expensive 
than LRU, while LIRS [130] and ARC [132] have a cost similar to LRU. 2Q 
[122] has been shown to be very sensitive to its parameters and may perform 
much worse than LRU. CAR has a cost close to CLOCK, but with similar 
performance to ARC and better scan resistance than LRU.  

3.9.5 Caching in Wireless Sensor Networks 

Extending node battery life is often addressed by managing node duty cycles, but 
the use of caching data on nodes in WSNs has the potential to reduce energy use 
across nodes by reducing transmissions (and hops) and also to support local data 
analysis. Adding a cache to WSN nodes is, however, problematic owing to the 
following factors: the limited node memory to hold cached data, the limited node 
processing power, the limited period for which data is useful and the lack of a 
system architecture that easily incorporates cached data. Furthermore, returning 
cached data from a node closer to the requesting node than the source node will 
reduce the number of transmissions required and so reduces interference effects. It 
will also reduce the response time, particularly when requests from multiple nodes 
are answered using the same cached data. 

CoAP supports a simple cache in an endpoint or an intermediary, using freshness 
and validity information in the CoAP responses. The cache allows an earlier 
response message or a stored response for the current request. The origin server 
provides an expiration time using the Max-Age Option and an ETag Option in the 



3.10 Summary  

 

81 

GET request allows an origin server select a stored response to use and to update 
its freshness. 

Caching has also been investigated for WSNs in the context of co-operative 
caching to serve data with low latency and to reduce energy consumption, where 
each node constructs responses to queries by cooperating with its neighbours, but 
with little focus on the cache replacement algorithm itself. A key aspect of this co-
operative approach is to identify which nodes will implement the co-operative 
caching decisions, e.g. which node makes forwarding decisions or which nodes 
get the requests for data [135]. Some approaches calculate a Node Importance 
Index, requiring nodes to hold their neighbours' connectivity state and so lack 
robustness [136].  

Data replication and caching strategies have been considered in Mobile Ad-hoc 
Networks (MANETs) [137], but some schemes [138] require knowledge of 
network topology and involve periodically moving data, both of which would 
reduce their effectiveness in a WSN, especially if data access patterns vary or 
nodes join/leave. Static approaches to cache placement [139] are similarly limited 
in the WSN scenario. COOP [140] keeps a table of previous requests and the 
nearest relevant cache, using flooding to find the data only in the case of a miss. 
The hybrid cache for cooperative caching in MANETs [141] does not require the 
selection of special nodes and shares data only on the path between source and 
requester. When forwarding data, a node may cache either the data or the path 
according to the data size, TTL and number of hops to be saved. 

In Directed diffusion [74], intermediate nodes may cache recently sent data 
messages or aggregate data, although the emphasis is on the routing and filtering 
of data and the matching of interests rather than cache implementations.  

3.10  Summary 

This chapter has outlined the potential of Big Data and Cloud services to handle 
the volume of IoT data and to be able to scale to allow a range of universally 
accessible services to use that data. This is particularly required to support the 
emergence of fog and edge computing to address bandwidth and latency issues 
with the use of Cloud services in certain scenarios. This chapter has shown that 



 Distributed System Concepts 

 

82 

this potential is, however, only being partially realised with isolated, independent 
solutions and limited interoperability or orchestration. 

This chapter presented an overview of a number of approaches to distributed 
systems that have been shown to provide interoperability and orchestration, such 
as tuple spaces, including research on the use of tuple spaces in WSNs indicating 
their suitability as a distributed system to use in IoT, particularly its use of a few 
simple primitives and decoupling. It also presented P2P, particularly DHTs, in 
some detail to illustrate the range of approaches and the scale achieved. It has also 
shown that previous approaches to using P2P in WSN range from considering a 
more powerful node in the WSN as a peer in a wider network to the approach of a 
P2P overlay network, including all the sensor nodes in a WSN. It also discussed 
other approaches such as distributed databases, directed diffusion and their 
limitations, e.g. their limited flexibility in terms of scenarios they were designed 
for.  

Similarly, a number of cache algorithms were presented in detail due to the 
potential benefits of caching in IoT, while recognising the difficulties of including 
caching in a constrained WSN device. 

The next chapter analyses the research outlined here and presents a set of 
requirements for the type of interoperable and scalable IoT that includes WSNs as 
discussed in chapter 2. It then explains the design choices made using those 
requirements and uses that analysis to present a holistic architecture for IoT. 

 



 

4 Analysis, Architecture and Design 

The expected growth in the number of devices in IoT outlined in earlier chapters 
presents the challenge of creating an architecture able to scale the technology 
down to resource-constrained WSN nodes and to scale up to an overall IoT with 
many billions of devices [10]. This will require seamless interoperability at the 
device, network and service levels with sets of abstractions. Such seamless 
interoperability will allow IoT to become a realisation of Mark Weiser’s vision of 
ubiquitous computing where tiny networked computers become woven into 
everyday life [11] and in which WSNs will become extensions of the IoT 
infrastructure. It would also be in line with the vision for fog and edge computing 
where they take full advantage of Cloud and Big Data to allow sensor data and 
services to be universally available. 

One view [142] considers that systems using applications that make use of 
resources (storage, cycles, content, human presence) available at the edges of the 
Internet is P2P if it meets the test “Does it treat variable connectivity and temporal 
network addresses as the norm?” and “Does it give the nodes at the edges of the 
network significant autonomy?”. This definition and its inclusion of the role of 
edge nodes makes this broad view of P2P relevant in the fog computing scenario, 
e.g. Figure 8 from the OpenFog Consortium [95] illustrates the diverse range of 
devices, services and roles from the edge to the Cloud.  

To address this challenge, this chapter presents a set of architectural requirements 
and an analysis of the prior research presented in earlier chapters. The variety of 
sensor, user applications and network scenarios for IoT and WSNs as outlined 
previously, require the communication protocols and abstractions to be flexible 
and able to support a range of sensor types and application requirements. These 
application requirements range from infrequent scheduled requests for limited 
amounts of data to frequent (and possibly asynchronous) requests for large 
amounts of data and for actuation functionality on those devices.  



 Analysis, Architecture and Design 

 

84 

This chapter then describes the resulting layered architecture and abstractions for 
the roles taken by services on (WSN) nodes and in the Cloud, supported by a new 
P2P protocol, termed the Holistic Peer to Peer (HPP) protocol. This approach uses 
data sharing and co-ordination concepts from tuple spaces, P2P protocols 
(particularly Freenet and JXTA), and the Kademlia DHT as well as a novel 
caching algorithm, called CacheL, for resource constrained devices. 

4.1 Analysis 

4.1.1 Architectural Lessons 

A key lesson that can be learned from the success of the RESTFul architectural 
style is that consistent abstractions are required to simplify the development and 
deployment of nodes and applications in order to achieve an interoperable 
architecture. The layered Eclipse and OpenFog architectures present a valuable 
consideration of the range of actors and scenarios in IoT now and in the future, 
but they distinguish between the different entities with separate abstractions and 
do not provide a consistent set of constraints (as in the RESTFul approach) or 
abstractions. Similarly, they do not specifically consider entities as having a peer 
relationship as BitTorrent does. This leads to the need for edge proxies with 
different architectures and abstractions, reducing the ability to achieve large scale 
[67]. 

The RESTFul Architectural Style has proven its scalability and flexibility. Given 
scale, flexibility and interoperability are desired in IoT, the work in this chapter is 
based on a similar architecturally driven approach, beginning with a set of 
abstractions for a holistic architecture and protocol. Furthermore, the scale and 
autonomy possible with P2P, as demonstrated by BitTorrent, suggest the use of 
P2P in IoT is appropriate. 

This use of an integrated approach to combine a number of concepts to realise the 
vision of IoT has been expressed elsewhere as “algorithms ...are becoming key, 
but above and below the “system waist” represented by middleware. Below it, 
algorithms for optimizing low-level system concerns (e.g., power consumption), 
possibly in concert with the application goals, are more and more important…... 
Above it, algorithms for automatically mining and exploiting the wealth of “big 
data” harvested by mobile users are rapidly becoming one of the most exciting 
challenges of future computing” [143] 



4.1 Analysis  

 

85 

4.1.2 Architectural Requirements 

The objective of the proposed holistic architecture is to simplify the development, 
configuration, scalability and deployment issues of WSNs. This will then provide 
an environment that enables a wider deployment of WSNs and easier interfacing 
to other networks, while also providing consistent abstractions to enable the easier 
development of generic and more powerful applications to take advantage of the 
sensor data.  

To meet this objective and derived from analysis of applications discussed in 
section 2.7 and the analysis of research presented in earlier chapters, the following 
requirements are defined for a holistic architecture: 

• Req-1. It must clearly define the possible roles of nodes. It is unreasonable 
to demand that all nodes have equal functionality, as this limits the ability 
to handle more powerful nodes. Nodes will, however, require a minimum 
level of functionality, e.g. responding to a request for its capabilities or 
forwarding data to a neighbour. 

• Req-2. It must provide abstractions for the basic operations required of a 
sensor node and the services using it, which map easily to a range of 
heterogeneous devices and higher level services. 

• Req-3. It must be independent of particular node hardware and must 
handle a range of node functional capabilities. 

• Req-4. It must provide simple, consistent APIs for developers of device 
and application software. 

• Req-5. It must provide a consistent means to exchange sensor information 
independent of the underlying technology and provide specific support for 
the modelling of sensor data to allow integration into higher level systems, 
be it fog or cloud based, possibly using RESTFul interfaces such as the 
existing OMA LWM2M. 

• Req-6. It should support a sensor node informing other nodes and services 
of its sensing and platform capabilities.  

• Req-7. It must be able to handle small, static networks and allow the 
system to adapt as the network grows/changes due to mobility (as users or 
their nodes join/leave) or encounters other networks, supporting 
applications discovering and collaborating without a centralized 



 Analysis, Architecture and Design 

 

86 

coordination facility. As pointed out earlier, the key to such a network is 
the ability to identify and to route to peers, regardless of the underlying 
layers or network (WSN or otherwise). 

• Req-8. It must use protocols that are sufficiently simple for low capability 
devices to participate, according to their capabilities. 

The need for such a holistic approach can be seen in a remote healthcare 
monitoring scenario, where sensors connect to a central gateway in a house over a 
wireless network. The gateway is responsible for storing the data locally and 
uploading data to a central health monitoring site, possibly via a central 
gateway/proxy and cloud based services to analyse the data [144]. Such solutions 
often require sensor application and proxy design to handle data integration, 
network integration and security concerns. This lack of unified abstractions will 
become more problematic when healthcare scenarios such as Wireless Body Area 
Networks are deployed, e.g. IEEE802.15.6 allows up to 64 nodes on a body in a 
star network via a central co-ordinator node (which will connect to an external 
gateway). 

An important part of the holistic approach is to eliminate specialised edge 
nodes/sinks and proxies as this can be considered to be important in achieving 
really large scale [67]. It will be required to integrate with other systems, such as 
OMA LWM2M and fog components as per Req-5, but this should be achieved in 
a more consistent manner by having a holistic approach. 

These requirements can be compared to the common principles described for 
WoT in section 2.6 as follows, although WoT is specific to Web technologies, 
unlike Req-1 to Req-8: 

• Req-2 is a more general statement in terms of abstractions than in the 
WoT statements that the WoT architecture should enable mutual 
interworking of different eco-systems using web technology, as well as 
that the WoT architecture must enable different device architectures and 
must not force a client or server implementation of system components. 

• Req-4 and Req-2 are more general than the WoT statement that the WoT 
architecture should be based on the web architecture using RESTful APIs 



4.1 Analysis  

 

87 

and the WoT statement that the WoT architecture should allow to use 
multiple payload formats which are commonly used in the web. 

• Req-5 is similar to the WoT statement that the WoT must provide 
interoperability across device and cloud manufacturers.  

• Req-7 is similar to the WoT statement that the WoT architecture should be 
able to be mapped to and cover all of the variations of physical device 
configurations for WoT implementations. The WoT statement that the 
WoT must be able to scale for IoT solutions that incorporate thousands to 
millions of devices is more specific than Req-7 regarding scale. 
WoT is more specific in stating that it should provide a bridge between 
existing and developing IoT solutions and Web technology based on WoT 
concepts and that WoT should be upwards compatible with existing IoT 
solutions and current standards. 

• Req-1 and Req-6 regarding roles and the discovery of node capabilities 
are not specifically covered in the WoT common principles, but two roles 
are called out in the WoT abstract architecture – thing and consumer. The 
functional requirements do also cater for device descriptions and for 
discovery mechanisms based on the Thing Description as outlined in 
section 2.6. 

• Req-8 specifying the support of constrained devices is not specifically 
covered in the WoT common principles, but constrained devices are 
considered in some places, e.g. the use of a digital twin to run a less power 
constrained device or the use of a directory to hold Thing Descriptions 
(TDs). 

The comparison above of the requirements defined for a holistic architecture and 
those set for WoT indicate a shared view of the importance of interoperability and 
scalability. It also shows that the requirements for the holistic architecture are 
sufficient and more general, except when being specific regarding constrained 
devices, whereas those for WoT are very specific to the use of Web technologies 
and bridging. 

4.1.3 WSN Software Development Requirements 

Programming WSN applications and nodes is time-consuming, error-prone and 
difficult requiring a high level of knowledge about low level hardware and 



 Analysis, Architecture and Design 

 

88 

network technologies. This is usually done using a vendor specific environment 
for particular hardware, with a set of tools and libraries for handling the low level 
aspects. While acceptable in specific domains, this limits the integration of WSNs 
into the type of the seamless, context aware environments envisaged in pervasive 
computing and IoT, where applications/services are interested in the sensed 
information itself and not the underlying hardware or wireless network. 

Software Engineering concepts, new methodologies and abstractions to improve 
the development process and ease the integration with other systems are required 
in order for WSNs to be more widely deployed [143]. These would allow 
developers to move from the current code-and-fix process, which is reliant on the 
primitive constructs provided by the types of operating system and environments 
described in chapter 2 and also on the skills of developers.  

In terms of the architectural requirements outlined above, Req-2, Req-4 and Req-
5 will provide the higher layer abstractions and consistency to make the software 
development process less reliant on the specifics of a given wireless network, 
hardware device, OS or development environment. Req-1, Req-3, Req-6, Req-7, 
Req-8 will then allow the software developed to handle the heterogeneity in a 
range of scenarios and so achieve the interoperability desired in IoT. This will 
help developers to more easily create software for multiple platforms, without 
having to learn many different abstractions and APIs and also remove the need to 
maintain separate versions of software for each device platform and service. 

4.1.4 System Model 

Based on the earlier overview of the types of WSNs and nodes, a broad model for 
a WSN and IoT is assumed. This model consists of sensor nodes using bi-
directional links in a multi-hop manner and nodes in a WSN being able to 
communicate over the Internet with more powerful nodes and services in the 
Cloud. No assumptions are made about the size of the network. Elements in the 
proposed holistic architecture, such as node message transfers, cache algorithm, 
tuple-space store, must not impose undue communication overhead, e.g. the cache 
algorithm does not require flooding and can handle the dynamic nature of the 
WSN in terms of the source and destination of requests. No assumption is made 
regarding use of a static topology and there is no requirement for data relocation 



4.1 Analysis  

 

89 

or recalculation to update topology related data when nodes join/leave. It is 
assumed that nodes may have different capabilities; some nodes will be able to 
cache data or issue node identifiers and other less capable nodes will only act as 
sources (or sinks) or forwarders of data and more capable nodes will cache or 
aggregate data. Data will be retrieved from the source node in the absence of a 
cache. No assumptions are made about the routing algorithm used and the only 
assumption is that nodes respond to messages according to their capabilities and 
that data may be cached as it is forwarded, preferably peer to peer. While such 
forwarding may be as a response to a request, data may also be pushed from 
nodes. 

4.1.5 Security Considerations 

Security will be based on the requirements of the particular application and where 
it is deployed, similar to the approach taken by JXTA. The HPP protocol will not 
require the use of a specific authentication, security or encryption technology. The 
format of HPP messages will, however, enable the carrying of metadata 
information, such as digests or certificates or credentials, e.g. in the form of an 
opaque token that may be required in every message. HPP messages may also be 
encrypted and signed for confidentiality and refutability, but this will use 
whatever methods are appropriate for the particular scenario and may use security 
in the lower layers of the stack as per 2.4.1. This security may be per device or per 
user on that device, as required by the node(s) determining access. 

Furthermore, and in line with the decentralised model of P2P, this use of security 
will be controlled by the nodes and the groups themselves. The required security 
will be determined during the initial exchange of messages as per 4.5.5.1, 
although this will require new work to define the management policies and their 
distribution to the (usually bootstrap) peers. This checking of security at the initial 
exchange will enable supporting the mobility of devices and users.  

The use of roles within the holistic architecture (and the exchange of device 
capabilities) also provides architectural support for specific security 
considerations, e.g. roles could be defined and shared for specific security 
purposes such as those foreseen in the more powerful nodes at the edge of the 
network in fog computing. A further point of interest is that a P2P architecture 



 Analysis, Architecture and Design 

 

90 

means that nodes can only make outbound connections, which may be required in 
certain security scenarios. 

4.1.6 Findings from the Review of Prior Work 

Earlier chapters have shown that many approaches have been investigated and 
implemented to support WSNs, ranging from protocols such as CoAP and MQTT 
to Middleware solutions to Cloud specific SDKs, with a range of data storage and 
dissemination approaches. Those chapters have also shown that there is an 
absence of broad, simple application layer abstractions and so applications are 
often bound to a particular WSN technology, e.g. the use of a Zigbee device 
combined with use of a specific Zigbee profile for an application area. In 
particular, a number of approaches have separated the WSN and the rest of the 
IoT due to the expected limitations of the constrained WSN devices, e.g. those 
approaches outlined in section 3.8.4, which is against Req-2 and Req-5 above. 

Earlier chapters have also shown that many current middleware platforms focus 
on abstracting the device and sensor functionality to achieve interoperability at the 
level of information models, as in OMA LWM2M. There is less emphasis on 
creating a seamless device to application environment for IoT or the orchestration 
or co-ordination required in this distributed environment. This has resulted in ad-
hoc solutions often based on a Cloud integration for a particular service. The 
following sections consider the particular aspects of prior work presented in 
chapters 3 and 4, which are relevant to the design of the proposed holistic 
architecture. 

4.1.6.1 Information Models 

Section 2.5 showed that while OMA LWM2M [53] provides solutions for end to 
end interoperability across different networks and devices, it only offers limited 
higher level service abstractions beyond client/server. It also showed that the rate 
at which sensor data changes, or is available, may not be that frequent and is 
known by the originating sensor. If this information was advertised, it could be 
used by the application to match its requests to this rate and also to decide 
whether it is useful to cache this data (and how long to cache it) at other nodes, 
perhaps closer to the requesting application. Section 2.5 also showed that the 
Common Information Model (CIM) models sensors well, but does so verbosely 



4.1 Analysis  

 

91 

with a rich information model. As such it is a useful information model to 
demonstrate (or not) the usefulness of the HPP abstractions, even if it is not 
specific to WSNs.  

Thus, the functionality required by a management application is the same in a 
WSN as in a more traditional sensor application and the use of such information 
models is appropriate in a WSN. Hence, the emphasis should not be on redefining 
the use of sensors or the sensors themselves, but in doing so as efficiently as 
possible given the WSN constraints and in a way which can map easily to formats 
used by the higher level applications. 

4.1.6.2 Data Distribution 

Chapter 3 showed that tuple spaces enable a simple and consistent API for a 
distributed system, possibly including the use of objects as per Javaspaces, which 
also provides for leases in the tuple space to simplify its management. Section 3.6 
showed TeenyLIME and LIME as example uses of tuple spaces in WSNs 
providing benefits in terms of simplicity and decoupling. TeenyLIME could run 
on constrained devices, but only a node’s local tuple space is shared with the 
nodes within communication range. LIME extended the local tuple space into a 
federated tuple space into which tuples can be added/removed, but only when the 
nodes are in range of each other. LIME was implemented in Java meaning it could 
not run on a constrained node. Directed diffusion described in section 3.2.2 
provided an interesting approach, particularly the routing of data and the 
expression of interest and use of an interest cache. It is, however, tightly coupled 
to a query on demand data model where applications can accept aggregated data 
and this limits its applicability to those scenarios.  

Middleware approaches such as Sensation allowed WSNs to collaborate, but the 
approach of developing a proxy for each network and the requirement for a priori 
configuration of network profiles (to conceal the underlying heterogeneity of 
WSNs) limit their use for a seamless, interoperable architecture. Also, agent based 
middleware approaches that use a set of services and a language to compose 
sensing tasks from the services are suitable for monitoring moving and dynamic 
phenomena, but require particular node computational capability due to their 
complexity and the code mobility reduces node lifetime due to the energy 
consumption of the additional network traffic. 



 Analysis, Architecture and Design 

 

92 

Based on this, the use of tuple spaces with a lease to help its management can be 
used as the basis of a data dissemination approach that provides both a simple and 
consistent API and can provide the required decoupling for a distributed system. 
The challenge is to ensure that this can be implemented on a constrained system 
without undue overhead and to ensure that it can make the development of 
software easier. 

4.1.6.3 Caches in WSNs 

The limited available storage on nodes means that only limited amounts of data 
can be held on nodes, requiring careful cache management, while the limited 
processing power and memory for code mandates the use of a simple cache 
management algorithm. The fact that local analysis of node data is often most 
useful for a recent time period also suggests that caching is appropriate in WSNs, 
particularly given the move towards fog computing. Facilities for caching are 
included in CoAP, particularly for more powerful nodes, and caching was 
considered in directed diffusion for interests and co-operative caching has been 
investigated, but caching has not been considered more fully as a part of an 
architecture across a range of node capabilities in the WSN and beyond it.  

This thesis proposes that the key requirements for a cache on a WSN node are: 

• Simple to implement and efficient in CPU and memory use.  
• Use of a single abstraction for data storage. There should not be separate 

stores for the node's own data, remote node data and lease management. 
This is in order to reduce the code size and also to provide consistency to 
developers. 

• A lease associated with cache data. The lease is set and renewed by the 
source node as the data may only be useful for a limited period, e.g. only 
the latest copy may need to be held by a node. Permanently stored data 
will have an infinite lease. 

Use of a lease allows the cache to be used as an intrinsic part of a holistic 
architecture, because a lease can provide features desirable in a distributed system, 
such as self-management. For example, the leases for cached data from nodes that 
have left the network will be removed from the cache on lease expiry. 



4.1 Analysis  

 

93 

Furthermore, that cached data may be any node data, including sensor readings or 
DHT node information. 

In order to meet these requirements, this thesis includes the design of the CacheL 
algorithm for constrained nodes which uses leases as part of its cache replacement 
policy. From the cache algorithms presented earlier, the Clock paging algorithm 
was the inspiration for CacheL based on its relative simplicity making it easy to 
extend and adapt, i.e. it does not require the use of sort (like LRU) and does not 
require additional communication between nodes, as in several cooperative 
caches.  

The CacheL algorithm is a simple cache algorithm that can provide an acceptable 
hit ratio, within the limited memory for code and data on constrained nodes. As 
well as allowing self-management, its use of a lease also provides the capability to 
represent the validity of the sensed data, as the lease can be set or renewed based 
on the time that the next reading will be made available. 

4.1.6.4 Peer to Peer 

Chapter 3 outlined the self-organising, decentralised and distributed nature of P2P 
systems. The self-organising characteristic allows easier management and 
deployment, particularly in dynamic or collaborative scenarios where nodes join 
or leave due to mobility or variations in link quality. IEEE TG6 for Body Area 
Networks identified P2P as useful for gaming and social networking applications 
with their dynamic and collaboration requirements [64]. The decentralised 
characteristic of P2P systems makes them potentially robust to faults and scalable 
to large numbers of nodes. The distributed nature of P2P means that peers can be 
physically and logically distributed reflecting the reality of the distributed IoT 
environment and providing the option of data redundancy by storing in more than 
one node or shared processing (as required in fog and edge computing). Section 
3.8 showed examples of P2P in WSNs and the possible benefits of P2P’s self-
organisation, decentralisation, distribution and caching. The example in 3.8.1 
showed the use of a gateway as a sink for sensors into a wider mobile network 
[112] and showed the value of abstractions and supporting layers to model sensor 
characteristics in a WSN. It also showed that the use of a sink to interface to an 
external network limits scalability and deployment, unless all the gateways shared 



 Analysis, Architecture and Design 

 

94 

networking and sensor abstractions. This suggests the use of a more decentralised 
P2P approach and that the potential of a pure decentralised, loosely structured 
self-organising P2P network, as exhibited by Freenet [145], has not been realised. 
Chapter 3 also showed that Freenet provided “implicit” caching as responses are 
cached and this potential to reduce network traffic would be valuable in a WSN.  

P2P systems may also consist of nodes that are used to form a content/service 
network, termed an application-level overlay. This aligns with the desired nature 
of IoT and WSNs described earlier. A P2P overlay network potentially allows 
applications running on top of various other network and data link layers to not 
require any knowledge of the underlying implementation, identifying and routing 
to peers, regardless of the underlying network. This is required as per Req-5 and 
in order to reduce the difficulty of developing software for constrained WSN 
nodes, particularly in the context of the changing and diverse range of devices, 
services and lower layer protocols. Also, note the earlier discussion of RPL 
suggested that a single routing standard is unlikely to be able to handle the IoT’s 
expected range of device heterogeneity and application requirements [45]. 
Coupled with the range of information models, new roles, services and devices 
expected from fog computing, this means that IoT requires a solution not just at 
the routing layer. For this reason, an architecture above the routing layer using a 
P2P overlay is proposed. 

4.1.6.5 Distributed Hash Tables 

The main purpose of sensor networks is to collect data about some phenomena of 
interest (and sometimes to actuate a device), with requirements on latency and 
lookup time depending on the application. As per section 3.7.3, the lookup times 
achievable by DHTs suggest that the use of such techniques may be appropriate in 
sensor networks. While section 3.8.2 has countered arguments against the use of 
DHTs in WSNs, it is important to recognise the potential issues in using a DHT as 
the system scales, e.g. the cost of maintaining the DHT in a dynamic network as 
nodes join/leave can become a performance issue. Examples of P2P systems using 
DHTs include Chord [108] and Pastry [109], which differ in how they build and 
maintain their routing tables as nodes join and leave. They rely on a somewhat 
fixed topology to assign data to peers and subsequently look up, e.g. Chord uses a 



4.1 Analysis  

 

95 

one-dimensional space to assign Ids for both keys and nodes. BitTorrent [12] uses 
a DHT based on Kademlia [13]. 

Kademlia’s use of a single routing algorithm is different to the approaches such as 
Chord or Pastry, where one algorithm is used to get close to the desired identifier 
and a different one is used for last few message hops. Pastry and Tapestry are 
similar to the XOR symmetric behaviour in their first routing phase, but require 
secondary routing tables for	the	subsequent	phase	with	its	consequent	
overhead	[13].	Chord does not share the symmetric property and this limits its 
ability to use information from the queries it receives. As per [13], this also makes 
Chord’s routing tables rigid as each entry in a node’s finger table must store the 
precise node proceeding an interval in the identifier space. It is unlikely, however, 
that Kademlia’s use of parallel queries to k nodes to avoid timeout delays from 
failed nodes will be appropriate in a WSN.  

Kademlia is chosen to be the basis of the DHT for the P2P overlay in the proposed 
holistic architecture for the following reasons: 

• As per Req-7, a scalable, robust approach that can cater for both the WSN 
and wider Internet use case is required. Kademlia has demonstrated 
scalability and robustness in the case of its use in BitTorrent as a tracker 
for large numbers of nodes including the handling of nodes joining or 
leaving. 

• Kademlia’s use of a single XOR based single routing algorithm makes it 
simpler to implement than Chord, Pastry and does not require secondary 
routing tables. 

• Kademlia minimises the number of configuration messages required for 
nodes to find about each other, as this information is also carried in 
messages used to lookup keys. 

• Kademlia’s symmetric routing algorithm facilitates the use of caching. 
• A node knows much more about closer nodes than distant nodes, as the 

key space represented grows with the power of 2 with the distance. 
• Kademlia nodes can use metrics to route queries through low-latency 

paths, based on a concept of storing ⟨key, value⟩ pairs on nodes with ids 
“close” to the key. 



 Analysis, Architecture and Design 

 

96 

The size of the Identifier in Kademlia (20 bytes) may seem large for use in a 
WSN, but it does allow identification of a WSN node as for all other nodes and 
also beyond the WSN itself. Furthermore, as pointed out by [113], real 
deployments often require assigning nodes a globally unique identifier, e.g. to 
support network management, and so this can be provided by a DHT and not 
considered an overhead of a DHT. The identifier size can also be reduced in some 
cases, e.g. by assigning smaller locally-unique identifiers for use locally within a 
sensor network. Furthermore, DHT computation is within the capabilities of 
simple node platforms.  

It is also worth noting that BitTorrent extended the messages in Kademlia and 
introduced its own separation of node identifier and info-hash, but that it retained 
the essentials of the node lookup and associated buckets. It also changed the 
refresh behaviour and set k to 8 as this was considered sufficient to reduce the 
probability of that number of nodes disappearing from the network within the 
refresh periods. This could be used to address the overhead of 
republishing/refreshing data and the number of buckets, which reduces the 
overhead of the routing tables and the number of messages exchanged. This could 
make Kademlia more suitable for WSN use. 

4.2 CacheL Algorithm 

As discussed in section 4.1.6.3, the successful use of a cache enables reduced 
communication and so in a WSN could reduce the response time, extend the 
battery life of WSN nodes and reduce interference effects due to the use of fewer 
hops to send messages. 

