
Title Self-organising, self-managing frameworks and strategies

Authors Xiong, Huanhuan;Filelis-Papadopoulos, Christos K.;González-
Castañé, Gabriel;Dong, Dapeng;Morrison, John P.

Publication date 2018

Original Citation Xiong, H., Filelis-Papadopoulos, C., Castañe, G. G., Dong, D. and
Morrison, J. P. (2018) 'Self-organising, self-managing frameworks
and strategies', in Lynn, T., Morrison, J.P. & Kenny, D. (eds.)
Heterogeneity, High Performance Computing, Self-Organization
and the Cloud. Cham: Springer International Publishing, pp.
63-88. doi: 10.1007/978-3-319-76038-4_3

Type of publication Book chapter

Link to publisher's
version

https://link.springer.com/
chapter/10.1007%2F978-3-319-76038-4_3 -
10.1007/978-3-319-76038-4_3

Rights © 2018, the Author(s). This chapter is licensed under
the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits
any noncommercial use, sharing, distribution and reproduction
in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if you modified the
licensed material. You do not have permission under this license
to share adapted material derived from this chapter or parts of
it. The images or other third party material in this chapter are
included in the chapter's Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is
not included in the chapter's Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly
from the copyright holder. - http://creativecommons.org/licenses/
by-nc-nd/4.0/

Download date 2024-05-03 15:01:12

Item downloaded
from

https://hdl.handle.net/10468/6916

https://hdl.handle.net/10468/6916

63© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_3

CHAPTER 3

Self-Organising, Self-Managing Frameworks
and Strategies

Huanhuan Xiong, Christos Filelis-Papadopoulos,
Gabriel G. Castañe, Dapeng Dong, and John P. Morrison

Abstract A novel, general framework that can be used for constructing a
self-organising and self-managing system is introduced. This framework is
independent of the application domain. It embodies directed evolution,
can be parameterised with different strategies, and supports both local and
global goals. This framework is then used to apply the principles of self-
organisation and self-management to resource management within the
CloudLightning architecture.

Keywords Directed evolution • Self-organisation • Self-management
• Strategies • Goal state

H. Xiong (*) • G. G. Castañe • D. Dong • J. P. Morrison
Department of Computer Science, University College Cork, Cork, Ireland
e-mail: h.xiong@cs.ucc.ie; gabriel.gonzalezcastane@ucc.ie; d.dong@cs.ucc.ie; j.
morrison@cs.ucc.ie

C. Filelis-Papadopoulos
Democritus University of Thrace, Komotini, Greece
e-mail: cpapad@ee.duth.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_3&domain=pdf
https://doi.org/10.1007/978-3-319-76038-4_3
mailto:h.xiong@cs.ucc.ie
mailto:gabriel.gonzalezcastane@ucc.ie
mailto:d.dong@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:cpapad@ee.duth.gr

64

3.1 IntroductIon

A general framework for self-organisation and self-management (SOSM)
is needed to support hierarchical architectures composed of autonomous
components such as those described in the CloudLightning (CL) archi-
tecture discussed in Chap. 2. This chapter introduces a novel framework
for SOSM developed to support CloudLightning. The next section pres-
ents key concepts in SOSM and how they are used to augment the
CloudLightning architecture. The various SOSM mechanisms that enable
components within CloudLightning to communicate, modify behaviour,
make decisions, and cooperate with each other are then presented.
Components may use different strategies for SOSM. As such, exemplar
strategies are presented and illustrated in the context of CloudLightning
through example scenarios.

3.2 Key concepts

As discussed in Chap. 2 and mentioned above, the CloudLightning archi-
tecture is composed of autonomous components. Each component is
equipped with various Strategies. These can be self-managing and/or self-
organising strategies, and define how components at various levels in the
hierarchy should evolve towards some ideal state known as the compo-
nent’s local goal.

In general, decisions being made by components at a particular level in
the hierarchy can directly influence evolution in the adjacent levels. These
influences may come from the top down, or from the bottom up. When
coming from an upper level in the hierarchy, the process is called Directed
Evolution. Directed Evolution signals the desire of the upper level to have
the components, in the level underneath, change in operation or in con-
figuration, to align with the goal of the upper level. Since components at a
particular level also have local goals, the overall evolution that is brought
about at that level should respect progress towards those local goals, while
simultaneously accommodating the Impetus associated with the Directed
Evolution process. An Impetus is communicated in the form of a tuple of
values (i.e., a vector), known as a Weight. In a similar manner, a lower level
in the hierarchy may directly influence the level above. This can be seen as
Feedback from the lower level. This Feedback, in the form of tuples of
values (i.e., vectors), known as Metrics, is derived from the operations of
the components at the lower level and gives the upper level a Perception of

 H. XIONG ET AL.

https://doi.org/10.1007/978-3-319-76038-4_2
https://doi.org/10.1007/978-3-319-76038-4_2

 65

how the lower layer is changing and evolving. Perceptions can be used to
determine subsequent Directed Evolution decisions.

