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Abstract

Abstract

A common strategy for organising music is by arranging songs in a playlist to

obtain a continuous and thematic music flow. Playlists are popular in music

streaming services, where 58% of the listeners construct their own playlists.

The flip side of popularity is content-overload; streaming services currently host

billions of playlists. The commercial value of playlists has attracted notable

research efforts during the last two decades. Much of the research on playlists

is concerned with automatically constructing playlists. This dissertation is on

playlists, but on a topic complementary to constructing playlists. Our concern

here is on describing playlists, so that playlists can be understood by a human

audience, i.e. so that they become intelligible.

The way we achieve intelligibility is by developing algorithms that can generate

textual annotations, both at playlist level and at song level. At playlist level,

an annotation can be text (e.g. a tag or a caption) that describes the playlist as

a whole; at song level, an annotation can be text that describes the transition

between two consecutive songs in the playlist. The purpose of intelligibility is

that of facilitating music organisation & access, as well as enhancing the listen-

ing experience of users, two goals particularly relevant in a content overload

scenario.

We propose five algorithms for playlist-level intelligibility, and three algorithms

for song-level intelligibility. We are particularly interested in the user experi-

ence, so we test the algorithms, in most cases, with both offline experiments

and user trials. We find evidence that the algorithms can help accomplish the

two goals of intelligibility, i.e. enhancing listening experiences, and facilitating

organisation and access.

We pair the algorithms with a comprehensive survey of MIR research on music

playlists, which provide a useful framework for understanding our contributions

in the context of a broad selection of related research.
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Chapter 1

Introduction

1.1 Background and context

The technological revolutions of the late 20th century, such as the internet, have

shaped many parts of our contemporary lives, including how we interact with

recorded music1. In the digital era we are living in, music streaming services

are one of the most popular ways to interact with music. According to the

global music report of the International Federation of the Phonographic Indus-

try (IFPI)2, streaming accounted for 16.9 billion dollars of revenue in 2021,

which is 68% of the total global recorded music industry revenues for that year.

In the context of this dissertation, we consider music streaming services as the

default medium to interact with recorded music. And, we refer to recorded

music simply as “music”.

In exchange for a monthly subscription fee of around ten euros, or for free in

exchange for exposure to advertisements, music streaming services allow their

subscribers to access an enormous catalogue of music, from different devices,

such as smartphones and personal computers, at any time. In the context of this

dissertation, we refer to a subscriber of a music streaming service as a “user”.

The abundance of available music raises the risk that users of streaming services

will be overwhelmed [Hag15]. For example, the music streaming services Spo-

tify3 and Deezer4 have catalogue sizes of respectively 50 and 90 million songs.

1Music listening can also happen at live performances. But the focus of this dissertation is
on recorded music.

2https://globalmusicreport.ifpi.org.
3https://spotify.com.
4https://deezer.com.
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1. INTRODUCTION 1.1 Background and context

Interstellar Love by Thundercat

Post Requisite by Flying Lotus

Wisdom Eye by Alice Coltrane

Figure 1.1: A playlist of three songs.

Figure 1.2: The home page of the music streaming service Spotify features
playlists as a personalised and prominent element. Picture taken June 15th

2022.

The need, therefore, for efficient modalities of music access becomes apparent.

In this scenario, playlists, which can be defined as “sequence[s] of tracks in-

tended to be listened to together” [SZC+18], have become one of the preferred

ways of accessing music. An example of a three-song playlist is in Figure 1.1.

Listeners use playlists to structure their listening, efficiently accessing the right

music at the right time [Fly16].

The importance of playlists is evident by looking at the home page of the music

streaming service Spotify, which features playlists as a prominent element, as

shown in Figure 1.2. Notice that the playlists of Figure 1.2 are personalised, that

Intelligibility of Music Playlists 2 Giovanni Gabbolini



1. INTRODUCTION 1.1 Background and context

is they are chosen to meet the user’s preferences and requirements. The value

of playlists is also highlighted by several statistics: in 2016, playlists accounted

for 31% of music streaming time among listeners in the USA, which is more

than albums (22%), but less than single tracks (46%) [SZC+18].

Playlists are created for users by professional curators and algorithms, and

by users for themselves and other users, for convenience and self-expression

[Web20]. A study conducted in 2017 reveled that 58% of users in the USA

create their own playlists, and that 32% of users share their playlists with other

users [SZC+18]. In total, the music streaming service Spotify was hosting more

than four billion playlists in 20215.

The commercial value of playlists has attracted notable research efforts during

the last two decades.

Much of the research on playlists is concerned with automatic generation of

playlists, e.g. [FSGW08, VGV05, VRC+18, GVJSM19]. Other work looks into

how humans manually construct playlists, e.g. see [PZS16, Hag15]. We offer a

complete review of the research on playlists in Chapter 2.

This dissertation is on playlists, but focuses on a complementary topic to the

ones described in the previous paragraph. Our focus is on intelligibility, that is

the degree to which playlists can be understood by a human audience. Given

the sequential nature of playlists, we can distinguish two levels of intelligibility:

song-level and playlist-level. Song-level intelligibility is the degree to which

transitions between consecutive songs can be understood by a human audience.

Playlist-level intelligibility is the degree to which the characteristics of a playlist

can be understood by a human audience.

The way we achieve intelligibility in this dissertation is by developing algo-

rithms that can generate textual annotations, both at song-level and playlist-

level. In particular, we achieve song-level intelligibility by generating short

song-to-song textual annotations, or segues. For example, given the playlist of

Figure 1.1, a segue between the first two songs is: “Interstellar Love was pro-

duced by Flying Lotus, and Flying Lotus is the artist who made the next song”.

We achieve playlist-level intelligibility by generating playlist tags and captions.

For example, the playlist of Figure 1.1 can be tagged as “jazz” & “alternative”,

and can be captioned as “Derivations of jazz, from the 70s to our time”. Playlist

tagging is the task of assigning to a playlist one or more tags, drawn from a

5https://backlinko.com/spotify-users.
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1. INTRODUCTION 1.2 Motivation

Research on
playlists

Intelligibility

Song-level
intellibility

Playlist-level
intelligibility

Segue
generation Tagging Captioning

Figure 1.3: Hierarchical organisation of the research topics we tackle in this
dissertation.

fixed vocabulary of tags. Playlist captioning is the task of describing a playlist

using natural language [CFM+16]. In summary, the research topics we tackle

can be organised hierarchically as in Figure 1.3.

1.2 Motivation

The research on intelligibility we present in this dissertation has two goals:

1. Enhance the playlist listening experience;

2. Facilitate playlist organisation and access.

In the following, we review these two goals separately, explaining why it is

Intelligibility of Music Playlists 4 Giovanni Gabbolini
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Interstellar Love by Thundercat

Post Requisite by Flying Lotus

Wisdom Eye by Alice Coltrane

(a)

Interstellar Love by Thundercat

“Interstellar Love was
produced by Flying Lotus”

Post Requisite by Flying Lotus

“Flying Lotus is the grand-nephew
of Alice Coltrane”

Wisdom Eye by Alice Coltrane

(b)

Figure 1.4: A playlist of three songs (a), and a tour of the same three songs (b).

important to attain them, and linking them to the two research topics of song-

and playlist-level intelligibility.

1.2.1 Enhance the playlist listening experience

The literature on the psychology of music provides evidence that information-

seeking is one of several motivations for why we, as people, listen to music.

For example, [BH13] find that people sometimes listen to music to seek infor-

mation about the music content itself; [LN11] find that people may listen to

music in order to “learn about things”; and [LD04] find that a majority of lis-

teners are likely, on occasion, to search for information such as lyrics and artist

information when listening to music.

In a study comparing broadcast radio and streaming services as music listening

mediums, [COWH20] find that the two mediums are complementary: while

listening to music, some people switch from streaming services to radio when

in need of information. Streaming services have adapted to the need that their

users have for information when listening to single songs, e.g. by presenting

the lyrics of the songs and stories associated with the songs [BMT+19]. How-

ever, how to address the information-seeking needs of users when listening to

playlists is an under-researched topic. In fact, the way playlists are presented to

date is list-wise: one song follows the other, from the first to the last. Presented

in this way, no interaction with users is possible when going from one song to

another.

We defined song-level intelligibility as the degree to which users can under-
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stand transitions between consecutive songs in playlists. If these transitions are

intelligible, then this is one way of addressing the information-seeking needs

of users while listening to playlists. In this dissertation, we achieve song-level

intelligibility by generating segues, defined in Section 1.1 as short song-to-song

textual connections. For example, given the playlist of Figure 1.1, a segue be-

tween the first two songs is: “Interstellar Love was produced by Flying Lotus,
and Flying Lotus is the artist who made the next song.”.

We present users with what we call tours, i.e. playlists where songs alternate

with segues. For example, Figure 1.4 (a) is a playlist of three songs and Figure

1.4 (b) is a tour of the same three songs. Tours resemble the popular format

of radio shows, where a presenter speaks and takes the audience from one

song to another. As such, tours address the information-seeking need of users.

However, notice that tours are different from radio shows, because the segues in

tours are confined to explaining the connection between the two songs, limiting

the topic of interaction. Some radio shows, instead, would also interact with

listeners about topics not related to the songs, such as updates on traffic or

world news. Nevertheless, the work of [BMT+19] hints that tours offer a better

user experience than playlists, given the right listening context.

1.2.2 Facilitate playlist organisation and access

Music organisation and access are two of the challenges faced within Music In-

formation Retrieval (MIR)6, an active research field with a two-decades long

history. In particular, playlist organisation is the process of arranging playlists

systematically, while playlist access is the process of retrieving a particular

playlist. Content overload is the main motivation for researching playlist or-

ganisation and access, as users of music streaming services need tools to find

their way through the enormous abundance of available playlists. For instance,

the popular music streaming service Spotify, was hosting more than four billion

playlists in 20217.

Playlist-level intelligibility is the degree to which users can understand the char-

acteristics of a playlist. In this dissertation, we achieve playlist-level intelligi-

bility by playlist captioning and by playlist tagging. For example, the playlist

of Figure 1.1 can be tagged as “jazz” & “alternative”, and can be captioned as

“Derivations of jazz, from the 70s to our time”. Improvements to playlist-level

6https://www.ismir.net.
7https://backlinko.com/spotify-users
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1. INTRODUCTION 1.3 Contributions

intelligibility allow for several applications under the scope of playlist organi-

sation and access. For example, playlist captions and tags can enable: search

and discovery of playlists through human-like queries [MBQF21]; explainability

of playlist recommendations [AMS+22]; and provision of assistance to playlist

curators when they are finding an appropriate title and/or description for a

playlist.

1.3 Contributions

The work in this dissertation is about the intelligibility of music playlists, at

song and playlist-level. In the following, we list our main contributions to this

topic and how they relate to the chapters of this dissertation. Notice how the

contributions from two to five fit into the topic of song-level intelligibility, while

the contributions six and seven fit into the topic of playlist-level intelligibility.

We release the source code supporting all the contributions we make in this

dissertation. And, in those cases where we are allowed to do so, we also release

the datasets as a complement to the source code.

1. A survey of MIR research on music playlists We present a survey of

MIR research on music playlists in Chapter 2, which helps to position

intelligibility in the context of other research on playlists. Our survey is

extensive in the sense that it comprises all the MIR research on music

playlists, spanning more than 20 years, and including around 200 papers.

2. DAVE, an algorithm for generating song-to-song segues We propose

DAVE, an algorithm for generating song-to-song segues. A distinguishing

feature of DAVE is its ability to highlight interesting segues, according to a

novel measure of interestingness. DAVE assumes a knowledge graph as an

abstract representation for songs and information about songs. In this ab-

straction, segues are paths from one item to another, and interestingness
is a scoring function for paths. We ‘get back’ from the abstraction by map-

ping paths to natural language texts. DAVE can generate song-to-song

segues of 1553 different types, ranging from factual to word-play. We

evaluate DAVE qualitatively by means of a user trial, where we compare

DAVE’s segues against curated segues from a segment of the Radcliff &

Maconie Show on BBC Radio 6 called THE CHAIN. In the case of fac-

tual segues, we find that DAVE can produce segues of the same quality, if

not better, than those to be found in THE CHAIN. And, we find that our
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measure of interestingness positively correlates with human perceptions

of segue quality. This content is published in [GB21a], and can be found

Chapter 3.

3. Three algorithms for generating music tours We propose three algo-

rithms for generating music tours: GREEDY, HILL-CLIMBING and OPTI-

MAL. The three algorithms take as input a collection of songs, and output

an arrangement of the songs, with segues in between the songs, i.e. a mu-

sical tour, such as the one in Figure 1.4 (b). We formalise the problem of

finding a musical tour as an optimisation problem, where the objective is

maximising the interestingness of the segues, according to the interestign-

ness measure we propose in [GB21a]. We set-up an offline experimental

protocol, where we compare the interestingness of the segues in the tours

produced by the three algorithms. This content is published in [GB21c],

and can be found Chapter 4.

4. A user-centered investigation of music tours We consider two of the

algorithms that we propose in [GB21c], GREEDY and OPTIMAL, and we

set up semi-structured interviews, where interviewees judge tours gener-

ated by the two algorithms. We do not include the HILL-CLIMBING algo-

rithm because, as reported in [GB21c], we found that it produces tours

mostly equivalent to OPTIMAL, especially for small inputs. In these semi-

structured interviews we investigate: what is a good segue arrangement;

what is a good song arrangement; what topics should segues cover; how

do we select the right music for tours; what is the overall quality of the

tours recommended by the two algorithms; and what is the interesting-

ness of their segues, all from the user perspective. Finally, we are inter-

ested in assessing whether users value the concept of tours in general, a

fundamental issue already addressed by [BMT+19], that we investigate

further. With this work, we add practical and actionable knowledge to

the literature on music tours, which can inform functional algorithms to

generate tours. This content is published in [GB22], and can be found

Chapter 5.

5. Four algorithms for playlist tagging We propose four algorithms for tag-

ging music with listening context tags. The playlist taggers we propose

are: KG-AVG, KG-SEQ, HYBRID-AVG and HYBRID-SEQ. Examples of listen-

ing context tags are “workout” and “party”, which characterise playlists

as being suitable for listening to by users while working out, and while

Intelligibility of Music Playlists 8 Giovanni Gabbolini



1. INTRODUCTION 1.3 Contributions

having a party. To the best of our knowledge, there exists only one other

attempt to predict the listening context of music playlists: [CKE20]. The

authors of [CKE20] propose four playlist taggers, which are limited in

that they do not incorporate song metadata, such as musical genres. The

algorithms we propose can incorporate song metadata, by using a knowl-

edge graph as data model. We set-up an offline experimental protocol,

using a dataset of playlists annotated with their listening contexts. The

algorithms we propose achieve approximately 10% higher accuracy than

the existing playlist taggers. And, a sensitivity analysis reveals that the

algorithms we propose can incorporate song metadata effectively. This

content is published in [GB23], and can be found Chapter 6.

6. PLAYNTELL, an algorithm for playlist captioning We propose PLAYN-

TELL, an algorithm for playlist captioning. To the best of our knowl-

edge, there exist only two works on playlist captioning: [CFM+16] and

[DLN21]. Although promising, these attempts are afflicted by two main

problems: (1) The data they use is of poor quality: in particular, they

use public, crowdsourced datasets, which are very sparse and noisy; (2)

Their approach must bridge a semantic gap: they represent playlists using

low-level information, such as song audio, while the target captions are

at a high semantic level. The algorithm we propose, PLAYNTELL, narrows

the semantic gap by considering several sources of musical knowledge,

such as song audio, user tags, and other hand-crafted features. And, we

assemble a new high-quality dataset of editorial playlists from two ma-

jor music streaming services, that we use in our off-line experiments. We

find that PLAYNTELL largely outperforms existing playlist and music cap-

tioning algorithms in accuracy. We also provide a qualitative analysis of

PLAYNTELL, as well as an ablation study and sensitivity analysis to vali-

date the contribution of the different sources of musical knowledge and

of the different model components. This content is published in [GHE22],

and can be found Chapter 7.

Contribution six on playlist captioning is the outcome of a six-month intern-

ship that Giovanni Gabbolini completed at Deezer Research8. The research

was supervised by two scientists from Deezer Research: Elena Epure and Ro-

main Hennequin. A brief summary of the division of labour is as follows. The

idea of working on playlist captioning was from Epure and Hennequin. Epure,

8https://research.deezer.com.
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Hennequin and Gabbolini collaborated on the design of the algorithms and the

design of the evaluation. Gabbolini implemented the algorithms, and evaluated

the algorithms offline. Epure and Hennequin conducted the user study.

1.4 Outcomes

The work described in this dissertation has resulted in several publications. One

of these publications received two distinct research awards. The work featuring

in this dissertation was also the subject of several outreach activities towards

industry and the general public.

Publications

1. Giovanni Gabbolini and Derek Bridge. Generating Interesting Song-to-

Song Segues With Dave. In Proceedings of the 29th ACM Conference

on User Modeling, Adaptation and Personalization (UMAP ’21), June 21–

25, 2021, Utrecht, Netherlands. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3450613.3456819;

2. Giovanni Gabbolini and Derek Bridge. Play It Again, Sam! Recommend-

ing Familiar Music in Fresh Ways. In Fifteenth ACM Conference on Rec-

ommender Systems (RecSys ’21), September 27-October 1, 2021, Ams-

terdam, Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.
org/10.1145/ 3460231.3478866;

3. Giovanni Gabbolini and Derek Bridge. A User-Centered Investigation of

Personal Music Tours. In Sixteenth ACM Conference on Recommender

Systems (RecSys ’22), September 18–23, 2022, Seattle, WA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3523227.3546776;

4. Giovanni Gabbolini and Derek Bridge. Predicting the Listening Contexts

of Music Playlists Using Knowledge Graphs. In Advances in Information

Retrieval: 45th European Conference on IR Research (ECIR ’23), April

2-6, 2023, Dublin, Ireland. Springer, 16 pages.

5. Giovanni Gabbolini, Romain Hennequin, and Elena Epure. Data-Efficient

Playlist Captioning With Musical and Linguistic Knowledge. In Proceed-

ings of the 2022 Conference on Empirical Methods in Natural Language

Processing (EMNLP ’22), 7-11 December 2022, Abu Dhabi, UAE. 15 pages.

https://aclanthology.org/2022.emnlp-main.784.pdf
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Publications one to five above map to the Chapters 3 to Chapter 7 of this disser-

tation. We have another publication, not directly related to playlist intelligibil-

ity, but still worth mentioning. In this additional publication, we propose IPSim,

an interpretable music similarity measure. IPSim works in a way that is similar

to DAVE. In fact, IPSim assumes a knowledge graph as an abstract represen-

tation for items and information about those items; it finds paths in the graph

between a seed and a target item; it scores those paths using the interestingness

measure we propose in Chapter 3; and it aggregates the scores to determine the

similarity between the seed and the target. Items can be songs, music artists,

or any other entities of interest. Hence, IPSim is a path-based similarity mea-

sure, as it uses paths and a scoring function for paths to compute similarity.

A distinguishing feature of IPSim is its interpretability. Users can understand

the causes of a similarity score by looking at the natural language segues that

correspond to the paths that were used to compute the similarity score. We test

IPSim in the case when the items are artists. We set-up an offline experimental

protocol, using four different datasets, and several other path-based similarity

measures as baselines. IPSim outperforms the baselines in accuracy, proving

that interestingness is an appropriate scoring function for paths. This content is

published as:

• Giovanni Gabbolini and Derek Bridge. An Interpretable Music Similarity

Measure Based on Path Interestingness. In Proceedings of the 22nd Inter-

national Society for Music Information Retrieval Conference (ISMIR ’21),

November 7-12, 2021, Online. 7 pages. https://archives.ismir.net/
ismir2021/paper/000026.pdf;

Additionally, we plan to submit the content presented in Chapter 2 for publica-

tion, in the form of a survey paper.

Recognition

The paper “Generating Interesting Song-to-Song Segues With Dave”, in refer-

ence [GB21a] received two research awards:

• James Chen best student paper award 20219 at the conference on User

Modeling, Adaptation and Personalization (UMAP);

• Best paper award 2021 within the School of Computer Science & Infor-

mation Technology in University College Cork.

9https://www.um.org/index.php/awards/james-chen-best-student-paper-awards

Intelligibility of Music Playlists 11 Giovanni Gabbolini

https://archives.ismir.net/ismir2021/paper/000026.pdf
https://archives.ismir.net/ismir2021/paper/000026.pdf
https://www.um.org/index.php/awards/james-chen-best-student-paper-awards


1. INTRODUCTION 1.5 Outline of the dissertation

Outreach

• Derek Bridge spoke about the work presented in the paper “Generating

Interesting Song-to-Song Segues With Dave”, in reference [GB21a], on

the Radcliffe & Maconie Show on BBC Radio Six10;

• Giovanni Gabbolini joined Deezer research for a six-months internship.

The internship opened the way to a collaboration between University Col-

lege Cork and Deezer. The collaboration is developing at the time of writ-

ing;

• The paper “Generating Interesting Song-to-Song Segues With Dave”, in

reference [GB21a], originated a research collaboration between the V&A

museum in London11 and University College Cork, which is active at the

time of writing.

1.5 Outline of the dissertation

The dissertation continues in the following Chapters with the various contribu-

tions we list in Section 1.3, exactly in the order that we list them. Chapter 8

concludes the dissertation with an overview of future work.

10https://www.bbc.co.uk/programmes/b0100rp6.
11https://www.vam.ac.uk.
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Chapter 2

Related work

2.1 Introduction

In this Chapter, we present an extensive survey of MIR research on music

playlists. We survey all the MIR research on music playlists, spanning more

than 20 years, so as to include around 200 papers. Our survey is the first self-

contained survey to include all the different MIR research on music playlists,

and it is particularly useful to position intelligibility in the context of other re-

search on playlists. The remainder of this Chapter is organised as follows: in

Section 2.2, we formalise the concept of playlists, we divide the research on

playlists into several research topics, and we compare the research on playlists

with other related research; in Section 2.3, we summarise existing surveys on

playlists, and we describe the relationships between these existing surveys and

our survey; in Section 2.4, we describe how we select relevant papers for in-

clusion in this survey; and in the remaining Sections we survey those relevant

papers, by dividing them into the research topics we identify in Section 2.2.

2.2 Definitions and research landscape

In this dissertation we define the concept of playlists as follows:

Definition 1. A playlist is a sequence of songs, intended to be listened to together.

Definition 1 is equivalent to what we find in notable references, e.g. [FL10,

SZC+18, ZSLC19].

Sometimes, a playlist is defined in simpler terms, for example [BJ14] write that

13
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Research on playlists

Figure 2.1: Venn diagram of the research topics we survey.

a playlist is “a sequence of songs”. We fear that this simpler definition is too

broad. For example, a random sample of songs from a song catalogue satisfies

the simpler definition, but does not correspond to the concept of playlist that

is commonly intended, i.e. a sequence of songs organised according to some

principle [CBF06]. Definition 1 entails a notion of ordering, that is a playlist

is made of songs in a specific order. However, the importance of song order

in music playlists is a debated topic. For example, [KBJ20] find that the order

does not matter, while [DMV97] find that the order does matter. We further

discuss the issue in Section 2.6.2.2.

In the remainder of this Section, we present several research topics on playlists,

and then we briefly relate the research on playlists to research on music recom-

mender systems, and to the research on sequence-aware recommender systems

in other domains, such as the tourism domain.

2.2.1 Playlist research topics

We divide the research on playlists that we survey into several topics. We or-

ganise those topics with a Venn diagram in Figure 2.1, and we briefly introduce

these topics in the following Sections.

Intelligibility of Music Playlists 14 Giovanni Gabbolini
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2.2.1.1 Playlist generation

Research on playlist generation is concerned with the construction of playlists.

We adopt the definition of playlist generation presented in [BJ14]:

Definition 2. Given (1) a catalogue of songs, (2) background knowledge, and (3)
some target characteristics of the playlist, construct a sequence of songs fulfilling
the target characteristics in the best possible way.

The target characteristics of the playlist are the organisation principles which

make a playlist a sequence of songs to be listened to together, which is con-

sistent with Definition 1, while the background knowledge allows the agent

which carries out the construction to select the songs from the catalogue so as

to match the target characteristics. For example, a target characteristic may be

a playlist for a beach day, the background knowledge may be some notion of

what musical genres are more suited for a beach day, along with some model-

ing of the users’ musical tastes, and the catalogue of songs may be all the music

hosted in a music streaming service.

Depending on the agent which carries out the construction, research in playlist

generation can be divided into manual and automatic:

Manual playlist generation (MPG) In MPG, the playlist is constructed manu-

ally by the user. MPG is an activity that dates before the digitisation of

music. For example, in the 1980s it was common to compile mix-tapes,

and to exchange those mix-tapes with other users [Fre08]. MPG is an

activity which is important also nowadays, because users in streaming

services frequently create playlists. They do this for two main reasons:

1. Convenience [Fly16]. Users create playlists, and give them a title,

so as to have a personal interface to their music, built inside the

streaming service. This helps users to access the right music at the

right time, in a fast way.

2. Self-expression [Web20]. In music streaming services, all users have

access to the same catalogue of music, without actually owning any

of it. But playlists allow uses to select and organise music, giving

them the opportunity to express their personality and musical tastes.

A study conducted in 2017 revealed that 58% of users in the USA of the

Spotify1 music streaming service create their own playlists, and that 32%

1https://spotify.com.

Intelligibility of Music Playlists 15 Giovanni Gabbolini

https://spotify.com


2. RELATED WORK 2.2 Definitions and research landscape

of these users share their playlists with other users [SZC+18].

Automatic playlist generation (APG) In APG, the playlist is constructed auto-

matically for the user by an algorithm. For example, [FSGW08] present an

algorithm for creating a playlist that progresses smoothly from a specified

start song to a specified end song. APG is a major research topic, counting

hundreds of publications. The interest in APG is motivated by the fact

that MPG can be experienced as a tedious, time-consuming activity, and it

may require special background knowledge [BJ14].

The above characterisation of MPG and APG tacitly assumes that playlists are,

respectively, constructed by and for a single user. However, there exists a special

subset of work on MPG and APG which deals with the case in which playlists

are, respectively, constructed by and for a group of users. We identify these

topics as group MPG (G-MPG) and group APG (G-APG).

Some research in MPG considers the scenario in which the user is assisted by an

algorithm while manually constructing the playlist [DGF17]. For example, in

[KBJ20] the user is assisted by an algorithm that recommends the next song to

add as the user constructs the playlist, while [Voo06] propose an algorithm for

organising songs in a colour map, and the user can create playlists by drawing

on the map. We refer to these approaches as Assisted Manual Playlist Genera-

tion (A-MPG). A-MPG combines MPG and APG, as the user is still in control of

the playlist construction process, but the task is facilitated by an algorithm.

2.2.1.2 Playlist enhancement

Research on playlist enhancement is concerned with automatically decorating

existing playlists with additional content, so as to increase the enjoyability of

the playlist. We identify two enhancements, one based on mixing consecutive

songs, so as to obtain a continuous music flow, and the other based on interleav-

ing pairs of consecutive songs with speech, similar to what happens on a radio

show. We note that enhanced playlists generalise the definition of playlists that

we gave in Definition 1, since a ‘regular’ playlist can be seen as an enhanced

playlist with a “null” enhancement.

2.2.1.3 Playlist description

Research on playlist description looks into automatically describing playlist con-

tent at a semantic level that can be understood by humans. Playlist description

Intelligibility of Music Playlists 16 Giovanni Gabbolini
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is a useful way to cope with content overload. In fact, music streaming services

feature billions of playlists created by users, professional editors or algorithms

[Dea21]. Playlist description allows for effective and automated organisation

and access to playlists [CFM+16]. We identify two ways of describing playlists,

one is by using tags, which are closed-vocabulary short textual descriptions,

naturally limited in expressiveness, and the other is by captioning with well-

formed natural language, which is expressive but more complex to generate.

2.2.2 Related research topics

The music information retrieval research on playlists that we describe in this

survey has relationships with other research, most notably with research into

recommender systems (RS), and especially with the topics of sequence-aware

recommender systems (SARSs) and music recommender systems (MRSs).

2.2.2.1 Sequence-aware recommender systems

Sequence-aware recommender systems (SARSs) are algorithms that are able to

predict the next item given a sequence of user interactions. For example, in an

e-commerce scenario, a SARS would analyse a user interaction log, which may

consist of product impressions seen by the user, and of the products bought by

the user, and would recommend another product for the user to buy. SARSs

can also be used to recommend a sequence of items, by generating item after

item, iteratively. As well as recommending products in the e-commerce domain,

SARSs have been adopted in the tourism domain for recommending the next

point-of-interest to visit in a tour.

Research in APG is very much related to the research in SARSs, since many algo-

rithms for APG can be seen as applications of SARSs in the music domain, which

recommend the next song to add to the playlist based on the songs already in

the playlist, see Section 2.5.1.2. However, the music domain is different from

other domains, for a number of reasons, as argued by Schedl et al. in their sur-

vey on music recommender systems [SKMB22]. Songs are different from other

items because they are consumed in a relatively short time and because they are

often consumed more than one time. Owing to these peculiar characteristics,

much research effort has been put into building SARSs explicitly for the music

domain, which are of interest for this survey.

Intelligibility of Music Playlists 17 Giovanni Gabbolini
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2.2.2.2 Music recommender systems

Music recommender systems (MRSs) are recommender systems that work in

the music domain, tackling tasks such as the recommendation of a personalised

selection of songs, artists or albums [SKMB22]. Algorithms for APG are also

tasked with recommending a selection of songs, i.e. the playlist, so they can be

seen as MRSs. However, APG algorithms are different from general MRSs be-

cause the selection of songs must satisfy some additional soft constraints, such

as matching some user-defined target characteristics, and general characteris-

tics, such as the right level of song diversity/coherence, as well as a non-jarring

song ordering, see Section 2.6.2.

2.3 Related surveys and contributions

Music information retrieval research on playlists is a two-decades-old research

field, the oldest reference in our survey here dating back to 1997 [DMV97]. We

are not the first authors to survey the literature. To the best of our knowledge,

there are two surveys related to ours:

1. Bonnin & Jannach’s “Automated Generation of Music Playlists: Survey and

Experiments”, published in 2014; and

2. Dias et al.’s “From Manual to Assisted Playlist Creation: a Survey”, pub-

lished in 2017.

Survey (1) is specific to APG, as it presents algorithms for APG based on three

attributes: (a) what background knowledge the algorithms employ; (b) how the

target characteristics of the desired playlist can be input to the algorithms; and

(c) the type of algorithm. Each attribute admits a number of possible categories;

for example, the background knowledge can be: content-based data, metadata

& expert annotations, social web data, and usage data. We give more details in

Section 2.5.1. In our survey here, we borrow some ideas from survey (1), as we

also characterise APG algorithms based on the same three attributes. However,

we include novel categories of those attributes, so as to better accommodate the

work that we exclusively survey. For example, we survey APG algorithms based

on reinforcement learning, which are relevant to our survey here. Inevitably,

those published since 2014 did not make it into survey (1); but there were also

papers on this topic that were published prior to 2014 that did not make it

into survey (1) since reinforcement learning was not one of the algorithm types

Intelligibility of Music Playlists 18 Giovanni Gabbolini
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considered in that survey.

Survey (2) is mainly about A-MPG but, in order to better position A-MPG algo-

rithms in the literature, it also includes a discussion of MPG and APG. The part

of survey (2) on APG is a subset of what is included in survey (1), while the

part of survey (2) on MPG briefly discusses characteristics of manually created

playlists, such as recurrent playlist themes, and notable manual construction

styles. Nevertheless, the main contribution of survey (2) is a review of A-MPG

algorithms. It presents several algorithms for A-MPG, all based on visualisa-

tions, i.e. that assist the user in the manual construction of a playlist by using

visualisations of the song catalogue. Survey (2) identifies several categories of

A-MPG algorithm, based on the kind of visualisation that is employed: maps,

graphs, dots and radar. In our survey here, we include the A-MPG algorithms

that were covered by survey (2), as well as other work published from 2017 on-

wards, which, inevitably, did not make it into survey (2). However, the recent

work does not belong to any of the categories proposed in survey (2). For ex-

ample, recent work provides lists of song recommendations for addition to the

playlist, which is not a catalogue visualisation of any kind. Hence, we propose a

novel categorisation of A-MPG algorithms, to cover both recent and non-recent

work. Specifically, we divide algorithms into two categories: visualisation, and

recommendation.

Despite some overlap, our survey here is substantially different from surveys

(1) and (2), as we give a fresh look at APG and A-MPG research, by including

relevant work published after the publication of surveys (1) and (2). A fresh

look is needed. In recent years, we have witnessed a change of paradigm in

how people access recorded music. It has shifted from physical media to music

streaming. According to the International Federation of the Phonographic In-

dustry [IFP22], the share of revenue coming from music streaming was 10% of

the total revenue for recorded music in 2013, 29% in 2016 and 65% in 2021.2

The rise of music streaming has had a dramatic impact on research on music

playlists, especially in terms of sources of data and song catalogues.

In the case of sources of data, streaming services allow for the collection of

enormous quantities of usage data. Examples of usage data are manually cre-

ated playlists, as well as listening logs where the streaming service records the

actions of its users when they are listening to music. Recently, large datasets of

usage data became available for researchers to use. For example, the Million

2Data for 2022 was not available at the time of writing.
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Playlists Dataset (MPD), released in 2018, contains manually created playlists,

and is one order of magnitude larger than the datasets commonly employed

in the research included in survey (1) [BJ14]. The availability of usage data

has dramatically changed research in APG. The recent APG algorithms that we

exclusively survey here rely mainly on usage data, while few of them employ

content-based data, metadata & expert annotations, which is the predominant

background knowledge used in APG algorithms included in survey (1) [BJ14].

See Table 2.1 for more details. The availability of large quantities of usage

data allows for the use of sophisticated machine learning algorithms, which

are known to provide satisfactory results only when large quantities of data

are available [KSH17]. Many recent APG algorithms that we exclusively sur-

vey here use deep learning and reinforcement learning, while few of them rely

on music similarity, which was the predominant approach of APG algorithms

included in survey (1) [BJ14]. See Table 2.3 for more details.

In the case of song catalogues, in the pre-streaming era users had access to small

personal collections of music, which typically consisted of, at most, thousands

of songs. With music streaming, users have access to large song catalogues, con-

sisting of millions of songs. As such, recent APG algorithms need to scale with

catalogue size, which is not always the case for many APG algorithms included

in survey (1), especially those that work by solving expensive discrete optimi-

sation problems with non-linear complexity. As a result, we do not encounter

any discrete optimisation APG algorithms in the recent research that we survey

exclusively, see Table 2.3. The shift from small to large song catalogues has also

impacted research on A-MPG, as the goal of the recent A-MPG algorithms that

we exclusively survey is to assist the user in the manual construction of playlists

by providing recommendations for songs to add to the playlist. A-MPG work in-

cluded in survey (2), instead, mainly focuses on visualisations that assist the

user in the manual construction of playlists by visualising the song catalogue in

a map or in a graph, and which do not scale to catalogues of millions of songs.

Finally, our survey includes a substantial amount of work that was not included

in survey (1) and (2), such as the research on group automatic playlist gener-

ation (G-APG), on group manual playlist generation (G-MPG), as well as the

research on playlist enhancement and playlist description. Our survey also in-

cludes an extensive account of research on MPG. Survey (2) also includes re-

search on MPG, but it gives only a partial account, from just five papers. In

our survey here, instead, we review 38 papers on MPG, and we cover MPG top-

ics not covered in survey (2), such as a detailed discussion of the role of song
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diversity and homogeneity when manually selecting songs.

2.4 Research methodology

We collect relevant papers by following a well-defined procedure, where we first

define a search string, and then we review all the relevant papers that match

the search string, as well as all the relevant papers contained in the references

of those papers, recursively. For example, we retrieve a relevant paper p1 and

we scan its references. If we find a relevant paper p2 in the references of p1,

we review p2 and we scan its references. If we find a relevant paper p3 in the

references of p2, we review p3 and we scan its references, and so on, until we

run out of relevant papers.

We consider a paper to be relevant by performing an initial scan of its con-

tents, where we search for the keyword “playlist”. If the paper never mentions

“playlist”, it is safe to assume that it is not relevant. If the paper does mention

“playlist”, then we look at it more carefully and we consider it to be relevant if

playlists are the main topic of investigation of the paper. For example, a paper

that creates a dataset of songs from a dataset of playlists and then extracts song

embedding representations to power a song recommender system is considered

not relevant since the playlists are incidental to the work.

We defined the search string by scanning the proceedings of the International

Society for Music Information Retrieval Conference (ISMIR) 3, which is the pre-

miere venue for research in music information retrieval. In particular, based on

papers published in ISMIR, we crafted a search string that includes keywords

from the titles of those papers.4 We use the string to search the academic ag-

gregator dbpl5.

In total, our survey reviews around 200 relevant papers, and it also cites over

100 additional supporting sources.

