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Genetic fingerprinting of salmon 
louse (Lepeophtheirus salmonis) 
populations in the North-East 
Atlantic using a random forest 
classification approach
A. Jacobs1, M. De Noia1, K. Praebel2, Ø. Kanstad-Hanssen3, M. Paterno4, D. Jackson5,  
P. McGinnity6, A. Sturm7, K. R. Elmer1 & M. S. Llewellyn1

Caligid sea lice represent a significant threat to salmonid aquaculture worldwide. Population 
genetic analyses have consistently shown minimal population genetic structure in North Atlantic 
Lepeophtheirus salmonis, frustrating efforts to track louse populations and improve targeted control 
measures. The aim of this study was to test the power of reduced representation library sequencing 
(IIb-RAD sequencing) coupled with random forest machine learning algorithms to define markers for 
fine-scale discrimination of louse populations. We identified 1286 robustly supported SNPs among four 
L. salmonis populations from Ireland, Scotland and Northern Norway. Only weak global structure was 
observed based on the full SNP dataset. The application of a random forest machine-learning algorithm 
identified 98 discriminatory SNPs that dramatically improved population assignment, increased global 
genetic structure and resulted in significant genetic population differentiation. A large proportion of 
SNPs found to be under directional selection were also identified to be highly discriminatory. Our data 
suggest that it is possible to discriminate between nearby L. salmonis populations given suitable marker 
selection approaches, and that such differences might have an adaptive basis. We discuss these data in 
light of sea lice adaption to anthropogenic and environmental pressures as well as novel approaches to 
track and predict sea louse dispersal.

Caligid sea lice are copepod ectoparasites of marine fish. In the northern hemisphere, the salmon louse 
(Lepeophtheirus salmonis) is the species most commonly infecting farmed and wild salmonids1, at considerable 
cost to animal health, biodiversity security, and economic growth. Conservative estimates of costs and losses 
attributed to sea louse infections, (estimated at €350 M million in 2014 in Norway alone2 suggest these are the sin-
gle greatest pathogen burden on the global salmonid aquaculture industry. The life cycle of the sea louse involves 
high levels of replication, dispersal and obligate host-association1; this means that local environmental condi-
tions, sea currents, and population densities are important ecological and demographic conditions to facilitate or 
impede infestation1,3,4. Eggs carried by females hatch to free-swimming non-feeding nauplii, planktonic larvae 
that are passively dispersed. These nauplii undergo two moults before developing into a free swimming copepo-
did. Development time is temperature dependent and at 10 °C the infectious copepodid stage, which needs to set-
tle successfully on a host for survival, develops two to three days post hatching. During the host-associated phase 
of the lifecycle, which progresses through further larval and preadult stages before reaching the reproducing 
adult stage, salmon lice feed on mucus, skin and blood of their host fish1. Depending on severity, infections can 
cause skin lesions, anaemia, osmoregulatory dysfunction, stress, suppression of growth and immune function, 
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secondary infections and, if left untreated, mortality1,5. Salmon louse control has traditionally relied on a limited 
number of drug treatments5,6, but large-scale reliance on just a few products is associated with a significant risk 
of developing drug resistance5,7.

Understanding and predicting salmon louse dispersal is a crucial element for predicting infestation, connec-
tivity and the spread of salmon lice and associated drug resistance alleles. There have been several attempts to 
characterize population genetic structure in L. salmonis in the North Atlantic using conventional microsatellite 
and sequence markers8–12. High gene flow between sites is consistently reported. In the largest such study (13 
microsatellite loci, 2500 samples), significant but weak (0.0022) FST was detected across the Atlantic, with no 
evidence for population genetic structuring within geographic regions. More recently a genome-wide SNP array 
was developed and deployed using 5091 variable markers, and showed similar results in terms of population 
structure, alongside extensive evidence of selective sweeps and linkage disequilibrium attributable, at least in 
part, by the use of chemotherapeutics in aquaculture13. Besnier et al., 2014 also included a linkage map for these 
markers onto which the current assemble of the louse genome has been superimposed (https://metazoa.ensembl.
org/Lepeophtheirus_salmonis/Info/Index). Thus, although significant progress has been made in determining 
population genetic signatures of selection in L. salmonis, the goal of distinguishing louse populations occurring 
in different regions - a valuable component of detecting dispersal of lice between farms – remains expensive and 
difficult.