As part of the self-organisation process, the interaction of two or more
components, in any level of the hierarchy, may result in component cre-
ation, component destruction, component splitting, and/or component
merging.

A measure of how close a component is to stasis, and hence how suitable
its operating characteristics are for contributing to the global goal, is referred
to as its Suitability Index (SI). In principle, any component subject to Impetus
and possessing a Perception has an associated SI. Thus, in the CloudLightning
framework, the goal state of those components, and the global goal of the
systems, can be cast in terms of maximising the respective SIs.

In summary, the CloudLightning framework defines a number of
mechanisms as follows:

• A mechanism to communicate Impetus, through the transmission of
weights, from a level in the hierarchy to the level below. This mecha-
nism allows a component, higher in the hierarchy, to steer the evolu-
tion of components immediately below them in the hierarchy.

• A mechanism to allow components to communicate Feedback,
through the transmission of metrics, to components in the next level
up in the hierarchy.

• A mechanism to modify the behaviour of components in response to
Impetus and Feedback.

• Mechanisms to allow components to make decisions in accordance
with various strategies to maximise their individual SIs.

• Mechanisms to allow components at the same level in the hierarchy
to cooperate with each other in accordance with various strategies to
maximise collective and/or individual SIs.

All of these concepts, and their interactions, are visualised in Fig. 3.1.
The CloudLightning framework provides these mechanisms to enable

the SOSM strategies being deployed and performed by individual compo-
nents to move nearer to their goal state. Within this framework, each com-
ponent can make local decisions in accordance with various SOSM
strategies based on its current state (from the feedback loops) and imposed
Impetus (from the directed evolution processes), maximising its SI.
Overall, self-management is implemented at a system level, allowing the
whole system to evolving towards its business/system objectives.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

66

3.3 AugmentIng the cloudlIghtnIng
ArchItecture

The CloudLightning architecture is initially augmented to include explicit
entry points to the vRack Manager Groups. It can be seen from previous
Chapter that these groups partition the resource space into different types
of CL-Resources. This partitioning speeds up resource selection, since at
most one CL-Resource type can be returned by the CloudLightning sys-
tem for each service. The entry points into the differently typed vRack
Manager Groups add an additional component to the CloudLightning
architecture. Because of its routing characteristics described above, this
component is called a pRouter. Figure 3.2 depicts this component in the
augmented architecture.

From Fig. 3.2, it can be seen that there is an entry point into each
vRack Manager Group, of the same CL-Resource type, hanging from
each pRouter. These partition the space into smaller sets of CL-Resources
of the same type. These entry points add yet another component to the

Fig. 3.1 Directed Evolution

 H. XIONG ET AL.

 67

CloudLightning architecture. Because this component connects all
vRack Managers in the same group, it acts as a switch and is called a
pSwitch. Figure 3.3 depicts this component in the augmented
architecture.

It can be seen that the final augmented architecture forms a tree struc-
ture in which the root node corresponds to the Cell. The children of the
Cell are pRouters, and there is at least one pRouter for each distinct
CL-Resource type. The children of a pRouter are pSwitches. pSwitches
partition the Virtual Rack Managers (vRMs), managing the same
CL-Resource type, into groups. The number of pSwitches per pRouter is
not fixed over time, neither is the size of the vRM groups managed by
each pSwitch. In the following sections and chapters of this deliverable, it
will be seen that pSwitches and vRMs can self-organise within groups,
which are called Cooperatives, to emphasise their self-organising nature.
To prohibit the creation of Cooperatives with different CL-Resource
types, pSwitch Cooperatives cannot span pRouters. Similarly, to minimise
administrative overhead and to simplify coalition formation, vRM
Cooperatives (formerly called vRack Manager Groups) cannot span
pSwitches.

Fig. 3.2 Augmented CloudLightning architecture to include pRouters

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

68

Fi
g.

