W CORA =

g/ﬁ%

Title Planning the deployment of multiple sinks and relays in wireless
sensor networks
Authors Sitanayah, Lanny;Brown, Kenneth N.;Sreenan, Cormac J.

Publication date

2014-07-30

Original Citation

Sitanayah, L., Brown, K. N. and Sreenan, C. J. (2015]) ‘Planning
the deployment of multiple sinks and relays in wireless sensor
networks', Journal of Heuristics, 21(2), pp. 197-232. doi: 10.1007/
s10732-014-9256-z

Type of publication

Article (peer-reviewed)

Link to publisher’s
version

https://link.springer.com/article/10.1007/s10732-014-9256-z -
10.1007/s10732-014-9256-z

Rights

© Springer Science+Business Media New York 2014. This is a
post-peer-review, pre-copyedit version of an article published in
Journal of Heuristics. The final authenticated version is available
online at: http://dx.doi.org/10.1007/s10732-014-9256-z

Download date

2024-04-2510:21:33

[tem downloaded
from

https://hdl.handle.net/10468/8975

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/8975

Planning the Deployment of Multiple Sinks and
Relays in Wireless Sensor Networks

Lanny Sitanayah - Kenneth N. Brown -
Cormac J. Sreenan

the date of receipt and acceptance should be inserted later

Abstract Wireless sensor networks are subject to failures. Deployment plan-
ning should ensure that when a data sink or sensor node fails, the remaining
network can still be connected, and so may require placing multiple sinks and
relay nodes in addition to sensor nodes. For network performance require-
ments, there may also be path-length constraints for each sensor node. We
propose four algorithms, Greedy-MSP and GRASP-MSP to solve the prob-
lem of multiple sink placement, and Greedy-MSRP and GRASP-MSRP for
the problem of multiple sink and relay placement. Greedy-MSP and GRASP-
MSP minimise the deployment cost, while ensuring that each sensor node in
the network is double-covered, i.e. it has two length-constrained paths to two
sinks. Greedy-MSRP and GRASP-MSRP deploys sinks and relays to minimise
the deployment cost and to guarantee that all sensor nodes in the network are
double-covered and noncritical. A sensor node is noncritical if upon its re-
moval, all remaining sensor nodes still have length-constrained paths to sinks.
We evaluate the algorithms empirically and show that these algorithms out-
perform the closely-related algorithms from the literature for the lowest total
deployment cost.

Lanny Sitanayah

Mobile & Internet Systems Laboratory, School of Computer Science and IT,
University College Cork, Ireland

Tel.: +353-21-4205396

Fax: +353-21-4205367

E-mail: 1s3@cs.ucc.ie

Kenneth N. Brown

Insight Centre for Data Analytics, School of Computer Science and IT,
University College Cork, Ireland

E-mail: k.brown@cs.ucc.ie

Cormac J. Sreenan

Mobile & Internet Systems Laboratory, School of Computer Science and IT,
University College Cork, Ireland

E-mail: ¢jsQcs.ucc.ie

2 Lanny Sitanayah et al.

Keywords Wireless Sensor Networks - Network Deployment Planning -
Multiple Sink and Relay Placement

1 Introduction

A Wireless Sensor Network (WSN) is composed of a large number of sensor
nodes [1]. Each sensor node is a battery-powered device with limited storage,
processing and communication capability. It is able to sense a close-by physical
phenomenon, perform a simple computation and send its data wirelessly over
a multi-hop network to a special node called a data sink. Unlike sensor nodes
which are typically resource-constrained because of a desire to keep them low-
cost, small, energy-efficient and easy to deploy, a data sink usually has more
energy, storage, processing and communication capabilities allowing it to act
as a gateway between sensor nodes and an end-user. This network is subject
to failure as the wireless devices and the communication links are unreliable.
A sensor node may fail due to limited battery life or hardware malfunction, or
may be damaged by weather or human intervention. When some sensor nodes
fail, the network may be disconnected and thus it cannot gather information
from the isolated area. Even though a sink has more resources than a sensor
node, this electronic device may fail too.

To protect against network failure, it is important to plan the topology
deployment. In this paper, we define a novel problem for increasing the WSN
topology robustness against a single failure by deploying multiple sinks and
relays with minimal cost. A network is robust against a single failure if after
a failure of a sink, a sensor node or a relay node, each remaining sensor node
can deliver its data to a sink through a multi-hop path with an acceptable
length. We consider the path length restriction as data latency requirements
may be important in WSN applications. To be robust to sink failure, it is
necessary to deploy multiple sinks in the network such that each sensor node
is double-covered, i.e. it has length-bounded paths to two sinks. While we
restrict our assumption to k-covered, where k=2 in this paper, our solution is
also applicable to any integer k> 1. If k> 2, the solution is robust to multiple
(up to k—1) sink failures. To protect against sensor node failure, it is necessary
to place some relay nodes, so that every sensor node is non-critical, i.e. when it
fails, each remaining sensor node still has at least one length-bounded path to
a sink. These relay nodes do not sense, but only forward data from other nodes.
Installing sinks and relays comes at a cost that includes not only the hardware
purchases, but also the installation and maintenance cost, thus motivating our
solution to minimise the total deployment cost.

Our main contribution is a solution that minimises the total cost of sink and
relay deployment but ensures the network robustness against a single device
failure, either a sink or a sensor node. Our solutions use a greedy algorithm and
a local search algorithm based on the Greedy Randomized Adaptive Search
Procedure (GRASP) [8] [9] [20]. Firstly, we look at the Multiple Sink Place-
ment (MSP) problem to minimise the number of uncovered nodes, i.e. nodes

Planning the Deployment of Multiple Sinks and Relays in WSNs 3

that are not double-covered. We propose Greedy-MSP and GRASP-MSP and
show empirically that Greedy-MSP has the shortest runtime but deploys more
sinks than GRASP-MSP. On the other hand, our evaluation demonstrates that
GRASP-MSP finds comparable solutions in shorter runtimes than a linear pro-
gramming implementation. The GRASP-MSP performance gives us confidence
in using it as the basis for solving the more complex multiple sink and relay
placement problem.

After that, we look at the Multiple Sink and Relay Placement (MSRP)
problem and present Greedy-MSRP and GRASP-MSRP. Both algorithms em-
ploy the concept of Length-constrained Connectivity and Rerouting Central-
ity (I-CRC) introduced in [22] to identify every critical node, i.e. a sensor
node which if it fails can cause other nodes to lose their length-bounded
paths to sinks. Greedy-MSRP deploys sinks and relays separately. It first uses
Greedy-MSP to select sinks to minimise the number of uncovered nodes. It
then trades sinks for relays to minimise the total deployment cost but ensures
that the network is still double-covered and non-critical. To deploy relays, we
develop a GRASP algorithm for Multiple Relay Placement (GRASP-MRP).
GRASP-MRP extends the GRASP algorithm for Additional Backup Place-
ment (GRASP-ABP) in [22] to make a network topology not only non-critical,
but also double-covered.

Unlike Greedy-MSRP that deploys sinks and relays separately, GRASP-
MSRP deploys sinks and relays simultaneously in its local search move to
minimises the number of uncovered and critical nodes. We demonstrate em-
pirically that GRASP-MSRP runs faster than Greedy-MSRP and the solutions
produced by GRASP-MSRP are over 30% less costly than those of Greedy-
MSRP. Finally, we evaluate the robustness of GRASP-MSRP’s topologies us-
ing a network simulator and show that they can tolerate more faults gracefully.

The remainder of this paper is organised as follows. In Section 2 and 3,
we describe the background of this work and review the related work on sink
and relay deployment algorithms, respectively. We introduce Greedy-MSP and
GRASP-MSP in Section 4 and evaluate them in Section 5. Greedy-MSRP and
GRASP-MSRP are presented in Section 6 and are evaluated in Section 7. We
then evaluate the resulting topologies for robustness, by simulating network
operation while nodes are failing in Section 8. We show that the performance
of a network is not only influenced by the number of deployed sinks, but more
importantly the positions to deploy the sinks. Finally, Section 9 concludes the
paper. Parts of this work were presented in [23].

2 Background

A WSN can be modeled as a graph G=(V, E), where V is a set of nodes and
E is a set of edges. Each edge connects two nodes that are within transmission
range of each other!, and the two nodes are said to be adjacent. A path of length

1 For simplicity we assume bi-directional links, but this could be easily relaxed by speci-
fying a more complex connectivity graph.

4 Lanny Sitanayah et al.

t between two nodes v and w is a sequence of nodes v=wvg, v1,...,v; =w, such
that v; and v;41 are adjacent for each i. A path from a node v to a set of nodes
W is simply a path from v to any node w € W. Two nodes are connected if
there is a path between them. A graph is connected if every pair of nodes is
connected. Sensor network topology is an undirected graph and for simplicity,
we assume that the graph is connected. H= (W, E]y) is an induced subgraph
of G=(V,E) it WCV and E|p={(z,y) € E; x € W,y € W} is the subset of
edges in E which connect nodes in W.

In a WSN with a data sink, the routing paths from all sensor nodes to the
sink form a rooted tree, where the sink is the root of the tree. Any node w on
a path from a node v to the root is an ancestor of v. If w is an ancestor of
v, then v is a descendant of w. The subtree rooted at v is the tree induced by
descendants of v rooted at v.

Centrality indices is a core concept in social network analysis [10] [5], used
to determine the importance of a node in a network. It was introduced by
Bavelas [3] in 1948. A sensor node is identified as a critical node if upon its
removal, more sensor nodes will have no path of length <l,,.x to a sink, where
Imax is the maximum acceptable path length. Otherwise, it is non-critical.
We define a WSN as non-critical if each sensor v € T' is non-critical. Using
Length-constrained Connectivity and Rerouting Centrality (I-CRC), a sensor
node is critical if its centrality index is above a threshold. I-CRC of a node v
is formulated as

I-CRC(v) = < I-CC(v), I-RC(v) >, (1)

where [-CC is Length-constrained Connectivity Centrality and I-RC is Length-
constrained Rerouting Centrality.