Determining genetic structure in pelagic marine species has always been challenging. High rates of adult 
and larval dispersal impede the accumulation of neutral variation among populations and regions. Nonetheless, 
several studies have achieved genetic stock delineation by focusing on non-neutral or putative adaptive markers 
in conjunction with high numbers of SNP markers (e.g14,15.). In extreme cases like Anguilla rostrata, where the 
organism’s reproductive ecology predicts and the genetic data support panmixia among different populations, the 
challenge of determining genetic differences between different populations is even greater16,17. Screening thou-
sands of variable SNP markers against population genetic summary statistics may be able to detect outliers, how-
ever the identification of which markers might best assign individuals to their appropriate populations, groups, 
or ecomorphs necessitates further computational approaches. To this end, population genetics can usefully bor-
row from machine learning algorithms developed in the context of genome-wide association studies18. Such 
approaches have been successfully used in A. rostrata, to identify SNPs that predict rearing habitat as the result of 
intra-generational selection19, for example. More recently similar approaches have been employed to successfully 
discriminate Salmo salar populations20.

In this study, we identify population structure and loci under selection in L. salmonis using high throughput 
SNP genotyping and advanced analytical methods. To achieve this we collected L. salmonis from four different 
sites in the North-Eastern Atlantic (UK, Norway and two sites in Ireland) and generated genomic SNP data using 
a IIB restriction-enzyme associated library preparation approach21. We then tested the power of Random Forest 
machine learning to reveal population structure and find the method reveals previously un-recognized popula-
tion differences and fine-scale population differentiation.

Methods
Sample collection and DNA isolation. Adult and pre-adult Lepeophtheirus salmonis were collected in 
four sites around the North-East Atlantic from 18–24 month old Atlantic Salmon from commercial pens in 2015. 
Sites included Finnkirka (NF), Lebesby, Norway; Loch Duart (LD), Scotland, UK; Kenmare Bay (SWI), Kenmare, 
Ireland and Kilkieran Bay (KB), Galway, Ireland (Fig. 1A). Male and immature female individuals only were 
selected for sequencing to avoid gamete contamination of DNA extracts. DNA was obtained using a modified 
salt extraction protocol, quantified using a NanoDrop® ND-1000 spectrophotometer and visualised on a 1.5% 
agarose gel to assess quality. Fifteen high quality (260/280 ratio ~1.8) and high molecular weight extracts were 
chosen per site.

IIb-RAD library preparation and sequencing. Library preparation was undertaken as described in 
Wang et al. 201221. By reference to in silico digestion of the L. salmonis reference genome (genome available at 
https://metazoa.ensembl.org/Lepeophtheirus_salmonis/Info/Index) two enzymes were selected based on poten-
tial coverage: AlfI (restrictions site ^5′(10/12)GCA(N)6 TGC(12/10)3′^) and CspCI (restriction site ^5′(11/12)
CAANNNNNGTGG(12/13)3′^). Digested DNA of each sample was ligated to a pair of partially double-stranded 
adaptors with compatible and fully degenerated overhangs (5′NNN3′). Finally, the obtained IIb-RAD tags were 
amplified to introduce a sample-specific 7 bp barcode and the Illumina NGS annealing sites using two different 
pairs of sequencing primers. A 1.8% agarose gel electrophoresis of the PCR products was performed to verify the 
presence of the expected 150 bp target band (fragment, barcodes and adaptors included). In order to ensure an 
approximately equimolar contribution of each sample to the library, the concentration of each PCR product was 
measured from the intensity of the target band in a digital image of the 1.8% agarose gel. We prepared two librar-
ies in total, one for each IIB-REase. The purification of the libraries from high-molecular weight fragments and 
primer-dimers was achieved first by removing the target band on agarose gel library and eluting them in water 
overnight; followed by DNA capture with magnetic beads (SPRIselect® Beckman Coulter). The DNA concentra-
tion in the purified libraries was quantified with a Qubit® Fluorometer (Invitrogen) and the libraries were com-
bined in one single pool. Two library pools were sequenced, first on a NextSeq 500, then on a MiSeq (Illumina, 
San Diego, CA, USA) with a single 1 × 50 bp setup using ‘Version2’ chemistry at Glasgow Polyomics (www.poly-
omics.gla.ac.uk), which also implemented the read demultiplexing and quality-filtering.

