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CHAPTER 3
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Abstract A novel, general framework that can be used for constructing a 
self-organising and self-managing system is introduced. This framework is 
independent of the application domain. It embodies directed evolution, 
can be parameterised with different strategies, and supports both local and 
global goals. This framework is then used to apply the principles of self- 
organisation and self-management to resource management within the 
CloudLightning architecture.
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3.1  IntroductIon

A general framework for self-organisation and self-management (SOSM) 
is needed to support hierarchical architectures composed of autonomous 
components such as those described in the CloudLightning (CL) archi-
tecture discussed in Chap. 2. This chapter introduces a novel framework 
for SOSM developed to support CloudLightning. The next section pres-
ents key concepts in SOSM and how they are used to augment the 
CloudLightning architecture. The various SOSM mechanisms that enable 
components within CloudLightning to communicate, modify behaviour, 
make decisions, and cooperate with each other are then presented. 
Components may use different strategies for SOSM. As such, exemplar 
strategies are presented and illustrated in the context of CloudLightning 
through example scenarios.

3.2  Key concepts

As discussed in Chap. 2 and mentioned above, the CloudLightning archi-
tecture is composed of autonomous components. Each component is 
equipped with various Strategies. These can be self-managing and/or self- 
organising strategies, and define how components at various levels in the 
hierarchy should evolve towards some ideal state known as the compo-
nent’s local goal.

In general, decisions being made by components at a particular level in 
the hierarchy can directly influence evolution in the adjacent levels. These 
influences may come from the top down, or from the bottom up. When 
coming from an upper level in the hierarchy, the process is called Directed 
Evolution. Directed Evolution signals the desire of the upper level to have 
the components, in the level underneath, change in operation or in con-
figuration, to align with the goal of the upper level. Since components at a 
particular level also have local goals, the overall evolution that is brought 
about at that level should respect progress towards those local goals, while 
simultaneously accommodating the Impetus associated with the Directed 
Evolution process. An Impetus is communicated in the form of a tuple of 
values (i.e., a vector), known as a Weight. In a similar manner, a lower level 
in the hierarchy may directly influence the level above. This can be seen as 
Feedback from the lower level. This Feedback, in the form of tuples of 
values (i.e., vectors), known as Metrics, is derived from the operations of 
the components at the lower level and gives the upper level a Perception of  
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how the lower layer is changing and evolving. Perceptions can be used to 
determine subsequent Directed Evolution decisions.

As part of the self-organisation process, the interaction of two or more 
components, in any level of the hierarchy, may result in component cre-
ation, component destruction, component splitting, and/or component 
merging.

A measure of how close a component is to stasis, and hence how suitable 
its operating characteristics are for contributing to the global goal, is referred 
to as its Suitability Index (SI). In principle, any component subject to Impetus 
and possessing a Perception has an associated SI. Thus, in the CloudLightning 
framework, the goal state of those components, and the global goal of the 
systems, can be cast in terms of maximising the respective SIs.

In summary, the CloudLightning framework defines a number of 
mechanisms as follows:

• A mechanism to communicate Impetus, through the transmission of 
weights, from a level in the hierarchy to the level below. This mecha-
nism allows a component, higher in the hierarchy, to steer the evolu-
tion of components immediately below them in the hierarchy.

• A mechanism to allow components to communicate Feedback, 
through the transmission of metrics, to components in the next level 
up in the hierarchy.

• A mechanism to modify the behaviour of components in response to 
Impetus and Feedback.

• Mechanisms to allow components to make decisions in accordance 
with various strategies to maximise their individual SIs.

• Mechanisms to allow components at the same level in the hierarchy 
to cooperate with each other in accordance with various strategies to 
maximise collective and/or individual SIs.

All of these concepts, and their interactions, are visualised in Fig. 3.1.
The CloudLightning framework provides these mechanisms to enable 

the SOSM strategies being deployed and performed by individual compo-
nents to move nearer to their goal state. Within this framework, each com-
ponent can make local decisions in accordance with various SOSM 
strategies based on its current state (from the feedback loops) and imposed 
Impetus (from the directed evolution processes), maximising its SI. 
Overall, self-management is implemented at a system level, allowing the 
whole system to evolving towards its business/system objectives.
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3.3  AugmentIng the cloudlIghtnIng 
ArchItecture

The CloudLightning architecture is initially augmented to include explicit 
entry points to the vRack Manager Groups. It can be seen from previous 
Chapter that these groups partition the resource space into different types 
of CL-Resources. This partitioning speeds up resource selection, since at 
most one CL-Resource type can be returned by the CloudLightning sys-
tem for each service. The entry points into the differently typed vRack 
Manager Groups add an additional component to the CloudLightning 
architecture. Because of its routing characteristics described above, this 
component is called a pRouter. Figure 3.2 depicts this component in the 
augmented architecture.