CacheL is a low overhead replacement algorithm that performs both lease and 
cache management. Its novelty lies in its intrinsic use of leases in a cache 
replacement policy for WSN data inspired by the Clock paging algorithm and its 
relative simplicity. This means that it does not require the use of sort (like LRU) 
and does not require additional communication between WSN nodes, as in several 
cooperative caches. This resulted in the CacheL algorithm being relatively 
straightforward and suitable for use in constrained WSN nodes.  



4.2 CacheL Algorithm  

 

97 

The introduction of a lease to cache management in WSNs is important as it 
provides for self-management, e.g. to handle WSN failures where if a node fails 
then leases on its data will not be renewed so the data will be removed from the 
cache on expiry, freeing valuable storage space. It also provides the capability to 
represent the validity of the sensed data, as the lease can be set or renewed based 
on the time that the next reading will be made available. Incorporating lease 
management into the replacement process also removes the need for a separate 
periodic process to manage leases and to expire items. e.g. using time buckets to 
hold items according to lease times and updating these when the bucket period has 
passed.  

A source node requests a lease from the node it sends its data to, but the lease is 
granted by the caching node and it can use the size of its cache, the item's size and 
the lease requested to determine the lease granted, e.g. it may not cache items 
above a certain size at all or do so for a shorter period than smaller objects. The 
lease is granted in milliseconds and is not tied to the actual time on the source or 
caching node. The lease is decremented based on time differences using the time 
on a node and is renewed by the source node, based on when it received the 
granted lease response. Hence, there is no need for a global time across the WSN 
to support the cache lease. 

CacheL's commonality of code and metadata for cache and lease management 
reduces code size and memory use, as well as making the code simpler. 
Furthermore, allowing the periodic update of leases and expiry of items fits well 
with the WSN use case of running only when the node is awake. 

CacheL is designed for resource constrained nodes to manage items in a node’s 
datastore as a cache. CacheL extends the Clock algorithm by adding a lease to 
each item cached and using this lease in its cache replacement policy. CacheL 
combines application hints (leases set by the source node give a hint when the 
item can be removed) and history based on access. The lease has priority over 
access count in determining item replacement, because the source expects an item 
to be cached for the period granted and treating access count equally would lead 
to removing entries with long leases. A lease can be renewed by the data source, 
so that it is not just a TimeToLive on the data. Unlike paging algorithms, CacheL 



 Analysis, Architecture and Design 

 

98 

does not assume a fixed cache size with fixed size buffers and it updates metadata 
associated with items cached instead of setting the reference bit. 

CacheL does not keep lists sorted by access count or time, but replaces the first 
one or more items it finds with expired leases or which have not been accessed a 
set number of times (similar to CLOCK-PRO’s use of access counts). It manages 
leases by iterating through items on a specific event, such as adding an item or a 
time epoch passing. CacheL can also handle items without a lease and evicts them 
simply based on access count, similarly to the CLOCK algorithm. Items that are 
accessed frequently, but whose leases have expired can be handled according to a 
policy, i.e. whether to always remove on expiry or to retain them in the cache if 
accessed. 

CacheL holds the entries to be managed in a list, but unlike LRU this list does not 
have to be held in any specific order. It also has at least one other list/queue, a 
pending queue of item references whose lease is due to expire and it also holds 
their access count. This means that replacement is not just based on count like 2Q. 
This also has similarities to MQ, but is simpler and done per access as with MQ, 
but also on a periodic basis. The algorithm sweeps through a main queue until it 
has found enough items to evict (using count or memory size). This sweep is done 
when an attempt is made to add to the cache or using the fronthand and backhand 
time periods, where the fronthand is less than the backhand.  

It operates using two sweeps of lists, each performed at their set frequency, as 
shown in Figure 13. The backhand sweep is primarily used for lease management, 
but also moves items according to count. This sweep iterates through all the main 
queue or until it finds one or a specified number of items to remove. It puts items 
on the pending queue (or a count queue) based on their remaining lease or deletes 
them if they were not accessed since the previous sweep. This sweep through the 
main queue decrements the access count, but does not clear it to give some 
precedence to items with multiple accesses. The previous accessed time is not 
stored as that is implicitly handled by the periodic sweeps. It holds a reference to 
the last item checked on a sweep to start the next sweep. 



4.2 CacheL Algorithm  

 

99 

 

Figure 13 CacheL Algorithm Lists Sweep 

The fronthand sweep iterates through the pending queue. Items on this queue are 
due to expire soon, so this sweep removes them, unless they have been accessed 
or had their lease renewed, and decrements the access count (effectively setting 
the time for an item to be accessed before it will be deleted). This pending queue 
sweep will be called on each add and removes the specified number of entries 
with expired leases. Items are added to the tail of this queue, but it is searched 
from the head increasing the time an item can remain on the queue if items expire 
ahead of it. Items are not held in order of their remaining lease or recency of 
access as with LRU. 

The use of this pending queue means that items with short leases or leases that are 
about to expire will be removed first, which is reasonable as the source node 
setting a lease should know how long this data should remain. Items may stay in 
the cache longer than the lease, however, as the lists are only checked on a sweep 
to save processing overhead.  

A lease threshold is used to select items to put onto the pending queue and by 
default is set to the time before the next backhand sweep - increasing it may 
remove items that still have some lease remaining. The period between fronthand 



 Analysis, Architecture and Design 

 

100 

sweeps and a backhand sweep could be tuned using the size of the pending queue, 
as the time between an item being put on the pending queue on a backhand and its 
removal on the next fronthand allows for lease renewal (or access). 

The following simplified code illustrates the operation of the algorithm. Other 
code stores the times of the last fronthand and backhand (since_fhand, 
since_bhand) to determine which sweep to run. Storing the times of the last 
fronthand and backhand also means the sweep can be run if it is due, when a node 
that had been asleep wakes up. 

doSweep() { 
 if (since_fhand) //based on time period or counts 
    if pending Queue not empty  
        deleted = pendQSweep(toDelete) 
 // Optimisation added for lots of long leases 
 if (min_lease – lease_threshold > since backhand) 
     return 
 if (since_bhand || // based on time period or counts 
     deleted < toDelete))  
     deleted = mainQSweep(toDelete)   
} 

 

The number of items (or size of memory) to free can be set by the caller, rather 
than just inserting the new page at the selected location on a page fault. It returns 
the number of entries removed, so the caller can decide whether to allow a new 
item to be added or to explicitly delete an item, rather than wait for leases to 
expire. Deleting an item may occur outside cache management, so its reference 
will either be removed immediately from the pending queue(s) or lazily rely on 
the lease to expire as it will not be renewed. Similarly, items are either 
immediately moved from the pending queue on lease renewal (or on access) or 
lazily on the next sweep. 



4.2 CacheL Algorithm  

 

101 

mainQSweep() { 
  iterate mainQ starting from last_checked item  
  last_checked = this item 
  decrement access_cnt 
  if (lease set) { 
    decrement lease           
    adjustLeaseByCnt 
    if (lease expired){ 
      if (access_cnt == 0) 
          remove 
      else  
          move to pendQ 
    } else if lease < threshold   
          move to pendQ // else stays on mainQ 
    } // end of lease expired case 
    update min_lease if lease < min_lease 
    return 
  } // end of lease set case 
    
  if access_cnt <= 0  
      remove 
  else if access_cnt == 1  
      move to pendQ // or a separate cntQ     
  else // if access_cnt > 1 
      leave on mainQ, // more precedence than in Clock 
} 

 

pendQSweep() { 
 for each item in pendQ  
  decrement access_cnt 
  if lease set { 
      if (lease expired) 
          remove 
      else if lease > lease_threshold // was renewed 
          move to mainQ behind hand pointer   
          // has full sweep to be accessed.   
      else if (lastAccessTime == 0) 
          if access_cnt <= 0,  
              remove // not accessed while on pendingQ 
          else // (access_cnt > 0 so was accessed) 
              move to mainQ // allows lease renewal 
    } // end of lease case 
 } 

 

 

 



 Analysis, Architecture and Design 

 

102 

The following points are noteworthy aspects of CacheL behaviour: 

• unlike LRU (and similarly to Kademlia), it is valid for CacheL to not 
cache an item if no leases have expired, so the sweep could iterate through 
the entire main queue giving an O(N) worst case. This cost is reduced by 
holding the minimum lease of an item in the main queue and not doing a 
sweep if that lease has not expired. Also unlike LRU, a sweep is done on 
an add or a time period rather than updating ordered lists per access.  

• large, infrequently accessed objects with a long lease may remain cached 
ahead of those accessed more often with short leases. That should be 
handled by not granting a long lease to large objects when they are added 
and by increasing the lease based on count during a sweep. 

• for items without a lease, the algorithm uses access count only. In this 
mode, it operates like the CLOCK algorithm, but with the advantage of a 
pending queue; the main backhand sweep sets a last-checked attribute for 
a cached item and decrements access count, while the pending queue 
sweep removes items that have not been accessed. It would be possible to 
implement a separate count-based list for items without leases or the 
sweep approach could be easily extended to check other parameters, e.g. 
the number of hops data has taken. In the no lease case, the algorithm 
resists scan patterns once the cache is populated, as it adds to the end of 
the pending queue and the main queue is not sorted. 

4.3 Holistic Architecture and Abstractions 

The key principle underlying the architectural approach is that all WSNs are 
primarily about delivering sensed data and events to one or more applications 
(periodically, on-demand or asynchronously) or delivering commands to actuators 
from applications.  

This principle forms the basis for a more holistic approach allowing WSNs to 
support a greater variety of users with diverse requirements and a greater variety 
of WSNs, each with their own underlying technology. The approach is termed as 
holistic in that it considers the entirety of the flow of data between sensor and 
service(s), supported by lower layers, rather than being driven by each layer 
specifying its own behaviour in isolation. The need for such a holistic 



4.3 Holistic Architecture and Abstractions  

 

103 

architectural approach can be expected to increase as new information models, 
roles, services and devices emerge from fog computing and other initiatives such 
as Industrie 4.0. It is worth noting that the Industrie 4.0 initiative considers an 
end-to-end approach and although it is not a single initiative, a number of shared 
factors such as interoperability, virtualization, decentralization, real-time 
capability, service orientation and modularity can be identified [146], all of which 
(except virtualization) are part of the architecture proposed in this thesis. 

The need for such a holistic approach is echoed in [147] by some of the original 
authors of TeenyLime, where they point out the rich libraries used in mobile and 
wireless platforms focus on “abstracting the device features, such as on-board 
sensors and access to the network. Properly managing distributed context, despite 
the conspicuous literature on the topic, is still central to mobile applications, for 
which ad hoc solutions are often employed and no prevailing approach has 
appeared”. They attribute this situation to the dominance of the RPC derived 
invocation-based paradigm, reflected in current service-oriented architectures, 
“whose tight coupling is intrinsically at odds with the fluid, dynamically-changing 
context enabled by mobility”. 

The holistic architecture meets the requirements defined above by using a number 
of service abstractions to model the different roles a service can perform, defined 
software layers including an object infrastructure to support information models 
and a simple protocol, which is based on Peer to Peer (P2P) concepts. In terms of 
the architecture shown in Figure 14 and detailed in later sections, requirements 
Req-1 and Req2 are provided by the data model service layer. Req-3 is provided 
by the local instrumentation layer. Req-4 is provided by the object space layer. 
Req-5 and Req-6 are provided by the HPP protocol. Req-7 is provided by the 
P2P Overlay network built using HPP. Req-8 is met by all the layers. In terms of 
the broad software development requirements outlined in section 4.1.3, the 
approach proposed in this work has adopted a simple set of APIs, abstractions and 
defined software layers, which both Linda and RESTFul style approaches have 
shown to be of benefit to developers. 



 Analysis, Architecture and Design 

 

104 

 

Figure 14 Node Architecture 

The holistic architecture consists of the following layers shown in Figure 14 and 
all of which meet the requirement of being able to run on constrained sensor 
nodes: 

• Data Model Service Layer - represents nodes and services (on node or 
Cloud) using defined roles based on capabilities, in order to be 
independent of particular node hardware and handle a range of node 
functional capabilities. It must also be independent of a particular data 
model and yet provide a simple and flexible API for a data store that 
allows it to hold data that can be used by different higher-level 
applications and services. This is achieved by the underlying object space 
and its simple object API. 

• Object Space Layer - a data store modelled as an object space to hold its 
own data (from the local instrumentation layer) or data it has cached from 
remote nodes. 



4.3 Holistic Architecture and Abstractions  

 

105 

• Local Instrumentation Layer – a layer to map the hardware or OS specific 
functions on a sensor device to the object space layer, i.e. to represent the 
sensor’s own data in the object space, just as for data from remote nodes. 

• Device Instrumentation Layer – the device specific layer to interface with 
its OS or hardware. 

• hpp_endpoint represents the peer service’s communication endpoint, with 
a HPP channel per peer interaction, such as a TCP connection, to hide the 
specific network layer implementation details. The service code is only 
aware of the hpp_channel and hpp_endpoint and will not have to be 
modified for a new network other than for configuration settings.  

These layers may not all exist in a given node, depending on its role (defined as a 
combination of the defined roles), based on its capabilities. A node uses the HPP 
protocol to exchange messages with other sensors and services. While the 
architectural layers are not dependent on the HPP protocol itself, that protocol is 
sufficiently simple for low capability devices to participate and it provides a 
consistent means to exchange sensor information independent of the underlying 
technology. The term instrumentation is used here to refer to the sensor data 
provided by the node (and not instrumentation for management of the node itself). 

Furthermore, Figure 14 shows the data model service layer providing a higher 
level abstraction for node data and its use of the object space. It also shows the 
separation of remote peer data and local data and how this architecture, 
particularly the object store, allows for a cache to hold data from the local node 
and data from remote nodes.  

The data model, object space and local instrumentation layers also treat an 
object’s key and non-key properties/attributes separately, as many information 
models use keys to identify object instances (e.g. CIM) or table rows (e.g. SNMP 
or HBase). It is also because resource constrained devices often set keys when the 
class is created, which can be allocated then, whereas non-key data in an instance 
changes and may be read by a dynamic getter function. 

4.3.1 Service Abstractions 

Fundamentally, WSNs exist to provide sensor data and events (and actions for 
transducers, actuators) to consumers of such data as efficiently and reliably as 



 Analysis, Architecture and Design 

 

106 

possible. This requires service abstractions to support the use or integration of 
such data (e.g. by domain experts analysing sensor data) and low level 
abstractions that simplify gathering and communicating the data between sensor 
nodes and higher level application.  

The data model service layer provides roles for the type of services involved in 
the end to end flow of data and it exists in order to insulate the application 
developer from the network and node specifics. It defines nodes in terms of their 
fundamental role with respect to the data model and data flow, with the following 
defined roles (and more may be added for particular purposes, e.g. for security as 
discussed in 4.1.5): 

• DM_SINK_SRV (receives data from peers and optionally informs its 
peers about data it is interested in using a Notify message) 

• DM_SOURCE_SRV (has sensors and sends data to its peers) 
• DM_FORWARDER_SRV (will pass messages to other services) 
• DM_STORE_SRV (provides intermediate storage for data from remote 

peers, such as historic data) 
• DM_AGGREGATOR_SRV (aggregates data from peer services) 
• DM_MATCHER_SRV (provides results of advanced matching queries).  
• DM_BOOTSTRAP_SRV (provides an identifier for the node in the DHT) 

A node could play several roles according to its resources. For example, a 
constrained node may act only as a DM_SOURCE_SRV sending its sensor data in 
response to requests or unsolicited and it may not even store its own data or 
forward requests that it receives from other nodes. Also, a node may dynamically 
remove its capability as a DM_FORWARDER_SRV if low on remaining power. 
Note for example that the role of a DM_SOURCE_SRV aligns with the non-
storing mode outlined in RPL and DM_FORWARDER_SRV aligns with storing 
mode. 



4.3 Holistic Architecture and Abstractions  

 

107 

 

Figure 15 Holistic Architecture 

Figure 15 shows the full end-to-end relationship of a number of HPP nodes, 
having different capabilities and roles, i.e. a DM_SOURCE_SRV without an 
object space that cannot hold remote data and one that can and also a 
DM_FORWARDER_SRV that does not provide any sensor data and so does not 
have a device instrumentation or local instrumentation layers. It also shows how 
nodes may forward data to a DM_SINK_SRV in a Cloud or remote data centres, 
where that DM_SINK_SRV exchanges HPP message and provides the same 
simple API in front of HBase that it does for the object space elsewhere. This can 
also allow sensor nodes and high level applications to exchange their capabilities 
and interests, so a node could set its sensing and communications to meet the 
response requirements based on the received interests, e.g. a sensor may be able to 
report every 15 minutes, but an application may only want an hourly report, so the 
sensor need only actually send a message every hour. 



 Analysis, Architecture and Design 

 

108 

The data model service layer also provides a rich set of matching capabilities for a 
query, i.e. it can match on key attributes, non-key attributes or a wild card. 
Matching is implemented in the data model service layer and not the object 
library, as that library is transparent to the contents of the objects in it. 

Note that fog and edge computing can be supported architecturally in these roles 
as nodes may perform actions based on events or external input or possibly 
aggregate the sensor data, for when aggregation and analysis may be required 
close to the source. For example, a sensor testing for hazardous gases must react 
to major events based on timely local analysis of its own and neighbouring sensor 
readings (current and for a past period) and also forward data to a centralised, 
probably Cloud, system for longer term storage and more detailed historical 
analysis. 

4.3.2 Object Space 

Inspired by the simple operations in Linda and Javaspaces and the decoupling 
benefits of a shared tuple space, this work developed an object space library to 
provide a simple object-like infrastructure suitable for implementation on resource 
constrained devices with object functions to support a simple shared object store 
and associated API. It is used to store locally instrumented data and data received 
from other nodes for aggregation or other purposes, as well as DHT data. The 
object store is non-prescriptive about how it is used to hold classes and instances, 
except that it requires the use of a template to hold the type of each attribute of the 
object and its methods. TeenyLIME [101] has shown the usefulness in WSNs of a 
tuple space approach. The object library is, however, not reliant on a Java runtime 
environment and has been implemented in C. 

An object structure represents an object and is held in the object store, with a 
separate associated template. Each object has a lease to determine the duration the 
data is to be held in the store allowing for the space to remove objects if leases are 
not renewed, similar to concepts in Javaspaces. The need to manage memory use 
on constrained nodes without adding significant CPU or memory overhead for 
code or data and the use of a lease in the object space suggests the use of CacheL 
for implementing the object store, particularly on constrained nodes. 



4.3 Holistic Architecture and Abstractions  

 

109 

The template and instance for an object are stored separately, in order to support 
objects that represent a class (i.e. do not have instances and only need to be stored 
once, even if instances are stored from remote nodes) and to allow a range of 
object encodings. A node can add a template defining the information model and 
the names of the objects it supports to its local space and sends an add message to 
remote nodes (selected based on the DHT) for them to cache that data or it could 
just add objects immediately. For resource constrained devices it also offers an 
efficient way of transferring them to other nodes, where the template (or a 
reference) can be sent once to another node prior to the encoded object. Templates 
are also used to define node capabilities on a model/object basis (i.e. to specify 
which properties of a standard object are instrumented). The actual definition of 
the template is transparent to the object store, although the implementation uses a 
specific key value pair based definition. 

The object library implementing the object space is not reliant on a Java runtime 
environment and has been implemented in C, with the following main API 
functions: 

• object_add()  
• object_take()  
• object_get_by_handle() for direct access,  
• object_get_by_name() 
• object_get_instance() 
• object_lease_renew() 

4.3.3 Local Instrumentation (li) Layer 

This layer hides the platform specific sensor implementations on a particular node 
and provides get()/set() functions and method prototypes for node functionality 
such as power off. The local instrumentation (li) layer supports local data and 
provides an abstraction above the device specific layers to map to the underlying 
node functions or data. 

This layer allows developers to take advantage of efficient vendor and device 
specific features to access sensor data, such as reading a value from a register or 
an API call like get_sensor_reading(), and also allows the use of C language 
features such as pointers to reduce memory usage. Figure 14 also shows the 



 Analysis, Architecture and Design 

 

110 

separation of remote and local data, which allows the roles identified above to be 
implemented, i.e. data to be transferred or stored for forwarding to another node is 
held directly in the object space (usually as key value pairs), whereas local data 
makes use of underlying hardware facilities, unless it is static and can be held in 
the object space.  

From an information modelling perspective, it is important to note that it allows 
the implementation of only those attributes supported by the node (with per 
property structures), where the li_class_property does not make any assumption 
about the object it is to be put in (it could appear in more than one). This has the 
following benefits: 

• using the attributes at the local instrumentation layer provides the 
flexibility required to map a rich information model to a resource 
constrained WSN device, by allowing for an attribute based model. This 
means that the data model can be built up using a local instrumentation 
structure per attribute to allow per attribute mapping to the underlying 
node functions or data. It also allows these attributes to be built into a 
range of higher level information model, e.g. an OMA IPSO object or 
SNMP MIB or CIM object. 

• only the attributes applicable to a given node have to be implemented, 
saving code and memory, rather than having to store null entries for an 
object's unsupported attributes. 

• the attribute can be added into tables or key value stores such as HBase.  

This per attribute approach also maps particularly well to the approach taken in 
OMA LWM2M, which will be demonstrated in later sections. 

4.4 HPP Overlay using Distributed Hash Table 

A P2P overlay approach is used based on the analysis of earlier work in section 
4.1.6.4. The key principles underlying the use of P2P in HPP are: 

• no fixed placement of data. 
• consistent handling of local and remote data with a small set of messages, 

aligned with the object space and easy to map to RESTFul APIs. 



4.4 HPP Overlay using Distributed Hash Table  

 

111 

• all peers use the same P2P overlay network according to their capabilities, 
e.g. the number of identifiers (and corresponding buckets) to be stored 
depends on the capability (i.e. memory) of the node. 

• leases are per class and instance and are set by the source, to allow nodes 
to cache data and to aid data consistency across nodes, i.e. they are expired 
based on the lease on all nodes. 

Kademlia is chosen to be the basis of the DHT for this P2P overlay in the 
proposed holistic architecture for the reasons discussed in section 4.1.6.5. While 
the essentials of Kademlia node lookup and associated buckets are retained, it is 
used with HPP messages, rather than the specific Kademlia messages. It is also 
adapted to be more suitable for use in a WSN, including ideas adapted from 
BitTorrent, such as setting k to 8 and modified refresh behaviour. This results in 
the following key principles and novelty in the proposed use of a DHT: 

• use of Kademlia DHT buckets for node-identifier and xor based routing, 
initialized with 1 bucket as in BitTorrent (not 160 as in Kademlia) to 
reduce the memory required. 

• use of Kademlia buckets to dynamically group peers. While the main 
expected use of the DHT is to hold peer identifiers, where a Get for the 
key returns the closest peers to it, HPP can use the DHT to not just hold 
identifiers to peers, but to hold identifiers to group nodes or related data 
(as in a torrent). This group can be joined and retrieved using the same 
HPP messages that a peer uses to join or be found in an overlay. For 
example, in HPP, a Get message with a key could return a list (buckets) of 
items such as geolocations, wireless networks (a Get returns the closest 
networks in that list) or a list of object classes or instances such as a 
grouping of temperature sensors or HPP services with a given role. 

• peer longevity in the cache uses a lease set by the source and HPP 
messages are used to reduce the overhead of co-ordination and information 
exchange in updating leases and buckets. 

It was decided to incorporate the identifier and bucket aspects of the DHT into the 
Holistic Peer to Peer Protocol (HPP), rather than to port an existing BitTorrent 
implementation with Kademlia and use it separately. This decision was taken in 
order to: 



 Analysis, Architecture and Design 

 

112 

• maintain a set of constrained set of messages, similar to the RESTFul 
architectural style in terms of verbs and message layout. For example, 
HPP Get is used to retrieve a Peer’s object or its identifier and address 
rather than a Kademlia Find or BitTorrent GET_PEERS. 

• allow the HPP commands to update the times associated with peer 
messages and avoid refreshing nodes that are active and so reduce the 
overhead of co-ordination and information exchange in updating leases 
and buckets. 

• use the object space, lease handling and roles that are part of HPP for 
peer information, i.e. to retrieve and store the Peer object and delete it 
if its lease is not updated. The bucket is still used to hold identifiers, so 
its concepts of closest identifiers and identifier lookup could be used.  

• use the DHT to forward to peers as part of HPP (see section 4.5.1) 
• reduce the code size as the HPP commands are already implemented. 

Note that the BitTorrent client could not be used without modification 
anyway, e.g. the code associated with file sharing would have to be 
removed to reduce code size. 

4.5 HPP Protocol Design 

The Holistic Peer to Peer Protocol (HPP) is a simple message protocol suitable for 
resource limited nodes. It includes a small set of simple commands, as per the 
Linda approach, for nodes and services to add/remove instances to/from the tuple 
space for their capabilities, interests and data, including setting leases on the data. 
Applications running on top of this protocol will not require any knowledge of the 
underlying implementation. It has been developed to:  

• support interaction between the defined service roles in the data model 
service layer to model the roles in the end-to-end flow of sensor data from 
device(s) to service(s). 

• use a limited set of message types in line with the operations of the object 
space, such as Get, Take and with a Publish/Subscribe model, which 
MQTT has been shown to be useful in certain WSN use cases. The 
message types are also defined to make it easy to map to the RESTFul 
APIs used elsewhere. 



4.5 HPP Protocol Design  

 

113 

• offer the scalability and resilience properties of a P2P protocol (together 
with leases) to handle the intermittent connectivity and mobility of nodes. 

• allow an info-hash to be associated with a group of peers, separate to their 
individual peer identifier. A peer can request to be added to that info-hash 
by sending an Add to a peer in that group, which may be a specific node or 
any node according to how the group was initialised.  

• support stateless relationships between services, i.e. services must renew 
leases for their objects with their peers. 

Data added into the object space can be explicitly timestamped on addition and 
has a lease. This means that the data is immutable and while a node may not have 
stored the most recent data (and may expire it), it always has data which was valid 
at that time. This means it is ok to add data to lots of groups identified by an info-
hash (swarms) and there is no need for a centralised store of all groups and their 
contents, e.g. if a node is no longer operational it will not refresh any data it added 
and so the lease will expire. 

Two key abstractions are used on top of the network layer. These are the 
hpp_channel (the link between peers hiding the network specifics) and the 
hpp_endpoint (represents a communication endpoint consisting of channels). 
Using hpp_channel and hpp_endpoint provides a single API so that applications 
using this protocol will not require knowledge of the underlying network and 
means applications do not need to be re-coded for different networks. Indeed, the 
hpp_endpoint and hpp_channel can be used to handle non HPP traffic. This is 
similar to the way JXTA abstracted the underlying network. 

4.5.1 HPP Forwarding and Routing 

HPP can be used to forward messages to peers, but HPP can also be used with 
routing protocols such as RPL. When using RPL, HPP peers use the DHT to look 
up a peer identifier and find its IP address and port (or the closest IP address and 
port) and the message is then routed to that address by the routing layer. The use 
of a routing layer also allows interoperability for HPP Peers with nodes that do 
not support HPP. For example, using a border router to route between the WSN 
and the Internet allows a CoAP browser to read values from a CoAP node using 
the holistic architecture’s object space (which may also support HPP to get the 



 Analysis, Architecture and Design 

 

114 

same data) in the WSN. It also allows a HPP Peer with the DM_SINK_SRV role 
to get data from a DM_SOURCE_SRV in the WSN.  

Using HPP to forward Get messages can take advantage of data cached from 
previous replies on the path to a peer, so reducing the number of hops and 
messages sent. It can also be used to send Add messages and if the number of 
hops is set in the message, then the reply is only from the first peer to limit the 
number of messages. The use of a separate routing layer does, however, mean that 
the HPP cache will not be used to build a reply by an intermediary peer on the 
path to the source peer, unless the destination IP address has cached that data 
using previous replies from other nodes. 

Another example of when to use HPP forwarding is when the DHT stores and 
uses additional metadata to select the closest peer, e.g. using the time taken by the 
last message to that peer identifier. HPP could also be used if RPL failed to route 
for some reason and the message could be sent to the defined α number of closest 
peers from the DHT. 

A further example of when to use HPP forwarding is for peers that do not have an 
IP address, as may occur in a WSN or for peers that do not want to be visible on 
the Internet beyond the bootstrap peer and only have a peer identifier obtained 
from a bootstrap peer. Whereas Kademlia assumes all nodes are IP connected and 
uses IP addresses to send messages, HPP can forward to a peer without using an 
IP address. In this case, that node returns 0.0.0.0 as its peer address and requests 
to its peer identifier are routed over IP to the closest peer identifier to its identifier. 
That closest peer in turn forwards to the next closest peer identifier, until 
eventually the message gets to the peer with a HPP channel to the node with that 
destination identifier, which is probably the bootstrap it connected to. 

4.5.2 HPP Actors 

HPP considers 3 actors: 

1. Service (hpp_service) – runs on a node and is defined as its set of roles 
(sink, source, forwarder, store, aggregator, matcher, bootstrap) from the 
data model service layer. 



4.5 HPP Protocol Design  

 

115 

2. Peer (hpp_peer)– runs on a node and is defined as a set of capabilities to 
handle HPP messages. These capabilities are advertised to other peers in 
the Hello message 

3. Node - represents the WSN node. It contains one or more peers and has 
one or more service roles. It also has an object holding node information, 
e.g. firmware version, with an object id, which can be retrieved over HPP. 