IIb-RAD data processing. Short reads were aligned to the reference genome in bowtie 222 and SNPs were 
called using the STACKS v1.42 package with a minimum read depth of 323. The rxstacks module was used to fur-
ther screen SNPs and the population module filter and export genotypes with a minimum depth of coverage of 6, 

https://metazoa.ensembl.org/Lepeophtheirus_salmonis/Info/Index
https://metazoa.ensembl.org/Lepeophtheirus_salmonis/Info/Index
https://metazoa.ensembl.org/Lepeophtheirus_salmonis/Info/Index
http://www.polyomics.gla.ac.uk
http://www.polyomics.gla.ac.uk
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minimum minor allele frequency of 0.05, maximum observed heterozygosity of 0.5 and present in at least 60% of 
individuals. To avoid sequence artefacts generated by low complexity in restriction enzyme recognition site, SNPs 
at positions 12–26 were excluded from the analysis. For those RAD tags that retained diversity after screening for 
artefacts, only a single SNP per locus was selected for subsequent analysis.

Population structure analysis and detection of positive selection. Principal components analysis 
(PCA), discriminant analysis of principal components (DAPC), and population assignment probabilities were 
calculated in adegenet24. Analyses of molecular variance (AMOVA), Weir and Cockerham estimators of FST, 
and summary statistics (Ho, He, Gis, π) were calculated in Genodive25. P-values for FST were FDR adjusted for 
multiple comparisons using a Benjamini-Hochberg correction in the R-package p-adjust. Isolation-by-distance 
was assessed using a Mantel test implemented in the vegan R-package. Loci putatively under positive selection 
were identified in Lositan26 using a FDR < 0.1 significance threshold and localised on the L. salmonis linkage map 
(Glover, K Pers Comm) to assess genomic correspondence with a previous population genomic study13. Lositan 
results were plotted using in R. Further, we performed a second outlier analysis using BayeScan, as it has a lower 
type I error rate compared to Lositan27). We ran BayeScan with prior odds of 100 due to the small number of SNPs 
and detected significant outliers with a FDR threshold of 0.05 and putative outliers with a FDR threshold of 0.1. 
Finally, we post hoc identified overlapping outlier SNPs between BayeScan and Lositan.

In order to identify genes potentially under positive selection we identified all genes within a 10 kb region 
around each outlier SNP by blasting the sequence against the L. salmonis reference genome using the blastn 
function in the EnsemblMetazoa database. We identified all genes within those 10 kb regions and when possible 
determined their function using the UniprotKB database.

