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Abstract 16 

It is increasingly important to understand animal migratory movements because 17 

climate disruption is shifting plant and animal phenology at different rates across the 18 

world. We applied a Markov state-switching model to telemetry data of a long-19 

distance migrant, the barnacle goose, to detect migratory movement and relate it to 20 

three proximate environmental factors: photoperiod, daily mean temperature and 21 

forage plant phenology. Spring migratory movements towards the breeding grounds 22 

were most closely related to forage plant phenology (measured by accumulated 23 

growing degree days, GDDs); high GDDs values were associated with a greater 24 

probability of transiting to a more northerly site, suggesting that spring migration is 25 
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closely aligned with primary productivity. Autumn migration from the breeding 26 

grounds was most closely related to temperature; higher temperature values were 27 

associated with a greater probability of remaining settled at the current site, 28 

suggesting that autumn migration is closely aligned with atmospheric conditions. 29 

Understanding the relative influence of different environmental factors on migratory 30 

patterns may in turn provide us with insight into how continued climate disruption 31 

could influence northern migratory systems. 32 

 33 

Keywords: animal migration, Arctic herbivore, phenological mismatch  34 
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Introduction 35 

Long-range animal movement during spring and autumn migration is regulated by a 36 

complex combination of internal and external factors, varying widely across 37 

geographic regions, ecosystems and even within species (Alerstam et al. 2003, 38 

Shaw 2016). External factors may include, for example, seasonal changes in 39 

photoperiod (Dechmann et al. 2017, Robart et al. 2018), atmospheric/aquatic 40 

conditions (Singh et al. 2010, Harvey et al. 2020) and primary productivity (Singh et 41 

al. 2010). The relative importance of different external factors and the importance of 42 

internal and external factors can also vary over the course of migration (Bauer et al. 43 

2008, Duriez et al. 2009). As such, the factors regulating migration in a given species 44 

is often obscured, limiting our potential to predict how some migratory systems may 45 

be affected by global climate disruption. 46 

 47 

Many animal species breed at high Arctic latitudes to take advantage of high 48 

summer productivity and extended daylength, with reduced competition, predation 49 

and pathogen exposure, then migrate south to avoid the harsh conditions of winter 50 

(Somveille et al. 2015). In recent times, seasonal phenological synchrony between 51 

the Arctic and temperate/tropical regions has been deteriorating due to climate 52 

disruption, in turn disrupting synchrony between animal migratory movements and 53 

external environmental factors (Bekryaev et al. 2010, Lameris et al. 2017, Praetorius 54 

et al. 2018). Such phenological mismatches in synchrony have been observed in the 55 

barnacle goose Branta leucopsis, a long-distance migrant with three distinct flyways 56 

between the Arctic and temperate Europe (Jensen et al. 2018), termed herein as the 57 

Greenland, Svalbard and Russian flyways. As spring primary production advances in 58 

the Russian Arctic, hatch dates of Russian barnacle geese appear to be advancing 59 
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to maintain synchrony between peak nutrient requirements and availability. Although 60 

the geese have successfully advanced their arrival to the breeding grounds by 61 

skipping refuelling stopovers, the timing of egg laying is still constrained by the need 62 

to acquire local resources prior to breeding. Therefore, the geese still face a 63 

phenological mismatch between chick hatching and nutrient availability (Lameris et 64 

al. 2018). Gosling survival within the first month following hatching is reduced in 65 

years with a large phenological mismatch. This highlights the importance of 66 

understanding how migratory movements in Arctic fauna relate to environmental 67 

factors as the world’s climate changes at an unprecedented rate, especially in the 68 

Arctic. 69 

 70 

As with a number of goose species, the timing of barnacle goose migration to the 71 

Arctic breeding grounds has been closely linked to the northward flush of nutrient-72 

rich forage plant growth (the “green wave”) as spring progresses (van der Graaf et 73 

al. 2006, Kölzsch et al. 2015, Najafabadi et al. 2015, Si et al. 2015, Shariati-74 