A service’s main function is to hold information on services and data from 
services on other nodes. It is modelled as an object that has the following 
attributes: 

• DM_ROLES, defined as per DM_SERVICE 
• DM_SERVICE_NAME 
• DM_HANDLE (object id)  
• DM_VERSION 
• DM_LEASE 

A hpp_peer holds its capabilities in terms of HPP messages it can handle, which is 
a lower level view than the roles of a service. Note that a hpp_service with a 
DM_SOURCE_SRV role has to have the capability to accept HPP_GET to 
retrieve data from a hpp_peer, but not necessarily a HPP_ADD to accept data 
from a hpp_peer. The hpp_peer does not know of the roles in use for hpp_services 
on that node - that is the concern of the hpp_services running on the node. The 
hpp_peer exists primarily for the connectivity between nodes and it is assigned an 
identifier in the P2P overlay network – as such its relationship to a service and 
node is similar to that of the Kademlia client running for a BitTorrent client on a 
laptop or server node. 

A hpp_peer exchanges HPP messages with another hpp_peer, with the following 
rules: 

• Every peer must support the HPP Hello message and respond with its 
identifier (if known) and its capabilities, i.e. the HPP messages it handles. 
Hello is deliberately simple to run on very limited nodes. 

• Every peer should handle at least a HPP Get message for its peer instance, 
returning up to 8 closest node-ids (or only its own node id if it is only a 
DM_SINK_SRV). 



 Analysis, Architecture and Design 

 

116 

• Peers may support any of the other HPP messages, which are the 
capabilities in its Hello reply. 

• A new peer joins a HPP overlay network by sending a Hello message to a 
known peer. 

• HPP Get requests for keys may be passed from node to node in the 
absence of other routing to a node. If a node has the requested data, then it 
sends that back to the requester, otherwise it forwards the request to the 
node with the “closest” identifier in its routing table. 

• A peer may choose to not accept connections for security reasons, e.g. a 
source or sink may only make outbound connections. 

• A peer will Get its closest peers and send a Get to peers of interest to 
discover the classes and instances on that peer, avoiding the need for a 
centralised Resource Directory as in CoAP. 

• A peer uses the peer object’s lease (and the cache which implements it) to 
replace the republishing period in Kademlia. 

• Peers can handle a Get specifying the following type of match:  
o EXACT to specified attributes and values, e.g. keys for an instance 
o ALL_HANDLES  
o ALL_CLASSES  
o ALL_INSTANCES (for Discovery)  
o WILDCARD 

The Get Response can contain object identifiers (handles) or full 
classes and instances 

• When processing a Get reply, the object data in the reply can be cached in 
exactly the same manner as in processing an Add message, if that 
Service’s role allows it to cache data received remotely. This is another 
example of the design allowing code re-use in order to reduce code size. 

Note that as a Peer is an object in HPP, its lease can be renewed (and it will 
remain in the routing table for that lease period) by using an Add message or a 
specific Get for it as per Kademlia. The use of a lease request/grant means the two 
peers can operate more flexibly than the fixed refresh times in Kademlia. 



4.5 HPP Protocol Design  

 

117 

Resource Discovery is described in section 4.5.8, which shows the use of a Get 
for all objects on a known peer. This is analogous to the well-known URL in 
CoAP on a node, but there is no need for a centralised Resource Directory(RD) as 
in CoAP, due to the use of a DHT to find peers and the HPP Get message to 
retrieve the objects/resources. 

Techniques to take advantage of the knowledge of peers in this overlay network 
and map efficiently to underlying routing functionality such as RPL or WSN 
specific networking will be possible once this overlay is in place, e.g. Kademlia 
peers can route messages through low-latency paths. 

4.5.3 HPP Message Header 

HPP Request Messages consist of command, message header and payload object. 
Command is one of the allowed commands Hello, Bye, Get, Add, Take, Notify. 

Command Message Header Object 

Get msgId=2 senderId=AAA name=peers/peer 
Lease=60 

peerId=ZZZ 

 

HPP Replies are designed to be the same as the original request, with the addition 
of a status field. This allows shared message handling code to reduce memory use, 
e.g. caching the data in a Get reply uses the same code as an Add request. 

Command Message Header Object 

reply=Get 
status=Ok 

msgId=2 senderId=BBB  
name =peers/peer 

objectHandle=1001 

closePeers =YYY, TTT 

closeAddresses=a.b.c.d:7014, e.f.g.h:7014 

 

The protocol is designed to be encoded as a set of strings for ease of use on higher 
level devices, but it is also designed to be binary encoded for efficiency. In both 
cases, messages will consist of blocks. In the string encoding, the blocks use 
specific delimiters, e.g. “header”: or “object”. In the binary encoding, every block 
has the same preamble of a block type, a block length and a block id. This allows 
the device to ignore blocks it is not interested in.  



 Analysis, Architecture and Design 

 

118 

The first block is always the header block and it is always preceded by the HPP 
command (or message type). A hpp_peer parses the command to determine if it 
should process this message. 

The header must have: 

• msgId - unique to originatorId and not changed when forwarded 
• senderId or replierId (peerId)  

The header may have: 

• version - HPP version and must be returned in the Hello reply 
• caps - HPP peer capabilities in terms of commands it supports and it must 

be in the Hello reply 
• type - encoding of message content 
• name - class name, intended for use in class template 
• group - object group 
• handle - set by a resource/object creator, e.g. peer for objects it creates - it 

is unique on a peer or is a UUID. Its uniqueness for a local peer relies on 
its use with a peerId which is globally unique 

• lease - object lease requested (or granted in a reply) 
• originatorId - only included if not the same as senderId 
• destinationId - only included if using HPP forwarding (see section 4.5.5.4) 
• hops - the number of message hops allowed before a message is no longer 

forwarded (this is decremented at each hop) 

originatorId and msgId never change. The msgId is included in the reply and if 
forwarded. The originatorId is included if forwarded and is how HPP can route 
the reply to that peer from the peer with the destinationId.  

In addition to the command and header, a message can consist of the following 
types of blocks: 

• Object. This holds object (class/template or instance) content between 
SRV_OBJECT_BEGIN and SRV_OBJECT_END delimiters. The content 
consists of key value pairs of “attr=attribute” name for a template/class 



4.5 HPP Protocol Design  

 

119 

and “attribute name=value” for an instance. Attribute names used in the 
instance must match those in template. 

Credential. This is transparent to HPP itself and driven by the requirements of the 
peers. The nature of the credential required by a peer to communicate with it will 
be returned in the Hello message or the Hello may require a particular Credential 
block and replies with an error otherwise. In other messages than Hello, the 
specific credential block contents will be carried. This in line with the approach 
outlined in 4.1.5 

Like Kademlia, every message includes the sending node’s identifier. In some 
cases, the originatorId is included in the message, i.e. the node with the sensor(s) 
whose readings are being carried. This additional overhead is considered more 
acceptable at this higher layer than would be appropriate in a WSN routing layer.  

For comparison, the CoAP header uses 4 bytes for its encoded header; 2 bits for 
version, 2 bits for message type req/ack, 4 bits for token length, 2 bytes for 
message code, 2 bytes for its message-id and 0-8 bytes for a token followed by a 
variable number of bytes for Options.  

For the case that the 20 bytes of a Kademlia identifier is too expensive, a peer 
specifies the bytes it can use for an identifier in its Hello message to its bootstrap 
peer, e.g. a gateway on the WSN. That bootstrap peer will respond with an 
identifier of that number of bytes and will include its own full identifier as the 
reply identifier to the Hello (and only to the Hello). All other messages from the 
limited peer will use the number of bytes in its own identifier and will receive 
replies with that number of bytes in an identifier and it will have a routing table 
that is a sub-tree of the full 160 bit space. This shortened identifier is valid within 
the range of the bootstrap peer that issued it (and that bootstrap peer will expand it 
for any communication outside that WSN to the rest of the overlay in the IoT). 

4.5.4 HPP Message Types (or Commands) 

HPP has the following limited set of message commands: 

• Hello. This message is used to join a peer overlay, by sending a peer’s 
capabilities and its peerId (if it has one) to a well-known peer in that 



 Analysis, Architecture and Design 

 

120 

overlay. A peerId will be returned if one was not included in the request 
and the receiver is a bootstrap peer. 

• Bye. This message just contains a message header and the receiver 
removes any peer information explicitly ahead of lease expiry. 

• Get. This message retrieves an object (class or instance) by specifying an 
object handle or a match type with range of attributes as specified above, 
including wildcard matches for a given attribute. A service can send a Get 
with an object name and template/instance to be used to find the object for 
other services or objects representing data on a node. If a peer can send 
directly to another peer, then it can retrieve an object using the object 
handle in that node’s object space, by simply specifying 
“handle”=”someValue” in the Get message header. This makes Get similar 
to Kademlia’s Find message when getting services and the Find_Value for 
other data. A Get can also specify an info-hash or group identifier if the 
object was added to that group identifier. On getting a reply to a Get 
“Peer” message, a peer must check the peer ids as in a Kademlia “find 
round”. 

• Take. The Take message can use the object handle or a match type using 
the attributes of the object to remove. It is not simply a Delete, as the reply 
returns the object, so it can be added back (with a new timestamp) and 
may be used to handle concurrent updates, i.e. once an object has been 
taken from an object space, it is not there to be changed by another peer. 
The Add and Take messages carry the originatorId if it is not the same as 
the senderId in the message as only the originator can change the object if 
it has been distributed over many nodes and if the originator does not 
renew its lease, then it will expire according to its lease. 

• Add. This message is sent to a peer to add new classes, new instances, for 
updating an object with new values and to call a method in an object (adds 
a method with the parameters to use). It contains the object to create or 
update. For an instance object, it will be used to build an instance of the 
object in the object space. If it contains a template object, it will be treated 
as a class that can be referenced by other adds, e.g. to avoid having to 
include the full template for future adds. Its object handle in this peer’s 
object space will be set in the reply. 



4.5 HPP Protocol Design  

 

121 

The Add message may contain a lease. In general, an object or its lease is 
updated by a new Add containing its object handle and new contents. 
Optionally a Take could have been sent to remove the old instance before 
the new Add.  
An Add message can also specify the identifier of a group to add itself to, 
e.g. a group of nodes in a certain area or a group with a certain sensor type 
– this is analogous to a BitTorrent client adding itself into a swarm with an 
info-hash of a torrent. 

• Notify. This message is designed for the alert functionality of devices, 
similar to observe in CoAP. It tells a peer that this peer is interested in 
updates to an object for a lease period. A Notify message tells a peer of an 
interest in an object and it will send that peer the add/take message for a 
matching object when it is added/removed (this removes the need for a 
separate report/event message). To implement Notify functionality on 
connectionless systems, the peer is polled with a Get or will piggyback 
Notify information in the next response to a message from the peer that 
sent the Notify. A message generated as a result of an earlier Notify will 
simply contain the relevant message be it Add, Take as an object 

As above, all peers must support Hello, but peers may support only Get or Add. 
Hello provides the ability to join a P2P overlay and exchange peerIds and HPP 
capabilities. The Get and Add command types map well to the GET, POST, PUT, 
DELETE commands found in HTTP APIs and CoAP using the RESTFul 
approach. A Notify primitive has been added for the alert functionality of sensor 
devices, similarly to how CoAP added observe. There is no specific Action 
message type, as this is specific to an object and would be a method defined in 
that object. It would be invoked by an Add with the arguments specified for the 
object. 

Hello/Bye will be handled by any Peer. Get messages can be sent to any peer to 
retrieve closest PeerIds, similar to a Kademlia Find, although a service with only 
the DM_SINK_SRV role will only return its node identifier (as it has no other 
data to Get). Add, Take and Notify messages will only be handled by services that 
have Forward, Aggregate or Store roles and a service will reply with an error if it 
cannot handle the message. 



 Analysis, Architecture and Design 

 

122 

4.5.5 HPP Message Flows 

This section considers the message flows between HPP peers, including the use of 
HPP to forward messages. This flow is considered as point to point between peers 
in this section. Peers may, however, have knowledge of several closest peers and a 
peer could send messages to all of its peers at the same time in a manner like 
multicast, e.g. to add its data instances to multiple peers, or it could actually avail 
of multicast facilities in the lower layers of the stack to do this. 

4.5.5.1 Initialisation - Hello Exchange 

A node wanting to join a HPP network must get a PeerId. If it does not have a 
PeerId on starting up, it will send a Hello to at least one known bootstrap peer that 
is able to allocate a PeerId for it. The Hello message contains its encoded 
capabilities and may contain its PeerId. If the Hello does not have a senderId, a 
receiver with the bootstrap role will check any message credentials provided and 
if they meet the bootstrap’s requirements, it will process the Hello request. If the 
Hello request contains a PeerId, the receiving node adds this to its DHT and it 
replies with a message header containing the version and capabilities it supports. 
If the Hello did not contain a PeerId, then this peer returns a message header and 
also a peerId to the sender if this node can issue an identifier based on its 
capability (or authorisation) - if it returns an id, then it supports DHT. The PeerId 
issued will be returned in an object block for a peer object. If this peer sent no 
other message within a defined period, e.g. 1 hour, then it will send a Hello to k=8 
nearest nodes, similar to the Kademlia use of Ping to refresh its routing tables. 

This peer then adds (or takes) instances of its objects, with a lease per object, its 
capabilities and its interests in other objects with the object space layer. 

4.5.5.2 Retrieving Closest Peer Information 

Once the Hello reply has been received, a node can send a Get for the peer’s 
object (identifier shown as zzz) and its k neighbours will be in the reply, as below: 

Command Message Header Object 

Get msgId=2 senderId=AAA name=peers/peer 
Lease=60 

peerId=ZZZ 

 



4.5 HPP Protocol Design  

 

123 

Command Message Header Object 

reply=Get 
status=Ok 

msgId=2 senderId=BBB  
name =peers/peer 

objectHandle=1001 

peerId = ZZZ, closePeers =YYY, TTT  

closeAddresses=a.b.c.d:7014, e.f.g.h:7014 

4.5.5.3 Data Transfer – Adding/Retrieving Classes and Instances 

Once a peer has exchanged a Hello with a Peer and has a PeerId, it will add the 
following instances to that peer. 

• Peer instance with its address information 
• Node instance representing the node, e.g. its serial number, firmware 

version 
• Service instance representing its data model service roles 

A service can send an Add message to peers directly or to a specific info_hash for 
a group (swarm) of peers with an object, e.g. it could add itself to a group of peers 
in a geographic region. When an object is looked up, for a Get or Add, the request 
is routed by PeerId or Info-Hash  

It is assumed a Class object (or template) is unique if no object specification string 
is provided and the handle is then used to identify it on that peer. If a Class object 
is common, e.g. from a defined object model, then the object specification string, 
i.e. namespace, should be checked when it is added to see if it was already added 
and if so, the handle for it is returned. It is expected that nodes and services will 
add their own namespaces for class definitions they want to share, e.g. IPSO or a 
pre-assigned UUID could be passed in the Add message which is shared by data 
model service implementing that Class. 

For example, Figure 16 shows how, after it has sent its Hello message, a node 
operating as a DM_SOURCE_SRV service adds its service and node classes (or 
templates) and instances to a DM_STORE_SRV service on a node able to cache 
data. 



 Analysis, Architecture and Design 

 

124 

 

Figure 16 Sample HPP Service Interaction 

It also shows how a DM_SINK_SRV service queries this DM_STORE_SRV for 
its capabilities and then its node data, which may be returned from the 
DM_SOURCE_SRV or an intermediate DM_STORE_SRV (if cached there). 
Other interactions are possible, e.g. the DM_SOURCE_SRV service could also 
add its sensor class and instance to the DM_STORE_SRV service, so the 
DM_SINK_SRV can retrieve the cached data and so reduce the transmission cost. 

4.5.5.4 HPP Forwarding 

HPP forwarding is used when the destinationId is set in the message and the peer 
has the DM_FORWARD_SRV role. In this case, a peer receiving a message will 
send to that destinationId peer if it cannot service the request itself (e.g. it has not 
cached the requested object from handling a previous Get). If it has a HPP 
channel to that destinationId or a bucket entry with the IP address for it, it will use 
these to forward the request and if it does not then it will forward to the “good” 
peer in the DHT with the closest identifier to the destinationId. If the hops 
parameter is set in the request, this will also be used to determine whether to 
forward, i.e. it will only forward if hops is greater than 0, and hops will be 
decremented in the message if forwarded. 



4.5 HPP Protocol Design  

 

125 

4.5.5.5 Lease Renewal 

A lease would be renewed by sending a new Add containing the object handle for 
the lease to renew. As well as renewing leases on data objects added to a peer 
such as for sensor data, lease renewal is also required for DHT based peer objects. 
The peer object’s lease replaces the republishing period in Kademlia (and not the 
bucket refresh period). A peer requests a lease and the bootstrap grants it per its 
policy. If the lease is not renewed and no message is seen within the lease, then 
the bootstrap tries to refresh the lease by sending a Get to the peer and removes 
the peer object if it does not reply. 

4.5.6 Decentralised Control 

A key part of the holistic architecture is to use P2P to support decentralisation and 
give control to the peers themselves, with support for co-ordination. This is done 
in order to enable scalability (including for management) and robustness. This can 
be shown in the cases of security and lease management, although this may still 
require the use of policies which must be distributed or built into each peer. 

In terms of security, the bootstrap peer (or peer contacted to join a group) will use 
its own security criteria/policy to process the Hello and determine whether the 
node is allowed to join the overlay or group, per the initial exchange in 4.5.5.1. 
This may include setting up a separate exchange of security information (known 
to both nodes) or a check on a credential or token provided. The fact that the peers 
know of other peers in the overlay (or group) allows for the nodes to share this 
authentication of new nodes, e.g. it may use mechanisms such as those provided 
in JXTA, where nodes “vote” to allow a new node to join. It is also worth noting 
that capabilities can be defined that nodes can share in the Hello message and then 
use to negotiate the security mechanisms to use (similar to the use of HTTP accept 
headers in negotiating the format of content to exchange). Another aspect of the 
initial exchange is that unlike CoAP, HPP accommodates nodes that refuse to 
accept incoming connections. For example, if it is a DM_SOURCE_SRV only, it 
can connect out to a peer, exchange its Hello message, add its objects and then 
allow requests from the peers it connected to. 



 Analysis, Architecture and Design 

 

126 

In terms of lease management, both the requesting and granting peer control the 
use of the lease. The peer granting the lease and storing the object can decide on 
the lease it grants based on its own policy or available memory. The requesting 
peer has control over which peers it adds its object to, but also in the event of not 
being granted its requested lease as it can then renew the lease granted more 
frequently or it can add its object(s) to other peers until it gets the lease it wants. 

4.5.7 Energy Consumption 

HPP is an application layer protocol that is designed to be used in WSN and IoT 
scenarios. Energy conservation is important in WSNs as discussed earlier and 
HPP will benefit from the energy conservation mechanisms implemented in lower 
layers of low power wireless stacks. As with other application level protocols like 
CoAP, the energy consumption of the higher layers will depend on the 
implementation of the application itself. The following aspects related to energy 
conservation are included in the design of HPP: 

• Low HPP overhead. The only additional HPP messages beyond normal 
traffic are Hello and Add to renew leases. The message overhead in 
maintaining routing tables is kept low by the use of normal traffic, such as 
Get requests, to update the information about other nodes held on a node 
and by the ability to tune the refresh periods in the absence of traffic, e.g. 
according to the expected failure rate of nodes. 

• Caching. The use of caching (if using HPP to forward as per 4.5.1) allows 
nodes to respond if they have cached the requested data, avoiding the need 
to forward the request to the originating source. 

• Binary encoding. HPP is designed to consist of blocks of data that can be 
encoded in string or binary format, with the binary format to be used to 
reduce the size of messages. 

• Identifier size. The 160 bit identifier size can be reduced in the scenario of 
a small WSN, where the nodes only communicate beyond the WSN using 
a bootstrap node. Within the WSN, the identifier only needs to be the size 
required to uniquely identify nodes, while the prefix of the bootstrap node 
is combined with the reduced node identifier for use beyond the WSN. 



4.5 HPP Protocol Design  

 

127 

4.5.8 Resource Discovery 

If a peer does not know where a peer (or object) is, it will select a bootstrap node 
(to which it sent its first Hello to get its PeerId) or the closest peer(s) it has in its 
routing table. It will then send Get for that PeerId (or object) to the selected peer. 
For example a Get is sent from peer with identifier 123 to a known peer with 
identifier 999 (this identifier will be 20 bytes in a real example): 

{ 
"get": { 

"header": { 
"msgId": "456", 
"senderId": "123" 

}, 
"object”: { 

"type":"instance", 
 "class":"peer", 
"peerId": "789" 

} 
} 

} 
This will return the peer’s address information, as for example 

{ 
“reply”: “get” 
“status”:”ok” 
"header": { 

"msgId": "456", 
"senderId": "999" // The responder’s id 

}, 
"object”: { 

“type":"instance", 
 “class":"peer", 
“key”: { “peerId”=”789”},  
“close_peers”: ”999”,  
“close_addrs”=”127.0.0.1:1111”,  
“address:”127.0.0.1”, 
“port”=”2222” 
“version”:”1”,  
“caps”:”63”, 
“lease”:”0” 

} 
} 



 Analysis, Architecture and Design 

 

128 

Hence, discovery of objects on a node can be performed by doing a Get for its 
peerId as above and then a Get can be sent to that peer’s address with 
handle=ALL in the header.  

4.6 Summary 

This chapter has presented an analysis of previous research work and used that to 
propose a set of requirements and a holistic architecture to meet those 
requirements. The architecture is inspired by concepts from tuple spaces, overlay 
P2P networks and caching. It also showed the alignment of HPP with the 
architectural requirements and layers, particularly the use of leases in the cache. 
The analysis in this chapter also presented and explained the architectural and 
design choices which have resulted in the following contributions: 

• a set of abstractions and layers of the holistic architecture and each of their 
roles in the architecture, covering the varied roles of the entities in an IoT 
system from constrained devices in a WSN to Cloud services.  

• tuple space concepts being used to implement simple libraries on 
constrained devices to support the data model (DM) service layer and the 
local instrumentation (li) layer to support remote device data and local 
device data.  

• the design of a novel cache algorithm using leases in its replacement 
policy, called CacheL suitable for constrained nodes and which was 
inspired by the Clock algorithm. 

• the design of a simple application layer protocol, termed the Holistic Peer 
to Peer (HPP) protocol using a simple set of commands inspired by Linda 
and supported by a Distributed Hash Table (DHT) to identify nodes and 
groups across the end-to-end flow in IoT.  

• the use of a DHT derived from Kademlia and its use of HPP messages and 
object store.  

The next chapter will present protype implementations of this holistic architecture 
for Linux and Contiki3.0 platforms. These implementations were performed in 
order to then evaluate the components in the holistic architecture. 

 



 

5 Implementation 

The methodology used to determine the validity of the research work and the 
resulting holistic architecture was to develop a prototype implementation for 
Linux and then port this to Contiki3.0, sharing as much code as possible. The 
Linux implementation was developed first to make debugging and scalability 
testing easier, but it also represented more capable systems for the architecture to 
be used on. The Contiki3.0 implementation was used to show the implementation 
was possible on a constrained node in a WSN, meaning it is likely to be able to 
run on or integrate with nearly all systems. This is also important to demonstrate 
the feasibility of implementing a P2P protocol and DHT on a constrained WSN 
device, as a number of sources propose specific separation between WSNs and a 
P2P overlay, such as in section 3.8.4, due to the expected difficulties in such an 
implementation. 

In particular, it was important to provide a quantitative analysis of the size of the 
code and data required in order to meet the requirement that the resources on a 
constrained node could support this architectural approach. It was also important 
to provide an implementation that could be used to produce assessments, albeit 
qualitative, of whether the abstractions made it easier to develop software for 
constrained node devices and to assess the portability of that software. Finally, 
implementations allowed quantitative evaluation of components in the 
architecture, e.g. the hit ratio of the CacheL algorithm and how the time to process 
DHT lookups changes as the number of nodes changes. 

The implementations in this section were carried out on Linux and on Contiki3.0 
and included the holistic architecture layers comprising the data model service 
layer, local instrumentation layer and object space (using the CacheL algorithm), 
with supporting libraries for memory utilities, doubly linked list, hash and leases. 
The DM_SINK_SRV, DM_SOURCE_SRV, DM_FORWARDER_SRV, 
DM_STORE_SRV and DM_BOOTSTRAP_SRV roles in the data model service 



 Implementation 

 

130 

layer were implemented, but the DM_AGGREGATOR_SRV and 
DM_MATCHER_SRV roles were not. The implementations also included 
libraries for building and parsing the HPP messages in string form. The 
implementation did not include a full implementation of the use of a shortened 
identifier tied to the bootstrap peer (as per section 4.5.3) and the implemented 
bootstrap returned a randomly generated identifier. A peer did retry the Hello 
message to a known bootstrap peer for a set number of attempts, but the 
implementation did not then select another bootstrap to try, as HPP allows. It also 
included a partial implementation of the Notify message and use of the info-hash 
sufficient to validate the functionality. The nature of what was implemented for 
the different tests regarding the information model, DHT, HPP and the test 
sequences will be explained in those sections. 

Specific implementations were performed for:  

• The DMTF CIM and OMA LWM2M data models on the Contiki3.0 OS to 
demonstrate the flexibility of the holistic architecture layers. These 
implementations integrated with the erbium and CoAP implementations 
(er-rest-example) on Contiki [49], which aims to be memory efficient and 
provide convenient APIs. This implementation was itself utilised in the 
LWM2M and IPSO implementation in Contiki3.0 [148]. This 
implementation of the OMA LWM2M was also modified to use the 
holistic architecture’s data model service layer and object space. These 
implementations allowed both CoAP and HPP to access the objects 
implemented as in Figure 17.  

• A DM_SINK_SRV service. This was written in Java and integrated with 
HBase to demonstrate that the abstractions work in the end-to-end manner 
envisaged. 

• The CacheL algorithm in Java and C. The C implementation was included 
in the object space library on Contiki. The Java implementation allowed 
the CacheL algorithm to be compared to a Java LRU implementation 
using the Yahoo Cloud Server Benchmark (YCSB) [149]. 

• HPP including a DHT in C that ran on both Linux and Contiki3.0. The 
DHT implementation used Kademlia approaches to create and compare 
DHT identifiers, for the selection of closest nodes and to create and 
manage bucket functions, e.g. to place closest peer identifiers in the 



5.1 Linux and Contiki Implementations  

 

131 

correct k-bucket. The information for peers in a bucket was held in a 
“Peer” object in the object space store, with a lease, like any other object. 

5.1 Linux and Contiki Implementations 

The code for the local instrumentation (li) layer, data model and object space, 
supporting libraries (memory utilities, doubly linked list, hash, lease), the DHT 
and the message building parts of the HPP protocol was implemented initially in 
C on Linux. This approach allowed the abstractions and design to be refined and 
the code to be debugged and tested more easily, using standard tools such as gdb 
and valgrind. It also allowed easily starting a number of Linux based peers, which 
would communicate to test the implementation of the HPP messages, DHT and 
the supporting data model and object space layers. 

These Linux implementations were then ported to Contiki. In order to test the 
IPSO and OMA LWM2M models. The implementation included part of the pre-
existing Erbium-REST implementation example [10] to handle the CoAP message 
parsing, but the objects were stored using the data model service layer and 
underlying object space as per Figure 14. This approach allowed these items to be 
tested on hardware with a supporting REST infrastructure and for the port to use 
existing Contiki libraries, i.e. objects stored in the object space could be accessed 
using CoAP via the data model service layer. The code was run in Contiki's Cooja 
simulation environment as a WiSMote [150], using an MSP-430 processor with 
128KB of Flash Memory and 6KB of SRAM. A reduced version with just CoAP 
and the holistic architecture’s layers (without OMA LWM2M) was also run on a 
Sky WSN mote using an MSP-430 Microprocessor with 10K RAM and 48K 
Flash. CoAP "resources" were created which integrated the cache into the holistic 
architecture, e.g. a DM_SOURCE_SRV was created and key value pair objects 
were sent to a DM_STORE_SRV. 

The same codebase was able to run on the constrained nodes and more capable 
Linux nodes, as per the design goal for the architecture. This approach of running 
in two environments also showed that the architecture and its abstractions worked 
across Linux and constrained nodes. 



 Implementation 

 

132 

5.2 HPP Implementation 

5.2.1 Channel and Endpoint Communication Layers 

The implementation used a hpp_endpoint abstraction to represent the peer 
service’s communication endpoint, with a hpp_channel abstraction per peer 
interaction (such as a TCP connection) to hide the specific network layer details. 
The value of the hpp_endpoint and hpp_channel abstractions can be seen in the 
simplicity of the code below, with the endpoint handling the channel initialization, 
socket listen and message fragmentation. Other functions use hpp_endpoint and 
hpp_channel for message exchange and to update peer bucket statistics for each 
message. The following outline code is all that is required for a peer service to 
start receiving messages from other services: 

rv = hpp_endpoint_check(endpoint_ptr); 
if (rv == 0) {        
    channel_ptr =        
    hpp_endpoint_accept(endpoint_ptr); 
} else if (rv > 0 ) { 
    hpp_endpoint_get_messages(endpoint_ptr); 
} // timed out with no data, so loop again 
 

The following code shows the socket handler which had to be written specifically 
for Contiki using its event based model, as it did not support the select operations 
used in the Linux implementation. A separate call-back handler was also written 
in the socket handler to process received messages. This call-back simply passes 
the channel (including a pointer to the message buffer) and endpoints to a method 
to process messages (see below for example of Hello message processing).  