Using Random Forest analysis to detect population-discriminatory SNPs. In order to detect 
SNPs characteristic of each population we employed a tree-based ensemble machine learning approach using 
the randomForest package in R. Populations were numerically coded and missing data imputed using the na.
roughfix command. Three independent random forest runs with 100,000 trees each were conducted and checked 
for convergence between runs by performing Pearson correlation between SNP importance values. The random 
forest algorithm randomly subdivides the full dataset into a training dataset (66.6%), which is used to train the 
algorithm, and a test dataset (‘Out-of-bag’; 33.3%) that is used to test the classification success of a tree. For each 
tree, the dataset gets subdivided into new subsets and the number of trees for which the out-of-bag (OOB) error 
rate stabilises was chosen, reducing the risk of overfitting. The resultant ranked dataset (R2 > 0.95) was used to 
select a final dataset for the backwards purging approach. As in Laporte et al., all loci with an importance < 0 
were removed as non-discriminatory19. Backwards purging was performed on the remaining 317 SNPs. As such 
each random forest run was re-implemented (three independent iterations) and after each run the SNP with the 
lowest importance was removed until only two SNPs were left. We determined the subset of SNPs with the highest 

Figure 1. Population structuring in L. salmonis bases on the full SNP dataset. (A) Map showing the sampling 
sites of all four populations across the North-East Atlantic: Finnkirka (NF), Loch Duart (LD), Kenmare Bay 
(SWI) and Kilkieran Bay (KB). (B) DAPC plot of the first and second linear discriminant axis based on the full 
SNP dataset, explaining a total of 81.4% of the total variation. (C) Membership probability plot showing the 
population assignment probability for each individual. Shapefiles (for maps, rivers and lakes) were downloaded 
from natural earth (http://www.naturalearthdata.com/downloads/) and plotted in R. All data and software are 
open source.

http://www.naturalearthdata.com/downloads/
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discriminatory power based on the lowest OOB error rate, meaning the highest rank reliability of important 
markers, and we used this subset for further downstream analysis18,19.

In order to assess the population discriminatory power of the random forest selected SNPs we used the same 
methods as for the full SNP dataset. First, we performed a PCA and DAPC in adegenet in R to visualise population 
structuring and assess the population assignment accuracy. Second, we performed an AMOVA and estimated 
pairwise Weir and Cockerham’s Fst in Genodive. We also identified the overlap between highly discriminatory 
SNPs and SNPs potentially under positive selection to assess the impact of selection on discriminating L. salmonis 
populations.

Validating the use of random forest for population discrimination in larger datasets. In order 
to determine if a random forest approach also refines population assignment on larger datasets with more indi-
viduals and loci, we further tested this algorithm on the SNP dataset published by Besnier et al. (2014)13. Besnier 
et al. (2014)13 genotyped 547 salmon lice from 12 sampling sites from 6 geographic regions for 5091 SNPs using 
a custom SNP array. Missing data were imputed using the na.roughfix command. We assessed the population 
assignment success using the DAPC approach for the full dataset before using the random forest algorithm to 
identify the subset of SNPs with the highest discriminatory power between sampling regions (Canada, Faroe, 
Shetland, Ireland, Southern and Northern Norway). We ran three independent random forests with 10,000 trees 
each and ranked SNPs based on their average importance, measured by the ‘Mean Decrease Accuracy’ (MDA). 
Due to the larger number of SNPs, we selected all SNPs above the lower end of the elbow in the importance 
value distribution (MDA of 1.5; Figure S3) for the backwards purging step. We determined the subset of SNPs 
with the highest discriminatory power as the subset of SNPs that minimised the OOB error rate. Similar to the 
complete dataset, we determined the assignment success of this dataset using the DAPC approach implemented 
in adegenet.

Results
Bioinformatic processing & summary statistics. Using IIb-RAD sequencing we generated an aver-
age of 1,496,567 ± 673,594 reads per individual for 50 individuals from four populations across the North-East 
Atlantic (Fig. 1a). The final catalogue contained 111,090 RAD tags with an average coverage of 19.6 ± 6.9 per 
individual, covering 0.34% of the genome. After stringent filtering we retained 1286 SNPs, spanning 787 different 
reference genome contigs. Genetic diversity, measured as nucleotide diversity (π) and observed heterozygosity 
(Ho) were similar across populations (Table 1). Tajima’s D did not indicate any signals characteristic of significant 
population expansion (Figure S1, Supplementary data).