3https://ismir.net/.
4The search string we use is: “playlist continua-

tion|continuing|expansion|expanding|creation|creating|recommendation|recommender|recommending|
generation|generating|user|study|trial|evaluation|evaluating|interview|interviewing|sequencing|sequence|representation|representing|caption|captioning”.

5https://dblp.org/.
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2.5 Automatic playlist generation

Automatic playlist generation (APG) is the most popular topic within research

on playlists. Research in APG is concerned with the design, implementation and

evaluation of algorithms for constructing playlists. In this Section, we survey

the literature on APG, presenting the algorithms in Section 2.5.1, and the strate-

gies for evaluating those algorithms in Section 2.5.2. Additionally, we present

in Section 2.5.3 a special subset of APG algorithms, group APG (G-APG) al-

gorithms, which are concerned with generating playlists to be listened to by a

groups of users.

2.5.1 Algorithms

Bonnin & Jannach [BJ14] surveyed the literature on APG in 2014, organising

APG algorithms based on three attributes: (1) what background knowledge

they employ; (2) how the target characteristics of the desired playlist can be

input to the algorithm; and (3) the algorithm type e.g. content-based, collabo-

rative filtering, etc. According to Definition 2, three inputs are required for an

APG algorithm: a catalogue of songs, background knowledge, and some target

characteristics of the desired playlist. The first two of Bonnin & Jannach’s at-

tributes correspond with two of the inputs that are mentioned in the definition

of APG. In this Section, we adopt Bonnin & Jannach’s organisation: we also

characterise APG algorithms based on the same three attributes, but we com-

plement their work, as we incorporate the newer literature up to the date of

writing.

2.5.1.1 Background knowledge

The background knowledge is the information used to choose the songs from

the catalogue in order to construct a playlist that matches the target charac-

teristics. The background knowledge should be represented in some machine

readable form, in such a way that it can be used by algorithms. In their 2014

survey on APG, Bonnin & Jannach [BJ14] identify several categories of back-

ground knowledge. In this Section, we review those categories, while adding

fresh details from the recent work that we exclusively survey. We organise APG

algorithms based on their background knowledge in Table 2.1. We highlight

differences from the research surveyed by Bonnin & Jannach [BJ14] to the re-

search we exclusively survey by dividing algorithms published up to 2013 from
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those published from 2014 onwards.

2.5.1.1.1 Content-based data Researchers in the field of music information

retrieval (MIR) have been concerned for a long time with extracting informa-

tion, or features, from the music audio signal, a research topic which is often

referred to as content-based MIR [MK18].6 These content-based features can be

high-level, such as the emotions evoked by a musical piece [ZML16, SVC+18],

its genre [COKG11], timbre [PGS+11], chords [Ell06], pitch [ZK06], and beats

per minute (BPM) [Sch98], or low-level, such as representations of the audio

signal, for example mel frequency cepstrum coefficients (MFCC) [ZZS01], or

such as learned embedding representations, as extracted, for example, by con-

volutional neural networks (CNNs) [IBZ+19, PKW+20]. Often, low-level fea-

tures are used for extracting high-level features, e.g. see [PNP+18, WCNS20,

CFSC17]. We refer the reader to [MK18] for a survey of content-based MIR.

Some APG algorithms rely on high-level content-based features. For example,

[GCW13] extract the emotion evoked by songs, and construct a playlist that

matches the emotion of the user, which is extracted by using several sensors.

The same approach is taken in [GCW16, SVC+18]. The work [BCR+22] is sim-

ilar to the above, except that users manually input their current emotion, e.g.

melancholy. Liebman et al. [LSTS15, LSTS19] propose a reinforcement learning

(RL) algorithm for APG in which songs are represented as vectors containing

timbre, pitch, BPM, and statistics thereof.

Some other content-based algorithms rely on low-level content-based features.

For example, [PPW05] compute the similarity between songs in the catalogue

based on a MFCC representation, to create a playlist in which consecutive songs

are as similar as possible, so as to guarantee a coherent listening experience. A

similar approach is followed by [BvdH10, FSGW08, Log02, Log04, LS01]. In

[IBZ+19, CFS16], instead, song representations extracted by a CNN are used as

input to a recurrent neural network (RNN), so as to predict the next song in the

playlist.

2.5.1.1.2 Metadata and expert annotations Following [BJ14], we use the

word metadata to refer to any information describing the songs that is not de-

6The term content-based has different meanings in different research communities. For
example, in the RSs community, content-based features are any type of feature describing an
item, such as the song lyrics or its musical genre [MGL+22]. We position our survey more in
line with the MIR community, in which content-based features typically refers to those features
which are extracted from the music audio signal [MK18]
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rived from the audio signal. Examples of song metadata are the year of release,

the record label, the lyrics, and the genre7, among others [GB21a]. Usually,

experts manually annotate songs with their metadata. A notable example is the

Music Genome Project [Cas06], a database of songs and their metadata created

and maintained by experts employed by the Pandora music streaming service.8.

Different types of metadata are sometimes represented in a single structure,

for example in a knowledge graph, where nodes can represent songs but also

heterogeneous types of metadata [FŞA+20], and edges express the relationship

between the songs and the metadata, and the metadata with other metadata.

For example, song names, album names and years can be represented as nodes,

and a “belongs to” edge can link a specific song name to its album name, and

a “released in” edge can link the album name to its year of release [GB21a].

Knowledge graphs are also used in [ML12, UKM18, dONLF19]. Edges in a

knowledge graph might also represent relationships between classes, subclasses

and instances, e.g. between genres and subgenres. Indeed, ontologies and tax-

onomies offer an alternative to knowledge graphs, placing the focus on classes,

subclasses, instances and their properties. For example, [BELK+17] use a tax-

onomy of musical genres.

One way to use metadata in APG is by allowing users to specify constraints

on the metadata, and then generate a playlist that satisfies those constraints.

For example, in [PVV08] users can input constraints on the song genre, release

year and length (in seconds), and an optimisation algorithm is used to generate

a playlist which satisfies these constraints. The same strategy is followed in

[Cha02, PvdW05, PVV06, PRC00, HC11, AP02a, AT00].

2.5.1.1.3 Social web data Social web data are data shared online by inter-

net users. Following [BJ14], we list three types of social web data:

User tags A user tag9 is a free text annotation that a user applies to a musical

7Note that genres appear in our classification of background knowledge both as examples
of content-based and as examples of metadata. This is because song genres can be extracted by
an algorithm from the audio signal, or they can be assigned by experts. For example, in early
2000s work, small catalogues of songs were manually annotated with their musical genres
[PRC00]; in recent work, accurate content-based MIR algorithms are often employed to extract
the musical genres of large scale song catalogues [PNP+18].

8https://pandora.com.
9The word “tag” is ambiguous. In some work, it is used to indicate free text, e.g. [Lam08];

in other work, it is used to indicate a text drawn from a fixed vocabulary, e.g. [CKE20]. This
dissertation needs to use the word “tag” in both of its meanings. For example, in this Section
and in Chapter 7, tags are free text, while in Chapter 6 tags are drawn from a fixed vocabulary.
In order to make clear which of the two meanings we intend, we use “user tag” for free text,
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item, e.g. a song or an artist [Lam08]. User tags can be very rich and

varied, as they can cover a wide range of different topics, such as musical

genres (e.g. “rock”), years (e.g. “90s”), countries (e.g. “Ireland”), activities

(e.g. “chill”), seasons (e.g. “summer”), among others.

Ratings A rating is a piece of explicit user feedback for a musical item, usually

expressed in a 1-to-5 rating scale or as a “like” or “dislike” statement.

The usage of ratings as background knowledge is becoming less and less

common, as ratings are too difficult to gather for the majority of the user

base [SKMB22]. In particular, we do not encounter any work that uses

ratings as background knowledge in the literature from 2014 to the date

of writing.

The social graph A social graph connects people by different relationships,

such as “friend” or “spouse”, and to musical items, e.g. person x “likes”

artist y, in social networks such as Facebook10. Social graphs are some-

times used as background knowledge, under the assumption that peo-

ple who are closely connected in the graph have similar musical tastes

[GC13]. A playlist for a user can be constructed, for example, by includ-

ing music that is liked by the user’s friends, giving an automated version

of word-of-mouth recommendation.

2.5.1.1.4 Usage data In streaming services, usage data record interactions

between users and musical items.

Listening logs Listening logs record the songs a user listens to, including those

that they skip, those that they listen to completion, and those that they

download. As such, listening logs provide indications about user tastes.

For example, it is common to interpret a skip as an indication of a song

that the user does not like [ET06, KI15, CTLH10, HSL17, BELK+17]. Lis-

tening logs can be used to compute embedding representations. One strat-

egy is to rely on the word2vec algorithm [MSC+13], by treating songs as

words, and listening logs as phrases, by analogy with natural language.

Popularity Usage data give a clear indication of the popularity of musical items,

e.g. of songs. We can, for example, simply count the occurrences of each

song in the listening logs of all the users. Popularity is sometimes used

as background knowledge for building simple but effective heuristics for

and we use simply “tag” where there is a fixed vocabulary.
10https://facebook.com.
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APG. For example, [BJ13] show that it is possible to build high-quality

playlists by simply including the most popular songs made by artists simi-

lar to the artists that the user likes. Moreover, popularity can be employed

as a fallback strategy for estimating the musical tastes of new users, i.e.

those that just signed up to the streaming service.

Manually created playlists Users frequently create playlists for convenience

[Fly16] and self-expression [Web20]. These user playlists can be used as

background knowledge for creating new playlists. For example, [ML11]

learn song-to-song transition probabilities based on a database of user

playlists, and they use these probabilities to generate new playlists. Man-

ually created playlists can also be used to compute embedding represen-

tations. One strategy is to rely on the word2vec algorithm [MSC+13], by

treating songs as words, and playlists as phrases, by analogy with natural

language.

2.5.1.1.5 Discussion The categories of background knowledge we review

above differ in their availability, consistency and abundance:

Availability The availability of some background knowledge may not be guar-

anteed for all the songs in the catalogue. For example, recently added

songs may have no user tags, or may occur few times, or never, in listen-

ing logs or in manually created playlists. The same goes for “long-tail”

songs [KS16], i.e. those songs which are rarely listened to, that consti-

tute the large majority of the catalogue [Cel10]. The unavailability of

background knowledge for such portions of the catalogue leads to biases

against new songs (cold-start problem [DDC+19]); and against long-tail

songs (popularity bias [JKB16]). In fact, algorithms cannot evaluate a

song for inclusion in a playlist if there is no background knowledge to

match the song to the target characteristics of the playlist.

Content-based data is the only category of background knowledge which

is available for every song in the catalogue, as content-based data is ex-

tracted from the song audio itself. As such, content-based data allow for

the construction of “fair” algorithms, in the sense that they can select any

song in the catalogue for inclusion in the playlist.

Consistency Some background knowledge may be noisier than other back-

ground knowledge. For example, metadata are affected by a low level

of noise as they are most often annotations made manually by domain
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experts. Nevertheless, inconsistencies in metadata may exist, especially

because some metadata are not objective. For example, [FLR21] find that

different annotators may disagree on the musical genre of songs. Content-

based data are also effected by a low level of noise, as they are extracted

by automatic procedures. Nevertheless, inconsistencies in content-based

data may also exist because those automatic procedures are never 100%

accurate. For example, predicting the tempo of a song is challenging and

the results can be inaccurate [CLW09, PFC12].

Usage and social web data are typically much noisier than content-based

and metadata, as they record the unpredictable behaviour of internet

users. For example, Lamere [Lam08] analyses a dataset of user tags and

finds misspellings, spelling variants and synonyms among user tags, as

well as user tags with little to no relevance to music, such as the user tag

“random”. Similarly, [Hag15] find that manually created playlists often

do not have clearly defined target characteristics, but may be used as a

randomly arranged container of the user’s favourite music.

Abundance Usage and social web data are by far the most abundant category

of background knowledge, as they are generated in large quantities by

billions of internet users every day. Content-based and metadata are less

abundant as their extraction depends, respectively, on computationally-

bounded procedures [SB13] and on the expensive annotation work of

domain experts.

Using one category of background knowledge rather than another influences

the quality of the generated playlists. For example, there is some evidence that

algorithms relying solely on content-based data produce playlists of low qual-

ity, especially when compared with other types of systems, e.g. those which rely

on usage data [SK05] or metadata [VEzDS16]. However, it is wrong to con-

sider one category of background knowledge to be superior to another. A more

correct view is to consider them as complementary: while content-based data

can help to create coherent playlists in terms of acoustic properties, usage data

gives information about the musical tastes of the user, allowing the creation of

personalised playlists. Hence, it is common to combine different categories of

background knowledge. For example, [BELK+17, JLK15, ML12] show how the

quality of generated playlists is enhanced by making effective use of more than

one category of background knowledge. One way to readily include different

sources of background knowledge is to organise them in a unifying structure,
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for example a knowledge graph (described earlier), where nodes can repre-

sent songs but also heterogeneous types of background knowledge [FŞA+20].

In a knowledge graph, listening logs, for example, can be represented along-

side metadata. Nodes can represent users, songs, and metadata, and edges can

link: users with the songs that they listened to; songs with their metadata; and

metadata with other metadata [OON+16].

If we refer back to Table 2.1, we can see the differences between the research

up to 2013 (the first period), which was already surveyed by Bonnin & Jannach

[BJ14], with respect to the research from 2014 onwards (the second period),

that we exclusively survey. The majority of algorithms from the first period rely

on content-based and metadata for their background knowledge, especially be-

cause the song catalogue sizes before the streaming era allowed for the manual

annotation of songs or the extraction of content-based data. In the second pe-
riod, when streaming became the prevalent type of music access [IFP22], the

emphasis shifted to usage data, mainly due to the availability of that type of

background knowledge, easily recorded by the music streaming service.

2.5.1.2 Target characteristics

The target characteristics of a playlist are the organisation principles which

make a playlist a sequence of songs to be listened to together. The target char-

acteristics should be input in some machine readable form, so that they can be

readily used by algorithms. In their 2014 survey on APG, Bonnin & Jannach

[BJ14] identify several categories of target characteristics. In this Section, we

review those categories, and make a small update to better accommodate the

recent work that we exclusively survey.11. We organise APG algorithms based

on the target characteristics in Table 2.2. We highlight differences between the

research surveyed by Bonnin & Jannach [BJ14] and the research we exclusively

survey by dividing algorithms published up to 2013 from those published from

2014 onwards.

2.5.1.2.1 Explicit preferences and constraints Some algorithms allow users

to input the target characteristics manually, in different ways:

Seed songs Users can guide the algorithms in their song selection by specifying

the first song [BELK+17], or the first and last song [AT00], or a list of

11We update the category “free-form keywords” proposed in the survey by Bonnin & Jannach
[BJ14] to the more general “free-form text”.
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songs already contained in the playlist [TCC+15], or the set of all the

songs to include in the playlist12 [KPSW06]. Some algorithms allow users

to specify seed artists, instead of seed songs [BELK+17, SBI14].

Free-form text In this case, users specify constraints on the songs by providing

free-form text, which is used to select relevant songs [CCC17]. The free-

form text can be single keywords, such as artist names, musical genres,

or moods [YBK21, YKB21]. But free-form text can also be well-formed

natural language phrases. For example, the APG algorithm proposed in

[SVC+18] generates a playlist from a natural language text.

Explicit pre-defined constraints Similar to free-form text, users can specify

constraints on the playlist. However, in this case, the user does not have

the flexibility of free-form text. Instead, constraints are predefined and

users choose among them, e.g. the user chooses a desired mood from six

categories [BCR+22], or the user chooses a tag from a tag-cloud [MEDL09].

Real-time feedback Users provide feedback on the playlist as it is being played

and generated. Feedback might be explicit, by liking or disliking a song,

or implicit by listening to a song to completion or by skipping a song. The

playlist can be modified in real time according to the feedback [KI15]. As

well as giving feedback on songs, users can give feedback about metadata

associated with the songs. For example, in [KKMS16, OKT10] the user is

shown the tags of the current songs, and can select one or more of those

tags in order to influence the selection of the next song.

2.5.1.2.2 Past user preferences The users’ musical preferences are an im-

portant target characteristic. In fact, although users may input some explicit

target characteristics, such as a seed song, they implicitly desire that the con-

structed playlist contains music that they like [AH06]. For example, [LBM11]

find that a user’s opinion about a whole playlist can be easily influenced by a

single song that the user loves or hates, or even by a specific element of the

song that the user loves or hates. This means that music in a playlist should

be highly personalised. The musical preferences of a user are usually estimated

by considering usage data, such as listening logs and manually created playlists

[BJ13, RBH05] (see Section 2.5.1.1).

12In this last case, algorithms are tasked with arranging the provided set of songs, without
applying any song selection. These special APG algorithms are sometimes called sequencing
algorithms [BGH+17].
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2.5.1.2.3 Contextual and sensor information The listening context influ-

ences the musical choices of users [ABTU22]. For example, [DWLX15] and

[CS14] find that the user’s mood and location influence their musical choices.

Therefore, context-awareness is an important target characteristic. Mood and

location are only two example of listening context, which is a broad concept.

Indeed, Kaminskas & Ricci define the listening context as “any contextual con-

ditions that might influence the user’s perception of music” [KR12]. Other ex-

amples of listening contexts are: user activities e.g. “party” [CKE20]; the time

of day [HRS10]; the weather conditions; characteristics of the user’s listening

device such as the battery level; ambient conditions such as light and noise

levels; and motion e.g. as measured by an accelerometer [SBI14].

Acquiring the listening context of a user is a first, necessary step towards context-

awareness. Some listening contexts may be easier to acquire than others. For

example, the level of light can be easily acquired with sensors that feature in

nearly any device. Other contexts may be more difficult to acquire, especially

those contexts which are not observable by means of a sensor, such as the mood

of the listener. For example, [OMS16] build a model to infer a user’s mood from

audio signals detected by microphones, [SVC+18] infer the user’s mood from

free-form text, and [IEPR22] infer what activity the user is engaging in from

listening logs.

Once the listening context is determined, a playlist can be constructed by means

of handcrafted rules that link the context to the music. For example, [BAB06,

ET06, MvNL10, OKS06, OFM06] extract a model of user’s pace by means of an

accelerometer, and construct a playlist where the BPMs of songs depend on the

user’s pace.

2.5.1.2.4 Discussion The categories of target characteristics that we present

above are complementary. For example, while a seed song broadly defines

how a playlist should sound, past user preferences and contextual informa-

tion can tailor the playlist to the tastes of the user and to their current context.

Hence, some algorithms combine different target characteristics to construct

high-quality playlists [JLK15].

Nevertheless, the most common way of specifying the target characteristics is

via seed songs, as Table 2.2 shows. The other ways of specifying the target char-

acteristics are generally under-explored, especially in the literature from 2014

until now. One notable way of specifying the seed songs is by providing a list of
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songs already contained in the playlist. In this latter case, the algorithm adds

more songs to the playlist, so as to fit the same target characteristics as the orig-

inal playlist [ZSLC19], which is a task known as automatic playlist continuation

(APC). APC has benefits both for listening to and for creating playlists: APC en-

ables users to enjoy listening sessions that continue beyond the end of a finite-

length playlist, while also making it easier to create longer, more compelling

playlists without the need to have extensive musical familiarity [SZC+18].

APC was the focus of the ACM RecSys Challenge 201813, in which participants

were asked to add more songs to user-created playlists taken from the Spo-

tify music streaming service [ZSLC19]. In total, 113 teams participated in the

challenge, which represents a landmark in APC research. APC is the dominant

research trend in APG: we count that 46% of the works in APG from 2014

onwards focus on APC.

2.5.1.3 Algorithm type

We review algorithms for APG based on their type. In their 2014 survey on APG,

Bonnin & Jannach [BJ14] identify several types of algorithms. In this Section,

we review those types, while adding three types that emerge from the recent

work that we exclusively survey: deep learning; reinforcement learning; and

learning to rank. We organise APG algorithms based on their type in Table 2.3.

We highlight differences between the research surveyed by Bonnin & Jannach

[BJ14] and the research we exclusively survey by dividing algorithms published

up to 2013 from those published from 2014 onwards.

2.5.1.3.1 Similarity Similarity algorithms use song similarity to construct

playlists. Song similarity can be derived from different kinds of background

knowledge, such as content-based data [PPW05, IOK18, AP02b, CZZM07, BvdH10],

metadata [PE02, PBS+01], tags [SBI14, PKS+07], manually created playlists

[BJ13, RBH05, MEDL09], listening logs [VSC16], ratings [SW07, CA09], or

any combination of the above [JMPS07]. For example, [PPW05, CZZM07,

BvdH10] compute the similarity between songs based on a MFCC represen-

tation; [PE02, PBdGS19] count the values of metadata features that two songs

have in common; [BJ13] consider how often two songs co-occour in manually

created playlists; and [VSC16, KES16, DBAH+18] rely on a song embedding

representation learned using the word2vec algorithm [MSC+13], by treating

13https://recsys.acm.org/recsys18/challenge/.
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songs as words, and manually created playlists as phrases, by analogy with nat-

ural language. Song embedding representations can also be given as input to a

clustering algorithm, such as k-means, to generate playlists of similar songs by

sampling from the clusters [FMM19].

Integrating multiple sources of background knowledge is beneficial when com-

puting similarity. For example, [BOL09, SM11] find that users consider content-

based features, such as energy and tempo, as well as musical styles and lyrical

content when judging the similarity of a song that could be added to a playlist

with the songs already in the playlist.

The perception of song similarity is subjective. Even expert listeners are found

to disagree when asked to rate the similarity between songs [Fle14]. For exam-

ple, some people consider content-based data more than metadata while judg-

ing similarity, and some other users may do the opposite [LBM11]. Some work

in APG integrates personalisation in the similarity computation. For example,

[SLT07] allow users to set different weights for different features when assess-

ing similarity, e.g. a user might weight content-based data more than metadata

or vice-versa. And, [SACH06] propose a system where users can assign tags

to songs, drawing from a vocabulary of tags. Then, the system learns how to

tag new songs, so that the predicted tags reflect the user’s tagging style. Fi-

nally, playlists can be created using a similarity measure based on both kinds of

tags (those that are assigned and those that are predicted), which means that

similarity is personalised based on the user’s tagging style.

Once similarities are computed, songs can be chosen for their similarity with the

seed songs [Log02, BJ13, AP02b], or for their similarity with other songs liked

by the user [HO11]. Another possibility is to create playlists so as to maximise

the similarity between songs [KPSW06].

Playlists generated with similarity-based algorithms are expected to be coher-

ent. However, coherence is not the only quality criterion for playlists, as some

other criteria exist, such as diversity, [PGG19]. Also, a risk with optimising for

similarity is that the playlist may become monotonous [LBM11], e.g. containing

songs from the same album. See Section 2.6.2.1 for a discussion of coherence

and diversity.

One use-case for similarity algorithms is that of playlist sequencing, the special

case of APG where the target characteristics are given as a set of songs, and

algorithms are tasked simply with arranging the set of songs, without applying
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any further song selection, in such a way that the that music is coherent, from

one song to the next song [BGH+17]. For example, [BGH+17, Cli00] use a sim-

ilarity algorithm working on content-based similarity. It compares the distance

between songs based on several features, and then arranges the songs in such

a way that those distances are minimised. Sarroff & Casey [SC12] use the ap-

proach of building a machine learning predictor working on content-based fea-

tures that can distinguish suitable from not-suitable song-to-song transitions.

Finally, [FD21, FM22] go in the direction of personalised sequencing. They

analyse song-to-song transitions in a user’s playlists so that they can sequence

playlists in a personalised way.

2.5.1.3.2 Collaborative filtering Collaborative Filtering (CF) is a common

approach in the RSs literature. It is based on the heuristic that if the active

user agreed with certain users in the past, then these users are similar to the

active user, and items that these users liked should be relevant to, and can be

recommended to, the active user [RRS22]. Hence, the use of CF algorithms

is facilitated by the existence of usage data, recording the preferences of other

users.

The most common way of employing CF for APG is by applying the playlists-

as-users analogy [BJ13, RKV+18], in which a user is a playlist, and the songs

in the playlist are the songs that the user likes. Another common analogy is

the titles-as-users analogy [ZSCH18, VRC+18, RKV+18], in which a user is a

playlist title, and the songs in playlists with that title are the songs that the

user likes. Which analogy to employ depends on the target characteristics.

The playlists-as-users analogy fits the case in which the target characteristics

are given as seed songs. The titles-as-users analogy fits the case in which the

target characteristics are given as a playlist title, i.e. a special case of free-form

text. For simplicity of exposition, the rest of this Section uses only the playlist-

as-user analogy. The playlists-songs ‘preference’ matrix can be unary [JL17],

i.e. recording a 1 if a playlist contains the song. Or, it can be non-unary; for

example [TCC+15, ABC+18] assign a value to a song according to its position

in the playlist, giving more weight to the last songs.

A popular option is to employ nearest neighbors CF algorithms [NNDK22]14.

For example, the system in [VQSW19] computes the similarity between the ac-

14Nearest neighbors CF algorithms can be considered similarity algorithms, but we review
them in this Section and not in the “Similarity” Section as they are commonly categorised as
Collaborative Filtering, especially in the RSs community [RRS22].
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tive playlist and the other playlists in the dataset as the cosine similarity of their

row-vector representations in the playlists-songs preference matrix. Then, for

each song in the catalogue, it computes a score by summing the similarities

of the active playlist to the k most similar playlists in the dataset that contain

the song, where k is a positive integer hyper-parameter. Finally, the highest-

scoring song is selected to be added to the playlist. The algorithm above corre-

sponds to the user-based k-nearest neighbors CF algorithm in the RSs literature

[KMM+97]. The user-based k-nearest neighbors algorithm is also employed in

[Jan15, JL17].

Another option is to use the item-based k-nearest neighbors algorithm [DK04].

For example, the system in [VQS+17, VQSW18] computes the similarity be-

tween songs as the cosine similarity of their column-vector representations in

the playlists-songs preference matrix. Then, for each song in the catalogue, it

computes a score by summing the similarity of the last song in the playlist to

the k most similar songs in the catalogue, where k is a positive integer hyper-

parameter.

Some work uses similarity functions other than cosine; for example [TCC+15]

use Jaccard. Additionally, the similarity functions can be augmented with heuris-

tics, for example by giving higher weight to unpopular items [KBBB18].

There exist other CF algorithms for constructing playlists. For example, [AKS12]

use a matrix factorization (MF)-based approach, in which the playlists-songs

preference matrix is factorised into two low-dimensional matrices, containing

the playlist embeddings of every playlist in the dataset, and the song embed-

dings of every song in the catalogue. Then, for each song in the catalogue,

the system computes a score by taking the dot-product of the playlist and song

embedding. Finally, the highest-scoring song is selected to be added to the

playlist. In [ZSCH18], the playlist and song embeddings are fed into a feed-

forward neural network, which outputs a score indicating the fit of the song for

the playlist.

The playlists-as-users analogy has two main limitations: (1) the constructed

playlists are not personalised; (2) the performance depends on the number of

songs in the playlist. Concerning limitation (1), the songs are chosen so that

they are tailored to those already in the playlist, but not to the listener’s musi-

cal tastes. Some work tweaks CF approaches so that they become personalised.

One approach, for example, is to modify the active playlist by adding songs

from other playlists created by the same listener [JKL17, KJL16, AKS12]. Con-
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cerning limitation (2), CF algorithms are affected by the cold-start problem,

which manifests with small or newly created playlists. In fact, the accuracy of

CF algorithms is positively correlated with the number of seed songs, i.e. the

algorithm will generate a better playlist when provided with more seed songs

[ZSLC19]. And, CF algorithms are not able to generate a playlist if no seed

songs are provided. In such cases, it is necessary to resort to a fall-back strat-

egy, for example by working with other target characteristics, or by employing

simple heuristics based on song popularity.

The titles-as-users analogy shares the same two limitations. Some authors pro-

pose a solution to alleviate the cold-start problem when using the titles-as-users

analogy, which consists of clustering similar titles together, so as to increase the

number of songs for each title [ZSCH18]. One way to cluster titles is to rely

on simple text pre-processing pipelines, which transform the text to a common

format, for example by removing special characters [ZSCH18, YKB21, YBK21].

Another way to cluster titles is by employing text-embedding procedures, such

as FastText [JGB+16], and by running a clustering algorithm on those embed-

dings [MPR+18].

One last drawback of CF approaches is that they are not designed for the specific

challenges of APG, and aspects such as songs coherence have to be addressed

separately [BJ14].

2.5.1.3.3 Case-based reasoning Case-Based Reasoning (CBR) is an approach

to problem-solving that involves reasoning with prior experiences. CBR can be

effective when two tenets hold [Lea96]: similar problems have similar solu-

tions; and the types of problems an agent encounters tend to recur. Case-based

APG assumes that existing playlists encode the results of prior reasoning, and

that it is therefore worthwhile to reuse existing playlists when creating new

playlists.

Given a dataset or case base of existing playlists and an initial seed playlist,

[GSM17a] uses CBR to recommend a set of songs for playlist continuation

(APC). The system retrieves from the case base a set of k playlists that are

similar to the user’s seed playlist. In this system, similarity is an aggregate of

song similarity, where song similarity is based on shared meta-data. The system

recommends songs taken from the k playlists, based on the playlist similar-

ity scores15. The approach is extended to include time-of-creation pre-filtering

15This CBR system could alternatively be classified as a similarity algorithm, but we review
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[GSM17b] and shared latent topic pre-filtering [GVJSM19, GSJ18].

By contrast, [BP06] deals with case-based playlist generation from a seed song

(APG), rather than case-based playlist continuation, and treats the order of the

songs in the playlists in the case base as significant. In this approach, the system

retrieves and combines a set of so-called relevant patterns. Relevant patterns

are subsequences that contain the user’s seed song and which recur across mul-

tiple playlists in the case base. The idea is that recurring subsequences are

meaningful: they capture songs that go well together and the ordering that

makes them go well together.

Both [GVJSM19] and [BP06] have additional scoring mechanisms that try to

take coherence and diversity into account, these being concepts that we discuss

further in Section 2.6.2.1.

2.5.1.3.4 Discrete optimisation A different way to approach playlist gen-

eration is by setting up a discrete optimization problem. Given the catalogue of

songs and a set of explicitly specified constraints that capture the desired target

characteristics, the goal is to construct a sequence of songs that satisfies the

constraints, while maximising some utility function [BJ14].

Discrete optimisation approaches to APG differ in their constraints. [AT00,

PRC00] impose constraints on consecutive songs, for example by requiring that

their similarity should be higher than some value, as measured by a song sim-

ilarity measure [KS16]. And, [AT01, AP02a, HY13, HC11, PRC00, PvdW05]

impose constraints on metadata or content-based data, for example by requir-

ing that at least n songs in the playlist should have a specific musical genre

[AP02a].

Some approaches define a utility function to be maximised during the optimi-

sation process. For example, [HY13, PKS+07, KPSW06] seek to maximise the

similarity of consecutive songs in the playlist, as measured by a song similarity

measure [KS16].

Also, different approaches use different strategies to solve the optimisation

problem. For example, [AT00, AT01] use linear programming, [AP02a, PRC00,

PvdW05] use constraint satisfaction, [HY13, PVV08] use simulated annealing,

and [HC11] use genetic algorithms.

it in this CBR Section and not in the “Similarity” Section because of the way it computes not
just song similarity but also playlist (case) similarity and because this is how the authors view
their work.
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2.5.1.3.5 Deep learning Deep learning is a form of machine learning that

is based on the usage of many-layered artificial neural networks. Deep learning

has led to advances in different application fields of AI, such as natural language

modeling [BMR+20] and object classification in images [KSH17]. Given those

promising results, deep learning has recently been applied to the task of APG.

The survey on APG by Bonnin & Jannach dates to 2014, which is prior to the

application of deep learning to APG. Our survey here therefore contains an

exclusive review of deep learning algorithms for APG.

One famous family of deep learning models are recurrent neural networks

(RNNs) [LBE15]. RNNs are particularly suited to learning from sequential data.

At their core, there is the concept of hidden state, which is updated at each step

of the sequence, as a function of the current and past elements of the sequence.

The hidden state contributes to the prediction of the next value in the sequence.

RNNs can be applied to APG, by considering that a playlist is a sequence of

songs. As such, RNNs can naturally predict the next song in the sequence,

i.e. the song to add to the playlist. [VQSW19, VQSW18, VQS+17, JL17] em-

ploy RNNs for APG by resorting to a particular RNN model, called GRU4Rec

[HKBT15]. They train the RNN on a dataset of manually created playlists,

with the objective of correctly replicating those playlists, i.e. the RNN is fed the

playlist up to song n, and its parameters are optimised so that it correctly pre-

dicts the song in position n + 1. Related work makes use of other RNN models,

such as LSTMs [IBZ+19, CFS16]. [SC18] propose an additional RNN training

step, in which other training objectives are included, such as song diversity

and freshness, by resorting to a policy-guided reinforcement learning algorithm

[HSSL19]. Moreover, by treating a playlist title as a sequence of characters, it is

possible to use RNNs to process the characters, obtaining an embedding vector,

that can be used to predict the songs in the playlist, given the title [KWLH18].

Another famous family of deep learning models are the autoencoders. In the

simplest case, an autoencoder consists of two components: encoder and de-

coder. The input data is first projected into a hidden representation by the

encoder, and the decoder is tasked with reconstructing the input from the hid-

den representation. The hidden representation is set to be a low-dimensional

vector. The output of the decoder is used to decide which songs to add to

the playlist. A more sophisticated autoencoder is the adversarial autoencoder,

in which the hidden vector distribution is regularised so as to match a gaus-

sian prior distribution [MSJ+15]. Autoencoders of both kinds are used for APG
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by setting the input to be a binary vector indicating which songs are in the

playlist [YJCL18, VGMS18]. The output is a vector approximating the input

vector, that can be used for selecting other songs for addition to the playlist.

The encoder and the decoder are neural networks. For example, [YJCL18] use

simple feed-forward neural networks. [VGMS18] successfully integrate addi-

tional background knowledge in an adversarial autoencoder, by concatenating

embeddings of textual data, such as the playlist title, to the hidden representa-

tion.

The last family of deep learning models we consider are the convolutional neu-

ral networks (CNNs). The use of CNNs was popularised in computer vision,

where they yield state-of-the-art accuracy in tasks such as image recognition

[KSH17]. More recently, CNNs have been adapted to do language modeling

[KGB14] and APG. For example, by applying the songs-as-words analogy, it is

possible to use a CNN to predict the next song in the playlist [VRC+18]. More-

over, by treating a playlist title as a sequence of characters, it is possible to use

CNNs to process the characters, obtaining an embedding vector, that can be

used to predict the songs in the playlist, given the title [YJCL18].

The transformer is a recently proposed deep learning model for modeling se-

quences [VSP+17]. Transformers have been applied in a number of fields, in-

cluding natural language processing [VSP+17], recommender systems [GDW+20]

and computer vision [KNH+22]. Transformers excel in modeling sequences,

and especially long sequences, yielding increases in accuracy against other

state-of-the-art models in a number of different tasks, such as machine transla-

tion [VSP+17]. However, to the best of our knowledge, transformers have not

yet been applied to the task of APG.

Deep learning is often used as a powerful tool to combine heterogeneous fea-

tures and information sources [SBE+21]. For example, [VDSW18, VEZD+17]

combine song embedding representations extracted from: content-based data;

metadata; and manually curated playlists by means of a deep feed-forward neu-

ral network, so as to model the probability that a specific song is a good fit for

a specific playlist.

2.5.1.3.6 Reinforcement learning Reinforcement learning (RL) is a form of

machine learning in which an agent, through interaction with its environment,

learns how to take specific actions so as to maximise a long-term numerical

reward. In each step, the agent takes an action and the environment transitions
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from one state to another state. After each action, the agent observes a reward.

The agent aims to learn a policy that defines which action should be taken in

each state in order to receive the greatest cumulative reward [SB18].

Our survey here contains an exclusive review of RL algorithms for APG. The

2014 survey on APG by Bonnin & Jannach does not contain any RL algorithm

for APG, either because those RL algorithms were not published in 2014, or

because they were published but did not make it into their survey.

RL is suitable for modeling sequential problems, in which each action is taken

as a consequence of the previous action. Playlist construction can be modeled

as a RL problem, by considering an action to be the addition of a particular song

to the playlist, and the reward to be some notion of playlist quality.

RL is usually formalised as a Markov decision process (MDP), i.e. a tuple (S, A, P, R)
such that:

1. S is the set of states of the environment;

2. A is the set of the agent’s possible actions;

3. P is the transition function, which models the state s2 that the environ-

ment transitions to after the agent takes an action a in a state s1, i.e.

P (s1, a) = s2 where s1, s2 ∈ S and a ∈ A;16

4. R is the reward function, which models the reward r for taking an action

a in a state s, i.e. R(s, a) = r, where s ∈ S, a ∈ A and r ∈ R.

The goal of a RL algorithm is to learn a policy, which determines what action a

the agent should take in each state s so as to maximise the cumulative reward,

where s ∈ S and a ∈ A.