From Fig. 3.2, it can be seen that there is an entry point into each 
vRack Manager Group, of the same CL-Resource type, hanging from 
each pRouter. These partition the space into smaller sets of CL-Resources 
of the same type. These entry points add yet another component to the  

Fig. 3.1 Directed Evolution
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CloudLightning architecture. Because this component connects all 
vRack Managers in the same group, it acts as a switch and is called a 
pSwitch. Figure  3.3 depicts this component in the augmented 
architecture.

It can be seen that the final augmented architecture forms a tree struc-
ture in which the root node corresponds to the Cell. The children of the 
Cell are pRouters, and there is at least one pRouter for each distinct 
CL-Resource type. The children of a pRouter are pSwitches. pSwitches 
partition the Virtual Rack Managers (vRMs), managing the same 
CL-Resource type, into groups. The number of pSwitches per pRouter is 
not fixed over time, neither is the size of the vRM groups managed by 
each pSwitch. In the following sections and chapters of this deliverable, it 
will be seen that pSwitches and vRMs can self-organise within groups, 
which are called Cooperatives, to emphasise their self-organising nature. 
To prohibit the creation of Cooperatives with different CL-Resource 
types, pSwitch Cooperatives cannot span pRouters. Similarly, to minimise 
administrative overhead and to simplify coalition formation, vRM 
Cooperatives (formerly called vRack Manager Groups) cannot span 
pSwitches.

Fig. 3.2 Augmented CloudLightning architecture to include pRouters
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As the CloudLightning system evolves, it is anticipated that the number 
of pSwitches connected to a pRouter will change and will converge to 
some optimal number with respect to the global goal. This goal is derived 
from the Directed Evolution coming from the pRouter and from the 
pSwitch’s efforts to achieve its local goal state. As part of the self- 
organisation process, pSwitches can be created, destroyed, merged, and 
split. In addition, pSwitches, within the same Cooperative, may exchange 
vRMs to optimise management. Together, the pRouters and the pSwitches 
form a reconfigurable and self-optimising switching fabric.

Similarly, it is anticipated that the number of vRMs connected to a 
pSwitch will change and will converge to some optimal number derived 
from the Directed Evolution coming from the pSwitch and from the 
vRM’s efforts to achieve its local goal state. As part of the self-organisation 
process, vRMs can be created, destroyed, merged, and split. In addition, 
vRMs, within the same Cooperative, may exchange CL-Resources in an 
effort to maximise CL-Resource utilisation, minimise energy consump-
tion, and facilitate coalition formation and management optimisation.

An important driving force behind the evolution of the CloudLightning 
system is the sequence of services/tasks that the system is required to 
execute. From the previous chapter, it can be seen that the process of 
maintaining a separation between resource and service life-cycles involves 
using the CloudLightning system to autonomously locate appropriate 
resources to execute each specific service/task. As part of this process, a 
description of these resources is passed to the CloudLightning system in 
an attempt to match appropriate resources with the service/task request. 
The term resource prescription (subsequently referred to simply as pre-
scription) is introduced to refer to this description, and hence the pRouter 
is a prescription Router and the pSwitch is a prescription Switch.

vRMs form the lowest software level in the hierarchical organisation of 
the CloudLightning system. The next level up in this hierarchy is formed 
by grouping vRMs of the same type into Cooperatives. The elements of 
the Cooperatives, that is, its vRMs, self-organise by exchanging 
CL-Resources appropriately, to enable optimal management. Similarly, 
the elements of the pSwitch level self-organise by exchanging vRMs appro-
priately to enable optimal management. Finally, the elements of the 
pRouter level, that is, groups of pSwitches, self-organise by exchanging 
pSwitches appropriately to enable optimal management. All of these self- 
organising actions take place simultaneously resulting in the emergence of 
pathways through the hierarchy designed to optimise the ongoing propa-
gation of resource prescriptions through the system.
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3.4  self-orgAnIsAtIon And self-mAnAgement 
In cloudlIghtnIng ArchItecture

The general SOSM framework is mapped to the augmented hierarchical 
CloudLightning architecture outlined in the previous chapter. In the 
CloudLightning architecture, the autonomous components are the Cell, 
the pRouters, the pSwitches, and the vRMs. This framework provides 
Directed Evolution, self-management, and self-organisation mechanisms.