Population structure using the full SNP dataset. In a first approach, we assessed population genetic 
structure using the full dataset of 1286 SNPs by several different approaches. A PCA did not reveal any popula-
tion structuring across the entire range, however using pre-defined populations in the DAPC approach revealed 
a weak population structuring (Fig. 1b & c, Figure S2, Supplementary data). The population assignment prob-
ability was on average 0.82 ± 0.10. An AMOVA showed weak but significant population structure (Fsc = 0.018, 
p < 0.0001; Table 2). However, based on pairwise Fst values only LD and KB were significantly genetically differ-
entiated (Fst = 0.01, p < 0.0001). No significant isolation-by-distance was detected (R2 = −0.35, P = 0.67).

Using machine learning to define population genetic structure. In order to detect population 
structuring among populations we utilised a random forest machine learning approach. We detected a sub-
set of 93–101 SNPs that minimised the out-of-bag error rate to 0.1 (compared to 0.76 for the full dataset) and 

Population N Mean Coverage Ho He Gis π

KB 13 19.7 0.278 0.304 0.086 0.3025986

SWI 14 18.6 0.265 0.304 0.128 0.3019599

LD 11 19.8 0.258 0.298 0.132 0.2952346

NF 12 20.2 0.267 0.312 0.143 0.3096919

Table 1. Summary table. Summary of sample sizes, mean sequencing coverage per individual and summary 
statistics, namely observed heterozygosity (Ho), expected heterozygosity (He), inbreeding coefficient (Gis) and 
genetic diversity (π).

Source of Var. Nested in % Var F-stat F-value P-value

Full SNP dataset

Within Ind. — 88.4 F_it 0.116 —

Among Ind. Population 9.8 F_is 0.1 p < 0.0001

Among Pop. — 1.8 F_sc 0.018 p < 0.0001

Discriminatory SNPs

Within Ind. — 78.9 F_it 0.211 —

Among Ind. Population 11.3 F_is 0.125 p < 0.0001

Among Pop. — 9.8 F_sc 0.098 p < 0.0001

Table 2. AMOVA results showing the global population structure.
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maximised the discriminatory power among populations (Fig. 2A). From this subset, we selected 98 SNPs for fur-
ther downstream analyses. To assess the power of this subset of 98 highly discriminatory loci to detect significant 
population structure we performed the same population genetic analysis as was conducted on the full dataset. A 
PCA performed with the random forest selected subset showed a stronger separation between populations with 
a weak overlap of 95% confidence-intervals between LD and SWI (Figure S2, Supplementary data). However, the 
DAPC clearly separated all populations and the population assignment probability recovered was 1, meaning all 
individuals were correctly assigned to their respective population (Fig. 3). The variance explained among popu-
lations increased to 9.8% (from 1.8% with the full dataset) in the AMOVA (Fsc = 0.098, p < 0.0001). All pairwise 
comparisons showed highly significant Fst-values (range = 0.081–0.096), confirming the significant discrimina-
tory power of the random forest detected SNP subset.

Population discriminating SNPs and selection. One factor that might explain the strong discrimi-
nation of sea louse populations using the subset of random forest-selected SNPs would be divergent selection 
pressures, such as adaptation to different drug treatments, or local adaptation to natural environmental factors. 
Therefore, we performed two different tests for selecting SNPs under significant positive selection. An FDist 
approach implemented in Lositan detected 19 SNPs under strong positive selection (FDR < 0.1) with an average 
Fst of 0.233 ± 0.083 between populations (Fig. 2 C, Table 3). Eleven out of all 19 SNPs under positive selection are 
located on previously defined linkage groups 1 and 14, seven and four respectively13. The remaining SNPs are 
either located on linkage groups 4, 6 and 7 (two, two and one respectively) or could not be assigned to a linkage 
group. We further detected 46 SNPs under balancing selection (FDR < 0.1; p < 0.02).