The length-constrained connectivity centrality of a node v is the number
of v’s descendants that would be either disconnected or pushed over the path
length limit [, when v is removed from the network. It is formulated as

I-CC(v)=|{we D(v); d(w, Sink) <lmax, dv(w, Sink) >lnax }H, (2)

where D(v) is the set of node v’s descendants in the routing tree, Sink is the
set of sinks, d(w, Sink) denotes the shortest path length between node w and
Sink, while d, (w, Sink) represents the length of the shortest path from w to
Sink which does not visit v. The length-constrained rerouting centrality of a
node v is the total percentage of additional length of the shortest paths, which
are over the path length limit [,,x, from v’s descendants to the sinks upon
removal of v. Note that the calculation only takes v’s descendants that are still
connected to the routing tree after v is removed, because the sum of distances
is only meaningful for a connected graph. The length-constrained rerouting
centrality is defined as

LRC(0) = Z (Inax{dv(w, Sink), lmax } 1) . 3)

. max{d(w, Sink), lmax }
weD (v), dy (w,Sink)#oo

Planning the Deployment of Multiple Sinks and Relays in WSNs 5

GRASP [8] [9] [20] is a metaheuristic which captures good features of pure
greedy algorithms and random construction procedures. It is an iterative pro-
cess. In each iteration, it consists of two phases: the construction phase and
the local search phase. The construction phase builds a feasible solution as a
good starting solution for the local search phase. The probabilistic component
of a GRASP is characterised by randomly choosing one of the best possible
candidates, instead of the overall best one. Since the solution produced by the
construction phase is not necessarily the local optimum, the local search phase
is utilised to improve it. A local search algorithm works in an iterative fashion
by replacing the current solution by a better one from the neighborhood of
the current solution. It terminates when no better solution is found.

3 Related Work

In the literature, the problems of deploying sinks and relays are solved sepa-
rately. Some sink deployment algorithms have been proposed with objectives
to minimise and balance the energy consumption across networks [28] [15],
reduce packet delivery latency [29], meet the required lifetime [18] and make
the network double-covered for fault-tolerance [7]. Even though the algorithm
in [7] is not designed for WSNs, the problem of finding the optimal positions for
core nodes in passive optical networks [7] is similar to the problem of finding
optimal positions for sinks in WSNs. Similar to our objective, i.e. to minimise
the deployment cost, the algorithms proposed in [28] [18] try to minimise the
number of sinks deployed, while the number of sinks is given in [15] [29] [7].
In [28], a sink is chosen greedily from a set of candidate locations such that it
can cover as many sensor nodes, which are within the hop count bound from
the sink, as possible. However, this algorithm does not consider double-covered
networks. In [18], the algorithm deploys sinks one by one until the desired net-
work lifetime is reached. It does not make the network double-covered and uses
the well-known k-means clustering algorithm to identify the positions of sinks,
which can be placed anywhere in the region. The algorithm in [7] also uses
the k-means clustering algorithm to place a given number of sinks to make
the network double-covered. None of these algorithms consider limits on the
lengths of the paths.

The problem of deploying relay nodes for increased reliability has long been
acknowledged as a significant problem [6] [19] [12] [16] [13] [14] [22]. Bredin et
al. [6] develop k-connectivity-repair by finding a minimum-weight vertex k-
connected subgraph from a weighted complete graph, adding edges in increas-
ing weight and for each edge, deploying k relays every transmission range
distance and k—1 relays at endpoints of the edge. Partial k-connectivity-repair
by Pu et al. [19] is similar to k-connectivity-repair [6], but only places one
relay every transmission range distance and none at endpoints. Connectivity-
first [12] finds a minimum k-connected spanning graph from a weighted com-
plete graph by adding edges that have the highest contribution to connectivity
and the least weight. Misra et al. [16] propose connected and survivable relay

6 Lanny Sitanayah et al.

node placement. Both connected and survivable assign a weight to each edge
equal to the number of candidate relays the edge is incident with. Connected
relay node placement computes a low weight connected subgraph, while sur-
vivable relay node placement computes a low weight 2-connected subgraph.
Relays are then deployed at the candidate locations that appear in the sub-
graph. Kashyap et al. [13] propose k-vertex connectivity, where from a com-
plete graph of cluster heads, it assigns edge weights, finds a minimum cost ver-
tex k-connected spanning subgraph, and deploys relays along the subgraph’s
edges. Lanza-Gutierrez et al. [14] solve the problem of relay node placement
using parallel genetic algorithms to reduce computation time.

The relay placement algorithm proposed in [22], GRASP-ABP, is also a
GRASP-based local search algorithm. It uses Length-constrained Connectivity
and Rerouting Centrality (I-CRC) to identify critical nodes. After identifying
the critical nodes, relays are deployed around those nodes to preserve backup
paths if they die. By restricting attention to nodes with high centrality, we can
focus on the most important nodes. Thus, I-CRC allows us to trade off the de-
ployment cost against the robustness of the network. GRASP-ABP with I-CRC
has been shown to deploy fewer relays compared to the algorithm in [6] [19].

4 Multiple Sink Placement (MSP)

@® sensor node
[] candidate sink
B selected sink

H

(b)

Fig. 1 Ilustration of the MSP problem. (a) A WSN with four candidate sinks and (b) the
double-covered WSN where lax = 3.

We partition nodes into a set of sensors T’ and sinks S. In the graph rep-
resentation of a WSN, V' =TUS. Note that at this stage we do not use relays.
A sensor is double-covered if and only if it has at least two paths of length
< lmax to two sinks in S. If a sensor is not double-covered, it is uncovered.
We define a WSN as double-covered if each sensor v € T is double-covered.
In the multiple sink placement problem, given a graph G =(TUAg, E), where
Ag is a set of candidate locations for sinks with a non-negative cost function

Planning the Deployment of Multiple Sinks and Relays in WSNs 7

¢: As—R, we find a minimum cost subset S C Ag such that H=(TUS, E|1us)
is double-covered.

We illustrate this problem in Figure 1. Figure 1(a) illustrates a WSN with
four candidate locations to deploy sinks, where the numbers represent the
costs. In order to make the WSN double-covered with [,.x =3, we need to
deploy the two sinks as shown in Figure 1(b). The total cost of sink deployment
in this example is 10 units.

To solve the multiple sink placement problem, we present Greedy-MSP, a
greedy-based algorithm, and GRASP-MSP, a local search algorithm that uses
the GRASP technique [8] [9] [20]. To speed-up our algorithms’ processing time,
we compute the shortest path from all sensors to all candidate sinks once in
the beginning and store the length of the shortest path in Distance table, while
the parent of each sensor is stored in Parent table. A parent of a sensor node
is the next node on the shortest path to a candidate sink. For example, for
G=(TUAs, E), Distanceg (v, w) shows the length of the shortest path from a
sensor v €T to a candidate sink w € Ag, while Parentc (v, w) shows the parent
of a sensor v on the shortest path to a candidate sink w € Ag.

4.1 Greedy Algorithm for Multiple Sink Placement (Greedy-MSP)

Greedy-MSP is similar to the Heuristic Opt Multisink Place (HOMP) algo-
rithm by Xu and Liang [28], but instead of deploying a minimum number of
sinks to make a network single-covered, it considers double-covered networks.
Greedy-MSP takes as input the original graph G = (TUAg, E), the set T of
sensors, the set Ag of candidate sinks, the cost function ¢, the pre-computed
Distanceg table, and the maximum acceptable path length [;,,x. Greedy-MSP
selects the best sinks one by one until all sensors are double-covered. In each
iteration, the greedy move picks the best sink from the set of candidate sinks
that can minimise the number of uncovered sensors. The best sink is the one
that together with the previously chosen sinks can minimise the number of
uncovered sensors. In Greedy-MSP, if two or more sinks offer the same num-
ber of uncovered sensors, the lowest cost sink is selected. If there are ties, we
select one randomly. The iteration stops when all sensors are double-covered
or all candidate sinks have been selected.

4.2 Greedy Randomised Adaptive Search Procedure for Multiple Sink
Placement (GRASP-MSP)

To tackle the issue of local minima, we present GRASP-MSP to solve the
multiple sink placement problem. As with other GRASP-based algorithms,
GRASP-MSP consists of two steps: construction phase to construct an initial
feasible solution and local search phase to explore the neighbourhood of the
initial solution, looking for lower cost solutions.

8 Lanny Sitanayah et al.

4.2.1 Construction Phase

In the construction phase, we find S, an initial set of sinks. Instead of selecting
the best candidate sink from Ag to be put in S, which can minimise the number
of uncovered sensors, we add randomisation to the initial solution by choosing
a sink from Ag randomly. This random selection is repeated until the network
is double-covered or all candidate sinks have been chosen.

4.2.2 Node-based Local Search

Let S be the set of sinks. We explore the neighbourhood of the current solution
by adding a new sink s€ Ag\ S into S that can eliminate some existing sinks
from S to reduce the total sink cost. This move must always ensure that the
network is double-covered.

4.2.8 Algorithm Description

The GRASP-MSP pseudocode is given in Algorithm 1. It takes as input the
original graph G = (TUAg, FE), the set T of sensors, the set Ag of candidate
sinks, the cost function ¢, the pre-computed Distanceq table, the maximum
acceptable path length l;.x, and the number of iterations (maz_iterations).
In each iteration, the construction phase to find the initial set of sinks S is
executed in line 3. The local search starts with the initialisation of the best
set and the best cost in line 6. The loop from line 7 to 22 searches for the best
move, i.e. finding a new sink r € Ag\ S that can eliminate as many existing
sinks from S as possible. The loop from line 9 to 15 tries to find the set ZC S
of existing sinks that are safe to be removed after the insertion of r. The sinks
in Z are safe to be removed if all sensors in H = (TUSU{r}\Z, E|qsyrpz)
are double-covered. In line 16, we check if the new solution reduces the total
cost of the current best solution. If the total cost can be reduced, we reset the
set of the best set in line 17. If the total cost is the same, we keep this new
solution in the set of the best set as shown from line 19 to 21. When all moves
have been evaluated, we check in line 23 if an improving solution has been
found. If the moves produce a better solution, the set of sinks S is updated in
line 24 by selecting one best set randomly from the set of the best set. Then,
the local search continues. If, at the end of the local search, we find a better
solution compared to the best solution found so far, we update in line 29 the
set of sinks and the lowest total cost found. The best sink set S* is returned
in line 32.