// Handles tcp socket events - received input  
// handled in a callback  
static void 
socket_event_handler(struct tcp_socket *socket_ptr,  
         void *ptr,         
         tcp_socket_event_t event) { 
  hpp_channel_t *channel_ptr = ptr; 
  if(event == TCP_SOCKET_CONNECTED) { 
    int fd = 1;  
    if (socket_ptr->listen_port != 0) { 
  channel_ptr->dest_addr = NEW_V_DESC(char, 
                           IPV6_MAX_ADDRESS_LEN+1); 
     hpp_socket_listen_for_connection(channel_ptr); 



5.2 HPP Implementation  

 

133 

     if (channel_ptr->dest_addr != NULL) { 
              ip6addr_to_str( 
                          &socket_ptr->c->ripaddr, 
                          channel_ptr->dest_addr,  
              IPV6_MAX_ADDRESS_LEN+1); 
              hpp_channel_t *new_ch_ptr =    
                   hpp_endpoint_accept( 
                       channel_ptr->endpoint_ptr); 
        } 
    } 
    hpp_channel_connected(fd, channel_ptr); 
  } else if(event == TCP_SOCKET_DATA_SENT) { 
    int left_to_send = channel_ptr->send_size – 
                       channel_ptr->send_index; 
    if (left_to_send > 0) { 
        if(socket_ptr->output_data_len == 0 &&   
           socket_ptr->output_data_send_nxt == 0) { 
            if(left_to_send >  
               socket_ptr->output_data_maxlen) { 
                 left_to_send =  
                   socket_ptr->output_data_maxlen; 
            } 
            if(left_to_send > 0) {  
                send_buffer(socket_ptr, 
                            channel_ptr,  
                            left_to_send);  
            } else { 
                channel_ptr->send_index = 0; 
                channel_ptr->send_size = 0; 
            } 
        } 
  } else if(event == TCP_SOCKET_CLOSED || 
            event == TCP_SOCKET_TIMEDOUT 
            event == TCP_SOCKET_ABORTED) { 
        hpp_channel_deinit(channel_ptr); 
    }  
  } 
} 

Even though this code only needed to be written once, it still shows the value of 
the channel abstraction. Also, this code frees the application developer from some 
Contiki specific event handling, such as registering another socket with a new 
channel pointer when the current socket connects in order to allow another 
connect to be accepted. Another Contiki specific aspect was sending one buffer in 



 Implementation 

 

134 

multiple tcp socket buffers if the message buffer exceeds the size of the tcp socket 
buffer. 

Furthermore, this code shows the use of the NEW_V_DESC macro which is used 
to allocate memory – on Contiki this uses fixed buffers, whereas on Linux it uses 
the malloc() library call. 

5.2.2 HPP Message Processing 

HPP messages are processed according to their type in a call-back called from the 
socket handler with the channel and endpoint information. As an example, the 
following code shows how a Hello message is processed. As per the description of 
Hello in section 4.5.5, the following code for process_hello() shows the check as 
to whether the peer has a bootstrap role, so that it can allocate an identifier for the 
peer that sent the request. In the case where no identifier is found in the Hello 
message by a bootstrap peer, then it creates a new peer object with that peer's 
information in the object space. The new or existing peer is then also added to, or 
updated in, the DHT Kademlia bucket for it using hpp_add_peer().  

The call to hpp_new_peer_id() passes in an id_metric parameter, which can 
specify a metric to use in allocating an identifier, e.g. to use the time it was sent to 
determine how close the identifier will be to that of the bootstrap node. Another 
option is whether to return the full 20 byte DHT identifier or only a subset of the 
identifier, assuming it will only be used in a local WSN unless routed through the 
bootstrap node, where the full identifier is built when forwarded. The bootstrap is 
responsible for allocating new peer ids and it may do so randomly or do so from a 
range with a pre-set prefix for this bootstrap. 

Similar to the use of the NEW_V_DESC macro above in the socket code, note the 
use of hpp_str_cpy() which is used to copy a string into a new location – on 
Contiki this is compiled to use fixed buffers, whereas on Linux it uses the 
malloc() library call. 

 



5.2 HPP Implementation  

 

135 

 
int process_hello(hpp_peer_info_t *local_peer_info_ptr, 
             hpp_peer_t *remote_peer_ptr, 
             hpp_msg_header_t *msg_hdr_ptr, 
             hpp_channel_t *channel_ptr, 
             struct timeval *now_ptr) { 
 
 int version_to_use; 
 if (local_peer_info_ptr == NULL) { 
            return (-1); 
 } 
 version_to_use = msg_hdr_ptr->hpp_version; 
 if (msg_hdr_ptr->hpp_version >  
                        local_peer_info_ptr->version) { 
  version_to_use =  
                        local_peer_info_ptr->version; 
        } 
 if (STRCHKNULL(msg_hdr_ptr->msg_sender_id)) {  
        if (local_peer_info_ptr->bootstrap == 
                                 NON_BOOTSTRAP_PEER) { 
         return (version_to_use);  
            } 
            int rv = hpp_new_peer_id( 
                        local_peer_info_ptr->id,  
         remote_peer_ptr->id, 
        DHT_ID_NO_METRIC); 
                if (rv == -1) { 
                   return (-1); 
        } 
                hpp_str_cpy( 
                        &msg_hdr_ptr->msg_sender_id[0], 
                        local_peer_info_ptr->id, 
                        DHT_ID_LEN+1); 
        }        } 
        remote_peer_ptr->listen_port =  
                            msg_hdr_ptr->listen_port; 
        hpp_add_peer(remote_peer_ptr->id,  
                 local_peer_info_ptr->id, 
                 remote_peer_ptr,  
                 HELLO_COMPLETED, 
                 now_ptr); 
        return (version_to_use);  
} 

 



 Implementation 

 

136 

5.2.3 DHT Implementation 

The main interaction with the DHT is to process Hello requests to allocate 
identifiers and to update peer information on receiving messages. As per the 
description in section 4.5, a peer only needs to know the address of a peer in the 
P2P network to which it can send a Hello message to join that network (subject to 
having the required security credentials). The Hello processing code above calls 
hpp_add_peer() to add the peer with its new identifier (if this peer has a bootstrap 
role).  

The code extract below shows hpp_add_peer() which is called to add the peer to 
the DHT. Firstly, it checks if this id/peer is already in a bucket and if it is, it 
checks if it was received on this endpoint. If it is not in the bucket, then it calls 
add_peer_to_bucket(), which will add to a bucket with sufficient space left or 
replace a bad peer in the bucket or split the bucket, as described for Kademlia 
earlier. The function add_peer_to_bucket() uses the object space as a cache for the 
peer object if there is no room in the bucket. 

Once the peer has been added to a bucket, it can start receiving messages from 
other peers and it will update the peer’s information (such as the time for message 
received). Note that as a peer is an object in HPP, its lease can be renewed (and it 
will remain in the routing table for that lease period) by using an Add message or 
a specific Get for it as per Kademlia. The use of a lease request/grant means the 
two peers can operate more flexibly than the fixed refresh times in Kademlia. A 
Get for a peer object will return the object from the object space, including the 8 
closest peers. 



5.3 Data Model Implementations  

 

137 

int hpp_add_peer(const unsigned char *new_id, 
         unsigned char *my_id, 
         hpp_peer_t *peer_ptr, 
         char hello_completed, 
         struct timeval *now_ptr) { 
    struct bucket *bucket_ptr; 
 
    peer_ptr->hello_completed = hello_completed; 
    bucket_ptr = hpp_get_id_bucket(new_id, my_id); 
    if(bucket_ptr == NULL) { 
        return (-1); 
    } 
    hpp_peer_t *existing_peer_ptr =        
                find_peer_in_bucket(new_id, bucket_ptr); 
 
    if (existing_peer_ptr != NULL) { 
        if (peer_ptr == existing_peer_ptr) { 
            return 1; 
        } else { 
            if (peer_ptr->hello_completed ==           
                                 HELLO_NOT_COMPLETED) { 
                return (1); 
            } else { 
                return (-1); 
            } 
        } 
    } 
    bucket_ptr = add_peer_to_bucket(new_id,  
                                 bucket_ptr,  
                                 my_id, peer_ptr, 
                                 now_ptr);  
    if(bucket_ptr == NULL) { 
        printf("add_peer-no bckt\n"); 
        return (-1); 
    } 
    return (0); 
} 

5.3 Data Model Implementations 

Implementations were performed for the CIM, IPSO, OMA LW2M data models. 
These involved the creation of objects, e.g. Node, Peer, Temperature Sensor, 
which were added to the object space as key value pairs as the node started up. 
Other objects, such as the Node object from a peer, could be added dynamically 



 Implementation 

 

138 

after start-up on receiving the appropriate HPP Add message. The DM service 
class and instance objects were created at the start of the process, followed by the 
Node and Peer classes and instances and then the local instrumented objects, e.g. 
on the Sky mote the red/blue/green led and temperature sensor were created. 
These local instrumented objects and instances were mapped to the underlying 
Contiki code (in /dev/sensor) to get or set the actual values. 

 

Figure 17 Resource Access over HPP and CoAP 

Figure 17 shows how the Contiki CoAP implementation based on Erbium and the 
OMA LWM2M [148] integrated with the holistic architecture, using the data 
model service layer. It also shows how the same objects were accessible over HPP 
by a HPP peer and over CoAP, but stored only once in the object layer (and not 
separately for each application protocol). A separate CoAP resource was 
implemented for the creation and retrieval of HPP objects using a CoAP transport, 
i.e. a GET to /hpp/led would return the led object encoded as key value pairs, 
whereas a GET to /led would return the standard CoAP response. This allowed 
testing of the initial HPP object implementations separately to the use of the HPP 
protocol itself.  



5.3 Data Model Implementations  

 

139 

5.3.1 Data Model Service Layer 

The data model service layer uses key value pairs to store or send objects from/to 
a remote node and data structures in the local instrumentation layer to encapsulate 
the node functions provided by the OS or node vendor libraries to access sensor 
data. The dm_service library provides support functions on top of the object 
library: 

• dm_add_class() - for each class supported locally or from a remote 
node 

• dm_add_instance() - for each local sensor or remote instance added 

• dm_remove_instance() 

• dm_find_instance(), dm_find_class() – to find objects 
using keys or particular attribute values according to the type of matching 
specified by parameters passed in.  

• dm_get_instance(instance_handle), 

dm_get_class(instance_handle) - to retrieve an instance, using 
the instance handle. 

• Helper functions such as dm_li_add_class() and 
dm_add_li_instance()were added on top of 
dm_add_class()and dm_add_instance() to make it easier to 
set up the li structures. 

For example, a DM_SOURCE_SRV service and node objects were implemented 
as key value pair objects to be sent to another node acting as a 
DM_STORE_SRV. Classes and instances for red/blue/green leds, temperature 
sensor and node, using a subset of attributes from the CIM object and OMA 
LWM2M, were also implemented.  

The following simplified code (not including error code) shows part of the start-
up code where a service adds its own service class template and initialises its roles 
as a source of data, sink and store of data from other nodes: 



 Implementation 

 

140 

uchar dm_register_dm_service(objectAttr_t *template_ptr, 
                             objectAttr_t *inst_ptr,  
                             objectAttr_t *inst_key_ptr) { 
 
  if (dm_srv_class_hdl == 0){  
    dm_srv_class_hdl = dm_add_class(NULL, 
                                    &DMServiceTemplate,    
                                    DM_SERVICE_CLASSNAME, 
                                    NULL);  
 
    hdl = dm_add_instance(HPP_SERVICE_LIST, 
                         dm_srv_class_hdl,  
                         inst_ptr, inst_key_ptr…..); 
  } 
  if (service_role || DM_SOURCE_SRV) { 
     dm_source_init(); // initialise local  
  }                    // instrumentation in object store  
  if (service_role || DM_SINK_SRV) { 
    dm_sink_init 
  }                 
  if (service_role || DM_FORWARDER_SRV) { 
    dm_store_forwarder_init(); 
  }  
  return (0); 
} 

 

The following simplified code for HPP_ADD shows how messages carrying key 
value pairs are used to add a class or instance, with the receiving node calling 
setup_template() to process the class attributes received and then calling 
dm_add_class() or dm_add_instance() with the received instance: 

if (STRMATCH(HPP_CLASS, value)) { 
    void * templ_ptr;   
    templ_ptr = setup_template(message); 
    thisHdl = dm_add_dm_class((void*)templ_ptr, obj_name); 
 } else if (STRMATCH(HPP_INSTANCE, value) ) { 
    rv = processAttrElements(message); // process kv pairs 
    thisHdl = dm_add_instance(classHdl, inst_ptr);  
 } 

 

5.3.2 Local Instrumentation Layer 

This layer hides the platform specific sensor hardware implementations in order to 
make it easier to support the object space layer on different types of device, as 



5.3 Data Model Implementations  

 

141 

only this layer has to be ported. It also makes it easier for the port to be done to 
different devices of different capability as it provides the same abstractions (in the 
form of local instrumentation structures) on each device, which are implemented 
according to the device’s capabilities. It provides get(), set() functions and method 
prototypes for node functionality to access local node data and functionality. 
These functions map well to the hardware/vendor specific implementations on 
nodes that access particular readings or data, such as an API call like 
get_sensor_reading() or reading a value from a register. 

 

Figure 18 Local Instrumentation Structures 

The local instrumentation (li) layer specifically treats each object 
attribute/property individually and allows these attributes to be built into objects 
representing only the attributes that should be implemented on a device. Figure 18 
shows two instances sharing class metadata, where the description of the 
individual properties is stored only once in a list for the class and how the values 
are stored in separate lists for each instance. As well as efficient use of memory, 
this provides the flexibility required to map a rich data model to a resource 
constrained WSN device, where higher-level data models can be built up using a 
local instrumentation structure per attribute giving per attribute mapping to the 
underlying node functions or data. This also allows only those attributes supported 
by the node to be implemented, rather than having to store an object's unsupported 



 Implementation 

 

142 

attributes. This contrasts with how objects are normally inherited with all 
attributes, even if not required. This approach is also very much in line with the 
per property (or Resource in IPSO terms) approach used in OMA LWM2M. It is 
straightforward to map this per property approach to a complex object such as 
used in the CIM information model. 

The li_class consists of a list of li_class_property - one per property of the class. 
The li_class_property structure makes no assumptions about the object it is to be 
put in (it could be in several), giving the modelling flexibility outlined above. 

On start-up, a node allocates and sets up an li_class structure for each class to be 
stored locally. It then sets up an li_instance structure for each object instance, e.g. 
a sensor, according to its configuration. This li_instance in turn consists of at least 
one li_instance_property, each of which is linked to its single li_class_property 
definition, so reducing memory use compared to having this in every instance.  

5.3.3 Integration with Erbium CoAP Implementation 

An initial integration used CoAP to carry the HPP encoded object information and 
message types. This was done to allow testing of the implementation of the 
objects in the data model service, object space and local instrumentation layers in 
advance of the HPP protocol itself being available. It also showed the flexibility 
of those layers being able to easily integrate with the existing CoAP code. The 
CoAP resources were accessed via URLs using a suffix of hpp/[classname] and 
the node responded with the properties implemented in that object as key value 
pairs in the CoAP payload, using multiple CoAP buffers. The code samples below 
show this integration with Erbium-CoAP itself was straightforward. The HPP 
message payload was simply added as CoAP payload using the call 
REST.set_response_payload(). The additional code required in Contiki compared 
to Linux consisted of : 

• Initialisation. 
A Contiki call was added to the Contiki main PROCESS to call the 
initialize code in the hpp_service to set up the service and node objects. 

• Integrating with the REST code.  
This consisted of code to add the resource into the erbium resource 
handling list rest_activate_resource(&resource_hppnode) and 



5.3 Data Model Implementations  

 

143 

the code to implement that resource. A RESOURCE macro is used to 
define a CoAP resource, the CoAP verbs such as get or put it handles and 
a corresponding function to implement it called resource-name_handler. 
The handler below for the node object returns the node instance from the 
object space when queried over CoAP: 

void hppnode_handler(…) { 
    object_t *instObj_ptr = NULL;  
    instObj_ptr =  
  dm_find_instance(NODE_CLASS); 
  hpp_send_object_resp(instObj_ptr, 
                       response, buffer);  
} 

 
• Adding a Resource for HPP Objects.  

This allowed a URI like /nodeAddr/hpp/object?hdl=x to select an object 
by the handle allocated when it was created in the object space or to walk 
through the available objects, as shown by the following handler: 

void hppobject_handler(…) { 
    len = REST.get_query_variable(request,  
                                  "hdl", 
                                 &chdl); 
    instObj_ptr =  
       dm_find_object_by_handle(hdl);  
    hpp_send_object_resp(instObj_ptr,  
                         response,buffer); 
} 

 
The following code implements a Resource to set on the led held in the 
hpp object space as a CIM Alarm with a CoAP POST and also shows the 
use of the local instrumentation (li) layer’s li_mote_method() to call the 
underlying hardware to make the setting on the LED device. 



 Implementation 

 

144 

RESOURCE(hppsetled, METHOD_POST | METHOD_PUT , 
"hpp/led/set", "title=\"ledset\";rt=\"Control\""); 
 
void hppsetled_handler(void* request,  
                   void* response, 
                   uint8_t *buffer, uint16_t 
                   preferred_size,  
                   int32_t *offset) { 
 
  int rv = li_mote_method(MOTE_CAP_LED_SET,  
                          LEDS_RED, MOTE_LED_ON); 
} 

 
• Integrating with the Contiki hardware abstractions using the local 

instrumentation (li) layer. 
This simplified code shows the li layer code wrapping the Contiki led calls 
and is called by a resource handler to set a led: 

li_mote_method(int method_cap, int  
               inst_id, 
               int setting) { 
uint8_t led = (uint8_t)inst_id; 
 
if (method_cap == MOTE_CAP_LED_SET) 
   if (setting == MOTE_LED_ON)  
       leds_on(led); // Removed leds_off, leds_toggle  
} 

  

5.3.4 Contiki Implementation of OMA LWM2M 

This implementation created objects in the object space using the data model 
service layer and these were available directly over HPP and over the existing 
REST interfaces. Use of the existing REST interfaces made testing easier by 
allowing the use of the Copper Browser plugin and Leshan tool for OMA. It also 
allowed the flexibility of the holistic architecture to be considered in terms of its 
ability to support protocols other than HPP. 

Existing OMA LWM2M Contiki Code 

The existing OMA LWM2M ipso-example implementation in Contiki3.0 creates a 
context for parsing a CoAP request. It uses a set of structures to represent objects 
and resources, with enumerations for types of resources. The LWM2M object 



5.3 Data Model Implementations  

 

145 

structure contains pointers to instances, which in turn contains pointers resources 
as below: 

typedef struct lwm2m_object { 
    uint16_t id; 
    uint16_t count; 
    const char *path; 
    resource_t *CoAP_resource; 
    lwm2m_instance_t *instances; 
} lwm2m_object 

The ipso-example code initialises the LWM2M engine in a thread that calls: 

1. lwm2m_engine_init() 
2. lwm2m_engine_register_default_objects() to set up a 

device object for the node 
3. ipso_objects_init() to initialise the supported objects, e.g. 

ipso_temperature_init().  
4.  enter a loop processing events. 

The object init() methods code for the temperature resource is shown below , with 
other resources having similar code. This code segment shows the Object Id, type 
and value as defined for this LWM2M resource (and used to form its URI as 
shown earlier). The call-back will be a method to access the real values. Note that 
this method call to access the real values is specific to this implementation, unlike 
the more generic approach using the local instrumentation layer in the holistic 
architecture. 

LWM2M_RESOURCES(temperature_resources, 
   LWM2M_RESOURCE_CALLBACK(5700,{temp, NULL, NULL}), 
   LWM2M_RESOURCE_STRING(5701,"Celcius"),               
    // some entries not shown……. . 
   LWM2M_RESOURCE_FLOATFIX_VAR(5602, &max_temp)); 

An instance will be created and included in an object by: 

LWM2M_INSTANCES(temperature_instances,    
   LWM2M_INSTANCE(0,temperature_resources)); 
   LWM2M_OBJECT(temperature,3303, 
                temperature_instances); 

This is followed by a call to add this object to the engine’s static array of 
lwm2m_object_t pointers - 
lwm2m_engine_register_object(&temperature); 



 Implementation 

 

146 

Mapping to the Holistic Architecture – Setting up the IPSO Objects  

The process of mapping the LWM2M code to the holistic architecture consisted of 
two main items. The first item was to set up the IPSO objects for storage. The 
second was to interface with the LWM2M engine and its CoAP processing code 
and to replace the code it used to access the stored data or the underlying 
hardware with code using the data model service layer, e.g. to read a temperature 
sensor. 

Setting up the IPSO objects began by creating a set of header files with static 
definitions for IPSO resources (properties in HPP) and objects, e.g. 

#define IPSO_Sensor_Value_PROP_ID 5700  
#define IPSO_Generic_Sensor_OBJECT_ID 3300 

Then a static definition of the IPSO Classes was created in a header file, 
initialised as an array of li_class_property to hold the property names and types of 
the class, as per Figure 18. For example, a Temperature Sensor class is defined as: 

  //name,property_id,type, mode, permission 
 
  li_class_property_t IPSO_Sensor_Value = { 
        IPSO_Sensor_Value_PROP_NAME, 
        IPSO_Sensor_Value_PROP_ID,  
        real32, DYNAMIC, READONLY}; 

 

These properties are then grouped into statically defined li_objects with valuelists 
of key value pairs (or callbacks to set values) as in: 

li_kv_entry_t tSensor_vals[] = { 
  // property id, length, value, next   
  {IPSO_Sensor_Value_PROP_ID,4,"0", 
                &tSensor_vals[1]}, 
  // some entries not shown……. . 
  {IPSO_Sensor_Type_PROP_ID,12,"Temperature",  
                &tSensor_vals[9]}, 
  {LI_END_PROP_ID, 0, NULL, NULL} 
}; 

 

Finally, the classes implemented in a given node are added to an array of 
li_class_t to define the properties (by pointing to that list) with the relevant 
callbacks: 



5.4 HBase Integration  

 

147 

li_class_t node_classes[] = { 
         IPSO_Generic_Sensor_OBJECT_ID, 
         HPP_PREFIX, 
         IPSO_GenericSensor_PropCount, 
         &IPSO_GenericSensor[0], 
         0, NULL,&localFunctions},.......}; 

 

For dynamic properties, such as the reading taken from a sensor, the getter/setter 
callbacks per property must be coded to access the values from the hardware. 

Mapping to the Holistic Architecture –Interface with the LWM2M 
Engine 

Having defined the properties in the local instrumentation structures, the 
definitions for those attributes to be instantiated on a given node, based on its 
capabilities (such as sensors on board and its memory size), have to be integrated 
into the existing LWM2M engine. The LWM2M context and REST code were 
retained and the lwm2m_engine_register_default_objects() 
method was extended to call dm_service_initialise(). This call sets up a 
DM_SOURCE_SRV with service_source_init(). This call initialises the 
li_node information and calls dm_li_add_class() and 
dm_add_li_instance()to add the supported DM service, node and local 
instrumentation classes and instances to the object space. For example, a local 
instrumentation instance such as a Generic Sensor is added with a call as below:  

  rv = add_inst(this_info_ptr, 
              &myGenericSensorInstances[0], 
              IPSO_Generic_Sensor_OBJECT_ID,  
              "0",  
              IPSO_Keys_PropCount, 
              IPSO_Generic_Sensor_INDEX);  

, 
Finally, lwm2m_engine_handler() was changed to use data model service 
layer calls such as dm_find_instance_by_name() to get and set LWM2M 
resources, returning the appropriate REST responses as before. 

5.4 HBase Integration 

To demonstrate the effectiveness of the abstractions to model the end-to-end data 
flow, a DM_SINK_SRV service was written in Java to integrate with HBase. 



 Implementation 

 

148 

HBase was chosen as an example of a Big Data NoSQL store to be used with 
sensor data, because its columnar nature and dynamic schema suit the variety of 
sensor data which may be received in structured, semi-structured or unstructured 
formats. This service used the CIM information model for sensor data, which is 
then stored in HBase. As discussed in section 2.5, the verbose nature of the CIM 
information model is not well suited to use on WSN devices, but it models sensors 
well, with a rich information model making it a useful information model to 
demonstrate (or not) the usefulness of the holistic abstractions in interfacing with 
a datastore such as HBase.  

A DM_SINK_SRV service was created to write to HBase, as shown earlier in 
Figure 15. The model used was to create a HBase table for each HPP class (on 
receiving a HPP Add Class message) with a row for each instance and column 
families for "key attributes" and "attributes" (stored separately in the hpp object), 
with a column family qualifier for each attribute. A row key consists of the 
object’s key attributes, node identifier and a timestamp. The code extract below 
shows the writeToHBase() method. It assumes the table has already been created 
by an earlier HPP Add command and shows how the received key value pairs in 
the HPP data are processed and written as a row to the HBase table for that class. 

// required try catch blocks not shown 
public static void writeToHBase(Configuration conf,  
                                String tableName,  
                                String hppData) { 
 
    Map<String, String> keyKvs = getKeyMap(hppData); 
    Map<String, String> attrKvs = getAttrMap(hppData); 
     
    HBase admin = new HBaseAdmin(conf); 
    HTable table = new HTable(conf, tableName); 
    String rowKey = createRowKey(keyKvs);  
    Put put = new Put(Bytes.toBytes(rowKey)); 
    // Add hpp data to column families 
    addMapToHBasePut(put, keyKvs, "key attributes");  
    addMapToHBasePut(put, attrKvs, "attributes"); 
    table.put(put); 
    admin.close(); 
} 

 

A method was also written that allowed a HBase scan of a given column/column 
family in a particular table. 



5.5 CacheL Implementation  

 

149 

This DM_SINK_SRV service writing to HBase could act as a HPP peer and join a 
peer-to-peer network, as shown in earlier ‘C’ code in section 5.2.3. The flexibility 
of the holistic abstractions also allows the HPP object to be carried over CoAP.  

public static  boolean createRecord(String addr,  
                          String method, String url, 
                          String payload, int timeout)  
                                    throws IOException { 
   
    Configuration conf = HBaseConfiguration.create();  
    COAPPacket request = new COAPPacket(draft); 
    // Code to set header, method, payload not shown 
    DatagramPacket reply = send(addr,  
                        port, 
                        COAPPacket.serialize(request), 
                        timeout); 
    if (reply != null) { 
        COAPPacket pkt = new COAPPacket(draft,  
                                      reply.getData(), 
                                      reply.getLength()); 
       writeToHBase(conf, pkt.getPayload()); 
    } 
} 

 

The code above for createRecord() shows this use of CoAP, where the 
DM_SINK_SRV acts as a Java CoAP client. That client connected to the desired 
WSN node via a socket to the CoAP Server on the Contiki RPL border router. As 
per the code segment above, it builds a COAPPacket using COAPPacket(), calls 
the serialize() method and sends the request using the CoAP libraries. On 
receiving the reply, containing the HPP data, it writes that data to the 
HBaseConfiguration object it had created to writeToHBase(). 

5.5 CacheL Implementation 

The CacheL algorithm is outlined in section 4.2 with simplified ‘C’ code to 
illustrate its operation. That code shows how the implementation uses some 
specific metadata (such as the last time it was visited on a sweep and its access 
count) stored in the cached items. This is done in order to avoid having to update 
all entries in the cache on every sweep. For example, the number of times the 
access count missed being decremented in a sweep (due to the periodic nature of 



 Implementation 

 

150 

sweeps) is handled by holding a sweep count which is incremented on each 
sweep, which is then used to decrement the access count on the next sweep. 

CacheL was implemented in ‘C’ and was incorporated into the object space 
described earlier to manage the replacement of objects in the object space using 
lease and access count. In this instance, the commonality of code and metadata for 
cache and lease management was designed to reduce code size and memory use, 
as well as making the code simpler. 

 

Figure 19 YCSB Test Setup 

CacheL was also implemented in Java so that it could be compared to a Java LRU 
implementation using the Yahoo Cloud Server Benchmark (YCSB). . Figure 19 
illustrates the test setup used for YCSB. The Java LRU implementation used 
HashMap's removeEldestEntry() method. The CacheL implementation also used a 
HashMap to be comparable, although this needed extra code to handle 
ConcurrentModificationExceptions by marking items for deletion in a sweep and 
to remove them later. It also had to hold a separate list of index-object reference 
pairs so a sweep could continue from the previous position, which the C 
implementation did not need as it used its own circular list library. 

YCSB was chosen for a number of reasons. Firstly, it allowed the use of larger 
data sets than would be typical on a WSN node in order to determine the 
effectiveness of the algorithm in a non-constrained environment. Secondly, YCSB 
also provided a test infrastructure that was relatively easy to use and flexible in 
terms of adding data sets with new distributions and being able to run workloads 



5.6 Summary  

 

151 

that varied the read and update ratios on those data sets. In its normal use case, 
YCSB runs separate commands to load a database and then to run a set of tests on 
that data. In this use case of an in-memory cache, these runs had to be combined. 
Furthermore, the update implementation was not a simple insert as with databases, 
as the item to be updated may not be cached and so had to be read and inserted. 

5.6 Summary 

This chapter has given an overview of the prototype implementations for both 
Linux and Contiki3.0, which were performed in order to realise and evaluate the 
components in the holistic architecture. It is important to note that the ‘C’ 
implementations allowed re-use of large parts of the same codebase to run on the 
constrained nodes and more capable Linux nodes, as per the design goal for the 
architecture. In particular, this chapter has described implementations of the 
following: 

• the layers in the holistic architecture 
• the CacheL algorithm 
• integration with the OMA LWM2M stack and Erbium CoAP stack 
• OMA LWM2M and CIM information models, including the per attribute 

mapping and the effectiveness of the local instrumentation layer in its use 
of memory 

• a DM_SINK_SRV accepting HPP objects and storing them in HBase 

The next chapter presents the results of a set of tests on the implementations 
described in this chapter. It also presents an evaluation of the components in the 
architecture based on those results. This includes quantitative analysis of the size 
of the code and the hit ratio of CacheL versus LRU, as well as scalability tests and 
qualitative assessments as to whether the abstractions made it easier to develop 
software for constrained node devices and to assess the portability of that 
software. 