An analysis in BayeScan detected only one SNP (FDR < 0.01) under significant positive selection and two 
more putatively under selection (FDR < 0.05). All three of these SNPs were also detected to be under selection 
by Lositan and the significant one was also the top outlier in Lositan and located on linkage group 1 (Fst = 0.507). 
The other two putative SNPs in BayeScan were also highly significant in Lositan (p < 0.001) and were located on 
linkage group 1 and 4.

To detect how selection influences the genetic discrimination of populations we identified the amount of 
overlap between the 98 SNPs detected by random forest and all Lositan SNPs under significant positive selection. 
63.2% of loci (12 out of 19 loci) detected to be under positive selection using Lositan were also identified being 
highly discriminatory between populations using random forest. Locus 3621, which was also identified using 
BayeScan, had the highest importance in the random forest analysis, suggesting that strong local adaptation and 
selection distinguishes sea louse populations.

Annotation of outlier SNPs. In order to identify specific genes potentially involved in local adaptation and 
under positive selection in sea lice, we explored these regions in the annotated L. salmonis genome. Five of the 
19 SNPs were in regions containing annotated genes within 10 kb, but only one of the annotated genes has been 
characterized. Two of the contigs with annotated genes were on linkage group 01, two on linkage group 14 and 
one on linkage group 6. Contig LSalAtl2s80 (linkage group 01) contained the characterized gene PSA2, which 
codes for the proteasome subunit alpha type protein.

Figure 2. Detecting discriminatory loci using random forest and signals of selection. (A) Plot showing the 
results of the backwards purging approach, with the number of SNPs per subset plotted against the out-of-bag 
(OOB) error rate for each subset. The black line shows the smoothed estimates with 95% confidence-intervals 
(grey area). The two red dotted lines show the range of subsets (93–101 SNPs) with the lowest OOB error rate. 
(B) The inset shows the initial distribution of scaled importance values for each SNP before the backwards 
purging. The grey dotted line shows the importance threshold for the subset of SNPs used for backwards 
purging. (C) FST outlier analysis results showing individual SNP loci and 5% (blue line) and 95% (red line) 
confidence intervals. Outlier loci potentially under positive selection are in plotted in red and those potentially 
under balancing selection in blue. Squares mark FST outlier loci that were also detected as highly discriminatory 
using random forest and triangles those that are not shared. The significant outlier detected using BayeScan is 
labelled with ‘Locus 3621’.
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Validating the discriminatory power of random forest. The random forest classification algorithm 
identified a subset of 357 SNPs that minimised the out-of-bag error rate (0.324). 43 out of those 357 SNPs (12%) 
were labelled as ‘diagnostic’ SNPs that were included in the SNP array (419 diagnostic SNPs in total) to potentially 
distinguish populations across the Atlantic13. The assignment success to the geographic region of origin increased 
on average by 1.9% from 94.4% to 96.6% based on only this small subset of SNPs (see Table 4 for population 
specific values). In contrast to the IIb-RAD dataset the assignment success varied strongly across populations, 

Figure 3. Population structure and population assignment in L. salmonis using discriminatory random forest 
loci. (A) DAPC plot of the first and second linear discriminant axis based on 98 highly discriminatory SNPs, 
explaining a total of 74.3% of the total variation. (B) Membership probability plot showing the population 
assignment probability for each individual. Each individual was correctly assigned to its sampling site. (C) 
Heatmap showing pairwise Fst between sampling sites based on the full SNP dataset (below diagonal) and 
based on the highly discriminatory SNP subset (above diagonal). Significant Fst values (inside each square) with 
P < 0.05 are highlighted in bold.