The APG work that is based on RL shares a similar MDP formalisation to the

one above: a state s ∈ S is the list of songs in the playlist. For example, if

the playlist has been constructed up to the tenth song, and the agent is tasked

with choosing the eleventh song, then s is the list of those ten songs; an action

a ∈ A is the action of adding a specific song to the playlist; and the transition

function P is known, and defined by appending the new song to the list of

songs in the playlist. The reward function R quantifies the playlist quality, and

it is unknown. Some APG work based on RL estimates a return function from

observed rewards, and use the return function to determine a policy, solving

16The definition of transition function we adopt is deterministic, which is consistent with the
APG literature. In general, the transition function in MDPs is a stochastic function.
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the APG problem. For example, [LSTS15, LSTS19] parameterise the estimated

return function as a linear transformation of the newly added song’s content-

based data. In other APG work based on RL, the agent learns a policy from

observed rewards directly. For example, [KI15, CTLH10, HSL17] use Q-learning

[Wat89] to learn a policy from observed rewards.

One apparent issue with the MDP formalisation above is that of combinato-

rial explosion. For example, if the catalogue size is ten million songs, as it is

in some music streaming services [Spo22], then there are 1070 possible states

just for playlists that contain ten songs, and 107 possible actions. One way to

tackle the state explosion problem is by factorising the song representation in

terms of their features, such as content-based features [LSTS15, KI15, LSTS19],

metadata [HSL17] or mood [CTLH10], and/or by applying windowing, e.g. by

representing just the last three songs of a playlist in a state [CTLH10, HSL17].

The observed rewards depend on the user, and on the newly added song. In

some work, rewards are observed implicitly; for example, a skip is a negative

reward, while listening to a song to completion is a positive reward [KI15]. In

other work, rewards are observed explicitly, for example by asking the user to

rate the newly added song on a numerical scale [LSTS15].

2.5.1.3.7 Statistical models Statistical models work by modeling the prob-

ability of adding a song to the playlist17. One class of statistical models are

the Markov models, i.e. those that model the probability of adding a song to

the playlist based on the current “state”. In the APG research cited below, the

state is defined as the last song in the playlist. As such, the core component of

Markov models is the estimation of the song-to-song transition probabilities18.

[ML11] offer a comparison of a number of Markov models, which differ on

how the probabilities are estimated: some of them count song co-occurrences

in manually created playlists, while others rely on content-based or metadata

similarity. Other Markov models are proposed in [CMTJ12, MCJT12, ML12,

UKM18, dONLF19, vNdV18]. Markov models may lead to the construction of

problematic playlists [VQS+17]. For example, adding a song based only on the

17Some of the other types of algorithm above are also statistical models. In particular:
reinforcement learning, deep learning and collaborative filtering are statistical models. Also,
similarity algorithms can be used to build statistical models. However, we devote a separate
Section to each of them as they are notable and recognisable algorithm types for RSs in general
and for automatic playlist generation in particular.

18The difference between the Markov models of this Section and the MDPs of the previous
Section is that the MDPs explicitly model the actions that cause the state transitions.
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previous one may lead to a lack of coherence throughout the playlist.

Some other statistical models are not Markov models, and model the probability

of adding a song to the playlist based on the other songs in the playlist. For

example, [HO11] consider a playlist as a time series and use an autoregressive

integrated moving average (ARIMA) model [Har90] to predict the next song.

Frequent pattern mining approaches also do not make the Markov assumption,

and work by mining sequential patterns from a dataset of manually created

playlists. A sequential pattern can be expressed in the form S1 ⇒ S2, where

S1 and S2 are two sets of songs. The pattern signifies that it is likely to find

the songs in S2 after the songs in S1. Sequential patterns can be used to gener-

ate playlists. For example, consider three songs: s1, s2 and s3; given a playlist

with s1 and s2 as seed songs, if we have extracted the pattern S1 ⇒ S2, where

S1 is the set {s1, s2}, and S2 is the set {s3}, then a candidate continuation for

the playlist is s3. Sequential patterns are not often applied to APG. However,

[BJ14] show that they can achieve comparable performance to other types of

algorithms. For example, [CMTJ12] propose to use a simple bigram model that

extracts S1 ⇒ S2 rules by counting how frequently the set of songs S2 follows

the song S1 in the dataset, corrected with Witten-Bell discounting [JM09]. A

similar strategy is followed in [BJ14, BJ13]. In [HMB12], the PrefixSpan algo-

rithm [HPMA+01] is used to mine sequential patterns on song latent embed-

dings. The song latent embeddings are obtained by applying Latent Dirichlet

Allocation to the songs’ tags [BNJ03].

The most sophisticated statistical models are also personalised, i.e. they model

the probability of adding a song to the playlist based on the other songs in

the playlist, and based on the user’s musical tastes. For example, [BELK+17]

propose a Bayesian classification model whose parameters are estimated via

variational inference based on the playlist songs, and on the other songs liked

by the user. Two similar models are proposed in [ZGMRMF10, TSL19].

Other notable statistical models are proposed for the scenario in which the tar-

get characteristics are specified using natural language. For example, [CCC17]

propose a statistical model for linking a word to a song. It is trained on a dataset

of manually created playlists and their titles. In practice, they learn an embed-

ding for every word and song, in such a way that a particular song embedding

is aligned with a particular word embedding if that song is likely to appear in a

playlist which contains that word in its title.
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2.5.1.3.8 Learning to rank Learning to rank (LTR) is a form of machine

learning that constructs ranking models for information retrieval systems [Liu09].

In practice, given a query and a list of items, the LTR algorithm is trained to re-

rank the list of items, so that the most relevant items are at the top of the list.

For example, in the context of a search engine, the query is provided by the

user, who might search for “the counties of Ireland”, and the list of items is a

list of websites. The model learned by the LTR algorithm would rank the most

relevant items at the top. In the search engine example, a website listing all

the counties of Ireland would be ranked before a website listing all the counties

in the state of Washington, US. For training, a LTR algorithm is given queries,

the list of items to re-rank, along with the relevance of the items to each of the

queries, and a set of features about the queries and about the list of items. In

the search engine example, the relevance labels between the websites to the

queries are usually given manually, and the set of features of the queries and

websites are usually text features extracted automatically, for example TF-IDF

features. LTR has recently been applied to the task of APG. The survey by Bon-

nin & Jannach dates to 2014, prior to the application of LTR to APG. Our survey

here contains an exclusive review of LTR algorithms for APG.

In the context of APG, the query captures the target characteristics of a playlist;

the items are the songs in the song catalogue, and their relevance to the target

characteristics is usually binary, i.e. 1 if the song is in the playlist and 0 other-

wise; the set of features distill sources of background knowledge about songs

and about target characteristics, such as those we reviewed in Section 2.5.1.1.

Examples of song features are: popularity [VRC+18], song homogeneity and

diversity [RKV+18], as well as song embedding representations, computed, for

example, from usage data [ZSCH18] or content-based data [VRC+18].

In practice, LTR algorithms for APG are not used to rank the full song catalogue,

which is computationally unfeasible. Instead, a two-stage architecture is usually

employed [ZSLC19]. In the first stage, an APG algorithm is used to retrieve a

list of candidate songs. In the second stage, a LTR algorithm is used to re-rank

the candidate songs so as to select songs for addition to the playlist. The first
stage algorithm can be any APG algorithm, and it is used to retrieve a relatively

small list of songs, usually composed of thousands of songs. The second stage
algorithm can be any learning to rank algorithm. We refer the reader to [Liu09]

for a review of learning to rank algorithms. Typically, the first stage algorithm

is chosen to be computationally inexpensive, so that it can retrieve the list of

candidate songs in a short time. A typical choice for the first stage algorithm is
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a collaborative filtering algorithm [ZSLC19], such as matrix factorisation. The

second stage algorithm, instead, is chosen to be a state-of-the-art learning to

rank algorithm, typically a list-wise algorithm, such as XGBoost [CG16].

2.5.1.3.9 Discussion The types of algorithms we review differ in their per-

formance. There is, for example, some evidence that CF and deep learning al-

gorithms excel in generating high-quality playlists, especially in the case where

the target characteristics are specified as a list of seed songs [BJ14, ZSLC19].

However, it is wrong to consider one type of algorithm to be superior to an-

other. A more correct view is to consider them as complementary. Algorithms

of different types usually leverage different sources of background knowledge.

For example, while CF algorithms are mostly limited to usage data, similarity

algorithms can easily include content-based data. Also, algorithms of differ-

ent types usually accommodate different ways of specifying the target charac-

teristics. For example, while CF algorithms are mostly limited to the case in

which a static playlist is generated from a list of seed songs, RL algorithms can

generate dynamic playlists that adapt to the user feedback in real time. It is

therefore necessary to employ algorithms of different types, or to combine al-

gorithms of different types, in different circumstances, especially depending on

the background knowledge available, and on the way the target characteristics

are specified. For example, [SBI14] use a similarity based algorithm to generate

a playlist, which is then adapted in real time based on the contextual informa-

tion, gathered from sensors and processed by a statistical model. Frequently,

different types of algorithms are combined with the goal of attaining playlists

of higher quality [JL17, ZSLC19]. One common way of combining algorithms

is to compute a weighted average of their predictions [VRC+18, LKLJ18]. We

refer the reader to [Bur02] for an understanding of the possible ways in which

RS algorithms can be combined, many of which can be adapted to APG.

Table 2.3 reveals the differences between the research up to 2013 (the first
period), which was already surveyed by Bonnin & Jannach [BJ14], and the re-

search from 2014 onwards (the second period), that we exclusively survey. The

majority of algorithms from the first period are similarity and discrete optimi-

sation algorithms. In the second period, the emphasis has shifted to CF and

deep learning algorithms. We believe this paradigm shift to be linked to the

paradigm shift in music consumption, which is now dominated by streaming

services [IFP22]. The song catalogues available for APG algorithms shifted from

small personal collections to millions of songs [Spo22], which makes it impossi-
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ble to utilise discrete optimisation algorithms, as their worst-case computational

complexity is exponential. Music streaming services also made available large

quantities of usage data, which explains the surge of work in CF.

2.5.2 Evaluation

Up to now, we have referred to playlist quality as the way we would measure

the performance of APG algorithms. Playlist quality is, however, an ill-defined

concept, difficult to pin down to a mathematical definition that would allow its

measurement. In fact, playlist quality depends on the musical tastes of the user,

on the user’s familiarity with the music [WGI14], and on the listening context

[ABTU22]. For example, two different listeners may rate the quality of the

same playlist differently, because they may have different musical preferences,

because they may already know the songs, or because they are listening to the

playlist in two different locations, e.g. at the beach or in the bus.

In their 2014 survey on APG, Bonnin & Jannach [BJ14] review the different

strategies for measuring the quality of playlists. They identify three categories

of evaluation protocols:

1. User studies, where users are involved in rating the quality of playlists;

2. Objective measures, where statistics of the constructed playlists are com-

puted, under the assumption that those statistics (e.g. coherence or di-

versity of the songs’ musical genres) reflect the notion of playlist quality;

and

3. Ground truth playlists, where algorithms are tested for how well they can

recreate manually created playlists or listening logs, under the assumption

that the manually created playlists or listening logs reflect a gold standard.

These three categories are still valid today, and cover the evaluation protocols

used in the recent work on APG that we exclusively survey, i.e. in papers pub-

lished from 2014 onwards. In the following, we focus on how APG algorithms

are evaluated in the papers that we exclusively survey, i.e. in papers published

from 2014 onwards.

Evaluation protocol (3) is probably the most common, and can be described

as a three step procedure: (a) preparation, in which a number N of songs are

withheld from a ground truth playlist; (b) recommendation, in which an APG

algorithm is used to get a ranked list of K candidate songs to be added to the
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playlist; (c) scoring, in which metric M is used to measure the fitness of the K

recommended songs relative to the N withheld songs. K can assume any value

from 1 to the size of the song catalogue. N can assume any value from 1 to the

playlist size. The three steps are repeated for every ground truth playlist in the

dataset, and the resulting values of M are averaged.

Different instances of evaluation protocol (3) differ for the choice of N , K

and M . For example, in a comparative evaluation of APG algorithms, [BJ14,

BJ13] set N to 1 and allowed K to range from 1 to 1000. They used hit-rate as

M , which, for a ground truth playlist, measures whether the K recommended

songs contains the withheld song. They reported the percentage of ground truth

playlists for which there was a hit. In the RecSys Challenge 2018, instead, N is

set as a fixed percentage of the playlist songs, K is set to 500, and M is set to a

number of different metrics related to hit-rate, including nDCG and R-precision

[ZSLC19].

In general, there is no agreement on what combination of N , K and M to

use, but there is work that offers insights into some combinations to adopt or

avoid. For example, [BJ13, BJ14] show that using average log-likelihood as M ,

which was used in some other work [ML11], leads to inconsistent conclusions

with hit-rate related metrics, and recommend to avoid its use. Kamehkhosh &

Jannach [KJ17] carry out a user trial where users are asked to choose the most

appropriate continuation for a playlist among four song alternatives, three of

which are generated using an algorithm and the last is the withheld song. They

find that users are likely to select the withheld song as a favourite continuation.

Their experiment provides evidence that the choice of N as 1, K as 1, and M as

hit-rate is a reliable setting. In contrast, [VQSW19] criticise the choice of setting

a specific cut-off for K, by showing that the relative ordering in performance of

a set of competing algorithms changes when varying K from 1 to the size of the

song catalogue, while keeping N fixed to 1 and M to be hit-rate.

Evaluation protocol (3) is explicitly designed to work in the case where the

target characteristics are specified using seed songs, which is the most common

scenario in the recent literature, see Table 2.2. However, evaluation protocol (3)

can be adapted to work when the target characteristics are specified in different

ways. For example, [CCC17] propose an APG algorithm for which the target

characteristics are input as free-form text, and they evaluate the algorithm using

ground truth playlists, setting N to the playlist size, K to vary from 5 to 20, and

hit-rate as M .
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Evaluation protocol (3) works under the assumption that the ground truth

playlists represent a gold standard, and thus the ability to replicate those playlists

reflects the ability to construct high-quality playlists. However, the assumption

may be too strong in some circumstances. For example, [Hag15] find that man-

ually created playlists often do not have clearly defined target characteristics.

For example, they may sometimes be used as a randomly arranged container

of the user’s favourite music, created for convenience of access. Similarly, al-

though listening logs can be assimilated to the concept of playlist, they may

contain spurious interactions, such as songs recommended by the automatic

continuation features of streaming services during periods that the user is not

paying attention to the recommendations. In some work, listening logs are

filtered before running the evaluation, for example removing skipped songs

[BPK09]. Ideally, the quality of the ground-truth playlists must be checked be-

fore running the evaluation, which circles back to the original question of how

to evaluate playlist quality. One guideline to distinguish suitable datasets of

manually created playlists for evaluation is offered in [CBF06], as they find

that playlists manually created by users for sharing with other users usually

satisfy high quality standards, and have clearly-defined target characteristics.

Lastly, evaluation protocol (3) is undermined to a degree by several biases,

most notably by the popularity bias [BCC17]. Since most of the ground truth

playlists tend to contain popular songs [Cel10], an APG strategy that constructs

playlists in a popularity-driven fashion will usually yield good performance

[BJ14, BJ13]. However, while a playlist with popular songs would satisfy a

large share of users, it would not suit minorities of listeners. There exist several

strategies for de-biasing evaluation protocol (3) with respect to popularity, for

example see [CDW+22]. A simple strategy is used in [VQSW19], where eval-

uation protocol (3) is run separately for popular songs and for the rest of the

songs, finding that the relative ranking in performance of algorithms changes

for these two segments of the song catalogue.

Evaluation protocol (2) is sometimes adopted for evaluating APG algorithms.

It works by computing statistics on the constructed playlists, under the as-

sumption that those statistics reflect aspects of playlist quality. For example,

[CCC17, JLK15, JKL17, KJL16] measure song diversity and coherence, by con-

sidering song tags or musical genres. Additionally, [CCC17] measure song pop-

ularity, while [SC18] measure song novelty, i.e. the degree to which songs are

known by the listener, and freshness, i.e. the degree to which the songs are

recently released. These statistics do offer insights into the characteristics of
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constructed playlists, but it is not clear how those characteristics relate to the

concept of playlist quality. For example, it is not clear what value of song di-

versity in a playlist is ideal: research suggests that songs should be somewhat

diverse, while staying coherent overall [KBJ20, DMV97]. See Section 2.6.2.1

for a discussion of coherence and diversity.

Evaluation protocol (1) consists of user studies. For example, reinforcement

learning algorithms require real-time interaction with the listener, and are eval-

uated with user studies in which the quality of an algorithm is estimated by

monitoring implicit user signals, such as the number of skips [KI15], or by ex-

plicitly asking the user if they like the music or not [LSTS15, LSTS19]. As

another example, [IOK18] employ a user study to evaluate the smoothness of

song-to-song transitions in playlists. However, user studies have the disadvan-

tages that they may not be reproducible and they are costly and time consum-

ing. Another strategy for involving users in the evaluation of playlists is via

A/B tests, in which users of streaming services are partitioned, and each parti-

tion receives playlists constructed by a different algorithm. Users in each parti-

tion are monitored for their engagement with the playlists, e.g. by monitoring

the play counts [BCR+22], which is an indicator of playlist quality. Unfortu-

nately, A/B tests require resources not accessible to most researchers, such as

the availability of a music streaming service platform in which the A/B test can

be conducted. A middle ground between an A/B test and evaluation protocol

(3) is counterfactual evaluation, which allows estimation of the performance of

a candidate algorithm, as if it were in production, by relying on listening logs

extracted from whatever algorithm is currently in production. Researchers at

Spotify share their recipe for counterfactual evaluation in [GCC+19], showing

that they can rely on high correlation with actual A/B tests.

2.5.3 Group automatic playlist generation

The APG work that we reviewed above tacitly assumes that the playlist is con-

structed to serve a single user, suitable for private listening sessions. However,

listening to music is often a collective activity, consisting of users enjoying music

together. Collective listening allows the discovery of new music, gives insight

into the music tastes of peers and creates shared moments where the listening

can bring people closer together [LR08, HRH07]. Instances of collective lis-

tening can happen during a shared car journey, at a party, or at the gym, for

example. For these occasions, it is important to tailor the playlist for the group,
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so as to satisfy the musical preferences of every user. There exists a category of

APG algorithms which are explicitly designed to generate playlists for groups,

i.e. the group automatic playlist generation (G-APG) algorithms.

G-APG algorithms are strongly related to group RS, which are tasked with rec-

ommending items to a group of users. In their survey of group RS, Masthoff

& Delic [MD22] describe the typical design of a group RS as a three step pro-

cedure, that we borrow and adapt for our discussion of G-APG algorithms: (1)

preference acquisition, in which the musical preferences of all group members

are acquired; (2) preference aggregation, in which the musical preferences of

all group members are aggregated into group preferences; and (3) playlist con-

struction, based on the group preferences. In the rest of the Section, we describe

the G-APG algorithms in terms of their preference acquisition, preference ag-

gregation, and playlist construction mechanisms. Also, we describe strategies

for evaluating G-APG algorithms. We conclude the Section by outlining the

links that there are between G-APG and “standard” APG algorithms.

2.5.3.1 Preference acquisition

G-APG algorithms differ in what kind of data are acquired as musical prefer-

ences. We can distinguish implicit from explicit data. Implicit data are obtained

by monitoring users’ behaviour, without any explicit actions required by the

users. Examples of implicit data include listening counts, which can be ac-

quired by inspecting log data [CBH02, LSH20]. Explicit data, instead, are filled

in by the user manually. Examples of explicit data are ratings, such as a one to

five rating [BP07], like/dislike [CBF05], or a vote [OLJ+04] for a musical item,

as well as song requests [DP02, SWT08, VA15], and pairwise ratings, indicating

the preference of one song over another song [AMNS02].

Explicit and implicit data are limited in that they are restricted to the users’

actions. For example, it is not possible to know the preference of a user to-

wards a musical item if they never interacted with it. Some G-APG work uses

explicit and/or implicit data to infer unknown preferences. For example, the

Poolcasting system [BP07] infers unknown song preferences by taking the aver-

age of the known preferences for songs composed by the same artist. And, the

Flytrap system [CBH02] uses a taxonomy of musical genres to infer unknown

song preferences based on the known preferences for songs of similar genres.

Similarly to Flytrap, the PartyVote [SWT08] system uses song similarity based

on content-based data for preference inference. Finally, the Flycasting system
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[HF01] uses collaborative filtering to infer the unknown song preferences based

on the known preferences for songs of a community of users.

The musical preferences of group members can be acquired statically, if the

acquisition happens only once, or dynamically, if, instead, the acquisition con-

tinues over time. For example, in the MusicFX system [MA98], the preferences

are acquired statically during a registration process, where users are asked to

rate musical genres in a range from minus two to two. As another example,

in the Poolcasting system [BP07] the musical preferences are acquired dynam-

ically based on the feedback that users give to the current song, which will

influence the choice of the next song. We note that in the case of static ac-

quisition the three steps of preference acquisition, preference aggregation and

playlist construction happen sequentially, while in the case of dynamic acquisi-

tion the three steps happen iteratively, because the next song in the playlist is

selected by aggregating the group feedback for the previous song, e.g. see the

Adaptive-radio system [CBF05]. One advantage of the static acquisition tech-

nique is that the algorithm is ready to work for new users, while the dynamic

acquisition technique requires the users to interact with the system. However,

dynamic preferences are advantageous because they improve over time with

usage. Some work combines the two techniques. For example, the Poolcasting

system [BP07] selects the first song in the playlist by aggregating static group

preferences acquired from listening logs, and then selects the subsequent songs

by also considering user feedback.

Some of the preference acquisition mechanisms above acquire “private” musical

preferences, i.e. the musical preferences of users for their private music listen-

ing [BP07], and use those private preferences in a group setting. This work

makes the assumption that a person’s private tastes are also their communal

tastes. However, the private and communal tastes of an individual may differ

[CNBA14].

Table 2.4 classifies the G-APG work that we survey for how the preference are

acquired, distinguishing implicit from explicit preferences, static from dynamic

acquisition mechanics, and indicating whether preference inference is done or

not.

2.5.3.2 Preference aggregation

Once the musical preferences of all group members are determined, the next

step is to aggregate those preferences into the group musical preferences. The
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G-APG papers that we survey perform preference aggregation in two different

ways:

Average The group preference for a musical item is the arithmetic average of

the musical preferences of the group members towards that item. For

example, the Flytrap system [CBH02] averages the preferences of group

members for songs.

Average without misery This is similar to Average, but items for which at least

one user has expressed an extremely low rating are avoided. For exam-

ple, the MusicFX system [MA98] avoids musical genres that have been

given extremely low ratings by at least one user in the group. And, the

Adaptive-radio [CBF05] system implements an interesting variant of Av-

erage without misery where group members are allowed to determine

songs to avoid, while the remaining songs are treated as having equal

group preference.

It is worth mentioning that the above preference aggregations mechanisms,

average and average without misery, are two of the many mechanisms used in

group recommender systems research. For example, [MD22] show that there

exist 11 preference aggregation mechanisms in group recommender systems

research.

Along with the mentioned preference aggregation mechanisms, some of the G-

APG work that we survey handles song requests separately. Song requests are

a type of musical preference that consists of suggestions of songs to be played

next in the playlist. One way to handle song requests separately from the other

user preferences is via a FIFO queue, i.e. song suggestions are played in the

order that they arrive, until the last song in the queue is played. If no songs are

in the queue, the next song to play is selected via the group musical preferences,

aggregated as described above. When faced with multiple requests coming from

the same user, systems may decide to play a subset of those requests, while still

considering the other requests as explicit preferences [SWT08].

Table 2.4 classifies the G-APG work that we survey for how the preference are

aggregated, and indicating whether song requests are handled or not.

2.5.3.3 Playlist construction

Once the group preferences are aggregated, the last step is to construct the

playlist. The G-APG papers that we survey follow two main strategies for select-
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ing music for the group playlist: deterministic and stochastic. The deterministic

strategy consists in selecting the music with highest group preference. For ex-

ample, the CoCoA-radio system [AMNS02] applies the deterministic strategy,

by selecting the next song in the playlist as the one with highest group pref-

erence. The stochastic strategy consists in producing a probability distribution

based on the group preferences, e.g. songs with highest group preference have

highest probability of being played. The stochastic strategy allows for discovery

of new music, at the risk of selecting music that the group does not like [Cel10].

For example, the MusicFX system selects a genre by drawing from a probability

distribution over genres, determined by the group preferences for genres.

Together with group preferences, other considerations can be made for con-

structing the playlist. One common strategy is that of similarity correction,

that is considering similarity to the previously played song, together with group

preferences, for selecting the next song. For example, in the Flytrap system

[CBH02], the probability distribution over the candidates for next song is cor-

rected with a multiplicative term, which takes into account the similarity with

the previously played song.

Table 2.4 classifies the G-APG work that we survey on whether the music se-

lection strategy is deterministic or stochastic, and indicating whether similarity

correction is applied.

2.5.3.4 Evaluation

One strategy for evaluating G-APG algorithms is to present a playlist to a group

of listeners and to measure the playlist quality by monitoring the engagement of

the group with the playlist, for example by means of a survey. For example, the

authors of [CBF05] install the system Adaptive-radio in an office environment

so as to provide co-workers with music during working hours; they report the

results of a survey, where the co-workers are asked for their opinions about the

musical choices. Similarly, [MA98] install the MusicFX system in a gym and poll

subscribers to the system on whether the music playing in the gym has improved

since the installation of MusicFX. A similar experiment is reported in [HF01],

and in [PP12], where the authors compare several preference aggregation and

playlist construction strategies.

Another strategy for evaluating G-APG algorithms is to use synthetic data. The

use of synthetic data is common in the literature on group RS, e.g. see [MD22],

but not common in the literature in G-APG. The only work that uses synthetic
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data is [LSH20], which gathers check-in data in a coffee-shop from foursquare19,

as well as listening histories from Last.fm20, and analyses the accuracy of algo-

rithms in predicting songs in the listening histories of users currently in the

coffee-shop.

Finally, a conspicuous share of G-APG work that we survey (five over eight

papers) does not offer any evaluation.

2.5.3.5 Relationship between G-APG and APG

The work in G-APG and APG that we survey is clearly related, not least because

the two research topics share the end goal of generating a playlist automati-

cally. We define the task of playlist generation in Definition 2, as the problem

of selecting a sequence of songs from a catalogue of songs, while using some

background knowledge, in order to match some given target characteristics.

The fundamental difference between APG and G-APG resides in the target char-

acteristics. APG algorithms handle target characteristics coming from a single

user, while G-APG algorithms handle target characteristics coming from multi-

ple users, i.e. the musical preferences of the group members, which are then

aggregated to construct the playlist. The aggregation step is not present in APG

algorithms, as the target characteristics are coming from a single user. Also,

some G-APG algorithms support a way of giving target characteristics that is

peculiar to the group setting: song requests. With a song request, any of the

group members can suggest what song to play next in the playlist. This is sim-

ilar to a seed song in APG algorithms. However, differently from seed songs,

which specify the music to start the playlist, a song request specifies a song to

include at any point in the playlist, interactively.

2.6 Manual playlist generation

Manual playlist generation (MPG) is a major topic within research on playlists.

Research in MPG looks into how people manually construct playlists. Research

in MPG is important as understanding how people manually construct playlists

can help to improve research in APG, as well as improving user interfaces for

playlist construction.

We define the task of playlist generation in Definition 2 as the problem of se-

19https://foursquare.com/.
20https://last.fm.
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lecting a sequence of songs from a catalogue of songs, while using some back-

ground knowledge, in order to match some given target characteristics of the

playlist. In MPG, users set their minds to some desired target characteristics (or

themes, see Section 2.6.1) and manually select songs from a catalogue so as

to match those desired target characteristics. One notable playlist construction

style would start with the user selecting a handful of anchor songs to reflect

the theme [CBF06] and, on the basis of those anchor songs and on the theme,

the user would then search through the catalogue for similar songs to add to

the playlist [BJK18, SM11]. The search for songs might be based on familiarity,

drawing from the user’s musical knowledge, or by looking for other songs from

the same artists, or of the same genre, or by exploring the catalogue for songs

coming from similar artists or having similar genres [DGF17].

In this Section, we survey the literature on MPG, presenting common target

characteristics for playlists in Section 2.6.1, and criteria for selecting the songs,

with a special focus on the issue of song ordering, in Section 2.6.2. Finally,

in Section 2.6.3 we review a special case of MPG: assisted MPG, i.e. the case

in which the user is assisted by an algorithm while constructing the playlist

manually.

2.6.1 Target characteristics

The target characteristics of a playlist are the organisation principles which

make the playlist a sequence of songs to be listened to together. In MPG, the

target characteristics are expressed by users for themselves, because they are

the agents that carry out the playlist construction. This is different from APG,

where the target characteristics need to be expressed in a machine readable

form, which inevitably limits expressiveness to the kinds of things that algo-

rithms can interpret. We distinguish the target characteristics as expressed in

MPG from those expressed in APG, by using the word “themes” to refer to the

target characteristics for MPG.

Hagen [Hag15] analyses the themes of playlists created by users of music stream-

ing services, and provides a categorisation of those themes, employing four cat-

egories:

Standardised Themes concerning standard music organisation principles, in-

cluding: genres, e.g. “Hawaiian music”; artists, e.g. “100% Prince”; al-

bums, e.g. putting songs from one or more albums in a playlist; styles,
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e.g. “British & psychedelic”; instrumentation, e.g. “songs with cello”; and

performance, e.g. “female singers”; years, e.g. “1970s and older”. Other

themes concern more specific music organisation principles, e.g. producer,

label or composer, or content features, e.g. BPMs or energy.

Contextual Themes concerning the listening context. The concept of listen-

ing context is broad, one definition being “any contextual condition that

might influence the user’s perception of music” [KR12]. Examples of con-

textual themes include: events and activities, e.g. “birthday party”, “road

trip”, “Christmas”; mood, e.g. “happy hits”; and time of day, e.g. “night

time”.

Personal Themes concerning the user’s personal life, including: relationships:

e.g. “breakup”; biographical histories, e.g. “the soundtrack of my life” or

“Amsterdam 1999”; and memories and experiences, e.g. “memory lane”.

Individual Idiosyncratic themes. This last category is a container for a wide

range of peculiar themes that arise from an individual’s creativity. Ex-

amples include: message and puzzles, e.g. a playlists that sends a hid-

den message by playing with song titles, artist names or lyrics, such as a

playlist where all songs are about water; themes outside the music uni-

verse, such as soundtracks, e.g. “Gossip Girl”, and cultural references, e.g.

“Viva Las Vegas”. Another notable example include playlists containing

favourite songs, e.g. “all time favourites” or “latest favourites”.

The categorisation above is consistent with other categorisations proposed in

related work, e.g. see [CJJ04, CBF06, HG09].

It is worth noting that a playlist theme may not give a clear indication of the mu-

sic included in the playlist. For example, personal themes strongly depend on

a user’s personal life, and their musical choices may make sense to the playlist

constructor only. In some cases, even the playlist theme itself may make sense

to the playlist constructor only, for example the individual theme about water

that we gave earlier. Other categories of themes, such as standardised and con-

textual themes, may be more “predictable” in the sense that a third entity may

be able to select a suitable song to add to those playlists.

Moreover, even though every playlist is thematic by definition, the theme may

be more or less strictly followed by the playlist constructor. For example,

[CBF06] report that playlists created for personal use have a less strictly de-

fined theme, as they may be employed as a background for another activity,
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while playlists created for sharing with other users usually have a more clearly

defined theme. And [KBJ20] suggests that playlists sometimes have more than

one theme.

Few studies investigate the popularity of different themes, i.e. how frequently

users create playlists of specific themes. For example, [CBF06] analyse playlist

requests posted by users in blog posts and find that the majority of requests are

for standardised and contextual themes. And [PZS17, PZS16] carry out a data-

driven analysis of manually created playlists in Spotify, by clustering playlists

on the basis of acoustic features, and analysing those clusters based on their

semantics, as extracted from the most relevant song tags in the cluster. They

identify five clusters. They call the biggest cluster “feel-good music”, and find

that 91% of playlist creators have at least one playlist in this cluster. The other

clusters contain more niche music, as only a minority of playlist creators have

a playlist belonging to these latter clusters.

2.6.2 Song selection

In MPG, the songs are selected manually by the user so as to match the playlist

theme, and according to different guidelines. One obvious guideline is musical

taste since users commonly compile playlists of music that they like [DMV97].

Interestingly, [HG09] find that songs liked the most by users are usually picked

first. Two other guidelines are song coherence/diversity and song ordering.

2.6.2.1 Song coherence/diversity

Songs should remain coherent throughout the playlist. In the literature, the

concept of song coherence is related to that of song similarity. For example,

[LBM11, KBJ20] mention that songs are coherent if they are similar in terms

of e.g. tempo, mood, genre, time period, musical style and/or lyrical content.

Music similarity is a multi-faceted and subjective concept that we further discuss

in Section 2.5.1.3. The work we review measures coherence using metadata;

for example, [JKB14, SW06] use musical genres, while [PGG19, CFS15] use

tags.

As well as being coherent, songs should also be diverse through the playlist

[HG09, TLL17]. We use the concept of song diversity as a contrast to the con-

cept of song coherence. For example, [LBM11] point out that songs should be

varied in their metadata, e.g. there should be relatively few songs by the same
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artists, and there should also be some variety in musical genres.

Striking the right coherence/diversity balance is key to successful song selection

in playlists [KBJ20, HLW19], almost as important as matching the listener’s mu-

sical taste [DMV97]. Some work tries to measure coherence/diversity in manu-

ally created playlists, with the goal of characterising the ideal trade-off between

the two quantities. For example, [JKB14] utilise an intuitive measure counting

the average number of songs from the same genre in manually constructed

playlists, and find that typical values are around three to four songs per genre.

Porcaro et al. [PGG19] measure coherence/diversity as a function of the year in

which a playlist was created, by comparing playlists created in the 2000s, in the

2010s and in the 2020s. They find that earlier playlists featured a higher level

of diversity, while in recent years playlists tend to be more coherent. They relate

this change to the advent of music streaming services, and the phenomenon of

filter bubbles [AWMC17]. Slaney et al. [SW06] measure coherence/diversity

as a function of playlist length, finding that the longer the playlist, the higher

the diversity, which can be related to the fact that a longer listening time re-

quires more diversity so as to keep the interest of the listener alive. Choi et
al. [CFS15] measure coherence/diversity as a function of playlist theme, as

identified by relevant tags associated with a playlist, finding that playlists with

different themes are different in terms of diversity/coherence. These studies

highlight the fact that the appropriate trade-off between diversity and coher-

ence is difficult to determine since it depends on several factors, including the

year of creation, the number of songs, and on the theme. Additionally, [LBM11]

find that the appropriate trade-off between diversity and coherence depends on

the preferences of the individual user [LBM11].

2.6.2.2 Song ordering

We refer to song ordering as the process of arranging the playlist’s songs in a

particular order. The relevance of song ordering in the process of manually

constructing playlists is disputed. Some work maintains that song ordering

is relevant; other work maintains the opposite. All of the work agrees that

song ordering is less important than other factors, such as striking the right

coherence/diversity balance [DMV97].

There is work that investigates the relevance of song ordering via user stud-

ies, finding that song ordering is relevant. For example, [CBF06] observe the

playlist creation behaviour of users, reporting that they actively arrange songs
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so to achieve a music flow, especially when they are creating a playlist to be

shared with other listeners. And, [DMV97] explicitly ask about the importance

of song ordering, and report a result of zero, on a scale from minus four to four,

which we interpret as an indication that song ordering has some relevance.

The authors also ask participants in their study about the importance of other

factors, such as the start and end songs, rated as minus two, choosing songs

according to taste, rated as two, and balancing coherence and diversity, also

rated as two.

However, other work that also employs user studies finds that song ordering is

not relevant. For example, [AH05] ask the participants to send in a playlist of

songs. Later, participants are presented with the playlist they sent, along with

an alternative playlist with the same songs but shuffled, and are asked to rate

the two playlists based on their quality by sight, i.e. without listening to the

music. They find no difference in quality between the two options: half of the

participants mention that they picked songs at random from songs that they like

when building the playlist they sent in. Similarly, [TLL17] find that users do not

expect playlists to be ordered in the first place. Finally, [KBJ20] ask about the

importance of song ordering and six other factors, finding that song ordering is

the second least relevant factor.

Some work in APG also indirectly studies the relevance of song ordering. For

example, [ABC+18] weight the final part of a playlist more than the initial part

when predicting the next song, observing an increase in performance compared

with the case when both parts have equal weight. This is an indication that song

ordering is relevant. But, [VQSW19] instead find that song ordering is not rel-

evant. They train RNN models for APG, which naturally take song order into

account. They train on a set of playlists and, separately, on shuffled versions of

the playlists, reporting the same accuracy in both settings, suggesting that or-

dering is not significant. A result similar to [VQSW19] is presented in [ML12].