5 Evaluation of Greedy-MSP and GRASP-MSP
In this section, we evaluate Greedy-MSP and GRASP-MSP, and we show

that while Greedy-MSP has the shortest runtime, GRASP-MSP finds the
lowest cost sink deployment compared to other closely-related algorithms.

Planning the Deployment of Multiple Sinks and Relays in WSNs 9

Algorithm 1: GRASP-MSP

Input: G, T, Ag, ¢, Distancecq, lmax, max_iterations

Output: S*
1 best_value «+ oo;
2 for i+ 1 to max_iterations do /* Construction phase */
3 Find S by choosing sinks from Ag randomly;
4 repeat /* Local search phase */
5 solution_updated — false;
6 best_seto < S; best_cost szes Cy; best_num_set —1;
7 foreach r € Ag\ S do
8 Z —0;
9 foreach t€ S do
10 Z—ZU{t}; H—(TUSU{r}\Z, Elrusuriz);
11 Calculate num_uncovered in H using Distanceg and Imax
12 if num_uncovered >0 then
13 Z—Z\ {t};
14 end
15 end
16 if ZvESU{T}\Z ¢y < best_cost then
17 best_num_set < 0;
18 end
19 if EveSU{r}\Z ¢y < best_cost and SU{r}\Z ¢ best_set then
20 best_setpest_num_set —SU{r}\Z; best_cost — ZUGMT,}\Z [
best_num._set < best_num_set +1;
21 end
22 end
23 if best_cost <} .5 co then
24 S« select a set randomly from best_set;
25 solution_updated < true;
26 end
27 until solution_updated = false;
28 if 37 g cv < best_value then /* Best solution update */
29 S* S5 best_value <} g Cv;
30 end
31 end

32 return S*;

GRASP-MSP finds comparable solutions to a linear programming model, with
marginally faster runtime. We evaluate the performance of the algorithms us-
ing the following metrics:

1. Average number of sinks needed and average total sink cost. We
compare the effectiveness of the algorithms in finding the minimum cost
solution to the same problem. We expect that GRASP-MSP deploys the
fewest sinks and has the lowest cost solution compared to other algorithms.
We also expect Greedy-MSP’s solution to have slightly more sinks than
GRASP-MSP’s, but it should be comparable to other multiple sink place-
ment algorithms.

2. Average runtime. We expect both Greedy-MSP and GRASP-MSP to be
more efficient than the other algorithms.

10 Lanny Sitanayah et al.

The results presented here are based on the average of 20 randomly gener-
ated network deployments that are simulated 31 times each. We presented the
average based on the median values because our data is not symmetrically dis-
tributed. The network consists of 100 sensor nodes deployed within randomly
perturbed grids, where a sensor node is placed in a unit grid square of 8m x
8m and the coordinates are perturbed. To get sparse networks (average degree
2-3), we generate more grid points than the number of nodes. We use 11 x
11 grid squares to randomly deploy 100 sensor nodes. 25 candidate sinks are
also distributed in a grid area, where a candidate occupies a unit grid square
of 18m x 18m. The coordinates for the sensors and candidate sinks are given
n [21]. Both sensor nodes and sinks use 10-metre transmission range, which
is realistic for 0 dBm transmission power in indoor environments [27].

We compare Greedy-MSP and GRASP-MSP to Minimise the Number of
Sinks for Fault-Tolerance (MSFT), Cluster-Based Sampling for Multiple Sink
Placement (CBS-MSP) and the linear programming solution. Since there are
no existing algorithms in the literature that share the same objectives as ours,
we take the closest approaches and modify them to be comparable. MSFT
and CBS-MSP are algorithms based on the well-known k-means clustering
algorithm. MSFT is the modification of Minimise the Number of Sinks for a
Predefined Minimum Operation Period (MSPOP) [18]. MSPOP is similar to
Greedy-MSP in the sense that both algorithms greedily place sinks until an
objective is met. However, in MSPOP, sinks can be deployed anywhere and the
objective is a required network lifetime. As the modification of MSPOP, MSE'T
has candidate locations and keeps adding sinks until the network is double-
covered. CBS-MSP is the modification of Cluster-Based Sampling (CBS) pro-
posed in [7]. In CBS, the number of sinks is given and the objective is to
minimise the total road distance from all nodes to the sinks where each node
is required to be double-covered. Unlike CBS, CBS-MSP tries to reduce the
number of sinks and thus the deployment cost. We implement CBS-MSP using
path length to represent distance between two nodes and also we have path
length restrictions. In each iteration, both CBS and CBS-MSP try to find the
best sink locations to ensure the network is double-covered. The k-means clus-
tering algorithm is used in these algorithms to divide the network into clusters
and to find the position of each sink, which is in the centre of a cluster.

MSFT, CBS-MSP and GRASP-MSP are all randomised local search algo-
rithms. As a stopping criterion, we allow a maximum number of iterations,
Mazlter, and compare versions with different values. We consider values of
1, 10 and 100 for MSFT and CBS-MSP, and restrict to values of 1 and 10
for GRASP-MSP, since experience on similar sized problems has shown that
higher iterations rarely produce better solutions. In our Greedy-MSP and
GRASP-MSP, if two or more moves offer the same solution, we select one
randomly. We also consider Greedy-MSP-All and GRASP-MSP-All, where if
there exists more than one best move, we evaluate them all.

Planning the Deployment of Multiple Sinks and Relays in WSNs 11

For comparison, we implement a binary linear programming model, with
the objective to minimise the total sink cost, i.e.

min Z CjT; (4)
=
subject to the following constraints

jes
zj€{0,1}; jeS (6)

¢; is the cost of a candidate sink x;. Constraint (5) guarantees each sensor
node has at least two length-bounded paths to two sinks. l;; has value 1 if
the shortest path length from sensor node 7 to sink j is less than [, and
otherwise 0. In the second constraint, a candidate sink is either selected to be
deployed or not. The binary linear programming is implemented in Matlab,
while the other algorithms are written in C++.

We first assume all candidate sinks have the same cost and consider two
cases where the maximum acceptable path length from each sensor node to a
sink is either 6 or 10. The average number of sinks deployed by each algorithm
is shown in Figure 2 and the average runtime is in Table 1. Firstly, the results
show that all variants of simulated GRASP-MSP deploy the same average
number of sinks. However, more iterations and computation of all best moves
incur longer runtime. Secondly, the results show that GRASP-MSP even with
only Mazlter = 1 already has the same average number of sinks as the linear
programming solution (the Wilcoxon signed-rank test, with p-value < 0.0001),
but with shorter runtime (p-value < 0.0001). It also outperforms MSFT, CBS-
MSP and Greedy-MSP. For example, it requires fewer sinks than MSFT with
Mazxlter = 100 and has faster runtime than MSFT with Maxlter = 1, both
with p-values less than 0.0001. Greedy-MSP has the shortest runtime, but it
places more sinks compared to GRASP-MSP. We also observe that the average
number of deployed sinks decreases when the maximum path length increases
because each sink in the network can cover more sensor nodes.

We also consider a more realistic scenario where the deployment costs for
all candidate sinks are different, for example due to cabling and installation
costs. We compare the performance of the algorithms using the same sink cost
(cs), i-e. 3 units and different sink costs, which are selected randomly in the in-
terval [3, 6]. The results for the average total sink cost and the average runtime
with l;,.x =6 are presented in Figure 3 and Table 2, respectively. These results
show similar trends to the previous ones when we vary the maximum path
lengths. That is, GRASP-MSP achieves the same cost as the linear program-
ming solution, while Greedy-MSP has the shortest runtime in all scenarios.

We evaluate the performance of GRASP-MSP against the linear program-
ming solution when the density of the network increases. We double the num-
ber of sensor nodes from 100 to 200 while keeping the area fixed. As a result,

12 Lanny Sitanayah et al.

20

T
I VSFT-Maxiter=1
I VSFT-Maxiter=10 |
I VSFT-Maxlter=100
[CBS-MSP-Maxiter=1
I CBS-MSP-Maxlter=10
[CBS-MSP-Maxlter=100
[Greedy-MSP B
[Greedy-MSP-All

[GRASP-MSP-Maxlter=1
[GRASP-MSP-All-Maxlter=1
[GRASP-MSP-Maxlter=10
[GRASP-MSP-All-Maxlter=10 |
[Linear Programming Solution

Average number of sinks needed

Maximum path length

Fig. 2 Average number of sinks needed for multiple sink placement algorithms versus max-
imum path length

Table 1 Multiple sink placement algorithms’ average runtime with different maximum path
length

Average runtime (sec)

Algorithms Lo = 6 Lnas = 10
MSFT-MaxIter=1 0.4179 0.0337
MSFT-MaxIter=10 4.1518 0.3067
MSFT-MaxIter=100 41.2484 3.1048
CBS-MSP-MaxIter=1 1.0188 0.0220
CBS-MSP-MaxIter=10 9.7818 0.2146
CBS-MSP-MaxIter=100 97.4409 2.0861
Greedy-MSP 0.0022 0.0021
Greedy-MSP-All 7.9480 0.0059
GRASP-MSP-MaxIter=1 0.0088 0.0064
GRASP-MSP-All-MaxIter=1 0.0151 0.0120
GRASP-MSP-MaxIter=10 0.0766 0.0455
GRASP-MSP-All-MaxIter=10 0.1218 0.0871
Linear Programming Solution 0.0727 0.0867

the average degree of a sensor node increases from 3 to 7. We present the av-
erage number of deployed sinks out of 25 candidate sinks in Figure 4 and the
average runtime in Table 3. Compared to the linear programming, GRASP-
MSP with Maxlter = 1 has the shortest runtime and the same average number
of sinks with p-values less than 0.0001.