 3
.3

Fi

na
l

au
gm

en
te

d
C

lo
ud

L
ig

ht
ni

ng
 a

rc
hi

te
ct

ur
e

ill
us

tr
at

in
g

its
 h

ie
ra

rc
hi

ca
l

na
tu

re
 w

ith
 p

R
ou

te
r

an
d

pS
w

itc
h

co
m

po
ne

nt
s

 H. XIONG ET AL.

 69

As the CloudLightning system evolves, it is anticipated that the number
of pSwitches connected to a pRouter will change and will converge to
some optimal number with respect to the global goal. This goal is derived
from the Directed Evolution coming from the pRouter and from the
pSwitch’s efforts to achieve its local goal state. As part of the self-
organisation process, pSwitches can be created, destroyed, merged, and
split. In addition, pSwitches, within the same Cooperative, may exchange
vRMs to optimise management. Together, the pRouters and the pSwitches
form a reconfigurable and self-optimising switching fabric.

Similarly, it is anticipated that the number of vRMs connected to a
pSwitch will change and will converge to some optimal number derived
from the Directed Evolution coming from the pSwitch and from the
vRM’s efforts to achieve its local goal state. As part of the self-organisation
process, vRMs can be created, destroyed, merged, and split. In addition,
vRMs, within the same Cooperative, may exchange CL-Resources in an
effort to maximise CL-Resource utilisation, minimise energy consump-
tion, and facilitate coalition formation and management optimisation.

An important driving force behind the evolution of the CloudLightning
system is the sequence of services/tasks that the system is required to
execute. From the previous chapter, it can be seen that the process of
maintaining a separation between resource and service life-cycles involves
using the CloudLightning system to autonomously locate appropriate
resources to execute each specific service/task. As part of this process, a
description of these resources is passed to the CloudLightning system in
an attempt to match appropriate resources with the service/task request.
The term resource prescription (subsequently referred to simply as pre-
scription) is introduced to refer to this description, and hence the pRouter
is a prescription Router and the pSwitch is a prescription Switch.

vRMs form the lowest software level in the hierarchical organisation of
the CloudLightning system. The next level up in this hierarchy is formed
by grouping vRMs of the same type into Cooperatives. The elements of
the Cooperatives, that is, its vRMs, self-organise by exchanging
CL-Resources appropriately, to enable optimal management. Similarly,
the elements of the pSwitch level self-organise by exchanging vRMs appro-
priately to enable optimal management. Finally, the elements of the
pRouter level, that is, groups of pSwitches, self-organise by exchanging
pSwitches appropriately to enable optimal management. All of these self-
organising actions take place simultaneously resulting in the emergence of
pathways through the hierarchy designed to optimise the ongoing propa-
gation of resource prescriptions through the system.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

70

3.4 self-orgAnIsAtIon And self-mAnAgement
In cloudlIghtnIng ArchItecture

The general SOSM framework is mapped to the augmented hierarchical
CloudLightning architecture outlined in the previous chapter. In the
CloudLightning architecture, the autonomous components are the Cell,
the pRouters, the pSwitches, and the vRMs. This framework provides
Directed Evolution, self-management, and self-organisation mechanisms.

3.4.1 Directed Evolution

Directed Evolution is a mechanism to communicate a changing force
throughout the system in a manner which effectively allows a component,
higher in the hierarchy, to steer the evolution of the components immedi-
ately below them.

3.4.1.1 The Goal State
The goal of each component at all levels in the hierarchy is to maximise its
SI.

The SI, η, is defined to be a combination of the Impetus and Perception
expressed through a function η

P I, () , such that

I R P R I P RN N∈ ∈ → ()∈, ,η , where N is the number of parameters used
to express Impetus and Perception.

Note that, in the Cell the SI is calculated per resource type.
The goal state for the pRouter and the pSwitch is:

arg max , ,η

I w P m w m RN() ()() ∈,

(3.1)

where w is an N-dimensional vector of weights corresponding to the
Impetus and m is an N-dimensional vector of metrics obtained from the
lower levels. Equivalently the goal state for the vRM is:

arg max , ,η

I w P d w d RN() ()() ∈,

(3.2)

where w is an N-dimensional vector of weights corresponding to the
Impetus and

d is an M-dimensional vector of metrics obtained from the
Telemetry service.

 H. XIONG ET AL.

 71

3.4.1.2 Cell State
The Cell state is a set of vector tuples and function tuples of the form:

w m w m w mn n, , , , , , , , , , , ,1 1 1 2 2 2() (){ } () (){ } … ()µ ϕ µ ϕ µ ϕϕn(){ }{ }

(3.3)

where n is the number of different pRouter types and w is the weight
calculated by the Cell to effect steering. The tuple w m, 1() represents met-
rics and weights of the i-th pRouter, respectively, where

w R m RN
i

N∈ ∈, .
The function tuple

 µ ϕi i, () is used to calculate the Impetus and Perception
vectors, respectively, for each CL-Resource type maintained by each
pRouter.