Some work investigates the importance of song ordering via statistical analysis.

For example, [SPCS21] consider a set of manually constructed playlists, and ex-

tract a variety of song features, including content-based data and metadata. The

content-based data are: acousticness, danceability, energy, instrumentalness,

liveness, loudness, speechiness, tempo, valence, key, and mode. The metadata

are: genre, artist, and popularity. They compute song similarity using this data,

measuring higher similarity between songs that are close to each other in the

playlists; the similarity decreases when considering songs that are further apart
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in the playlists, which is an indication that ordering is relevant.

We believe that the contrasting results presented above are due to the lack of

a standardised experimental procedure. For example, [SPCS21] adopt a statis-

tical analysis which proves the relevance of ordering, as songs closer to each

others in playlists are found to be more similar to those further away. The

difference in similarity is only slight, but can still be detected with statistical

analysis. The slight relevance of ordering may not be detectable in user studies.

The studies above also differ in their experimental settings, and song order-

ing may be relevant in some experimental settings, and not relevant in some

others. One experimental setting in which song ordering is relevant is when

users construct playlists to be shared with other people, as opposed to when

they construct playlists for private use, which is one experimental setting in

which song ordering is not so relevant [CBF06]. Looking at the studies above,

those that deal with playlists to be shared find that song ordering is important,

e.g. [SPCS21, ABC+18, DMV97], while those that deal with playlists for pri-

vate use find that song ordering is not important, e.g. [TLL17, KBJ20, AH05].

More generally, song ordering might not be relevant in cases when a playlist is

constructed to be listened to in shuffle mode, such as playlists for private use

[CBF06]. The research of Leong et al. [LVH05, LVH06, LHV08] looks at shuffle

listening in playlists, highlighting the positive listening experiences allowed by

shuffling, like serendipity, as well as studying the different use cases when shuf-

fle listening is appropriate, which may be a good starting point for researching

other use cases in which song ordering is relevant.

Songs ordering has some connection with song coherence/diversity, as differ-

ent orderings of the same set of songs may result in different perceived coher-

ence/diversity. Dias et al. [DGF17] present two empirical rules of thumb for

song ordering in order to help to strike the right coherence/diversity balance.

Rule (1): avoid putting songs by the same artist or with the same genre to-

gether in a sequence, unless there is a special link between the two songs, e.g.

two parts of the same continuous recording [CBF06, CBB17]; Rule (2): place

songs with complementary sounds and styles together consecutively, so as to

avoid the “clash of one song against the other”.

2.6.3 Assisted manual playlist generation

Assisted manual playlist generation (A-MPG) is a special case of MPG, con-

cerned with the development and evaluation of algorithms for assisting users
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Table 2.5: Organisation of work on A-MPG based on how the user is assisted
during the playlist construction process. We distinguish work that assists users
with visualisations and with recommendations. Additionally, we divide work
published up to 2016 from work published from 2016 onwards.

Category Up to 2016 From 2017

Visualisation [PRM02, THA04,
MUNS05, NDR05,
KSPW06, LT07, Lil08,
GKW08, CB09, DF10,
MRNT10, CVER07, GCS11,
vGVvdW04, JJ09, VGV05,
CPP11, Voo06, LE07,
HAS09]

—

Recommendation [GG05, BBB10, BHBB11,
DGF16, HHKB06]

[KBJ20, KJB18, PHG+17,
MHCV19]

in the process of manual playlist construction. An example of work in A-MPG is

[KBJ20]. The authors utilise algorithms for recommending the next song that

the user may want to add to the playlist, in order to relieve users from the bur-

den of searching for songs manually. The authors also analyse the impact of

these song recommendations in the playlist construction behaviour of users.

A-MPG represents a middle ground between MPG and APG. In MPG, the user is

tasked with constructing the playlist, finding songs by manually browsing the

song catalogue. In APG, an algorithm is tasked with constructing the playlist,

aligned with some target characteristics input by the user. Both MPG and APG

have advantages and disadvantages. An advantage of MPG is that users are left

in control of the playlist construction process, which allows for self-expression

through their own musical choices [Web20]. But, the process of MPG is time

consuming, especially in music streaming services, where catalogues contain

millions of songs. An advantage of APG is that it relieves the user of task of

manual song selection. But, APG lowers the control of users over the construc-

tion process.

In A-MPG, the user is tasked with constructing the playlist, but algorithms are

employed as facilitators, to assist users in selecting the songs21. A-MPG unites

the two paradigms, leaving users in control of the playlist construction process,

21In MPG the users are also assisted by algorithms, in particular by search engines, while
manually browsing the catalogue. However, those search engines are not tailored to song
selection for playlists.
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(a) (b)

Figure 2.2: Examples of visualisation used in A-MPG to assist users in manually
creating playlists. Figure (a) is from [KSPW06] and Figure (b) is from [THA04].

while alleviating users of the burden of manually searching enormous song

catalogues. A-MPG thus strives to achieve a trade-off between the time spent in

creating the playlist, and the user satisfaction with the playlist: MPG is very time

consuming, but leads to highest user satisfaction with song choices, since users

have full control over them; APG is fast, but may lead to low user satisfaction

with the song choices [Kju16]; and A-MPG is less time consuming than MPG,

but more time consuming than APG, and can result in user satisfaction with the

song choices that is lower than MPG but higher than APG [BBB10].

In their 2017 survey, Dias et al. [DGF17] review the research on A-MPG to that

date. They present several categories of algorithms, all based on visualisations:

maps, graphs, dots and radar A-MPG algorithms. In our survey here we include

the A-MPG algorithms that were covered by survey (2), as well as more recent

work, not covered in survey (2). However, the recent work does not belong to

the categories proposed in survey (2). Hence, we propose a novel categorisation

of A-MPG algorithms, to cover both recent and non-recent work. Specifically,

we divide algorithms in two categories: visualisation, and recommendation. In

Table 2.5 we divide the work on A-MPG based on the categorisation, and we

distinguish the research up to 2016, which was already surveyed by Dias et. al,
from the research from 2017 onwards, that we exclusively survey.

2.6.3.1 Visualisation

Some work in A-MPG use visualisations for assisting users in the manual con-

struction of playlists. An example of visualisations are maps, that represent
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the songs in the catalogue by similarity, i.e. similar songs are close in the map,

and dissimilar songs are further away from other. Maps can either be 2D, e.g.

[PRM02, JJ09], or 3D, e.g. [KSPW06, LE07]. In Figure 2.2, we show examples

of maps from two A-MPG algorithms.

Figure 2.2(a) is a map proposed in [KSPW06]. The authors represent the songs

in a multi-dimensional space made of multiple types of content-based data.

Then, they use self-organising maps (SOMs) [Koh90] to project the songs to a

two-dimensional space. Finally, they build a 3D map by analogy with a land-

scape, with hills in correspondence to dense clusters of songs, and valleys in

correspondence to sparse areas, while the sea represents areas with no songs.

SOMs are frequently used in this kind of work, especially for their ability to

project songs not seen at training time, and for their scalability [PRM02]. Simi-

lar work that uses SOMs includes [NDR05, LT07, MUNS05, MRNT10, vGVvdW04,

Voo06, JJ09].

Figure 2.2(b) is a map proposed in [THA04]. The authors represent songs as

the leaves of a tree, whose upper levels represent, from top to bottom: musical

genres; sub-genres; and artists. Then, they use treemaps [Shn92] to transform

the tree representation to a map representation. It is possible to draw a map

representation at the different tree levels, i.e. at the level of genres, sub-genres

or artists. Figure 2.2(b) shows a map drawn at the level of genres. Another

work that uses treemaps is [DF10].

Visualisations can also consist of graphs. For example, [GCS11] create a graph

of artists, using similarity between artists, as retrieved from Last.fm, which is

known to rely on usage data [CKN+11]. Artist-to-artist similarity is symbolised

as edges, with longer edges joining less similar artists, and shorter edges joining

more similar artists. A similar work using graphs is [CVER07].

Visualisations can be drawn using simpler strategies, such as associating songs

to points in the valence-arousal space [Gre16], without applying other trans-

formations [CPP11], or by associating songs to colours [HAS09], and drawing

a colour-map representing a collection of songs.

The visualisations discussed so far in this Section represent songs by similarity

based on content-based data and metadata. However, using other sources of

background knowledge is also possible. For example, [GKW08] relies on usage

data. Inside Section 2.5.1.3, we describes other ways in which music similarity

can be measured. Some visualisations leave the user in control to decide their
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preferred background knowledge for computing some similarity. For example,

[vGVvdW04, VGV05] propose a map where song similarities can be computed

based on different metadata, such as the year of release, the genre, or based

on content-based data, and users are left with the control of deciding which

sources of background knowledge to use.

Once the visualisation is created, the user can interact with the visualisation

while creating a playlist. For example, in the case of maps, different types of

interactions are possible, including manual song picking in the map [THA04],

as well as drawing paths [Lil08, JJ09] or shapes [NDR05] in order to create a

playlist of the songs included on the path or shape.

2.6.3.2 Recommendation

Another way in which algorithms can assist users in the process of manually

constructing playlists is by providing recommendations for songs to add to the

playlist. In principle, any APG algorithm we present in Section 2.5.1 can be

used for providing those recommendations. For example, [KBJ20, KJB18] use

the APG feature that is part of the Spotify API and an heuristic algorithm based

on popularity, while [GG05] uses a similarity-based algorithm.

The recommendations are usually displayed as elements of the user interface.

Standard approaches include [KBJ20, KJB18], which present recommendations

as a list of songs that can be clicked on. A more creative approach is in [GG05],

which presents recommendations as discs that can be dragged and dropped on

top of other discs, so as to build a playlist. Another approach is Rush [BBB10].

Rush asks the user to select a seed song, and it then presents the user with a

carousel of five songs that it recommends can be added to the playlist; as soon

as the user selects one of these songs, another carousel of five-songs is pre-

sented, with recommendations dependent on the previous song, and so on, un-

til the playlist is fully built. The same authors present Rush 2 [BHBB11], which

works in the same way as Rush, but now carousels are replaced by wheels, that

have at their centre the last selected song, and recommended songs are dis-

placed around the wheel based on their relevance to the seed song. The user

can customise Rush 2’s recommendations by setting filters on BPMs and genre.

AudiRadar is a system that is similar to Rush 2 [HHKB06]. MixTape [PHG+17]

is also an A-MPG algorithm similar to Rush, but it follows a different interac-

tion paradigm: it shows the user just a single song recommendation, which the

user can either accept or reject. As soon as the user gives feedback, another
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song recommendation is displayed, dependent on the user feedback. MixTape
chooses between exploration and exploitation: it explores the song catalogue

if the user skips a song recommendations, and it exploits similarity when the

user accepts a song recommendations. PlaylistCreator [DGF16] displays rec-

ommendations using a standard list strategy, but the interface allows users to

customise the song recommendation algorithm. For example, they can specify

the playlist theme, or they can filter songs by metadata. Another way to present

recommendations is together with explanations. For example, [MHCV19] pro-

vide explanations based on the visualisation of content-based features, and find

that the presence of explanations increases the satisfaction of users with the

process of playlist construction.

Kamehkhosh et al. [KBJ20, KJB18] conduct a user study where users select a

theme among six themes and then compose a playlist around that theme. Users

are partitioned in two different treatments: rec and no-rec. Rec users see ten

song recommendations while building the playlist. No-rec see no recommenda-

tions. Users in both treatments can search for songs to add to the playlist using

a search bar. They find that 67% of rec users adopted at least one song rec-

ommendation. The users who did not adopt any recommendation were either

experts in playlist construction or had low enthusiasm for music. Increasing

user trust in song suggestions is mentioned as an area of improvement for in-

creasing the adoption of song recommendations. Also, the mere presence of the

recommendations is found to influence the songs that rec users search for, even

in the case that the song recommendations are not selected.

2.6.3.3 Discussion

Table 2.5 reveals the differences between the research on A-MPG up to 2017

(the first period), which was already surveyed by Dias et al. compared with the

research from 2017 onwards (the second period), that we exclusively survey.

Research from the first period focuses mainly on visualising the song catalogue.

In the second period, the focus is shifting to recommending songs to be added

to the playlist, probably due to the rise of music streaming services. In fact,

with streaming services, the song catalogue shifted from personal collections

to millions of songs [Spo22], which are difficult to visualise on a map or on

a graph. Recommendations, on the other hand, can help users by providing a

small selection of relevant songs.

Evaluation of A-MPG studies is primarily done through user studies. One funda-
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mental issue is that of evaluating the usability of the A-MPG algorithm, which

can be done using standard questionnaires, common in the HCI field, e.g.

see [Lew95], or through semi-structured interviews. Other work investigates

domain-specific aspects, for example satisfaction with constructed playlists when

assisted by the A-MPG algorithm [BBB10]. Finally, some works in A-MPG do

not carry out any experimental evaluation e.g. [CPP11, GKW08].

2.6.4 Group manual playlist generation

Research in group manual playlist generation (G-MPG) looks into how a group

of users constructs playlists, as well as the purposes for constructing these

playlists, and the practices around listening to these playlists. In Section 2.6,

we defined MPG as the task of manually selecting songs from a song catalogue

so as to match some desired target characteristics of the playlist. G-MPG is a

special case of MPG where a group of users is involved in the manual selection

of the songs, instead of a single user. For the purposes of this Section, we refer

to a playlist constructed by a group of users as a collaborative playlist (CP);

and we refer to a playlist constructed by a single user as a personal playlist

(PP). Finally, we refer to the users involved in the construction of a CP as the

collaborators.

CPs can be constructed by groups of varying size. For example, [PK21] report

that the majority of CPs have a maximum of six collaborators. In the same study,

[PK21] report that collaborators are usually groups of friends, or family, while it

is much rarer to construct a playlist together with strangers, which corroborates

a similar study by Spinelli et al. [SLPL18]. CPs can be listened to in a group,

which can be composed of the people that contributed to the playlist, or may

include other people, such as other people invited to a party [CN09]. In a large

proportion of cases, CPs are also listened to by individuals on their own, for

example to accompany everyday activities [PK21] CPs are very dynamic as it is

common for the collaborators to frequently update a CP [LO13]. For example,

during a party, a playlist could be modified so as to accommodate song requests

from the guests [SLPL18].

The practice of constructing CPs is widespread nowadays, because most popular

streaming services offer a dedicated feature where collaborators can add, delete

and re-order songs in a CP. In a recent study, Park & Kaneshiro report that more

than half of Spotify users in the US collaborate on CPs [PK22].
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CPs serve a number of important purposes. Park et al. [PLLK19] divide the

purposes of CPs into three categories: practical, cognitive and social. Practi-

cal purposes include creating a playlist to be listened to in a group during a

shared social occasion, or speeding up the creation of a playlist via collabora-

tion between users. Cognitive purposes include discovering new music, since

collaborators may select songs which are novel to some of the other collabora-

tors. Social purposes include to keep in touch with the other members of the

group, as well as developing a social connection with them, by using music as a

medium for bonding, or for sharing music between the members of the group.

Some of the purpose of CPs align with the purposes of PPs, which are conve-

nience and self-expression (see Section 2.2.1). In particular, the practical and

social purposes of CPs align with the convenience and self-expression purposes

of PPs. Several other work corroborate the three categories of CP purposes pro-

posed in [PLLK19]. For example, [PK21] find that users use CPs as a means of

discovering new music added by the other collaborators, and that these social

recommendations are welcome by users because of the social link with the col-

laborator that recommended them. In a similar vein, [LOV17, LOT16, SLPL18]

report that social recommendations are more appreciated than algorithmic rec-

ommendations. And, [PK21, PRBK22] find that CPs facilitate the reinforcement

of social connections, because music is often used as a medium for discover-

ing the personality of other individuals [LDHL12], and can spark conversations

among collaborators [BMA06]. Similarly, [LDHL12] find that CPs can be used

to keep in touch, for example using songs that evoke shared memories, acting

a little like souvenirs.

In the rest of this Section, we continue our characterisation of CPs. In Sections

2.6.4.1 and 2.6.4.2 we talk, respectively, about target characteristics and song

selection strategies in CPs. In Section 2.6.4.3, we talk about the group dynamics

that arise in the construction of CPs.

2.6.4.1 Target characteristics

The target characteristics of a playlist are the organisation principles which

make the playlist a sequence of songs to be listened to together. In Section

2.6.1, we make use of the word “theme” to refer to the target characteristics

of a manually constructed playlist, and we analysed the themes of PPs. In this

Section, we make the same use of the word “theme”, as we analyse the themes

of CPs.
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The themes of CPs mostly overlap with the themes of PPs, which we covered

in Section 2.6.1. Often, the themes of CPs tend to be related to group activi-

ties, for example a playlist for a house party, an intimate dinner with friends

[BJK18], or a road trip [CNBA14, AÖ02]. As well as being tailored to the group

activity, the themes of CPs are sometimes also tailored to the location where

the group activity happens, and to the social interaction the music is hoped

to encourage [BJK18]. Intuitively, the theme of a CP needs to be understood

by the collaborators, otherwise they will not be sure what songs to add to the

playlist [PK21, PK22], and whether the playlist matches a desired listening con-

text [LR08]. The active engagement of the collaborators with a CP determines

its success [PK21], and so the theme of a CP is usually clearly defined and easy

to understand by the collaborators, which is different to what we reported for

PPs in Section 2.6.1, as themes of PPs are sometimes only loosely defined, re-

lated to the playlist creator’s personal life, and therefore difficult for other users

to understand.

2.6.4.2 Song selection

In Section 2.6.2, we analyse song selection in PPs. One obvious guideline for

song selection in PPs is that the playlist constructor selects music according to

their tastes. In CPs, there are a number of playlist constructors (the collabo-

rators), and so the song selection should be tailored to the tastes of a group

of listeners [PK21]. The group of listeners might be composed of the collab-

orators, but may include also other people, for example other people invited

to a party. The degree of heterogeneity of the musical tastes among the group

of listeners plays a role in song selection for CPs. If the group of listeners have

similar tastes, it is easier to select songs that everybody will like, and the various

collaborators can feel free to select music that they truly like, knowing it will

be appreciated also by the other listeners. If the group of listeners have dissim-

ilar musical tastes, song selection might deviate from each individual’s musical

tastes, because the collaborators might settle for something that pleases, at least

partially, the musical tastes of all the listeners. This is especially true in situa-

tions where the playlist will be listened to in a large group, and especially with

strangers. In such cases the collaborators might settle for a “safe” playlist of

songs familiar to most people, made, for example, of current hits and classics

[SLPL18], and with a high degree of diversity, so as to increase the chance that

every listener likes at least some of the songs in the playlist. In circumstances of

high diversity, it is common to navigate the playlist by skipping songs [CN09],
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and/or by sorting songs, for example by musical genre or by artist name [PK22].

2.6.4.3 Group dynamics

The construction of CPs involves a group of collaborators who select the songs

to add to the playlist. The involvement of multiple users in the decision making

process raises questions about group dynamics, that we address in the rest of

this Section.

2.6.4.3.1 Collaborators’ roles and comfort in modifying the playlist The

collaborators assume different roles in the process of constructing a CP. In par-

ticular, the user that initiates the playlist is sometimes called the host, and the

other collaborators are the guests. The analogy is that of a physical setting,

for example a party, where a person, the host, invites other people, the guests

[CN09]. Usually, the role of the host is that of specifying the playlist theme, as

well as adding an initial set of songs that fit the theme, and inviting guests to

contribute to the CP [CN09].

Since musical taste is linked to the personality of an individual, sharing music

involves some revelation of the personality of an individual [LDHL12], which

can be a delicate matter, especially when the collaborators are not linked by

strong friendship relationships, and even more so when they are strangers

[CNBA14].

When collaborators do add songs to a playlist, they do so consciously, trying

to fit the theme of the playlist and the taste of the other collaborators and any

other intended listeners [LOV17, LOT16]. Bauer & Ferwerda [BF20] set up an

experiment where a user is asked to propose a song for a CP. The user then

receives feedback from four other collaborators, which can either be positive

(like) or negative (dislike). They find that, in most cases, it is enough to receive

negative feedback from at least one collaborator for the user to reconsider the

song that they added. At the same time, the user tends to give positive feedback

to songs proposed by other collaborators, even if those songs do not really fit

the musical tastes of the user.

In a similar vein, [PL21] measure the comfort of a user in performing different

tasks, namely adding, deleting, and re-ordering songs in a CP. They measure

comfort in the case that the user is the host, and in the case that the user is a

guest. They also distinguish the case in which the user is deleting a song added

by them, or by another collaborator. They find that users are quite comfortable

Intelligibility of Music Playlists 71 Giovanni Gabbolini



2. RELATED WORK 2.6 Manual playlist generation

in performing addition and re-ordering of songs, both in the case that they are

hosts and in the case that they are guests, even if the comfort slightly decreases

in the case that they are guests. They also find that users are comfortable in

deleting a song they added, but very uncomfortable in deleting a song added

by some other collaborator. They mention that deleting someone else’s song is

a socially rude practice. The result corroborates [PK21], which finds that users

often add or re-order songs, but rarely delete songs. This can cause CPs to grow

monotonically in size over time.

2.6.4.3.2 Privacy and access control One purpose of CPs is to allow social

connection between people by sharing music, to keep in touch with friends,

and to use music as a medium for bonding. The music streaming services that

allow subscribers to create CPs offer only basic features. For example, CPs in

Spotify are like PPs, with the difference that song addition, deletion and sort-

ing can be done by a group of authorised users. Some works propose going

a step forward, by developing a range of social features in the context of CPs:

[LR08, PK22, LO13] propose to log modifications to the playlists, such as song

additions, deletions and re-orderings, as well as logging the author of the mod-

ification; [PL21, PK22, LO13] propose a chat functionality, that can be used by

collaborators, for example to discuss whether a song addition is suitable for the

playlist or not, or to simply socialise; and [PK22] propose a listening-together

functionality, that would allow collaborators to tune-in to the playlist, so as to

listen to the same music at the same time.

Some work reports that users are in favour of including these social functionali-

ties in streaming services. For example, [PL21] report that the chat functionality

would increase the comfort of users in adding, deleting and re-ordering songs.

But, other work reports that these social functionalities should be mindful of

user privacy. For example, [Anb18, BMA06] report that some users are op-

posed to the idea of logging the changes to a CP, as they are afraid to be judged

for their musical tastes, which circles back to the low comfort that collaborators

may have in adding, deleting and re-ordering songs in the playlist (see previous

Section).

Related to the issue of privacy is the issue of access control. The creator of a

CP should be able to determine who can see the playlist, and who can modify

it [PK22]. Some more fine-grained levels of access control are also discussed;

for example, [LOV17, LOT16] propose that the playlist creator should have the

opportunity to approve any changes to the playlist. In general, the literature

Intelligibility of Music Playlists 72 Giovanni Gabbolini



2. RELATED WORK 2.7 Enhanced playlists

sees fine-grained access control as a positive feature to have in CPs.

So far in our survey, we have focused on work that deals with the construction

of playlists, both manual construction and automatic construction. In the re-

mainder of the survey, we focus on other topics, starting with the construction

of enhanced playlists, i.e. objects that generalise playlists, by including special

features.

2.7 Enhanced playlists

In Section 2.2, we define a playlist as a sequence of songs intended to be lis-

tened to together. Some work we survey goes one step forward, by enhancing

playlists with additional features. In the following, we discuss two types of

enhancements: song mixing and interleaving songs with speech.

2.7.1 Cross-fading

Some work in APG strives to create playlists but with the additional objective

that there are smooth song-to-song transitions, so that the ending of one song

flows smoothly to the beginning of the next song. For example, [SC12] propose

a method to classify “good” song-to-song transitions from “bad” song-to-song

transitions. But even in a playlist with “good” song-to-song transitions, there is

still a short silence between the end of one song and the start of the next. Re-

search into automatic cross-fading seeks methods for, as seamlessly as possible,

superimposing the beginning of the one song over the end of its predecessor.

Automatic cross-fading is similar to the practice of DJs who often superimpose

consecutive songs so as to create a seamless music flow.

Algorithms for song cross-fading mainly rely on digital signal processing tech-

niques [RM87] and on psychoacoustic studies [GDS16]. Ishizaki et al. [IHT09]

propose a system that works in two steps. The first step is to align the beats of

the two songs to be mixed. Beats alignment can be achieved by slowing down

or speeding up songs, as well as shifting songs in time. Slowing down/speeding

up songs may result in a jarring listening experience. The authors determine a

formula that states the discomfort of users while listening to a particular song

as a function of the slowing-down/speeding-up factor. Then, they propose an

algorithm that determines the slowing-down/speeding-up factor for the two

songs in such a way that the listening discomfort is minimised. The second step
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is to cross-fade the two songs. They devise a cross-fading algorithm that takes

into account the energy of the beats, adjusting the energy of the beats of the

first song to that of the following song when cross-fading.

A similar two-step strategy is followed in [Cli00] and [BGH+17]. The latter

work proposes a sophisticated algorithm for determining the transition points,

i.e. the points that mark where the two tracks should be cross-faded. The mech-

anism works by extracting the position of downbeats, and several features of

those downbeats. For example, they classify downbeats that mark division

points in the songs, e.g. those downbeats delimiting parts with lyrics and in-

strumental parts. Moreover, for every downbeat, they extract timbre features,

chroma features, loudness and vocalness. They pair each downbeat from the

first song with each downbeat from the second song, and then they score all the

pairs using an heuristic. Downbeats with similar values of timbre and chroma

features are rewarded; downbeats with high loudness and/or vocalness are pe-

nalised; and downbeats happening on division points are rewarded. Finally,

they select the transition points as the pair of downbeats with highest score.

The systems described above work particularly well with songs from the same

genre, and especially with dance music, whose regular structure makes it easy

to determine the position of the beats [GMS10]. Basu [Bas04] focuses on how

to mix two songs coming from a variety of genres, e.g. classical music and

techno, without relying on the two-step mechanism described above. Given

two songs, Basu’s system computes their energy signal. Then, it time scales

and time shifts those energy signals and computes their correction, for different

combinations of time scales and time shifts in a range. Then, it selects the

correlation signal with highest value, and converts the scaled and shifted energy

signal back in the time domain, which results in scaled and shifted versions of

the songs, which can be played together so as to achieve cross-fading.

The works on song cross-fading that we have reviewed are evaluated by means

of user studies, where listeners are asked to listen to song mixes, and to com-

plete questionnaires that report on their listening experience e.g. see [Bas04,

BGH+17, IHT09].

2.7.2 Interleaving songs with speech

In playlists, one song follows another, from the first song to the last song.

Playlists therefore do not facilitate access to music contextual information while
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listening22. However, studies report that information seeking is one of the most

important motivations for listening to music [LD04], at least in certain contexts.

In the era of music streaming, traditional radio remains a popular means of mu-

sic access. A recent study finds that music listeners consider radio and streaming

services as complementary, because radio allows them to satisfy their informa-

tion seeking needs, while streaming services fail to do so [COWH20]. The work

that we review in this Section is concerned with generating sequences in which

every pair of consecutive songs is interleaved with speech. This resembles the

concept of radio programs. We refer to the sequence of songs and speech as a

music tour.

We are aware of two lines of work investigating music tours. The first line of

work is that of analysing real radio programs, and developing tools and knowl-

edge that can help to replicate those radio programs. For example, [JLT14]

construct a dataset of tuples, where each tuple contains one block of music

(e.g. a song) and one block of speech, crawled from actual radio shows. Some

tuples in the dataset are positive samples, i.e. were aired in sequence in radio

shows, and some are negative samples, i.e. were not aired in sequence. They

propose an algorithm that, using content-based data extracted from the speech

and music, can distinguish positive samples from negative samples, i.e. that can

recognise if one musical block and one speech block are suited to be listened

in sequence. The algorithm has an accuracy of 75%. Lukacs et al. [LJ16] con-

struct another dataset by crawling actual radio shows that contain music and

speech blocks. They annotate the radio shows, by marking the music blocks,

the speech blocks and hybrid blocks. Finally, they present statistics on the an-

notated dataset, e.g. statistics on how much speech there is in radio programs,

compared to how much music is there. They show that the playlist theme and

the time of the day influence the statistics. For example, when comparing pop

music radio shows and classical music radio shows, they find that, on average,

pop music radio contains more speech than classical music radio, but that the

statistic is the opposite when restricting to the evenings.

The other line of work is concerned with generating music tours. For exam-

ple, Behrooz et al. [BMT+19] propose an algorithm for generating small pieces

of text, called segues, for connecting one song to the next one in a playlist.

22Some work offers music contextual information in textual form, that can be accessed while
listening to a song, e.g. the “behind the lyrics” feature on Spotify23. However, attending to this
textual information requires actions from users, as they need to access and read the information
while listening to the music. In this Section, we are more interested in contextual information
expressed as speech interleaved with the songs in a playlist.
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Segues are then converted to speech using a text-to-speech engine. The work

of Behrooz et al. is limited in that they select the segue connecting two songs

with author-defined segue scores. Our work on song-level intelligibility, which

we describe in this dissertation, is related to that of Behrooz et al. [BMT+19].

For example, in Chapter 3 we define a scoring function able to determine the

interestingness of any segue. In the same Chapter, we validate our measure of

interestingness, finding that it positively correlates with human perceptions of

segue quality. In Chapter 4, we provide several algorithms to generate music

tours, with the objective being to maximise the interestingness of the segues in

the tour [GB21c, GB22], and we evaluate those algorithms with offline experi-

ments. In Chapter 5, we provide a user-centered investigation of tours.

2.8 Playlist tagging & captioning

Music streaming services feature billions of playlists created by users, profes-

sional editors and algorithms [Dea21]. In this content overload scenario, it is

crucial to characterise playlists, so that music can be effectively organised and

accessed [CFM+16]. Two common ways of characterising playlists are via au-

tomatic playlist tagging and automatic playlist captioning. We review both of

these below.

2.8.1 Playlist tagging

A common approach for characterising playlists is tagging, which is the task of

assigning to a playlist one or more tags24. For example, [FKL+21] describe a

dataset of playlists annotated with a variety of different tags, such as musical

genres and decades. Similarly, [CKE20] describe a dataset of playlists annotated

with listening context tags. Examples of listening context tags are “workout”

and “party”, which characterise playlists as being suitable to be listened to by

users while working out, and while having a party.

Existing work on playlist tagging focuses on listening contexts tags. Choi et
al. [CKE20] set up a multi-label classification problem, in which playlists are

classified for their listening contexts, proposing four classifiers: two matrix fac-

torisation (MF)-based classifiers, that work by counting how many times a song

is associated with each listening context, and two convolutional neural network

24We remind the reader that we use the word “tag” where there is a fixed vocabulary, and
we “user tag” where free text is allowed.
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(CNN)-based classifiers, that work with song audio. Our work on playlist level

intelligibility, which we describe in this dissertation, is related to that of Choi

et al. [CKE20]. In Chapter 6, in fact, we propose four other classifiers, that

integrate metadata in the form of a knowledge graph, reporting state-of-the-art

accuracy.

2.8.2 Playlist captioning

Tagging is limited to the usage of one, or to a set of, single words. However,

playlists may sometimes be centered around elaborated themes, see Section

2.6.1, that may not be explicable by using a set of tags. For example, a playlist

tagged as “Jamaica” and “UK”, may refer to a playlist of UK songs influenced by

Jamaican traditional music, or to a playlist of top-charted Jamaican songs in the

UK. Natural language, instead, allows for precise characterisation of playlists at

a high semantic level.

Playlist captioning is introduced in [CFM+16] as the task of automatically de-

scribing a playlist using natural language. In the same paper, [CFM+16] pro-

pose to use a sequence-to-sequence (seq2seq) model based on a RNN, similar to

those common in machine translation [BCB15], adapted to translate a playlist,

as represented by song embeddings, to a caption. The song embeddings are ex-

tracted from song audio using a CNN. They benchmark their model on a small

dataset of captioned playlists, reporting that their model fails to generalise to

new playlists. Similarly, Doh et al. [DLN21] use a RNN and a transformer

model [VSP+17] to translate a playlist, as represented by song embeddings, to

a caption. In their case, they rely on learned embeddings, and they use a larger

dataset. Our work on playlist level intelligibility, which we describe in this dis-

sertation, is related to the above work on playlist captioning. In Chapter 7, in

fact, we also use a transformer architecture for playlist captioning. In our case,

the song embeddings capture musical knowledge from song audio and tags.

Additionally, we utilise linguistic knowledge held by the GPT-2 language model

[BMR+20], reporting state-of-the-art performance in the captioning task.

2.9 Conclusion

In this Chapter, we provided a comprehensive survey of MIR research on mu-

sic playlists. The following Chapters are largely about song-level intelligibility,

strongly related to Section 2.7.2 of the survey, and on playlist-level intelligi-
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bility, strongly related to Section 2.8 of the survey. More generally, with this

Chapter we provide a useful framework for understanding this dissertation in

the context of a broad selection of related research.
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Chapter 3

Generating song-to-song segues

3.1 Introduction

The focus of this dissertation is on playlist intelligibility, that is the degree to

which playlists can be understood by a human audience. As explained in Chap-

ter 1, we distinguish two levels of intelligibility: song-level and playlist-level. In

this chapter, and in the next two Chapters, we focus on song-level intelligibility,

that is the degree to which transitions between consecutive songs can be under-

stood by a human audience. In particular, we achieve song-level intelligibility

by developing algorithms that can generate song-level textual annotations, or

segues. In this Chapter, we propose and evaluate an algorithm, called DAVE,

that, given two songs, can generate segues between the two songs. A distin-

guishing feature of DAVE is its ability to highlight interesting segues, according

to a novel theory of interestingness. DAVE assumes a knowledge graph as an

abstract representation for songs and information about songs. In our abstrac-

tion, segues are paths from one item to another, and interestingness is a scoring

function for paths. We ‘get back’ from the abstraction by mapping paths to

texts. DAVE can generate song-to-song segues of 1553 different types. Segue

types range from factual to word-play. See Figure 3.1 for examples.

We evaluate DAVE qualitatively by means of a user trial, where we compare

DAVE’s segues against curated segues from a segment of the Radcliff & Maconie

Show on BBC Radio 6 called THE CHAIN. In the case of factual segues, we find

that DAVE can produce segues of the same quality, if not better, than those to be

found in THE CHAIN. The results highlight the validity of DAVE as a method for

generating song-to-song segues. We release the source code and the dataset,
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i1

Green Calx

colour

Yellow Belly

Aphex Twin

Warp records

Flying Lotus

i2

Song name

Hypernym Hyponym

Song name

Artist name

Published with Published

Artist name

Solid path: “From green to yellow”.

Dashed path: “Aphex Twin recorded for Warp, and so did Flying Lotus”.

Figure 3.1: Examples of two segues from the song “Green Clax” by “Aphex
Twin” to the song “Yellow Belly” by “Flying Lotus”. The two segues are: (1):
“From green to yellow”; and (2)“Aphex twin recorded for Warp, and so did
Flying Lotus”. We also report a representation of segues in the form of paths in
a knowledge graph. Segue (1) is represented by the solid path, and segue (2)
is represented by the dashed path.

consisting of the answers gathered during the user trial, to facilitate future

research on the subject1.

Segues were first introduced in [BMT+19]. There, the authors developed a sim-

ple prototype able to generate segues for consecutive songs in playlists. They

score individual segues simply with static segue preference weights but they

also take into account, for example, the position of the segue in the playlist and

its proximity to segues of the same type, in order to obtain a degree of segue

diversity. Their experimental procedure consisted of unstructured interviews,

aimed at exploring the potential of the idea. Our contribution fills a number of

1https://github.com/GiovanniGabbolini/dave

Intelligibility of Music Playlists 80 Giovanni Gabbolini

https://github.com/GiovanniGabbolini/dave


3. GENERATING SONG-TO-SONG SEGUES 3.2 Method

Procedure 1: find_segue(G, s1, s2)
input : knowledge graph G, songs s1 and s2
output: interesting segue

1 paths = find_paths(G, s1, s2)
2 for path in paths do
3 path.score = interestingness(path)
4 end
5 best_path = path with highest score
6 best_segue = path_to_text(path)
7 return best_segue

gaps in this previous work. We develop interestingness, a scoring mechanism

for individual segues. And, we evaluate our system with a larger user trial,

comparing it with a curated baseline.

The remainder of this Chapter is organised as follows: Section 3.2 explains how

DAVE works. Section 3.3 details the experimental procedure and analyses the

results. Section 3.4 presents some conclusions.

3.2 Method

Our goal is to generate interesting song-to-song segues. That is, we aim for in-

terestingness, and we discourage trivial and boring segues. We are interested in

generating factual connections, but also amusing ones, based on simple word-

play.