Najafabadi et al. 2016, Wang et al. 2019). However, the phenology of migration on 75 

the Greenland flyway appears to differ from the other flyways (Shariatinajafabadi et 76 

al. 2014, Wang et al. 2019). Shariatinajafabadi et al. (2014) found that the 77 

relationship between migration and forage plant phenology on the Greenland flyway 78 

was much weaker than that observed on the Russian and Svalbard flyways. This 79 

may be related to findings by Kölzsch et al. (2015), who found that the long sea 80 

crossing from Iceland to Greenland reduced the bird’s ability to predict foraging 81 

conditions in Greenland and suggested that photoperiod may play a role at this point 82 

of migration. Therefore, it is still unclear whether barnacle geese on the Greenland 83 

flyway align their spring migration more closely with primary productivity or 84 
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photoperiod or some other environmental factor. Furthermore, environmental factors 85 

influencing migratory movements are likely to differ between spring and autumn: 86 

Arctic-breeding white-fronted goose Anser albifrons spring migration is most closely 87 

associated with the green wave as the birds aim to acquire breeding capital, 88 

whereas autumn migration is most closely associated with wind conditions as the 89 

birds aim to fly quickly to the wintering grounds (Kölzsch et al. 2016). The timing of 90 

barnacle goose autumn migration has not been linked to particular environmental 91 

factors on any flyway, although Shariatinajafabadi et al. (2014) suggest it could be 92 

related to atmospheric conditions. 93 

 94 

Satellite telemetry is an excellent tool to study migratory movements in animals 95 

where direct observation is unfeasible (Wilmers et al. 2015). Previous studies have 96 

assessed the relationship between migratory movements of barnacle geese tracked 97 

by satellite telemetry and satellite imagery of the green wave to link migratory 98 

movements to environmental factors (e.g. Najafabadi et al. 2015). Here, we expand 99 

on previous studies using a novel approach: we applied a Markov state-switching 100 

model to telemetry data to relate behaviour – rather than location – to environmental 101 

factors. This model identifies patterns of movement characteristics in telemetry time 102 

series that represent discrete behavioural states, as well as time-dependent changes 103 

in behavioural state. We can then test how various environmental factors influence 104 

the probability of switching behavioural state. Using this technique, we aim to test the 105 

relative importance of three environmental factors associated with migratory 106 

movements in Greenland barnacle geese: photoperiod, air temperature and forage 107 

plant phenology. We expect that spring movements from the wintering grounds to 108 

the breeding grounds, including main spring staging and other shorter stopovers, will 109 
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be associated with some or all of lengthening days, rising air temperatures and 110 

forage plant growth. Conversely, we expect that autumn movements from the 111 

breeding grounds to the wintering grounds, including main autumn staging and other 112 

shorter stopovers, will be associated with some or all of shortening days, falling air 113 

temperatures and forage plant senescence. Our results demonstrate how state-114 

switching models can provide further insight into seasonal movements of a long-115 

distance Arctic migrant. 116 

 117 

Methods 118 

Transmitter tag deployment 119 

Greenland barnacle geese winter on the north-west coasts of Ireland and Scotland 120 

and migrate via Iceland to breed in north-east Greenland. A total of 28 tags were 121 

deployed on barnacle geese in Ireland between 2008 and 2019: n = 5 (2008), n = 2 122 

(2009) and n = 2 (2010) on the Inishkea Islands, Mayo, n = 8 (2018) and n = 5 123 

(2019) on the Inishowen Peninsula, Donegal, and n = 6 (2019) in Lisadell, Sligo (Fig. 124 

1a). Geese were captured using cannon nets and released immediately after tag 125 

deployment. Tags from 2008-2010 comprised a 30-45g GPS-ARGOS platform 126 

transmitter terminal (Microwave Telemetry Inc, Columbia MD) with an elastic body 127 

harness attachment (final fitted weight of 45-65g respectively). Tags from 2018-2019 128 

comprised a nanoFix® GEO+RF (Pathtrack Ltd, Otley, UK) on a neck collar 129 

attachment (21mm high with an adjustable internal diameter of 36-44mm) with a final 130 

fitted weight of ~15g and typical final internal diameter of 38-44mm. Tags from 2008-131 

