
Title Smart optical imaging systems with automated electronics

Authors La Torre, Juan Pablo

Publication date 2017

Original Citation La Torre, J. P. 2017. Smart optical imaging systems with
automated electronics. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2017, Juan Pablo La Torre. - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2025-06-08 10:59:50

Item downloaded
from

https://hdl.handle.net/10468/5746

https://hdl.handle.net/10468/5746


 

 

SMART OPTICAL IMAGING SYSTEMS  

WITH AUTOMATED ELECTRONICS  

 

Juan Pablo La Torre 

B. Sc., M. Sc.  

 

 

 

NATIONAL UNIVERSITY OF IRELAND, CORK 

SCHOOL OF ENGINEERING 

ELECTRICAL AND ELECTRONIC ENGINEERING 

 

 

Thesis submitted for the degree of  

Doctor of Philosophy 

 

June 2017 

 

Major Supervisor: 

Professor Nabeel A. Riza 

 

 



- ii - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- iii - 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 by Juan Pablo La Torre 

j.latorre@umail.ucc.ie 

  

mailto:j.latorre@umail.ucc.ie


- iv - 

 

  



- v - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is to certify that the work I am submitting is my own and has not been submitted for 

another degree, either at University College Cork or elsewhere. All external references and 

sources are clearly acknowledged and identified within the contents. I have read and 

understood the regulations of University College Cork concerning plagiarism. 

 

 

Signature: _________________        Date: _____________ 

  



- vi - 

 

  



- vii - 

 

ABSTRACT 

 

In this dissertation, several novel smart electronically automated optical designs to 

efficiently solve existing real-world problems are proposed and demonstrated. The first half 

of the thesis proposes shape sensing techniques that employ the use of an Electronically 

Controlled Variable Focus Lens (ECVFL) within a smart optical design. These designs use a 

combination of discrete optical components, electronically programmable smart modules, 

imaging processing algorithms techniques, and automated mechanical designed moving parts. 

For control purposes, a programmed ad hoc single peripheral decisional software work 

alongside with each deployed optical design. Two methods, one using a point scan and one 

using a laser line scan, are presented for shape sensing working in unison with a custom 

designed inline viewpoint camera module. The achieved experimental results show a 16X 

per-point-scan performance improvement in shape acquisition speed when deploying the 

laser line illumination versus the single laser point scan based sensor. Both the sensor designs 

maintain the highest transverse resolution over a designed depth scan. Such feature cannot be 

achieved by existing commercial devices based on the geometrical working principle for 

distance measurement. Additionally, the proposed and tested novel optical shape sensor 

design is highly flexible and its main components are reengineered and electronically 

controlled to implement and experimentally demonstrate an automated smart projection 

system called Smart Art Display. The proposed projection display overcomes limitations in 

existing projection displays that suffer degradation of the projected image when deploying a 

multi-depth surface screen projection target. Thus, the proposed display guarantees the 

smallest spatial resolution for the designed projection distance and its use is envisioned in 

scenarios such as art installation presenting irregularities in their surfaces or when a major 

interactive experience is required. 

The second part of this dissertation involves the use of the Digital Micromirror Device 

(DMD) as an automated spatial light modulator deployed within the proposed smart optical 

designs that uses discrete optical components and advanced software programming for device 

control and automation, image processing, and Digital Signal Processing (DSP). Initially the 

DMD is deployed to illustrate its use as a programmable Young’s Double slit interferometer 

device and the achieved experimental results match the theoretically expected values. 

Additionally, different imaging DMD-based design ideas that use a combination of several 

smart modules and smart arrangement are summarized in the same chapter. Next, introduced 
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for the first time is a complete programmable pinhole based imager/profiler device for lasers 

supported by a micro-controller and a cost-effective DMD platform. Designed and 

implemented within this platform is a stand-alone imager device. The device is additionally 

supported by software implemented for DMD control purposes and synchronization between 

the micro-controller operations for correct and reliable data acquisition and interpretation. 

The adopted working principle is based on the pinhole scan Time Division Multiple Access 

(TDMA) mode. Starting from the developed platform, further improvements of the imager 

device are made, demonstrating new working principles based on Frequency Division 

Multiple Access (FDMA) and Coded Division Multiple Access (CDMA) coded optical 

modulations. Specifically, proposed are the design and implementation of the novel imaging 

device called Coded Access Optical Sensor (CAOS) where CAOS is capable of operating 

with all the aforementioned working modes. Experimentally and successfully demonstrated 

for the first time is the FDMA-TDMA CAOS imager mode for coherent light laser imaging 

and the presented results demonstrate its efficiency when compared with the TDMA-only 

imager mode working principle. A major improvement with the novel CAOS design is its 

extreme Dynamic Range (DR) performance that greatly overcomes the previously 

demonstrated DR obtained with the TDMA imager mode. Specifically, imaging DR 

improved from 22 dB to 77 dB for the laser imaging experiment. Motivated by this 

impressive performance, also presented in this dissertation is the CAOS imager used as an 

incoherent imager for the white light high dynamic range imaging scenario. The proposed 

CAOS imager is used in cooperation with a Complementary Metal Oxide Semiconductor 

(CMOS) sensor imager device forming a new smart imaging device called the CAOS-CMOS 

camera. When imaging conditions exceed the limited CMOS sensor DR performance, the 

CAOS imager is engaged to successfully image the target scenario confirming its great 

potential when deployed in extreme contrast imaging conditions. The CAOS imager 

experimental DR performance is further improved by deploying a higher quality Data 

Acquisition (DAQ) card having greater signal sampling characteristics and processing power 

compared to the cost-effective micro-controller device engaged with lower bit value analog-

to-digital converters. With the improved DAQ configuration, for the first time, demonstrated 

are a further improvement of the obtained experimental camera DR reaching 136 dB and the 

reengineering of the deployed optical design for the implementation of a novel multispectral 

and hyperspectral CAOS imager device suitable for visible and near infrared high DR 

imaging scenario. Specifically, the use of a DMD based programmable CAOS-mode spectral 

filter is incorporated and demonstrated within the CAOS multispectral camera design. 
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generated image of double slit that is transferred onto the DMD chip to create two diagonally 

oriented slits at +45˚ separated by 247.38 μm and the (right) corresponding far-field 

interference pattern produced on the CCD sensor when a 633 nm collimated laser beam is 
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from the laser source. (b) MATLAB plot of embedded agile pixel imager acquired 2-D beam 

file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116183
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116184
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116184
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116184
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116185
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116185
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116185
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116185
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116186
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116186
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116186
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116187
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116187
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116187
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116188
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116188
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116188
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116189
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116190
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116190
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116190
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116191
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116192
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116192