 





 

6 Experimental Evaluation 

This chapter presents the results from implementing the layers of the holistic 
architecture and HPP protocol. It considers the success of the architectural 
abstractions against the requirements and considers its use in some example 
scenarios. This is followed by qualitative consideration of complexity and 
quantitative consideration of HPP and CacheL, such as performance and memory 
use (to determine the feasibility of its use on constrained devices). 

Sections 6.1 and 6.2 evaluate the results in broad terms of whether the 
requirements in each section were met and how the holistic architecture compares 
to the other architectures presented in earlier chapters. Section 6.3 shows a 
mapping of the holistic architecture to some example scenarios. Section 6.4 gives 
qualitative assessments of the key issues for developers on constrained devices, 
i.e. implementation complexity and APIs (Req-4). Sections 6.5 and 6.6 consider 
the requirements more specifically by considering the success of the abstractions 
in modelling the interactions involved (Req-1, Req-2, Req-6), the success of 
mapping data models into the object space and local instrumentation layers (Req-
3 and Req-5) and the success of the P2P approach using DHT in a decentralised 
manner (Req-7). Section 6.7 considers the memory use of particular data model 
implementations on Contiki compared to other libraries on Contiki. Section 6.8 
considers the performance of HPP in a number of test scenarios on both Contiki 
and Linux in terms of scalability and robustness. Section 6.9 provides a qualitative 
consideration of the complexity of implementing CacheL and quantitative 
evaluations for the hit/miss ratio of CacheL and optimisations introduced during 
testing, as well as for the memory use (Req-8) of code and data.  



 Experimental Evaluation 

 

154 

6.1 Consideration of Architectural Requirements  

The architectural requirements from section 4.1.2, and how the holistic 
architecture addresses them, are summarised below: 

• Req-1. Clearly define the possible roles of nodes. This is explicitly catered 
for by the roles defined in the data model service layer, e.g. DM_STORE_SRV. It 
is further supported by the exchange of the HPP messages in the peer's 
capabilities in the Hello message and the roles in the service object. 

• Req-2. Provide abstractions for the basic operations required of a sensor 
node and the services, which map easily to a range of heterogeneous devices and 
higher-level services. This is provided by the local instrumentation layer 
providing the device specific low-level functionality in a way that can be exposed 
to the object space and data model service layer, which is the common way to 
access the data held on the device and its functionality. 

• Req-3. It must be independent of particular node hardware and must 
handle a range of node functional capabilities. The data model service layer and 
object space are independent of the node hardware and are able to hold data to 
support a range of node functions with the local instrumentation layer providing 
the implementation of node specific functions.  

• Req-4. It must provide simple, consistent APIs for developers of device 
and application software. The object space provides a simple and consistent API 
for both the data model service layer and local instrumentation layer, as well as 
higher level applications. The data model service layer also provides a simple API 
to application developers to manage and access the data stored and the lower layer 
functionality. Furthermore, the commands in the HPP protocol align well with 
these APIs. 

• Req-5. It must provide a consistent means to exchange sensor information 
independent of the underlying technology and provide specific support for the 
modelling of sensor data to allow integration into higher level systems. The IPSO 
and CIM data models were successfully implemented, as well as an integration 
with the OMA LWM2M stack and the Erbium CoAP stack. A mapping to the 
OpenFog reference architecture is also shown.  



6.2 Architectural Comparison  

 

155 

• Req-6. It should support a sensor node informing other nodes and services 
of its sensing and platform capabilities. The platform capabilities in terms of 
messages supported are exchanged in the Hello message as well as the HPP 
version and the sharing of the service object using Add or Get. The sensing 
capabilities can be determined by discovering the supported objects.  

• Req-7. It must be able to handle small, static networks and allow the 
system to adapt as the network grows/changes or encounters other networks, 
supporting applications discovering and collaborating without a centralized 
coordination facility. The use of an overlay network in HPP with a DHT makes it 
able to identify and exchange data in a network and across a variety of networks, 
using an identifier (a prefix part of which may be specific to a given network) 
without centralized coordination. The use of a lease also supports the dynamic 
nature of nodes joining or leaving more easily. 

• Req-8. It must use protocols that are sufficiently simple for low capability 
devices to participate, according to their capabilities. The holistic architecture 
and HPP have been implemented on constrained devices such as the TMote and 
WiSMote. 

6.2 Architectural Comparison 

In terms of the OpenFog Reference Architecture, the local instrumentation layer 
and the object space layer align with the Node view of the Sensor and Actuator 
layer and the Protocol Abstraction layer. The layers in the holistic architecture, 
however, provide a richer set of abstractions and detail than the lower layers in the 
OpenFog architecture and the holistic architecture retains this consistency by 
using the abstractions on higher level systems. The defined data model service 
layer and its service roles fit the storage functionality in OpenFog and the holistic 
abstractions could be useful for the layers to manage nodes and for the 
Application layers. As such, HPP allows fog and edge computing components to 
be interoperable at the level of providers and architecture models and interfaces. 
HPP also provides a means to exchange information between fog nodes and Cloud 
services (an example integration with a typical HBase as a typical Cloud NoSQL 
database is shown in section 5.4). 



 Experimental Evaluation 

 

156 

In terms of the RESTFul Style constraints given in section 3.2.1, it can be seen 
that the RESTFul use of a well-known URI for discovery is replaced by the use of 
a Hello message and a node having to know one node address to join a peer 
network. The limited and consistent set of message types in the HPP protocol 
aligns with the RESTFul use of methods with the same semantics for all 
resources. This is strengthened beyond REST in the holistic architecture as the 
same semantics also map to the object space API. The use of HPP to manipulate 
objects aligns with the RESTFul manipulation of resources through the exchange 
of representations and its use of self-descriptive messages to exchange 
representations. 

The comparison of functionality of the HPP protocol with CoAP is similar to that 
above of the holistic architecture with the RESTFul architectural style, as they 
both reflect the architecture they were intended for. In particular, the HPP 
commands cover equivalent functionality to the CoAP verbs, although Take is 
richer than DELETE and Notify is implemented differently to OBSERVE. There 
is no explicit call to a resource’s methods in CoAP and this is usually achieved by 
setting/resetting an attribute in the object, whereas HPP allows a call to the 
method defined in the object.  

While both CoAP and HPP provide for discovery, HPP does not rely on a 
centralised server as with resource discovery in CoAP and HPP does not rely on 
every server providing the /.well-known/core endpoint for the Resource 
Directory(RD) or other nodes to discover its resources. Furthermore, CoAP does 
not specify how a node announces itself on joining the network, whereas a HPP 
peer can discover other peers and not just the resources on a node, once one well-
known peer identifier is known. 

It can also be said that the capabilities exchanged in the HPP Hello and the roles 
in the service object provide a richer view than the Resource view available over 
CoAP. This also allows HPP nodes to act only as sources and connect outwards 
only, whereas the use of CoAP in OMA LWM2M requires accepting and making 
connections. Furthermore, while CoAP supports caching, the use of a lease in the 
holistic architecture’s cache and explicit support for setting and renewing leases in 
HPP reflects its more central role in HPP. The current prototype HPP 
implementation does not have a binary encoding and reduced headers as provided 
by CoAP, but it is expected that the design of HPP will allow this in future. 

The approach taken in the WoT work is similar to the approach taken here in that 
it identified requirements and designed an abstract architecture, based on those 
requirements, with interoperability and support for multiple information models at 



6.3 Example Scenarios  

 

157 

its core. Hence, it can be said that the holistic architecture shares a data-centric 
view and the RESTFul Architectural style constraints with WoT. The holistic 
architecture is, however, not specific to web technologies. HPP could interoperate 
in the Web of things, but also provides HPP as a protocol, a richer set of roles and 
architectural layers that can be used as appropriate on a node. It also does not need 
a separate thing directory to contact a local device as in WoT, as this is achieved 
by the HPP DHT. The holistic architecture is likely to be less demanding of 
resources than WoT as the suitability of the WoT for constrained devices is to be 
determined. 

Section 2.6 also showed that the WoT approach to interoperability is to provide 
interaction across platforms by supporting an infrastructure for IoT platforms 
using different protocols to communicate and use the thing Description (TD) and 
an exposed thing for this TD as the shared information at a Web application layer. 
This use of the TD is similar to HPP providing capabilities, although HPP 
expresses these as HPP commands and service roles, with the information model 
being a separate object that could be returned as part of the node object or indeed 
the TD itself could be retrieved by a HPP Get message. WoT is prescriptive in the 
use of a Thing Description used to build an instance of an exposed client. The 
holistic approach in this thesis is less so and includes a simple Hello that allows a 
peer to participate. Furthermore, as the holistic architecture uses an overlay by 
design, it does not have the richness of proxy and bridge capabilities found in 
WoT. 

6.3 Example Scenarios 

The holistic architecture and prototype implementations of it have been presented 
in earlier chapters. Figure 15 showed how the layers within the holistic 
architecture interact according to the capability of nodes and Figure 17 showed 
how resources could be accessed over HPP and CoAP, while sharing the object 
space to only store the underlying data once. This section illustrates how these 
generic capabilities could be used in real scenarios. 



 Experimental Evaluation 

 

158 

 

Figure 20 MQTT Bridging 

Figure 20 shows an example where MQTT brokers are federated using the current 
MQTT bridging approach. Each bridge has to be configured with the address and 
port of the remote broker or brokers, a client name, the topics the broker will 
publish and the topics it will subscribe to, along with local and remote prefixes. 
As can be seen, this involves a high degree of manual configuration and the 
federation is done in a manner specific to MQTT.  

 

 

Figure 21 Federation of MQTT using HPP 

Figure 21 shows how the holistic architecture could realise this scenario by HPP 
peers. HPP could be used to find the IP addresses of the relevant peers with 
MQTT brokers. One approach could be for those peers sharing a node with 
MQTT to either Add, or respond to a Get for, an object outlining the MQTT 
configuration such as topics over HPP and this could be used to create a local 



6.3 Example Scenarios  

 

159 

configuration file for MQTT. Another approach would be for a peer to send an 
Add to a specific info_hash for a group (like a BitTorrent swarm) of peers with an 
MQTT object matching the topic(s), as described in 4.5. Both of these examples 
show a more scalable, autonomous approach than the manual configuration for 
MQTT bridging. Furthermore, these HPP approaches could be used to federate 
other systems. 

 

Figure 22 Vehicle Data Hub Architecture 

MQTT may be part of a larger instrumentation and control system, such as in a 
car. Figure 22 shows a simplified view of a vehicle data hub, based on one 
provided by IBM [151] and it also shows how the holistic architecture’s layers 
could map to elements in that hub. The protocol layer in the vehicle data hub 
maps to the holistic architecture’s layers to handle local instrumentation, store it 
in the object space and make available over HPP or MQTT using the Data Model 
Service Layer. It also shows the vehicle data hub’s adapter layer mapping to the 
holistic architecture, as per the integration with HBase in 5.4. Other adapters such 
as for Kafka, HDFS and relational databases would integrate with the Data Model 
Service Layer similarly. The vehicle data hub’s data processing layer would be 
implemented as a set of applications on top of the Data Model Service Layer 
using its API. Figure 22 shows the flexibility of the holistic architecture, where 
the layers could be implemented on a single hub or distributed across multiple 



 Experimental Evaluation 

 

160 

hubs (where the adapter layer could reside in the cloud) using either the existing 
federation approach of MQTT or using HPP as above. 

Figure 23 from the OpenFog consortium illustrates a smart transportation system 
scenario consisting of multiple different entities, such as low level sensors, 
gateway nodes and cloud based services as an example of fog computing.  

 

Figure 23 OpenFog Transportation:Smart Car & Traffic Control System [96] 

Figure 24 shows how that smart transportation scenario could be implemented 
using the layers defined in the holistic architecture for both the on-vehicle and 
vehicle-to-cloud aspects (where the HPP communication between peers is 
equivalent to that between fog nodes). In this scenario, the high volume, high 
velocity camera data is simply forwarded to another peer and the main benefit of 
the holistic architecture is for nodes to discover each other and their capabilities 
(such as a camera feed represented by an object), with the object space used to 
hold information on other peers and HPP used to carry the lower volume, lower 
velocity information about peers and their functionality. 



6.4 Linux and Contiki Implementation  

 

161 

 

Figure 24 Smart Transport Fog System with HPP 

It is important to note that even when HPP exists with other services such as 
MQTT or high volume video feeds in these scenarios, the holistic architecture still 
provides a means for lower volume, lower velocity traffic to identify peers, 
exchange information, discover and share roles and capabilities and to store 
instrumentation data once (with caching support) or to interface with richer Big 
Data stores for higher volume data. 

6.4 Linux and Contiki Implementation 

The approach of initially implementing the HPP layers on Linux allowed the 
design to be refined and the code to be debugged and tested more easily and 
rapidly, using the more advanced Linux development and debugging 
environments. It also provided implementations for services on Linux that could 
integrate easily with those on constrained nodes as envisaged in the end-to-end 
flow of data. The Linux services also allowed easier and quicker testing of a large 
number of devices, particularly in terms of testing the HPP protocol.  

These benefits of a Linux implementation came at little cost in terms of the 
subsequent port to Contiki as most of the code did not require any recoding, given 
the availability of standard C libraries in Contiki. The main code changes were to 
provide a separate socket handler on Contiki, a revised Makefile and a simplified 
implementation of gettimeofday() for object leases. The second code extract in 



 Experimental Evaluation 

 

162 

section 5.2.1 shows the separate socket code required for handling the event-based 
model of Contiki’s sockets. That code also shows that the channel and endpoint 
abstractions did make it simpler to create that socket handling code and integrate 
into the rest of the HPP processing code. 

Another set of changes was required to improve memory use and support static 
memory allocation on Contiki to avoid runtime heap and stack issues. As shown 
in the code extracts in section 5.2, macros such as NEW_V and methods such as 
hpp_str_cpy were used and these used dynamic memory allocation on Linux, but 
fixed size memory on Contiki. It also involved changing structure members to 
reduce size (e.g. from int to char). This allowed the application developer to call 
the same library functions on both Linux and Contiki. In order to avoid stack 
overflow, care was taken to reduce the number of parameters passed in function 
calls and to change the type of function parameters, e.g. from int to char. 

The code extracts for HPP implementation in section 5.2 show that it was 
relatively straightforward to implement the code to process HPP messages and 
interact with the holistic architecture’s layers to store and manage data and also to 
incorporate the DHT implementation into processing HPP, particularly with the 
Hello and Hello reply messages.  

The code extracts for implementing support for the data models in section 5.3 
showed that the data model service and local instrumentation layers integrated 
well with the object space layer, as the data model service layer provided a simple 
API to incorporate data models and the object space and the local instrumentation 
layer provided a nice abstraction for lower level developers to add the code to 
handle device specific aspects, e.g. to access a register for a reading. The code 
extracts in section 5.3.3 show the straightforward nature of the integration of 
Erbium’s CoAP implementation. 5.3.4 shows that mapping the IPSO resources to 
the holistic architecture’s object classes and instances was straightforward. It also 
shows that it was simple to integrate the OMA Engine with the data model service 
layer and object space without requiring specific knowledge of the device being 
used, which was only needed in the local instrumentation layer if accessing 
hardware or OS functionality.  



6.5 Use of Abstractions  

 

163 

6.5 Use of Abstractions 

The usefulness of the abstractions provided specific benefits for the mapping to 
particular data models, shown by the ease of incorporating a DHT and also 
CacheL into the object space. These cases are considered in later sections, but this 
section considers the abstractions from a user’s perspective. One approach to 
evaluating abstractions is to consider the “end-user” and “WSN geek” [152], 
where the “end-user” is a domain expert concerned with using the WSN data, 
while the “WSN geek” is concerned with lower level WSN details such as 
network/node specific implementations. In this regard, this work has shown 
successful examples of implementations of different services to run on different 
hardware and interact using the same layers and base code. 

The “end-user” is able to access the sensor data simply with known CoAP 
Resources or HPP messages from a DM_SOURCE_SRV on a constrained node or 
from a Java DM_SINK_SRV running as a HBase store (see HBase Integration 
below). This availability of information was supported by a DHT that was 
incorporated into the HPP protocol implementation easily using channels and the 
object space. 

The “WSN geek” has been provided with an architecture using the object space, 
data model service and local instrumentation layers for incorporating node 
specific functionality and capabilities. The code extracts show that these items 
made it straightforward for a node to implement objects from a rich information 
model on both a Linux and Contiki platform and to map to CoAP Resources (see 
section 6.5.1). The code extracts also show how the channel and endpoint allowed 
the creation of library methods by a “WSN geek” that could hide the specifics of 
implementation on Contiki, such as Contiki’s socket handling or the care needed 
with memory allocation. Hence, the abstractions for channels, endpoints and the 
data model service layer allowed the higher layer HPP message handling and 
services code to be unchanged in both environments for the application 
developers. 

For the “WSN geek”, the value of the object store’s non-prescriptive nature in 
holding classes and instances was also shown in the implementation, where it was 
flexible enough to store objects from both local and remote nodes, as well as 



 Experimental Evaluation 

 

164 

storing DHT data. This non-prescriptive nature also allows different data models 
to be provided for “end-users”. It also allows an “end-user”, who is a developer to 
only require knowledge of one simple API, where the use of a lease also 
simplifies the management of the constrained storage for him. 

For both the “end user” and “WSN geek”, the design goal of the same abstractions 
giving a generic information infrastructure across heterogeneous platforms of 
different capability was met and the data was able to be retrieved using protocols 
other than the HPP protocol.  

6.5.1 Data Models 

The value of the holistic architecture layers was also shown in the implementation 
and the code extracts earlier. For example, the object space layer’s ability to 
define object instances and classes on a per attribute basis also provided the 
flexibility required to map a rich data model to a resource constrained WSN 
device. This meant higher-level data models could be built up using a local 
instrumentation structure per attribute giving per attribute mapping to the 
underlying node functions or data. This allows only those attributes supported by 
the node to be implemented, rather than having to store an object's unsupported 
attributes. This contrasts with how objects are normally inherited with all 
attributes, even if not required. This approach is also very much in line with the 
per property (or Resource in IPSO terms) approach used in OMA LWM2M and 
this per property approach also mapped easily to a complex object such as used in 
CIM. The existing LWM2M implementation on Contiki3.0 cleanly maps the 
object, instance and resource concepts in LWM2M using a set of structures. 
Unlike the HPP dynamic approach to adding objects, the existing LWM2M does, 
however, use a static array to hold pointers to the instances, albeit this is hidden 
by methods like lwm2m_engine_register_object(). Similarly, the implementation 
of the object space, is hidden by the object library API.  

The value of the data model service layer’s abstractions for roles was shown by 
the implementation of the DM_SOURCE_SRV role for the LWM2M objects. 
This integration shows that a more complete integration of the HPP protocol with 
the IPSO and OMA code could take advantage of the ability of the proposed 
holistic architecture to store and cache data from remote nodes by using the 



6.6 Mapping of OMA LWM2M and CIM Data Models  

 

165 

DM_STORE_SRV role for LWM2M data from remote nodes. LWM2M does 
have the concept of registration to one or more servers, which includes objects, 
but this does not appear to be as rich as the defined data model service roles. The 
use of the data model service layer also allows a much richer matching in a 
request than OMA LWM2M as it can match on template or wildcards or 
particular properties. 

Also, the data model service layer distinguishes key and non-key properties in the 
class, allowing it to handle the LWM2M use of a URI of objectid/instance or 
objectid/instance/resourceid to select a resource, but also to be flexible enough to 
support the straightforward implementation of other data models, e.g. the keys 
used in CIM. 

6.5.2 HBase Integration 

The architecture allowed data on the WSN node to be transported and stored in 
HBase, using CoAP or HPP, requiring no application level proxy and only 
requiring a proxy at the network level, i.e. the RPL border gateway. The HPP 
message types also mapped well to HBase functionality. For example, the two 
column families defined for attributes allowed a HPP Add of a class template to 
dynamically create new objects with their attributes by creating a table (and its 
columns). Subsequently, a HPP Add of an instance will then result in a new row in 
the object’s table. 

In terms of data mapping, the HPP objects mapped cleanly to HBase tables and 
the approach of composing an object from individual attributes mapped well to 
HBase columns. Furthermore, the approach of separate key and non-key 
properties also mapped well to separate HBase column families, allowing a HBase 
scan across all rows of key attributes as well as non-key attributes, rather than 
only being able to use the key attributes as instance identifiers. 

6.6 Mapping of OMA LWM2M and CIM Data Models 

The implementation of the CIM and OMA LWM2M models both required 
mapping of their respective object models into the object space. It can be seen that 
the per property(resource) data model of LWM2M is more suited to constrained 



 Experimental Evaluation 

 

166 

devices, e.g. the IPSO Generic Sensor definition is much simpler than the 
inheritance involved in constructing a CIM_NumericSensor. CIM also uses lots of 
strings, e.g. for names, which is expensive in memory, even if only stored once as 
in HPP, whereas the ids in IPSO are easier to program and more efficient in 
memory. IPSO also has fewer types than CIM, as suits constrained devices. Using 
digits for object identifiers reduces string usage and is suitable for M2M, but it is 
more user friendly to use a RESTFul well-known URI, so names were also 
supported in the implementation, e.g. /Device/0/Manufacturer as well as 3/0/0. 

CIM does, however, provide a clearer model regarding methods as it has specific 
object methods, whereas IPSO uses resources with implied actions, e.g. CIM has 
setAlarmState which can be used to set a led, whereas IPSO Light Control uses 
the On/Off (5850) boolean Actuator resource. In the case of an LED, the IPSO 
approach is simpler and reasonably obvious, but it is less obvious in resources like 
“Reset Min and Max Measured Values”, while the implied use of “On-
Time”(5852) or “Off-Time”(5853) to reset is not consistent with specific Reset 
resources elsewhere.  

The implementation of the OMA LWM2M and the IPSO Objects has shown that 
a per property based approach fits naturally with how the low level functionality 
is often performed on devices, e.g. with a GPIO call per property and maps to 
CoAP REST resources, such as led and sensors and groupings of individual 
attributes. It also allows selection of only the implementable attributes on a node, 
so saving memory per implemented class. Both LWM2M and HPP support this 
approach. While REST resources such as led and sensors generally have a few 
properties, the IPSO Application Framework [153] defines function sets as 
groupings of individual attributes, e.g. a device at /dev has 12 resources, e.g. 
Manufacturer at /dev/mfg.  

This per property design approach is implicit in IPSO’s objects, but CIM is 
intended to be implemented as a full object model. This implementation of a 
subset of several CIM object classes (with many strings) has shown that even the 
CIM_Sensor is too heavy for implementation on a resource constrained device, as 
it has over 20 possible attributes. The local instrumentation layer and the class 
template with attribute descriptions and its instance object with attribute values 
allowed a selective per property approach that meant only those attributes 



6.7 Memory Use  

 

167 

available on the constrained node hardware were coded and it supported a set of 
abstractions in a COAP/REST environment that allowed a constrained node to 
interact with a higher level remote DM_STORE_SRV service implementing the 
CIM model in a HBase store. The defines used in the HPP header files were easy 
to generate from the IPSO documents by substituting “_” for “ “, but it was not 
possible to do easily in all cases due to the inconsistent use of certain characters or 
mixed capitalization in the IPSO documents, e.g. use of “/“ in On/Off (5850), Off-
Time(5853) and Minimum Off-time(5525).  

6.7 Memory Use 

The memory usage is given for examples of the two data models implemented. It 
was necessary to remove parts of the erbium-CoAP code to create space for the 
HPP code to run on a Tmote Sky, although parts of the Erbium and CoAP stack 
were retained in the runtime to allow use of the CoAP transport and the Copper 
Browser plugin for testing. This could be removed to reduce the memory footprint 
and allow more holistic architecture functionality to be included. 

 Original Erbium REST Code Erbium + HPP Code 

 Code 
(%) 

Data(%) Total 
(%) 

Code 
(%) 

Data(%) Total 
(%) 

Libc 8 0 7 9 0 8 

Core 9 3 8 7 2 6 

Network 50 74 53 50 63 52 

Platform 12 3 10 10 4 9 

Coap 17 17 17 11 12 11 

Rest 5 3 5 2 4 2 

Hpp n/a n/a n/a 11 15 12 

Table 1 Memory Usage of CIM Implementation 

Table 1 shows the percentages of the available TMote memory (10K RAM, 48K 
Flash) in order to compare the memory use of key components by the original 



 Experimental Evaluation 

 

168 

Erbium REST er-rest-example application code and the modified code with HPP. 
Percentages are shown as the original Erbium code had to have some functionality 
removed to allow the HPP code to fit in memory. The code includes the 
implementation of the layers of the holistic architecture (without the DHT) and 
instances of the led, Service, Node, CIM_AlarmDevice and CIM_NumericSensor. 
The CIM instances took advantage of the object space’s ability to only store those 
attributes from the CIM object that are available on the device to reduce memory 
footprint. As can be seen, the REST engine and CoAP use a small amount of 
memory compared to networking, which is equivalent to that for the platform and 
core. It can also be seen that the code and data usage of the holistic architecture is 
equivalent to that of CoAP, so that it is feasible to run the holistic architecture 
with those reduced CIM objects on a constrained device. 

Code Component Code Data 

LWM2M and OMA 7742 3807 

REST and CoAP 8278 2228 

Data Model and Local Instrumentation 1686 1316 

Object Space (and supporting utils) 1036 139 

IPSO extensions (to integrate with Data 
Model and Local Instrumentation layers) 

4126 1684 

   

Full Stack 60474 21753 

Table 2 Memory Usage of IPSO Implementation 

Table 2 shows the memory use in bytes of selected components on a WiSMote 
WSN node running Contiki, with instances of the IPSO LightControl, Generic 
Sensor and DigitalInput objects implemented on that device (and returned using 
CoAP as a transport). It shows the memory use of the holistic architecture’s 
components used to store sensor and node data, i.e. the data model service, object 
space and local instrumentation layers. It also shows the memory use of the 



6.7 Memory Use  

 

169 

existing IPSO, REST and CoAP code. This shows that the size of the holistic 
architecture’s layers for storing data (such as from the IPSO data model) is 
suitable for constrained nodes, as its memory use is comparable to that for 
LWM2M and OMA and makes up approximately 11% of the overall code size 
and 14% of the overall data size, where use of both memory types is dominated by 
the networking code. The code in this case used dynamic memory allocation for 
objects, channels and endpoints, so this is not shown in this case. 

 HPP Only 

(Text/Data) 

HPP +IPSO/LWM2M 

(Text/Data)  

HPP Libraries 16961/5363 16961/5363 

Service layer 2828/204 2828/204 

DM layer 2143/214 2143/214 

Object layer 3055/1261 3055/1261 

Li layer 2570/828 2570/828 

DHT 3387/16 3387/16 

uIP Stack 26361/4765 26361/4765 

RPL 10865/250 10865/250 

CoAP - 9289/761 

LWM2M - 9641/543 

IPSO - 2671/275 

TOTAL 107240/23917 130727/26291 

Table 3 Memory Use of Nodes of Different Capability 

Table 3 shows a more complete picture of the memory (bytes) used on a WiSMote 
WSN node than in Table 2. The first column shows the memory used by a node 
using only HPP and the second column shows a node that also included the OMA 
Lightweight Machine to Machine (LWM2M) and CoAP engines, with both nodes 
storing local LightControl and Temperature Sensor IPSO instances. In both cases, 



 Experimental Evaluation 

 

170 

the overall memory use is larger than in Table 2 for a number of reasons. The 
main reason is that the code used in Table 3 uses statically defined structures 
rather than dynamic memory allocation. This static memory allocation was for 
connections (8), channels (8 of 184 bytes each), messages including a buffer (1 
per channel of 256 bytes), objects (20 of 56 bytes each), the peer (8 of 204 bytes 
each including the DHT identifier and IP address) and bucket objects for the 
DHT. The memory use is also increased by the use of RPL and the inclusion of 
the code for DHT (which is not included in Table 2) and some corresponding 
changes to the IPSO and LWM2M code. These memory sizes show that the 
holistic architecture meets the requirement to run on resource constrained nodes 
such as WiSMote, with memory use equivalent to CoAP and LWM2M. It can also 
be seen that the limits used in the tests of 20 objects, 6 channels and 6 peers could 
be increased by removing the RPL and OMA LWM2M code and freeing up about 
20KB for code and data. 

It is also worth noting that the memory use shown above includes code to support 
the HPP messages and the layers in the architecture code, as well as the test code 
to send specific messages (as described in section 6.8.1). This memory size could 
be reduced by building images for specific roles, e.g. a peer with a 
DM_SOURCE_SRV role only would not need code to handle Add or Take or 
Notify and a peer with a DM_FORWARD_SRV only would not need the local 
instrumentation layer. 

6.8 HPP Performance 

6.8.1 Node Functionality for Testing 

A number of nodes acting in different test modes were used during the tests on 
Contiki and Linux. These tests evaluated the functionality of the defined messages 
in HPP and of the layers in the holistic architecture, but also tested the scalability 
and robustness of HPP and the holistic architecture. In these tests, each non-
bootstrap peer begins by sending a Hello to a bootstrap peer to get an identifier 
and join the overlay. In these tests, the bootstrap peers allocated new peer 
identifiers randomly in order to test the bucket management, i.e. whether a new 
peer is in the correct range for a bucket or if it should generate a bucket split. 