3.2.1 Working mechanism of DAVE

DAVE uses a knowledge graph G as an abstract representation for items and

information about those items. In our abstraction, segues are paths from an

item to another item, and interestingness is a scoring function from paths to

numbers. We ‘get back’ from the abstraction through another function, which

maps paths to texts. In particular, the procedure for finding a segue from a song

s1 to another song s2 works as follows: we find the paths in G that connect s1

to s2, we score them based on their interestingness, keeping only the best one,

which is translated to text, and finally returned. This approach allows us to

exploit heterogeneous data [FŞA+20]. The procedure is also summarized as

Procedure 1.
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In the following, we will provide more details about Procedure 1. We start by

presenting some preliminary concepts:

A knowledge graph is a set of triples G = {(e, r, e′) | e, e′ ∈ E, r ∈ R}, where E

and R denote, respectively, the sets of entities and relationships. A special

subset of entities S ⊆ E, are the songs. Every entity has a type and a value.

For example, an entity that represents a song has type equal to “song” and

a value equal to the song URI. Every relationship has a type.

A path p in G is an ordered list of entities and relationships in G,

p = [e1, r1, ..., rn−1, en] where each triple in p must be in G. The type of

p is the ordered concatenation of the entity and relationship types in p.

We turn to the components of Procedure 1, namely find_paths, path_to_text
and interestingness. find_paths is a path-finding procedure that returns all the

simple paths, i.e. those without cycles, starting from the item s1 and reaching

the item s2 in G . However, we allow for the possibility of constraining the paths

that find_paths can find; see Section 3.2.2.2. path_to_text works by template

filling, with canned templates indexed by the path type, and completed with

information on the entities and relationships that constitute it. Our focus for

this work was mainly on interestingness and so we devote the remainder of this

section to explaining our definition.

Defining a scoring function for segues based on interestingness is not a trivial

task. To be concrete, we refer to Figure 3.1: which one of the two segues is

more interesting? There is no correct answer to this question, as interesting-

ness can depend upon personal relatedness [Sch79] and background knowl-

edge [Kin80]. In this context, we develop a simple theory of interestingness

according to which a ranking can be determined. Our theory builds upon the

concepts of infrequency and conciseness. We believe that infrequent segues are

more interesting, as pointed out by Schank [Sch79] and Kintsch [Kin80] when

discussing interestingess of general statements. We also believe that concise

segues are more interesting, as supported by Geng et al. [GH06] in the con-

text of interestingness in data mining. Our definition of interestingness applies

to paths in knowledge graphs and consists of three heuristics. The heuristics

rely only on statistical information and simple content descriptors that do not

depend on the semantics of segues.

Rarity We define the rarity of a path p using the proportion of paths in G that

have the same type as p. To formalize this, let T be the set of all path
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types in G; and let f(t) be the number of paths in G that are of type t.

Then,

rarity(p) = 1− f(type(p))
maxt∈T f(t)

Unpopularity We define the unpopularity of a path p using the notion of cen-

trality of an entity e. An entity is central if it has a high number of incom-

ing and outgoing edges, compared with other entities of the same type. A

path that visits central entities is more popular than one that does not. To

formalize this, let edgeset(e) be the set of incoming and outgoing edges to

and from an entity e ∈ E in G. We define the centrality of an entity e as:

centrality(e) = min

1,
|edgeset(e)|

median
e′∈E

|edgeset(e′)|

 , type(e′) = type(e)

Then, we define the unpopularity of a path p as:

unpopularity(p) = 1− min
e∈p∩E

(centrality(e))

Shortness Let the length of a path p in G be:

length(p) = |p ∩R|

We define the shortness of a path p in G as done in [AMHWA+05]:

shortness(p) = 1
length(p)

The heuristics rarity and unpopularity both implement the idea of favouring in-

frequent segues, but in a different fashion: rarity has high values for infrequent

path types, while unpopularity has high values for paths that include infrequent

entities. For example, a path that connects people who share a birthday is likely

to have a fairly high value for rarity, but not necessarily for unpopularity, e.g.

if both people are very famous. Or, paths that connect people who have the

same hair colour will have a low value for rarity, but can have a high value

for unpopularity, e.g. if the shared hair colour is something unusual such as

“green”. The shortness heuristic implements the concept of conciseness.

We define the interestingness of a path p in G as the convex combination of the
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three heuristics:

interestingness(p) = w1rarity(p) + w2unpopularity(p) + w3shortness(p)

It ranges from zero to one. w1, w2, w3 are parameters to be tuned, subject to

w1 + w2 + w3 = 1.

3.2.2 Implementation

We implement Procedure 1 as described in Section 3.2.1. The implementation

of Procedure 1 is the algorithm we propose: DAVE.

3.2.2.1 Knowledge graph

We represent a song with three fields: song name, artist name and album name.

The representation allows missing values, e.g. a song that is not part of an

album, and can be easily changed with only minor modifications to the rest

of our implementation, e.g. if songs were instead represented by their Spotify

URIs.

DAVE uses a knowledge graph with 40 distinct node types and 230 distinct

edge types, and can provide segues of 1153 different path types. We build the

knowledge graph with data that we harvest from three main resources:

MusicBrainz We use MusicBrainz2 as the main source of factual data. We ex-

ploit the MusicBrainz APIs3. They allow us to navigate the MusicBrainz

database, and offer entity-linking functionalities. In a first step, we link

the actual song, its album and its artist to their respective MusicBrainz

URIs. Then, we mine different sorts of factual data, ranging from the

genres of the song to the birth places of the artists.

Wikidata We use Wikidata4 as an additional source of factual data. There exists

a mapping from MusicBrainz URIs to Wikidata URIs, making it easy to use

both resources. From Wikidata, we mine biographical data about artists

that is not available in MusicBrainz, e.g. the awards that an artist has won.

WordNet We use WordNet [Mil98] to mine lexical data about the words in

song, artist and album names, e.g. hypernyms and hyponyms.

2https://musicbrainz.org/
3https://python-musicbrainzngs.readthedocs.io/en/v0.7.1/
4https://wikidata.org/
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In addition, we gather some further lexical data through a number of different

resources. For example, we link words in song, artist and album names to

their stems using the Porter stemmer [Por80], and to their phonetics with the

NRL algorithm [EJMS76]. We provide a complete description of entities and

relationships that build up the knowledge graph in the additional materials5.

The factual data that we obtain from MusicBrainz and Wikidata allows for con-

ventional, informative segues. On the other hand, the lexical data from Word-

Net and other resources yields less conventional and perhaps amusing connec-

tions based on word-play. We show two examples in Figure 3.1.

3.2.2.2 Procedure

As mentioned in Section 3.2.1, we constrain the find_paths component of Pro-

cedure 1; specifically, we constrain it to find only paths that go from a start

song to another song without visiting another song. This constraint limits the

number of paths to be scored, at the price of losing some indirect paths. We be-

lieve that some of these indirect paths would be filtered out by interestingness
anyway, since they would have low values for shortness. We set the weights to

be used in the interestingness score to w1 = 0.4, w2 = 0.2, w3 = 0.4. The weights

were set after empirical experimentation, using songs that were not used in the

user trial. We discuss other ways to set the weights in Chapter 8.

3.3 Experiments

We evaluate DAVE by means of a user trial, where we compare DAVE’s segues

against a curated source of segues called THE CHAIN. THE CHAIN is a segment

of the Radcliffe & Maconie Show on BBC Radio 6. In this segment of the show,

listeners call in and propose the next song, always making sure that there is

a connection (sometimes informative, sometimes funny) between the previous

song and the next one. THE CHAIN is made for entertainment and therefore

offers very interesting segues, with strong creative traits. A database with all

the segues that have appeared in THE CHAIN is available on the internet6. At

the time of writing, it comprises more than 8000 segues. A direct comparison

with curated segues is our means of assessing the quality of segues from DAVE.

We do not include any other algorithmic baseline, as we are not aware of any

5https://doi.org/10.5281/zenodo.4619395
6https://www.thechain.uk
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other similar systems in the literature. The only work that deals with segues is

[BMT+19]. We cannot compare with their work because their scoring mecha-

nism is presented in insufficient detail to be reproducible.

Our user trial is a within-subject trial with two treatments: DAVE and THE

CHAIN. We generate segues to show in each treatment using the following pro-

cedure. One segue is sampled at random from a fixed random sub-sample of

THE CHAIN, of cardinality equal to 200 segues. The corresponding segue is gen-

erated by DAVE by picking the segue that maximizes the interestingness, when

starting from the same song as THE CHAIN, and going towards a song from a

fixed sample of songs, of cardinality equal to 496 songs. These 496 songs are

a random sub-sample of 20000 songs from the RecSys Challenge 2018 Dataset

[CLSZ18]. We use MusicBrainz as a source of artist data to filter out artists

based on the country in which they were born or in which they are based, and

on the musical genres with which they are associated. Specifically, we keep only

artists born or based in the UK, and who are associated with at least one genre

from the following: blues, blues-rock, pop, pop-rock, rock, soft-rock, funk, jazz,

r&b and soul. This country and these genres are ones that predominate in THE

CHAIN. This filtering ensure that the songs that DAVE can choose from are

ones that match the style of songs found in THE CHAIN, thus mitigating one

confounder from the user trial.

Each participant is asked to evaluate six segues: she undergoes both treatments

three times. The order of treatments in each pair is randomized. We make sure

that the same segues are not shown multiple times to a participant.

In the following, we provide details on the user trial design, we present statistics

on the answers, and, finally, we analyze the results in depth.

3.3.1 User trial design

The user trial begins with an instructions page. It continues with a three-part

survey, whose parts we will refer to as intro, segue evaluation and outro. The

trial concludes with a final page that offers an optional comments box. In the

following, we describe the three parts of the survey. We provide screenshots of

the user trial text and its workflow in the additional materials7.

7https://doi.org/10.5281/zenodo.4619395
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3.3.1.1 Intro

In the intro, we ask each participant some questions to identify how much she

engages with music. A previous study has highlighted that segues might be es-

pecially suited for music “nerds” [BMT+19]. By asking these questions in our

trial, we can see whether music engagement correlates with segue apprecia-

tion, for example. The source of the questions that we ask is the Goldsmiths

Musical Sophistication Index (Gold-MSI) [MGMS14]. The index comprises five

aspects. Four of the aspects are concerned with music skills, such as musical

training and singing abilities. We restrict ourselves to the remaining aspect, the

one called Active Engagement (AE). AE covers “a range of active musical en-

gagement behaviours (e.g. I often read or search the internet for things related

to music) as well as the deliberate allocation of time and money on musical ac-

tivities (e.g. I listen attentively to music for n hours per day)” [MGMS14]. We

follow [MGMS14], and we measure AE by asking ten questions, with answers

on a seven point scale.

We are also interested in English proficiency, as we want to make sure that

participants can properly understand the segues. So in the intro we also ask

the participant to identify her level of proficiency from among four options:

“Low”, “Mid”, “High” and “Mother Tongue”. We do not collect demographic

information, as we considered it not essential for the scope of the study.

3.3.1.2 Segue evaluation

In the segue evaluation phase, each participant is asked to evaluate six segues,

as described in Section 3.3. We show the segues, as well as the titles and artists

of the songs that they connect. We do not provide any means for the user to

listen to the songs. For every segue, we ask questions to measure a variety

of quality metrics. First, we ask whether the segue is likeable, of high-quality,

and whether it sparked-interest in the next song. Second, we asked how the

participant perceived its content, on three dimensions: informative, funny and

creative. Lastly, we wanted to make sure that the connection between the two

songs is expressed in an understandable way by the segue, and that the segue

is well-written. We call these three groups of dependent variables respectively:

valence, content and text quality metrics. The dependent variables introduced

in this part of the survey are summarized in Table 3.1. We measure all of them

using five point Likert scales.
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Table 3.1: Dependent variables measured during the segue evaluation part of
the user trial.

name dependent variables

valence quality metrics likeable, high-quality, sparked-interest
content quality metrics funny, informative, creative

text quality metrics understandable, well-written

3.3.1.3 Outro

In the outro part of the trial, we measure the familiarity of the participant with

the songs and artists involved in the segues that she has evaluated. Familiarity

with songs and artists might be a confounder for the quality metrics, and we

want to address these effects, if any. We consider familiarity because it has been

shown to be an accurate predictor of musical choice, at least as good as liking

[WGI14], and we assume there may be an extension of the results in [WGI14]

to segues. We measure familiarity with the songs and artists of both the first

song and second song in each segue. Familiarity is measured with a simple two

point scale: “Familiar” and “Not familiar”. We decided to ask about familiarity

in the outro, after the segue evaluation, so that we avoid accentuating any

confounding effects.

3.3.2 Answer statistics

In total, 158 people completed the trial. They are undergraduate Computer

Science students recruited in a university in Ireland. The median completion

time for the survey is 7 minutes, with a maximum of 68 minutes and minimum

of 2 minutes. We discard answers from people who took less than 3 minutes,

as we are worried about their reliability. No participant declared their English

proficiency to be “low” but we further filter out participants with “mid” English

proficiency, since they also might not be able to properly evaluate segues. We

are left with people with “high” proficiency and those for whom English is their

mother tongue (90% of the total). After the filtering, we end up with 151

people. We convert Active Engagement answers to numbers from one to seven,

and segue evaluation Likert scale answers to numbers from one to five. We also

analyze the comments left by the participants, 35 comments in total, but we do

not discuss them in this dissertation because those comments do not add much

to our analysis.
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3.3.2.1 User categories

In some of our analysis, we partition participants based on their level of Ac-

tive Engagement with music (AE). We summed the answers to the AE questions

given by each participant, obtaining a distribution of total AE scores. We di-

vided participants according to the quartiles of this distribution, giving four cat-

egories: “low-AE”, “mid-low-AE”, “mid-high-AE” and “high-AE”. We validated

this partition by considering confidence intervals of segue evaluation answers:

the quartiles show good internal cohesion.

3.3.2.2 Segue categories

We believe that segues can be divided into two categories: those that are in-

tended to amuse (“funny”) and those that are intended to impart information

(“informative”). We decided to create a ground truth that assigns each segue

to one of the two categories. Giovanni Gabbolini and Derek Bridge separately

labeled every segue manually, guided by the following criterion: a segue is

funny if it is written with the goal of making the listener smile, and a segue is

informative if it is written with the goal of giving information to the listener.

A segue can have both goals, e.g. if it presents information in a funny way. In

such borderline cases, we assigned the goal that seemed dominant. We dis-

agreed upon the labelling in 13 out of 400 cases (Cohen’s k = 0.92). We solved

divergences as follows: given a segue s1 where there was disagreement, we

found a second segue s2 whose category was not in dispute, and that both of

Gabbolini and Bridge considered to be similar to s1. We then assigned to s1

the category of s2. We validate the ground truth by double-checking it against

the answers to the survey. In particular, participants were asked to express how

much segues were informative and funny. We computed mean values of their

answers, considering separately segues labelled as informative and funny in the

ground truth. We carry out a t-test for assessing the significance of differences

in the mean values. We found that the mean for informative is statistically signif-

icantly higher than the mean for funny for segues labelled as informative (3.64
vs 2.81, p<0.001), and the opposite for segues labelled as funny (2.47 vs 2.82,

p<0.001). We conclude that participants in the survey agree with our manual

labeling, thus providing some support for the reliability of the ground truth.

The ground truth reveals that THE CHAIN is biased towards funny segues:

roughly three out of every four of its segues are funny. DAVE is approximately

balanced. We show some examples of informative and funny segues in Tables
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Table 3.2: Examples of informative segues. Not only were these labeled in-
formative in the ground truth but also at least two user trial participants gave
them a maximum rating on the informative quality metric.

treatment first song segue second song

DAVE
Weather To Fly

by Elbow

And now Guy Garvey,
who was a member

of Elbow...

Belly Of The Whale
by Guy Garvey

THE CHAIN
505 by

Arctic Monkeys

Bill Ryder-Jones of The Coral
joined Arctic Monkeys

on their last tour...

Pass It On
by The Coral

Table 3.3: Examples of funny segues. Not only were these labeled funny in the
ground truth but also at least two user trial participants gave them a maximum
rating on the funny quality metric.

treatment first song segue second song

DAVE
Fleety Foot

by Black Uhuru
From foot

to faces . . .
Faces by

Ed Sheeran

THE CHAIN
Tumbling Dice by
The Rolling Stones

You need a dice
to play snakes
and ladders...

Rattlesnakes by
Lloyd Cole and

the Commotions

3.2 and 3.3.

3.3.3 Results

In this section, we analyze the answers to the segue evaluation part of the

survey, dividing by treatments, segue category and user category. We also in-

vestigate the effect of familiarity. And, finally, we evaluate the effectiveness of

interestingness and the correlation between quality metrics.

3.3.3.1 Performance in the quality metrics

We compute the average for each quality metric given in Table 3.1 within treat-

ment (DAVE and THE CHAIN), presenting separately the results for informative

segues (Table 3.4) and funny segues (Table 3.5). We conduct a t-test for as-

sessing the significance of differences between the two treatments. We discuss

these results below.
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Table 3.4: Informative segues. Average value of quality metrics achieved in
the two treatments, on a scale from one to five. Stars (∗) indicate statistically
significant different values of metrics between the two treatments. ∗: p<0.05;
∗∗: p<0.01.

DAVE THE CHAIN

likeable 3.26 3.20
high-quality 3.22 3.20

sparked-interest 3.06 3.13
funny 2.39 2.64∗

informative 3.73∗∗ 3.43
creative 3.33 3.59∗

understandable 3.84 3.69
well-written 3.46 3.33

3.3.3.1.1 Informative segues For informative segues (Table 3.4), DAVE out-

performs the human-curated segues of THE CHAIN for two of the three valence
quality metrics but the differences are not statistically significant. There are

statistically significant differences on the content quality metrics: THE CHAIN is

perceived as more funny and creative (p<0.05), while DAVE is more informative
(p<0.01). Finally, turning to the text quality metrics, DAVE’s segues turn out to

be better written and more understandable than THE CHAIN’s but again without

statistical significance.

3.3.3.1.2 Funny segues When it comes to funny segues (Table 3.5), human-

curated segues from THE CHAIN outperform DAVE’s segues across all the quality

metrics, with statistically significant differences. We notice low values for funny
in both treatments. We might expect it to be higher in the category of segues we

are considering. This may be due to the medium of presentation of the segues,

i.e. read on a screen. We might expect better results if, for example, segues

were spoken. It may also just be that the word-play humour of these segues

does not appeal to the sense-of-humour of the trial participants.

3.3.3.2 Correlation of quality metrics

We compute pairwise correlations of the eight quality metrics and this is shown

for all segues in Figure 3.2. There is high correlation (0.64, p<0.001) between

both high-quality and likeable with sparked-interest: good segues can spark in-

terest in the next song. We notice that informative has higher correlation than

funny with all the valence quality metrics: a segue perceived as very informa-
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Table 3.5: Funny segues. Average value of quality metrics achieved in the two
treatments, on a scale from one to five. Stars (∗) indicate statistically significant
different values of metrics between the two treatments. ∗: p<0.05; ∗∗: p<0.01.

DAVE THE CHAIN

likeable 2.94 3.28∗∗∗

high-quality 2.77 3.14∗∗∗

sparked-interest 2.76 2.99∗

funny 2.71 2.89∗

informative 2.66 2.90∗∗

creative 3.22 3.57∗∗∗

understandable 3.58 3.78∗

well-written 3.13 3.35∗

tive is likely to be also perceived as very likeable, high-quality, and is more likely

to spark interest in the next song. This happens to a lesser extent for segues

perceived as very funny. Therefore, from a recommender systems point-of-view,

where sparking interest is important, it might be more fruitful to address efforts

into generating informative segues, as opposed to funny segues. However, this

observation might be just due to the medium of presentation of the segues i.e.

read. We do not know whether the result would generalize to other mediums,

e.g. spoken.

The same happens with understandable, which is statistically significantly corre-

lated with informative but not with funny. Further, creative has good correlation

with all the valence quality metrics: creativity is a good asset for segues. Finally

we report high correlation of well-written with all valence quality metrics (rang-

ing from 0.52 to 0.62, p<0.001). This is expected, since segues are consumed

in textual form. How they are written is very important, as important as the

content itself.

We have also looked at these correlations in various subdivisions of the data:

within treatment (DAVE or THE CHAIN), within segue category (funny or in-

formative) and within user category (low-AE, etc.). The narrative that would

accompany each of these correlation matrices is not appreciably different from

the one we have given above. Hence, to save space, we do not show these more

specific correlation matrices in this dissertation.
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Figure 3.2: All segues. Quality metrics correlation matrix. +: p<0.001, other-
wise p>0.05

3.3.3.3 Performance in quality metrics and user category

We divide users into four groups, as explained in Section 3.3.2, and we com-

pute the average of the answers to the quality metric questions within each

user category. We conduct a statistical test for assessing the significance of

differences in performance, comparing the lowest level of AE with the other

three. We show the results in Table 3.6. Only one metric changes statistically

significantly: sparked-interest. This is reasonable: higher active engagement

with music is somehow correlated with a propensity for music discovery. The

other main quality metrics slightly increase with AE, but the differences are not

statistically significant. The results we obtain if we further divide, e.g. by treat-

ment or by segue category, confirm those that we have presented in Table 3.6.

The results contradict the intuition that segues are especially suited to “nerds”

[BMT+19]. The result might change if segues were to include more musico-

logical detail, for example, the synthesizer brand used by two artists during a

recording. At present, DAVE’s knowledge graph does not contain these kinds of

details and so does not allow DAVE to produce segues such as these.

3.3.3.4 Performance in quality metrics and familiarity

We consider whether quality metrics are related or not to familiarity with the

artists and songs involved in the segues. We first focus our attention on famil-

iarity with songs. Then, we comment on the results we have for artists. We
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Table 3.6: All segues. Average value of quality metrics, divided by level of
Active Engagement (AE) with music. Values range from one to five. We conduct
a significance test, comparing the lowest value of AE with the other three. Stars
(∗) indicate statistically significant different values of metrics between low-AE,
and the other three level of AE. ∗: p<0.05; ∗∗: p<0.01.

low-AE mid-low-AE mid-high-AE high-AE

likeable 3.08 3.20 3.19 3.25
high-quality 3.00 3.08 3.09 3.16

sparked-interest 2.64 2.97∗∗ 3.16∗∗∗ 3.09∗∗∗

funny 2.56 2.72 2.80∗ 2.66
informative 3.07 3.01 3.26 3.19

creative 3.28 3.34 3.54∗∗ 3.53∗∗

understandable 3.63 3.71 3.72 3.86∗

well-written 3.18 3.23 3.46∗∗ 3.42∗

divide answers into four groups, based on whether participants are familiar or

not with each of the two songs connected by the segue, and we compute the av-

erages of each group. We conduct a statistical test for assessing the significance

of differences in performance, comparing the first group (familiar with neither

song) with the other three. We do not further partition by treatment, segue

category or user category, as the cardinality of some of the groups is already

small. We show the results in Table 3.7.

We observe that familiarity with songs, in general, leads to higher appreciation

of segues. Segues are more likeable when connecting two familiar songs than

when connecting two unfamiliar songs (p<0.01). And, segues are able to spark

interest more when the songs are already familiar, with respect to when they

are not (p<0.001). Moreover, they are perceived as better written (p<0.01), and

more understandable (p<0.05).

When repeating the analysis but considering familiarity with the artists, we

observe the same phenomena, but the increases in the metrics have lower mag-

nitudes. We conclude that familiarity with artists is a weaker confounder than

familiarity with songs.

3.3.3.5 Interestingness and quality metrics

The interestingness function is our computational means for assessing whether

a segue found by DAVE is good or not. We would like to verify whether it agrees

with the human perception of quality or not. To this end, we compute the

correlation of the valence quality metrics and interestingness for all of DAVE’s
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Table 3.7: All segues. Average value of quality metrics, dividing answers based
on the familiarity with the two songs connected by the segue. Values range
from one to five. We conduct a significance test, comparing the first group
(familiar with neither song) with the other three. Stars (∗) indicate statistically
significant different values of metrics between the first group, and the other
three. ∗: p<0.05; ∗∗: p<0.01; ∗∗∗: p<0.001.

Familiar with neither song just 1st song just 2nd song both songs

likeable 3.11 3.22 3.29 3.49∗∗

high-quality 3.03 3.08 3.18 3.29∗

sparked-interest 2.81 3.08∗ 3.27∗∗∗ 3.47∗∗∗

funny 2.65 2.64 2.79 2.78
informative 3.08 3.30∗ 3.16 3.28

creative 3.36 3.45 3.57∗ 3.61∗

understandable 3.67 3.87 3.86 3.93∗

well-written 3.25 3.40 3.41 3.61∗∗

segues that were used in the user trial.

We find that there is a statistically significant correlation between the valence
quality metrics and interestingness for informative segues. This indicates that

the interestingness function, without being aware of semantics, relying only

on statistical information and simple content descriptors, can successfully rate

the quality of informative segues: on average, segues rated low by the trial

participants are low also in interestingness, and vice versa. We believe that

this is a very good result, given the complexity of the task. We observe worse

results with funny segues, where we do not find any statistically significant

correlations: deeper considerations might be needed, e.g. the role of seman-

tics. We also compute the correlation with content quality metrics, but we do

not find any strong statistically significant correlations. This is expected, since

interestingness is independent from the semantics of the segues.

Finally, we turn to the correlation with text quality metrics. We do not find any

correlation between interestingness and well-written. This is as expected, since

well-written does not depend directly on interestingness, but on path_to_text.
But, we do find statistically significant correlation in informative segues for

understandable (0.22, p<0.001). This is an indication that interestingness, even

though it is built around the concept of infrequency, does not favour obscure

segues.

We report all the results in Table 3.8.
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Table 3.8: DAVE’s segues. Correlation of quality metrics and interestingness
score. ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

interestingness

informative segues funny segues

likeable 0.25∗∗∗ 0.13
high-quality 0.23∗∗∗ 0.11

sparked-interest 0.17∗∗ 0.00
funny −0.06 −0.17∗

informative 0.14∗ 0.04
creative 0.15∗ −0.09

understandable 0.22∗∗∗ 0.10
well-written 0.11 0.05

3.4 Conclusion

In this Chapter we introduced an algorithm for generating song-to-song segues,

called DAVE. DAVE can provide a wide variety of segues, that can be categorized

as either funny or informative. The core of our method is interestingness, a

domain-independent function for scoring the interestingness of paths in knowl-

edge graphs.

We evaluate DAVE by means of a user trial, where we compare it against cu-

rated segues from a segment of the Radcliffe & Maconie Show on BBC Radio 6

program, called THE CHAIN. The use of THE CHAIN may be a limitation of this

work. Segues from THE CHAIN have a peculiar style that fits the radio program,

and are tailored to a particular kind of audience. They tend to be amusing

and very creative. DAVE, on the other hand, tends to be factual, and can only

deliver funny segues made of word-play. In order to alleviate such problems,

we compared funny segues and informative segues from the two methods sepa-

rately. Notice too that, even though THE CHAIN has a high percentage of funny

segues, this does not mean that its informative segues are weak: THE CHAIN is

curated by experts and draws on the considerable knowledge of thousands of

BBC listeners. In any case, the user trial was intended as a method to assess

how DAVE’s segues compare with curated segues from a trustworthy source —

segues that we can assume to be “really good”. This gives a way of finding how

far DAVE is from being “really good”. Our goal is not to demonstrate that our

algorithm can be substituted for the listeners to the show, instead, we aim to

provide an evaluation in a scenario where no algorithmic baseline is available.
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We find that DAVE can produce informative segues of the same quality, if not

better, than THE CHAIN. We believe that this is an astonishing result, that gives

an idea of the quality of our method. But, when turning to funny segues, the re-

sults are not as good. We believe that this is partially due to the interestingness
function, as we find evidence that it is much better suited to rate the quality

of informative segues. Another reason might be that funny segues from DAVE

are limited to word-play, and this kind of humour does not appeal to every-

one and may, in particular, not appeal to the participants in our user trial. In

fact, even curated funny segues from THE CHAIN are not perceived as funny by

participants in our trial. This may be a mismatch in sense of humour between

listeners to the show and participants in the trial. It may also be due, in part,

to the fact that segues are being read rather than being spoken. It is fair to say

that, overall, the task of tackling the funny segues is only partly solved by the

proposed model.

In the next two chapters, we employ DAVE as a building block for song-level

intelligibility algorithms.
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Chapter 4

Generating music tours

4.1 Introduction

Song-level intelligibility is the degree to which users can understand transitions

between consecutive songs in playlists, see Chapter 1. The way we achieve

song-level intelligibility is by interleaving songs with segues, so as to generate

a tour. For example, Figure 4.1 (a) and (b) shows two tours of the same three

songs.

In this Chapter, we introduce three algorithms for generating music tours from

the set of songs in a playlist. In particular, we formalise the problem of tour

generation and we propose three algorithms to solve the problem. Later, we

offer an offline evaluation where we compare the characteristics of tours pro-

duced by those algorithms. Our offline evaluation in this Chapter does not yet

take into account the user perspective. We offer a user-centered evaluation of

the algorithms in Chapter 51.

To the best of our knowledge, there is just one other work on music tour gen-

eration: [BMT+19]. Behrooz et al. develop a simple prototype able to find

song-to-song segues for consecutive songs in an input playlist, to produce a list

of segues to decorate the playlist. Our work in this Chapter is different from

[BMT+19], as we do not consider the order of the songs to be fixed in ad-

vance. Instead, we strive to arrange the songs, and to produce a list of segues

to decorate this arrangement of the songs. We refer the reader to Chapter 2 for

1The user-centered evaluation of Chapter 5 involves only two of the three algorithms that
we propose here. This is because the offline evaluation reported in this Chapter shows that the
one of the algorithms produces tours that are extremely similar to those produced by one of the
other two algorithms; see Section 4.3.4.
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Interstellar Love by Thundercat

“Interstellar Love was
produced by Flying Lotus”

Post Requisite by Flying Lotus

“Flying Lotus is the grand-nephew
of Alice Coltrane”

Wisdom Eye by Alice Coltrane

(a)

Post Requisite by Flying Lotus

“Flying Lotus is the grand-nephew
of Alice Contrane”

Wisdom Eye by Alice Coltrane

“Alice Coltrane has done Jazz,
& Thundercat has done Acid Jazz,

a genre that derives from Jazz”

Interstellar Love by Thundercat

(b)

Figure 4.1: Two tours of the same three set of songs: Interstellar Love by Thun-
dercat, Post Requisite by Flying Lotus and Wisdom Eye by Alice Coltrane.

more details on the research on tours, and for a broader understanding of how

research on tours relates to other MIR research on playlists.

The source code supporting this Chapter is freely available2.

4.2 Method

4.2.1 Problem formulation

Let I be the set of songs in a given playlist. It is reasonable to assume I to be

a ‘small’ set of songs, e.g. several order of magnitudes smaller than the whole

catalogue of songs. Our goal is to find a tour of the songs in I, so as to obtain a

solution of the kind shown in Figure 4.1.

More formally, given two songs i, i′ ∈ I, let segues(i, i′) be the set of segues

from i to i′. We assume that segues(i, i′) always contains at least one segue, as

it is always possible to find a null segue [BMT+19]. Let Lj be the jth element

in a list L, given that j ∈ {0, ... , |L| − 1}.

Let P(I) be the permutations of set I. Then let T (I) be decorated permutations

of I:

T (I) = {⟨O, S⟩ : Sj ∈ segues(Oj−1, Oj), ∀j ∈ {1, . . . , |I| − 1},∀O ∈ P(I)}
(4.1)

2https://github.com/GiovanniGabbolini/play-it-again-sam.
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In other words, T (I) is all the candidate solutions, and a given candidate solu-

tion ⟨O, S⟩ ∈ T (I) comprises an ordering O of the items in I, and a correspond-

ing sequence of segues S.

Problem 1 (Tour Finding Problem). Given a set of songs I, find a solution
⟨O, S⟩ ∈ T (I) that maximises some utility(⟨O, S⟩).

In this Chapter, we define utility(⟨O, S⟩) in a simple way, based only on the

interestingness scores for the segues, S. Let score(s) be a real number ranging

from zero to one. Then we define the utility of a solution ⟨O, S⟩ as the mean

score of the segues:

utility(⟨O, S⟩) =
∑

s∈S score(s)
|I| − 1

utility(⟨O, S⟩) is a real number ranging from zero to one.

More sophisticated definitions of utility are, of course possible. For example,

we might reward solutions in which similar songs are near each other in O, or

where similar segues are more distant from each other in S. These are matters

for future exploration with users. In this Chapter, we focus on obtaining insights

into different algorithms for finding segues with high utility, rather than on the

best definition of utility.

Notice that, even though our focus in this work is on repeated consumption of

music, Problem 1 can be solved to find a tour of any set of songs, including ones

that are new to the user. Also, notice that Problem 1 is NP-hard; intuitively it

is related to the Travelling Salesman Problem. We make the analogy clearer in

Section 4.2.2.3.

4.2.2 Algorithms

We introduce three algorithms for Problem 1: two are heuristic methods (GREEDY

and HILL-CLIMBING) and one is an exact algorithm (OPTIMAL).

4.2.2.1 GREEDY

The GREEDY algorithm builds a solution iteratively, by choosing the next song to

be the one with the segue of highest score. We give pseudo-code in Algorithm

2.
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Algorithm 2: GREEDY

1 O ← empty list
2 i← random element from I
3 append i to O; remove i from I
4 while |I| > 0 do
5 i∗ ← arg maxi′∈I( maxs∈segues(i,i′)score(s))
6 s∗ ← arg maxs∈segues(i,i∗)score(s)
7 append i∗ to O; remove i∗ from I
8 append s∗ to S
9 i← i∗

10 end
11 return ⟨O, S⟩

4.2.2.2 HILL-CLIMBING

Hill-climbing is a local search algorithm that starts from a random candidate

solution, then iteratively replaces that candidate by a neighbouring candidate

whose utility is highest; it stops if no neighbour would result in an improvement

in utility. Many flavours of hill-climbing exist, e.g. see [RN10]. We adopt the

version with two parameters: restarts and patience. So, we run the algorithm

multiple times (the restarts) and, for a certain number of iterations (the pa-

tience), we tolerate replacement by neighbours even if none of them improves

the utility.

In order to use hill-climbing for Problem 1, we have to decide how to define the

neighbourhood of a candidate solution. In this Chapter, we define the neigh-

bourhood of a solution (a tour) as all the solutions that can be obtained by

swapping two consecutive songs at random. More formally, given a candidate

solution ⟨O, S⟩ and a random r ∈ {2, . . . , |I|}, the neighbourhood of the candi-

date induced by r is:

N(⟨O, S⟩, r) = {⟨O′, S ′⟩ ∈ T (I) : O′ = [O1, . . . , Or, Or−1, . . . , O|I|]}

The members of this set of neighbours share the same new ordering of the items

but they differ in their segues.

We give pseudo-code for HILL-CLIMBING in Algorithm 3.
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Algorithm 3: HILL-CLIMBING

1 candidate_solutions← empty list
2 while restarts > 0 do
3 patience_left← patience
4 current← random element from T (I)
5 while True do
6 r ← random element from {2, ... , |I|}
7 neighbor ← arg maxt∈N(current,r)utility(t)
8 if utility(neighbor) ≥ utility(current) then
9 patience_left← patience

10 current← neighbor

11 end
12 else
13 if patience_left > 0 then
14 patience_left← patience_left− 1
15 current← neighbor

16 end
17 else
18 break
19 end
20 end
21 end
22 append current to candidate_solutions

23 end
24 return arg maxt∈candidate_solutionsutility(t)

4.2.2.3 OPTIMAL

The OPTIMAL algorithm finds an optimal solution t∗ to Problem 1, i.e. a solution

to Problem 1 with maximum utility.

Given a set of songs I, the algorithm builds a complete and weighted graph

G(I). The nodes of G(I) are the songs I. G(I) is complete, so between every

two songs there is an edge. G(I) is weighted, so every edge has a weight, equal

to one minus the score of the highest-scoring segue between the two songs.

More formally, the weight of the edge between two nodes (songs) i, i′ ∈ I is:

w(i, i′) = 1− maxs∈segues(i,i′)score(s). (4.2)

A Hamiltonian path H = [i1, ... i|I|] in G(I) is a path in G(I) that visits every song

exactly once. The set of all H in G(I) is equal to the permutations of I, and so

Intelligibility of Music Playlists 102 Giovanni Gabbolini



4. GENERATING MUSIC TOURS 4.2 Method

it follows that H ∈ P(I). We define the weight W of H as:

W (H) =
|I|−1∑
j=1

w(Hj, Hj+1) (4.3)

Intuitively, an H corresponds to a solution t ∈ T (I). Also intuitively, a Hamil-

tonian path with minimum weight H∗ corresponds to the optimal solution t∗.

More formally, it is possible to define a function f to map an H to a t, as follows:

f(H) = ⟨H, S⟩ where Sj = arg maxs∈segues(Hj ,Hj+1)score(s), ∀j ∈ {1, ... , |I|−1}.

f(H) satisfies the membership conditions expressed in Equation 4.1, so f(H) ∈
T (I).

Lemma 2. There is an H such that utility(f(H)) = utility(t∗).

Proof. Let t∗ = ⟨O, S⟩. O is a permutation of I and so it is a valid Hamiltonian

path H. By construction, utility(f(H)) = utility(t∗).

Lemma 3. H∗ is such that utility(f(H∗)) = utility(t∗).