At this stage, finding the linear programming solution is sufficient for the
multiple sink placement problem. Nevertheless, the GRASP-MSP performance
gives us confidence to use the same local search technique for the more com-

Planning the Deployment of Multiple Sinks and Relays in WSNs

13

140

T
I ViSFT-Maxiter=1

I V'SFT-Maxiter=10

1201 I ViSFT-Maxiter=100

I cBS-MSP-Maxiter=1
I cBS-MSP-Maxlter=10
[cBS-MSP-Maxiter=100
100 I Greedy-MsP

[Greedy-MsP-All

[GRASP-MSP-Maxlter=1
80+] GRASP-MSP-All-Maxiter=1
] GRASP-MSP-Maxlter=10
1 GRASP-MSP-All-Maxlter=10
60l |:| Linear Programming Solution

Average total sink cost

3to6
Sink cost

Fig. 3 Average total sink cost for multiple sink placement algorithms versus sink cost

Table 2 Multiple sink placement algorithms’ average runtime with different sink cost

Average runtime (sec)

Algorithms cs=3 cs=3 to 6
MSFT-MaxIter=1 0.4179 0.4135
MSFT-MaxIter=10 4.1518 4.1578
MSFT-MaxIter=100 41.2484 41.5128
CBS-MSP-MaxIter=1 1.0188 0.9970
CBS-MSP-MaxIter=10 9.7818 9.9196
CBS-MSP-MaxIter=100 97.4409 99.0951
Greedy-MSP 0.0022 0.0017
Greedy-MSP-All 7.9480 8.2004
GRASP-MSP-MaxIter=1 0.0088 0.0152
GRASP-MSP-All-MaxIter=1 0.0151 0.0131
GRASP-MSP-MaxIter=10 0.0766 0.1365
GRASP-MSP-All-MaxIter=10 0.1218 0.1198
Linear Programming Solution 0.0727 0.1086

Table 3 Multiple sink placement algorithms’ average runtime with different average degree

Average runtime (sec)

Algorithms average degree =3 average degree =7
GRASP-MSP-MaxIter=1 0.0088 0.0167
GRASP-MSP-All-MaxIter=1 0.0151 0.0306
GRASP-MSP-MaxIter=10 0.0766 0.1290
GRASP-MSP-All-MaxIter=10 0.1218 0.2535
Linear Programming Solution 0.0727 0.0735

14 Lanny Sitanayah et al.

10 ‘
I GRASP-MSP-Maxlter=1

9l [GRASP-MSP-All-Maxlter=1
[GRASP-MSP-Maxlter=10
[GRASP-MSP-All-MaxIter=10 |
[Linear Programming Solution

Average number of sinks needed
o
T

Average degree

Fig. 4 Average number of sinks needed for GRASP-MSP and the linear programming
solution versus average degree

plex multiple sink and relay placement problem, where a linear programming
solution is not available.

6 Multiple Sink and Relay Placement (MSRP)

sensor node
candidate sink
candidate relay
selected sink
selected relay

>E>L]®

Fig. 5 Illustration of the MSRP problem. (a) A WSN with four candidate sinks and four
candidate relays, and (b) the double-covered and noncritical WSN where Imax =3.

For the sink and relay placement, nodes are partitioned into a set of sensors
T, relays R and sinks S. In the graph representation, V' =TURUS. In the multi-

Planning the Deployment of Multiple Sinks and Relays in WSNs 15

ple sink and relay placement problem, given a graph G =(TUARUAs, E), where
Ag and Ag are sets of candidate locations for relays and sinks, respectively, we
find minimum cost subsets RC Ar and S C Ag such that H=(TURUS, E|1urs)
is double-covered and non-critical. The relay and sink candidate locations are
associated with a non-negative cost function ¢ : AgUAg — R. We assume that a
relay is cheaper than a sink because sinks usually are assumed to be powered,
have more memory, processing and WiFi/ethernet backhaul.

The multiple sink and relay placement problem is illustrated in Figure 5.
Figure 5(a) shows a WSN with four candidate sinks and four candidate relays.
The numbers in the figure represent the costs. In this example, if we choose the
two 5-unit sinks, we only need to deploy the relay at the bottom-left corner to
make the network double-covered and non-critical. The total cost is 11 units.
However, if we choose the two 3-unit sinks as shown in Figure 5(b), we need
three additional relays. The total cost of this deployment is the lowest, i.e. 9
units.

In this section, we present Greedy-MSRP and GRASP-MSRP to solve the
multiple sink and relay placement problem. Both algorithms use the concept
of Length-constrained Connectivity and Rerouting Centrality (I-CRC) [22] to
identify critical sensors. A sensor is critical if its centrality index is above
a given threshold. We can raise the threshold to trade-off the deployment
cost against the robustness of the network. However, in this chapter, we only
assume zero threshold for full reliability. After the identification of critical
sensors, some candidate relays are selected to be deployed. We identify relays
that need to be deployed by finding the shortest path from each descendant
of each critical sensor to a sink bypassing each critical sensor.

We first present Greedy-MSRP. Greedy-MSRP uses Greedy-MSP to de-
ploy a minimum number of sinks and GRASP-MRP to deploy a minimum
number of relays. Before presenting Greedy-MSRP, we will look at GRASP-
MRP, which is a modification of GRASP-ABP from [22] to tackle both double-

covered and non-critical requirements.

6.1 Greedy Randomised Adaptive Search Procedure for Multiple Relay
Placement (GRASP-MRP)

6.1.1 Construction Phase

In the construction phase, we find R C Ag, an initial set of relays from the
candidate relays, to minimise the number of uncovered and critical sensors.
Initially R is an empty set. Given sets of sensors 7" and sinks S, we firstly
find and store the length of the shortest path of each sensor to the sinks
in Distancey table, where H = (TURUS, F |1urss). If a sensor v € T is
uncovered, we try to place some relays to construct a path to a sink w € S
if Distancep (v, w) > lmax but the pre-computed Distanceg (v, w) < lmax. We
choose the relays that appear on the shortest path from v to w by tracing the
path in Parentg (v, w). If a sensor needs two paths to make it double-covered,

16 Lanny Sitanayah et al.

this step is repeated twice. After some relays are selected from the candidate
relays, we have the set of relays R that minimises the number of uncovered
sensors. We then rebuild H=(TURUS, E|nurs) and check if critical sensors
exist using centrality calculation. If a sensor v €T is critical, we deploy relays
that appear on the shortest path from each descendant of v to a sink we S
bypassing v, as long as the shortest path length is <l;,,x. The randomisation
of the initial solution is obtained by randomly selecting parents in the shortest
paths if there are hop count ties.

6.1.2 Node-based Local Search

Let R be the set of relays. The local search’s move tries to add a new relay
r€ Agr\R into R that can eliminate as many existing relays from R as possible.
This move must always ensure that the network is double-covered and non-
critical.

Algorithm 2: GRASP-MRP

Input: G, T, S, AR, lmax, maz_iterations

Output: R*
1 best_value «+ oo;
2 for i+ 1 to max_iterations do /* Construction phase */
3 Find initial R;
4 repeat /* Local search phase */
5 solution_updated — false;
6 best_set < R; best-number — |R);
7 foreach r € AR \ R do
8 Z —0;
9 foreach t€ R do
10 Z—ZU{t}; H—(TURU{r}\ZUS, Elruryrpnas);
11 Calculate Distancey;
12 Calculate num_uncovered and num_critical in H using Distance i
and lmax;
13 if num_uncovered >0 or num_critical >0 then
14 Z — Z\{t};
15 end
16 end
17 if |R|—|Z|+1< best_number then
18 best_set — RU{r}\ Z; best_number — |R|—|Z|+1;
19 end
20 end
21 if best_number <|R| then
22 R« best_set;
23 solution_updated < true;
24 end
25 until solution_updated = false;
26 if |R|< best_value then /* Best solution update */
27 R* «— R; best-value < |R];
28 end
29 end

30 return R*;

Planning the Deployment of Multiple Sinks and Relays in WSNs 17

6.1.3 Algorithm Description

Algorithm 2 shows the pseudocode for GRASP-MRP. It takes as input the
original graph G=(TUARUAg, E), the set T of sensors, the set S of sinks, the
set Ar of candidate relays, the maximum acceptable path length l,.., and
the number of iterations (maz_iterations). In each iteration, the construction
phase to find the initial set of relays R to minimise the number of uncovered
and critical sensors is executed in line 3. The local search starts with the
initialisation of the best set and the best number of relays in line 6. The loop
from line 7 to 20 searches for the best move to find a new relay r € Ag\ R
that can eliminate as many existing relays from R as possible. The loop from
line 9 to 16 finds the set Z C R of existing relays that are safe to be removed
after the insertion of r. The relays in Z are safe to be removed if all sensors
in H=(TURU{r}\ZUS, El1upyrpass) are double-covered and non-critical.
We check in line 17 if the new solution has fewer relays than the current best
solution. If the number of relays can be reduced, the best set and the best
number of relays are updated in line 18. When all local search moves have
been evaluated, we check if an improving solution has been found in line 21. If
the moves produce a better solution, the set of relays R is updated in line 22.
Then, the local search continues. If, at the end of the local search, we find a
better solution compared to the best solution found so far, we update in line
27 the set of relays and the least number of relays used. Finally, the best relay
set R* is returned in line 30.

6.2 Greedy Algorithm for Multiple Sink and Relay Placement
(Greedy-MSRP)

After describing GRASP-MRP, we are now ready to present Greedy-MSRP for
the multiple sink and relay placement problem. Greedy-MSRP uses Greedy-
MSP to select a minimum number of sinks to make a network double-covered
and GRASP-MRP to deploy a minimum number of relays to make the net-
work non-critical. Greedy-MSRP takes as input the original graph G = (T'U
ArUAg, E), the set T of sensors, the set Agr of candidate relays, the set
Ag of candidate sinks, the cost function ¢, the pre-computed Distances ta-
ble, the maximum acceptable path length [y, and the number of iterations
(maz_iterations) for GRASP-MRP. Initially, Greedy-MSRP calls Greedy-MSP
to find the set of sinks. Since the cost of a sink is assumed to be more expensive
than the cost of a relay, Greedy-MSRP tries to reduce the total deployment
cost by trading some sinks with relays. The deployed sinks are removed one
by one, starting from the last one inserted into the set, and more relays are
added in the network. However, this swap must ensure that the network is
always double-covered and non-critical. If all sensors are double-covered and
non-critical, GRASP-MRP is called to find the set of relays.