- xxv - 

 

irradiance map obtained using an agile pixel size of 3x3 micromirrors during the imaging 

process...................................................................................................................................... 98 

Fig. 6.5. Lens having 20 cm focal length incorporated in setup stated in Fig. 6.4(a). Distance 

d1 is kept fixed at 30 cm, while d2 is changed to values of 21 cm, 26 cm and 31 cm. ............ 99 

Fig. 6.6. Embedded imager acquired 1-D plots showing imaging capability for different 

distances along beam propagation path. Imaging is carried out at d2 values of (a) 21 cm, (b) 

26 cm and (c) 31 cm. The approximate 1/e2 threshold is also shown in each plot with a 

horizontal line. ....................................................................................................................... 100 

Fig. 7.1. CAOS imager implementation (side view). ............................................................ 107 

Fig. 7.2. CAOS imager signal flow chart............................................................................... 110 

Fig. 7.3. (a) CAOS imager optical experimental setup. (b) Schematic representation of        

(a) ........................................................................................................................................... 113 

Fig. 7.4. (a) Coded 1-D time signal produced by the PD for three agile pixels on the DMD 

chip. (b) FFT signal processing decoding of the three micromirror agile pixel irradiances I1, 

I2, and I3 that are proportional to the normalized spectral values computed by the FFT 

operation. ............................................................................................................................... 115 

Fig. 7.5. (a) 2-D irradiance of 2160 agile pixels data from the experimental CAOS imager 

using 60 1-D line scans across DMD chip. (b) (Left) The optical irradiance distribution 

representation of a laser spot incident on an example 6 pixels (in a column) by 9 pixels (in a 

row) DMD chip.(Right) The total pixel-by-pixel optical irradiance on the chip is represented 

in a single 1-D plot, which includes the optical irradiance contributions of each row of the 

DMD chip. ............................................................................................................................. 117 

Fig. 7.5. (c) Zoomed version of Fig. 7.5(a) irradiance data to estimate the average null or 

noise floor in the imager (d) The fully decoded 2-D irradiance map produced by CAOS 

Imager showing raw (i.e., unprocessed) intensity values, normalized to 1. (e) Comparison of 

central cross-section data of the CAOS imager acquired laser beam image (dots) vs. laser 

manufacturer provided theoretically expected Gaussian beam envelope (dashed line). ....... 118 

Fig. 8.1. The CAOS-CMOS Camera design. ......................................................................... 125 

Fig. 8.2. Snapshot of the CAOS-CMOS camera experimentally setup in the laboratory...... 131 

Fig. 8.3. Field of View of the target scene as viewed from the CAOS-CMOS camera in the 

experimental demonstration. .................................................................................................. 132 

Fig. 8.4. Images of the scene viewed using the CMOS mode of the CAOS-CMOS camera. (a) 

Unsaturated scene with a torch off, (b) saturated scene due to torch lighting, (c) scene of (b) 

attenuated by a factor of 1,000, (d) scene of (b) attenuated by a factor of 3,200, (e) scene of 

file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116192
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116192
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116193
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116193
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116194
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116194
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116194
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116194
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116195
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116196
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116197
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116197
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116198
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116198
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116198
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116198
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116199
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116200
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116200
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116200
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116200
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116200
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116201
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116202
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116203
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116203
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116204
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116204
file:///C:/Juan%20Pablo/Thesis/Thesis%20with%20corrections/Corrections%20-%20Pablo%20PhD%20Thesis%20new.docx%23_Toc496116204


- xxvi - 
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Fig. 8.6. The frequency domain plots of chosen CAOS acquired signals at regions (a) R1 

covering a segment of the torch, (b) R2 covering the filament, (c) R3 covering the traffic 

sign, and (d) R4 covering the black background. Note that only |S(f)| peaks at frequencies      

f1 = 133.4 Hz and f2 = 200.2 Hz indicate the scaled relative optical irradiance at the 

corresponding agile pixels. The peak at 150 Hz appearing in each plot is due to the 3rd 
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Fig. 8.7. Plots showing the measured scaled irradiances along Fig. 8.5(c) labeled traces (a) 
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Fig. 9.1. Proposed simultaneous dual optical band CAOS imager design. ........................... 152 

Fig. 9.2. Shown is the Visible-NIR bands target scene created using 3 visible LEDs and 1 

NIR LED. Photos show LEDs off (left) and LEDs on (right). These photos are taken with a 

Nikon D3300 DLSr visible camera........................................................................................ 156 

Fig. 9.3. (a) Visible scaled irradiance map obtained using the CAOS visible-NIR 

simultaneous dual optical band imager visible channel. (b) NIR scaled irradiance map 

obtained using the CAOS camera infrared channel. .............................................................. 159 

Fig. 9.4. Narrower spectral channel CAOS visible-NIR simultaneous dual optical band 

imager scaled irradiance maps at (a) λ = 450 nm with FWHM of 40 nm, (b)  λ = 550 nm with 

FWHM of 40 nm and (c) λ = 620 nm with FWHM of 10 nm. .............................................. 160 

Fig. 9.5. Shown is the normalized optical irradiance plotted versus agile pixel scan distance 

as the agile pixel conducts a line-by-line scan over the DMD1 plane making 442 agile pixels. 

Plot in (a) is generated from PD2 (NIR channel) while plot in (b) is generated from PD1 

(Visible channel). Note that (b) is obtained unrolling in a 1-D array the 2-D array shown in 
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Fig. 9.6. (a) Shown is the design of the DMD2-based TF1 module used in Channel 1 of the 

CAOS camera that implements CAOS-mode narrower wavelength optical spectral detection. 
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Fig. 9.7. Shown are the detected RF spectrum peaks |S(f)| for different visible band spectral 

selections programmed by the CAOS-mode of DMD2 in TF1. (a) |S(f = f0)| = 49.68 × 10-4 

obtained when the entire DMD2 is programmed to direct all spectral components of the white 

light agile pixel at f = f0 = 400 Hz CAOS-mode to PD1. (b) |S(f0 + f3)| = 0.4581×10-4 

obtained when DMD2 is programmed to direct only the red color spectral band light to PD1 

using a f3 = 50 Hz CAOS-mode. (c) |S(f0+f2)| = 1.091×10-4 obtained when DMD2 is 

programmed to direct only the green color spectral band light to PD1 using a f2 = 62.5 Hz 

CAOS-mode. (d) |S(f0+f3)| = 0.4597 ×10-4 and |S(f0 + f1)| = 1.074×10-4 obtained when DMD2 

is programmed to simultaneously direct the red and blue color spectral band light components 

to PD1 using f3 = 55.5 Hz (red) and f1 = 83.3 Hz (blue) CAOS-mode. ................................ 165 