3.4.1  Directed Evolution

Directed Evolution is a mechanism to communicate a changing force 
throughout the system in a manner which effectively allows a component, 
higher in the hierarchy, to steer the evolution of the components immedi-
ately below them.

3.4.1.1  The Goal State
The goal of each component at all levels in the hierarchy is to maximise its 
SI.

The SI, η, is defined to be a combination of the Impetus and Perception 
expressed through a function η

 

P I, ( ) , such that 
   

I R P R I P RN N∈ ∈ → ( )∈, ,η ,  where N is the number of parameters used 
to express Impetus and Perception.

Note that, in the Cell the SI is calculated per resource type.
The goal state for the pRouter and the pSwitch is:

 
arg max , ,η







  

I w P m w m RN( ) ( )( ) ∈,
 

(3.1)

where w  is an N-dimensional vector of weights corresponding to the 
Impetus and m  is an N-dimensional vector of metrics obtained from the 
lower levels. Equivalently the goal state for the vRM is:

 
arg max , ,η












I w P d w d RN( ) ( )( ) ∈,
 

(3.2)

where w  is an N-dimensional vector of weights corresponding to the 
Impetus and 



d  is an M-dimensional vector of metrics obtained from the 
Telemetry service.
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3.4.1.2  Cell State
The Cell state is a set of vector tuples and function tuples of the form:

           

w m w m w mn n, , , , , , , , , , , ,1 1 1 2 2 2( ) ( ){ } ( ) ( ){ } … ( )µ ϕ µ ϕ µ ϕϕn( ){ }{ }
 

(3.3)

where n is the number of different pRouter types and w  is the weight 
calculated by the Cell to effect steering. The tuple  w m, 1( )  represents met-
rics and weights of the i-th pRouter, respectively, where  

w R m RN
i

N∈ ∈, .  
The function tuple 

 µ ϕi i, ( )  is used to calculate the Impetus and Perception 
vectors, respectively, for each CL-Resource type maintained by each 
pRouter.

Since the Cell is at the highest level in the hierarchy, weights may be 
determined by the flow of tasks into the system and/or by local decisions 
made in an effort to move towards an objective goal state.

3.4.1.3  pRouter State and pSwitch State
The pRouter and pSwitch states can be described as a vector tuple  w m, ( ),  
representing weights and metrics where  

w R m RN N∈ ∈, ,  and a function 
tuple 

 µ ϕ, ( )  is used to calculate Impetus and Perception, respectively.

3.4.1.4  vRM State
vRM state can be described as a vector tuple 



w d, ( ),  representing weights 
and metrics where 



w R d RN N∈ ∈, ,  and a function tuple 
 µ ϕ, ( )  is used to 

calculate Impetus and Perception, respectively.

3.4.1.5  Steering by the Cell
There are at least two mechanisms for specifying a global goal state, G. The 
first is an objective goal specified to meet a specific business case. This can 
be set in a Cell, and in conjunction with the current local state of that Cell, 
adjustments can be made to the weights and applied to the underlying 
pRouters to steer them in that direction. By responding to this Impetus 
appropriately, the system will tend towards the goal state:

 

  

I I G TCell Cell Cell i= ( )′µ , , 
 

(3.4)

where 


ICell
′  is the current Impetus of the Cell, 



ICell  is the new Impetus of 
the Cell, 



GCell  is the goal state of the Cell, and Ti are resource 
prescriptions.
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Alternatively, the global goal state of the system can be expressed as a 
maximisation of the local goal state of the Cell. That is:

 
arg max , , , , ,ηi

NI P i n I P R
   

,       ( ) = … ∈1
 

(3.5)

where ηi is the suitability of i-th pRouter attached to the Cell.

3.4.1.6  Steering by the pRouter
Steering by a pRouter is a mechanism for calculating and transmitting an 
Impetus to its attached pSwitches:

Impetus is a function such that:

 

    

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= ( ) ∈ ∈′ ′µ ,  , ,

 
(3.6)

where 


I pRouter
′  is the previous Impetus of the pRouter. Here 



ICell  represents 
the weight coming from the Cell.