Since the Cell is at the highest level in the hierarchy, weights may be
determined by the flow of tasks into the system and/or by local decisions
made in an effort to move towards an objective goal state.

3.4.1.3 pRouter State and pSwitch State
The pRouter and pSwitch states can be described as a vector tuple w m, (),
representing weights and metrics where

w R m RN N∈ ∈, , and a function
tuple

 µ ϕ, () is used to calculate Impetus and Perception, respectively.

3.4.1.4 vRM State
vRM state can be described as a vector tuple

w d, (), representing weights
and metrics where

w R d RN N∈ ∈, , and a function tuple
 µ ϕ, () is used to

calculate Impetus and Perception, respectively.

3.4.1.5 Steering by the Cell
There are at least two mechanisms for specifying a global goal state, G. The
first is an objective goal specified to meet a specific business case. This can
be set in a Cell, and in conjunction with the current local state of that Cell,
adjustments can be made to the weights and applied to the underlying
pRouters to steer them in that direction. By responding to this Impetus
appropriately, the system will tend towards the goal state:

I I G TCell Cell Cell i= ()′µ , ,

(3.4)

where

ICell
′ is the current Impetus of the Cell,

ICell is the new Impetus of
the Cell,

GCell is the goal state of the Cell, and Ti are resource
prescriptions.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

72

Alternatively, the global goal state of the system can be expressed as a
maximisation of the local goal state of the Cell. That is:

arg max , , , , ,ηi

NI P i n I P R

, () = … ∈1

(3.5)

where ηi is the suitability of i-th pRouter attached to the Cell.

3.4.1.6 Steering by the pRouter
Steering by a pRouter is a mechanism for calculating and transmitting an
Impetus to its attached pSwitches:

Impetus is a function such that:

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= () ∈ ∈′ ′µ , , ,

(3.6)

where

I pRouter
′ is the previous Impetus of the pRouter. Here

ICell represents
the weight coming from the Cell.

3.4.1.7 Steering by the pSwitch
Steering by a pSwitch is a mechanism for calculating and transmitting an
Impetus to its attached vRMs:

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= () ∈′ ′µ , , , rr
NR∈

(3.7)

where

I pSwitch
′ is the previous Impetus of the pSwitch. Here

I pRouter repre-
sents the weight coming from the pRouter.

3.4.2 Self-Management Mechanisms

The self-managing components in the system include (a) pRouters and
pSwitches, managing prescription routing, metrics, and weights; and (b)
vRMs, managing task execution, metrics, weights, and CL-Resources.

3.4.2.1 Mechanism to Send Metrics from a vRM to pSwitch
A separate assessment function corresponding to one of N metrics is exe-
cuted in each vRM, and the result is passed as an N-dimensional vector to
the respective pSwitch associated with that vRM.

 H. XIONG ET AL.

 73

3.4.2.2 Mechanism to Send Metrics from a pSwitch to pRouter
A number of N-dimensional vectors will arrive at a pSwitch (one from
each vRM in the cooperative defined by that pSwitch), and each of these
is combined to derive a new N-dimensional vector. This represents the
pSwitch’s Perception of the suitability of the underlying vRM cooperative
to accept new tasks. This Perception can be customised by choosing the
specific manner in which the input N-dimensional vectors are combined.
The resulting N-dimensional vector is passed to the pSwitch’s pRouter.

3.4.2.3 Mechanism to Send Metrics from pRouter to Cell
A number of N-dimensional vectors will arrive at a pRouter (one from
each pSwitch in the cooperative defined by that pRouter), and each of
these is once again combined to derive an N-dimensional vector repre-
senting the local state of that pRouter. This state can be viewed as being
the pRouters Perception of the suitability of the underlying pSwitch coop-
erative to accept new tasks. This perception can also be customised by
choosing the specific manner in which the input N-dimensional vectors
are combined. This N-dimensional vector is passed to the Cell.

3.4.2.4 Mechanism to Send Weights from Cell to pRouters
Weights sent from a level in the hierarchy to a lower level represent the
desire of the transmitting level to evolve in a particular direction. Since the
Cell is at the highest level in the hierarchy, the sending of weights to the
pRouters is the first step in the process of Directed Evolution. There are
many strategies that the Cell can employ to determine how these weights
change from time to time in the CloudLightning system. In all cases, these
weights are sent to each pRouter as an N-dimensional vector representing
the desired/calculated change to the progression of the Directed
Evolution.