Fig. 9.8. Highlighted are the detected peak |S(f1)| for different optical attenuation, DAQ 

voltage range configuration, and sampling duration time. (a) |S(f1)| = 1.228 obtained for a 10 

V DAQ range setting when no optical attenuation is used and ts = 5 s. (b) |S(f1)| = 1.43×10-5 

obtained for a 10 V DAQ range setting when ND filter is equal to OD = 5 and ts = 5 s. (c) 

Peak at f1 buried in system noise floor for a 10 V DAQ range setting when ND filter is equal 

to OD = 5.5 and ts = 5 s. (d) |S(f1)| = 3.56×10-6 obtained for a 200 mV DAQ range setting 

when ND filter is equal to OD = 5.5 and ts = 5 s. .................................................................. 171 

Fig. 9.9. (a) |S(f1)| = 1.902×10-6 obtained for a 200 mV DAQ range setting when ND filter is 

equal to OD = 6 and ts = 5 s. (b) Peak at f1 buried in system noise floor for a 200mV volts 

DAQ range setting when ND filter is equal to OD = 6.3 and ts = 5 s. (c) S(f1)| = 6.371×10-7 

obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 6.3 and ts = 60 s. 

(d) S(f1)| = 3.662×10-7 obtained for a 200 mV DAQ range setting when ND filter is equal to 

OD = 6.6 and ts = 60 s. (e) Peak at f1 buried in system noise floor for a 200mV volts DAQ 

range setting when ND filter is equal to OD = 6.9 and ts = 60 s. ........................................... 173 
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CHAPTER 1 

 

INTRODUCTION 

 

Photonics is the discipline that studies light and its applications. Electronics is the 

discipline that involves the use of electrical circuit components from massive transformers to 

tiny integrated circuit packages having physical dimensions that reach down to the nanoscale 

level. Continuous and remarkable innovations in both these disciplines are being produced by 

independent research groups all around the world. Such achievements motivate researchers to 

outperform prior solutions by presenting smarter solutions for today’s engineering 

challenges. With this dissertation, the merging of the aforementioned disciplines is 

accomplished by strategically adopting key strengths of photonics and electronics for the 

realization of automated smart system designs. Applications that can benefit from such 

designs varies from non-destructive shape sensing to art centric displays to imaging systems 

such as laser beam mappers and incoherent light cameras. Throughout this dissertation, each 

chapter provides the motivation and evidence of the existing problems and then goes on to 

describe the robust automated designs which are implemented and tested with detailed 

experiments. 

Chapter 2 presents the design of an optical shape sensor operating along with a 

computer-controlled Electronically Controlled Variable Focus Lens (ECVFL) for non-contact 

measurements applications [1]. The novelty introduced in the proposed optical design is the 

use of a single in-line viewing axis optical sensor. This new feature idea overcomes previous 

triangulation-based Three-Dimensional (3-D) shape sensor limitations that were caused either 

due to geometrical constraints or limited working range [2-4]. Sensor design analysis of 

aberration and diffraction effects balancing strategies are presented, including the derivation 

of the depth of field of the camera module used within the 3-D sensor. The proposed sensor 

illustrated in this chapter is experimentally demonstrated to work in an automated platform in 

conjunction with its dedicated Graphical User Interface (GUI), which is C++ based. The 

optical shape sensor is designed to work over a calibrated depth z of 40 mm with a 

demonstrated transverse resolution of 52 μm over the entire x-y working range of 400 mm × 

400 mm. The proposed 3-D shape sensor system is successfully deployed to measure an 
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object presenting surface irregularities such as borehole depths in a 3-D sample. Moreover 

the versatile shape sensor is tested by imaging the pin region of a 16-pin Integrated Circuit 

(IC) Thin-Shrink Small Outline Package (TSSOP) and also used to reconstruct the shape of a 

3-D aircraft part, making the 3-D shape sensor ideal for a wide range of applications. 

Chapter 3 presents the design of a shape sensor that uses an ECVFL and a line 

illumination scanning for 3-D shape sensing and reconstruction [5]. The proposed design uses 

a smart single viewing axis camera module designed to work with a laser line illumination 

scanning principle. Image processing algorithm techniques are presented in this chapter that 

evaluate the acquired laser illuminated target images. The deployment of a laser line scanning 

illumination with respect to the Chapter 2 demonstrated single laser point scanned ECVFL 

based 3-D shape sensor represents a major improvement in shape sensor speed performance 

[1, 6]. In particular, the line illumination sensor experimentally demonstrates 16X per-point 

3-D scan performance improvement when compared to the Chapter 2 presented point-scan 

based sensor. The proposed shape sensor is experimentally demonstrated using a liquid 

ECVFL and a transverse direction motion mechanical platform to successfully 3-D map 40 

mm depth steep surface profile objects with a demonstrated experimental mean measurement 

error of <5% within the designed working range.  

Chapter 4 presents a novel projection display system that is ECVFL based and called 

Smart art display [7]. The use of an ECVFL in the projection display design allows the 

projection of sharp and in-focus images over multi-distances/multi-level 3-D surfaces. In 

order to 3-D map the multi-depth target projection, the proposed projection system functions 

in unison with an embedded and non-invasive distance sensor that uses the ECVFL for both 

sensing and projection purposes. With respect to conventional laser scanning and Spatial 

Light Modulator (SLM) based projection systems, the proposed projection system offers in-

focus non-distorted projection over a multi-distance screen zone with varying depths [8]. A 

basic computer automated experimental projection system for a screen depth variation 

distance ranging from 12 cm to 77 cm with respect to the edge of the projection system is 

demonstrated. The projection system uses a 633 nm laser beam, a 3 kHz scan speed galvo-

scanning mirrors and a liquid-based ECVFL, improving on the 2011 non-automated 

implementation [9]. Furthermore, this chapter shows the 3-D projection capabilities of the 

Smart Art Display, including the projection of a non-distorted image over a two-depth screen 

versus a distorted image obtained via dominant prior-art projection methods. 
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Chapter 5 describes the proposed Digital Micromirror Device (DMD) based 

wavefront splitting interferometer and imager designs [10]. In 1997 Prof. Riza’s group has 

proposed and demonstrated the use of the Texas Instrument (TI) DMD for various 

applications including optical switching. In 2009, Prof. Riza’s group has proposed the use of 

the DMD to realize wavefront splitting interferometers as well as a variety of imagers [11]. 

Specifically, proposed are agile electronically programmable wavefront splitting 

interferometer designs using transmissive and reflective Spatial Light Modulator (SLM) 

configurations. The SLM operates with on/off or digital state pixels to control the 

passage/reflection of the incident light. SLM pixel locations can be spatially and temporally 

modulated to create custom wavefronts for near-common path optical interference at the 

optical detector e.g. Charge Coupled Device (CCD)/Complementary Metal Oxide 

Semiconductor (CMOS) sensor, a Focal Plane Array (FPA) sensor or a point-photodetector. 