3.4.1.7  Steering by the pSwitch
Steering by a pSwitch is a mechanism for calculating and transmitting an 
Impetus to its attached vRMs:

 

    

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= ( ) ∈′ ′µ ,  , , rr
NR∈

 
(3.7)

where 


I pSwitch
′  is the previous Impetus of the pSwitch. Here 



I pRouter  repre-
sents the weight coming from the pRouter.

3.4.2  Self-Management Mechanisms

The self-managing components in the system include (a) pRouters and 
pSwitches, managing prescription routing, metrics, and weights; and (b) 
vRMs, managing task execution, metrics, weights, and CL-Resources.

3.4.2.1  Mechanism to Send Metrics from a vRM to pSwitch
A separate assessment function corresponding to one of N metrics is exe-
cuted in each vRM, and the result is passed as an N-dimensional vector to 
the respective pSwitch associated with that vRM.

 H. XIONG ET AL.
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3.4.2.2  Mechanism to Send Metrics from a pSwitch to pRouter
A number of N-dimensional vectors will arrive at a pSwitch (one from 
each vRM in the cooperative defined by that pSwitch), and each of these 
is combined to derive a new N-dimensional vector. This represents the 
pSwitch’s Perception of the suitability of the underlying vRM cooperative 
to accept new tasks. This Perception can be customised by choosing the 
specific manner in which the input N-dimensional vectors are combined. 
The resulting N-dimensional vector is passed to the pSwitch’s pRouter.

3.4.2.3  Mechanism to Send Metrics from pRouter to Cell
A number of N-dimensional vectors will arrive at a pRouter (one from 
each pSwitch in the cooperative defined by that pRouter), and each of 
these is once again combined to derive an N-dimensional vector repre-
senting the local state of that pRouter. This state can be viewed as being 
the pRouters Perception of the suitability of the underlying pSwitch coop-
erative to accept new tasks. This perception can also be customised by 
choosing the specific manner in which the input N-dimensional vectors 
are combined. This N-dimensional vector is passed to the Cell.

3.4.2.4  Mechanism to Send Weights from Cell to pRouters
Weights sent from a level in the hierarchy to a lower level represent the 
desire of the transmitting level to evolve in a particular direction. Since the 
Cell is at the highest level in the hierarchy, the sending of weights to the 
pRouters is the first step in the process of Directed Evolution. There are 
many strategies that the Cell can employ to determine how these weights 
change from time to time in the CloudLightning system. In all cases, these 
weights are sent to each pRouter as an N-dimensional vector representing 
the desired/calculated change to the progression of the Directed 
Evolution.

3.4.2.5  Mechanism to Send Weights from pRouters to pSwitches
After receiving an updated N-dimensional vector from the Cell, a pRouter 
will transform it using a customizable function, which will dictate the rate 
at which the next level down in the hierarchy is expected to change. This 
transformed N-dimensional vector is passed to the underlying pSwitches.

3.4.2.6  Mechanism to Send Weights from pSwitch to vRMs
After receiving an updated N-dimensional vector from the pRouter, a 
pSwitch will transform it using a customizable function, which will dictate 
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the rate at which the next level down in the hierarchy is expected to 
change. This transformed N-dimensional vector is passed to the underly-
ing vRMs.

The same weights are propagated to every component in the same level 
(in the same pRouter). This ensures that the underlying level does not 
return metrics that cannot be meaningfully compared at that level. For 
example, if the weights associated with the calculations of power efficiency 
in two different servers of the same type are grossly different, one will 
appear to be more power efficient than the other even if both are equally 
power efficient.

Figure 3.4 depicts an example propagation of weights and metrics 
through the CL hierarchy in eight distinct time-steps. These vectors are 
propagated asynchronously from level to level. The metrics originate at 
the bottom level of the hierarchy, where they are derived from the appli-
cation of CL-specific assessment functions applied to data gathered from 
the resource monitor. As they travel up through the hierarchy, they are 
aggregated to give successive perceptions of the underlying system at 
each successive component. The propagation of weights begins at the 
Cell and is modified as they are passed down through the hierarchy to 
reflect successive inflections of the Impetus coming from the Directed 
Evolution.