3.4.2.5 Mechanism to Send Weights from pRouters to pSwitches
After receiving an updated N-dimensional vector from the Cell, a pRouter
will transform it using a customizable function, which will dictate the rate
at which the next level down in the hierarchy is expected to change. This
transformed N-dimensional vector is passed to the underlying pSwitches.

3.4.2.6 Mechanism to Send Weights from pSwitch to vRMs
After receiving an updated N-dimensional vector from the pRouter, a
pSwitch will transform it using a customizable function, which will dictate

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

74

the rate at which the next level down in the hierarchy is expected to
change. This transformed N-dimensional vector is passed to the underly-
ing vRMs.

The same weights are propagated to every component in the same level
(in the same pRouter). This ensures that the underlying level does not
return metrics that cannot be meaningfully compared at that level. For
example, if the weights associated with the calculations of power efficiency
in two different servers of the same type are grossly different, one will
appear to be more power efficient than the other even if both are equally
power efficient.

Figure 3.4 depicts an example propagation of weights and metrics
through the CL hierarchy in eight distinct time-steps. These vectors are
propagated asynchronously from level to level. The metrics originate at
the bottom level of the hierarchy, where they are derived from the appli-
cation of CL-specific assessment functions applied to data gathered from
the resource monitor. As they travel up through the hierarchy, they are
aggregated to give successive perceptions of the underlying system at
each successive component. The propagation of weights begins at the
Cell and is modified as they are passed down through the hierarchy to
reflect successive inflections of the Impetus coming from the Directed
Evolution.

3.4.2.7 A Mechanism in the Cell to Modify Local Behaviour
in an Effort to Respond to Impetus Provided by the Directed
Evolution and Metrics Coming from Attached pRouters

Perception is a function such that:

P m m m m R m R m RCell r
N N

r
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.8)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the r pRouters attached to the Cell.

Impetus

I TCell i= ()µ , where Ti is the task prescription under
consideration.

 H. XIONG ET AL.

 75

Fig. 3.4 An example propagation of weights and metrics through the CL hierar-
chy, with respect to a resource prescription

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

76

3.4.2.8 A Mechanism in a pRouter to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by the Cell
and Metrics Coming from Attached pSwitches

Perception is a function such that:

P m m m m R m R m RpRouter s
N N

s
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.9)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the s pSwitches attached to the pRouter.

Impetus is a function such that:

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= () ∈ ∈′ ′µ , , ,

(3.10)

where

I pRouter
′ is the previous Impetus of the pRouter. Here

ICell repre-
sents the weight coming from the Cell.

3.4.2.9 A Mechanism in a pSwitch to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by its pRouter
and Metrics Coming from Attached vRMs

Perception is a function such that:

P m m m m R m R m RpSwitch v
N N

v
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.11)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the v vRMs attached to the pSwitch.

Impetus is a function such that:

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= () ∈′ ′µ , , , rr
NR∈

(3.12)

where

I pSwitch
′ is the previous Impetus of the pSwitch. Here

I pRouter repre-
sents the weight coming from the pRouter.

 H. XIONG ET AL.

 77

3.4.2.10 A Mechanism in a vRM to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by its pSwitch
and Metrics Coming from its vRack

Perception is a function such that:

P m d d RvRM
M= = () ∈ψ ,

(3.13)

where

d represents an M-dimensional Telemetry data obtained from the
Telemetry service running on the physical resources belonging to the
associated vRack.

Impetus is a function such that:

I I I I R I RvRM vRM pSwitch vRM
N

pSwitch
N= () ∈ ∈′ ′µ , , ,

(3.14)

where

IvRM
′ is the previous Impetus of the vRM. Here

I pSwitch represents
the weight coming from the pSwitch.

3.4.2.11 Sample Events that Trigger the Transmission of Metrics at each
Level in the Hierarchy

Options:

• Periodically, at a rate suitable for that level in the hierarchy
• From the vRM to the pSwitch:

 – After the receipt of a task prescription
 – When resources are freed
 – As a result of a self-organisation activity
 – Periodically to reflect utilisation, power consumption, and other

low-level metrics of interest

3.4.2.12 Sample Events that Trigger the Transmission of Weights at Each
Level in the Hierarchy

Options:

• As a result of steering
• Periodically, at a rate appropriate for each level in the hierarchy

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

78

3.4.3 Self-Organisation Mechanisms

vRMs self-organise within the same pSwitch to optimally manage
CL-Resources and to satisfy resource prescriptions, thus, maximising their
SI and evolving towards the local goal state. Similarly, pSwitches can self-
organise within the same pRouter to maximise their SI to identify those
parts of the system that are evolving towards their local goals. In principle,
pRouters of the same CL-Resource type can also self-organise; however,
that level of re-organisation is not considered further here since the added
advantages are thought to be minimal. One example of Self-organisation
scenarios can be described as follows.