Locus ID Contig_position LG Fst (Lositan) Lositan BayeScan RF Annotation

38173 lsalatl2s740_42780 4 0.320968 Yes Putative Yes –

3621 lsalatl2s1185_140991 1 0.50726 Yes Yes Yes –

40396 lsalatl2s80_965936 1 0.20663 Yes No Yes PSA2

41679 lsalatl2s85_1109389 4 0.181416 Yes No No —

42860 lsalatl2s907_144760 — 0.203467 Yes No No —

4355 lsalatl2s122_618061 7 0.207882 Yes No No —

6832 lsalatl2s139_1380660 1 0.199199 Yes No No —

8287 lsalatl2s14_555303 1 0.377272 Yes Putative Yes unchar.

8241 lsalatl2s14_1020918 1 0.217428 Yes No Yes unchar.

9674 lsalatl2s163_163880 14 0.201546 Yes No No —

15099 lsalatl2s228_333839 1 0.241913 Yes No Yes —

1623 lsalatl2s10843_736 — 0.212014 Yes No Yes —

21928 lsalatl2s3387_1782 — 0.185878 Yes No Yes —

25024 lsalatl2s39_920686 6 0.216516 Yes No Yes —

26383 lsalatl2s429_103294 14 0.175808 Yes No No unchar.

29942 lsalatl2s514_325267 14 0.164932 Yes No No —

30716 lsalatl2s535_184954 14 0.230334 Yes No Yes —

2652 lsalatl2s1135_117353 1 0.183753 Yes No Yes —

30805 lsalatl2s538_341294 6 0.20138 Yes No Yes unchar.

Table 3. Outlier SNPs identified using the different approaches (Lositan, BayeScan and Random Forest) and 
annotation. Legend: RF stands for random forest, meaning SNPs that have been detected using the random 
forest approach. ‘Unchar.’ describes annotated genes that have not been characterized.
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ranging between 90.53–98.96% for the full SNP dataset and 91.58 to 100% for the random forest selected subset. 
The plots of linear discriminants from the DAPC analysis show a similar pattern, with the strongest separation of 
the Shetland and Irish populations from the remaining populations (Figure S4).

Even though the variation in population assignment success was greater for the larger dataset from Besnier 
et al. (2014), the random forest approach improved the assignment success for each population, supporting the 
applicability of this approach to different datasets.

Discussion
In this study, we used a IIb-RAD sequencing approach coupled with advanced and sensitive population genetic 
analyses to genetically ‘fingerprint’ L. salmonis populations in the North-East Atlantic and to detect signatures of 
selection. We were able to achieve this using a relatively small (n = 50) number of individuals genotyped across 
only a limited portion of the genome (c.2.3Mbp = 0.34%). An important set of discriminatory loci was identified 
against a background of high genetic connectivity via a random forest machine-learning algorithm and these can 
be exploited to distinguish between nearby sea louse populations. A high degree of overlap between loci under 
positive selection using genome-scan approaches and loci with high discriminatory power from random forest 
analysis was also observed.

Sea lice are known to disperse rapidly among aquaculture sites as part of the larval zooplankton as well as via 
the movements of migratory (Salmo salar) or resident (Salmo trutta) anadromous salmonids1. Previous popula-
tion genetic studies were consistent with such high levels of dispersal8,10,12, finding no significant genetic differen-
tiation in our study region when utilizing a set of neutral microsatellite loci. Inclusion of putatively non-neutral 
loci can improve population discrimination across the Atlantic (e.g10.). However, the same studies could not 
distinguish populations on a small geographic scale as our data and approach suggest is possible.