6.8 HPP Performance  

 

171 

The test nodes were as follows (and all added their Node instance before the steps 
shown), with TEST_ADD_PERIOD set to 20s and TEST_GET_PERIOD to 10s: 

1. A bootstrap node that acts as a peer with DM_BOOTSTRAP_SRV, 
DM_FORWARDER_SRV and DM_STORE_SRV roles.  

2. A source test node that acts as a peer with a DM_SOURCE_SRV role. It 
sends the following messages to a DM_STORE_SRV peer, usually the 
bootstrap, which stores objects added to it. Note this node is a source of 
data, but not a DM_STORE_SRV: 

a. an Add message for a new class named “testobj” in a namespace 
“NS1”. The object handle from the reply is stored. 

b. an Add message for a new class named “testobj” in a different 
namespace “NS2”. This will re-use the object class to store the 
template using attributes, but create a link to a new namespace. 
The object handle in the reply is stored. 

c. an Add message for a new instance named “testinst” in namespace 
“NS2”. The object handle from the reply is stored. 

d. A Get message with “NS1” “testobj” handle from the Add reply. 

e. The source node then enters a refresh period 
(TEST_ADD_PERIOD), where it periodically sends an Add 
message for the “testobj”, “testinst” and its own “Node” class and 
instance to the DM_STORE_SRV in order to renew the lease on 
these objects. It was verified (with a later Get message) that the 
added “testobj”, “testinst” and “Node” objects were removed from 
the DM_STORE_SRV peer after the lease expired when the test 
node was stopped.  

The leases for the “testobj” and “testinst” object were set to greater 
than 10 minutes (effectively infinite in these tests), but were set to 5 
minutes for the “Node” class and only 10 seconds for the Node 
instances, so that the Node instance would expire if an Add was not 
sent in time to renew the lease.  

3. A sink test node that acts as a peer with a DM_SINK_SRV role. It sends 
the following messages to a DM_STORE_SRV peer: 

a. A Get message for the “testobj” class in “NS1”. Note that this will 
not return an object, unless there is a source test node that adds it. 



 Experimental Evaluation 

 

172 

b. A Get message using the values for the key attributes of “testobj” 
in “NS1” to select that object to retrieve. Note that this will not 
return an object, unless there is a source test node that adds it. 

c. A Get for “Peer” object on the DM_STORE_SRV peer, where the 
reply holds the address and DHT identifiers of peers known to that 
peer. It was verified that the object from this reply is cached locally 
(and can be used to reply to requests from other peers), as this sink 
test peer also has the DM_STORE_SRV role. 

d. For the tests on Linux based nodes, the sink node sent the 
following messages 

i. a Get for the “Node” class. 

ii. a Get for the “Node” instance with the name key attribute 
set to this node’s name (match type set to EXACT). 

iii. A Get for the “Node” instance with the name key attribute 
set to a pre-set name and a Get for “Node” instance with 
any name key (match type set to WILDCARD). 

iv. a “Get” for the “Peer” instance with the key set to the 
identifier of the sending peer (and it was checked that the 
reply contained up to the limit of closest nodes in the reply. 
This limit had been set to 8 for Contiki and was set to 32 
for Linux). 

The first three messages were sent in turn at the end of the first 
three periods (TEST_GET_PERIOD), after which the Get message 
for the “Peer” was sent every period. 

e. On Contiki, the sink node then enters a refresh period, where it 
periodically (TEST_ADD_PERIOD) sends an Add message for its 
own “Node” class and instance to the DM_STORE_SRV and Get 
messages to get the “Peer” object from that DM_STORE_SRV. 

4. A full test node that acts as a peer with DM_SINK_SRV, DM_SOURCE 
and DM_STORE_SRV roles.  

a. It tests source functionality by sending an Add message for a 
“testobj” class (including the attribute descriptions) and an Add 
message for a “testobj” instance. It does this periodically to ensure 
the leases are renewed.  



6.8 HPP Performance  

 

173 

b. It tests sink functionality by sending 
i. a Get message for a “testobj” class and a Get message for a 

“testinst” by specifying the object handles. 
ii. a Get “testinst” by specifying the key attributes. 

iii. a Get Peer by peer identifier. 
5. A direct test node that acts as a peer with DM_SINK_SRV, 

DM_SOURCE_SRV and DM_STORE_SRV roles. This peer connects to 
a known peer (its bootstrap peer) and sends Get “Peer” messages to other 
peers by setting the destinationId for a node. Each peer in the path to that 
destination node uses HPP and the DHT to forward the message as shown 
in Figure 25. The Get “Peer” object message is sent periodically (every 
10th refresh period or every 10th time after it has received a message). The 
peer requested from the destination is either a random peer identifier from 
the bucket containing the sending peer’s identifier or (every 3rd time) the 
sending peer’s identifier. 

 

Figure 25 Sample of Test Messages for Direct Test Node 

6.8.2 Constrained Device (Contiki) Tests 

Several test scenarios were run on the Cooja Contiki emulator, with each being 
run up to 10 times. The test scenarios used the example networks shown in Figure 
26 and Figure 27. These scenarios used an edge router running RPL, allowing a 



 Experimental Evaluation 

 

174 

CoAP or LWM2M server or external HPP Peer to access WSN nodes. The HPP 
nodes are located in a simple overlay network and are given the address of a 
bootstrap peer to send a Hello message to.  

In these scenarios, the DHT was used to hold peer IP addresses and DHT 
identifiers and RPL was used to route messages in the WSN. HPP is not tied to 
the use of RPL, as it is designed to run over an overlay network, where the 
underlying networks may comprise of some nodes not running HPP and may 
involve different network technologies, i.e. nodes not running HPP will use IP to 
route HPP messages to the IP address of the peer.  

The scenarios are shown for 5, 7 and 9 nodes in Figure 26 and Figure 27. The 
roles in the tests are set based on the identifier of the node; node 1 is the edge 
router; nodes 3 and 7 run a full series of tests for DM_SINK_SRV and 
DM_SOURCE_SRV peers; nodes 4 and 8 are DM_SOURCE_SRV peers; nodes 
5 and 9 are DM_SINK_SRV peers. Node 2 acts as a DM_BOOTSTRAP_SRV 
peer and DM_STORE_SRV, as does node 6 in the 9 node test. 

The 5 nodes in Figure 26 are set up so that nodes are all in range of the bootstrap 
peer service on node 2. The test messages are sent to the 
DM_BOOTSTRAP_SRV peer running on node 2, which also has a 
DM_STORE_SRV. In the 7 node test in Figure 27, nodes 6 and 7 need an 
intermediate node to be routed to node 2, which is still their 
DM_BOOTSTRAP_SRV peer. The nodes in the 9 node test in Figure 27 are all 
within 1 hop of their DM_BOOTSTRAP_SRV peer, either node 2 or node 6. 



6.8 HPP Performance  

 

175 

 

Figure 26 Simulation with 5 nodes 

 

Figure 27 Simulations with 7 nodes and 9 nodes 

HPP peers could, however, also be used to route messages to other peers over a 
number of hops, using the peer identifier to select a next hop peer from those 
stored in the bucket, possibly in conjunction with some stored information, e.g. 
previous response times. 



 Experimental Evaluation 

 

176 

The source and sink nodes in these scenarios ran a series of tests as described in 
section 6.8.1 for the source test node and sink test node. 

Stack use was monitored while running the tests to ensure it did not exceed the 
allocated 1KB (the largest size seen was 750bytes). 

 Hello 
Processing 

Get 
Processing 

Add 
Processing 

Hello 
Reply  

Get 
Reply  

Add 
Reply 

Average 
(ms) 

31 7.8 20.8 166 208 173.8 

Range 

(ticks) 

3-5 1 2-3 20-22 22-30 18-25 

Table 4 HPP Message Processing Times for 5 and 9 node tests (except node 5) 

Table 4 shows the times that were stored during the tests above for Hello to a 
bootstrap peer and the time for Get and Add of objects to the node acting as a 
DM_STORE_SRV. The processing time shown in Table 4 is the time to process 
the messages on the receiving peer and to send the reply, having carried out the 
required store or retrieve operation. The reply times are the time from the node 
sending the message to when the reply is received on that node a single hop away 
(to focus on processing time rather than routing). The results were consistent in 
the 5 and 9 node tests for all nodes, except node 5 which had an average reply 
time of 380ms, due to the processing of RPL messages to nodes 6, 7, 8, 9 
overlapping with HPP messages. It is worth noting that node 3 had about 1 in 10 
replies outside the range shown (and up to 3 seconds) in the 9 node test. Also, 
times were similar for nodes 3,4,5 in the 7 node scenario, but reply times for 
nodes 6 and 7 had an average of 365ms.  

The message processing times on the receiving peer in Table 4 did not depend on 
the number of objects being searched or added, albeit there was at most 20 objects 
(due to the static memory allocation of the related structures). The reply times 
showed more variability and the times for Hello and Get replies are larger than for 
Add. This is because the Add reply is smaller in size and the Get reply may require 
more than one message fragment depending on the size of the object retrieved. 
These results suggest that HPP is feasible on constrained nodes, even when using 



6.8 HPP Performance  

 

177 

a string format, rather than the binary encoding of HPP that could be 
implemented. 

The robustness of HPP was demonstrated during the Contiki tests above by 
stopping nodes during those tests and observing that their peer information and 
any added objects were deleted on the DM_STORE_SRV and other nodes, when 
their leases expired. Restarting the node that was stopped and running the tests on 
it again resulted in its peer information and objects being added by HPP to the 
node with the DM_STORE_SRV role. 

6.8.3 Linux Node Tests 

The Linux implementation was used to test the scalability and robustness of the 
holistic architecture and HPP at a larger scale, as this could be done more easily 
than on Contiki. The tests were run on a laptop running Ubuntu 18.04LTS with a 
2.3GHz Intel i3 processor and 4GB of RAM.  

6.8.3.1 Scalability Tests  

In terms of scalability, it is required to ensure that the potential of P2P to add 
peers easily is not limited as the number of peers increases. The scalability of P2P 
has been shown by the scale achieved by BitTorrent and its use of Kademlia. For 
this reason, the goal of the tests in this section is primarily to show that this 
scalability and robustness are still present in the incorporation of the Kademlia-
based DHT into HPP, rather than an absolute test of the limits of scalability or of 
optimising performance in terms of response times.  

Furthermore, it is worth recalling that the DHT is used in HPP to identify peers 
and not to place data, as the peer is the source of sensor data, unlike in other P2P 
use cases where data is stored based on the DHT identifier. Hence, the tests in this 
section focus on finding identifiers using the Hello message, retrieving data using 
the Get message and sharing data between peers using the Add message, where 
the destination is determined by a peer and not using a placement approach based 
on an identifier. 

These tests used nodes in the scenarios shown in Figure 28 and Figure 29, which 
are intended to be representative of certain WSN use cases. For example, Figure 



 Experimental Evaluation 

 

178 

28 shows a bootstrap node with other nodes in a star topology, as would be the 
case in IEEE 802.15.4 with Reduced Function Devices (RFDs) connecting to a 
Full Function Device (FFD) at the centre of the star. In a WSN, the 
DM_BOOTSTRAP_SRV peer running on a node in each figure could also act as 
the border router as shown in the preceding Contiki tests. The tests send Get 
messages which use the TCP address of the node (derived from an entry for its 
identifier in the DHT) expected to have the data, except for the direct test node 
which uses HPP forwarding with a destination identifier specified in the message. 
The topologies shown in Figure 28 and Figure 29 also allow data to be cached by 
the bootstrap node (as it also has a DM_STORE_SRV role) when it handles 
replies to Get requests using HPP forwarding (from the direct test nodes), as 
described in section 4.5.5.4. 

 

Figure 28 Single Bootstrap Node Test Scenario 

The tests based around the topology shown in Figure 28 tested the scalability of 
increasing numbers of peers, in the roles described in section 6.8.1, connected to a 
single bootstrap peer as follows: 

• “1bs-sink-test” used 4, 20, 50, 100 sink test peers to the bootstrap peer and 
is focused on Get messages. 

• “1bs-source-test” used 4, 20, 50, 100 source test peers to the bootstrap 
peer, including Add messages tested with corresponding Get messages. 



6.8 HPP Performance  

 

179 

• “1bs-mixed-test” used an equal mix of sink, source test peers (with 1 extra 
sink if necessary to make the total) and one full test peer in totals of 4, 10, 
20, 50, 100 peers to the bootstrap peer.  

• “1bs-direct-test” used an equal mix of sink, source and direct test peers 
and one full test peer in totals of 4, 50, 100 peers to the bootstrap peer 

Figure 29 shows the “multi-bs-test” scenario, where bootstrap peers connect to 
each other in a peer-to-peer manner. This allows the node identifiers to be known 
across each of the sub-networks of peers so that peers can form an overlay, which 
allows HPP forwarding to be tested. This tests the scalability when peers (in this 
case the bootstrap peer) are connected to more than one other peer as follows: 

• 10 test peers (1full, 3 source, 3 sink and 3 direct) to 1 bootstrap peer, 
• 50 test peers (1full, 3 source, 3 sink and 3 direct) to each of 5 

connected bootstrap peers 
• 100 test peers (1full, 3 source, 3 sink and 3 direct) to each of 10 

connected bootstrap peers 

 

Figure 29 Multiple Bootstrap Peer Test Scenario 

The following tables and figures showing results are based on the following: 

• The times shown for the receiving peer are the time to process the request 
and send the reply. 

• The times shown for replies are from when the request was sent to when 
the reply was received and processed on that requesting peer, e.g. the time 



 Experimental Evaluation 

 

180 

for a reply to a Get “Peer” will include the time to add any new nodes in 
the reply to the appropriate bucket on the requesting peer. 

• The tests were run up to 3 times and the results were comparable for each 
run. The result times and numbers of messages in the tables and figures are 
presented for a particular test run, so that the various counts and times are 
comparable. This also shows the occasional outlier time or where Get 
“Peer” or Hello messages were sent as a result of retries or refreshes. 

The maximum number of peers in a reply to a Hello and Get “Peer” was set at 32. 
This is more likely to be set to the value of k (usually 8 as used in the Contiki 
tests) in a real deployment, but this value was used in order to test further the 
robustness and scalability of the system, e.g. it involved reading from multiple 
buckets. The value of k is governed by the number of simultaneous failures in the 
refresh period as per section 3.7.3.5. This maximum value of 32 meant that the 
size of a reply message containing the peer identifier and IP address of 32 peers 
was up to 1368 bytes for just the peer identifiers and addresses. 

Initial tests showed that debug and logging messages containing the identifier and 
address information for large numbers of peers increased the times to send replies 
significantly as the number of peers increased. The logging was reduced as a 
result of this, but given that these tests were intended to demonstrate scalability, 
rather than providing the best run times, some debug and logging messages were 
retained in order to verify correct operation of the tests and gather results. It was 
ensured, however, that the content of these messages was limited as the number of 
peers grew. During each test run, the results were recorded into a named log file 
using periodic log messages containing comma separated fields holding the data 
from each node, i.e. the number and times of the different message types sent, the 
number of replies and the count of certain bucket operations. These logs were then 
parsed as csv files to get the results shown in this section. 

The tests sent a number of Get or Add messages at the start of the test and then 
entered a mode of sending certain messages periodically as described in section 
6.8.1. All the tests started the bootstrap peer and waited 10 seconds to ensure it 
had initialised and then started the non-bootstrap peers 2 seconds apart. The non-
bootstrap peers started running their functional tests (as per section 6.8.1), 



6.8 HPP Performance  

 

181 

resulting in the processing of different types of messages in different sequences 
depending on the start-up of peers, particularly at the bootstrap peer.  

During these tests, the peers sending requests wait for a reply for each request 
before proceeding to send the next request, meaning that a slow reply extends the 
time taken on a peer and adds variability to the results. This could result in a reply 
that indicated a failure of a Get (as the object is not yet added to that node) or 
could result in a retry for a Hello request as a result of a slow reply. Once all the 
specified peers had started, the test ran for 5 minutes before each peer was killed, 
in order to test the refresh logic and the periodic sending of messages. This peer 
behaviour is somewhat representative of a real scenario and acceptable as the goal 
was to demonstrate the handling of multiple messages, rather than the best time 
per message or throughput per node. 

A peer refresh period of 1 minute was used in order to accelerate the running of 
tests by testing the refresh conditions more in a given time and loading the system 
more than would be expected in a real deployment. Longer refresh periods are 
more likely in real deployments, depending on how often nodes join/leave or fail, 
e.g. as per section 3.7.4 BitTorrent refreshes peers that it has not received a 
message from in the last 15 minutes. 

Figure 30, Figure 31 and Figure 32 show the server processing and reply times. 
These times were reasonably consistent across a range of tests with varying 
message types, peer roles, number of messages and the number of nodes, although 
an occasional very long reply time was seen, e.g. in the 1bs-direct-test in Figure 
32. The following observations can be made on the times for requests and replies: 

• The number of requests handled by the bootstrap peers can be seen in 
Table 6 according to the test and number of peers. The corresponding 
processing times in Figure 30 for these tests indicate that the number of 
requests did not necessarily affect the processing times. 

• Figure 31 shows that the times across the different bootstrap peers were 
reasonably consistent in the 50 node and 100 node “multi-bs-test”. 

• Figure 30 and Figure 31 show the Get time across the tests is affected by 
the mixture of Get requests and replies sent. Specifically, as the number of 
nodes increases, the number of peers in Get “Peer” replies increases and it 



 Experimental Evaluation 

 

182 

takes longer to process. For example, the 1bs-source-test processed the 
same number of “Get Peer” messages as the 1bs-sink-test, but only a few 
Get messages (at the start) and Table 5 shows that its average and median 
Get times are higher, which is due to the time for the larger Get “Peer” 
messages. Consequently, the maximum time to process on the receiving 
peer tends to increase. Figure 30 does, however, also show a decrease in 
the times for Get in the 100 node tests compared to 20 nodes. This is due 
to the number of Get messages which return quickly with a short message 
when no object is found, e.g. when the Node object was expired in the 
cache as its lease had not been renewed by an Add (this is more likely as 
the number of nodes increased as the requesting peers waited for a reply 
before sending a message). For example, in the “1bs-source test” no Get 
messages are processed in under 100ms for 20 nodes for an average of 
186ms, whereas for 100 nodes there were 34 out of 616 processed in under 
100ms for an average of 167ms (which is 174ms excluding those less than 
100ms). This effect can also be seen in the minimum value of the Get time 
for the 1bs-mixed-test for 20 nodes shown in Table 5. 

• As seen in the Contiki test results in section 6.8.2, the times shown in 
Figure 30 and Figure 31 indicate that the message processing times on the 
receiving peer (usually the bootstrap peer) do not depend on the number of 
objects being searched or added, as the number of peers increased. 
Conversely, as explained above the number of Get messages that do not 
return an object can reduce the Get time. 

• Similar to the results seen in the Contiki tests in section 6.8.2, Figure 30 
shows that an Add takes longer than a Get to process on the receiving peer, 
but Figure 32 shows that the reply is received more quickly on the 
requesting peer and the Get reply times showed more variability. This is 
because the Add reply is smaller in size, as the Get reply will contain an 
object if successful. 

• Figure 30 and Figure 31 show that there was some variability in the times 
to process Hello messages on the bootstrap peer as the number of nodes 
varied. The times did not necessarily simply follow the increase in nodes 
and this would seem to be due to the number and mixture of messages 
processed, with the median and average times being similar in each of the 
1bs-sink-test and 1bs-source-test. 



6.8 HPP Performance  

 

183 

 

Figure 30 Request Processing Times on Bootstrap Peers 

 

Figure 31 Request Processing times for Multiple (50 or 100) Bootstrap Peers 

Note that get_average_100 and get_average_50 on Node1 and Node2 are coincident in Figure 31 



 Experimental Evaluation 

 

184 

The reply times in Figure 32 at the requesting peer showed much more variability 
than the times to process the message on the receiving peer, due to the time spent 
building, sending and receiving larger reply messages. The time to process 
messages on the receiving peer was affected by the mixture and number of 
messages processed as the number of nodes, and hence requests, increases. This 
can be seen in that the maximum times and the average times are generally higher, 
with occasional very high values as the number of nodes increases. The difference 
in request processing and reply times with the greater range in reply times is 
shown in Table 5 for 20 nodes in the “1bs-sink-test” and “1bs-source-test”. The 
standard deviation did tend to increase as the number of nodes increased due to 
this increase in nodes making a larger reply more likely and causing a larger reply 
time, but the median did not increase unduly as the number of nodes increased 
indicating the effect of the less frequent longer replies.  

 

Figure 32 Times to Receive Replies on Non-bootstrap Peers 

 



6.8 HPP Performance  

 

185 

Test Role Msg 
Count 

Avg Median Min Max StdDev 

1bs-sink-test Bootstrap 334 85.68 56.5 25 261 51.52 

1bs-sink-test Non-BS 334 566.41 514 287 1421 196.98 

        

1bs-mixed-
test 

Bootstrap 211 80.7 43 4 359 69.62 

1bs-mixed-
test 

Non-BS 211 487.26 420 54 2386 262.33 

        

1bs-source-
test 

Bootstrap 100 186.07 180.5 119 354 46.17 

1bs-source-
test 

Non-BS 100 672.63 621 384 1214 189.08 

Table 5 Variability of Get Message Times (ms) in 20 Node tests 

Table 6 shows the number of requests handled on the bootstrap peer during the 
tests used for the times in Figure 30, Figure 31 and Figure 32. Note that the total 
for Get includes the Get “Peer” messages. 

For non-bootstrap peers, the number of Get replies at nodes not acting as 
DM_STORE_SRV ranged from 1 to 15 and Get “Peer” replies ranged from 1 to 
11 across all the tests depending on the test topology and number of peers. Replies 
to Add “Peer” ranged from 0 (sink peer tests) to 35 in the 50 and 100 peer test, as 
these tests took longer to complete owing to starting peers in sequence.  



 Experimental Evaluation 

 

186 

Test Number 
of 
Nodes  

Hello 
Messages 

Add 
Messages 

Get 
Messages 

Get “Peer” 
Messages 

1bs-sink-
test 

4 4 0 99 20 

 10 10 0 253 50 

 20 20 0 521 100 

 50 50 0 1421 270 

 100 100 0 3241 615 

1bs-source-
test 

4 4 135 20 20 

 10 10 339 49 44 

 20 20 704 100 100 

 50 50 1931 269 226 

 100 100 4531 620 616 

1bs-mixed-
test 

4 4 70 51 21 

 10 10 172 139 50 

 20 20 342 293 101 

 50 50 849 762 245 

 100 100 1948 1680 543 

1bs-direct-
test 

4 4 36 50 20 

 10 10 92 115 45 

 20 19 retry 
started 

206 299 182 

 50 50 104 164 75 

 100 100 215 286 120 

Table 6 Number of Requests handled by Bootstrap Peers 

Table 7 shows the values for following counters on the bootstrap peer during the 
tests: 

• “num-peers” refers to the number of peers that are in the peer’s buckets 



6.8 HPP Performance  

 

187 

• “num-finds” refers to Get “Peer” requests made to a peer, which is in the 
range of a bucket on the peer, where no peer in that bucket has received a 
reply within the refresh period (set to 60 seconds). 

• “dropped-adds” refers to the number of times a peer is not added to a 
bucket due to the management of full buckets. 

• “num-splits” refers to the number of times a bucket was split in order to 
accommodate identifiers within range. 

• “cached-pings” refers to Get Peer requests that were generated at refresh 
time that used a peer that had been added to the cache and not to a full 
bucket. 

These counters were also used to verify the tests, e.g. the number of requests 
received by all sink and source peers was 0, the number of Add replies received by 
a sink peer was 0 (as it never sent an Add), the number of Hello replies at non-
bootstrap peers was 1 (unless it had retried as a result of a timeout). Also, during 
some of the 50 and 100 node tests, a Get count of 1 was occasionally seen on a 
peer, indicating the bootstrap peer was sending a Get “Peer” as it had not heard 
from this peer. Similarly, on the Bootstrap peers, counts for replies were all 0 as 
this peer did not initiate requests, except for a Hello reply from another bootstrap 
in the multi-bs-test and the replies to the Get “Peer” requests from the direct test 
peer in the 1bs-test-direct test. 

Table 7 also shows that the “num-peers” for the bootstrap peer in the multi-bs-test 
was larger than the number of directly connected peers due to the sharing of peer 
information from the other bootstrap peers and it was also noticed that this 
increased gradually from the initial numbers seen in Hello replies as peer 
information was refreshed. 

It can also be said that the DHT operated successfully in the tests, as shown by the 
following points from Table 7 and also that there was no storm of requests due to 
refresh or find as the number of nodes increased: 

• the number of peers known about at both bootstrap peers and non-
bootstrap peers grew according to the test. 

• as the “num_peers” increased, the number of buckets and identifiers grew 
per the bucket management policy. It was seen that “num-adds” equals 



 Experimental Evaluation 

 

188 

“num-peers” plus the “dropped-adds”, so that the amount of stored peer 
information does not grow indefinitely as more peers are discovered. This 
bucket management policy could be changed to allow all peers to be 
stored.  

• “num_splits” counted the number of times a full bucket was split and it 
showed that buckets were split as more peers were added and aligned with 
the number of peers held in the buckets on a peer. 

• the Get “Peer” messages (included in the Get message count in Table 6) 
were sent on a refresh period, every 60 seconds, so that during the 5 
minutes after the first peer was started, there could be a Get “Peer” every 
minute from each peer. This was, however, reduced if the peer had 
received a reply from a known peer or if it was slower completing its 
initial tests (due to its replies being slower due to a large number of nodes 
sending to the bootstrap peer). Hence, it can be said that the number of Get 
“Peer” messages as a result of refresh/find did increase as the number of 
nodes increased, but it did so at a reasonable rate. 

• “cached_pings” are when a Get “Peer” (PING in Kademlia) was sent as a 
result of a peer being put into the cache when a bucket is full. They are 
only seen as the number of nodes increase and the likelihood of trying to 
add a new peer to a full bucket increases (the num_finds is 0 on the 
bootstrap peer in the tests). These cached pings are the result of storing 
objects when a bucket is full and used the lease in the object space, 
allowing a node flexibility in adjusting leases to manage its storage. 

• Columns in Table 7 indicated with a * were those where the hello count 
indicated that the Hello message had been retried from peers. 



6.8 HPP Performance  

 

189 

Test Num.of 
Nodes  

num_ 
splits 

num_ 
dropped 

num_peers num_buckets cached_pings 

1bs-
test-
sink 

4 0 0 4 1 0 

 10 1 0 10 2 0 
 20 2 2 18 3 0 
 50 3 19 31 4 1 
 100 5 62 38 6 2 
1bs-
test-
source 

4 0  4 1 0 

 10 1 0 10 2 0 
 20 1 4 16 2 0 
 50 4 18 32 5 3 
 100 5 62 38 6 3 
1bs-
test-
mixed 

4 0 0 4 1 0 

 10 1 0 10 2 0 
 20 1 4 16 2 0 
 50 4 22 28 5 2 
 100 4 62 38 5 3 
1bs-
test-
direct 

4 0 0 4 1  

 10 1 0 10 2 0 
 20 2 1 18 3 0 
 50 4 19 31 5 0 
 100 5 58 39* 6 0 
multi-
bs-test 

10 1 0 10 2 0 

 20 1 0 8-11* 2 0 
 50 1 0 9-11 2 0 
 100 1 0 9-11 2 0 

Table 7 Counts for Bootstrap Peers 

Table 8 shows that num_finds was quite low on the sink, source and direct test 
nodes relative to the number of peers known about (as shown by num_peers) and 
it was seen to be 0 on the bootstrap servers (apart from an occasional 1 in some 
tests for 100 nodes), even as the number of nodes increased. This indicates that 
sending Get and Add messages and processing the replies kept the stored peer 
information updated in many cases and so avoided an explicit Get “Peer” as a 
find, except when the reply was not timely enough (and increasing the refresh 
period would have reduced the count further). 



 Experimental Evaluation 

 

190 

Test Num. 
of 
Nodes 
Started 

num_peers num_buckets num_finds 

1bs-test-sink 4 3-4 1 3-5 
 10 5-6 1 4-5 
 20 7-12 1-2 4-5 
 50 9-16 1-2 5-6 
 100 6-21 1-2 5-8 
1bs-test-source 4 3-4 1 4-5 
 10 7-10 1-2 4-5 
 20 7-8 1 5-6 
 50 9-16 1-3 5-8 
 100 7-23 1-3 5-8 
1bs-test-mixed 4 3-4 1 3-4 
 10 1-9 1-2 4-5 
 20 7-8 1 5 
 50 5-6 1 5-6 
 100 1-9 1-2 0-1 
1bs-test-direct 4 4 1-2 1-5 
 10 4-10 1-2 2-5 
 20 2-9 1-2 3-5 
 50 1-9 1-2 1 
 100 1-7 1 0-1 
multi-bs-test 10 6-8 1 0-1 
 20 1-8 1 1-3 
 50 1-11 1 1-3 
 100 1-11 1 1-3 

Table 8 Counts for Non-bootstrap Peers 

In summary, the results of these tests indicate that a HPP based approach is 
scalable, even when using a string format for messages, although a binary 
encoding of HPP would be of benefit as it would reduce the message size. 

6.8.3.2 Robustness (Failure Handling) 

The robustness required of HPP is primarily about ensuring the correct operation 
of the following elements designed to provide robust behaviour when there are 
changes in the number of active nodes as nodes appear and disappear: 

• The operation of Hello messages in terms of retrying the send to a 
bootstrap node as a node joins/leaves, so that a bootstrap does not have to 



6.8 HPP Performance  

 

191 

be a single point of failure. The retry was observed in a number of tests in 
section 6.8.3.1, where the count of Hello requests was greater than 
expected. 