18 Lanny Sitanayah et al.

6.3 Greedy Randomised Adaptive Search Procedure for Multiple Sink and
Relay Placement (GRASP-MSRP)

We now present GRASP-MSRP to solve the multiple sink and relay placement
problem. Unlike Greedy-MSRP that deploys relays after finding the minimal
set of sinks, GRASP-MSRP finds the least deployment cost by placing sinks
and relays at the same time. We give the detailed algorithm below.

6.3.1 Construction Phase

In the construction phase, we find R C Ar and S C Ag as our initial sets
of relays and sinks, respectively. Initially R and S are empty sets. We then
alternate the sink and relay addition during this process. We deploy some sinks
to minimise the number of uncovered sensors and then some relays to minimise
the number of both uncovered and critical sensors. Note that we do not add
more sinks if at some point the network is already double-covered. After the
addition of either sinks or relays, H=(TURUS, E|1rs) is rebuilt. The process
of sink and relay addition is repeated until the network is double-covered and
non-critical.

We need at least two sinks for a double-covered WSN, so we firstly choose
two sinks randomly from Ag. We then deploy a subset of relays from Ag
to minimise the number of uncovered and critical sensors. If a sensor v € T
is uncovered, we place some relays to construct a path to a sink w € S if
Distance g (v, w) > lmax but Distanceg (v, w) <lmax. We choose the relays that
appear on the shortest path from v to w by tracing the path in Parentg (v, w).
If the sensor needs two paths to make it double-covered, we repeat this step
twice. If a sensor v €T is critical, we deploy relays that appear on the shortest
path from each descendant of v to a sink w € S bypassing v, as long as the
shortest path length is < l.x. After the relay deployment, we place sinks
again. In order to add the randomisation to the initial solution, we randomly
select parents in the shortest paths if there are hop count ties.

6.3.2 Node-based Local Search

Let R be the set of relays and S be the set of sinks. We look for a lower
cost solution by adding either a new relay r € Ag\ R into R or a new sink
s € Ag\ S into S that can eliminate some existing relays from R and sinks
from S to minimise the total cost as possible. Given that the cost of a sink
is higher than the cost of a relay, we also try to minimise the total cost by
adding some relays into R when we eliminate an existing sink from S. The
local search moves are performed to reduce the total cost, but must ensure
that the network is always double-covered and non-critical in each iteration.

Planning the Deployment of Multiple Sinks and Relays in WSNs 19
Algorithm 3: GRASP-MSRP
Input: G, T, AR, As, ¢, lmax, maz_iterations
Output: R*, S*
1 best_value «— oo;
2 for i1 to maz_iterations do /* Construction phase */
3 Find initial R and S; W« RUS;
4 repeat /* Local search phase */
5 solution_updated < false;
6 best_seto «— W; best_cost — > vew Cuv; best_num_set —1;
7 foreach r€ AgUAg\W do
8 Y —{r}; Z—0; X —0;
9 foreach t€e WUX do
10 Z— ZU{t}; X —0;
11 H—(TUWUY\Z, Elruwuinz);
12 Calculate Distancep;
13 Find uncovered_set in H using Distancey and lmax;
14 if |uncovered_set| >0 then
15 X « XU {Find relays to minimise |uncovered_set|};
16 end
17 H—(TUWUXUY\Z, El ruwuxun\z);
18 Calculate Distancep;
19 Find critical_set in H using Distancey and lmax;
20 if |critical_set| >0 then
21 X «+ XU {Find relays to minimise |critical_set|};
22 end
23 H—(TUWUXUY\Z, Elruwuxuv\z)3
24 Calculate Distancep;
25 Calculate num_uncovered and num-—critical in H using Distancey and
Imax;
26 if num_uncovered =0 and nume_critical =0 then
27 Y —YUX; Z—Z\X;
28 end
29 if num_uncovered >0 or num_critical >0 then
30 Z — Z\{t};
31 end
32 end
33 if ZvEWUY\Z cy < best_cost then
34 best_num_set < 0;
35 end
36 if 3wz Co < best_cost and WUY \ Z ¢ best_set then
37 best_setpest_num_set — WUY \ Z; best_cost — ewun\z Cvj best_nume_set
«— best_num-_set +1;
38 end
39 end
40 if best_cost <} cy cv then
41 W — select a set randomly from best_set;
42 solution_updated «— true;
43 end
44 until solution_-updated = false;
45 if 37 cw cv < best_value then /* Best solution update */
46 R* — @; S*— @;
a7 foreach v W do
48 if v€ Ar then
49 R* — R*U{v};
50 else
51 S*—S*U{v};
52 end
53 end
54 best_value <3 i Co;
55 end
56 end

57 return R*, S™;

20 Lanny Sitanayah et al.

6.5.3 Algorithm Description

The GRASP-MSRP pseudocode is given in Algorithm 3. Generally, its concept
is similar to GRASP-MSP in Algorithm 1 with some key differences. The key
differences are the inclusion of candidate relays as one of its inputs, the identi-
fication of critical sensors, the deployment of relays to minimise the number of
uncovered and critical sensors, and the repetitive computation of the shortest
path from all sensors to all sinks due to the addition and elimination of relays.
The detailed description of the pseudocode is given below.

GRASP-MSRP takes as input the original graph G=(TUArUAg, E), the
set T' of sensors, the set Ar of candidate relays, the set Ag of candidate sinks,
the cost function ¢, the maximum acceptable path length [,.x, and the number
of iterations (max_iterations). In each iteration, the construction phase to find
initial sets of relays R and sinks S is executed in line 3. The local search starts
with the initialisation of the best set and the best cost in line 6. The loop from
line 7 to 39 searches for the best move, i.e. finding either a new relay or a new
sink r€ AgUAg\W that can eliminate as many existing relays and sinks from
W as possible, where W = RUS. The loop from line 9 to 32 tries to find the set
Z CWUX of existing relays and sinks that are safe to be removed after the
insertion of Y. Y is the set of new relays and sinks that are added during the
iteration. X is the set of new relays that are added to the network to reduce
the total cost when a sink is removed from the network.

The algorithm checks for uncovered sensors in line 13. If some exist, it
tries to deploy some relays in line 15. The identification of critical sensors is
performed in line 19. If some exist, relays are added in line 21. Note that we
try to minimise the total cost by adding some relays when we eliminate a sink.
These relays are saved in X as shown in line 15 and 21, which later will be
included in Y, the set of new relays and sinks to be inserted, if X helps the
network become double-covered and non-critical. The network is checked if
it is double-covered and non-critical in line 25. Note that there is repetitive
computation of the shortest path from all sensors to all sinks in line 12, 18 and
24 due to the addition and elimination of relays. The relays and sinks in Z are
safe to be removed if without Z all sensors are double-covered and non-critical.
In line 33, we check if the new solution improves the total cost of the current
best solution. If the total cost is reduced, we reset the best set in line 34. If
the total cost is the same, we keep this new solution in the set of the best set
as shown from line 36 to 38. When all moves have been evaluated, we check in
line 40 if an improving solution has been found. If the moves produce a better
solution, the set of relays and sinks W is updated in line 41 by selecting one
best set randomly from the set of the best set. After that, the local search
continues.

If, at the end of the local search, we find a better solution compared to the
best solution found so far, we update from line 46 to 54 the set of relays, the
set of sinks, and the lowest total cost found. The best sets R* of relays and
S* of sinks are returned in line 57.

Planning the Deployment of Multiple Sinks and Relays in WSNs 21

7 Evaluation of Greedy-MSRP and GRASP-MSRP

We evaluate the performance of Greedy-MSRP and GRASP-MSRP using the
following metrics:

1. Average total sink and relay cost. We want to compare the total
deployment cost that resulted from each algorithm, which includes the
cost of sinks and the cost of relays.

2. Average number of devices, which is divided into number of sinks and
number of relays. We present this metric as we cannot infer how many sinks
and relays are deployed from the total cost metric. We expect to see that
when the sink cost increases, the number of sinks decreases. This happens
because some sinks are traded for relays to reduce the deployment cost.

3. Average runtime. We also evaluate the efficiency of the algorithms by
comparing the algorithms’ runtime.

We follow the same experiment setting as for the evaluation of the multiple
sink placement problem in Section 5, where each network consists of 100 sensor
nodes in grid squares of 8m x 8m and 25 candidate sinks in grid squares of
18m x 18m. In addition, we also have 81 candidate relays distributed evenly
in grid squares of 10m x 10m. The coordinates for the sensors, candidate sinks
and candidate relays are given in [21].

We compare Greedy-MSRP and GRASP-MSRP against Minimise the Num-
ber of Sinks and Relays for Fault-Tolerance (MSRFT) and Cluster-Based Sam-
pling for Multiple Sink and Relay Placement (CBS-MSRP). MSRFT and CBS-
MSRP extend MSFT and CBS-MSP, respectively, to find the best locations
to deploy sinks and use GRASP-MRP to deploy relays. These two algorithms
start by finding the best locations for two sinks before utilising GRASP-MRP
to deploy relays. The number of sinks is gradually increased and GRASP-
MRP is used to deploy relays until the network becomes double-covered and
non-critical. In the experiments, we only use 100 and 200 as the maximum
iteration (Mazlter) for MSRFT and CBS-MSRP. The maximum iteration for
GRASP-MRP is 10.

We evaluate the deployment cost of the algorithms by varying the sink
costs (cg), i.e. 3, 6, randomly in the interval [3, 6], and 10 units, while the
relay cost is fixed at 1 unit. The average total sink and relay cost suggested by
each algorithm with [, =6 is presented in Figure 6 and the average runtime
is in Table 4. We also show the average numbers of sinks and relays for each
algorithm from Figure 7 to Figure 14.