2010 collected a geographical coordinate fix at 2 hour intervals (including night time) 132 

and transmitted data via the Argos system almost daily. Tags from 2018-2019 133 

collected a fix at 6 hour intervals and transmitted these data via ultra-high frequency 134 
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radio to base stations on the wintering grounds. Both tag types were solar powered, 135 

but the interval time between fixes was varied due to differing battery power and the 136 

programmed intervals for data transfer varied with daylength to optimise battery 137 

levels. Data was collected from deployment until the tag no longer transmitted data 138 

(generally between 12 and 24 months). All birds with tags were also fitted with 139 

individually inscribed legrings so that their survival could be monitored during winter 140 

and staging in subsequent years. Records of legrings were submitted by volunteers 141 

conducting routine monitoring of barnacle geese in Ireland, Scotland and Iceland. 142 

 143 

Data were received from 19 of the 28 deployed tags, 18 of which yielded near-144 

complete time series for spring (1 March to 31 May, i.e. beginning of spring to 145 

beginning of nesting) or autumn (14 August to 31 October, i.e. end of 146 

breeding/moulting to beginning of winter). In spring, geese departed their primary 147 

winter homerange as early as mid-March. Generally, they travelled from the north-148 

west coast of Ireland, along the Outer Hebrides of Scotland to the Southern Region 149 

of Iceland (some flew directly from Ireland to Iceland), then through the 150 

Northeastern/Northwestern Regions of Iceland, over the Savoia Peninsula of 151 

Greenland and along the east Greenland coast and islands as far north as 152 

Danmarkshavn (Fig. 1c). In autumn, geese departed their primary summer 153 

homerange by the end of August. Generally, they travelled south along the east 154 

Greenland coast to Jamesonland or the Savoia Peninsula before crossing to the 155 

Westfjords of Iceland, through the Southern Region of Iceland and along the Outer 156 

Hebrides as far south as Islay or north-western Ireland (again, some flew directly 157 

from Iceland to Ireland) (Fig. 1d). During spring, geese moved northward on short 158 

journeys punctuated with relatively regular and short stopovers (generally less than 2 159 
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weeks) in the Outer Hebrides, the south coast of Iceland and north Iceland. Most 160 

stopped at their “main” spring staging grounds near the north coast of Iceland (the 161 

Vatnsdalsá, Huseyjarkvisl and Héraðsvötn rivers) for 3 to 4 weeks, before continuing 162 

on short journeys and stopovers on the Savoia Peninsula and east Greenland 163 

islands. In contrast, during autumn, geese moved southward over longer journeys 164 

with relatively fewer but longer stopovers (generally between 1 and 3 weeks) on the 165 

east Greenland islands and the Icelandic Westfjords. Most stopped at their “main” 166 

autumn staging grounds on the south coast of Iceland (Skeiðarársandur and 167 

Kúðafljót) for 3 to 4 weeks, before flying almost directly to Islay or the north-west 168 

coast of Ireland  169 

 170 

Environmental data 171 

Daily photoperiod was defined as hours between sunrise and sunset at the latitude 172 

at which the bird was present at the time of the fix. Daily mean temperature (°C) was 173 

sourced from the closest of six weather stations across the flyway at the time of the 174 

fix (Fig. 1b and see Supplementary Information S1). Accumulated growing and 175 

cooling degree days (GDDs and CDDs, based on the concept outlined by Burke, 176 

1968) were used as a proxy for forage plant phenology in spring and autumn 177 

respectively. The degree day (DD) was calculated as DD =  MeanT − BaseT, where 178 

MeanT is the daily mean temperature and BaseT is 5.5°C, the lowest temperature at 179 

which forage plants generally grow (Burke 1968). The accumulated DDs for each 180 

day were summed to provide a daily value, starting in February for spring and 181 