• The retry of failed Hello messages. In some test runs of the “multi-bs-
test”, a bootstrap peer did give up retrying to connect to its configured 
bootstrap peer after a set number of 10 attempts (10s apart) and 
terminated. The settings for timeout and retry attempts were not increased, 
as these settings acted as test of robustness and logs were checked to 
ensure that the connected peer’s information was updated. 

• The expiry of a lease removing objects from the cache, especially if the 
node fails or moves. This was observed in the tests in section 6.8.3.1 by 
objects expiring when their lease was not renewed in time (as occurred in 
some cases in the tests with more nodes). It was also observed in those 
tests by allowing the bootstrap to remain running when the non-bootstrap 
peers were killed - in some cases the TCP socket was not removed 
immediately and the normal object removal did not happen on the 
bootstrap, but the objects were cleaned up on expiry of their lease. 

• The management of buckets as peers were added and as part of the 
periodic “find round”. This was observed in the handling of the full bucket 
situation in the tests in section 6.8.3.1. 

The first item above regarding nodes joining/leaving was not specifically tested in 
section 6.8.3.1, so a specific test was performed to verify the behaviour when 
peers are added and removed. This test adapted the “1bs-direct-test” by starting all 
the peers and then terminating one third of those peers by selecting from their 
process identifiers at random. A new sink test peer was started as each of these 
peers was terminated. Once this was complete the test continued for 5 minutes to 
ensure the refresh behaviour was as expected. It is important to note that not all 
peers will be added to the buckets based on the way the full bucket is handled. For 
this reason, a test adding/removing peers cannot simply report on achieving the 
full number of peers in every peer. 

Table 9 gives the “num_peers” count for the test with termination. It shows that 
the number of peers on the bootstrap peer does not equal the number of adds 
attempted, due to bucket management and identifier assignment. It can be seen, 
however, that it does reflect the removal of the terminated peers and the addition 



 Experimental Evaluation 

 

192 

of new peers, e.g. for the 20 peer test, 19 were successfully added in the initial 
Hello message processing, 6 were killed and 6 were added by Hello of which 5 
were successful giving a total of 18. 

Nodes 
Started 

Start 
num_peers 
Count 

Peers 
Terminated 

Peers 
Added 

End 
num_peers 
Count 10 10 3 3 10 

20 19 6 6 18 

50 31 16 16 29 

Table 9 Counts for “1bs-direct-test” with Termination (kill) 

Table 10 gives the count and message times for the 20 peer tests with and without 
termination (other number of peers show similar times). It shows that there was an 
increase in the number of Hello messages, due to the extra peers being started 
after some of the initial peers were terminated, but no significant effect on the 
processing times for Hello. 

Test Msg 
Count 

Avg Median Min Max StdDev 

Without Kill 19 49.26 41 28 207 39.04 

With Kill 26 58.19 43 28 196 39.25 

Table 10 20 Peer “1bs-direct-test” Hello times with and without Termination  

6.9 CacheL 

This section considers CacheL in terms of its suitability for implementation on a 
WSN node based on implementing it on Contiki. The holistic architecture is also 
designed to be used on more powerful nodes than in the WSN, so this section also 
considers CacheL’s effectiveness as a cache and its use of a lease by comparing 
the hit/miss ratio to that for LRU. It also outlines optimisations that were made, 
based on the analysing the counts of key variables added in the code. 



6.9 CacheL  

 

193 

6.9.1 Implementation Complexity 

The code extracts in 4.2 show that CacheL is straightforward to implement, 
including its use of the holistic architecture’s object space and data model service 
layer abstractions. The C implementation consisted of approximately 150 lines of 
C code and used about 1KB of memory with a supporting object abstraction using 
a circular list library. The CacheL implementation was about 200 lines of Java 
code whereas the LRU code was 30. This slight increase in code size is 
reasonable, given that the CacheL Java implementation also includes code for 
lease handling and interfacing to the object store, as well as the extra code due to 
the use of HashMap, which was used to be similar to the LRU code in that aspect. 
CPU use was observed and was found not to be an issue during the test runs. 

6.9.2 Performance Comparison of LRU and CacheL using YCSB 

YCSB was used to compare the effectiveness of CacheL to LRU using relatively 
large sets of data (compared to what would be on a sensor device). The YCSB 
driver was modelled as a DM_STORE_SRV cache with the object API methods 
of add(), get() and remove() integrating easily with the YCSB API methods of 
init(), read(), delete(), update(), insert(). 

Table 11 YCSB Workloads 

These tests were not intended to be fully representative of real WSN scenarios, 
but the role of CacheL is not necessarily limited to WSN nodes in the holistic 
architecture. YCSB testing was performed on a single dual core PC with 8GB 
RAM, using the default YCSB data size of 1000, 1 KB records and 1000 
operations.  

Load Ratio of Operations Distribution Nature Example 
WA  Read/update : 50/50 Zipf  Update Heavy Session store 
WB  Read/update : 95/5 Zipf Read Heavy Photo tags  
WC  Read/update : 100/0 Zipf Read Only User Profile 
WD Read/update/insert: 

95/0/5 
Latest Read Latest Status updates 

WE Scan/insert: 95/5 Zipf  Short Ranges Posts in thread 
WF Read/read-modify-

write: 50/50 
Zipf Read-Modify-

Write 
User Database 
 



 Experimental Evaluation 

 

194 

These tests used the configurable YCSB workload options shown in Table 
11where WA indicates Workload A. A workload with a Uniform distribution 
(WB-Uni) was added to the tests in order to represent periodically reporting 
sensors. The tests were run for LRU and CacheL (with and without leases) over a 
range of cache sizes. During these tests, CacheL made the fronthand/backhand 
sweeps based on the number of calls to add() for ease of integration with YCSB, 
rather than sweeps being based on the time since the last sweep, which would 
have suited CacheL better and is likely in a WSN scenario. 

6.9.2.1 LRU vs CacheL without leases 

This section considers the hit/miss ratio of CacheL compared to LRU for the case 
of no lease. This is not its intended use case and is included as an indication of its 
effectiveness as a cache and for comparison to the case where it is using leases to 
expire the cache contents. CacheL works like CLOCK in this case. Table 12 
shows the hit ratios were comparable for LRU and CacheL, with LRU slightly 
higher on Workload B for Uniform distribution, but CacheL was equal or better 
on Zipf tests. Changing the time or number of adds (which had a default of 3) 
between fronthand and backhand sweeps did not affect the hit ratio, due to the 
short duration of the tests. 



6.9 CacheL  

 

195 

Cache 
Size 
(# of 
Entries) 

100 250 500 750 1000 

 LRU ChL LRU ChL LRU ChL LRU ChL LRU ChL 

WA-
Zipf 

56.4 55.6 58.4 59.9 59.2 59.5 61.7 61.8 63.9 62.6 

WB-
Uni 

15.6 12.9 29.5 29.1 52.6 48.7 73.5 77.0 100 100 

WB-
Zipf 

19.5 23.1 32.0 30.8 56.7 56.6 78.7 78.8 100 100 

WC-
Uni 

10.2 11.0 28.9 24.9 52.7 49.5 72.3 77.3 100 100 

WC-
Zipf 

9.4 19.2 23.8 26.1 47.8 50.6 71.9 73.0 100 100 

WD-
Lat 

69.7 62.4 83 82.2 91.5 91.8 95.6 96.7 99.4 99.9 

WD-
Uni 

10.7 11.5 27.5 27.3 50.3 50.7 62.3 74.9 96.7 98.2 

WF-
Uni 

9.0 9.0 28.1 25.2 51.4 52.7 63.3 73.0 100 100 

WF-
Zipf 

19.1 20.4 35.9 36.1 44.7 58.2 68.1 79.1 100 100 

Table 12 LRU and CacheL (Without Leases) Hit Ratios per Workload 

6.9.2.2 LRU vs CacheL with leases 

These tests use leases uniformly distributed over a time range of 0-100ms or a 
time range of 0-1000ms. These ranges are smaller than could be expected in a real 
WSN, but were used as the tests completed in approximately 300ms. These time 
ranges show how effectively CacheL manages leases, although not taking 
advantage of CacheL being able to use a 'hint' provided by the application/sensor 
for an appropriate setting for a lease. Comparing the results in Table 12 to Table 
13, the use of CacheL with the 0-100ms lease distribution generally has a hit ratio 



 Experimental Evaluation 

 

196 

higher than, or comparable to, LRU for cache size 100 and is comparable at other 
cache sizes, although there is a notable reduction for the Workload D-latest 
distribution (WD-Lat). Table 13 shows the hit ratio is reduced for CacheL in all 
100 sized caches when using the 1000ms lease compared to the 100ms lease range 
as residency in the cache is dominated by the priority given to lease. It also 
suggests the granting of leases should be managed actively to ensure appropriate 
expiry, e.g. based on the leases remaining in the cache.  

Cache 
Size 
(# of 
Entries) 

100 250 500 750 1000 

Lease 
Range 

100 1000 100 1000 100 1000 100 1000 100 1000 

WB-
Uni 

20.0 13.6 28.1 27.5 52.9 54.0 75.4 75.7 99.9 99.8 

WB-
Zipf 

16.3 13.4 27.5 29.5 51.2 54.0 74.3 75.5 100 100 

WC-
Uni 

17.6 11.3 25.5 25.0 50.7 52.3 76.7  74.8 100 100 

WC-
Zipf 

15.7 9.8 22.6 26.7 48.7 48.5 73.1 75.3 100 100 

WD-
Lat 

48.6 5.6 77.4 9.9 90.7 54.2 97.4 22.2 99.7 57.0 

WD-
Uni 

28.3 13.7 25.8 30.0 51.0 51.0 73.6 76.7 96.4 99.7 

WF-
Uni 

21.3 10.0 26.1 24.1 49.4 50.6 73.9 75.3 100 99.9 

WF-
Zipf 

21.5 10.0 23.1 26.3 48.5 52.0 73.5 75.6 100 100 

Table 13 CacheL (With Leases) Hit Ratios per Workload 

The results show that CacheL is comparable to LRU and it expires data quickly in 
a small cache, when using short leases, which is what it is required to do on 



6.9 CacheL  

 

197 

constrained WSN nodes. It can also be seen that the algorithm manages leases 
effectively and could take advantage of a lease provided by source nodes as a hint. 

6.9.3 Optimisations to CacheL 

A number of optimisations were made during testing to improve the use of access 
counts and to reduce unnecessary sweeps of the cache queues. The first 
optimisation was to hold a reference to the item with the minimum lease when a 
sweep does not find an expired lease. This avoids an unnecessary sweep on the 
next backhand if the time of the minimum lease has not been reached. This 
improved the latencies relative to LRU, especially for the lease range 0-1000 ms, 
e.g. the backhand sweep was skipped over 900 times for Workload A at all sizes 
and for other workloads according to cache size, e.g. 944, 795 for Workload D 
(Uniform) for sizes 100, 250.  

The second optimisation was the addition of a new method adjustLeaseByCnt(), 
which increased the lease by the backhand period for items with an access count 
above zero. This extends the time frequently accessed items stay in the cache 
while still giving priority to the lease and allowing smaller leases to be granted. 
This worked for small leases, but had little effect for long leases, e.g. cache size 
100 and workloadb-uniform had 892 failed puts out of 1000 as no cached item 
had expired. This optimisation is expected to be useful in longer-lived tests. 

The third optimisation was the addition of another sweep after the backhand if it 
did not delete the required number of items, as the first sweep may have moved 
items to the pendingQ or decremented access counts.  

A small improvement to the implementation was made during the tests to hold the 
last_lease_check time at the end of the main sweep in order to reduce the number 
of system time-related calls made. 

6.9.4 Performance Characteristics of CacheL 

This section considers the performance characteristics of CacheL itself rather than 
just considering its hit/miss ratio. This was done by adding counts for the number 
of calls made to key methods in the code.  



 Experimental Evaluation 

 

198 

Figure 33 shows the values of these counts for cache size 100 and a lease 
distribution of 0-100ms. This cache size and lease distribution is where CacheL 
was most effective, i.e., expiring data quickly in a small cache. fhDeleteCount and 
bhDeleteCount count the number of deletes done on a fronthand or backhand 
sweep as leases expire. It can be seen that the fronthand sweep had an effect on 
the WA-ZIPF, WD-Uni and WF-ZIPF workloads, although fhDeleteCount drops 
to less than 10 for other cache sizes. The maximum number of entries on the 
pending queue, pendQMax and fhDeleteCount show that the pending Queue was 
used for cache size 100 and Workload A. SweepDeleteCount counts the number 
of items deleted after a backhand sweep and shows the impact of the third 
optimisation above of an additional backhand sweep on bhDeleteCount. 
bh_skipped counts the backhand sweeps not run based on the minimum lease in 
the cache, showing the value of that first optimisation above. 

 

Figure 33 Counts of key variables for Cache Size 100, Lease 0-100ms 

Other counters showed that when long leases were used there was limited value in 
using the access count in cache replacement and in using the fronthand sweep, e.g. 
the 0-1000ms distribution had few leases that were sufficiently close to expiry to 
populate the pending queue. 



6.9 CacheL  

 

199 

 

Figure 34 Backhand Delete Counts per Cache Size, Lease 0-100ms 

 

Figure 35 Lease Expired Counts per Cache Size, Lease 0-100ms  

Figure 34 and Figure 35 show the bhDeleteCount and lease_expired counters 
across cache sizes using the 0-100ms lease distribution. The lease_expired counter 



 Experimental Evaluation 

 

200 

is incremented when deleting an item in the backhand sweep if the lease and 
access count are both less than or equal to 0. The bhDeleteCount in Figure 34 and 
lease_expired counter in Figure 35 show that the larger cache sizes (250,500) are 
dominated by lease expiry in the backhand sweep. There is more variation at 
cache sizes 100 and 250 where the lease and access counts are used. Figure 36 
details this for size 100. 

 

Figure 36 Lease Counts for Cache Size 100, Lease 0-100ms 

In Figure 36, min_lease counts the number of times the item with the minimum 
lease was deleted in the backhand sweep; lease_thrshld counts items deleted by a 
fronthand sweep; lease_pending_expiry counts items moved to the pending queue 
by a backhand sweep; lease_expiry_removed counts the items removed from the 
pending queue by a fronthand sweep. For cache size 100, it can be seen that the 
lease_expired (also shown as lease-expired-100 in Figure 35) counter in the 
backhand sweep is the main way of expiring leases, but the lease_expiry_removed 
count indicates that items were moved to the pending queue from which they were 
removed by a fronthand sweep as shown by the lease_threshold count. 



6.10 Summary  

 

201 

6.10  Summary 

This chapter has considered the elements implemented in the holistic architecture 
and the holistic peer-to-peer protocol. Firstly, it showed that the requirements 
outlined in section 4.1.2 were covered by the implemented architecture. Then this 
chapter considered the qualitative and quantitative results from the 
implementation of the layers in the holistic architecture and the holistic peer-to-
peer protocol. 

It showed that the code required to implement the layers of the holistic 
architecture and the HPP protocol was straightforward and that the approach of 
sharing a codebase across both Linux and Contiki implementations allowed a 
significant amount of code to be shared in both environments. Furthermore, the 
more advanced debugging on the Linux platform assisted development. The 
holistic architecture’s abstractions were also shown to be able to support the 
envisaged range of node and service functionality. The architecture's layers are 
shown to provide simple APIs to allow low level developers to include node 
functionality and higher level developers include applications accessing data 
models, with IPSO and CIM data models having been implemented successfully. 
Indeed, the object space allowed the implementation of only those attributes 
supported, rather than having to store an object's unsupported attributes which 
aligned well with the per property (or Resource in IPSO terms) approach used in 
OMA LWM2M.  

It was also shown how the HPP protocol and the use of a DHT supported the 
operations required of a node, i.e. to join a group of peers, find peers, get objects 
on a peer or add objects to peers. The results of a series of tests were presented for 
an increasing number of peers with a variety of messages being sent and these 
indicate that HPP is scalable and robust to failure.  

In quantitative terms, it was shown that the size of the implemented code allowed 
the layers of the holistic architecture and the HPP protocol to be implemented on a 
constrained device and that the memory use was comparable to that of OMA 
LWM2M, Erbium REST and IPSO. It was also shown the lookup time for peers 
in the DHT to handle a Hello request and the time to handle Add and Get requests 
for objects were both reasonable. 



 Experimental Evaluation 

 

202 

The CacheL algorithm was also shown to be suitable to run on a constrained node 
in terms of code complexity and size, as well as providing support for a lease to 
manage the data it holds. It was also shown to compare well with LRU in a set of 
tests for different data distributions. 

 



 

7 Conclusion 

This thesis is motivated by the challenge of enabling the growth of IoT. Meeting 
this challenge requires being able to scale systems up to large numbers of nodes 
and to scale down to resource-constrained nodes in relatively small WSNs. It also 
requires scalability in terms of making it easier to develop services and node 
software, while also providing for easier interoperability. Furthermore, this 
challenge is exacerbated by the current situation in WSNs, IoT and fog 
computing, where there is a diverse environment comprised of several distinct 
protocols, standards and commercial Cloud offerings. 

It was found that a set of requirements could be defined for an end-to-end holistic 
approach to IoT by considering the relevant characteristics of sensors, wireless 
sensor networks and the applications using them. Furthermore, it was found that a 
holistic architectural approach considering these requirements for the end-to-end 
flow of data and control in the Internet of Things allowed a set of architectural 
abstractions to be designed to provide application layer interoperability for nodes 
of varying capability and different WSN technologies.  

These architectural abstractions provide application layer interoperability, using 
its defined data model service, object space and local instrumentation layers. The 
contribution of a holistic architecture provides an application overlay that includes 
nodes in WSNs and also services over the Internet with a novel use of a 
Distributed Hash Table. This DHT incorporated some simplifying ideas from 
BitTorrent’s use of Kademlia and an innovative use of forming groups of data or 
nodes with an associated identifier, similarly to an info-hash in BitTorrent. The 
DHT did not treat peers in a WSN separately from those in the wider IoT in order 
to support the simple exchange of data with remote devices or applications. Such 
an approach is contrary to other approaches, where the nodes in the WSN are 
assumed to be so constrained that the WSN is linked to the wider IoT using an IoT 
gateway at the boundary. 



 Conclusion 

 

204 

It was also found that a Holistic Peer-to-Peer (HPP) application layer protocol 
could be designed to support the data-centric approach in the proposed holistic 
architecture. The HPP application layer protocol was designed with a simple set 
of commands, influenced by the constraints used in the RESTFul architectural 
style. These commands aligned well with the operations allowed in the object 
space. HPP also included the use of the DHT based on Kademlia, where the DHT 
is used to find nodes and allow new nodes to join by knowing only the address of 
a node in the overlay. 

The holistic architecture and HPP were shown to integrate with other IoT systems, 
such as CoAP, but to also provide the abstractions and functionality for the entire 
end-to-end flow of data (and control) messages from constrained devices in a 
WSN to applications and services. These services may be Cloud-based and 
include the use of a NoSQL database such as HBase. Results in both WSN and 
server environments demonstrated its feasibility and also demonstrated a number 
of its benefits in terms of scalability, robustness.  

It was also found that a simple tuple space based datastore could be incorporated 
into the object space layer and provide a simple, consistent API for both local and 
remote data. Prototype implementations demonstrated this object space was able 
to hold data from the Common Information Model (CIM) and OMA LWM2M. 
Such interoperability is important as the current diverse environment for IoT is 
likely to remain for some time, meaning that the proposed holistic architecture 
must accommodate the information models and components of other approaches, 
such as OMA LWM2M. 

As per the challenge of enabling easier development, the architecture’s 
abstractions also allowed code re-use on constrained nodes and Linux servers, 
with code changes only in the lower layer implementation of abstractions such as 
the HPP channel. Such abstractions and re-use of code made testing, debugging 
and development easier by enabling the use of tools on Linux, as developing on a 
constrained device is time-consuming with limited debugging. The importance of 
this was seen as the architectural layers, HPP and CacheL were implemented. For 
example, it was learned that memory leaks are particularly hard to debug on 
constrained nodes. It is probably true that such difficulties limit the level of 
functionality and new concepts that developers try to implement on constrained 



6.10 Summary  

 

205 

devices. Indeed, this may be a more important reason than is generally 
acknowledged for why constrained devices are often excluded from being 
considered more fully in an end-to-end manner and for the consequent use of IoT 
gateways and proxies. The architectural abstractions and layers also provide 
consistent concepts for programmers across platforms of varying capability, 
which allowed a consistent, simple set of APIs and abstractions to be provided for 
software developers.  

The object space was supplemented by the novel, simple CacheL algorithm. The 
CacheL algorithm met the need of constrained devices to manage the memory 
used for stored data with little overhead in a dynamic distributed environment as 
found in some WSN scenarios. This was done by incorporating a lease on objects 
in the object space that could be set over HPP and using CacheL to remove 
objects on expiry of their lease. It was found that CacheL could be implemented 
on constrained devices and that it also provided a good cache hit ratio compared 
to LRU. 

The feasibility of the holistic architecture and HPP was demonstrated by a 
preliminary implementation on a constrained device and a series of tests to 
demonstrate its functionality, scalability and robustness. Hence, this thesis has 
shown that this P2P approach has the potential to allow IoT to move beyond 
isolated islands of data to nodes and services that are more easily deployed (a 
joining peer only needs the address of an existing peer and the required security 
credentials), developed and integrated.  

Interestingly, this end-to-end architecture with constrained nodes using the same 
abstractions and protocol as more powerful nodes is particularly relevant at the 
edges of the Internet, where fog computing is developing. Approaches such as the 
OpenFog Reference Architecture were shown to focus on the higher layers of the 
stack(s) for IoT, assuming that constrained nodes and WSNs are so limited that 
they require proxies or virtualisation to allow them to be handled by higher layers 
and to make integration and development easier. In contrast, the holistic 
architectural approach was driven by meeting a set of requirements for an 
interoperable and scalable IoT, including WSNs. On that basis, it is reasonable to 
say that there is value in the consideration of a P2P approach, such as presented in 
this thesis, as part of fog computing.  



 Conclusion 

 

206 

Future Work 

As outlined above, the holistic architecture proposed in this thesis illustrates that 
there is a need for fog computing to consider the role of constrained nodes and 
simple abstractions for key components. Future work will consider further the 
alignment of the holistic architecture with fog computing and particularly the 
OpenFog Reference architecture as that architecture is itself further defined. As 
discussed earlier, the emergence of 5G with its potential to enable growth in the 
number of IoT devices with lower latency, higher bandwidth and the use of 
powerful edge nodes including the use of low cost devices will have an impact on 
fog and edge computing architectures. The flexibility of the holistic architecture 
means it can be used on the range of devices from low cost constrained devices to 
services with a Big Data store, possibly Cloud-based, expected in both fog 
computing and in 5G scenarios. It also provides a scalable way to identify and 
discover devices, including their roles and capabilities, and it is envisaged that 
future work will consider the role of the holistic architecture and HPP in 5G 
scenarios. 

It will be useful to build on the design and results presented in this thesis in areas 
such as protocol overhead to ensure that energy use is minimised. For example, 
the protocol overhead can be reduced by the use of binary encoding for the HPP 
messages. This binary encoding is allowed for in the design of the messages, i.e. 
the message consists of distinct blocks such as the header, each of which will be 
encoded with a size in a binary encoding. Adding support to store metrics, 
appropriate to the node capabilities and beyond the logging used in the tests in this 
thesis should be considered. For example, this could inform the tuning of 
parameters for refreshing and processing replies in order to select low-latency 
paths for subsequent requests, when routing is performed using the HPP DHT or 
even to provide a new way to supplement RPL. The focus of this research has 
been at the application layer, but the relationship of duty cycling with the peer’s 
DHT update and refresh period could be investigated. 

Further improvements could be investigated to improve the use of Kademlia in a 
WSN, such as the overhead of republishing/refreshing data, the size of the 
identifier (20 bytes) and the size of the data in each bucket entry. The settings for 
the use of Get to periodically discover and refresh peers could be investigated in 



6.10 Summary  

 

207 

particular scenarios to determine appropriate frequencies, particularly as these are 
stored as a renewable lease in the holistic architecture. The use of a prefix of the 
160 bit identifier with a bootstrap peer (and an edge router) would allow a shorter 
identifier to be used within a local physical network and the 160 bit identifier to 
be used externally and so reduce message size (and storage requirements). This 
would require a peer’s identifier to be extended for messages going beyond the 
WSN, but it could be investigated to determine scenarios where this is 
appropriate, e.g. where most messages stay within the WSN. The size of the 
bucket entry is dominated by the DHT identifier, which could be reduced as 
above, and the IP address, which could be stored more efficiently. 

CacheL allows leases to be granted by a node. Policies to determine the lease to 
grant in given scenarios should be researched in future, e.g. the effect of reducing 
leases as memory becomes scarce or whether to grant leases based on the size of 
the objects to be stored. This use of a lease policy may even extend across peers, 
as HPP peers can be physically and logically distributed reflecting the distributed 
IoT environment allowing data to be stored or processed in more than one node. 
This would be particularly useful in cases where routing is performed using the 
HPP DHT and data could be cached along the path of the response. 

While the HPP Hello message allows for a credential to be included to determine 
whether a peer is allowed to join a group, the area of security merits future 
research. For example, the scheme for allocating credentials to peers, particularly 
in terms of avoiding privilege escalation across groups justifies investigation. 

There could also be further investigation of scalability, particularly to determine 
limits to scalability at Internet scale and to take advantage of the processing and 
storage on more powerful nodes. The scalability limits on a constrained device, 
such as the number of objects or connections, have been shown to be dependent 
on characteristics of the OS or system environment and the communication stack 
functionality, e.g. whether RPL is included. In the case of more powerful nodes, 
the holistic architecture or HPP itself present no limits to scalability, e.g. the 
number of peers is not likely to be limited by the size of the DHT peer identifier, 
but policies set to limit badly behaved nodes, e.g. those that send large numbers of 
Hello messages, may be found to be beneficial. 



 Conclusion 

 

208 

 



 

Bibliography 
 

[1]  ITU-T, “Overview of the Internet of things, T-REC-Y2060,” ITU-T, June 
2012. 

[2]  K. Romer and F. Mattern, “The Design Space of Wireless Sensor 
Networks”,” IEEE Wireless Communications, vol. 11, no. 6, pp. 54-61, 
2004.  

[3]  M. Porter and J. E. Heppelmann, “How Smart, Connected Products Are 
Transforming Competition,” Harvard Business Review, November 2014.  

[4]  McKinsey, “The Internet of Things: Mapping the Value Beyond the Hype,” 
June 2015. [Online]. Available: https://www.mckinsey.com/business- 
functions/digital-mckinsey/our-insights/the-internet-of-things-the- value-of-
digitizing-the-physical-world. [Accessed July 2019]. 

[5]  Z. Shelby, K. Hartke and C. Bormann, “RFC 7252, The Constrained 
Application Protocol (CoAP),” June 2014. [Online]. Available: 
https://datatracker.ietf.org/doc/rfc7252/. [Accessed July 2019]. 

[6]  IPSO Alliance, “IP for Smart Objects (IPSO) Alliance,” [Online]. Available: 
http://www.ipso-alliance.org. [Accessed July 2019]. 

[7]  O. M. Alliance, “Lightweight Machine-to-Machine Technical Specification 
v1.0.1,” [Online]. Available: 
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_1- 
20170704-A/OMA-TS-LightweightM2M-V1_0_1-20170704-A.pdf. 
[Accessed June 2019]. 

[8]  A. Zaslavsky, C. Perera and D. Georgakopoulos, “Sensing as a Service and 
Big Data,” in Proceedings of the International Conference on Advances in 
Cloud Computing, July 2012.  



 

210 

[9]  D. Reed, J. R. Larus and D. Gannon, “Imagining the Future: Thoughts on 
Computing,” Computer, vol. 45, no. 1, pp. 25-30, November 2011.  

[10]  M. Kovatsch, “Scalable Web Technology for the Internet of Things (PhD 
Thesis),” ETH Zurich, 2015. 

[11]  M. Weiser, “The Computer for the Twenty-First Century,” Scientific 
American, September 1991 (reprinted in IEEE Pervasive Computing, Jan-
Mar 2002), 1991. 

[12]  B. Cohen, “The BitTorrent Protocol Specification,” 2008. [Online]. 
Available: http://www.bittorrent.org/beps/bep_0003.html. [Accessed July 
2019]. 

[13]  P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Information 
System Based on the XOR Metric,” in Proceedings of the First 
International Workshop on Peer-to-Peer Systems (IPTPS), March 2002.  

[14]  H. Balakrishnan, M. F. Kasshoek, D. Karger, R. Morris and I. Stoica, 
“Looking Up Data in P2P Systems,” Communications of the ACM, vol. 46, 
no. 2, pp. 43-48, 2003.  

[15]  R. Minerva, A. Biru and D. Rotond, “Towards a definition of the Internet of 
Things (IoT),” May 2015. [Online]. Available: 
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_ 
Internet_ of_Things_Revision1_27MAY15.pdf. [Accessed July 2019]. 

[16]  S. Haller, S. Karnouskos and C. Schroth, “The Things in the Internet of 
Things,” in Internet of Things Conference, http://www.iot2010.org/, January 
2010.  

[17]  K. Sohraby, D. Minoli and T. Znati, Wireless Sensor Networks, 
Technology, Protocols and Applications, Wiley Interscience, 2007.  