The results in Figure 6 show that GRASP-MSRP has the lowest average
total deployment cost compared to other algorithms. For example, comparing
GRASP-MSRP with Maxiter = 1 to CBS-MSRP with Mazxlter = 200 for sink
cost = 3 gives a p-value less than 0.0001. This is because GRASP-MSRP has
the fewest sinks if we compare the average number of deployed sinks from
Figure 7 to Figure 14. The evaluation also shows that we are able to trade-off
GRASP-MSRP’s runtime for a reduced cost when we increase the number of
iterations from 1 to 10. When we further increase the number of iterations

120 T T

I VSRFT-Maxlter=100
I MSRFT-Maxlter=200
[CBS-MSRP-MaxIter=100
100 [CBS-MSRP-Maxlter=200
[Greedy-MSRP

[GRASP-MSRP-Maxlter=1
[1 GRASP-MSRP-Maxlter=10
801 [__1GRASP-MSRP-Maxiter=20

I

Sink cost

22 Lanny Sitanayah et al.
601

N lm'

3t06
Fig. 6 Average total sink and relay cost for multiple sink and relay placement algorithms
versus sink cost

Average total sink and relay cost

Table 4 Multiple sink and relay placement algorithms’ average runtime with different sink
cost,

Average runtime (sec)

Algorithms cs=3 cs—6 cs=3t06 cg=10
MSRFT-MaxIter=100 617472 60.4956 617661 60.0005
MSRFT-MaxIter—200 74.6617 68.9032 69.6122 68.7917
CBS-MSRP-MaxIter—100 60.3320 62.7394 62.2207 61.6556
CBS-MSRP-MaxIter=200 68.2127 72.5465 73.7754 68.6779
Greedy-MSRP 1373733 130.5268 139.4527 146.7378
GRASP-MSRP-MaxIter=1 20.2190 21.3075 26.6085 24.3780

GRASP-MSRP-MaxIter=10 194.8030 218.3831 254.7753 230.9070
GRASP-MSRP-MaxIter=20 405.8351 449.6994 534.1611 464.4079

to 20, the results are similar to the results of 10 iterations, but with higher
runtime.

Greedy-MSRP is outperformed by the two k-means clustering-based algo-
rithms, MSRFT and CBS-MSRP. Firstly in terms of the average total deploy-
ment cost, Greedy-MSRP deploys more sinks than MSRFT and CBS-MSRP as
shown from Figure 10 to Figure 14. Secondly for the runtime, Greedy-MSRP
is slower because it tries to find the lowest cost solution by solving the multiple
sink and relay placement problem from the number of sinks = n to 2, where n
is the number of sinks found by Greedy-MSP. On the other hand, MSRFT and
CBS-MSRP start from the number of sinks = 2 and stop when the network is
double-covered and non-critical.

Planning the Deployment of Multiple Sinks and Relays in WSNs 23

16 T
[sink
| T IRelay

14

12F 1

Average number of devices

6 3t06 10
Sink cost

Fig. 7 Average numbers of sinks and relays for GRASP-MSRP with Maxzlter =1 versus
sink cost

16

[sink
1l [IRelay

12 —

10 1

1t

3t06 10

=2l

Average number of devices
o]

IS

N

Sink cost

Fig. 8 Average numbers of sinks and relays for GRASP-MSRP with Mazlter =10 versus
sink cost

24 Lanny Sitanayah et al.

16 T
[sink
| T IRelay

14
12 —

101 1

1

3t06 10

=

Average number of devices
©

EN

N

Sink cost

Fig. 9 Average numbers of sinks and relays for GRASP-MSRP with Mazlter =20 versus
sink cost

16 T T T T
[sink
Rela
1ol TRelay |
12 N

10

Average number of devices
o]
:

6 3to6 10
Sink cost

Fig. 10 Average numbers of sinks and relays for Greedy-MSRP versus sink cost

Planning the Deployment of Multiple Sinks and Relays in WSNs 25

Average number of devices

16

141

12

[Sink
[JRelay

6 3t06 10
Sink cost

Fig. 11 Average numbers of sinks and relays for MSRF'T with Mazlter =100 versus sink

cost

Fig. 12 Average numbers of sinks

cost

Average number of devices

16

14

12

[sink
[IRelay

6 3to6 10
Sink cost

and relays for MSRFT with Maxzlter =200 versus sink

26 Lanny Sitanayah et al.

16 T
[Sink
[JRelay

14} 1

12F 1

Average number of devices

6 3t06 10
Sink cost

Fig. 13 Average numbers of sinks and relays for CBS-MSRP with Mazlter = 100 versus
sink cost

16 T T T T
[sink
Rela
1ol TRelay |
12 N

Average number of devices

6 3to6 10
Sink cost

Fig. 14 Average numbers of sinks and relays for CBS-MSRP with Mazlter =200 versus
sink cost

Planning the Deployment of Multiple Sinks and Relays in WSNs 27

GRASP-MSRP can swap sinks with relays to reduce the average total
deployment cost. Therefore, when the sink cost increases, the number of sinks
decreases because more sinks are exchanged with relays as shown in Figure 7
to Figure 9.

Since GRASP-MSRP gives the best solution for the multiple sink and
relay placement problem, we further investigate its performance under various
experiment settings by using Mazxlter = 10. Firstly, we increase lax from 6
to 10, while keeping the sink cost fixed at 3 units. The results are depicted in
Figure 15. When [, is increased from 6 to 10, the average number of required
sinks drops significantly from 7 to 3, while the average number of relays does
not increase much. The average runtime of GRASP-MSRP also increases from
194.8030 seconds to 349.7281 seconds.

[sink
[Relay

Average number of devices
N
T
.

6 10
Maximum path length (hop)

Fig. 15 Average numbers of sinks and relays for GRASP-MSRP versus maximum path
length

We then try to increase the number of candidate relays from 81, which are
evenly distributed in grid squares of 10m x 10m, to 196 candidate relays in
grid squares of 6m x 6m. We use a fixed sink cost of 3 units and I, = 6. As
shown in Figure 16, when we have more candidate relays, the average numbers
of deployed sinks slightly decrease because the local search is more likely to
find common relays that appear on the shortest paths. The average runtime
of GRASP-MSRP increases from 194.8030 seconds for 81 candidate relays to
1030.0060 seconds for 196 candidates.

We also increase the number of candidate sinks from 25 in grid squares of
18m x 18m to 81 candidates in grid squares of 10m x 10m. The results are
presented in Figure 17. When the number of candidate sinks increases, the

28 Lanny Sitanayah et al.

[sink
[IRelay

Average number of devices
S
T
.

81 196
Number of candidate relays

Fig. 16 Average numbers of sinks and relays for GRASP-MSRP versus number of candidate
relays

local search can find better sink positions to cover a network. Therefore, the
network requires fewer sinks. Since the sinks are better positioned, it also needs
fewer relays. The average runtime of GRASP-MSRP increases from 194.8030
seconds for 25 candidate sinks to 843.7186 seconds for 81 candidates.

Finally, we evaluate the performance of GRASP-MSRP when the number
of sensor nodes increases. In the first case, we increase the number of sensor
nodes from 100 to 200 while keeping the area fixed. This affects the density of
the network, where the average degree of a sensor node increases from 3 to 7.
For this evaluation, we use 25 candidate sinks and 81 candidate relays. When
the network becomes denser, the average numbers of required sinks and relays
decrease as depicted in Figure 18. This happens because when the network
density increases, path lengths from a sensor node to sinks become shorter
and a sensor node has more neighbours that help finding alternate routes to
sinks when it fails. However, GRASP-MSRP takes longer time to compute
the solution, i.e. from 194.8030 seconds to 321.8777 seconds when the average
degree increases.

In the second case, we increase the number of sensor nodes from 100 to 300
while keeping the average degree fixed, so we enlarge the area. As a result, we
need more candidate sinks and relays. For this experiment, we use 81 candidate
sinks and 225 candidate relays for 300 sensor nodes. When the network area
becomes bigger, more sinks and relays are required to be deployed as shown
in Figure 19. The average runtime of GRASP-MSRP increases from 194.8030
seconds to 20,534.8851 seconds.

Planning the Deployment of Multiple Sinks and Relays in WSNs 29

8 : :
[sink
[—IRelay

7+]

6]

Average number of devices
S
:
.

25 81
Number of candidate sinks

Fig. 17 Average numbers of sinks and relays for GRASP-MSRP versus number of candidate
sinks

8 : :
[sink
[—IRelay

7+]

61]

Average number of devices
S
:
.

Average degree

Fig. 18 Average numbers of sinks and relays for GRASP-MSRP versus average degree

30 Lanny Sitanayah et al.

18

[sink
[Relay

14f 1

10 B

Average number of devices

100 300
Number of nodes

Fig. 19 Average numbers of sinks and relays for GRASP-MSRP versus number of nodes

Table 5 Multiple sink and relay placement algorithms’ average runtime for 300 sensors, 81
candidate sinks and 225 candidate relays

Algorithms Average runtime (sec)
MSRFT-MaxIter=100 4,601.2030
CBS-MSRP-MaxIter=100 4,482.8590
Greedy-MSRP 14,055.4217
GRASP-MSRP-MaxIter=1 2,020.4032
GRASP-MSRP-MaxIter=10 22,416.5930

For the case of 300 sensors, 81 candidate sinks and 225 candidate relays,
we compare the deployment cost of MSRFT, CBS-MSRP, Greedy-MSRP and
GRASP-MSRP in Figure 20 using one topology that is simulated 31 times.
In this experiment, we only use 100 as the maximum iteration (Mazlter) for
MSRFT and CBS-MSRP, 10 for GRASP-MRP, 1 and 10 for GRASP-MSRP.
The sink and relay costs are 3 units and 1 unit, respectively, and [, = 6.
Comparing the average total costs of GRASP-MSRP with Maxiter = 1 to
MSRFT with Maxlter = 100 and to CBS-MSRP with Mazlter = 100 give
p-values less than 0.0001. The average runtime is presented in Table 5.