August for autumn. For GDDs in spring, if BaseT was greater than MeanT (i.e. too 182 

cold for growth), the DD value was zero, thus providing heat accumulation above the 183 

base temperature. For the complementary CDDs in autumn, if BaseT was greater 184 
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than MeanT (i.e. too warm for senescence), the DD value was zero and if BaseT was 185 

less than MeanT (i.e. cold enough for senescence), the DD value was one, thus 186 

calculating accumulated days below the base temperature. All environmental data 187 

were scaled to the same index by subtracting the mean and dividing by the standard 188 

deviation to standardise measurements on different scales before analysis. 189 

 190 

State-switching model 191 

Telemetry data was analysed using Hidden Markov models (Langrock et al. 2012), 192 

implemented using the moveHMM package (Michelot et al. 2016) in the R statistical 193 

language and environment 3.5.1 (R Core Team 2018). Hidden Markov models are a 194 

widely accepted method of inferring behavioural states from quantifiable telemetry 195 

data such as distance travelled (“step length”) and direction travelled (“turning 196 

angle”), and have been utilised in a variety of studies, including data from terrestrial 197 

mammals, marine animals, insects and birds (Langrock et al. 2012, Patterson et al. 198 

2017). Our spring and autumn data were analysed in separate models. From the 18 199 

near-complete datasets, 14 contained a complete spring and 11 contained a 200 

complete autumn time series. 201 

 202 

The time series of positions for each goose was decomposed into discrete 203 

behavioural states defined according to step length (Euclidean distance) and turning 204 

angle (degrees) between successive fixes (Michelot et al. 2016). We compared 205 

models with two, three or four behavioural states. The three state and four state 206 

models produced extra step length and turning angles for states which were not 207 

meaningful (see Supplementary Information S2), therefore the two state model was 208 

considered to most adequately capture barnacle goose behaviour and movement 209 
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and did not result in any residual autocorrelation. We termed these two behavioural 210 

states (i) settled and (ii) transiting. For the initial parameter value estimation, we 211 

characterised the settled state as sequences of short steps (mean length of 10km) 212 

and an equal likelihood of turning in any direction (mean angle of 0° at a 213 

concentration of 0.1, where minimum concentration is zero), i.e. goose moving 214 

slowly and undirected. We characterised the transiting state as sequences of long 215 

steps (mean length of 100km) and a lower likelihood of directional change (mean 216 

angle of 0° at a concentration of 1), i.e. goose moving quickly in one direction. 217 

Because step lengths are extremely variable and to capture step lengths between 218 

the values defined above, we specified a large standard deviation for step length (15 219 

and 150km respectively). A gamma distribution was specified for step length, as all 220 

values were positive but right skewed, and a von Mises distribution for turning angle, 221 

as the data were circular and normal. To ensure there was no influence of different 222 

sampling frequencies, we compared a model with 2-hour interval data removed and 223 

a model with 6-hour interval data removed to a model containing all data. The 224 

behavioural states identified by each model were comparable in terms of the ratio of 225 

state 1 to state 2 and the proportion of time steps in state 1 and state 2, indicating 226 

consistency between all data (see Supplementary Information S2 for model output). 227 

 228 

Between each time step in the time series, the individual can either remain in its 229 

current behavioural state or switch to a new state. Switching from a settled to 230 

transiting state was taken to represent the beginning of a journey and, likewise, 231 

switching from a transiting to settled state was taken to represent the end of a 232 

journey. The resolution of our data could detect state switching at the principle 233 

wintering/breeding grounds, at the “main” staging grounds and at shorter stopovers 234 
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along the way. The probability of switching state was tested in relation to 235 

photoperiod, daily mean temperature and accumulated GDDs in spring or CDDs in 236 

autumn. A full model containing pairwise synergistic interactions was compared to a 237 

model containing all three covariates additively and models containing each 238 

covariate individually, as well as a null model containing no covariates (a three-way 239 

interaction was not included as a candidate due to variance inflation). The best 240 

supported model was identified using the Akaike Information Criterion (AIC); the 241 

model with the lowest AIC value was selected (Akaike 1974). Model fit was assessed 242 

by examining time series and auto-correlation functions of pseudo-residuals for 243 

residual patterns and plots of pseudo-residuals against standard normal quantiles for 244 

deviation from normality. The pseudo-residuals from our model followed a standard 245 

normal distribution, indicating the model described the data well. 246 

 247 

Results 248 

Spring migration 249 

The best supported spring model included the covariate GDDs (Table 1). The settled 250 

state had a median step length of 0.17km (lower quartile 0.06km, upper quartile 251 