3.4.2.7  A Mechanism in the Cell to Modify Local Behaviour 
in an Effort to Respond to Impetus Provided by the Directed 
Evolution and Metrics Coming from Attached pRouters

Perception is a function such that:

 



     

P m m m m R m R m RCell r
N N

r
N= …( ) ∈ ∈ … ∈ϕ 1 2 1 2,  , ,    , , , ,

 
(3.8)

Here, each mi  is a metric (an N-dimensional vector) coming from each 
of the r pRouters attached to the Cell.

Impetus 


I TCell i= ( )µ ,  where Ti is the task prescription under 
consideration.
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Fig. 3.4 An example propagation of weights and metrics through the CL hierar-
chy, with respect to a resource prescription 
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3.4.2.8  A Mechanism in a pRouter to Modify Local Behaviour 
in an Effort to Respond to Impetus Transmitted by the Cell 
and Metrics Coming from Attached pSwitches

Perception is a function such that:

 



     

P m m m m R m R m RpRouter s
N N

s
N= …( ) ∈ ∈ … ∈ϕ 1 2 1 2,  ,  ,     , , , ,

 
(3.9)

Here, each mi  is a metric (an N-dimensional vector) coming from each 
of the s pSwitches attached to the pRouter.

Impetus is a function such that:

 

    

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= ( ) ∈ ∈′ ′µ ,   , ,

 
(3.10)

where 


I pRouter
′  is the previous Impetus of the pRouter. Here 



ICell  repre-
sents the weight coming from the Cell.

3.4.2.9  A Mechanism in a pSwitch to Modify Local Behaviour 
in an Effort to Respond to Impetus Transmitted by its pRouter 
and Metrics Coming from Attached vRMs

Perception is a function such that:

 



     

P m m m m R m R m RpSwitch v
N N

v
N= …( ) ∈ ∈ … ∈ϕ 1 2 1 2, ,  ,    , , , ,

 
(3.11)

Here, each mi  is a metric (an N-dimensional vector) coming from each 
of the v vRMs attached to the pSwitch.

Impetus is a function such that:

 

    

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= ( ) ∈′ ′µ ,  , , rr
NR∈

 
(3.12)

where 


I pSwitch
′  is the previous Impetus of the pSwitch. Here 



I pRouter  repre-
sents the weight coming from the pRouter.
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3.4.2.10  A Mechanism in a vRM to Modify Local Behaviour 
in an Effort to Respond to Impetus Transmitted by its pSwitch 
and Metrics Coming from its vRack

Perception is a function such that:

 





 

P m d d RvRM
M= = ( ) ∈ψ ,  

 
(3.13)

where 


d  represents an M-dimensional Telemetry data obtained from the 
Telemetry service running on the physical resources belonging to the 
associated vRack.

Impetus is a function such that:

 

    

I I I I R I RvRM vRM pSwitch vRM
N

pSwitch
N= ( ) ∈ ∈′ ′µ ,  , ,

 
(3.14)

where 


IvRM
′  is the previous Impetus of the vRM. Here 



I pSwitch  represents 
the weight coming from the pSwitch.

3.4.2.11  Sample Events that Trigger the Transmission of Metrics at each 
Level in the Hierarchy

Options:

• Periodically, at a rate suitable for that level in the hierarchy
• From the vRM to the pSwitch:

 – After the receipt of a task prescription
 – When resources are freed
 – As a result of a self-organisation activity
 – Periodically to reflect utilisation, power consumption, and other 

low-level metrics of interest

3.4.2.12  Sample Events that Trigger the Transmission of Weights at Each 
Level in the Hierarchy

Options:

• As a result of steering
• Periodically, at a rate appropriate for each level in the hierarchy
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3.4.3  Self-Organisation Mechanisms

vRMs self-organise within the same pSwitch to optimally manage 
CL-Resources and to satisfy resource prescriptions, thus, maximising their 
SI and evolving towards the local goal state. Similarly, pSwitches can self- 
organise within the same pRouter to maximise their SI to identify those 
parts of the system that are evolving towards their local goals. In principle, 
pRouters of the same CL-Resource type can also self-organise; however, 
that level of re-organisation is not considered further here since the added 
advantages are thought to be minimal. One example of Self-organisation 
scenarios can be described as follows.

Within the vRMs

 1. A task comes into the pSwitch.
 2. The pSwitch sends the task to an attached vRM with the highest 

SI.
 3. The vRM checks to see if it has sufficient resources to execute the 

task.

 (a) If yes, no problem.
 (b) If no, the vRM initialises a self-organisation event within its 

cooperative.