In this chapter, the design and experimental verification of the Digital Micromirror Device 

(DMD) based wavefront splitting interferometer is conducted for the first time. Furthermore, 

its performances are illustrated showcasing its capabilities as a programmable Young’s 

double slit interferometer device. 

Chapter 6 presents the design of an embedded electronics laser beam profiler 

automated platform based on the use of the smart agile pixel imaging technique as proposed 

by Prof. N. A. Riza’s group since 2002 [12-14]. This chapter describes in detail the 

realization, for the first time, of the design and the implementation of a fully embedded and 

automated laser profiler system platform [15]. It is demonstrated how laser beam techniques 

can be embedded through hardware and software co-design to develop an embedded system 

that is cost effective and compact with respect to weight and volume. Such an embedded 

design is desirable since in the last few years there are a growing number of laser beam 

industrial applications that demand characterization, tracking and measurement of the laser 

beam profile. The proposed automated design uses a DMD device along with a 

microcontroller and point photo-detectors to implement a compact system having minimum 

sized components. The proposed embedded laser beam profiler is successfully deployed to 

experimentally demonstrate its efficacy when characterizing a Gaussian laser beam. The 

proposed design is suitable for industrial laser based applications requiring accurate two-

dimensional beam irradiance maps, without needing any attenuating components disrupting 

the beam under test. 
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Chapter 7 presents for the first time the design and implementation of the novel Coded 

Access Optical Sensor (CAOS) Imager/Camera [16]. High spatial resolution, low inter-pixel 

crosstalk, high Signal-to-Noise Ratio (SNR), adequate application dependent speed, 

economical and energy efficient design are common goals sought after for optical image 

sensors. Imagers based on pixelated imaging devices such as CCD/CMOS sensors avoid 

pixel-by-pixel scanning as all sensor pixels operate in parallel, but these imagers are 

fundamentally limited by inter-pixel crosstalk, in particular with interspersed bright and dim 

light zones. This chapter presents and discusses the CAOS agile pixel imager sensor design 

platform that can greatly alleviate the aforementioned fundamental limitations, empowering 

smart optical imaging for particular extreme contrast environments. Specifically, this novel 

CAOS imager engages an application dependent electronically programmable agile pixel 

platform using hybrid space-time-frequency coded multiple-access of the sampled optical 

irradiance map. This chapter demonstrates the foundational working principles of the first 

experimental electronically programmable CAOS imager using hybrid time-frequency 

multiple access sampling of a known high contrast laser beam irradiance test map, with the 

CAOS imager based on a TI DMD device. Experimentally, the CAOS imager provides 

imaging data that exhibits 77 dB electrical Signal-to-Noise Ratio (SNR) and the measured 

laser beam image irradiance specifications closely match (i.e., within 0.75% error) the laser 

manufacturer provided beam image irradiance radius number. The proposed CAOS imager 

can be deployed in many scientific and non-scientific applications where pixel agility via 

electronic programmability can zoom in on desired features in an irradiance map subject to 

the CAOS imaging operation. 

Chapter 8 presents for the first time the CAOS-CMOS camera design that combines 

the CAOS imager platform with the CMOS multi-pixel optical sensor [17]. The chapter 

describes how the combination of a classic CMOS sensor light staring mode with the time-

frequency-space agile pixel CAOS imager mode within one programmable optical unit is able 

to achieve a high dynamic range imager design for extreme light contrast conditions. The 

proposed CAOS-CMOS camera is built using a DMD, a silicon point photo-detector with a 

variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB Dynamic 

Range (DR). A white light imaging scenario comprising three different brightness 

simultaneously viewed targets is achieved by the CAOS-CMOS camera demonstrating an 

experimental 82.06 dB DR. To confirm the potential of the presented CAOS-CMOS camera, 

the image acquisition of the same scenario was shown to fail when viewed with the classic 
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CMOS image sensor due to the limited CMOS camera DR. The results presented in this 

chapter extend the coherent laser imaging performance in Chapter 7 to incoherent white light 

imaging [16]. Applications of the proposed novel camera include industrial machine vision, 

welding, laser analysis, automotive, night vision, surveillance and multispectral military 

systems. 

Chapter 9 further extends the results provided in Chapter 7 and Chapter 8. It is shown, 

for the first time, the CAOS camera designs to enable simultaneous dual optical band 

imaging suited for extreme contrast multispectral bright target scenarios [18]. The proposed 

design deploys DMDs for time-frequency agile pixels CAOS-mode modulation in both the 

spatial and spectral domain in the image space. The design also uses two-point detectors that 

are spatially and spectrally isolated. This new imager can simultaneously and independently 

detect pixel selective image irradiance information for two different broad spectral bands, 

visible (VIS) and near infrared (NIR), that further undergo independent spectral image data 

extraction via finer-tuned wavelength filtering using all-optical or CAOS-mode electronic 

filters. A proof-of-concept visible-near infrared band CAOS imager is successfully 

demonstrated using a target scene containing LEDs having different central wavelengths and 

using narrowband optical filters. Furthermore, using the CAOS-mode, simultaneous colour 

content monitoring of a white light image target is demonstrated. For the proposed design a 

higher bit count Analog-to-Digital Converter (ADC) device is deployed with both range and 

sampling duration parameter control, allowing a wider dataset acquisition. Such considerable 

data set size undergoes electronic Digital Signal Processing (DSP) to extract higher DSP gain 

and additional noise suppression. The introduction of the aforementioned features improved 

the achieved experimental DR by 56 dB over the CAOS-imaging demonstration presented in 

Chapter 8 [17]. 