Within the vRMs

 1. A task comes into the pSwitch.
 2. The pSwitch sends the task to an attached vRM with the highest

SI.
 3. The vRM checks to see if it has sufficient resources to execute the

task.

 (a) If yes, no problem.
 (b) If no, the vRM initialises a self-organisation event within its

cooperative.

 4. The vRMs send updated metrics with their pSwitch.

Within the pSwitches

 1. A task comes into the pRouter.
 2. The pRouter sends the task to an attached pSwitch with the high-

est SI.
 3. The pSwitch checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, it passes the task to the vRM with the highest SI.
 (b) If no, the pSwitch initialises a self-organisation event within

its co- operative.

 4. The pSwitch sends updated metrics to its pRouter.

 H. XIONG ET AL.

 79

Within the pRouter

 1. A task comes into the Cell.
 2. The Cell sends the task to an attached pRouter with the highest SI

of the desired type.
 3. The pRouter checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, passes the task to the pSwitch with the highest SI.
 (b) If no, the pRouter initialises a self-organisation event within

its co- operative.

 4. The pRouter sends updated metrics to the Cell.

Sample events that trigger re-organisation at each level in the hierarchy

• When weights are updated.
• As a result of an autonomous, periodic, housekeeping action designed

to maximise the SI of the initiating component.
• After the arrival of a resource prescription that cannot be satisfied

without re-organisation.

When all else fails: sample resource prescription rejection strategies

• Outright reject.
• Return prescription to the previous level and possibly trigger a re-

organisation there.
• Recycle the task prescription into the system at the Cell level and

record its recycle iterations until an upper limit is reached. If this
limit is reached, reject.

3.5 cloudlIghtnIng sosm strAtegIes

3.5.1 Self-Management Strategies

In the CloudLightning SOSM framework, each component is autono-
mous, which allows the component using different self-management strat-
egies accordingly to achieve its local goal state.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

80

Some self-management strategies may include:

• Static weights and dynamic weights (only for Cell Manager)
• Average aggregation (suitable for pRouters, pSwitches, and vRMs)
• Modifying weights for smoothing changes towards local goal state

(suitable for pRouters, pSwitches, and vRMs)
• Bin-packing for energy efficiency (only for vRMs)
• Functions for management efficiency (only for vRMs)
• Isotropy preservation for task process parallelism (only for vRMs)

3.5.1.1 An Example Self-Management Scenario
Here, an example of examining the effect of different choices of manage-
ment cost functions is presented. Four different functions are selected for
inspection, characterising different types of evolution, which are described
by the equations that follow.

 (a) Small vRacks

1

0

2

2
2

−
−

−∫

N

N
t dt

total

total

e

(3.15)

Equation 3.15 favours small capacity vRacks enabling them to evolve;
while when a vRack has large capacity, the output of the management cost
function approaches zero resulting in a reduced SI. Thus, large vRacks are
not capable of undertaking more requests, and they have to transfer their
servers to other smaller vRacks in order to slowly achieve the ideal size.

 (b) Large vRacks

1

0

2 2

2
2

−

−()
−

−∫

ˆ

ˆ

N N

N
t dt

total total

total

e

(3.16)

Equation 3.16 favours large capacity vRacks; when a vRack has small
capacity, the output of the management cost function approaches zero

 H. XIONG ET AL.

 81

resulting in a reduced SI. Thus, small vRacks are not capable of undertak-
ing more requests, and they have to transfer their servers to other larger
vRacks merging with them.

 (c) Medium vRacks

 e

N

N
total

total

− − +

4 4

2

2

ˆ

 (3.17)

Equation 3.17 favours medium capacity vRacks; when a vRack has very
small or very large capacity, the output of the management cost function
approaches zero resulting in a reduced SI. Thus, very small and very large
vRacks are not capable of undertaking more requests, and they have to
transfer their servers or merge with other vRacks.

 (d) Extreme vRacks

 1

4 4

2

2

−

− − +

e

N

N
total

total
ˆ

 (3.18)

Equation 3.18 favours very small capacity or very large capacity
vRacks; when a vRack has medium capacity, the output of the manage-
ment cost function approaches zero resulting in a reduced SI. Thus,
medium capacity vRacks are not capable of undertaking more requests,
and they have to transfer their servers or merge with other smaller or
larger vRacks.