0.62km) and a mean turning angle of -3.11° with a concentration of 0.44 and the 252 

transiting state had a median step length of 8.61km (lower quartile 2.19km, upper 253 

quartile 47.77km) and a mean turning angle of 0.16° with a concentration of 0.68 254 

(Fig. 2a, b). There was a significant effect of GDDs on state-switching probability: as 255 

GDDs increased, the probability of switching from a transiting state to a settled state 256 

decreased by -0.99 (95% CI -1.38 – -0.60). High GDDs values were associated with 257 

a greater probability of being or remaining in a transiting state and a lower probability 258 

of being in a settled state, suggesting that geese are more likely to journey between 259 
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sites as GDDs increase (Fig. 3a). Geese typically departed for Iceland when GDDs 260 

at winter sites was at least 45, but on average 110, and departed for Greenland 261 

when average GDDs at staging sites reached 45. We further compared early spring 262 

(1 March to 14 April) and late spring (14 April to 31 May) and found that the effect 263 

was stronger in late spring (β = -0.68, 95% CI -1.07 – -0.29) compared to early 264 

spring (confidence intervals approaching the null value). Uncertainty around the 265 

mean also increased as spring progressed (possibly as other factors, e.g. individual 266 

internal state, act).  267 

 268 

Autumn migration 269 

The best supported autumn model included the covariate daily mean air temperature 270 

(Table 1). The settled state had a median step length of 0.91km (lower quartile 271 

0.27km, upper quartile 2.67km) and a mean turning angle of 3.14° with a 272 

concentration of 0.21 and the transiting state had a median step length of 91.67km 273 

(lower quartile 27.39km, upper quartile 195.46) and a mean turning angle of 0.01° 274 

with a concentration of 1.36 (Fig. 2c, d). There was a significant effect of temperature 275 

on state-switching probability: as mean temperature increased, the probability of 276 

switching from a settled state to a transiting state decreased by -0.48 (95% CI -0.77 - 277 

-0.20). High mean temperature values were associated with a greater probability of 278 

being in a settled state and a lower probability of being or remaining in a transiting 279 

state, suggesting that geese are more likely to journey between sites as 280 

temperatures decrease (Fig. 3b). Birds typically departed their primary breeding 281 

grounds at temperatures between 1.5˚C and 5.5˚C (mean 3.8˚C) and crossed from 282 

Greenland to Iceland when temperatures fell to between -1.2˚C and 2.9˚C (mean 283 

1.6˚C). 284 
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 285 

Discussion 286 

Our hidden Markov model successfully identified two discrete behavioural states in 287 

barnacle goose GPS time series. The results reveal that the Greenland barnacle 288 

goose spring movements are most strongly associated with GDDs. This suggests 289 

that the timing of spring migration is closely aligned with primary production, as 290 

observed in the Russian and Svalbard populations (van der Graaf et al. 2006, Si et 291 

al. 2015, Shariati-Najafabadi et al. 2016). Because barnacle geese are a capital 292 

breeding species, acquiring the majority of breeding reserves before arriving at the 293 

breeding grounds, increased forage availability may allow them to acquire the 294 

necessary fuel reserves to proceed to the breeding grounds. The timing of autumn 295 

movements are most strongly associated with daily mean air temperature. This 296 

suggests that autumn migration is closely aligned with atmospheric conditions, as 297 

suggested by Shariatinajafabadi et al. (2014). As temperatures fall, the increased 298 

thermoregulatory costs and relative inaccessibility of forage may limit the geese’s 299 

ability to persist in northerly sites.  300 

 301 

Phenological changes 302 

Climate disruption may have significant consequences for species that align their 303 

spring movements closely with primary productivity (Howard et al. 2020). In seasonal 304 

environments, migratory animals time their reproduction to coincide with the annual 305 

peak of primary productivity, which in turn is governed by climate. Emerging 306 

phenological mismatches between reproduction and primary productivity in both 307 

marine and terrestrial environments due to amplified climate warming rates in the 308 