Finally, chapter 10 presents conclusions of the thesis by highlighting key results and 

suggesting future works to further improve the proposed smart module designs. 
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CHAPTER 2 

 

OPTICAL SHAPE SENSOR USING  

ELECTRONICALLY CONTROLLED LENS1 

 

2.1 INTRODUCTION 

An optical 3-D shape sensor uses light to characterize an object under test to obtain 

depth and shape information with high accuracy. Optical 3-D shape sensors are sought after 

in applications where precise shape monitoring is required, such as in industrial 

manufacturing, cultural heritage preservation, entertainment, medical inspections, aerospace 

inspection, component inspection, tracking systems, position sensing and more [1-5]. Among 

the available 3-D shape sensing techniques described in references [6-7], the most used is the 

triangulation method [8]. As shown in Fig. 2.1(a), triangulation uses two Transmitter 

(T)/Receiver (R) points separated by a distance d to compute the depth/shape of a given 

object. The same working principle is used in fringe projection techniques in which patterns 

are projected onto an object and depth information is derived from extensive computation 

routines [9]. However, due to the geometry-based constraints of triangulation sensors, both 

classic triangulation and projection techniques do not provide accurate depth/shape 

measurements in the presence of occlusions such as boreholes as shown in Fig. 2.1(b). In 

such a scenario, a single view point 3-D shape in-line sensor is desired. Time-of-flight (ToF) 

and White Light Interferometer (WLI) sensing techniques are examples of single viewing 

axis 3-D shape sensors used for position sensing and medical inspection. ToF sensors require 

expensive high bandwidth electronics for short distance depth ranges (< 1 m) [10]. WLI 

sensors are limited in measurement range (e.g., 0.4 mm) and are also an expensive sensing 

alternative, although they have high axial resolution [11].  Other distance sensing techniques 

also exist in literature. Optical Coherence Tomography (OCT) is widely used in biological 

research, given its high depth resolution, i.e. 5 - 15 μm, but its depth measurement range is 

limited to a few millimetres making it unsuitable for various industrial applications [12]. 

Ultrasound is a popular technique used for automotive collision avoidance applications, 

                                                 
1 J. P. La Torre, M. J. Amin, B. Thompson, and N. A. Riza, “Optical shape sensor using electronically controlled lens,” 

IEEE Sensors Journal, vol. 16, no. 12, pp. 4776-4785, (2016). 
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among many others, but its transverse resolution is limited due to the divergence of the sound 

waves in air [13]. Chromatic Confocal sensors used for surface topography and biological 

sample thickness measurement provide below 500 nm axial resolution along with 

approximately 20 μm transverse resolution [14-15]. However, Chromatic Confocal sensors 

are very expensive and have limited depth measuring range, i.e., less than 10 mm. Therefore, 

these aforementioned sensors are unsuitable options for the borehole scenario depicted in Fig. 

2.1(b) for a depth range exceeding 15 mm. A single view-point, cost effective and high 

transverse resolution sensor having a depth range of the order of centimetres is desired for 

sensing applications such as shown in the Fig. 2.1(b) illustration. 

 

 
(a) 

 
(b) 

 

Fig. 2.1. (a) Operation of a prior art triangulation geometry-based 3-D shape sensor, and (b) 

scenario shows how the 3-D shape sensing triangulation technique fails in the presence of 

occlusions such as for solid 3-D objects with complex internal structures. 
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In [16-19], the use of the ECVFL for imaging, display and distance measurements has 

been proposed and demonstrated. Specifically, [16] demonstrates a single point distance 

sensor while [17] demonstrates a 3-D distance mapping sensor. The optical design in [17] 

includes off-axis camera viewing which inhibits the use of this 3-D shape sensor design for 

borehole sensing scenarios such as depicted in Fig. 2.1(b) which require a single viewing axis 

based sensor. Furthermore, in [17] a non-automated scan system design is proposed and 

demonstrated. Also, in [17] the sensor design does not allow input beam diameter control for 

aberration reduction resulting in a non-optimal illuminating laser beam diameter being 

deployed for sensing applications. In [18] is proposed a laser sampling head design for 2-D 

image acquisition applications. Note that [18] does not describe a 3-D shape sensor but 

provides an optimized optical design for 2-D image sensing with the highest transverse 

resolution possible for all target distances. Furthermore, in [19] it is shown how the basic 

ECVFL-based distance sensor can be implemented as a smart high resolution laser scanning 

display.  

In this chapter, a computer automated 3-D scan shape sensor with on-axis camera 

viewing, including target illuminating beam diameter control for optimal scan transverse 

resolution, is designed and demonstrated for a variety of complex objects undergoing optical 

inspections. Specifically, proposed is a low cost single view point 3-D shape sensor for non-

contact measurements that provides high transverse resolution over the designed working 

range and, due to the on-axis nature of the sensor design, the proposed sensor is not subject to 

the occlusion problem illustrated in Fig. 2.1(b). First, the chapter describes the proposed 3-D 

shape sensor optical design theory. Next a variety of distance measurement experiments are 

conducted to showcase the versatility of the proposed sensor to measure shape along One 

Dimensional (1-D) (e.g., multi-boreholes test part), Two Dimensional (2-D) (e.g., integrated 

electronic chip pin layout testing), and 3-D (e.g., aircraft 3-D part) imaging domains. The 

chapter concludes with an assessment of the sensor performance, features and limitations. 
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2.2 PROPOSED SINGLE VIEWING AXIS OPTICAL  

3-D SHAPE SENSOR DESIGN 

 

Fig. 2.2(a) shows the deployment of the desired in-line single viewing axis 3-D shape 

sensor which overcomes the limitation of triangulation-based shape sensors for scanning 

zones that contain small apertures such as boreholes. Specifically, Fig. 2.2(b) shows the 

optical design of the desired in-line single viewing axis 3-D shape sensor. Here, a Gaussian 

laser beam of wavelength 𝜆 coming out of a Laser Module (LM) propagates along the z-

direction before entering a collimation setup composed of a Microscope Objective (MO), a 

Pinhole (P) and a collimation lens (S). The collimated laser beam passes through an 

electronic controllable Spatial Filter (SF) having an aperture diameter Ds, before entering an 

 
 

(a)       (b) 

 
(c) 

 
Fig. 2.2. (a) Deployment scenario of the proposed single viewing axis optical 3-D shape 

sensor, (b) proposed high transverse resolution single viewing axis optical  

3-D shape sensor using electronically controlled optical lens, and (c) camera design used 

for image acquisition within the proposed 3-D shape sensor. 
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ECVFL having a focal length Fe. The resulting beam travels through the Beam Splitter (BS) 

before exiting the sensor module to strike the 3-D target. The distance from the LM to the 

ECVFL’s center is d0, the distance between the ECVFL’s center and the BS’s center is d1, the 

distance between the BS’s center and the edge of the sensor module is d2. The light then 

travels a distance h from the edge of the sensor module to any given target axial (range) plane 

forming a beam spot that is imaged by an on-axis camera via the BS light path. The LM, 

ECVFL and the camera elements are mounted on a motorized x-y stage. These elements are 

controlled by a Personal Computer (PC) having relevant scanning and data acquisition 

software. 