More recent genome wide analysis of SNP variation in L. salmonis has to date been consistent with the lack of 
genetic structure that was found using classic markers such as microsatellite loci13. As with our dataset, correlation 
with geographic distances is not a feature of the genetic variation observed even with such genome-wide informa-
tion. We found global FST-values based on all loci to be significant but low (0.018), in agreement with patterns that 
have been found previously13. The use of anti-parasitic drugs has been shown to be a strong selective pressure in 
sea lice and several genomic regions under selection have been linked to drug treatment13. In particular linkage 
groups 1 and 5 in the study showed evidence of selective sweeps, with the same region on linkage group 5 being 
implicated in drug resistance in a QTL analysis13. Other linkage groups, such as 14 also showed signal of positive 
selection in that study13. Our study similarly found that 11 out of the 19 outlier loci we identified also lay in link-
age groups 1 & 14, which represents an important independent validation. Spatio-temporal variation in treatment 
regimes, such as rotations of different drugs or the alternative use of warm-water or freshwater treatments28, may 
drive the heterogeneity observed in our and previous studies. This is partly as a result of cost, perceived efficacy, as 
well as different regulatory conditions in the countries concerned. Even though spatio-temporal variation in drug 
resistance is likely to be the strongest driver of differential selection among populations, local environmental con-
ditions can constitute further selective pressures driving allele frequency differences among populations. Local 
environmental variables such as temperature (e.g29.) and salinity (e.g30.), for example, can have profound effects 
on sea louse survival and development. Furthermore, a combination of drug treatment and increased host density 
is shown to influence the evolution of reproductive and life history traits31, as well as virulence in sea lice32 among 
different populations. However, such local adaptation is most likely linked to subtle allele frequency differences, 
compared to strong selective sweeps caused by drug treatments, as the selective pressure is comparably low. The 
combination of a few outlier loci under strong positive selection and a wide range of loci showing subtle allele 
frequency differences fits the expected pattern. Independent of the cause for allele frequency differences among 
populations, we show that a random forest machine learning approach can be used to cost-effectively distinguish 
even near-by sea louse populations, even with a low number of samples and genotyping density.

The use of (historical) samples from the same site at different time points, differing in treatment regimes, 
could be used to disentangle the effects of drug regime and local adaption on allele frequency differences among 

Region Populations Assignment % (Full) Assignment % (RF)

Canada
C857

93.75 94.79
C858

Ireland
I852

97.92 97.92
I853

Faroe
F850

94.74 97.90
F851

Shetland
S855

98.96 100.00
S856

Southern Norway
N813

90.53 91.58
N854

Northern Norway
N837

90.63 95.83
N849

Table 4. Overview of sample origins and population assignment success for the full SNP dataset and the 
random forest (RF) subset for the Besnier et al. (2014) dataset13.
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populations and signatures of selection. Genome-scale population genetic profiling, alongside robust phenotyp-
ing, may also eventually reveal the genetic architecture underlying drug resistance and local adaptation. Here 
we have identified signals of selection across the genome, including markers closely associated with functional 
genes (e.g. PSA2). The association of genomic response to selection, natural environmental conditions, and drug 
treatment profiles will be important considerations for future work.

Tools to enable parasite traceability and molecular epidemiology are an important requirement for rational 
sea louse control. Hydrographic modelling has been successfully deployed to understand short-range dispersal L. 
salmonis between farms and have been used to evaluate optimal treatment strategies4,33. Such model predictions 
can be biologically ‘truthed’ using planktonic trawls and strategically placed ‘sentinel’ fish that can infer the geo-
graphic scales of dispersal, as it has been done in one of the study areas, Kilkieran Bay (KB)34. However, biological 
(or genetic) confirmation of larger scale dispersal models (i.e. between lochs (=fjord) and loch systems) within 
and across regions is also required to assess long-range re-infestation risks for aquaculture sites. Such a strategy is 
of particular relevance in the light of an increasing control focus on loch-wide fallowing practices35. Furthermore, 
integration of genetic connectivity data with hydrographic larval dispersal models – so called ‘seascape genetics’ 
(e.g36.) - is likely to be more fruitful in defining any spatial-genetic correlations than crude map distances and 
represents an interesting further avenue for study. In this context, our data show that it may be possible to genet-
ically ‘fingerprint’ louse populations in nearby regions to understand connectivity between them and provide a 
valuable tool for disease surveillance.
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