Overall, the optimal number of servers per vRack is given by

N̂
N

Ntotal
v i

N

total i

v

= ()
=
∑1

1

. This number is dynamic and is changing with the

creation/destruction of vRacks or with the merging/splitting of vRacks.
The management cost functions can be depicted schematically by (a), (b),
(c), and (d) in Fig. 3.5.

However, the choice of management cost function significantly affects
the evolution as well as other parameters and metrics of the systems such
as utilisation and number of rejected resource prescriptions.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

82

3.5.2 Self-Organisation Strategies

The self-organising components in the system include vRMs and
pSwitches. vRMs self-organise within the same pSwitch to optimally
manage CL-Resources and to satisfy resource prescriptions, thus maxi-
mising their SI and evolving towards the local goal state. Similarly,
pSwitches can self-organise within the same pRouter to maximise their
SI to identify those parts of the system that are evolving towards their
local goals. In principle, pRouters of the same CL-Resource type can
also self-organise; however, that level of re-organisation is not consid-
ered further in this book since the added advantages are thought to be
minimal.

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(a)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(b)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(c)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(d)

w

Fig. 3.5 Different types of management cost functions

 H. XIONG ET AL.

 83

Some self-organisation strategies may include:

• Dominate: the component with the greater SI has precedence and
can demand another component of the same type, but with a lower
SI, to transfer some resources.

• Win-Win: components may cooperate to exchange resources to
maximise the SI of each.

• Least Disruptive: minimise disruption with respect to management
and administration.

• Balanced: maximise load-balancing among each cooperating
component.

• Best Fit: minimise server fragmentation and/or minimise network
latency (this strategy may come from some vRM-specific
objectives).

• Any meaningful combination of the above.

3.5.2.1 An Example Self-Organisation Scenario
An example of a Least Disruptive algorithm that can be used by vRMs for
self-organisation is presented. This algorithm can be used by vRMs to
exchange resources to minimise their management cost. This algorithm
has two steps: the first function endeavours each vRM to minimise the
number of administrative actions, and the second function is taking virtu-
alisation and fragmentation into account, which can be used to avoid the
creation of very large vRMs for management efficiency purpose. This two-
stage self-organising scheme can be described by the algorithmic proce-
dure given by the following algorithm.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

84

Algorithm 1

Let be the minimum number of vRacks allowed per pSwitch

Let be the index of the vRack with maximum Suitability Index

Let be a resource prescription arriving to

Let be the set of free resources belonging to

function MINADMINCOSTS()

if then

for to with do

if then

break

if then

return

else

return

function TWOSTAGESO()

if MINADMINCOSTS() does not return then

if and then

for to with do

Probe -th

if then

Merge with

return

else

return

 H. XIONG ET AL.

 85

Figure 3.6 presents the increased system utilisation and requests reject
rate of this two-stage self-organisation algorithm merging with the mini-
mum free resources. However, because the system accommodates larger
tasks through merging, the smaller tasks arriving at the system are con-
tinuously rejected due to lack of resources.

In the case of merging with the vRack with maximum free resources,
the utilisation of the system, depicted in Fig. 3.7a, is slightly increased but
oscillates around 80%. As a consequence, the percentage of rejected
requests increases, since the system is accommodating an increased num-
ber of larger requests, as schematically represented in Fig. 3.7b.

Overall, this two-stage self-organisation strategy has been employed for
enhancing utilisation and reducing fragmentation with virtualisation in
mind.

3.6 conclusIon

The SOSM framework described in this chapter provides a general and
scalable mechanism for hosting and executing SOSM strategies that, in
principle, could be associated with any hierarchical architecture.

The key elements of the self-management and self-organisation frame-
work include the process of Directed Evolution; an Impetus that drives the
evolutionary process at all levels in the hierarchy; a Perception, associated
with each component, indicating the effectiveness of the system underlying
that component; and an SI, associated with each component, that deter-
mines how close that component is to achieving its goal state. Specifying
an objective global goal state may be based on business decisions and/or
technology constraints, however, to optimise the CloudLightning system
in its entirety; it is suggested that the goal states for components of the
system should be chosen to maximise their respective SIs.

This approach introduces a great deal of flexibility into the evolution of
a system by allowing it to achieve stasis while attempting to balance local
constraints with the external Impetus derived from the directed evolution-
ary process. Over time, the system as a whole evolves to optimise typical
service usage, to achieve the dynamic equilibrium. The local constraints
are most evident at the vRM level where they are embodied in assessment
functions capturing the essential characteristics of the underlying resources.