 4. The vRMs send updated metrics with their pSwitch.

Within the pSwitches

 1. A task comes into the pRouter.
 2. The pRouter sends the task to an attached pSwitch with the high-

est SI.
 3. The pSwitch checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, it passes the task to the vRM with the highest SI.
 (b) If no, the pSwitch initialises a self-organisation event within 

its co- operative.

 4. The pSwitch sends updated metrics to its pRouter.
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Within the pRouter

 1. A task comes into the Cell.
 2. The Cell sends the task to an attached pRouter with the highest SI 

of the desired type.
 3. The pRouter checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, passes the task to the pSwitch with the highest SI.
 (b) If no, the pRouter initialises a self-organisation event within 

its co- operative.

 4. The pRouter sends updated metrics to the Cell.

Sample events that trigger re-organisation at each level in the hierarchy

• When weights are updated.
• As a result of an autonomous, periodic, housekeeping action designed 

to maximise the SI of the initiating component.
• After the arrival of a resource prescription that cannot be satisfied 

without re-organisation.

When all else fails: sample resource prescription rejection strategies

• Outright reject.
• Return prescription to the previous level and possibly trigger a re- 

organisation there.
• Recycle the task prescription into the system at the Cell level and 

record its recycle iterations until an upper limit is reached. If this 
limit is reached, reject.

3.5  cloudlIghtnIng sosm strAtegIes

3.5.1  Self-Management Strategies

In the CloudLightning SOSM framework, each component is autono-
mous, which allows the component using different self-management strat-
egies accordingly to achieve its local goal state.
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Some self-management strategies may include:

• Static weights and dynamic weights (only for Cell Manager)
• Average aggregation (suitable for pRouters, pSwitches, and vRMs)
• Modifying weights for smoothing changes towards local goal state 

(suitable for pRouters, pSwitches, and vRMs)
• Bin-packing for energy efficiency (only for vRMs)
• Functions for management efficiency (only for vRMs)
• Isotropy preservation for task process parallelism (only for vRMs)

3.5.1.1  An Example Self-Management Scenario
Here, an example of examining the effect of different choices of manage-
ment cost functions is presented. Four different functions are selected for 
inspection, characterising different types of evolution, which are described 
by the equations that follow.

 (a) Small vRacks
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(3.15)

Equation 3.15 favours small capacity vRacks enabling them to evolve; 
while when a vRack has large capacity, the output of the management cost 
function approaches zero resulting in a reduced SI. Thus, large vRacks are 
not capable of undertaking more requests, and they have to transfer their 
servers to other smaller vRacks in order to slowly achieve the ideal size.

 (b) Large vRacks
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(3.16)

Equation 3.16 favours large capacity vRacks; when a vRack has small 
capacity, the output of the management cost function approaches zero 
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resulting in a reduced SI. Thus, small vRacks are not capable of undertak-
ing more requests, and they have to transfer their servers to other larger 
vRacks merging with them.

 (c) Medium vRacks

 e
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− − +
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 (3.17)

Equation 3.17 favours medium capacity vRacks; when a vRack has very 
small or very large capacity, the output of the management cost function 
approaches zero resulting in a reduced SI. Thus, very small and very large 
vRacks are not capable of undertaking more requests, and they have to 
transfer their servers or merge with other vRacks.

 (d) Extreme vRacks
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 (3.18)

Equation 3.18 favours very small capacity or very large capacity 
vRacks; when a vRack has medium capacity, the output of the manage-
ment cost function approaches zero resulting in a reduced SI. Thus, 
medium capacity vRacks are not capable of undertaking more requests, 
and they have to transfer their servers or merge with other smaller or 
larger vRacks.

Overall, the optimal number of servers per vRack is given by 

N̂
N

Ntotal
v i

N

total i

v

= ( )
=
∑1

1

. This number is dynamic and is changing with the 

creation/destruction of vRacks or with the merging/splitting of vRacks. 
The management cost functions can be depicted schematically by (a), (b), 
(c), and (d) in Fig. 3.5.