Proof. By contradiction, we assume that utility(f(H∗)) ̸= utility(t∗). t∗ is the

optimal solution, so utility(f(H∗)) < utility(t∗). Because of Lemma 2, there

is an H such that utility(f(H)) = utility(t∗). H ̸= H∗, as utility(f(H)) =
utility(t∗) ̸= utility(f(H∗)). Also, W (H∗) ≤ W (H), because H∗ is the Hamil-

tonian path with minimum weight. From Equations 4.3 and 4.2, we get the

following:

|I|−1∑
j=1

1− maxs∗∈segues(H∗
j ,H∗

j+1)score(s∗) ≤
|I|−1∑
j=1

1− maxs∈segues(Hj ,Hj+1)score(s)

|I|−1∑
j=1

maxs∗∈segues(H∗
j ,H∗

j+1)score(s∗) ≥
|I|−1∑
j=1

maxs∈segues(Hj ,Hj+1)score(s)

and so utility(f(H∗)) ≥ utility(f(H)) = utility(t∗), which contradicts the hy-

pothesis.

In conclusion, it is enough to compute f(H∗) to obtain an optimal solution t∗.

One way of finding H∗ is by solving a Travelling Salesman Problem, or TSP. As

suggested by [LK75], we can add a dummy node n to G(I) with zero-weighted

edges to all the songs, then solve the TSP with start and end in n, and finally
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exclude n from the solution to obtain H∗. In the experiments that we run in

this Chapter, we use the Concorde TSP solver3.

4.3 Experiments

4.3.1 Implementation

The algorithms of Section 4.2 assume the existence of two functions: segues

and score. We resort to the implementation of those two function proposed

in Chapter 3. In Chapter 3, the score function is based on the interestingness

of the segues. The segues function can find segues of two kinds: informative

(based on a knowledge graph) and funny (based on simple word-play). In the

work reported in this Chapter, we restrict to informative segues. In Chapter

3 we found that the interestingness of informative segues is correlated with

human perceptions of segue quality.

4.3.2 Dataset

We build a dataset from the Spotify Million Playlists Dataset (MPD) [CLSZ18].

The MPD dataset contains playlists, which is what our algorithms take as input.

Of course, we ignore the ordering of the playlist, treating it as a set rather than

a list, because our algorithms impose a fresh ordering, as well as decorating

with segues.

We limit ourselves to playlists of maximum 50 songs. We believe longer inputs

to be unlikely in practice, as it would lead to a listening time of more than

three hours, assuming every song to last four minutes. We sample the MPD

with stratified random sampling by playlist length: we sample at random 20

playlists of length 50, 20 of length 49, and so on, down to 20 playlists of length

five, as five is the minimum length of MPD playlists. In fact, we apply this

procedure twice, with two different random seeds, to obtain a main dataset

and a side dataset.

4.3.3 Parameter tuning

HILL-CLIMBING has two parameters, as described in Section 4.2.2.2: the pa-

tience and the restarts. We set the parameters by choosing the configuration

3https://github.com/jingw2/pyconcorde.
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Figure 4.2: Average utility of HILL-CLIMBING, as a function of the restarts and
of the patience.

Figure 4.3: Performance of the algorithms, as a function of the input size.

that maximises the average utility of solutions. We run HILL-CLIMBING on the

side dataset of Section 4.3.2, with various parameter configurations, and we

measure the average utility of the solutions. We report the results in Figure

4.2. We notice that the average utility grows with patience and restarts, until

it saturates. We choose the parameter values to be those before saturation, and

so we set the patience to 10 and the restarts to 40.

4.3.4 Performance

We benchmark the algorithms by monitoring the score of the segues in the tours

they produce using the main dataset. We construct four curves showing the

mean of: average score; standard deviation; maximum; and minimum score of
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segues in the solutions, as a function of the input size. The average score of the

segues in a solution is equivalent to the utility of the solution. For presentation

purposes, we do a least square fitting and plot the fitted curves in Figure 4.34.

GREEDY, by construction, produces segues of high score at the beginning of a

solution, and of low score at the end of a solution. That is, the segues in the

solutions found by GREEDY exhibit falling average score, with highest values

of maximum score, and lowest values of minimum score, which result in the

highest standard deviation. The other two algorithms, HILL-CLIMBING and OP-

TIMAL, do not share the characteristic of falling average score, and produce so-

lutions that are different from those produced by GREEDY. The solutions found

by OPTIMAL are characterised by highest average score, and high values of max-

imum and minimum score, which contribute to the lowest values of standard

deviation. Figure 4.3 provide some indication that HILL-CLIMBING and OPTI-

MAL produce, in general, the same solutions for small inputs. In the case of

HILL-CLIMBING, as the input size grows, the average score falls, the maximum

stops increasing, and the minimum falls, causing an increase in standard devi-

ation. As we see, HILL-CLIMBING struggles for large inputs, but it is likely to

find the optimal solution for small inputs. On the other hand, GREEDY behaves

similarly for small and large inputs, but it is unlikely to find the optimal solution

for both small and large inputs.

4.3.5 Runtime

We compare the times each algorithm requires from taking an input to pro-

ducing an output. More specifically, we carry out what we will call a granular

analysis. By this, we mean that we consider the time required by calls to the

functions segues and score. All the algorithms call these functions, but they

call them a different number of times. There are other parts of each algorithm

which are not shared, and that are written in different programming languages,

e.g. the optimal TSP solver is in C, while the hill-climber is in Python. We found

that the granular runtimes, computed as above, differ from the full runtimes by

only a small extent, and so we believe that the granular runtimes give us a fair

comparison.

We run the algorithms on the main dataset of Section 4.3.2. We construct

a curve featuring the granular runtimes as a function of the input size. For

presentation purposes, we do a least square fitting, as in Section 4.3.4. We

4We use a polynomial of degree three, as we find empirically that it produces a good fit.
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Figure 4.4: Granular runtimes of the algorithms, as a function of the input size.

report the fitted curve in Figure 4.4. We find that GREEDY is the fastest, while

OPTIMAL is the slowest. HILL-CLIMBING is slightly faster than OPTIMAL, and

much slower than GREEDY. The runtime of HILL-CLIMBING might decrease if

we decrease the values of its parameters, at the cost of lower performances, as

we discussed in Section 4.3.4.

4.4 Conclusion

In this chapter, we introduce three algorithms that can find tours: two heuristic

methods (GREEDY and HILL-CLIMBING) and one exact algorithm (OPTIMAL).

The results of our experiments highlight that GREEDY produces tours that are

substantially different from those found by HILL-CLIMBING and OPTIMAL. Tours

found by GREEDY have segues with falling scores but highest maximum scores.

HILL-CLIMBING and OPTIMAL find similar tours to each other for small input

sizes, and do not have falling scores. In this Chapter, we evaluate the algorithms

with offline experiments only, which ignore the user perspective. In the next

Chapter, we present a user-centered investigation of music tours.
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Chapter 5

User-centered perspectives on
music tours

5.1 Introduction

Music tours are our mean of achieving song-level intelligibility. In Chapter 4,

we introduced three algorithms for generating music tours, and we evaluated

those algorithms with offline experiments only, which ignore the user perspec-

tive. Therefore, in this Chapter, we present a user-centered investigation of

music tours. We consider two of the algorithms proposed in Chapter 4, GREEDY

and OPTIMAL, and we set up semi-structured interviews, where interviewees

judge tours recommended by the two algorithms. We omit Chapter 4’s third

algorithm, HILL-CLIMBING as we found it to produce tours mostly equivalent to

those produced by OPTIMAL, especially for small inputs, see Section 4.3.4. In

the offline experiments of Chapter 4, we find that GREEDY and OPTIMAL differ

in their total segue interestingness, and in the distribution of interestingness

throughout the tour.

With the interviews, we contribute to the first user-centered evaluation of the

two algorithms. We are interested in checking the results of the off-line ex-

periments, in assessing the overall quality of the tours recommended by the

two algorithms, and the interestingness of their segues, all from the user per-

spective. We are also interested in evaluating other aspects of tours, which we

did not investigate in the offline experiments, such as segue diversity, segue

narrativity, defined as the quality that sequences of segues in a tour present a

narrative with a coherent text, and song arrangement. Finally, we are inter-
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ested in investigating the fundamental issue of whether users value the concept

of tours in general.

Summing up, we aim to fulfil five goals. Goal (1) is finding attributes of the

tours. Attributes of interest could be: perceived interestingness distribution

within tours; segue diversity; segue narrativity; and song arrangement. Goal

(2) is identifying what attributes of tours are desirable and not desirable. Goal

(3) is assessing the quality of tours, in terms of segue interestingness and overall

tour quality. Goal (4) is assessing whether users value the concept of tours in

general. Goal (5) is identifying possible improvements to tours.

We formulate the following research questions, as a guide to navigate the

wealth of results we gather from the interviews:

RQ1: What are the attributes of the tours?

RQ2: What attributes of tours are good/bad?

RQ3: Which algorithm recommends better tours, and why?

RQ4: How valuable is the concept of tours in general?

RQ5: What are possible improvements to tours?

As mentioned previously, to the best of our knowledge, there is just one other

work on music tours generation: [BMT+19]. Behrooz et al. develop a simple

prototype for generating tours, which work by finding song-to-song segues for

consecutive songs in an input playlist, and evaluate their prototype using semi-

structured interviews. Our work in this Chapter is similar to [BMT+19], as

we also employ semi-structured interviews as an experimental protocol, but

different, as we evaluate two different tour-generation algorithms: GREEDY

and OPTIMAL. We draw important distinctions between the prototype pro-

posed in [BMT+19] and GREEDY & OPTIMAL in Section 4.1. Moreover, our

interviews investigate several topics not investigated in the interviews reported

in [BMT+19], such as the topic of segue diversity and narrativity. We refer

the reader to Chapter 2 for more details on the research on tours, and for a

broader understanding of how research on tours relates to other MIR research

on playlists.
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5.2 Method

We employ two of the tour generation algorithms we introduced in Chapter 4,

GREEDY and OPTIMAL, without any alteration. The algorithms assume that the

set of songs to be included in the tour are given a priori, and the algorithms

must recommend segues and an arrangement of songs, so as to generate a tour

of the kind shown in Chapter 4, Figures 4.1 (a) and (b).

Given a ‘small’ set of songs, e.g. several orders of magnitudes smaller than the

whole catalogue of songs, the goal of the algorithms is to find a permutation

of the songs, and a list of segues between the songs, maximising the average

interestingness of the segues. The GREEDY algorithm works by building a tour

iteratively, by choosing the next song to be the one with segue of highest score.

The OPTIMAL algorithm, instead, works by reducing the problem of finding a

tour to the TSP problem, solved with an optimal solver. We refer the reader to

Chapter 4 for a complete description of GREEDY and of OPTIMAL.

5.3 Experiment

We set-up a semi-structured interview experimental protocol, as it suits our

need to answer both open and closed questions in the same sitting [Ada15].

For example, one closed question is which of the tours produced by the two

algorithms, GREEDY or OPTIMAL, is preferred (part of RQ3), while one open

question is what can be improved in tours (RQ5).

The interview protocol follows a within-subject design, i.e. each participant is

subject to both treatments (GREEDY and OPTIMAL), in order to elicit an explicit

comparison of the algorithms. GREEDY recommends tours which are different

from those recommended by OPTIMAL. For example, the first segue in tours by

GREEDY tends to be more interesting than the last, while in tours by OPTIMAL

the first and last segues tend to be equally interesting, see Chapter 4.

The conversation revolves around example tours recommended by the algo-

rithms. Some days ahead of the interview, we ask participants to send us a

list of ten songs they are familiar with, making sure they are all from different

artists. We set the number of songs to ten so as to reduce fatigue effects. We

run the algorithms on the ten songs, and we prepare a pdf textual file with a

visual representation of the resulting tours, side by side, similar to Figures 4.1

(a) and (b). We randomise the order, so that sometimes OPTIMAL is on the left
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hand-side and GREEDY is on the right hand-side, and vice versa. We also pre-

pare an mp3 audio file of the tour, comprising 15-second song previews, and

segues that are read by a Text-to-Speech (TTS) engine, for a total duration of

approximately seven minutes. Songs previews are from the Spotify API 1, and

the TTS engine is the Google Text-to-Speech engine2. We use song previews

rather than entire songs because previews are freely available. The first tour

in the mp3 corresponds to the one that the participant will see on the left in

the pdf, and the second tour will be the one on the right in the pdf. Both the

mp3 and the pdf files are used during the interview to support the conversation.

Algorithm names are excluded from both the pdf and mp3 files. A sample pdf
file and mp3 file used during an interview are in the additional materials.

This interview study is approved by our organisation’s ethics committee and it

is conducted one-to-one by Giovanni Gabbolini (the interviewer) and a partici-

pant (the interviewee) via Zoom.

5.3.1 Interviewees

We recruit interviewees via a student mailing list within our university in Ire-

land. We make sure that the interviewee’s first language is English, so that they

can properly understand the segues. We ended up with 16 interviewees, who

we will refer to as i1 to i16. One interviewee is a graduate, while the other

15 are currently students. Among them, four are undergraduates and 11 are

postgraduate students. The interviewees have/seek degrees in a range of disci-

plines: arts, psychology, medicine, geography, computer science, history, music,

social sciences, food sciences and human-computer interaction. Also, 15 out of

16 interviewees are users of music streaming services. We do not collect other

demographic information, as we considered it not essential for the scope of the

study.

5.3.2 Interview guide

At the beginning of the interview, the interviewee listens to the mp3 version of

their two tours, and views the pdf. Both the interviewer and the interviewee

can hear the mp3 and both can see the pdf. The pdf remains visible to both,

until the end of the interview. Once the mp3 is over, we ask questions aimed at

answering the RQs of Section 5.1.

1https://developer.spotify.com/documentation/web-api/libraries/
2https://pypi.org/project/gTTS/

Intelligibility of Music Playlists 111 Giovanni Gabbolini

https://developer.spotify.com/documentation/web-api/libraries/
https://pypi.org/project/gTTS/


5. USER-CENTERED PERSPECTIVES ON MUSIC

TOURS 5.4 Results

To answer RQ1-2, we ask the interviewee to identify different attributes of the

tours. We start with two open questions about what the interviewee likes and

does not like about the tours, and we continue with other open questions prob-

ing for specific attributes of tours, such as distribution of segue interestingness

throughout the tour (“is the first segue more interesting than the last?”, and

“does the interestingness of segues, from first to last, increase, decrease, stay

equal, or something in the middle?”), segue diversity, segue narrativity (“are

segues linked together to form a narrative, or are they independent pieces of

text?”), segue top-bottom bias (“is the first segue more interesting than the

last?”) and song arrangement. Then, we ask the interviewer to assess each tour

with respect to these attributes, and eventually express whether that attribute is

important for the tours. To answer RQ3, we ask interviewees to assess the qual-

ity of the tours according to two dimensions: the interestingness of the segues

and the overall tour quality. In particular, we ask interviewees to compare

tours recommended by GREEDY and tours recommended by OPTIMAL, accord-

ing to the two dimensions. To answer RQ4, it is necessary to take extra-care, as

the interviewee might assume that tours are the work of the interviewer, and

may tend to provide a positive concept evaluation accordingly. One strategy

to relieve the pressure from the interviewee is showing non-judgemental ac-

ceptance, as suggested in [Ada15]. Therefore, to answer RQ4, the interviewer

asks “People have mixed opinions on whether they would welcome a tour of

their music or not. How do you see this issue?”. To answer RQ5, the inter-

viewer starts with two open questions about what the interviewee would like

and would not like to see in tours, and continues with open questions probing

whether tours should feature non-familiar music or familiar music. We provide

the full interview guide text in the additional materials.

5.4 Results

Our interviews produce a wealth of material: 11 hours of videos, i.e. 42 minutes

per interviewee, on average. Interviews are manually transcribed by Giovanni

Gabbolini, and we end up with a corpus of 44-thousand transcribed words.

We conduct a thematic analysis of our data to identify important ideas and

themes from our interviews. Thematic analysis is used for many kinds of quali-

tative analysis work in human-computer interaction (HCI), e.g. [WMH+21]. We

follow the process described by Braun and Clarke [BC06] in which researchers

familiarize themselves with the data, then generate codes and group them to

Intelligibility of Music Playlists 112 Giovanni Gabbolini



5. USER-CENTERED PERSPECTIVES ON MUSIC

TOURS 5.4 Results

identify higher-level themes. Each phase of the analysis is conducted by Gio-

vanni Gabbolini independently, and validated by Giovanni Gabbolini and Derek

Bridge. We identify four main themes, i.e. “tour attributes”, “tour quality”,

“concept evaluation” and “tour improvements”. The first theme addresses RQ1-

2, the second theme addresses RQ3, the third theme addresses RQ4, and the

fourth theme addresses RQ5. Every theme is covered in one Section below.

Each theme has a number of sub-themes, covered in the subsections.

5.4.1 Tour attributes

We ask interviewees to identify different attributes of the tours, to assess the

tours with respect to each attribute, and eventually express whether that at-

tribute is important for the tours, as we explained in Section 5.3.2. Each sub-

section below accounts for a different attribute of tours, while Table 5.1 shows

how the tours recommended by the algorithms compare according to the at-

tributes.

5.4.1.1 Segue top-bottom bias

Many interviewees mention that the first segue in a tour is more interesting than

the last segue, which is a phenomenon we refer to as top-bottom bias. Among

the 16 interviewees, 14 find that GREEDY exhibits top-bottom bias, as we might

expect. In OPTIMAL, the trend is less clear, as we might also expect: seven

interviewees find top-bottom bias, seven do not, and two interviewees cannot

decide. In total, seven interviewees say that the top-bottom bias is stronger

in GREEDY than in OPTIMAL and the rest do not offer an opinion. The results

corroborate the offline results in Chapter 4, where GREEDY is found to have

top-bottom bias, and OPTIMAL is not.

In Chapter 4 we also investigate how the interestingness of segues varies through-

out the tour, referring to this as the outline, finding that in GREEDY the outline is

falling and in OPTIMAL it is not falling. In our study here, the outline of GREEDY

is judged to be falling by six interviewees, bumpy by six, pyramidical by two,

and flat by two. The outline of OPTIMAL is judged rising by five interviewees,

falling by four, flat by three, bumpy by two, pyramidical by one, and in one

case we do not have an answer. So, the results corroborate only partially those

in Chapter 4, probably because the interestingness function used in Chapter 4

to infer the outlines, and in the work at hand, only partially corresponds with

what humans judge to be interesting, as we detail in Section 5.4.2.1.

Intelligibility of Music Playlists 113 Giovanni Gabbolini



5. USER-CENTERED PERSPECTIVES ON MUSIC

TOURS 5.4 Results

Ta
bl

e
5.

1:
To

ur
co

m
pa

ri
so

n
ac

co
rd

in
g

to
se

ve
ra

la
tt

ri
bu

te
s

(r
ow

s
on

e
to

fo
ur

)
an

d
ov

er
al

lq
ua

lit
y

(r
ow

s
fiv

e
an

d
si

x)
.

C
ol

um
ns

tw
o

to
fiv

e
in

di
ca

te
ho

w
m

an
y

in
te

rv
ie

w
ee

s
sa

y
th

at
th

ei
r

G
R

E
E

D
Y

to
ur

fe
at

ur
es

th
e

at
tr

ib
ut

e
m

or
e

th
an

th
ei

r
O

P
T

IM
A

L
to

ur
(G

R
E

E
D

Y
>

O
P

T
IM

A
L)

,l
es

s
th

an
O

P
T

IM
A

L
(G

R
E

E
D

Y
<

O
P

T
IM

A
L)

,a
pp

ro
xi

m
at

el
y

th
e

sa
m

e
as

O
P

T
IM

A
L

(G
R

E
E

D
Y
≃

O
P

T
IM

A
L)

,a
nd

th
e

nu
m

be
r

of
m

is
si

ng
an

sw
er

s
(N

/A
).

Th
e

to
ta

ln
um

be
r

of
in

te
rv

ie
w

ee
s

is
16

.

G
R

E
E

D
Y

>
O

P
T

IM
A

L
G

R
E

E
D

Y
<

O
P

T
IM

A
L

G
R

E
E

D
Y
≃

O
P

T
IM

A
L

N
/A

Se
gu

e
to

p-
bo

tt
om

bi
as

7
0

0
9

Se
gu

e
di

ve
rs

it
y

9
1

4
2

Se
gu

e
na

rr
at

iv
it

y
0

6
4

6
So

ng
ar

ra
ng

em
en

t
5

6
1

4

Se
gu

e
in

te
re

st
in

gn
es

s
9

5
2

0
To

ur
qu

al
it

y
9

5
1

1

Intelligibility of Music Playlists 114 Giovanni Gabbolini



5. USER-CENTERED PERSPECTIVES ON MUSIC

TOURS 5.4 Results

5.4.1.2 Segue diversity

The majority of the interviewees (14 out of 16) mention that the diversity of

the segues in the tours, or segue diversity for short, is an important attribute to

have. (Notice that this attribute concerns the diversity of the segues, not of the

songs.) Many interviewees mention that tours with low segue diversity would

not be nice to listen to. For example, i8 says: “then (the segues) start repeating,
and so it gets less interesting as we go down”; and i16 says: “I think if I was getting
the same information [...] that would be becoming boring after a while, I [...]
want diversity in information”. Many other interviewees make a similar point,

that tours with higher segue diversity are nice to listen to. For example, i5 says:

“I just preferred the diversity, and it was like you didn’t know what was coming
next, and what bit of information you were going to learn was. That was kind
of nice, that you didn’t know!”; and i1 says: “I feel like the information is [...]
diverse [...] I’d say it keeps your attention more that way”. Most of the above

comments refer to the diversity of segues that are relatively close to each other

in a tour. That is, it is important for neighbouring segues to be diverse, while we

have less guidance from our interviewees for segues that are more remote from

each other. For example, i5 says: “I felt like (the segues) grabbed my attention a
bit more (in GREEDY), because (in OPTIMAL), the last 6 six were about genres ...
Maybe those six were also on (GREEDY), but actually I did not notice as much”.

Respectively three and four interviewees say that GREEDY and OPTIMAL have

low segue diversity, while respectively six and five of them say that GREEDY and

OPTIMAL have high segue diversity. We do not have an answer in the rest of the

cases. The diversity is sometimes low because neither algorithm implements an

explicit segue diversity mechanism.

Nine interviewees say that their GREEDY tour is better than their OPTIMAL in

diversity, one says the opposite, four say they are not sure, and the rest do not

offer an opinion.

The result may be explained by our previous work. In Chapter 4 we found that

the standard deviation of the interestingness scores of the segues in GREEDY’s

tours is higher than in OPTIMAL’s tours. That is, GREEDY generates segues with a

broader range of interestingness values, some segues are very interesting and

some are not, and segues with different interestingness values typically have

different topics.
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5.4.1.3 Segue narrativity

The narrativity of the segues in tours, or narrativity for short, refers to the

quality that sequences of segues in tours present a narrative with a coherent

text. Very few interviewees (three out of 16) are in favour of narrativity, as two

points against narrativity are made. Point (1) is that narrativity can correlate

with low diversity, and low diversity is something to avoid, as mentioned in

Section 5.4.1.2. For example, i12 says: “I don’t think (narrativity) really matters
per se, like, if you had all (segues) linked to each other, it could get quite repeti-
tive”. Point (2) is that the textual flow would not be easy to follow in any case

with songs in between. For example, i6 says: “I don’t think [...] that any kind
of coherent narrative it’s something I’d look for [...] I don’t think it is all that im-
portant really.”; and i8 says “I think (the segues) should be independent! Because
if there was a flow there I’d forget what it was saying before while listening to the
song, so I’d lose the flow! So I guess independent makes much more sense”.

Only two and six interviewees say that respectively GREEDY and OPTIMAL have

high segue narrativity, while respectively nine and six of them say that GREEDY

and OPTIMAL have low segue narrativity. We do not have an answer in the

rest of the cases. The narrativity is oftentimes low because neither algorithm

implements an explicit segue narrativity mechanism.

Six interviewees say that their OPTIMAL tour is better than their GREEDY tour in

narrativity, four say they are not sure, and the rest do not offer an opinion.

5.4.1.4 Song arrangement

Many interviewees (13) give their opinion on what makes a good song arrange-

ment. The majority of them (11) mention some notion of similarity, with a

variety of different terms, reflecting the fact that music similarity remains a

concept with many definitions [JDE07]. For example, they say that subsequent

songs should have the same “tempo”, “tone”, ”mood”, “energy”, “melody” and

“artist voice”.

Interviewees do not agree on whether song arrangement is important in tours

or not, as eight of them say it is important, while six say it is not. Interviewees

i6 and i7 from the former group respectively say: “Oh definitely! No matter
what the context, if you were putting a bunch of songs together, you are going
to want some elements of musical flow between them” and “you cannot set the
tone in one tempo or a mood and change it rapidly [...] there’s nothing worse”.
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Interviewees from the latter group say that segues make song arrangement not

matter. For example, i2 says “with the segues [...] the order (of songs) doesn’t
really matter, cause there’s still a connection”; and i12 says: “you are not listening
to this song, and the next song begins: you listen to this song, and there’s a break
where some text is read out, then you listen to the next one [...] so no, I don’t think
the (song) order matters”. Some interviewees even appreciate when subsequent

songs are diverse. (Here, we are referring to song diversity, and not segue

diversity.). For example, i4 says: “it was interesting seeing the connections [...]
(between) different songs [...] (like that two very diverse bands) both started in
2006, I suppose that was really interesting”; and i2 says: “(the tours) are both
pretty interesting [...] because [...] I tried to choose music that was diverse, so it’s
interesting to see (the segues)”. It may be that segues between diverse songs are

more unexpected, hence more interesting, as the interestingness guideline (3)

of Section 5.4.2.1 indicates. However, the interviews do not provide enough

material to confirm this speculation.

Respectively six and seven interviewees say that song arrangement is not good

in GREEDY and OPTIMAL. In fact, of course, neither algorithm optimises for

song arrangement, but for segue interestingness. However, in our own sep-

arately published work on interpretable similarity measures [GB21b], we find

that segue interestingness is related to similarity, which could explain why some

interviewees say they are happy with the song arrangements (eight interviewees

for GREEDY and seven for OPTIMAL).

Interviewees do not agree on which algorithm is better in song arrangement, as

five of them say that in GREEDY the song arrangement is better than OPTIMAL,

six say the opposite, one cannot decide, and four interviewees do not offer any

opinion. The result is not surprising as neither algorithm directly considers song

arrangement.

5.4.2 Tour quality

We ask interviewees to compare the quality of the tours recommended by OPTI-

MAL and GREEDY according to segue interestingness and the overall tour quality.

The results are in the subsections below, and in Table 5.1.
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5.4.2.1 Segue interestingness

Interviewees mostly agree that GREEDY has more interesting segues than OP-

TIMAL: nine interviewees say so, five say the opposite, and two cannot decide.

The result is perhaps surprising, as OPTIMAL is supposed to maximise overall

segue interestingness. But OPTIMAL’s model is only partially accurate for two

reasons, as noted in Section 5.4.4.1: (1) the interestingness function itself is

only partially accurate; (2) the interestingness of a list of segues is not a simple

sum; other factors intervene, for example the segue diversity. In particular, we

suspect that GREEDY outperforms OPTIMAL because it is perceived to be more

diverse, and diversity positively impacts segue interestingness, as noted in Sec-

tion 5.4.1.2.

5.4.2.2 Overall tour quality

Interviewees mostly agree that GREEDY produces overall better tours than OP-

TIMAL: nine interviewees say so, five say the opposite, one cannot decide, and

in one case we do not have an answer. Some interviewees mention the reason

behind their choice: nine of them mention more interesting segues; also nine

participants mention better song arrangement. Note that interviewees were free

to give multiple reasons, and some of them mention both segue interestingness

and the song arrangement. We infer that GREEDY is preferred to OPTIMAL be-

cause of the segues, which are more interesting in GREEDY, as noted in Section

5.4.2.1, while song arrangement is equally good in both algorithms, as noted in

Section 5.4.1.4.

5.4.3 Concept evaluation

Interviewees evaluate tours positively, as the general opinion is that the se-

quences of songs and segues are nice to listen to. For example, i5 says: “I’d be
happy to listen to that (tour) [...] you learn something new about all tunes you
like to listen to”; i7 says: “I really like it! [...] it is nice to see how all songs are
linked together, it is really cool!”; and i1 says: “I like how the songs [...] were
linked by pieces of information, something that they shared”. Some interviewees

would like to see tours available in streaming services. For example, i8 says: “I’d
certainly use this prototype if it was implemented in a music streaming platform.”;

i6 says: “(the segues) would be quite interesting for a listener, if they were avail-
able in a streaming service”; and i5 says: “I would like to see (tours) available, like
they aren’t very available. It’d be nice to have the option (on streaming services)
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to switch them on and off. It is nice to listen to text, or to listen to something
being spoken, in between listening to songs”. Finally, the majority of interviewees

(nine out of 16) mention that they would welcome a tour like those they were

presented with.

The majority of interviewees find the segues in tours to be interesting, along a

number of different dimensions. For example, i11 and i9 find segues to be non-

trivial, as i11 says: “It was a pretty cool (segue) actually. Like, I wouldn’t have
thought about making a connection”; and i8 finds segues to be surprising “being
surprised, by interesting facts, like what this segues are producing here, that would
make the listening experience more exciting”. More generally, i1−5, i7, i8, i10−12

and i15 like the segues. For example, i15 says: “I liked the connections, from top to
bottom, like something that ties up everything”. Some interviewees recognise the

value of having segues. For example, i5 finds segues to be educational: “I also
liked the bits of information [...] It was kind of educational as well as listening
to songs”; and i10 finds that segues add to the listening experience: “(segues)
add to the music, like you’d enjoy more your listening experience”. The above

results provide some evidence that the interestingness function, even though

only partially accurate, is nevertheless related to user-centered perceptions of

segue interestingess.

However, four interviewees report that segues are occasionally uninteresting.

For example, i4 says: “Some of the connections are a bit weaker [...] But I think
it’s mostly very interesting yeah!”; and i12 says: “some of the links are quite ten-
uous, like two artists are both from the USA, that one felt a bit grasping”. These

opinions agree with our previous work. In Chapter 4 we found that the interest-

ingness of segues in tours is not constant, but subject to considerable deviation.

Hence, from Chapter 4 we expect some segues to be considerably less interest-

ing than others, which is exactly what we report here.

Interviewees mention that tour quality is context-dependent, a similar point be-

ing made in [BMT+19]: tours are suited for active listening, i.e. when attending

to the music, and not passive listening, e.g. when the music plays in the back-

ground to some other activity. For example, i4 says: “sometimes [...] you may
just want to listen to your music in the background. But sometimes, if you want
to sit down and think about the music your are listening to, (the segues) might be
like an interesting, like a different, fun, new way to consume your music.”; and i9

says: “a lot of times you listen to music as a background, whereas I think (for a
tour you need) designated hours in your day, like I’m going to sit down and listen
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to this”.

5.4.4 Tour improvements

Interviewees identify a number of potential improvements for tours.

5.4.4.1 Interestingness modelling

Many interviewees say what interestingness means for them, and, from this,

we extract four guidelines on how to distinguish interesting from uninteresting

segues.

Guideline (1) is to be specific, as some interviewees say that specific segues are

more interesting than general segues. For example, i1 says: “I wouldn’t like to
see information that seems kind of generic maybe [...] it just seems no care and
attention has been put in creating that”. i7 gives an example of very general

segue: “The bit the says "one is based in the US and the other is based in the
same country", because I think this is a way of linking nearly every one even, I like
knowing a little bit more of information about someone”. The very same kind of

segue is criticised also by i12. Interviewees have a different opinion about spe-

cific segues. Again i12 says, “the segues that are specific, are the most interesting,
but the other like [...] these two people are from the same large country, it is a bit
... uninteresting”, and provides an example of a more interesting segue, which

involve a more specific place: “this group founded in (New) Jersey and also this
other”.

Guideline (2) is to limit text length, as some interviewees say that long segues

are typically undesirable. For example, i2 says: “I would not want to see overly
long segues”, and i14 says “Not too much information, not too many words, other-
wise I’d be like: please!”. We do not investigate how much text is too much for

an interviewee. However, we report that the longest segue that was shown to

i14 was of 22 words, while for i2 it was of 19 words.

Guideline (3) is to be aware of prior knowledge, as some interviewees say that

segues that contradict their prior knowledge are to be avoided. For example,

i15 says “apart from that (same genre segue) on Christmas music, which is not
correct. Apart from that, I enjoyed it”. Also, many interviewees say that known

segues are uninteresting. For example, i14 says “One of the segues was U2 and
Fionn Reagan are Irish and [...] I know that because I’m Irish! [...] that is just
tedious and boring.”; and i12 says “the rest (of the segues) was kind of ... I knew
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them already [...] so I’d be kind of "ehm, okay"”. Finally, many interviewees say

that novel/unexpected segues are interesting. For example, i12 says: “I didn’t
know some of this stuff, such as (these two bands) being from the same state,
it’s interesting”; and i16 says: “(in good segues) you’d have kind of information
that you didn’t know and you were just learning. Something interesting, like one
of those of moments like oh my god I didn’t know that these two bands were
connected”.

Guideline (4) is to avoid controversies, as some interviewees point out that

controversial segues might be typically undesirable, such as those involving

artists’ personal lives. For example, i11 says: “(I don’t want to hear) scandals
related to the artists [...] It’d ruin the listening experience”. Similarly, i8 says

“(I wouldn’t want to hear something) too particular like, when this artist was
married, or when this artist was in prison”.

Only two of the guidelines above match the interestingness function used

by the algorithms in this work. This function, that we define in Chapter 3,

combines rarity, which arguably entails specificity, and shortness. Therefore,

GREEDY and OPTIMAL strive to maximise an imperfect interestingness func-

tion, that could be improved by considering all four of the guidelines above.

Even so, interestingness does a good job in distinguishing actually interesting

segues from others, as reported in Section 5.4.2.1. Moreover, in this work we

model the interestingness of a list of segues as the sum of the interestingness

function applied to the individual segues in the list. This will only approxi-

mate human perceptions of interestingness because also other factors matter.

For example, diversity of neighbouring segues makes the tour more interesting

overall. One improvement is to correct the estimate of the interestingness of a

list of segues by taking into account also diversity, and especially the diversity

of nearby segues in tours, as noted in Section 5.4.1.2.

5.4.4.2 More biographical segues, less genre segues.

Many interviewees highlight examples of interesting and uninteresting segues

seen in the tours. One class of interesting segues are (factual) biographical

segues about the artists. For example, i5 likes segues about awards won by

artists; i9 likes segues about locations, such as those about where an artist was

born; i3 likes segues about live events, such as in which festival an artist per-

formed; and i9 likes segues about dates, such as when an artist was born. In-

terviewees would like to see even more biographical segues, including ones
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that are not available in tours at the moment. For example, i12 says they would

like segues to draw from music news databases, that gather information such as

emerging artists listings, recording studios, and albums release dates. One class

of uninteresting segues are (musical) genre segues, such as the “jazz” segue in

Figure 4.1 (b). For example, i1, i3, i4, i6, i12, i15 say that genre segues are not

likeable and uninteresting.

We believe that biographical segues and genre segues are perceived as respec-

tively interesting and uninteresting at least in part because of interestingness

guideline (3) of Section 5.4.2.2: to be aware of prior knowledge. Biographical

segues, as facts, match guideline (3): they are not likely to contradict user prior

knowledge, unless the user is wrongly informed, and specific facts are likely to

be novel/unexpected for non-expert users. For example, the segue “Flying Lo-

tus is the grand-nephew of Alice Coltrane” of Figure 4.1 (a) cannot contradict

user prior knowledge, unless the user is wrongly informed about the relation

between the two artists, and they are likely to be novel/unexpected for the user,

unless the user is an expert in artists’ biographies. Genre segues, instead, may

often not match guideline (3): they can contradict user prior knowledge, as

people are found to often disagree on music genres [SCBG08], and they can be

known to the user, as genres are one of the most common ways in which people

characterise music [PDM+22]. Interviewees agree with our interpretation, as

i16 is disappointed by a genre segue contradicting their prior knowledge: “I’d
like not to grow a question that would put me off [...] you might thinking about
that instead of enjoying the music [...] that Leonard Cohen (segue) is a good ex-
ample [...] I started thinking: is he rock music?”; while i9 says they know genre

segues already: “There were someones that were linked by same genre [...] and
maybe that’s something you could have come up with yourself [...] I suppose that
is something you have an idea of already”; i8 also thinks that genre segues are

very trivial: “those (genre) segues have problems, they are [...] very trivial”.

Biographical and genre segues belong to the broader groups of respectively fac-

tual and opinionable segues, which we suspect to be more and less interesting,

again because of interestingness guideline (3): factual segues are not likely to

contradict user prior knowledge, unless the user is wrongly informed, while

opinionable segues, by definition, are more likely to do so. However, future

work is needed to verify our supposition. Some factual segues that could be

included in tours are suggested by the interviewees. For example i14 would like

segues drawn from artists’ biographies, both related and not related to music,

e.g. which and how many pets an artist has; i7 would like acoustical informa-
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tion segues, such as the tempo or key of a song; and i9 would like lyrics segues,

such as which keywords features in the song lyrics.