We compare the runtime measurements for GRASP-MSRP with variety of
network sizes. The topologies used in this experiment is summarised in Table 6
and the datasets are provided in [21]. In this experiment, we use Mazlter =
1, sink cost = 3 units, relay cost = 1 unit, and l,.x = 6. Each topology is
simulated 31 times and the average runtime is depicted in Figure 21 with log
scale in the y-axis.

Planning the Deployment of Multiple Sinks and Relays in WSNs 31

140

T
[] MSRFT—MaxIter:l‘OO
[I CBS-MSRP-Maxlter=100
| 1 Greedy-MSRP B
1 GRASP-MSRP-Maxiter=1
|] GRASP-MSRP-Maxiter=10

Average total sink and relay cost
Hi

Sink cost =3

Fig. 20 Average total sink and relay cost for multiple sink and relay placement algorithms
for 300 sensors, 81 candidate sinks and 225 candidate relays

Table 6 Topologies used to measure GRASP-MSRP’s runtime with variety of network sizes

Num. sensors Num. sinks Num. relays Area size
100 25 81 88m X 88m
200 36 144 128m x 128m
300 81 225 152m x 152m
400 100 289 168m x 168m
500 121 361 192m x 192m

8 Evaluation of Network Performance

The previous sections present and evaluate algorithms for solving the sink and
relay placement problem, and we demonstrate how they can reduce the cost
of providing solutions that meet the criteria which are based on protecting
against single failures. The original high-level objective, though, was to design
network topologies that were robust to failures. It is important to revisit that
objective, and consider how well our problem definition and heuristic solutions
satisfy it. To do this, we have implemented network protocols in a network
simulator, and we test topologies generated by our algorithms while nodes
fail.

We compare topologies generated by GRASP-MSRP and GRASP-ABP [22].
In GRASP-MSRP topologies, sinks and relays are deployed so all sensor nodes
are double-covered and noncritical. With GRASP-ABP, four sinks are placed
at the four corners of the networks and relays are deployed so all sensor nodes
are noncritical, but not double-covered. In the simulation, we use topologies of

32 Lanny Sitanayah et al.

1e+005

1e+004

1000

Average runtime (sec)
B
o
o

10

100 200 300 400 500
Number of nodes

Fig. 21 GRASP-MSRP’s average runtime with variety of network sizes

GRASP-MSRP with three and six sinks. To obtain the topologies with three
sinks, we set (Imax =10), fix the sink cost and get the resulting topologies gen-
erated by GRASP-MSRP. Similarly for the case of six sinks, we set (I;ax=6).

We take the resulting topologies and deploy, in simulation, sensor nodes,
relay nodes and sinks according to the deployment plans. Then, we evaluate
the network performance for each topology. We want to show that having
more sinks and placing them at the best locations improves robustness of the
networks. In the simulation, the GRASP-MSRP topologies with three sinks
achieve around 5% improvement in connectivity and delivery ratio compared
to the GRASP-ABP topologies with four sinks after several failures. This
confirms the importance of not only having multiple sinks in the networks,
but also placing them at the best positions.

In this section, we use the following metrics for the evaluation of network
performance:

1. Packet delivery ratio measures the number of packets successfully re-
ceived by the sink over the number of packets generated by source nodes.

2. Average per packet latency measures the average per packet transmis-
sion time through a multi-hop network.

3. Connectivity measures the percentage of live sensor nodes that are still
connected to the sink through multi-hop communication.

Planning the Deployment of Multiple Sinks and Relays in WSNs 33

Table 7 Simulation parameters in Ns-2

Simulation parameters Default value
Hardware Tmote sky
Transmit power 52.2 mW
Receive/idle listening power ~ 59.1 mW
Sleep power 3 W
Radio propagation model Two-ray ground
CSThresh_ 3.65262e-10
RXThresh_ 3.65262e-10
Pt_ 5.35395e-05
Traffic load 0.1 packets/node/sec
MAC protocol ER-MAC
TDMA slot size 50 ms
TDMA sub-slot size 5 ms

8.1 Details of Simulation

The topologies are evaluated in the open-source network simulator ns-2 ver-
sion 2.33 [26]. Ns-2 is a discrete-event, packet-level network simulator that is
widely used for WSN and other network simulations. We simulate multi-hop
data gathering using ER-MAC [24] [25] with its forward-to-parent routing
mechanism. We choose ER-MAC because of its flexibility to adapt to topol-
ogy changes, where nodes can modify their schedules and routing decisions
locally.

ER-MAC is a hybrid MAC protocol designed for emergency response WSNs.
It adopts a time-division multiple access (TDMA) approach to schedule collision-
free transmission toward the sink. With its normal mode, sensor nodes wake
up to transmit and receive messages according to their schedules, but other-
wise switch into power-saving sleep mode. When an emergency event occurs,
nodes involved in the emergency monitoring change their MAC protocol au-
tonomously to emergency mode to allow contention in TDMA slots to cope
with large volumes of traffic. Because our purpose in this simulation is to eval-
uate the designed topologies, not the communication protocol, we assume that
all nodes operate in the normal mode of ER-MAC, where nodes can only send
packets in their own transmit slots.

Our parameters used in the ns-2 simulation are based on Tmote sky hard-
ware [17] as shown in Table 7. Tmote Sky’s transmission ranges and power
were reported in [11]. We used the Lagrange Interpolating Polynomial [2] based
on the known six points to find transmission power for the transmission range
used in our simulation, i.e. 10 metres.

The simulation results presented are based on the average of five topologies
that are simulated 31 times each, enough to achieve a 95% confidence in the
standard error interval. Note that we do not show error bars in line graphs to
improve their readability. In each simulation, we simulate a data gathering,
where all sensor nodes are the source nodes that generate packets with a fixed
interval. They also forward other nodes’ packets toward the sink. Source nodes

34 Lanny Sitanayah et al.

generate one packet every 10 seconds. Therefore, the traffic load is 0.1 pack-
ets/node/sec. Relay nodes do not generate packets, but only forward them,
and are used from the start of the simulation. Our works assume point-based
failures, where the failed devices are scattered in the network. We do not as-
sume that relay nodes are more robust than sensor nodes, so they too may fail
during the simulation period. During the simulation, we increase the number
of dead nodes gradually by killing one node, either a sensor node or a relay
node, in each time step.

Since a common problem is node death due to energy depletion, which
is either caused by normal battery discharge, short circuits or leakage due
to broken packaging [4], we consider the probability of node death in our
simulation to be proportional to the work done. That is, instead of selecting
dead nodes randomly, we bias the node death towards the nodes that have done
most work. Firstly, we list all live nodes (sensors and relays) in increasing order
of energy consumption, count the total energy used, and calculate a weight for
each node by using the ratio of own-energy to the total-energy. We then use
these weights to generate an array of numbers between 0 and 1 representing
bins of different size. The weight of a bin that associates with node a is the
total weight of all nodes whose weight < a’s weight, including a. To select a
node to be killed, we generate a random number between 0 and 1, and select
the first bin whose weight is larger than the generated number. Doing it this
way means, for example, if node a has 3 times the energy consumption of node
b, the bin size for node «a is always 3 times the bin size for node b, and so is
always 3 times as likely to be killed. With this model, it is likely that nodes
closer to the sink are the first to die because they have much higher relay loads
and drain their batteries quickly.

8.2 Evaluation of Network Topologies with Multiple Sources and Multiple
Sinks

In each simulation, we simulate a data gathering for 3,000 seconds and kill one
node every 250 seconds, either a sensor node or a relay node, starting from
the 250" second. We gather statistical data every 250 seconds and plot the
results. Therefore, the statistics after one node dies are plotted at the 500"
second.

The delivery ratio while nodes are failing is depicted in Figure 22, where
the GRASP-MSRP topologies with six sinks achieve the highest ratio. The
second highest delivery ratio is not achieved by the topologies of GRASP-
ABP with four sinks, but by GRASP-MSRP with three sinks. The delivery
ratio gap between these two simulation results is around 5% after several
failures. From this simulation, we not only show that having more sinks gives
us better performance, but also that placing them at the best locations is more
important.

The latency of high priority packets is shown in Figure 23. As expected,
the topologies of GRASP-MSRP with six sinks have the lowest latency, i.e.

Planning the Deployment of Multiple Sinks and Relays in WSNs 35

i

o
©

o
©

Delivery ratio of high priority packets
o o o o =]
w S (9] (o2} ~
T T T T
L L L L

o
N
T
|

—O— GRASP-ABP (CT=0%, RT=0%) Topo. - 4 sinks
[—— GRASP-MSRP (Imax=10) Topo. - 3 sinks

—(— GRASP-MSRP (I,2,=6) Topo. - 6 sinks

o
i

.
0 500 1000 1500 2000 2500 3000
Simulation time (sec)

Fig. 22 Delivery ratio where a node dies every 250 seconds

around 0.6 second, followed by the topologies with three sinks, i.e. 2 seconds in
average. The latency of the GRASP-ABP topologies with four sinks is slightly
higher than 3 seconds because most of the nodes have longer paths when the
sinks are deployed at the corners of the networks.

The network connectivity for this simulation set is presented in Figure 24.
This results correspond with the delivery ratio as shown in Figure 22, where the
topologies of GRASP-MSRP with six sinks offer the best performance, followed
by the topologies with three sinks. The GRASP-ABP topologies with four sinks
have 5% lower connectivity than the topologies of GRASP-MSRP with three
sinks after several failures due to the sinks’ positions. In this simulation, we
show that if we have higher budget to deploy more sinks, we can get better
network performance, especially if we place them at the best locations.

9 Conclusion

We define the problem of increasing network robustness by protecting it against
one single failure, of either a sink or a sensor node. We design a network to be
double-covered and non-critical. Double-covered means each sensor node must
have at least two length-bounded paths to two sinks. Non-critical means all
sensor nodes must have at least one length-bounded path to a sink after any
single sensor node failure. Our novel contributions are solutions to minimise
the deployment cost of sinks and relays.