However, the choice of management cost function significantly affects 
the evolution as well as other parameters and metrics of the systems such 
as utilisation and number of rejected resource prescriptions.
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3.5.2  Self-Organisation Strategies

The self-organising components in the system include vRMs and 
pSwitches. vRMs self-organise within the same pSwitch to optimally 
manage CL-Resources and to satisfy resource prescriptions, thus maxi-
mising their SI and evolving towards the local goal state. Similarly, 
pSwitches can self-organise within the same pRouter to maximise their 
SI to identify those parts of the system that are evolving towards their 
local goals. In principle, pRouters of the same CL-Resource type can 
also self-organise; however, that level of re-organisation is not consid-
ered further in this book since the added advantages are thought to be 
minimal.
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Fig. 3.5 Different types of management cost functions
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Some self-organisation strategies may include:

• Dominate: the component with the greater SI has precedence and 
can demand another component of the same type, but with a lower 
SI, to transfer some resources.

• Win-Win: components may cooperate to exchange resources to 
maximise the SI of each.

• Least Disruptive: minimise disruption with respect to management 
and administration.

• Balanced: maximise load-balancing among each cooperating 
component.

• Best Fit: minimise server fragmentation and/or minimise network 
latency (this strategy may come from some vRM-specific 
objectives).

• Any meaningful combination of the above.

3.5.2.1  An Example Self-Organisation Scenario
An example of a Least Disruptive algorithm that can be used by vRMs for 
self-organisation is presented. This algorithm can be used by vRMs to 
exchange resources to minimise their management cost. This algorithm 
has two steps: the first function endeavours each vRM to minimise the 
number of administrative actions, and the second function is taking virtu-
alisation and fragmentation into account, which can be used to avoid the 
creation of very large vRMs for management efficiency purpose. This two- 
stage self-organising scheme can be described by the algorithmic proce-
dure given by the following algorithm.
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Algorithm 1 

Let be the minimum number of vRacks allowed per pSwitch  

Let be the index of the vRack with maximum Suitability Index

Let be a resource prescription arriving to 

Let be the set of free resources belonging to 

function MINADMINCOSTS( )

if then

for to with do

if then

break

if then

return

else

return

function TWOSTAGESO( )

if MINADMINCOSTS( ) does not return then

if and then

for to with do

Probe -th 

if then

Merge with 

return

else

return  
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Figure 3.6 presents the increased system utilisation and requests reject 
rate of this two-stage self-organisation algorithm merging with the mini-
mum free resources. However, because the system accommodates larger 
tasks through merging, the smaller tasks arriving at the system are con-
tinuously rejected due to lack of resources.

In the case of merging with the vRack with maximum free resources, 
the utilisation of the system, depicted in Fig. 3.7a, is slightly increased but 
oscillates around 80%. As a consequence, the percentage of rejected 
requests increases, since the system is accommodating an increased num-
ber of larger requests, as schematically represented in Fig. 3.7b.

Overall, this two-stage self-organisation strategy has been employed for 
enhancing utilisation and reducing fragmentation with virtualisation in 
mind.

3.6  conclusIon

The SOSM framework described in this chapter provides a general and 
scalable mechanism for hosting and executing SOSM strategies that, in 
principle, could be associated with any hierarchical architecture.

The key elements of the self-management and self-organisation frame-
work include the process of Directed Evolution; an Impetus that drives the 
evolutionary process at all levels in the hierarchy; a Perception, associated 
with each component, indicating the effectiveness of the system underlying 
that component; and an SI, associated with each component, that deter-
mines how close that component is to achieving its goal state. Specifying 
an objective global goal state may be based on business decisions and/or 
technology constraints, however, to optimise the CloudLightning system 
in its entirety; it is suggested that the goal states for components of the 
system should be chosen to maximise their respective SIs.

This approach introduces a great deal of flexibility into the evolution of 
a system by allowing it to achieve stasis while attempting to balance local 
constraints with the external Impetus derived from the directed evolution-
ary process. Over time, the system as a whole evolves to optimise typical 
service usage, to achieve the dynamic equilibrium. The local constraints 
are most evident at the vRM level where they are embodied in assessment 
functions capturing the essential characteristics of the underlying resources.

The framework endows the system being specified with the flexibility to 
extend the resource fabric in a seamless fashion. This elegantly addresses 
the CloudLightning objective of readily supporting heterogeneous hard-
ware now and into the future.
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Fig. 3.6 The system utilisation (a) and requests reject rate (b) of two-stage self- 
organisation algorithm merging with the minimum free resources (ρ = 3)
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Fig. 3.7 The system utilisation (a) and requests reject rate (b) of two-stage self- 
organisation algorithm merging with the maximum free resources (ρ = 3)
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