The proposed shape sensor acquires 3-D measurements using the procedure described 

next. For a given depth h and a Fe value within the ECVFL’s focal length range, the beam 

spot formed on the target plane is observed and captured by the in-line camera. The PC 

processes the image captured and a computer algorithm provides the beam spot diameter in 

pixel units. The spot diameter on the target plane is controlled by the Fe value set by the PC 

establishing a correlation between the spot diameter and Fe. Tuning the Fe over the full 

operational ECVFL’s range corresponds to dynamically changing the spot size formed on the 

target plane. The Fe value that corresponds to the smallest spot diameter is considered the 

optimum ECVFL setting for a certain target depth h. Considering different depth values, it is 

possible to train and calibrate the sensor system linking optimum Fe values and h depth 

values [16-18]. For full 3-D shape recovery and reconstruction, the sensor system is 

programmed to move the laser sampling spot over the x-y plane scanning zone that 

encompasses the object transverse region under test. Thus a 3-D point cloud representing the 

object’s 3-D reconstruction is provided by the sensor system. Compared to [17] which 

deployed off-axis imaging of the target illuminating laser spot, the single viewing axis nature 

of the Fig. 2.2(b) proposed optical design allows its use for borehole scenarios such as 

depicted in Fig. 2.1(b). 

For any target plane located at a depth h from the sensor, the diffraction limited 

diameter 2𝑤𝑑𝑖𝑓𝑓 of the focussed sampling spot on the target is given by [20]:  


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In a practical scenario, the achievable minimum focused spot size is affected not only 

by aperture-based diffraction effects but also by aberration effects in the optical system [20-
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21]. For instance, a bigger optical aperture at the lens entrance creates a stronger beam spot 

spreading effect due to spherical aberration in the lens. Aberrations can be counterbalanced 

either by designing a system of aberration correcting lenses and/or by simply decreasing the 

input beam diameter. In the proposed design compared to the prior work [12-14], the latter 

solution as shown in Fig. 2.2(b) has been used where a SF controls the optical aperture Ds. 

Note that although decreasing the input beam diameter Ds reduces aberrations, it also 

increases diffraction effects that result in a larger diffraction limited beam spot diameter. In a 

practical scenario, these two effects need to be considered carefully and balanced to achieve 

the smallest possible focused spot diameter at the target plane.  

Fig. 2.2(c) shows the camera design which is based on an imaging lens L with a focal 

length of F, a camera aperture of diameter DA and a CMOS sensor chip. The distance from 

the CMOS sensor to L is denoted as di, the distance from L to BS is denoted as d3 and the 

distance from BS to the edge of the T/R module is denoted as d2. hc is defined as the total 

distance from the target plane to camera lens entrance to i.e. hc = d3 + d2 +h. In order for the 

3-D shape sensor to work for a chosen target depth range, the camera needs to take 

acceptably sharp images of the target illuminated spot over all these depth values. To ensure 

this condition, the camera parameters such as F and DA need to be set carefully to allow a 

sufficient DOF. Section 2.2.1 describes a theoretical overview of the factors affecting the 

DOF of the camera to select experimental camera parameters for optimal 3-D shape sensing 

using the proposed system. 
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2.2.1 DERIVATION OF CAMERA DEPTH OF FIELD (DOF) 

 

 

For optimal performance of the shape sensor, an important aspect to consider is the 

camera design. Specifically, the DOF of the camera needs to cover the measuring range of 

the 3-D shape sensor. Therefore, in order to choose the appropriate camera parameters, this 

section involves a derivation of the DOF which will help to determine the experimental 

camera parameters needed for a desired 3-D shape sensor design. The DOF of camera is 

defined as the range of distances on the object side over which a focussed image is formed on 

the imaging CMOS sensor chip. The depth of focus is defined as the range of distances on the 

image side over which a focused image is formed on the imaging sensor. For the single lens 

camera system shown in Fig. 2.3, an object O is perfectly focused onto an imaging sensor to 

form an image I. In Fig. 2.3, F is the lens focal length, DA is the lens aperture diameter, do is 

the lens to object distance and di is the lens to image distance. Onear is the point on the optic 

axis on the object side representing the near limit of the DOF while Ofar is the point on the 

optic axis on the object side representing the far limit of the DOF. Ifar is the point on the optic 

axis on the image side representing the image of the point Onear while Inear is the point on the 

optic axis on the image side representing the image of the point Ofar. Note that don is the lens 

to Onear distance, dof is the lens to Ofar distance, dif is the lens to Ifar distance and din is the lens 

to Inear distance. Ci is the permissible diameter of the blur circle formed on the imaging sensor 

 
 

Fig. 2.3. Optical ray diagram of a single lens imaging system illustrating the concept of 

Depth of Field. 
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in order for an object to be considered in focus and Co is the corresponding (conjugate) 

diameter in the object space. The shaded grey region on the object side represents the extent 

of the DOF and the corresponding depth of focus region on the image side is also shaded in 

grey. P1, P2, P3 and P4 are marked points on the diagram to aid the following DOF derivation. 

For an imaging system, the thin lens equation relating F, di and do is given by [20]: 

,
111

io ddF
       (2.2) 

while the transverse magnification MT of the camera is [16]: 

.
o

i
T

d

d
M        (2.3) 

In terms of an object of height yo forming an image of height yi, MT is:  

o

i
T

y

y
M  .      (2.4) 

Note that in Eqn. (2.4), both yo and yi are assumed to be positive when measured 

upwards from the optic axis. Now, Co can be thought of as the object height yo as it is 

measured on the object plane. Ci can be thought of as the image height yi as Ci is measured on 

the image plane. Therefore, MT can be written as: 

o

i
T

C

C
M  . 

Rearranging for Co gives: 

T

i
o

M

C
C  .      (2.5) 

Combing Eqns. (2.3) and (2.5) gives: 

i

oi
o

d

dC
C  .      (2.6) 

Note that in Eqn. (2.6), the negative sign from Eqn. (2.3) cancels that of Eqn. (2.5). 

Substituting di from Eqn. (2.2) into Eqn. (2.6) gives: 


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
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o , 
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 
F

FdC
C oi

o


 .      (2.7) 

This expression for Co will be used later in the derivation.  

In Fig. 2.3, note that angle ∠P1-Onear-P2 is equal to ∠P4-Onear-O, therefore the 

following expression is obtained using trigonometry: 

on
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


.      (2.8) 

Rearranging the above expression gives: 
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Substituting Co from Eqn. (2.7) into Eqn. (2.9) gives: 
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Similarly, to derive an expression for dof, note that angle ∠P1-Ofar-P2 is equal to ∠P4-

Ofar-O, therefore the following expression is obtained using trigonometry: 
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Rearranging the above expression gives: 

oA

oA
of

CD

dD
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
 .      (2.12) 

Substituting Co from Eqn. (2.7) into Eqn. (2.12), and rearranging, gives: 

 FdCFD

FdD
d

oiA

oA
of


 .     (2.13) 

Having obtained don and dof, the mathematical expression for DOF can simply be 

written as: 

onof ddDOF  .     (2.14) 
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Substituting Eqns. (2.10) and (2.13) into Eqn. (2.14) gives: 

   FdCFD

FdD

FdCFD

FdD
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oiA

oA

oiA

oA
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
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 . 