Summing up, segues in tours could be improved by including more biographical

information and by avoiding musical genres. Another potential improvement

is to include more factual information, such as those in the last paragraph,

and avoid opinionable statements. The topics of segues can be modified by

altering the knowledge graph available to algorithms, described in Section 5.2,

to include the information that should feature in segues, and to exclude the

information that should not feature in the segues.

5.4.4.3 Song selection

The algorithms we are using are given a set of songs as input, and return a

sequence made from this same set of songs, broken up by segues. That is, the

algorithms are not designed to perform any song selection. In this work, we

ask interviewees to send us ten songs they are familiar with, that we input to

the algorithms, as described in Section 5.3. In this Section, we report what

interviewees say about how to appropriately select the songs in input to the

algorithms. In summary, we find that the right level of familiarity is key.

The tours we show during the interviews feature familiar music only. Many

interviewees mention that they would like tours to feature some unfamiliar

songs, along with familiar songs, a concept we refer to as UF-tours (Unfamil-

iar/Familiar tours). A UF-tour is similar to popular features of music steaming

services, such as Spotify’s daily mix3, which is a playlist of familiar and unfamil-

iar music. A UF-tour, however, is different from a daily mix because the unfa-

miliar songs are introduced by a segue. The majority of interviewees (10 out of

16) say they would welcome a UF-tour. For example, i12 says “Spotify would give
your daily mix (that is) songs you know mixed with similar songs [...] I would
have never listened to. (A UF-tour) can be quite interesting actually, because it
creates a connection, it is not just a vague music floating around [...] having that
little bit of information to introduce the artist and the actual songs would be quite
interesting I think, I would be you more inclined to go to the actual artist page and
listen to more of their music.”; and i3 says: “I’d be very interested in this, because
on Apple Music, if you set auto-play from your songs, they will bring on just a
random song [...] while this will give you why they are similar, what connection
do they have.” It is not clear whether UF-tours are preferred over F-tours (tours

3https://newsroom.spotify.com/2018-05-18/how-your-daily-mix-just-gets-you/
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of familiar music only), because not enough interviewees explicitly compared

the two concepts. Interviewee i5 suggests a button to switch between an F-tour

and a UF-tour, which can be a sound design choice before future investigation

on the subject.

Many interviewees comment on tours that feature only unfamiliar music, a

concept we refer to as U-tours. The general opinion is mostly negative, as

no interviewee says that they would welcome a U-tour. The main reason is that

segues between two unfamiliar songs lose their meaning. For example, i9 says

“(segues are valuable) with music that is important to you. If that music is not
important to you in the first place, I think (the segue) it’s just going to be semantic
information [...] it wouldn’t bring any value to me”. Familiar songs are needed to

keep interest in the tour alive. For example, i12 says “I think the mix of familiar
and novel songs works, because the familiar songs are kind of an anchor to you,
whereas with two unfamiliar songs [...] (a segue) wouldn’t mean much to me”.
The above result also suggests avoiding segues between two unfamiliar songs

in UF-tours.

One difficulty in implementing UF-tours and U-tours is recommending which

unfamiliar music to display in the tour. Interviewees suggest that recommended

music should fit the user’s tastes. For example, i2 says “having music you don’t
like [...] is kind of inevitable when finding new music but ideally a tour would
have music you will like in advance [...] having a tour that doesn’t read your
preference very well [...] wouldn’t be good”. Moreover, it may be important that

all songs in a tour are similar to each other, as noted in Section 5.4.1.4.

5.4.4.4 Presentation

Tours are presented to interviewees through two mediums, visual and aural, as

explained in Section 5.3. The visual presentation is similar to Figure 4.1 (a) and

(b), while the aural presentation is a sequence of songs, alternated by segues,

read by a TTS engine. It is not clear which medium is preferred, as we do not

investigate the matter explicitly.

Interviewees do however identify a number of flaws in the presentation of the

tours. For example, the TTS is perceived as too “robotic”, not human-like, and

it is not liked by some interviewees. For example, i6 says: “(would have been
better) if the audio links were not spoken as obviously by a computer, you know if
it was more human-like, more engaging”. Also, some interviewees do not like the

short pauses between the music and the segues, and would like the song and
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the segue to overlap a little, similar to radio programs. For example, i5 says:

“you could merge the songs a little bit (so that) the voice over came in towards the
end of the first song, while the second song began while the voice over is running,
eliminating that downtime between the two”. Finally, some interviewees question

the rule of having a segue between every pair of songs, and suggest that, if not

interesting enough, a segue could be skipped. For example, i16 says: “If the
information isn’t going to be something that’d grab, I wouldn’t want a segment,
you-know? If you can’t find an interesting enough segment, you will just have to
not have a segment”.

5.5 Conclusion

In this Section, we summarise the interviews reported in Section 5.4 to answer

all the RQs we pose and we discuss the limitations of the work that we have

presented here.

5.5.1 Discussion of RQs

RQ1. What are the attributes of tours? (1) According to the interviewees,

tours recommended by GREEDY feature a segue top-bottom bias, that is the

first segue tends to be more interesting than the last segue, while tours recom-

mended by OPTIMAL do not. (2) Tours do not always feature segue diversity,

but tours recommended by GREEDY are found to be more diverse than tours

recommended by OPTIMAL. (3) Tours do not always feature segue narrativity,

that is the quality that the sequence of segues in tours presents a narrative with

a coherent text, but tours recommended by OPTIMAL are found to feature more

narrativity than tours recommended by GREEDY. (4) Tours do not always fea-

ture good song arrangement, and tours recommended by GREEDY are found to

be equally good in song arrangement to tours recommended by OPTIMAL.

RQ2. What attributes of the tours are good/bad? Segue diversity is definitely

a good tour attribute, as 14 out of 16 interviewees say so. Song arrangement

is another good attribute, as interviewees say that good song arrangement is a

reason as important as good segues to prefer a tour over another. Segue narra-

tivity, instead, is considered a good attribute of tours by only three interviewees.

In conclusion, segue diversity and song arrangement appear to be the two most

important attributes of the tours investigated in this work.

Intelligibility of Music Playlists 125 Giovanni Gabbolini



5. USER-CENTERED PERSPECTIVES ON MUSIC

TOURS 5.5 Conclusion

RQ3. Which algorithm recommends better tours, and why? GREEDY seems

to recommend higher quality tours than OPTIMAL. Interviewees motivate their

choice mentioning higher segue interestingness and better song arrangement.

We infer that GREEDY is preferred to OPTIMAL because of segue interestingness,

which is higher in GREEDY, while the quality of song arrangement is similar in

both algorithms. In turn, segues in GREEDY could be more interesting because

of the higher diversity, which is regarded as one important characteristics of

segues.

RQ4. How valuable is the concept of tours in general? The majority of in-

terviewees find that the algorithms recommend tours with interesting segues,

and say they would welcome a tour such as those they were presented with.

However, accepting tours is dependent on context: tours require active listen-

ing, and they are not suited for passive listening. In conclusion, participants

mostly evaluate the concept of tours positively in general.

RQ5. What are possible improvements to tours? (1) Take into account user

prior knowledge and controversial content when scoring the segues. In particu-

lar, known segues, segues contradicting user prior knowledge and controversial

segues should have low scores. (2) Include more segues with biographical in-

formation and fewer segues about musical genres. (3) Choose music carefully,

admitting, from time to time, unfamiliar music, always chosen to fit the user’s

tastes. (4) Mind the presentation, employing an appropriate TTS engine to

read the segues, avoiding silences by overlapping songs with segues, and skip-

ping segues if not interesting enough. (5) Implement a good song arrangement

mechanism based on song similarity, as song arrangement is a fundamental

attribute of tours, but it is not considered by the algorithms we use. (6) Imple-

ment a segue diversity mechanism, as segue diversity is a fundamental attribute

of tours, but it is not considered by the algorithms we use.

5.5.2 Limitations

Our work has limitations that should be acknowledged. We conduct semi-

structured interviews, as they suit best our need of answering the RQs, as ar-

gued in Section 5.3. However, this kind of experimental setting could affect

the validity of some results. For example, when evaluating the concept of tours

(RQ4), interviewees could infer that tours are the work of the interviewer. Par-

ticipants will realise that tours are the focus of the work and will know that the

tours they are being shown have been created by the interviewer. Hence, they
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may feel pressure to provide a positive evaluation. We attempt to relieve the

pressure, as explained in Section 5.3.2. However, we cannot prove the effec-

tiveness of the attempt.

Another limitation of our experimental protocol is that we present interviewees

with tours of familiar music (F-tours), but we ask questions about the three vari-

ant of tours: tours with familiar music (F-tours), tours with both familiar and

unfamiliar music (UF-tours), and tours with unfamiliar music only (U-tours).

As such, the interview data may be positively biased towards F-tours, which

were presented to interviewees, and may be negatively biased towards U-tours

and UF-tours, which were not presented to interviewees. We find that UF-tours

are preferred over F-tours by interviewees, which suggests that any bias is lim-

ited. However, we do not have further means for disentangling bias and real

preference on this issue.

Moreover, semi-structured interviews are a high cost protocol, which constrains

the number of participants [BC06], 16 in our case. In our case, we resort

to a convenience sampling of university students, which does not imply that

our result extends to a broader sample of the population. Moreover, the small

number of participants limits the statistical power of the experiment, as we

cannot afford to have more than two treatments [KW15]. In our case, we fix

the two treatments to be the two tour generation algorithms, as we explain in

Section 5.1. Therefore, we do not include any playlist recommendation algo-

rithms among the treatments, so we cannot assess whether tours are preferable

to playlists or not. By analysing the results of Section 5.4, we may infer that

playlists are preferable to tours when listening to music passively, and that tours

can be preferable to playlists when listening to music actively, which corrobo-

rates previous work [BMT+19]. However, at this stage this is more an intuition

than a definite answer. Similarly, we do not include other interesting treat-

ments in the experiment, such as a tour generation algorithm which accounts

for segue diversity, such as the one proposed in [BMT+19]. In any case, the

work of [BMT+19] is not fully reproducible, as some fundamental parameters

of their algorithm, such as the author-defined segue importance weights, are

not shared in the paper.

Finally, while the interviews hint at several guidelines for the construction of

functional tour generation algorithms, we cannot forecast the impact of those

guidelines, and their effectiveness can only be assessed by comparing a tour

generation algorithm that implements those guidelines and a tour generation
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algorithm that does not.

Intelligibility of Music Playlists 128 Giovanni Gabbolini



Chapter 6

Playlist tagging

6.1 Introduction

In the previous Chapters of this dissertation we focus on song-level playlist in-

telligibility. In the next two Chapters, we instead focus on playlist-level intelli-

gibility, which we define in Chapter 1 as the degree to which the characteristics

of a playlist can be understood by a human audience. One way to achieve

playlist-level intelligibility is by playlist tagging, which is the task of assigning

to a playlist one or more tags, drawn from a fixed vocabulary of tags1.

In this Chapter, we focus on playlist tagging. There exist different categories

of playlist tags, such as genre tags, e.g. “rock”; decade tags, e.g. “90s”; and

listening context tags, e.g. “running”. In this Chapter, we focus on tagging with

listening context tags, for which we had a dataset available to use. The dataset

we use was the only dataset of tagged playlists at the time we conducted our re-

search. Subsequently, at the time of writing this dissertation, a new dataset has

become available, with a broader set of tags [FKL+21]. It would be interesting

to apply the algorithms we propose below to this broader set of tags, which is a

direction we leave as future work.

To the best of our knowledge, there exists only one attempt to predict the lis-

tening context of music playlists: [CKE20]. The authors of [CKE20] set up

a multi-label classification problem, in which playlists are classified for their

listening contexts, and they propose four classifiers: two matrix factorisation

(MF)-based classifiers, that work by counting how many times a song is associ-

1We remind the reader that we use the word “tag” where there is a fixed vocabulary, and
“user tag” where free text is allowed.
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Figure 6.1: A knowledge graph representing two playlists and three songs in
total. The bottom and top boxes indicate two portions: Gi, which contains
song, playlist and listening context nodes, and Gm, which contains metadata
nodes, such as musical genres.

ated with each playlist listening context, and two convolutional neural network

(CNN)-based classifiers, that work with song audio. However, these classifiers

are limited in that they do not incorporate song metadata, such as musical gen-

res.

In this Chapter, we formulate two novel knowledge graph (KG)-based classi-

fiers. KGs are a powerful data model, suitable for storing heterogeneous in-

formation [WBDB17]. Figure 6.1 depicts a KG like those we use, made up of

two distinct portions: Gi and Gm. The portion Gi represents the membership

of songs to playlists, and of playlists to listening contexts. The portion Gm

represent song metadata, solving the limitation of existing classifiers that they

do not use song metadata. The KG-based classifiers that we propose work by

building a KG, such as the one depicted in Figure 6.1, embedding the KG, so

that each node and edge is transformed to a feature vector, and using the song

embeddings to predict the listening contexts of playlists.

We benchmark the classifiers with a dataset of playlists annotated with their lis-

tening contexts, originally proposed in [CKE20]. The two KG-based classifiers

we propose achieve approximately 10% higher performance than the existing

predictors. A sensitivity analysis reveals that the KG-based classifiers can incor-

porate song metadata effectively.

However, the two KG-based classifiers do not consider song audio. So, we
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formulate another two novel predictors, as the hybrid of the CNN-based and

KG-based classifiers. As expected, the hybrid classifiers outperform MF-based,

KG-based and CNN-based predictors, setting the new state-of-the-art perfor-

mance in the task.

Related to playlist tagging is song tagging, a popular research topic in MIR.

Song tagging is the task of assigning to a song one or more tags, drawn from

a fixed vocabulary of tags. CNNs are the algorithms of choice in state-of-

the-art song tagging research. [WFBS20], for example, offers a comparison

of recent Convolutional Neural Network (CNN)-based classifiers: a CNN ex-

tracts learned features from the audio of a song, and leverages these features

to output appropriate tags. Similarly, the state-of-the-art classifiers proposed

in [PNP+18, WCNS20, CFSC17] are CNN-based. Progress in song tagging is

enabled by the availability of large scale datasets, such as the Million Songs

Dataset [BMEL+11], the MagnaTagATune Dataset [LWM+09] and the MG-Jamendo

Dataset [BWT+19]. These datasets contain songs annotated with tags of sev-

eral categories: genre tags (e.g. “jazz”), instrumentation tags (e.g. “guitar”),

decade tags (e.g. “80s”), mood tags (e.g. “happy”) and listening context tags

(e.g. “party”).

We release the source code and the dataset that supports our work here, so as

to allow reproducibility and foster new research on the subject2.

In summary, our contributions are:

1. the first two KG-based listening context predictors of music playlists that

incorporate song metadata;

2. another two novel predictors that incorporate KGs and song audio;

3. a comparison of the predictors reporting approximately 10% higher per-

formance than the state-of-the-art, and showing the impact of song meta-

data on performance.

6.2 Method

Predicting the listening contexts of playlists is framed by the authors of [CKE20]

as a multi-label classification problem. The same authors propose four such

classifiers (MF-AVG, MF-SEQ, CNN-AVG and CNN-SEQ). Here, we propose an-

2https://github.com/GiovanniGabbolini/playlist-context-prediction
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Figure 6.2: Schematic architecture of MF-AVG, MF-SEQ, CNN-AVG, CNN-SEQ,
KG-AVG and KG-SEQ.
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Figure 6.3: Schematic architecture of HYBRID-AVG and HYBRID-SEQ.

other four such classifiers (KG-AVG, KG-SEQ, HYBRID-AVG, HYBRID-SEQ). As

we will explain below, six of the classifiers that we consider follow the schema

depicted in Figure 6.2. The two hybrid classifiers follow the schema depicted

in Figure 6.3. In the rest of this section, we summarise the four classifiers that

were proposed in [CKE20], and we describe the four classifiers that we propose.

6.2.1 Matrix factorisation-based

The two matrix factorisation (MF)-based classifiers (MF-AVG and MF-SEQ), orig-

inally proposed in [CKE20], take as input a matrix X ∈ RN,M where N is the

number of songs and M is the number of listening contexts. The element at

row n and column m of X is equal to the number of times the nth song ap-

pears in playlists that have the mth context. The matrix X is factorised into two

matrices, S ∈ RN,H and C ∈ RH,M , using WR-MF, which is the MF procedure

described in [HKV08], so that SC ≈ X. H is the embedding dimension, which is

a hyper-parameter of WR-MF. The rows of S and the columns of C contain, re-

spectively, song and listening context embeddings. Then, the song embedding

vectors for the songs in a given playlist (a subset of the embeddings contained

in S) are either averaged song-wise (in MF-AVG) or input to a single-layered

LSTM network (in MF-SEQ), to get a playlist embedding vector, which is fed

into a single-layered feed-forward (FF) network that outputs a score for each

listening context.

The architectures of MF-AVG and MF-SEQ fit into the schema of Figure 6.2 as

the matrix X is the input, and WR-MF is the song embedding extractor. Notice
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that MF-AVG and MF-SEQ work in two steps, that is the song embedding extractor
is trained separately from the rest.

6.2.2 Convolutional neural network-based

The two convolutional neural network (CNN)-based classifiers (CNN-AVG and

CNN-SEQ), originally proposed in [CKE20], extend the state-of-the-art in song

tagging to playlist tagging. Given a song, they consider the full audio, and

compute mel-spectrograms for every contiguous 3-seconds of audio. The mel-

spectrogram is a hand-crafted feature extracted from audio, commonly used in

many music information retrieval tasks, such as song tagging, e.g. [PNP+18,

WCNS20, CFSC17]. The mel-spectrograms are input to a Convolutional Neural

Network (CNN) with five 1D-convolutional layers, which outputs an embedding

vector for every 3-seconds of audio. Such embeddings are averaged point-wise,

to get one song embedding vector. Given a playlist, the song embedding vectors

are computed as above, and either averaged song-wise (in CNN-AVG) or input

to a single-layered LSTM network (in CNN-SEQ), to get a playlist embedding

vector, which is fed into a single-layered (FF) network that outputs a score for

each listening context.

The architecture of CNN-AVG and CNN-SEQ fit into the schema of Figure 6.2 as

the mel-spectrograms are the input, and the CNN is the song embedding extrac-
tor. Notice, however, that CNN-AVG and CNN-SEQ are end-to-end, that is the

song embedding extractor is trained jointly with the rest.

6.2.3 Knowledge graph-based

A knowledge graph (KG) is a set of triples G = {(e, r, e′) | e, e′ ∈ E, r ∈ R},
where E and R denote, respectively, the sets of entities (nodes) and relation-

ships (edges). KGs are suitable for representing heterogeneous information

[WBDB17]. For example, [OON+16] builds a KG representing users, their inter-

actions with songs, and acoustical metadata, such as what musical instruments

are played in the songs.

The information we want to represent is: songs; playlists; listening contexts;

and song metadata. So, we build a KG composed of two portions. (1) Gi:

the portion containing song nodes, playlist nodes and listening context nodes.

These nodes are connected by edges according to membership: a song node

is connected to the playlist nodes the song belongs to, and a playlist node is
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connected to its listening context node. (2) Gm: the portion containing song

metadata, i.e. the record label associated with the song, the musical genres

associated with the song, the year and the month when the song was released,

the artist of the song, the city and the country where the artist is currently

based, and where they were born. We selected these items of metadata empir-

ically, through informal experimentation, and by taking inspiration from previ-

ous work; for example, [KBJ20] finds that the release year of a song can be a

predictor for the listening context. In future work, Gm can be readily expanded

to include more song metadata, such as information extracted from song lyrics.

For each piece of song metadata, there is a node in Gm. Song nodes are con-

nected by edges to their metadata nodes. Song metadata may be missing, e.g.

we may not know the record label for a particular song. We obtain metadata

from the crowd-sourced database MusicBrainz3.

Figure 6.1 depicts a KG, like those that we build.

We embed the KG using the TRANS-D algorithm, which is a state-of-the-art KG

embedding algorithm [DWXG20]. TRANS-D produces an embedding vector for

every node and edge in the KG, in such a way that the topology of the KG is

preserved. In particular, given a KG G, and given a triple (e, r, e′) ∈ G, TRANS-

D produces three embedding vectors ve, vr and ve′ that satisfy a relationship

similar to ve + vr ≈ ve′, for every triple in G. The embedding vectors of the

song nodes in the KG for the songs in a playlist are either averaged song-wise

(in KG-AVG) or input to a single-layered LSTM network (in KG-SEQ), to get a

playlist embedding vector, which is fed into a (FF) network, that outputs a score

for each listening context.

The architecture of KG-AVG and KG-SEQ fit into the schema of Figure 6.2 as the

KG we build is the input, and TRANS-D is the song embedding extractor. Notice

that KG-AVG and KG-SEQ work in two steps, that is the song embedding extractor
is trained separately from the rest.

The MF-based and KG-based algorithms both leverage information about lis-

tening contexts when computing song embeddings. However, KG-based algo-

rithms exploit that information more effectively. For example, let us consider

the scenario depicted by the portion Gi of the KG in Figure 6.1 where there

are two playlists, playlist1 and playlist2, whose listening contexts are respec-

tively context1 and context2, and which contain respectively the songs song1 &

song2 and song2 & song3. MF song embeddings are aligned with their listening
3https://musicbrainz.org

Intelligibility of Music Playlists 134 Giovanni Gabbolini

https://musicbrainz.org


6. PLAYLIST TAGGING 6.2 Method

contexts, as explained in Section 6.2.1. In the example above, the MF embed-

ding of song1 is aligned with context1, the MF embedding of song3 is aligned

with context2, and the embedding of song2 is aligned with both context1 and

context2. However, song1 and song2 are in the same playlist (playlist1). As

such, we expect the embedding of song1 to be aligned, to some extent, also

with context2, and not only with context1; similarly for the embedding of song3.

That is, MF-based algorithms ‘short-circuit’ the representation of playlists by

modelling the association of songs to playlist listening contexts directly. KG

embeddings preserve the topology of the KG, and so can overcome the short-

circuiting problem of the MF-algorithms. In the example above, the songs in Gi

are all connected with each other, via the explicit representation of the playlists

as well as the listening contexts. That is, the embeddings of song1, song2 and

song3 are all aligned, to some extent with context1, and to some other extent

with context2. The short-circuiting problem undermines the performance of the

MF-based classifiers, as we empirically prove in Section 6.3.3.2. In a similar

vein, [LCC18] propagates tags among songs in the same playlists, and measure

an increase in performance.

6.2.4 Hybrid

The CNN-based classifiers and the KG-based classifiers differ on their input data,

as the CNN-based classifiers rely on song audio, while the KG-based classifiers

rely on a KG representation of songs, playlists, listening contexts, and song

metadata. The audio and the KG differ in modality, as well as availability. For

example, while song audio is available for every song in the catalogue, a KG

such as the one we use may represent the most famous songs well, but it may

fail to represent properly more niche songs, which is a manifestation of the long-

tail problem [KS16], and it may also fail to represent newly-released songs. To

address this limitation, we complement the KG-based classifiers with the CNN-

based classifiers, by formulating two hybrid classifiers.

The hybrids work by jointly running a KG-based classifier (KG-AVG or KG-

SEQ) and a CNN-based classifier (CNN-AVG or CNN-SEQ), and by fusing the

two playlist embedding vectors that they compute, before they are passed to a

single-layered FF network that outputs a score for each listening context. We

refer to HYBRID-AVG as the hybrid of KG-AVG & CNN-AVG and to HYBRID-SEQ

as the hybrid of KG-SEQ & CNN-SEQ. The architecture of the two hybrids follow

the schema of Figure 6.3.
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For the embedding fusion, both the audio and KG-based playlist embedding

vectors are input to two separate linear layers, two separate non-linearities,

and then summed point-wise, as suggested by [BAM18]. We did experiment

with other simple fusion strategies, e.g. concatenation, but they achieved lower

performance.

6.2.5 Implementation details

Our implementation of CNN-AVG and CNN-SEQ is a little different from the

original paper [CKE20] as we make two simplifications. First, we use Spotify’s

30-second audio previews of the songs instead of their full audio. These audio

previews are freely available, unlike the full audio, which is expensive to access

due to copyright restrictions. Moreover, the usage of audio previews make our

work reproducible. Second, we average the 3-second mel-spectrograms of a

song point-wise in input to the CNN. As such, the CNN receives only one spec-

trogram, and outputs the song embedding directly. This second simplification

saves computing resources. In Section 6.3, we show that our implementation

of the CNN-based models outperforms the MF-based models, which is consis-

tent with the original paper. More specifically, our implementation of CNN-SEQ

achieves 7% higher performance than MF-SEQ, which is consistent with the

original paper; similarly for CNN-AVG and MF-AVG. Given those results, we are

confident that our implementations of the CNN-based models, although simpli-

fied, are as valid as the original implementations presented in [CKE20].

We compute the mel-spectrograms for the CNN-AVG and CNN-SEQ classifiers

with 22,050 Hz sampling rate, 1,024 FFT size, 512 hop size, and 128 mel bins.

We set hyper-parameters of the MF and CNN-based classifiers as in the original

paper [CKE20]. That is, we set the song embedding dimension to 50, and we

use ReLU as the non-linearity. We do the same in the KG-based and hybrid

classifiers. We train the classifiers with early-stopping, monitoring FH@1 on

the validate set, with patience equal to ten. We tune other hyper-parameters of

the eight classifiers (learning rate, weight decay and batch size) using Bayesian

optimisation [VM21]. We fix the number of trials of the Bayesian optimiser to

20. For the WR-MF and TRANS-D embedding procedures, we use the default

parameters and we set the number of epochs to ensure convergence of the loss

function.

For other implementation details, we refer the reader to the source code that

supports our work here.
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6.3 Experiments

We compare the classifiers described in Section 6.2, and variants of those, on

their performance in predicting the listening context of music playlists.

6.3.1 Dataset

We use a dataset of playlists annotated with their listening contexts. The dataset

was annotated by the authors of [CKE20], starting from user playlists contained

in the Spotify Million Playlist Dataset (MPD) [CLSZ18], and retaining only the

portion of playlists that have a listening context as title4. Examples of listening

contexts present in the dataset are: driving, studying and summertime. For

other examples, we refer the reader to the dataset that supports our work here.

Also, we refer the reader to [CKE20] for more information on the annotation

procedure. Each playlist is annotated with one listening context. We split the

dataset randomly into train, validate and test sets, accounting respectively for

60%, 20% and 20% of the total playlists. Similar to [CKE20], we filter out songs

that occur in the validate and test sets but not in the train set, as some classifiers

cannot handle at testing time songs not seen at training time. The classifiers

that have this limitation are MF-AVG, MF-SEQ, KG-AVG and KG-SEQ. They work

by training a song embedding extractor model in a first step, separately from the

classifier that outputs the listening context, see Sections 6.2.1 and 6.2.3. As a

result, embeddings for songs not present at training time are not available at

test time. In a real world scenario, where new releases are frequently added to

the songs catalogue, it would be necessary to incrementally train the models so

that the training set covers all songs in the catalogue. An alternative is to use

CNN-AVG and CNN-SEQ, as they rely on the audio signal, which is available for

songs not seen at training time.

Table 6.1 contains statistics of the dataset that we use (train, validate and test

splits together).

6.3.2 Metrics

We call D the test set, and we call p a playlist in the test set, that is p ∈ D.

We call |D| the number of playlists in the test set. The classifiers described in

4The dataset we use is not the one used in [CKE20], which is proprietary, but it was supplied
to us by the authors of [CKE20] as a dataset annotated with the same procedure, and in which
similar results can be obtained.
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Table 6.1: Dataset statistics.

Statistic Value

Number of playlists 114,689
Average playlist length 62.6

Number of unique songs 418,767
Number of unique listening contexts 102

Section 6.2 predict a score for each listening context. As such, given a playlist,

a classifier predicts a ranking of listening contexts, by decreasing score. Given

a ranking of listening contexts for a playlist p, we call rankp the position of

the correct listening context in the ranking. For example, if a classifier assigns

the highest score to the correct listening context, then rankp = 1. Instead,

if the classifier assigns the lowest score to the correct listening context, then

rankp = 102 (see Table 6.1).

We compare the classifiers for their performance in predicting the listening con-

texts of the playlists in D. We measure performance with four metrics, as in

[CKE20]:

Flat hits (FH@1, FH@5) Flat hits is the percentage of playlists D such that

rankp ≤ k. In our case, since the goal is classification rather than retrieval,

we consider only k = 1 and k = 5 and no higher values for k. In formulas:

FH@k = 1
|D|

∑
p∈D

1(rankp ≤ k)

where 1(rankp ≤ k) is the indicator function. That is, 1(rankp ≤ k) = 1
if rankp ≤ k and 0 otherwise. In other words, FH@1 is the percentage

of playlists for which the classifier predicts the listening context correctly.

And, FH@5 is the percentage of playlists for which the classifier predicts

the correct listening context among the first five predictions.

Mean reciprocal rank (MRR) The reciprocal rank is the reciprocal of rankp.

The MRR is the average of those reciprocals ranks. In formulas:

MRR = 1
|D|

∑
p∈D

1
rankp

.

Mean average precision (MAP@5) MAP is equivalent to MRR, except that we
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Table 6.2: Performance of the classifiers.

FH@1 FH@5 MRR MAP@5

MF-AVG 0.299 0.536 0.416 0.386
MF-SEQ 0.327 0.595 0.452 0.423

CNN-AVG 0.291 0.583 0.425 0.395
CNN-SEQ 0.352 0.639 0.484 0.456

KG-AVG 0.388 0.678 0.521 0.495
KG-SEQ 0.389 0.678 0.520 0.494

HYBRID-AVG 0.395 0.687 0.528 0.503
HYBRID-SEQ 0.389 0.678 0.520 0.495

set the reciprocal rank to 0 when rankp > k5. That is, if rankp > k for

every p ∈ D, then MAP@k = 0. In our case, we consider k = 5. In

formulas:

MAP@k = 1
|D|

∑
p∈D

1
rankp

× 1(rankp ≤ k).

On the one hand, FH@k disregards the actual position of the correct listening

context in the ranking, but counts how frequently this position is lower than a

threshold k. On the other hand, MAP@k and MRR do account for the actual

position of the correct listening context in the ranking. Therefore, these metrics

give a multi-sided view of the classifiers’ performance.

We set up significance tests to check whether differences in performance are

statistically significant or not. Following [DBSR18], we set up a t-test for MRR
and MAP@5, and a paired bootstrap test for FH@1 and FH@5. Similar to

[Koe04], we fix the number of bootstrap replicas to 1000.

6.3.3 Results

We conduct two experiments: a comparison with the state-of-the-art, and a

sensitivity analysis.

6.3.3.1 Comparison with state-of-the-art

We measure the performance of the classifiers that we propose (KG-AVG, KG-

SEQ, HYBRID-AVG, HYBRID-SEQ), and the performance of the state-of-the-art

5Our formulation of MAP is different from others, which allow for multiple relevant items.
In our case, there is only one relevant item: the correct listening context.
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baselines, i.e. the existing listening context classifiers (MF-AVG, MF-SEQ, CNN-

AVG, CNN-SEQ). The results are in Table 6.2.

The classifiers that we propose outperform the baselines by a considerable

amount. HYBRID-AVG scores highest performance, improving by approximately

10% over the baselines. The improvement in performance is statistically signifi-

cant (p < 10−4). In general, all the classifiers we propose improve performance

over the baselines (p < 10−4).

The improvement in performance has real world relevance. For example, HYBRID-

AVG achieves 12% higher FH@1 than the best baseline (0.395 vs 0.352), which

means than in a sample of 1000 playlists, our algorithm predicts the listening

context correctly 395 vs 352 times, on average. Considering that the current

databases contain millions of playlists, the 12% increase over the baselines is

particularly ‘tangible’.

We notice that the more complex SEQ variants of the algorithms are not always

superior to their simpler AVG variant. MF-SEQ and CNN-SEQ have higher per-

formance than, respectively, MF-AVG and CNN-AVG (p < 10−4). But we do not

find any statistically significant differences between the performance of KG-

AVG and KG-SEQ, while HYBRID-SEQ has lower performance than HYBRID-AVG

(p < 10−4). Probably, the architecture of HYBRID-SEQ is too complex for the

task at hand, and may overfit the training set, while the simpler HYBRID-AVG

generalises better to new data. Moreover, the result corroborates previous work

[CKE20], where the SEQ variant is found to be sometimes superior and some-

times inferior to the AVG variant.

The hybrid classifiers are the combination of the (audio) CNN-based and KG-

based classifiers. Accordingly, HYBRID-AVG has higher performance than CNN-

AVG and KG-AVG. Though statistically significant (p < 10−4), the increase in

performance is only slight. We can understand the result by looking at the lit-

erature on the well-studied task of music similarity [AP02c]. Flexer [Fle14]

shows that increasing the performance of similarity algorithms is particularly

challenging after a certain threshold, as there exists an upper bound to per-

formance, caused by the low agreement of different users in the perception of

music similarity [GB21b]. Likewise, humans can have different perceptions of

the right listening context for a given playlist. In the dataset we use, each song

is associated with 17 different playlist listening contexts, on average. As such,

we expect that increasing the performance of classifiers can become particu-

larly challenging after a certain threshold. For example, HYBRID-SEQ has higher
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Table 6.3: Performance of KG-based classifiers with (w) and without (wo) song
metadata.

FH@1 FH@5 MRR MAP@5

KG-AVG wo metadata 0.375 0.665 0.507 0.481
KG-AVG w metadata 0.388 0.679 0.521 0.495

KG-SEQ wo metadata 0.382 0.668 0.513 0.487
KG-SEQ w metadata 0.388 0.679 0.520 0.495

performance than CNN-SEQ (p < 10−4), but not over KG-SEQ (no statistically

significant difference).

6.3.3.2 Sensitivity analysis

KG-based classifiers have as input a KG with songs, playlists, their listening

contexts (portion Gi) and song metadata (portion Gm). We measure the per-

formance of variants of the KG-based classifiers that have as input only the

portion Gi of the full KG. The results are in Table 6.3, and show an increase in

performance when using metadata (p < 10−4). This indicates that the KG-based

classifiers make effective use of song metadata for predicting listening contexts.

However, the increase in performance is only slight, and again can be explained

by the work of Flexer [Fle14], as in Section 6.3.3.1.

The Gi portion of the KG contains the same information as the input to the

MF-based classifiers, i.e. playlist listening contexts. However, as argued in Sec-

tion 6.2.3, MF-based classifiers suffer from what we called the playlist short-

circuiting problem, i.e. they model the association of songs to playlist listening

contexts directly, while KG-based classifiers do not. A comparison of the results

of the KG-based classifiers without metadata in Table 6.3 and the MF-based

classifiers in Table 6.2 reveals the consequences of these two ways of modelling

the information. The comparison shows that the KG-based algorithms exploit

that information more effectively, since their results are significantly superior to

those of the MF-based algorithms (p < 10−4).

6.4 Conclusion

In this Chapter, we proposed four novel systems for predicting the listening

contexts of music playlists, which include, for the first time, song metadata in

their models. In two of them, we represent songs, playlists, listening contexts
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and song metadata in a KG, that we embed, and we use the song embeddings

to make predictions. In the other two, we combine the KG and song audio in

a unique hybrid model. We benchmark the performance of the predictors we

propose, reporting an increase in performance of approximately 10% over the

state-of-the-art. We also show, through a sensitivity analysis, that the KG-based

predictors can incorporate the song metadata effectively. We argued that the

improvement in performance that we have achieved has real world relevance.
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Chapter 7

Playlist captioning

7.1 Introduction

In the last part of this dissertation, to which this Chapter belongs, we focus

on playlist-level intelligibility1. In the previous Chapter, we achieved playlist-

level intelligibility by assigning tags, drawn from a fixed vocabulary, to playlists.

In this Chapter, we achieve playlist-level intelligibility by captioning, that is

describing a playlist using natural language [CFS16].

Playlist captioning can be seen as a more general problem than playlist tagging.

In fact, while tagging assigns one or more tags to a playlist, in playlist caption-

ing, playlists are described in natural language, possibly including one or more

tags, linked together in a fully-formed and coherent sentence. Captioning may

be more suited than tagging for closing the semantic gap between audio and

language, which is the key to achieving intelligibility. This is especially because

playlists are sometimes centered around elaborate themes, see Section 2.6.1,

that may not be explicable by using a set of tags. For example, a playlist tagged

as “Jamaica” and “UK” may refer to a playlist of UK songs influenced by Ja-

maican traditional music, or to a playlist of top-charting Jamaican songs in the

UK. Natural language, instead, allows for precise characterisation of playlists

at a high semantic level. However, captioning is a tough problem, whose so-

lution may require massive quantities of training data and compute resources.