We firstly look at the multiple sink placement problem and propose Greedy-
MSP and GRASP-MSP to minimise the total sink cost. Both algorithms solve

36 Lanny Sitanayah et al.

5 T T T T
s —O— GRASP-ABP (CT=0%, RT=0%) Topo. - 4 sinks
® 45+ —O— GRASP-MSRP (Imaleo) Topo. - 3 sinks 4
@ —(O— GRASP-MSRP (I,2,=6) Topo. - 6 sinks
£ a4t 1
Q
I}
[=1
2 35 q
S W)
IS
c 37]
2
e
5 2.5F B
>
2
o 2r 1
e
£ 15}]
Q
154
(=1
g 1f 1
[=
o O—0—0—0—0—0——0—0—0—0—90——
Z 05]

0

0 500 1000 1500 2000 2500 3000

Simulation time (sec)

Fig. 23 Latency where a node dies every 250 seconds

g 60 4
2
=
S 50f B
[}
c
& 40 1
o
301 R
201 R
—O— GRASP-ABP (CT=0%, RT=0%) Topo. - 4 sinks
10 —O— GRASP-MSRP (Imaleo) Topo. - 3 sinks i
—(— GRASP-MSRP (ImaX:G) Topo. - 6 sinks
0
0 500 1000 1500 2000 2500 3000

Simulation time (sec)

Fig. 24 Connectivity where a node dies every 250 seconds

Planning the Deployment of Multiple Sinks and Relays in WSNs 37

the multiple sink placement problem by ensuring that each sensor node in
the network is double-covered. Empirically, Greedy-MSP has the shortest run-
time, but GRASP-MSP achieves comparable cost to the linear programming
solution with shorter runtime. GRASP-MSP’s results justify the use of local
search to solve the multiple sink and relay placement problem, where a linear
programming solution is not available.

We then propose Greedy-MSRP and GRASP-MSRP to solve the multiple
sink and relay placement problem, where we want the designed topologies to be
double-covered and non-critical. Our results show that the k-means clustering-
based algorithms outperform Greedy-MSRP in terms of lower cost solution
and shorter runtime because they have better sink positions. On the other
hand, GRASP-MSRP outperforms the other algorithms with the lowest cost
solutions and the shortest runtime. The GRASP-MSRP results also show that
more sinks are exchanged with relays when the sink cost increases to reduce
the total deployment cost.

In this paper, if both the number of uncovered nodes and the number of
critical nodes in a network are zero, we guarantee robustness against single
failure. However, we do also benefit when there are multiple failures. In a
multiple sink network, the performance of the network is not only influenced
by the number of deployed sinks, but more importantly the positions to de-
ploy the sinks. We show in simulations that the best performance is achieved
by topologies with six sinks where the placements were optimised (GRASP-
MSRP). Note that topologies with only three sinks but where the placements
were optimised (GRASP-MSRP) are better than topologies with four sinks in
fixed positions (GRASP-ABP).

Our future work will include evaluation for larger networks with more
sensor nodes, and more candidate locations for sinks and relays. We will also
compare the network performance of topologies resulted from other algorithms.

Acknowledgements This research is funded by the Irish Higher Education Authority
PRTLI-IV research program through the NEMBES project and by the Science Foundation
Ireland as part of the CTVR project (SFI CSET 10/CE/I1853).

References

1. Akyildiz, I.LF., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks:
A Survey. Computer Networks 38(4), 393—-422 (2002)

2. Archer, B., Weisstein, E.W.: Lagrange Interpolating Polynomial. MathWorld—-A
Wolfram Web Resource. (2011). Available at http://mathworld.wolfram.com/
LagrangeInterpolatingPolynomial.html [1 September 2011]

3. Bavelas, A.: A Mathematical Model for Group Structure. Human Organizations 7, 16-30
(1948)

4. Beutel, J., Romer, K., Ringwald, M., Woehrle, M.: Deployment Techniques for Wireless
Sensor Networks. In: G. Ferrari (ed.) Sensor Networks: Where Theory Meets Practice, pp.
219-248. Springer (2009)

5. Brandes, U.: On Variants of Shortest-Path Betweenness Centrality and Their Generic
Computation. Social Networks 30(2), 136-145 (2008)

38 Lanny Sitanayah et al.

6. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying Sensor Networks with
Guaranteed Capacity and Fault Tolerance. In: Proc. 6th ACM Int’l Symp. Mobile Ad
Hoc Networking and Computing (MobiHoc’05), pp. 309-319 (2005)

7. Cambazard, H., Mehta, D., O’Sullivan, B., Quesada, L., Ruffini, M., Payne, D., Doyle,
L.: A Combinatorial Optimisation Approach to the Design of Dual-Parented Long-Reach
Passive Optical Networks. In: Proc. 23rd IEEE Int’l Conf. Tools with Artificial Intelligence
(ICTAI'11), pp. 785-792 (2011)

8. Feo, T.A., Resende, M.G.C.: A Probabilistic Heuristic for a Computationally Difficult
Set Covering Problem. Operations Research Letters 8, 6771 (1989)

9. Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal
of Global Optimization 6, 109-133 (1995)

10. Freeman, L.: Centrality in Social Networks Conceptual Clarification. Social Networks
1(3), 215-239 (1979)

11. Guo, Y., Kong, F., Zhu, D., Tosun, A.S., Deng, Q.: Sensor Placement for Lifetime
Maximization in Monitoring Oil Pipelines. In: Proc. 1st ACM/IEEE Int’l Conf. Cyber-
Physical Systems (ICCPS), pp. 61-68 (2010)

12. Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-tolerant Relay Node Placement in
Heterogeneous Wireless Sensor Networks. IEEE Trans. on Mobile Computing 9(5), 643—
656 (2010)

13. Kashyap, A., Khuller, S., Shayman, M.: Relay Placement for Fault Tolerance in Wireless
Networks in Higher Dimensions. Computational Geometry: Theory and Applications
44(4), 206-215 (2011)

14. Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., Vega-Rodriguez, M.A., Sanchez-Perez,
J.M.: A Parallel Evolutionary Approach to Solve the Relay Node Placement Problem
in Wireless Sensor Networks. In: Proc. 15th Ann. Conf. Genetic and Evolutionary Com-
putation (GECCO’13), pp. 1157-1164 (2013)

15. Mahmud, S., Wu, H., Xue, J.: Efficient Energy Balancing Aware Multiple Base Sta-
tion Deployment for WSNs. In: Proc. 8th European Conf. Wireless Sensor Networks
(EWSN’11), pp. 179-194 (2011)

16. Misra, S., Hong, S.D., Xue, G., Tang, J.: Constrained Relay Node Placement in Wireless
Sensor Networks to Meet Connectivity and Survivability Requirements. In: Proc. 27th
Ann. IEEE Conf. Computer Communications (INFOCOM’08), pp. 281-285 (2008)

17. Moteiv: Tmote Sky Datasheet (2010). Available at http://www.eecs.harvard.edu/
~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf [30 April 2010]

18. Oyman, E.I., Ersoy, C.: Multiple Sink Network Design Problem in Large Scale Wireless
Sensor Networks. In: Proc. IEEE Int’l Conf. Communications (ICC’04), pp. 3663-3667
(2004)

19. Pu, J., Xiong, Z., Lu, X.: Fault-Tolerant Deployment with k-connectivity and Partial k-
connectivity in Sensor Networks. Wireless Communications and Mobile Computing 9(7),
909-919 (2008)

20. Resende, M.G.C., Ribeiro, C.C.: Greedy Randomized Adaptive Search Procedures. In:
F. Glover, G. Kochenberger (eds.) State of the Art Handbook in Metaheuristics, pp. 219-
249. Kluwer Academic Publishers (2002)

21. Sitanayah, L.: GRASP-MSRP Dataset (2014). Available at http://www.cs.ucc.ie/
~1s3/grasp_msrp/dataset/ [25 June 2014]

22. Sitanayah, L., Brown, K.N., Sreenan, C.J.: Fault-Tolerant Relay Deployment Based on
Length-Constrained Connectivity and Rerouting Centrality in Wireless Sensor Networks.
In: Proc. 9th European Conference on Wireless Sensor Networks (EWSN’12), pp. 115-130
(2012)

23. Sitanayah, L., Brown, K.N., Sreenan, C.J.: Multiple Sink and Relay Placement in Wire-
less Sensor Networks. In: Proc. 1st Workshop Artificial Intelligence for Telecommuni-
cations and Sensor Networks (WAITS’12), 20th European Conf. Artificial Intelligence
(ECAT'12), pp. 18-23 (2012)

24. Sitanayah, L., Sreenan, C.J., Brown, K.N.: ER-MAC: A Hybrid MAC Protocol for Emer-
gency Response Wireless Sensor Networks. In: Proc. 4th Int’l Conf. Sensor Technologies
and Applications (SENSORCOMM’10), pp. 244-249 (2010)

25. Sitanayah, L., Sreenan, C.J., Brown, K.N.: A Hybrid MAC Protocol for Emergency
Response Wireless Sensor Networks. Ad Hoc Networks 20, 77-95 (2014)

Planning the Deployment of Multiple Sinks and Relays in WSNs 39

26. VINT: The Network Simulator - ns-2 (2010). Available at http://www.isi.edu/nsnam/
ns/ [30 April 2010]

27. Wenming, S., Chuanhe, H., Mingkai, S., Yong, C., Zhe, C.: Indoor Localization Scheme
in Wireless Sensor Networks Using Spatial Information. In: Proc. Int’l Conf. Wireless
Communications, Networking and Mobile Computing (WiCOM’06), pp. 1-5 (2006)

28. Xu, X., Liang, W.: Placing Optimal Number of Sinks in Sensor Networks for Network
Lifetime Maximization. In: Proc. IEEE Int’l Conf. Communications (ICC’11) (2011)

29. Youssef, W., Younis, M.: Intelligent Gateway Placement for Reduced Data Latency in
Wireless Sensor Networks. In: Proc. IEEE Int’l Conf. Communications (ICC’07), pp.
3805-3810 (2007)