Arctic is widely documented in the literature (e.g. Edwards and Richardson 2004, 309 
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Jones and Cresswell 2010, Lameris et al. 2017, Mayor et al. 2017). For example, 310 

light-bellied brent geese Branta bernicla hrota experience reduced breeding success 311 

when there is a mismatch between chick hatching and peak plant nutrient availability 312 

(Clausen and Clausen 2013). Mismatches are becoming more frequent because 313 

plant phenology is advancing faster in their Arctic Svalbard breeding grounds than in 314 

their temperate Danish staging grounds. Breeding success of caribou Rangifer 315 

tarandus in Greenland is adversely impacted due to a mismatch between calving 316 

and peak forage availability (Post and Forchhammer 2008). The mismatch occurs 317 

because the timing of spring migration to summer ranges for calving depends on 318 

photoperiod, which remains fixed, while plant phenology depends on temperature 319 

and is advancing. In marine environments, little auks Alle alle and Brünnich’s 320 

guillemots Uria lomvia experienced reduced breeding success as the mismatch 321 

between hatching and phytoplankton productivity increased (Ramírez et al. 2017). 322 

The pulses of phytoplankton productivity advanced due to earlier sea ice melt, while 323 

bird breeding activity did not. An uncoupling of plant phenology between temperate 324 

Ireland/Scotland and Arctic Iceland/Greenland could have similar consequences for 325 

reproduction in barnacle geese in the future. 326 

 327 

The consequences of climate disruption for autumn migration has received less 328 

attention than spring, despite notable changes to the plant growth period, leaf-329 

senescence date and arrival of frost and snow (Gallinat et al. 2015). Passerine birds 330 

breeding in Europe and wintering south of the Sahara have advanced their autumn 331 

migration, possibly due to pressure to cross the Sahel before the dry period (Jenni 332 

and Kéry 2003). In contrast, beluga whales Delphinapterus leucas delay autumn 333 

migration due to later sea ice freeze (Hauser et al. 2017). Barnacle geese could 334 
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similarly be able to delay departing their summer homerange if falling temperatures 335 

are delayed. This may have particular implications for juveniles gaining extra time to 336 

develop before their first full migration. However, to date, we do not have evidence of 337 

a long term delay in the time of southerly post-breeding movements from Greenland. 338 

 339 

Model performance and impact of telemetry tags on geese 340 

For each bird, we compared the behavioural state estimated by the model with its 341 

position on a geographic map and found that the two behavioural states identified in 342 

our model correlated coherently with the individual’s geographic location and 343 

movements, suggesting that they were appropriately identified. Transiting behaviour 344 

tended to be observed in unsuitable habitat or sea crossings and correlated with 345 

known migration dates, while settled behaviour tended to be observed in suitable 346 

and known forage or roosting habitat.  Of nine geese carrying harness tags between 347 

2008 and 2010, all tags successfully transmitted data and seven birds were known to 348 

be alive the following year with their tags still attached, suggesting a survival rate of 349 

>75%. Two birds were assumed lost at sea during migration; the contribution of the 350 

tag to this is unknown, but one bird is known to have encountered strong headwinds 351 

during the sea crossing. Of eight geese carrying neck collar tags in 2018, five tags 352 

successfully transmitted data and seven geese were known to be alive the following 353 

year (one having lost its tag but retained its legring), suggesting a survival rate of 354 