The framework endows the system being specified with the flexibility to
extend the resource fabric in a seamless fashion. This elegantly addresses
the CloudLightning objective of readily supporting heterogeneous hard-
ware now and into the future.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

86

90
a

b

80

70

60

50

40

30

20

10

0

U
til

iz
at

io
n

(%
)

0 1 2 3 4 5 6 7

× 10
Time (s)

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7
5

5

× 10
Time (s)

R
ej

ec
te

d
R

eq
ue

st
s

(%
)

Fig. 3.6 The system utilisation (a) and requests reject rate (b) of two-stage self-
organisation algorithm merging with the minimum free resources (ρ = 3)

 H. XIONG ET AL.

 87

90
a

b

80

70

60

50

40

30

20

10

0

U
til

iz
at

io
n

(%
)

0 1 2 3 4 5 6 7

5

5

Time (s) ×10

0
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7

Time (s) ×10

R
ej

ec
te

d
R

eq
ue

st
s

(%
)

Fig. 3.7 The system utilisation (a) and requests reject rate (b) of two-stage self-
organisation algorithm merging with the maximum free resources (ρ = 3)

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

88

3.7 chApter 3 relAted cloudlIghtnIng reAdIngs

 1. Drăgan, I., Fortiş, T. F., Iuhasz, G., Neagul, M., & Petcu, D. (2017).
Applying self-* principles in heterogeneous cloud environments.
Cloud Computing, 255–274. Springer International Publishing.

 2. Filelis-Papadopoulos, C., Xiong, H., Spataru, A., Castane, G.,
Dong, D., Gravvanis, G., et al. (2017, July). A generic framework
supporting self-organisation and self-management in hierarchical
systems. In The 16th International Symposium on Parallel and
Distributed Computing (ISPDC 2017). Innsbruck, Austria.

 3. Petcu, D. (2015). On autonomic HPC Clouds. In Proceedings of the
Second International Workshop on Sustainable Ultrascale Computing
Systems (NESUS 2015) (pp. 29–40).

 4. Stack, P., Xiong, H., Mersel, D., Makhloufi, M., Terpend, G., &
Dong, D. (2017). Self-healing in a decentralised Cloud manage-
ment system. In Proceedings of the 1st International Workshop on
Next generation of Cloud Architectures, Vol. 3. ACM.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 H. XIONG ET AL.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 3: Self-Organising, Self-Managing Frameworks and Strategies
	3.1 Introduction
	3.2 Key Concepts
	3.3 Augmenting the CloudLightning Architecture
	3.4 Self-Organisation and Self-Management in CloudLightning Architecture
	3.4.1 Directed Evolution
	3.4.1.1	 The Goal State
	3.4.1.2	 Cell State
	3.4.1.3	 pRouter State and pSwitch State
	3.4.1.4	 vRM State
	3.4.1.5	 Steering by the Cell
	3.4.1.6	 Steering by the pRouter
	3.4.1.7	 Steering by the pSwitch

	3.4.2 Self-Management Mechanisms
	3.4.2.1	 Mechanism to Send Metrics from a vRM to pSwitch
	3.4.2.2	 Mechanism to Send Metrics from a pSwitch to pRouter
	3.4.2.3	 Mechanism to Send Metrics from pRouter to Cell
	3.4.2.4	 Mechanism to Send Weights from Cell to pRouters
	3.4.2.5	 Mechanism to Send Weights from pRouters to pSwitches
	3.4.2.6	 Mechanism to Send Weights from pSwitch to vRMs
	3.4.2.7	 A Mechanism in the Cell to Modify Local Behaviour in an Effort to Respond to Impetus Provided by the Directed Evolution and Metrics Coming from Attached pRouters
	3.4.2.8	 A Mechanism in a pRouter to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by the Cell and Metrics Coming from Attached pSwitches
	3.4.2.9	 A Mechanism in a pSwitch to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by its pRouter and Metrics Coming from Attached vRMs
	3.4.2.10	 A Mechanism in a vRM to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by its pSwitch and Metrics Coming from its vRack
	3.4.2.11	 Sample Events that Trigger the Transmission of Metrics at each Level in the Hierarchy
	3.4.2.12	 Sample Events that Trigger the Transmission of Weights at Each Level in the Hierarchy

	3.4.3 Self-Organisation Mechanisms

	3.5 CloudLightning SOSM Strategies
	3.5.1 Self-Management Strategies
	3.5.1.1	 An Example Self-Management Scenario

	3.5.2 Self-Organisation Strategies
	3.5.2.1	 An Example Self-Organisation Scenario

	3.6 Conclusion
	3.7 Chapter 3 Related CloudLightning Readings