 

  2222

2

FdCFD

FdFCdD
DOF

oiA

oioA




 .     (2.15) 

Eqn. (2.15) represents the derived DOF equation which will be used to determine 

camera parameters needed to set a DOF over the experimental depth range. The next section 

describes the experimental demonstration of the proposed 3-D shape sensor. 

 

2.3 EXPERIMENT 

For the experiments performed, the LM along with the collimation optics is excluded 

from the motorized x-y platform. A 15mW Melles Griot He-Ne laser module having λ = 633 

nm is used as LM [22]. This laser source irradiates along the x-direction and strikes two 

mirrors labelled as M1 and M2 which are both built-in as part of the motorized platform for 

this demonstration for beam alignment to allow motorised motion control of the laser 

scanning head despite LM being excluded from the x-y platform (see Fig. 2.5(a)). M1 deflects 

the beam light in the y direction and M2 directs light towards the z-direction. MO is a 

Newport model MV-10X having numerical aperture of 0.25 and magnification of 10x, P has 

a diameter of 15 µm, and lens S has 20 cm focal length. Ds is set to 4 mm which is 

experimentally determined to give the smallest focussed spot size, balancing out aberration 

and diffraction effects. The ECVFL used is an Optotune lens model EL-10-30 [23] having 

lens diameter equal to 10 mm. The ECVFL is current controlled by the PC through its 

corresponding USB lens driver controller from Optotune. The BS used is a Thorlabs model 

BS013. d0 = 30 cm, d1 = 23.2 mm, and d2 = 55.9 mm are the settings used in the experiment. 

The x-y motion, i.e., lateral motion, of the T/R module is obtained using two stepper motors. 

The driver card for the motors, model P700 from Astrosyn [24], is controlled by a STM32F4 

microcontroller from STMicroelectronics [25]. In the x-y plane, the shape sensor, driven by 

the motor configuration, is designed to cover a transverse region target scan up to a 400 mm 

by 400 mm area. For the experiments where minor displacements along to x-y plane are 

required, a translation stage from Newport is used to move the object under test while 

maintaining the shape sensor head in a static position. In the camera, the sensor chip used is a 

CMOS sensor from IDS model UI-1250LE-M-GL [26]. The CMOS chip’s active sensor area 
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is 8.5 mm × 6.4 mm with a pixel size of 5.3 µm and a pixel count of 1600 × 1200 pixels. 

Given an experimental depth sensing range h of 40 mm adequate to scan 3-D samples in this 

experiment, the Eqn. (2.15) DOF expression is used to design the camera parameters needed 

to achieve an acceptable quality of focus within this range. The aperture diameter DA of the 

camera’s iris is set to 2 mm for the given experimental lighting conditions and target sample 

surface reflectance properties. L deployed in the camera is a single standard lens having F = 

50 mm. With regards to do, according to Eqn. (2.15), a higher value of do gives a larger DOF 

but this increases the system size, which is not desirable. Keeping this aspect in mind, d3 is 

set to 7.91 cm. Thus, using this d3 and d2 = 5.59 mm, hc = 7.91 + 5.69 + h = 13.5 + h (units of 

cm). This means that in terms of hc, the desired DOF range of the camera is from hc = 13.5 

cm to hc = 17.5 cm since the chosen h range is from 0 cm to 4 cm. In other words, the desired 

don is 13.5 cm and the desired dof is 17.5 cm. In Eqn. (2.15), with DOF = 40 mm, F = 50 mm 

and DA = 2 mm, do and Ci still need to be calculated. With a desired DOF range from 13.5 cm 

to 17.5 cm, a starting value of do for Eqn. (2.15) is chosen to be the midpoint of this range, 

i.e., do = 15.5 cm. This gives a Ci value of 0.121 mm. However, when using Ci = 0.121 mm, 

F = 50 mm, DA = 2 mm and do = 15.5 cm, don is computed using Eqn. (2.10) to be 13.75 cm 

which is larger than our desired don of 13.5 cm. To bring don closer to 13.5 cm, different 

values of do<15.5 cm are iterated over, calculating Ci and subsequently don for each do, until 

don equals 13.5 cm. This occurs when do = 15.24 cm giving a Ci = 0.126 mm.  
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In Fig. 2.4 is shown a flow chart diagram that summarizes the operations that are 

involved for the correct evaluations of the parameters so far described. To summarize, using 

DA = 2 mm and F = 50 mm, a DOF of 40 mm is achieved between h = 0 mm to h = 40 mm 

(same as hc = 13.5 cm to hc = 17.5 cm) only when the permissible diameter of the blur circle 

Ci is taken as 0.126 mm. A Ci of 0.126 mm means that at the periphery of the chosen depth 

sensing range, i.e., closer to h = 0 mm and h = 40 mm, the image of a focussed point spot on 

the target can be as large as 0.126 mm and still be considered an acceptably focussed image. 

From the 3-D shape sensor operation point of view, the system is robust to this high value of 

Ci since the image processing relies on the relative change seen in spot size for different 

values of ECVFL current. The system does not rely on the absolute size of the spot’s image 

formed on the CMOS, thereby allowing an extended DOF for 3-D shape sensing applications. 

 

 
 

Fig. 2.4. Flow chart diagram that shows the relationship between the designed working 

range h and the DOF. 
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Moreover, to automate the system, a Graphic User Interface (GUI), developed in 

C++/CLI language, controls the camera in real-time, ECVFL current (hence focal length), x-y 

motorized stage and the synchronization of the components. The GUI is also responsible for 

the image processing part of the depth sensing routine. The spot diameter (in pixels) of the 

captured image is found by transforming the image captured into a two-level binary image (1 

bit per depth) and counting the number of white pixels above a certain intensity threshold. 

The result of the counting routine is proportional to the spot size. Therefore, the optimum Fe 

value corresponding to the smallest spot size allows depth information recovery by consulting 

the calibration curve obtained during the training phase of the system. The aforementioned 

operations are all summarized in Fig. 2.5. 

 

 
 

Fig. 2.5. Flow chart diagram illustrating the sequential steps of the proposed 3-D shape 

sensor, highlighting the steps implemented in the imaging processing algorithm. 
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The Fig. 2.2(b) design is experimentally implemented in the laboratory facility as 

shown in Fig. 2.6(a). Since Fe and current i values are proportional, the calibration curve 

obtained in the training phase is shown in Fig. 2.6(b) which plots depth h versus current i. 