>85%, which is similar to the 87% average survival rate of uninstrumented birds 355 

reported by Doyle et al. (2020). Although 4 data series were obtained, data retrieval 356 

and legring recording from the 11 geese tagged in 2019 was interrupted by the 357 

COVID-19 pandemic from March until migration to Greenland (after which the geese 358 
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become inaccessible), therefore conclusions on the effect of tags on this cohort 359 

remained unknown at the time of writing. 360 

 361 

Conclusion 362 

This study successfully applied a Markov state-switching model to GPS time series 363 

data of barnacle geese to detect migratory behaviour and examine the relationship 364 

between the timing of changes in behavioural state and photoperiod, air temperature 365 

and forage plant phenology. Like the Russian and Svalbard populations, the 366 

Greenland population spring migratory movements were more closely associated 367 

with forage plant phenology than with temperature or photoperiod. Autumn migratory 368 

movements were more closely associated with temperature than plant phenology or 369 

photoperiod. Increasing temperatures in the Arctic associated with climate disruption 370 

is likely to advance forage plant growth in spring and extend summer temperatures 371 

in autumn, therefore there is potential for continued climate disruption to alter the 372 

traditional timing of barnacle goose and other Arctic bird migration. 373 

 374 
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Table 1. The AIC for each model is presented, along with the difference between 535 

each model and the lowest AIC (∆AIC). Models include additive (+), synergistic (*) or 536 
null (~1) effects. 537 

 model AIC ∆AIC 

spring 
migration  

~GDDS 27535.89 0.00 

~temperature * daylength + GDDS 27536.32 0.44 

~temperature + GDDS + daylength 27537.74 1.86 

~temperature + GDDS * daylength 27538.04 2.15 

~temperature * GDDS + daylength 27539.12 3.23 

~daylength 27551.29 15.40 

~temperature 27558.56 22.67 

~1 27630.79 94.91 

autumn 
migration  

~temperature 24598.07 0.00 

~temperature * daylength + CDDS 24600.68 2.61 

~temperature + CDDS + daylength 24601.37 3.31 

~temperature + CDDS * daylength 24602.63 4.56 

~CDDS 24604.18 6.11 

~temperature * GDDS + daylength 24604.99 6.92 

~daylength 24610.11 12.04 

~1 24663.49 65.42 
GDDs: accumulated growing degrees of the year 

CDDs: accumulated cool days of the year 
temperature: daily mean air temperature recorded (°C) 

daylength: hours between sunrise and sunset 
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 538 
Figure 1. (a) Tagging locations of barnacle geese on the Greenland flyway. (b) 539 
Location of the six weather stations along the Greenland flyway. (c) Tracking data 540 

recovered from tags in spring and (d) autumn.  541 
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 542 
Figure 2. Step length and turning angles classified into settled and transiting states: 543 
(a) spring step length, (b) spring turning angle, (c) autumn step length, (d) autumn 544 

turning angle.  545 



27 
 

546 
Figure 3. The long-term probability of being in a settled state or a transiting state at 547 
different values of (a) accumulated growing degree days and (b) daily mean air 548 

temperature. Shaded area around the line represents 95% confidence intervals. 549 

Note, covariate values are scaled and centred to mean zero and standard deviation 550 

1.  551 
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Supplementary Information S1 
 
Table 1. Weather station data. 

Institution Source and data extracted 

Met Éireann 

Source: www.met.ie/climate/available-data/historical-data 
 
Daily values for Station 2375 (Belmullet, Co. Mayo) apply to 
latitudes between 50.00 and 54.49. Daily values for Station 
1575 (Malin Head, Co. Donegal) apply to latitudes between 
54.50 and 60.49. Parameters max and min air temperature (°C) 
were extracted and consolidated to produce mean. 

Veðurstofa 
Íslands 

Source: https://www.vedur.is/vedur/vedurfar/daglegt/ 
 
Daily values for Station 990 (Keflavíkurflugvelli) apply to 
latitudes between 60.50 and 64.49. Daily values for Station 422 
(Akureyri) apply to latitudes between 64.50 and 68.49. 
Parameter mean air temperature (meðalhiti; °C) was extracted. 