Tagging, by contrast, might be more feasible in data or compute-bounded sce-

narios. Because of their pluses and minuses, we believe that the problems of

1This chapter is based on work done by Giovanni Gabbolini in collaboration with Elena
Epure and Romain Hennequin from Deezer. See Section 1.3 for a statement of the division of
contributions.

143



7. PLAYLIST CAPTIONING 7.1 Introduction

tagging and captioning deserve to coexist, and hence we cover both of them in

this dissertation.

Related to playlist captioning is captioning of other kinds of objects. In fact,

automated captioning is an active research field that has attracted much atten-

tion in recent years. We can find attempts to caption images [SCB+22], videos

[GGZ+17], audio [DLV20] and music [MBQF21]. Here we review works in

audio and music captioning, which are closest to our contribution.

Audio captioning focuses on identifying the human-perceived information in

a general audio signal and expressing it through natural language [DLV20].

For example, an audio caption is: “a door creaks as it slowly revolves back

and forth”. [KMN+20] propose a transformer architecture for audio captioning

that is similar to the original transformer for machine translation [VSP+17].

The input audio is embedded with a pre-trained Convolutional Neural Network

(CNN) [HCE+17]. The embeddings are input to a transformer encoder. Then,

a transformer decoder is tasked with generating the target caption.

While audio captioning is concerned with general audio signals, music cap-

tioning deals with music audio signals. [MBQF21] propose a Recurrent Neural

Network (RNN) encoder-decoder to tackle single song captioning. The multi-

modal encoder takes as input the song audio embedding and the caption em-

bedding up to token t. The song embedding is obtained with a pre-trained CNN

[PNP+18]. The caption embedding is obtained with a pre-trained word2vec

(w2v)-like model. The decoder is tasked with generating token t + 1. Our

work here is also on music captioning, but instead of captioning single songs

we caption a sequences of songs, i.e. playlists.

Our interest, as stated above, is playlist captioning. We are aware of two other

contributions on playlist captioning: [CFM+16] and [DLN21]. These two works

are afflicted by two main limitations.

The first limitation is poor data quality. Existing work on playlist captioning

uses datasets of user playlists, i.e. playlists created by users for personal use

[DLN21, ZSLC19]. An alternative to user playlists are editorial playlists, i.e.

playlists created by professional editors for a public audience. [CBF06] find

that user playlists may not have a strictly defined theme, while the editorial

ones usually do. Therefore, user playlists may not be an optimal source to learn

representative captions, especially considering that the theme is regarded as a

common playlist descriptor [KBJ20].
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The second limitation is the semantic gap. The playlist captioning algorithms in

[CFM+16] and [DLN21] take in track embeddings as input, and strive to gen-

erate a correct caption as output. [CFM+16] represent tracks as audio embed-

dings; and [DLN21] represent them as random embeddings indexed by track

id and updated by back-propagation. In both cases, the low-level input em-

beddings and the high-level output caption are separated by a “semantic gap”

[CS08] that the algorithms are tasked to close. Closing the semantic gap is

challenging, especially because playlists may be built around themes not eas-

ily deducible from embeddings alone. For example, an Ireland playlist and

a UK playlist could be confused given the cultural similarity these countries

share. Artist themed playlists, e.g. “100% The Beatles”, are even more difficult

to caption due to data sparsity. In the whole dataset, an artist can be absent

or be mentioned only in some playlists, making it difficult for existing models

to learn track-to-artist mappings that could be exploited to produce relevant

captions [SG18].

In this work, we propose PLAYNTELL, a new multi-modal, data-efficient [Ada21]

playlist captioning model that overcomes the above limitations by leveraging

linguistic and musical knowledge, to generate English-language thematic cap-

tions. First, PLAYNTELL narrows the semantic gap by using musical knowledge.

In particular, it leverages user tags, e.g. “Ireland”, “rock” and “90s”, that pro-

vide information at the same high semantic level as the expected captions2.

We also introduce an ad-hoc strategy to deal with artist themed playlists, by

masking artist mentions, and supplying the PLAYNTELL encoder with an artist

distribution vector.

Second, we train PLAYNTELL on a new high-quality dataset of editorial playlists

assembled from two major music streaming services, which we release together

with the code3. However, editorial playlists have the drawback of sparsity. Our

dataset in particular is composed of only a few thousand samples. Training

PLAYNTELL from scratch to generate correct natural language captions with

suhc a dataset is challenging [WLS19]. Inspired by existing work in computer

vision [CGY+22], we address this limitation by warm-starting the decoder with

a pre-trained language model, GPT-2 [BMR+20].

We validate PLAYNTELL with extensive quantitative experiments: PLAYNTELL

outperforms existing playlist captioning algorithms, achieving 2x higher BLEU@4

2We remind the reader that we use the word “tag” where there is a fixed vocabulary, and
we “user tag” where free text is allowed.

3https://github.com/deezer/playntell
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Table 7.1: Example of output generated by PLAYNTELL vs. the corresponding
ground truth.

Caption

PLAYNTELL
“80s smash hits

the best tracks of the decade”

Ground truth
“all out 80s

the biggest songs of the 1980s”

and 3x higher CIDEr. Also, we observe via qualitative evaluation that it can gen-

erate relevant editorial-like captions. We report in Table 7.1 a caption generated

by PLAYNTELL and its ground truth. More examples can be found in Table 7.11.

In summary, our contributions are:

1. PLAYNTELL, a new multi-modal, data-efficient playlist captioning encoder-

decoder model that leverages audio, linguistic and musical knowledge to

generate thematic captions;

2. A new high-quality dataset of thematic playlists created by editors from two

major music streaming services. We enrich each playlist with user tags auto-

matically collected at track level from the crowdsourced database Discogs4;

3. An extensive evaluation of PLAYNTELL, reporting 2x-3x higher BLEU@4 and

CIDEr than existing playlist captioning algorithms. We also provide a qual-

itative analyses of PLAYNTELL, as well as an ablation study and sensitivity

analysis to validate the contribution of different modalities and model com-

ponents, and a user study.

7.2 Dataset

Current public playlist captioning datasets contain user playlists, known to be

noisier and sometimes not focused on a theme [DLN21, CBF06]. We address

the above limitation by introducing a new dataset of thematic editorial playlists.

We created this new dataset by collecting public editorial playlists from Spotify

and Deezer, which are two major music streaming services5.

Each playlist in the dataset consists of a sequence of track ids, a title and a

4https://data.discogs.com/
5https://midiaresearch.com/blog/announcing-midias-state-of-the-streaming-

nation-2-report
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Table 7.2: Dataset statistics.

Statistic Value

Deezer
playlists

Number of playlists 5467
Average caption length (words) 21.1
Average playlist length (tracks) 47.8

Number of unique words 20312
Number of unique tracks 182638

Spotify
playlists

Number of playlists 1104
Average caption length (words) 16.8
Average playlist length (tracks) 69.1

Number of unique words 5551
Number of unique tracks 60765

description. Both tracks, title and description are curated by a professional

editor. Each track is associated with at least one artist.

Some of the playlists that we collected were extremely short, e.g. just two

tracks. We get rid of these outliers by filtering out playlists where the num-

ber of tracks is below the fifth percentile. Some other playlists were extremely

long, e.g. more than 200 tracks, or have long captions, e.g. more than 50 words.

In practice, such outliers have the effect of increasing, respectively, the mem-

ory requirements and inference time of algorithms. For these reasons, we filter

out playlists where the number of tracks is above the 95th percentile, or where

the caption length in words is above the 95th percentile. We end up with 5467

Deezer playlists and 1104 Spotify playlists. We judge the playlists and their cap-

tions to be of high quality, so no further pre-processing is needed. We release

both the raw and the filtered datasets with the code.

We present some statistics of the filtered editorial public playlists collected from

Deezer and Spotify in Table 7.2.

We consider both the playlist title and its description to be part of its caption.

In particular, a caption is defined by the template: <title> [the title] <descrip-

tion> [the description]. An example is: <title> 100% The Beatles <descrip-

tion> The best music from The Beatles. Further examples of captions are given

as Ground truths in Table 7.11. The choice of the template follows recent ad-

vances in few-shot learning, where the samples are enriched by task-specific

tokens [LL21, ZWF+21]. We did experiment with other templates, e.g. [the

title] <sep> [the description], but with no difference in performance.

The captions we consider account for a variety of playlist themes, such as musi-
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cal genres, moods, activities, events and artists, and were written by a number

of professional editors coming from different cultural backgrounds. Also, the

dataset statistics we report in Table 7.2 provide further evidence of the cap-

tions’ linguistic diversity. For example, there are 5467 Deezer playlists, and

their captions contain 20312 unique words.

We partition the Deezer playlists randomly in training, validation and test, ac-

counting respectively for 60%, 20% and 20% of the total. Validation and test

splits allow internal evaluation, i.e. on in-distribution samples. We use the

Spotify playlists as an additional test set for an external evaluation, i.e. on out-

of-distribution samples.

PLAYNTELL, the model we propose, is designed to bridge the semantic gap be-

tween a playlist and its corresponding caption by leveraging different sources of

musical knowledge, including track audio and user tags. For audio, we retrieve

30-second long audio previews of the tracks. Audio previews are convenient

because they can be freely accessed from the public APIs of music streaming

services. For user tags, we resort to the crowdsourced database Discogs, which

offers user tags at album level. We propagate those user tags to every track in

the album. The user tags cover a range of aspects: genres, countries, years and

moods (e.g. “pop”, “italy”, “2020” and “happy”). We release the tracks’ user

tags with the captioned playlists.

Track audio and user tags differ in availability. The existence of audio is implied

by the existence of a track. But user tags may not be available for a new release,

for example, just because no user has tagged it yet. The model we propose

leverages user tags if available, and, if not, can rely on audio only to generate

sensible captions, as we show in Section 7.4.3.

7.3 Method

Editorial data are available in small quantities, as their existence depends on

the expensive work of professional editors. In our case, we can rely on a few

thousand editorial playlists, as we explained in Section 7.2, which is a challeng-

ing setting in which to learn a model from scratch. In this Section, we describe

PLAYNTELL, our playlist captioning model that leverages linguistic and musical

knowledge to cope with sparsity of captions.

PLAYNTELL is composed of an encoder and decoder, shown in the left and right
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Figure 7.1: PLAYNTELL – model architecture.

hand-sides of Figure 7.1.

7.3.1 Encoder

The encoder has three branches to handle three types of musical knowledge —

audio, user tags and artist distribution.

7.3.1.1 Audio

Track audio is commonly used in playlist tagging [CKE20] and playlist caption-

ing [CFM+16]. For every track, we retrieve 30-second long audio previews,

as detailed in Section 7.2, and create an audio embedding by using a pre-

trained CNN. The CNN architecture is VGGish [PS19]. The CNN extracts a

256-dimensional embedding vector for every three seconds of audio. This gives

ten embeddings for each 30 second track, which we average. For a playlist with

P tracks, we then obtain a P ×256 matrix, which we transform into a P ×h ma-

trix using a learned linear layer, where h is the output dimension of this linear

layer.
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7.3.1.2 User tags

Audio and captions are separated by a wide semantic gap that algorithms may

struggle to close. Therefore, we propose to inform PLAYNTELL with user tags,

e.g. “pop”, “happy”, which provide information at the same semantic level as

captions. For every track in a playlist, we retrieve user tags from Discogs, as

in Section 7.2. We consider the playlist user tags to be the union of all the

distinct track user tags. We embed user tags with a pre-trained word2vec-like

model specific for music-related text, called music-w2v [DLPN20]. Music-w2v

embeddings are 300-dimensional. We embed all playlist user tags to obtain a

300-dimensional matrix, which we transform to a h-dimensional matrix using

a learned linear layer.

7.3.1.3 Artist distribution

Some playlists are themed by artist, e.g. “100% The Beatles”. [KBM12, CBF06]

report that artists are a common organisation principle among playlist-makers.

While audio and user tags inform the model with “general” musical knowledge,

e.g. genres and styles, they may not help to detect artist themed playlists, which

is challenging even with large scale datasets [RLHTM18]. As a remedy, we

introduce the artist distribution vector. It has as ith value the share of tracks in

the playlist authored by the ith most popular artist in the playlist. For example,

if a playlist has one track by John Lennon and 99 tracks by The Beatles, the

vector is [0.99, 0.01]. In tracks authored by multiple artists, we consider only

the main artist for simplicity. We limit the length of the vector to ten and

pad it when necessary. We experimented with higher vector length, without

any performance gain. We project the vector to a h dimensional space using a

learned linear layer.

The output of each encoder branch is 0-padded to a common number of rows

N , to obtain the three embedding matrices Ea, Et, Ed ∈ RN×h.

CNN and w2v embeddings are frozen, i.e. not updated during training. This

is similar to the state-of-the-art in image captioning, where the input image

is embedded by means of a pre-trained and frozen CNN, before being fed to

a transformer-like model tasked with generating the output caption [CSBC20,

HKBS19, GLZ+20].
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7.3.2 Decoder

The decoder is very similar to a transformer decoder [VSP+17]. An attention

function is at its core. Given matrices Q ∈ Rnq×d, K ∈ Rnk×d and V ∈ Rnk×d,

representing query, key and value, the attention is defined as:

Att(Q, K, V ) = softmax

(
QKT

√
d

)
V. (7.1)

Attention computes a weighted sum of V ’s rows according to the similarity

between Q’s and K ’s rows. In practice we implement the multi-head variant of

attention [VSP+17].

The decoder is composed of three parts: input, hidden and output. In the

input part, we use learned token embeddings to convert a caption token to an

embedding of dimension h. In the output part, we use a learned linear layer

with softmax to produce predicted next token probabilities. In practice, we

provide as input all caption tokens shifted right, and we predict all next tokens

in parallel. The hidden part is made up of L identical layers. Every layer is

composed of three sub-layers: self-attention, cross-attention, and feed-forward.

7.3.2.1 Self-attention & feed forward

We apply the attention function using the same matrix as query, key and value

in the self-attention layer. The attention function is modified so as to avoid

prediction of token t depending on subsequent tokens. The feed-forward layer

consists of a fully connected neural network [VSP+17]. We wrap each layer

around a residual connection [HZRS16] and a normalisation layer [BKH16].

7.3.2.2 Cross-attention

We apply the attention function using the encoder output as key and value, and

the self-attention output H as query. Our encoder has three outputs. We ap-

ply the attention function to every output separately and then sum the results,

similar to [ZSLS19]. Then:

Crs-att(H, Ea, Et, Ed) = Att(H, Ea, Ea)

+ Att(H, Et, Et)

+ Att(H, Ed, Ed).

(7.2)
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We wrap the cross-attention layer around a self-resurrecting activation unit

(SRAU) layer, proven effective in data-efficient image captioning [CGY+22].

We inject linguistic knowledge in the decoder, similar to [CGY+22]. GPT-2

[BMR+20] has a transformer-like architecture, compatible with PLAYNTELL.

We load pre-trained GPT-2 (small) weights in the layers of the decoder: em-

bedding, self-attention, feed-forward and linear. These layers are fine-tuned

during training. The choice of GPT-2 follows previous work [CGY+22]. Other

pre-trained decoders, such as T5 [RSR+20] or BART [LLG+20], could be used.

The choice of GPT-2 fixes the decoder hyper-parameters to N = 12 transformer

layers, 12 attention heads and hidden size h = 768. As a result, the three linear

layers in the decoder are tasked to project from respectively 256, 300 and 10
dimensional spaces to a 768 dimensional space.

7.3.3 Artist masking

Correctly generating artist mentions is important, as artist themed playlists is

a common category of editorial playlists [KBM12, CBF06]. However, correctly

generating artist mentions is a particularly challenging task, mainly due to data

sparsity. In the whole dataset, an artist can be absent or be mentioned only in

some playlists, making it difficult for algorithms to learn a mapping between

input data and artist mentions.

We introduce artist masking as a remedy to data sparsity, similar to [ZSLS19].

We pre-process the training captions by substituting artist mentions with place-

holders. For example, the caption “100% The Beatles” is pre-processed as

“100% artist1”. If a caption mentions more than one artist, we will have more

than one placeholder (“artist1”, “artist2”, . . . ). The mapping between place-

holders and artists is decided in advance. We use popularity within the playlist:

the author of most tracks in the playlist has placeholder “artist1”; the second

most popular artist has placeholder “artist2”; and so on. We post-process the

output captions by substituting placeholders with actual artist mentions. The

artist masking strategy we present is designed to be used in conjunction with

the artist distribution vector, which provides useful knowledge on how to gen-

erate artist placeholders.
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7.4 Experiments

7.4.1 Experimental setting

7.4.1.1 Metrics

We adopt eight accuracy metrics: BLEU@1 to 4 (B@1 to 4), METEOR (M),

ROUGE-L (R-L), CIDEr (C) and BERT-Score (B-S) [CCG20]. The first seven are

functions that are based on precision and recall of n-grams that are common to

the generated caption and the corresponding ground truth caption. BERT-Score
exploits pre-trained BERT embeddings to represent and match the tokens in the

ground truth with respect to the generated caption. We use BERT-Score with

recall and idf weighting, which is the suggested configuration [ZKW+20].

We also adopt two diversity metrics. % novel is the percentage of generated

captions that are not among the training captions. Vocab is the number of

unique words used in all the generated captions.

Following [DBSR18], we set up a t-test for ROUGE-L, CIDEr and BERT-Score,

and a paired bootstrap test for BLEU@1 to 4 and METEOR. Following [Koe04],

we fix the number of bootstrap replicas to 1000.

7.4.1.2 Implementation details

We convert a caption to tokens using Byte Pair Encoding (BPE) [SHB16]. We

use learned positional embeddings to distinguish the order of tokens.

We optimise the model using simple cross-entropy loss, computed on the gen-

erated caption against the ground truth. During inference, the prediction of the

previous time step is fed to the input of the next time step. We use a beam

search of size three to compute the most likely output sequence.

We train the models with the AdamW optimizer [LH18]. We use a learning rate

equal to 10−4 and a batch size equal to 10. We use early stopping with patience

equal to 40. We set threshold τ of the SRAU gate to 0.2, as recommended in

[CGY+22].
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7.4.2 Comparison with state-of-the-art

7.4.2.1 Baselines

We compare PLAYNTELL with a simple NN (Nearest Neighbor) baseline and

with state-of-the-art music captioning algorithms:

NN Given a test playlist p, find the training playlist p̃ closest (using cosine

distance) to the test playlist, and output p̃’s caption as p’s caption. A

playlist is represented as the average audio embedding of its tracks. Track

audio embeddings are computed as in Section 7.3.1.

MUSCAPS We adapt the song captioning model proposed in [MBQF21] to

do playlist captioning, by replacing song audio embeddings with playlist

audio embeddings. We take a playlist audio embedding to be the average

of the audio embeddings of the songs in the playlist. We use the authors’

implementation with default parameters.

DOHRNN and DOHTRA We adopt the seq2seq and transformer models for

playlist captioning proposed in [DLN21]. We use the authors’ implemen-

tation with default parameters.

We use as training set the Deezer dataset training split. We use as test sets

the Spotify dataset and the Deezer dataset test split. We assess the algorithms

according to accuracy and diversity metrics.

The accuracy results are reported in Table 7.3. PLAYNTELL largely outperforms

all baselines, achieving 2x higher BLEU@4 and 3x higher CIDEr. The large

improvement on CIDEr may be due to the artist mentions, as CIDEr is particu-

larly sensitive to infrequent words [VLZP15]. While the baselines may struggle,

PLAYNTELL takes advantage of the musical knowledge in terms of artist distri-

bution to correctly generate artist mentions. We can notice smaller differences

of BERT-Score. This is expected, as BERT-Score is known to assume values in

a narrow range [ZKW+20]. We test the significance of differences in accu-

racy, as explained in Section 7.4.1. The differences are statistically significant

(p < 10−4).

The Spotify dataset is used for external validation. We observe quite high values

for the metrics, but lower overall than for the Deezer test set. As expected, this

is due to differences in “style” between the two streaming platforms. Artist

themed playlists in Spotify are captioned as, e.g., “This is The Beatles”; in

Deezer, we would have “100% The Beatles". And the most common words in
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7. PLAYLIST CAPTIONING 7.4 Experiments

Table 7.6: State-of-the-art diversity as measured on the Deezer and Spotify test
sets.

Deezer Spotify
% novel Vocab % novel Vocab

NN 0.0 1750 0.0 2100
MUSCAPS 100.0 66 100.0 60
DOHRNN 100.0 838 100.0 764
DOHTRA 100.0 2015 100.0 1767

PLAYNTELL 97.6 2585 98.3 2147

Spotify captions are: “cover”, “from”, “tracks”; in Deezer, they are: “by”, “best”,

“music”.

The results on diversity are reported in Table 7.6. NN scores 0 in % novel, as

NN can only ‘generate’ captions from the training set. By contrast, the music

captioning baselines only generate novel captions, hence they score 100 in %
novel. This may seem surprising, as captioning algorithms are known some-

times to generate novel captions, and other times to replicate training captions

[SCB+22]. We believe that the we are recording 100% novelty because of prob-

lems the music captioning baselines have in generating natural text. This pre-

vents the music captioning baselines from replicating any of the training cap-

tions. For example, we find that MUSCAPS often generates incorrect text, such

as the caption: <title> 100% jazz <description> the best of the best of the

best music. We provide more evidence of such problems in Section 7.4.5.

Baselines score modest Vocabs. For example, MUSCAPS’s Vocab in the Deezer

dataset is only 2% of PLAYNTELL’s Vocab. MUSCAPS’s Vocab may be low because

the hyper-parameters are not optimised for the dataset. PLAYNTELL, on the

other hand, can replicate a proportion of its training captions, i.e. % novel <

100, and has the largest Vocab.

Finally, we assess the algorithms considering titles and descriptions separately.

That is, we use as training set the Deezer dataset training split; we use as

test sets the Spotify dataset and the Deezer dataset test split; we isolate title

and description from the generated caption and ground truth, and we compute

accuracy and diversity metrics, in both datasets, for title and description sep-

arately. The results are reported respectively in Tables 7.4, 7.5, 7.7, 7.8. The

results corroborate those in Tables 7.3 and 7.6, where we considered the full

captions, using a template that combines titles and descriptions (<title> the
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7. PLAYLIST CAPTIONING 7.4 Experiments

Table 7.7: State-of-the-art diversity as measured on the Deezer and Spotify test
sets in titles only.

Deezer Spotify
% novel Vocab % novel Vocab

NN 0.0 540 0.0 644
MUSCAPS 85.8 39 90.8 37
DOHRNN 89.5 393 89.7 381
DOHTRA 41.9 900 34.6 785

PLAYNTELL 72.5 1257 65.9 959

Table 7.8: State-of-the-art diversity as measured on the Deezer and Spotify test
sets in descriptions only.

Deezer Spotify
% novel Vocab % novel Vocab

NN 0.0 1608 0.0 1939
MUSCAPS 98.6 41 99.0 37
DOHRNN 100.0 579 100.0 511
DOHTRA 100.0 1567 100.0 1375

PLAYNTELL 88.7 2025 93.2 1671

title <description> the description).

7.4.3 Ablation study

PLAYNTELL is informed by three sources of musical knowledge: audio, user

tags, and artist distribution. We consider two variations to the architecture of

PLAYNTELL in order to check whether the three sources are actually exploited.

The first variation has only the audio branch; the second has both audio and

artist distribution branches. We compare the two variations with the original

PLAYNTELL, which features also the user tags branch. In the first variation we

do not use the artist masking strategy, while in the second variation and the

original PLAYNTELL we do.

We measure accuracy with the same training-evaluation setup as Section 7.4.2.

The results are in Table 7.9. The accuracy increases with the number of input

modalities, on both datasets. The differences are statistically significant in the

Deezer dataset and in the Spotify dataset (p < 0.05). Thus, we have a good

indication that PLAYNTELL can successfully leverage all three sources of musical

knowledge.
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7. PLAYLIST CAPTIONING 7.4 Experiments

7.4.4 Sensitivity analysis

We investigate the impact of the GPT-2 initialisation on the generated captions.

We consider a variation of PLAYNTELL that has random decoder initialisation,

which we name RAND INIT. We measure accuracy with the same training-

evaluation setup as Section 7.4.2. The results are in Table 7.10.

PLAYNTELL largely outperforms RAND INIT, achieving 63% higher BLEU@4 and

71% higher CIDEr. The differences are statistically significant on both Deezer

and Spotify datasets (p < 10−4). We observe that PLAYNTELL produces syntac-

tically correct captions, while RAND INIT does not, e.g. for one playlist PLAYN-

TELL generates the caption <title> relaxing piano <description> relax with

calm classical tunes, while RAND INIT generates the caption: <title> relaxing

music < piano>description <> the of music the playlist classicalind. Thus,

we have a clear indication that the GPT-2 initialisation has a positive impact on

the generated captions, and that the linguistic knowledge acquired by GPT-2 is

leveraged by PLAYNTELL in the playlist captioning task.

7.4.5 Discussion

The baselines differ from PLAYNTELL along three axes: input data, linguistic

knowledge and architecture. The baselines leverage only track audio or learned

embeddings. PLAYNTELL accommodates three input modalities, being informed

by track audio, user tags and artist distribution. Comparing the results in Table

7.9 with the baselines in Table 7.3, we notice that PLAYNTELL, when informed

by audio only, is still consistently superior to the baselines.

Similarly, compared to the baselines, PLAYNTELL leverages linguistic knowledge

held by GPT-2 weights. However, when comparing the performance of PLAYN-

TELL without GPT-2 weights (RAND INIT in Table 7.10) with the baselines in Ta-

ble 7.3, we notice that RAND INIT outperforms the baselines with in-distribution

data (Deezer dataset). With out-of-distribution data (Spotify dataset), RAND

INIT outperforms all the baselines for some metrics (e.g. BLEU@1, CIDEr), but

only some baselines for some other metrics (e.g. BLEU@1). Thus, there is ev-

idence that our novel encoder, which is the main architectural difference be-

tween PLAYNTELL and the baselines, is enough to outperform the baselines, at

least with in-distribution data. With out-of-distribution data, the contribution

of the encoder may be blurred by overfitting in the small in-distribution dataset,

as PLAYNTELL has a far more complex decoder than the baselines. Hence, we
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7. PLAYLIST CAPTIONING 7.4 Experiments

expect that, when trained on a larger in-distribution dataset, PLAYNTELL can

outperform the baselines in both in- and out-of-distribution data, without using

GPT-2 weights.

We show captions generated by the algorithms on the Spotify test set when

trained on the Deezer training set and the corresponding ground truths in Table

7.11. Captions produced by the baselines are not syntactically correct, probably

because the dataset is too small to learn a sound language model. On the other

hand, PLAYNTELL can take advantage of the pre-trained GPT-2 weights and

generate syntactically correct captions.

Captions produced by the baselines are not always semantically correct. In

the first example, none of the baselines matches the playlist theme. In the

second example, MUSCAPS aligns with the playlist theme, while DOHRNN and

DOHTRA do not. MUSCAPS holds pre-trained audio knowledge that may be

helping in this example. PLAYNTELL, on the other hand, takes advantage of

musical knowledge (audio, user tags, and artist distribution), and matches the

theme in both cases. The third example features a playlist of “desi” music6

(traditional south-asian music). None of the algorithms produces a caption that

matches this theme, probably because the input data do not properly represent

the concept of “desi” music. For example, the “desi” user tag is not among the

playlist user tags we use as input to PLAYNTELL. This example highlights the

western-centered perspective of Music Information Retrieval research, which is

a debated topic [HSH21]. The dataset we employ features playlists of mainly

western music. As such, PLAYNTELL can find the right caption for a playlist of,

e.g., UK pop-rock made in the early ’00s, but it struggles for a playlist of, e.g.,

traditional south-asian music, or “desi” music.

The NN baseline only outputs captions from the training set. So, by design, NN

produces syntactically correct captions. NN is aligned with the playlist theme in

just one of the three examples. Although simple, NN is a competitive baseline.

7.4.6 User study

We conducted a user study to evaluate PLAYNTELL. The study takes the form of

a survey, in which the participants were asked to rate playlist captions on three

different aspects: (1) Content match: Do the title and description match the

playlist content? (2) English correctness: Are the title and description correct in

6https://en.wikipedia.org/wiki/Desi
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7. PLAYLIST CAPTIONING 7.4 Experiments

Figure 7.2: User survey instructions, questions and playlist presentation.

English? (3) Appeal: Are the title and description appealing? Participants could

respond to each question by choosing from five options on a Likert scale. We

used as inspiration for these questions user trial designs in image captioning,

where (1) and (2) were often assessed [ZSLS19].

We recruited seven participants. Each participant was a Deezer playlist editor,

thus guaranteeing that participants had sufficient musical knowledge to accu-

rately assess a playlist caption.

The participants were shown the first ten songs of curated playlists. The songs

were shown as a playlist page on the Deezer website thus including the song

title, the artist name and the album title, see Figure 7.2. These playlists were

sampled randomly from the Deezer test set. Each participant was presented

with seven different playlists (with no overlap between participants).

For each of these playlists, a participant was asked to rate five different cap-

tions: the ground truth caption (the original caption assigned to the playlist
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7. PLAYLIST CAPTIONING 7.4 Experiments

Table 7.12: Means and standard deviations of Likert scores (in [1, 5]) and
p-values obtained from a paired t-test between the considered method and
PLAYNTELL scores.

Method Mean Std. p-value

Content match

PLAYNTELL 3.20408 1.27442 Ref
NN 1.63265 0.83401 <1e-3

MUSCAPS 2.04082 0.99915 <1e-3
DOHTRA 1.55102 0.86750 <1e-3

GroundTruth 3.665306 1.199844 0.066

English correctness

PLAYNTELL 3.14286 1.32288 Ref
NN 3.67347 0.92168 0.019

MUSCAPS 2.34694 1.09070 0.002
DOHTRA 2.73469 1.15064 0.094

Ground Truth 3.83673 1.23063 0.004

Appeal

PLAYNTELL 2.87755 1.14805 Ref
NN 3.22449 1.00551 0.071

MUSCAPS 1.97959 0.87773 <1e-3
DOHTRA 2.30612 0.96186 0.005

Ground Truth 3.44898 1.19131 0.013

by a human editor) and captions generated by each of four methods described

in this Chapter: MUSCAPS, DOHTRA, NN and PLAYNTELL. We did not include

DOHRNN as its offline results are comparable to DOHTRA’s, see Section 7.4.2.

Excluding DOHRNN reduces the burden that we place on the participants.

This user study gives us a comparison between PLAYNTELL and the ground truth

and baselines. It serves to assess how far our algorithm is from, respectively,

human editors, considered as the golden standard, and the state-of-the-art in

playlist captioning.

Results are shown in Table 7.12. The first thing to be noted is that the ground

truth captions get scores that are quite far from the perfect score of 5. One

reason that could explain this phenomenon is that playlist captioning is intrin-

sically subjective. Then, the NN baseline has the best results in terms of Appeal
and English correctness with metrics close to the ground truth. This is not sur-

prising as NN is the only baseline that does not generate captions but outputs

captions written by humans but associated with other playlists. However, the
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7. PLAYLIST CAPTIONING 7.5 Conclusion

NN baseline is not able to output captions that match the content of the associ-

ated playlist as shown by the Content match metric. On the other hand, PLAYN-

TELL outperforms all baselines in terms of Content match, with a score that is

significantly higher than all other baselines and not significantly lower than the

ground truth. Also, PLAYNTELL is the captioning method that comes second for

Appeal and English correctness after NN with no significant difference for Ap-
peal. PLAYNTELL brings a significant improvement in terms of Appeal compared

to other generative models, and over MUSCAPS in terms of English correctness.

These results tend to confirm that PLAYNTELL is able to generate realistic cap-

tions, matching the content of the playlists with a significant improvement over

the state-of-the-art.

7.5 Conclusion

Our work adds to the literature on playlist captioning. We present both a new

dataset and a new model that sets a new state-of-the-art. PLAYNTELL leverages

general linguistic knowledge from a pre-trained language model to generate

coherent captions, and musical knowledge to make the captions consistent with

the playlist content.

With this Chapter, we conclude the presentation of our contributions to playlist

intelligibility. The next Chapter concludes the dissertation, by highlighting

promising avenues for future work.
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Chapter 8

Conclusions and future work

In this dissertation, we explore the concept of the intelligibility of music playlists,

at two different levels: song-level and playlist-level. We introduce several al-

gorithms, some operating at song-level, and some others operating at playlist

level, which implement intelligibility in practice. We evaluate the algorithms

with offline experiments and user studies. We find evidence that the algorithms

can help accomplish the two goals of intelligibility, i.e. enhancing listening ex-

periences, and facilitating organisation and access. In particular, we find that

users would welcome the tours produced by our song-level intelligibility al-

gorithms, which highlights the potential for enhanced listening experiences.

We also find that tags and captions produced by our playlist-level intelligibility

algorithms accurately describe the content of playlists, more accurately than

state-of-the-art algorithms, which could be used in systems for playlists organi-

sation and access.

We identify possible improvements to the algorithms we propose, which present

opportunities for short-term future work. Song-level intelligibility algorithms

may be improved by better interestingness modelling. Interestingness is a scor-

ing function for segues, at the heart of the mechanism for constructing tours.

At the moment, the interestingness function is not personalised. However, we

find compelling evidence in Chapter 5 that different users may have different

perceptions of interestingness. For example, a knowledgeable user may be in-

terested in highly specific segues, as they may already be aware of more general

segues. By contrast, a casual user may find highly specific segues to be obscure,

and may prefer general segues.

There are several ways of building a personalised version of interestingness.
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8. CONCLUSIONS AND FUTURE WORK

One way is to set the weights used by the interestingness function in a person-

alised way, and in particular to learn personalized weights, that would fit the

tastes of the user. Another idea, guided by the finding that users find known

segues to be less interesting (Chapter 5), is to develop a mechanism to sepa-

rate known segues from novel segues. Then, in the interestingness function,

known segues would be pensalised and the novel segues would be rewarded.

Separating known and unknown segues can be done explicitly, by asking users

directly, or implicitly, by building a personalised classifier. Hybrid strategies are

also possible, e.g. ask users whether they know some segues or not, and use

their answers to improve a classifier, which is a mechanism similar to active

learning [RKS11].

We also identify improvements that can be made to the algorithms for playlist-

level intelligibility. For example, the listening context tagger we introduce in

Chapter 6 could be applied to a broader set of tags, for example including

moods and genres, by using the recently released Melon dataset [FKL+21].

And, the playlist captioning algorithm we introduce in Chapter 7, PLAYNTELL,

can also be improved. There is anecdotal evidence that PLAYNTELL fails to cap-

tion non-western music. This bias can be overcome by ensuring that playlists

from different parts of the world are equally represented in the training dataset.

Finding such datasets might be challenging, however, given the general western-

centered perspective of the whole field of Music Information Retrieval [HSH21].

As well as short-term future work, we envision some longer-term future work,

under the idea of employing the intelligibility algorithms for other down-stream

tasks or analysis. For example, the playlist-level intelligibility algorithms de-

scribe music at a high semantic level, and these descriptions may be used within

explanations of playlist recommendations made by recommender systems in

streaming services [AMS+22]. Similarly, segues in playlists may be used to in-

troduce unfamiliar music to the user, starting from other songs in the playlist

that the user already knows.

We would be particularly interested in exploring the relationship between these

two applications of intelligibility and the concept of serendipity. Serendipity and

explainability are two active research topics in recommender systems. How-

ever, the intersection of these two topics, and especially the impact of explana-

tions on serendipity, is largely unexplored. In recommender systems research,

serendipity is usually defined by three components: novelty, unexpectedness

and relevance. It is relatively easy to achieve novelty and unexpectedness. For
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example, including a random song in a playlist would probably achieve nov-

elty and unexpectedness. It is more difficult to achieve relevance, especially

for unexpected items. This is known as the unexpectedness-relevance trade-off.

We argue that intelligibility can help increase the perceived relevance of unex-

pected items, and thus can help increase serendipity. In Chapter 3, we found

that segues can spark interest in items, which leads credence to our argument1.

Another longer term avenue for future work is the testing of intelligibility al-

gorithms ‘in the wild’. Throughout this dissertation, we strongly rely on user

trials, which offer user-centered evaluations of the algorithms, but they are

conducted in artificial settings. It would be extremely interesting to implement

intelligibility algorithms in a real streaming service, and gather user feedback.

Just before submitting this dissertation, the streaming service Spotify launched

a new service, called “DJ”, with the promise to “deliver a curated lineup of mu-

sic alongside commentary around the tracks and artists we think you’ll like”2.

The idea behind Spotify’s DJ resonates with the concept of song-level intelligi-

bility, and provides evidence of the potential impact of the research we have

presented in this dissertation.

1We described the relationships between explanations and serendipity in an abstract we
presented at the “Symposium on Serendipity and Recommender Systems”, held online from
the 22nd to the 25th November 2021. https://theserendipitysociety.wordpress.com/
symposium-serendipity-and-recommender-systems/.

2Quoted from: https://newsroom.spotify.com/2023-02-22/spotify-debuts-a-new-
ai-dj-right-in-your-pocket/
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