[18]  P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. 
Gay, J. Hill, M. Welsh, E. Brewer and D. Culler, “TinyOS: An Operating 



 

211 

System for Wireless Sensor Networks,” in Ambient Intelligence, Springer, 
2005, pp. 115-148. 

[19]  “Contiki: The Open Source OS for the Internet of Things,” [Online]. 
Available: http://www.contiki-os.org/. [Accessed July 2019]. 

[20]  Texas Instruments, “Simpliciti Wiki,” [Online]. Available: 
http://processors.wiki.ti.com/index.php/Category:SimpliciTI. [Accessed July 
2019]. 

[21]  C. Bormann, M. Ersue and A. Keranen, “Terminology for Constrained-
Node Networks. RFC 7228 (Informational),” C. Bormann, M. Ersue, and A. 
Keranen. , May 2014. [Online]. Available: 
https://tools.ietf.org/html/rfc7228. [Accessed July 2019]. 

[22]  J. Polastre, R. Szewczyk and D. Culler, “Telos: Enabling Ultra-Low Power 
Wireless Research,” in Proceedings of the Fourth International Symposium 
on Information Processing in Sensor Networks, IPSN 2005., April 2005.  

[23]  Zolertia, “The Z1 Mote,” [Online]. Available: 
https://github.com/Zolertia/Resources/wiki/The-Z1-mote. [Accessed July 
2019]. 

[24]  C. M. Horvilleur, “Sun SPOTs: A Great Solution for Small Device 
Development,” [Online]. Available: 
http://www.oracle.com/technetwork/server-storage/ts-4868-1-159029.pdf. 
[Accessed July 2019]. 

[25]  Raspberry Pi Foundation, “RaspberryPi,” [Online]. Available: 
https://www.raspberrypi.org/. [Accessed July 2019]. 

[26]  LoRa Alliance, “LoRa Alliance,” [Online]. Available: https://lora-
alliance.org/. [Accessed June 2019]. 

[27]  Bluetooth SIG, “Bluetooth SIG,” [Online]. Available: 
http://www.bluetooth.com. [Accessed July 2019]. 



 

212 

[28]  ZigBee Alliance, “Zigbee,” [Online]. Available: http://www.zigbee.org. 
[Accessed July 2019]. 

[29]  D. Porcino and W. Hirt, “Ultra-Wideband Radio Technology: Potential and 
Challenges Ahead,” IEEE Communications Magazine, pp. 66-74, July 2003.  

[30]  3GPP, “3GPP,” [Online]. Available: www.3gpp.org. [Accessed June 2019]. 

[31]  M. Agiwal, A. Roy and N. Saxena, “Next Generation 5G Wireless 
Networks: A Comprehensive Survey,” IEEE Communications Surveys & 
Tutorials, vol. 18, no. 3, pp. 1617-55, 2017.  

[32]  C. Y. Chong and S. P. Kumar, “Sensor Networks Evolution, Opportunities 
and Challenges,” Proceedings of the IEEE, vol. 91, no. 8, p. 1247, 2003.  

[33]  G. Montenegro, N. Kushalnagar, J. Hui and D. Culler, “Transmission of 
IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944,” 2007. [Online]. 
Available: https://www.rfc-editor.org/rfc/rfc4944.txt. [Accessed July 2019]. 

[34]  IETF, “Routing Over Low power and Lossy networks Charter,” [Online]. 
Available: https://datatracker.ietf.org/wg/roll/charter/. [Accessed July 2019]. 

[35]  W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient 
Communication Protocols for Wireless Microsensor Networks,” in 
Proceedings of the 33rd Hawaiian International Conference on Systems 
Science (HICSS, January 2000.  

[36]  S. Lindsey and C. S. Raghavendra, “PEGASIS: Power-Efficient Gathering 
In Sensor Information,” in Proceedings of the IEEE Aerospace Conference, 
March 2002.  

[37]  B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for 
Wireless Networks,” in Proceedings of the 6th International Conference on 
Mobile Computing and Networking (Mobicom00), August 2000.  

[38]  S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A Scalable 
Content-Addressable Network,” in Proceedings of the 2001 conference on 



 

213 

Applications, technologies, architectures, and protocols for computer 
communications, October 2001.  

[39]  T. He, J. Stankovic, C. Lu and T. Abdelzaher, “SPEED: A Stateless Protocol 
for Real-Time Communication in Sensor Networks,” in Proceedings of the 
23rd International Conference on Distributed Computing Systems (ICDCS), 
May 2003.  

[40]  A. Brandt, J. Buron and G. Porcu, “Home Automation Routing 
Requirements in Low-power and Lossy Networks. RFC 5826,” April 2010. 
[Online]. Available: https://datatracker.ietf.org/doc/rfc5826. [Accessed June 
2019]. 

[41]  J. Martocci, P. DeMil, N. Riou and W. Vermeylen, “Building Automation 
Routing Requirements in Low-power and Lossy Networks, RFC 5867,” 
June 2010. [Online]. Available: https://datatracker.ietf.org/doc/rfc5867. 
[Accessed July 2019]. 

[42]  M. Dohler, T. . Watteyne, T. Winter and D. Barthel, “Routing Requirements 
for Urban Low-power and Lossy Networks, RFC 5548,” May 2009. 
[Online]. Available: https://datatracker.ietf.org/doc/rfc5548. [Accessed July 
2019]. 

[43]  K. Pister, P. Thubert, S. Dwars and T. Phinney, “Industrial Routing 
Requirements in Low-power and Lossy Networks. RFC 5673,” October 
2009. [Online]. Available: https://datatracker.ietf.org/doc/rfc5673. 
[Accessed July 2019]. 

[44]  P. Levis, T. Clausen, J. Hui, 0. Gnawali and J. Ko, “The Trickle Algorithm. 
RFC 6206,” March 2011. [Online]. Available: 
https://tools.ietf.org/html/rfc6206. [Accessed July 2019]. 

[45]  O. Iova, P. Picco, T. Istomin and C. Kiraly, “RPL, the Routing Standard for 
the Internet of Things ... Or Is It?,” IEEE Communications Magazine, vol. 
54, no. 12, pp. 16-22, December 2016.  



 

214 

[46]  N. Kushalnagar, G. Montenegro and C. Schumacher, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, 
Assumptions, Problem Statement, and Goals, RFC 4919,” August 2007. 
[Online]. Available: https://tools.ietf.org/html/rfc4919. [Accessed July 
2019]. 

[47]  C. Bormann, “RFC8323, Constrained Application Protocol over TCP, TLS, 
and WebSockets,” 2018. [Online]. Available: 
https://datatracker.ietf.org/doc/rfc8323/. [Accessed July 2019]. 

[48]  R. Fielding, “Architectural Styles and the Design of Network-based 
Software Architectures,” Doctoral dissertation, 2000. 

[49]  M. Kovatsch, S. Duquennoy and A. Dunkels, “A Low Power CoAP for 
Contiki,” in Proceedings of the IEEE 8th International Conference on 
Mobile Adhoc and Sensor Systems (MASS), October 2011.  

[50]  W. Colitti, K. Steenhaut and N. De Caro, “Integrating Wireless Sensor 
Networks with the Web,” in Proceedings of the Workshop on Extending the 
Internet to Low power and Lossy Networks (IP+SN), April 2011.  

[51]  A. Banks and R. Gupta, “MQTT Version 3.1.1,” 2015. [Online]. Available: 
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. [Accessed 
July 2019]. 

[52]  M. Koster, “Information Models for an Interoperable Web of Things,” in 
Position paper for W3C Workshop on the Web of Things – Enablers and 
Services for an Open Web of Devices, June 2014.  

[53]  Open Mobile Alliance (OMA), “Lightweight M2M (LWM2M),” [Online]. 
Available: https://www.omaspecworks.org/what-is-oma-specworks/iot/ 
lightweight- m2m-lwm2m/. [Accessed July 2019]. 

[54]  G. Fortino, A. Guerrieri, W. Russo and C. Savaglio, “Integration of Agent-
based and Cloud Computing for the Smart Objects-oriented IoT,” in 
Proceedings of the IEEE 18th International Conference on Computer 
Supported Cooperative Work in Design (CSCWD), May 2014.  



 

215 

[55]  J. Jimenez, M. Koster and H. Tschofenig, “IPSO Smart Objects, IPSO 
Position paper,” in Proceedings of the IOT Semantic Interoperability 
Workshop, March 2016.  

[56]  D. Guinard, V. Trifa, F. Mattern and E. Wilde, “From the Internet of Things 
to the Web of Things: Resource Oriented Architecture and Best Practices,” 
in Architecting the Internet of Things, Springer, 2011, pp. 97-129. 

[57]  DMTF, “CIM Schema,” [Online]. Available: 
http://www.dmtf.org/standards/cim. [Accessed July 2019]. 

[58]  Botts Innovative Research, “SensorML,” [Online]. Available: 
www.sensorml.com. [Accessed July 2019]. 

[59]  M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura and K. 
Kajimoto , “Web of Things (WoT) Architecture (W3C Candidate 
Recommendation),” W3C, 16 May 2019. [Online]. Available: 
https://www.w3.org/TR/2019/CR-wot-architecture-20190516/. [Accessed 
July 2019]. 

[60]  S. Käbisch and T. Kamiya , “Web of Things (WoT) Thing Description 
(W3C Working Draft),” W3C, 21 October 2018. [Online]. Available: 
https://www.w3.org/TR/wot-thing-description/. [Accessed July 2019]. 

[61]  M. Koster, “Web of Things (WoT) Protocol Binding Templates. (W3C 
Note),” W3C, 5 April 2018. [Online]. Available: 
https://www.w3.org/TR/wot-binding-templates/. [Accessed July 2019]. 

[62]  Z. Kis, K. Nimura, D. Peintner and J. Hund, “Web of Things (WoT) 
Scripting API (W3C Working Draft),” W3C, 9 November 2018. [Online]. 
Available: https://www.w3.org/TR/wot-scripting-api/. [Accessed July 
2019]. 

[63]  E. Reshetova and M. McCool, “Web of Things (WoT) Security and Privacy 
Considerations (W3C Note),” 3 December 2018. [Online]. Available: 
https://www.w3.org/TR/wot-security/. [Accessed July 2019]. 



 

216 

[64]  D. Lewis, “802.15.6 Call for Applications – Summary,” IEEE 802.15 TG6 
Working Group, 2009. 

[65]  A. D. S. B. Clemente, J. R. Martinez-de Dios and A. O. Baturone, “A WSN-
Based Tool for Urban and Industrial Fire-Fighting,” [Online]. Available: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522951/. [Accessed July 
2019]. 

[66]  IEEE, “Draft Health Informatics - Point-of-Care Medical Device 
Communication - Technical Report - Guidelines for the Use of RF Wireless 
Technology,” IEEE 11073, 2008. 

[67]  D. Clark, C. Partridge, R. T. Braden, B. Davie, S. Floyd, V. Jacobsen, D. 
Katabi, G. Minshall, K. K. Ramakrishnan, T. Roscoe, I. Stoica, J. 
Wroclawski and L. Zhang, “Making the world (of communications) a 
different place,” ACM SIGCOMM, vol. 35, no. 3, pp. 91-96, 2005.  

[68]  R. Fielding, R. N. Taylor, J. R. Erenkrantz, M. M. Gorlick, J. Whitehead, R. 
Khare and P. Oreiz, “Reflections on the REST Architectural Style and 
“Principled Design of the Modern Web Architecture”,” in Proceedings of 
the 11th Joint Meeting of the European Software Engineering Conference 
and the ACM SIGSOFT Symposium on the Foundations of Software 
Engineering (ESEC/FSE’17), September 2017.  

[69]  Eclipse.org, “Open Source for IoT,” [Online]. Available: 
https://iot.eclipse.org/. [Accessed July 2019]. 

[70]  T. Hasiotis, G. Alyfantis, V. Tsetsos, O. Sekkas and S. Hadjiefthymiades, 
“Sensation: A Middleware Integration Platform for Pervasive Applications 
in Wireless Sensor Networks,” in Proceedings of the 2nd European 
Workshop on Wireless Sensor Networks (EWSN), February 2005.  

[71]  A. Boulis and M. B. Srivastava, “A Framework for Efficient and 
Programmable Sensor Networks,” in Proceedings of the IEEE Open 
Architectures and Network Programming (OPENARCH), June 2002.  



 

217 

[72]  S. R. Madden, “The Design and Evaluation of a Query Processing 
Architecture for Sensor Networks,” Ph.D. Thesis. UC Berkeley, 2003. 

[73]  J. Gehrke and S. Madden , “Query Processing in Sensor Networks,” IEEE 
Pervasive Computing, vol. 3, no. 1, pp. 46-55, January January 2004.  

[74]  C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, 
“Directed Diffusion for Wireless Sensor Networking,” IEEE/ACM 
Transactions on Networking, vol. 11, no. 1, pp. 2-16, 2003.  

[75]  C. Intanagonwiwat, “Directed Diffusion: A Scalable and Robust 
Communication Paradigm for Sensor Networks,” in Proceedings of the 6th 
ACM International Conference on Mobile Computing and Networking 
(Mobicom), 2000.  

[76]  C. Savaglio and G. Fortino, “Autonomic and cognitive architectures for the 
Internet of Things,” in Proceedings of the International Conference on 
Internet and Distributed Computing Systems, August 2015.  

[77]  D. Laney, “3D Data Management: Controlling Data Volume, Velocity, and 
Variety,” Gartner, 2001. 

[78]  “Redis,” [Online]. Available: www.redis.io. [Accessed July 2019]. 

[79]  MongoDB Inc, “MongoDB,” [Online]. Available: http://www.mongodb.org. 
[Accessed July 2019]. 

[80]  F. Chang, J. Dean, S. Ghemawat, W. C. Hseih, D. A. Wallach, M. Burrows, 
T. Chandra, A. Fikes and R. E. Gruber, “Bigtable: A Distributed Storage 
System for Structured Data,” ACM Transactions on Computer Systems 
(TOCS), vol. 26, no. 2, June 2008.  

[81]  C. Jardak, J. Riihijarvi, F. Oldewurtel and P. Mahonen, “Parallel Processing 
of Data from Very Large-Scale Wireless Sensor Networks”,” in 
Proceedings of the 19th ACM International Symposium on High 
Performance Distributed Computing, HPDC10, June 2010.  



 

218 

[82]  B. Yu, A. Cuzzocrea, D. Jeong and S. Maydebura, “On Managing Very 
Large Sensor-Network Data using Bigtable,” in Proceedings of the 12th 
IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing (CCGRID), May 2012.  

[83]  P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 
September 2011. [Online]. Available: 
csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. [Accessed July 
2019]. 

[84]  M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure Physical Sensor 
Management with Virtualized Sensors on Cloud Computing,” in 
Proceedings of the IEEE 13th International Conference on Network-Based 
Information Systems (NBiS ’10), September 2010.  

[85]  G. Fox, S. Kamburugamuve and R. D. Hartman, “Architecture and 
Measured Characteristics of a Cloud Based Internet of Things API,” in 
Proceedings of the International Conference on Collaboration Technologies 
and Systems (CTS), May 2012.  

[86]  J. Melchor and M. Fukuda, “A Design of Flexible Data Channels for 
Sensor-Cloud Integration,” in Proceedings of the International Conference 
on Systems Engineering, ICSENG2011, August 2011.  

[87]  M. Hassan, B. Song and E.-N. Huh, “A Framework of Sensor - Cloud 
Integration Opportunities and Challenges,” in Proceedings of the 3rd 
International Conference on Ubiquitous Information Management and 
Communication, ICUIMC '09, January 2009.  

[88]  Amazon, “Amazon IoT,” [Online]. Available: https://aws.amazon.com/iot/. 
[Accessed June 2019]. 

[89]  Google, “Google Cloud IoT,” [Online]. Available: 
https://cloud.google.com/solutions/iot. [Accessed July 2019]. 



 

219 

[90]  F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog Computing and Its Role 
in the Internet of Things,” in MCC '12 Proceedings of the first edition of the 
MCC Workshop on Mobile Cloud Computing, August 2013.  

[91]  W. Shi and S. Dustdar, “The Promise of Edge Computing,” IEEE Computer, 
vol. 49, no. 5, pp. 78-81, 2016.  

[92]  G. Premsankar, M. Di Francesco and T. Taleb, “Edge Computing for the 
Internet of Things,” IEEE Internet of Things Journal, vol. 5, no. 2, 2018.  

[93]  M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, “Osmotic 
Computing: A New Paradigm for Edge/Cloud Integration,” IEEE Cloud 
Computing, vol. 3, no. 6, pp. 76-83, 2016.  

[94]  X. Sun and N. Ansari, “EdgeIoT: Mobile Edge Computing for the Internet 
of Things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29, 
2016.  

[95]  Industry IOT Consortium, “Industry IOT Consortium,” [Online]. Available: 
https://www.iiconsortium.org/index.htm. [Accessed July 2019]. 

[96]  OpenFog Consortium, “OpenFog Reference Architecture,” February 2017. 
[Online]. Available: 
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture 
_2_09_17.pdf. [Accessed July 2019]. 

[97]  L. Albernaz, E. Matos, R. Tiburski, Hessel F, W. Lunardi and S. Marczak, 
“Middleware Technology for IoT Systems: Challenges and Perspectives 
Toward 5G,” in Internet of Things (IoT) in 5G Mobile Technologies, 
Springer International Publishing, 2016.  

[98]  D. Gelernter, “Generative communication in Linda,” ACM Transactions on 
Programming Languages and Systems (TOPLAS), vol. Volume 7, no. 1, pp. 
80-112, 1985.  

[99]  N. Carriero, “Linda In Context,” Communications of the ACM, vol. 32, no. 
4, pp. 444-458, April 1989.  



 

220 

[100]  E. Freeman, K. Arnold and S. Hupfer, JavaSpaces Principles, Patterns, and 
Practice, Addison-Wesley Longman Ltd, 1999.  

[101]  P. Costa, L. Mottola, A. L. Murphy and G. P. Picco, “Programming 
Wireless Sensor Networks with the TeenyLIME Middleware,” in 
Proceedings of the 8th ACM/IFIP/USENIX international conference on 
Middleware, November 2007.  

[102]  M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. 
Pozzi, D. Zonta and P. Zanon, “Monitoring Heritage Buildings with 
Wireless Sensor Networks: The Torre Aquila Deployment,” in IPSN '09 
Proceedings of the International Conference On Information Processing in 
Sensor Networks (IPSN), April 2009.  

[103]  G. P. Picco, D. Balzarotti and P. Costa, “LighTS: A Lightweight, 
Customizable Tuple Space Supporting Context-Aware Applications,” in 
Proceedings of the ACM Symposium on Applied Computing, March 2005.  

[104]  A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies, 
O'Reilly & Associates, 2001.  

[105]  I. Clarke, O. Sandberg, B. Wiley and T. W. Hong, “Freenet: A Distributed 
Anonymous Information Storage and Retrieval System,” in Proceedings of 
the International workshop on Designing privacy enhancing technologies: 
design issues in anonymity and unobservability, July 2000.  

[106]  Artemis, “Review of the State-of-the-Art- Peer-to-Peer Networks and 
Architectures,” 2004. 

[107]  S. Oaks and L. Gong, JXTA In a Nutshell, O'Reilly &Associates, 2002.  

[108]  I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. 
Dabek and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup 
Service for Internet Applications,” IEEE/ACM Transactions on Networking, 
vol. 11, no. 1, pp. 17-32, 2003.  

[109]  A. Rowstron and P. Druschel, “Pastry : Scalable, Decentralized Object 
Location and Routing for Large-Scale Peer-to-Peer Systems,” in 



 

221 

Proceedings of the 18th IFIP/ACM International Conference on Distributed 
Systems Platforms, November 2001.  

[110]  K. Hildrum, J. D. Kubiatowicz, S. Rao and B. Y. Zhao, “Distributed Object 
Location in a Dynamic Network,” in Proceedings of the 14th ACM Symp. on 
Parallel Algorithms and Architectures, August 2002.  

[111]  A. Loewenstern and A. Norberg, “DHT Protocol,” 2008. [Online]. 
Available: https://www.bittorrent.org/beps/bep_0005.html. [Accessed July 
2019]. 

[112]  S. Krco, D. Cleary and D. Parker, “P2P Mobile Sensor Networks,” in 
Proceedings of the IEEE Conference on System Sciences, January 2005.  

[113]  M. Ali and K. Langendoen, “A Case for Peer-to-Peer Network Overlays in 
Sensor Networks,” in Proceedings of the WWSNA with 6th IPSN, July 2007.  

[114]  M. Caesar, M. Castro, E. B. Nightingale, G. O'Shea and A. Rowstron, 
“Virtual Ring Routing: Network routing inspired by DHTs,” in SIGCOMM 
'06 Proceedings of the 2006 conference on Applications, technologies, 
architectures, and protocols for computer communications, August 2006.  

[115]  J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker and I. Stoica , “A 
Unifying Link Abstraction for Wireless Sensor Networks,” in Proceedings 
of the 3rd ACM Embedded Networked Sensor Systems (SenSys), November 
2005.  

[116]  S. Cirani, L. Davoli, G. Ferrari, R. Leone, P. Medagliani, M. Picone and L. 
Veltri, “A Scalable and Self-Configuring Architecture for Service Discovery 
in the Internet of Things,” IEEE Internet of Things, vol. 1, no. 5, pp. 508-
521, 2014.  

[117]  G. Gutierrez, B. Mejıas and P. Van Roy, “WSN and P2P: a Self-Managing 
Marriage,” in Proceedings of the 2nd IEEE International Conference on 
Self-Adaptive Self-Organising Systems Workshop (SASOW08), October 
2008.  



 

222 

[118]  C. McGoldrick, M. Clear, R. S. Carbajo, K. Fritsche and M. Huggard, 
“TinyTorrents - Integrating Peer-to-Peer and Wireless Sensor Networks,” in 
Proceedings of the Sixth International Conference on Wireless On-Demand 
Network Systems and Services, February 2009.  

[119]  Azureus Software, “Vuze Bittorrent client,” [Online]. Available: 
http://www.vuze.com. [Accessed July 2019]. 

[120]  F. Araujo, J. Kaiser, L. Rodrigues and C. Liu, “CHR: A Distributed Hash 
Table for Wireless Ad Hoc Networks,” in Proceedings of the Fourth 
International Workshop on Distributed Event-Based Systems (DEBS) 
(ICDCSW05), June 2005.  

[121]  D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho and C. S. Kim, 
“On the Existence of a Spectrum of Policies that Subsumes the Least 
Recently Used (LRU) and Least Frequently Used (LFU) Policies,” in 
Proceedings of the 1999 ACM SIGMETRICS international conference on 
Measurement and modeling of computer systems, May 1999.  

[122]  T. Johnson and D. Shasha, “2Q: A Low Overhead High-Performance Buffer 
Management Replacement Algorithm,” in Proceedings of the 20th 
International Conference on Very Large Data Bases, September 1994.  

[123]  J. Dilley and M. Arlitt, “Improving Proxy Cache Performance - Analyzing 
Three Cache Replacement Policies,” IEEE Internet Computing, vol. 3, no. 6, 
pp. 44-50, 1999.  

[124]  P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,” in 
USITS'97 Proceedings of the USENIX Symposium on Internet Technologies 
and Systems on USENIX Symposium on Internet Technologies and Systems, 
December 1997.  

[125]  D. Wessels and K. Claffy, “ICP and the Squid Web Cache,” IEEE Journal 
on Selected Areas in Communications, vol. 16, no. 3, pp. 345-347, 1998.  

[126]  F. J. Corbato, “A Paging Experiment with the Multics System,” MIT Project 
MAC Report MAC-M-384, July 1968. 



 

223 

[127]  W. Carr and J. L. Hennessy, “WSClock—A Simple and Effective Algorithm 
for Virtual Memory Management,” in SOSP '81 Proceedings of the eighth 
ACM symposium on Operating systems principles, December 1981.  

[128]  A. J. Smith, “Sequentiality and Prefetching in Database Systems,” ACM 
Transaction on Database Systems, vol. 3, no. 3, pp. 223-247, 1978.  

[129]  S. Jiang, F. Chen and X. Zhang, “CLOCK-Pro: An Effective Improvement 
of Clock Replacement,” in Proceedings of the USENIX Annual Technical 
Conference, April 2005.  

[130]  S. Jiang and X. Zhang, “LIRS: An Efficient Low Interreference Recency Set 
Replacement Policy to Improve BufferCache Performance,” in Proceedings 
of the 2002 ACM SIGMETRICS International Conference on Measurement 
and Modeling of Computer Systems, June 2002.  

[131]  S. Bansal and D. S. Modha, “CAR: Clock with Adaptive Replacement,” in 
FAST '04 Proceedings of the 3rd USENIX Symposium on File and Storage 
Technologies, March 2004.  

[132]  N. Megiddo and D. S. Modha, “ARC: a Self-tuning, Low Overhead 
Replacement Cache,” in Proceedings of the 2nd USENIX Symposium on 
File and Storage Technologies, March 2003.  

[133]  Y. Zhou, “The Multi-Queue Replacement Algorithm for Second-Level 
Buffer Caches,” in Proceedings of the Usenix Annual Technical Conference, 
June 2001.  

[134]  E. J. O'Neill, P. E. O'Neill and G. Weikum, “The LRU-K Page Replacement 
Algorithm for Database Disk Buffering,” in Proceedings of the ACM 
SIGMOD International Conference on Management of Data, May 1993.  

[135]  N. Dimokas, D. Katsaros, L. Tassiulas and Y. Manolopoulos, “High 
Performance, Low Complexity Cooperative Caching for Wireless Sensor 
Networks,” Wireless Networks, vol. 17, no. 3, pp. 717-737, 2011.  



 

224 

[136]  N. Dimokas, D. Katsaros and Y. Manolopoulos, “Cooperative Caching in 
Wireless Multimedia Sensor Networks,” ACM Mobile Networks and 
Applications, vol. 13, no. 3-4, p. 337–356, 2008.  

[137]  L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc Networks,” 
IEEE Transactions on Mobile Computing, vol. 5, no. 1, pp. 77-89, 2006.  

[138]  T. Hara and S. K. Madria, “Data Replication for Improving Data 
Accessibility in Ad-hoc Networks,” IEEE Transactions on Mobile 
Computing, vol. 5, no. 11, pp. 1515-1532, 2006.  

[139]  K. S. Prabh and T. F. Abdelzaher, “Energy-Conserving Data Cache 
Placement in Sensor Networks,” ACM Transactions On Sensor Networks, 
vol. 1, no. 2, pp. 178-203, November 2005.  

[140]  Y. Du and S. K. S. Gupta, “COOP: A Cooperative Caching Service in 
MANETs,” in Proceedings of the International Conference on Autonomic 
andAutonomous Systems and International Conference on Networking and 
Services (ICAS-ICNS), October 2005.  

[141]  S. Lim, W.-C. Lee, G. Cao and C. R. Das, “A Novel Caching Scheme for 
Improving Internet-based Mobile Ad-hoc Networks Performance,” Ad Hoc 
Networks, vol. 4, no. 2, pp. 225-239, 2006.  

[142]  C. Shirky, “What is P2P....And What Isn't?,” 2000. [Online]. Available: 
http://anet.sourceforge.net/cached/p2p/13/472.html. [Accessed July 2019]. 

[143]  G. P. Picco, “Software Engineering and Wireless Sensor Networks: Happy 
Marriage or Consensual Divorce?,” in Proceedings of the 2010 ICSE 
Workshop on Software Engineering for Sensor Network Applications, May 
2010.  

[144]  X. Le, S. Lee, P. T. H. Truc, L. T. VInh and A. M. Khattak, “Secured WSN-
integrated Cloud Computing for u-Life Care,” in Proceedings of the IEEE 
Consumer Communications and Networking (CCNC), January 2010.  



 

225 

[145]  I. Clark, S. G. Miller, T. W. Hong, O. Sandberg and B. Wiley, “Protecting 
Free Expression Online with Freenet,” IEEE Internet Computing, pp. 40-49, 
January 2002.  

[146]  M. Hermann, T. Pentek and B. Otto, “Design Principles for Industrie 4.0 
Scenarios,” in Proceedings of Hawaii International Conference on System 
Sciences (HICSS), January 2016.  

[147]  G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi and G.-C. Roman, 
“Software Engineering for Mobility: Reflecting on the Past, Peering into the 
Future,” in Proceedings of the Future of Software Engineering, May 2014.  

[148]  “LWM2M implementation on Contiki,” [Online]. Available: 
https://github.com/contiki-os/contiki/tree/master/apps/oma-lwm2m. 
[Accessed July 2019]. 

[149]  B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears, 
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings of the 
ACM Symposium on Cloud Computing (SoCC), June 2010.  

[150]  Arago Systems, “WiSMmote,” [Online]. Available: 
http://www.aragosystems.com/produits/wisnet/wismote/. [Accessed June 
2019]. 

[151]  IBM, “IBM IoT Connected Vehicle Insights,” [Online]. Available: 
https://www.ibm.com/support/knowledgecenter/en/SSNQ4V_bas/ iot-
automotive/overview/components.html. [Accessed July 2019]. 

[152]  L. Mottola and G. P. Picco, “Programming Wireless Sensor Networks: 
Fundamental Concepts and State of the Art,” ACM Computing Surveys, vol. 
43, no. 3, April 2011.  

[153]  Z. Shelby and C. Chauvenet, “The IPSO Application Framework”, Internet- 
Draft. draft-ipso-app-framework-04,” August 2012. [Online]. Available: 
https://www.omaspecworks.org/wp-content/uploads/2018/03/draft-ipso- 
app-framework-04.pdf. [Accessed July 2019]. 

 





 
 