Danmarks 
Meteorologiske 
Institut 

Source: www.dmi.dk/publikationer/ 
 
Data pertaining to DMI Report No. 20-08 ‘Weather observations 
from Greenland 1958-2019’. Hourly values for Station 4339 
(Ittoqqortoormiit) apply to latitudes between 68.50 and 73.49. 
Hourly values for Station 4320 (Danmarkshavn) apply to 
latitudes between 73.50 and 78.50. Parameter last hour mean 
air temperature (101; dry bulb temperature) was extracted and 
consolidated to produce daily values. 

   

https://www.vedur.is/vedur/vedurfar/daglegt/
http://www.dmi.dk/publikationer/
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Supplementary Information S2 
 
Table 1. Comparison of step length and turning angles in two- three- and four-state 
models for spring migration data. The mean (µ) is provided, along with the standard 
deviation (σ) for step length and the concentration (conc.) for turning angle. 

Model State Step Length Turning Angle 

  µ σ µ conc. 
2-state State 1 0.49 0.64 -3.11 0.45 

 State 2 38.03 65.51 0.15 0.66 
  µ σ µ conc. 

3-state State 1 0.11 0.10 -3.04 0.37 
 State 2 1.43 1.77 3.04 0.45 
 State 3 63.98 91.92 0.03 1.53 
  µ σ µ conc. 

4-state State 1 0.08 0.07 -3.10 0.34 
 State 2 0.81 0.78 -3.11 0.57 
 State 3 100.75 9.80 0.04 2.35 
 State 4 4.37 6.41 1.21 0.10 

 
Table 2. Comparison of step length and turning angles in two- three- and four-state 
models for autumn migration data. The mean (µ) is provided, along with the standard 
deviation (σ) for step length and the concentration (conc.) for turning angle. 

Model State Step Length Turning Angle 

  µ σ µ conc. 
2-state State 1 2.17 2.70 3.14 0.21 

 State 2 136.94 185.80 0.01 1.35 
  µ σ µ conc. 

3-state State 1 0.86 0.89 -3.12 0.22 
 State 2 3.27 4.09 3.10 0.20 
 State 3 137.57 188.00 -0.01 1.35 
  µ σ µ conc. 

4-state State 1 0.86 0.89 -3.10 0.22 
 State 2 3.26 4.08 3.08 0.19 
 State 3 96.66 157.49 -0.03 0.66 
 State 4 201.88 145.16 -0.01 6.58 

 
Table 3. Comparison of step length and turning angles in models with 2-hour 
frequency data, 6-hour frequency data and all data for spring migration. The mean (µ) 
is provided, along with the standard deviation (σ) for step length and the concentration 
(conc.) for turning angle. 

Model State Step Length Turning Angle 

  µ σ µ conc. 
2-hour State 1 0.34 0.45 -3.07 0.37 

 State 2 39.62 55.75 0.003 1.58 
  µ σ µ conc. 

6-hour State 1 1.63 2.10 3.00 0.58 
 State 2 106.57 163.50 0.17 1.03 
  µ σ µ conc. 

all State 1 0.49 0.64 -3.11 0.44 
 State 2 38.03 65.51 0.15 0.66 
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Table 4. Comparison of step length and turning angles in models with 2-hour 
frequency data, 6-hour frequency data and all data for autumn migration. The mean 
(µ) is provided, along with the standard deviation (σ) for step length and the 
concentration (conc.) for turning angle. 

Model State Step Length Turning Angle 

  µ σ µ conc. 
2-hour State 1 1.15 1.37 -3.02 0.21 

 State 2 95.38 144.93 0.10 1.42 
  µ σ µ conc. 

6-hour State 1 2.81 3.51 2.98 0.17 
 State 2 192.04 152.57 -0.07 1.42 
  µ σ µ conc. 

all State 1 2.10 2.67 3.10 0.21 
 State 2 129.02 177.41 0.02 1.40 

 