Given the experimentally chosen h range of 40 mm, the theoretical diffraction limited spot 

diameter 2wdiff derived from Eqn. (2.1) is plotted versus depth h and shown as a solid curve in 

Fig. 2.6(c). Figure 2.6(c) also shows the experimental x-y transverse resolution data of the 3-

D shape sensor obtained by placing the CMOS sensor chip on the target plane and then 

implementing image processing on the CMOS sensor chip provided beam spot pattern.  

To assess the transverse resolution performance of the demonstrated shape sensor, the 

data sheet of a commercially available micro-epsilon model ILD 1700-40 triangulation-based 

sensor with a similar depth range is studied. This micro-epsilon sensor provides a spot 

 

 
(a) 

 

 
(b)    (c) 

 
Fig. 2.6. (a) Laboratory setup of the proposed 3-D shape sensor including the mirrors M1 

and M2 deployed for beam alignment, (b) experimental 3-D sensor depth h calibration data 

versus ECVFL drive current values i for the designed 40 mm depth measurement range, 

and (c) 3-D shape sensor x-y transverse resolution calibration curve for spot diameter 

2wmin versus depth h values obtained during the sensor calibration phase. A comparison 

between experimental (dots) and theoretical (line) values is shown. 



- 23 - 

 

diameter of no less than 210 µm in the 40 mm operational range [27]. Therefore, in terms of 

the transverse resolution, the demonstrated shape sensor has a spot diameter that is 

approximately four times smaller than the micro-epsilon triangulation sensor.  

 

To demonstrate the versatility of the calibrated shape sensor, three types of shape 

sensing experiments are performed. As illustrated in Fig. 2.2(a), the proposed sensor is first 

used to map the depths of the sample with multiple boreholes. Figure 2.7(a) shows the solid 

block sample obtained by joining two custom delrin material made parts having matte dark 

surfaces. The two separated block 3-D sample design allows one to check that the borehole 

bases are flat and a vernier caliper can be used to measure borehole depths. Note that in this 

experiment, the vernier caliper is used as a reference for subsequent 3-D shape sensor 

 

 
(a) 

 

   
(b)      (c) 

 
Fig. 2.7. (a) Side view of the custom-made boreholes solid block that is assembled by 

stacking two separate blocks, (b) top view of the assembled boreholes solid block, and (c) 

solid block 3-D borehole depth reconstructions using the proposed ECVFL-based sensor. 
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measurement data. Figure 2.7(b) shows the solid block hole structure which is organized in a 

3×4 matrix where the 4 depths columns are labelled as h1, h2, h3, and h4. For calibration 

purposes, the 2 parts of the block are separated and depths are measured with a vernier 

caliper, giving the depth values shown in Table 2.1. For each borehole, the diameter Dh is 

equal to 5 mm and the distance between each neighbouring hole center is 10 mm. Note that 

for each hole in the block, a single point scan at the center of the hole is performed using the 

proposed 3-D shape sensor and the corresponding measured depth values are presented and 

compared with the calliper measured depth values in Table 2.1. As shown in Table 2.1, the 

measured depth values are close to the reference vernier readings. More precisely, Table 2.1 

includes the mean measurement error (in mm) of the measurements compared to the vernier 

readings which are 0.84 mm, 0.58 mm, 0.44 mm and 0.50 for depth columns h1, h2, h3 and h4, 

respectively. 

These mean errors are all within ±0.5 mm of the corresponding vernier depth values. 

For each column depth h1, h2, h3 and h4, the 95 % confidence interval of the true mean depth 

value is calculated using the statistical t-test [28] and presented in Table 2.1. The average 

error of the system (in mm) is the average of the individual mean measurement errors of the 

depth columns, which is 0.59 mm having a standard deviation of 0.17 mm. To evaluate the 

mean percentage error of the system, each of these mean measurement error values (in mm) 

are divided by its corresponding vernier reading and multiplied by 100. This gives a 

percentage error for each depth columns h1, h2, h3 and h4. The mean percentage error of the 

system is the mean of these individual percentage errors, which is approximately ±3% when 

compared to measurements from the vernier caliper. Fig. 2.7(c) shows the 3-D view of the 

reconstructed solid block holes depth map. 
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Table 2.1. Experimental solid block borehole depth values obtained with the proposed 3-D 

shape sensor and a vernier caliper. When using the shape sensor, one measurement is taken 

for each hole approximately at its base centre point. 

 

 
h1 

[mm] 

h2 

[mm] 

h3 

[mm] 

h4 

[mm] 

Vernier 

Caliper 
10.16±0.01 20.32±0.22 30.06±0.05 40.18±0.063 

3-D Shape 

Sensor 

11.20 

10.90 

10.90 
 

20.70 

21.00 

21.00 
 

30.01 

29.62 

29.24 
 

39.32 

40.60 

39.95 
 

Mean 

Measurement 

Error 

+0.84 +0.58 -0.43 -0.50 

Mean 11 20.9 29.62 39.95 

95% 

Confidence 

Interval  

via t-test 

11±0.42 20.9±0.42 29.62±0.94 39.95±1.58 
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The next experiment emphasizes the 3-D shape sensor’s high transverse resolution. 

The proposed 3-D shape sensor is used as a position sensing sensor to verify pin position in 

an IC having a TSSOP package shown in Fig. 2.8(a) and in Fig. 2.8(b). The IC is placed at a 

depth value of h=0 mm and a top view inspection of the two zones marked as A and B shown 

in Fig. 2.8(a) is performed using a fixed focused beam having 40 µm spot diameter. The IC 

package dimensions are (5±0.1) mm × (6.4±0.2) mm on which the pin width is 245±55 µm 

and each pin is separated by 650 µm. The scanned area considered is limited by the line 

segments ICL,A=ICL,B=5.4 mm and ICW,A= ICW,B=1.5 mm for the two zones A and B. The scan 

motion is implemented using an x-y translation stage with a step resolution of 50 µm. The 3-

D shape sensor returns the IC intensity map representing the scattered light produced when 

the laser light strikes the IC. A strong scattered laser spot captured by the camera indicates to 

the PC software the presence of a metallic pin. To simulate a faulty side, two pins from the IC 

were removed in the B zone.  

Figure 2.9(a) and Fig. 2.9(b) illustrate the results obtained when scanning the A and B 

zones for a normal and a faulty IC side, respectively. Note that due to the incline pin 

orientation as shown in Fig. 2.8(b), the intensity map in Fig. 2.9(a) and Fig. 2.9(b) has light 

starved areas because pin reflected light is not caught by the camera. Figure 2.9(c) and Fig. 

2.9(d) are 1-D cross section plots of Fig. 2.9(a) and Fig. 2.9(b), respectively. Both cross- 

sections in Fig. 2.9(c) and Fig. 2.9(d) are taken at ICW,B = 350 μm in the context of Figs. 

2.9(a) and 2.9(b), respectively. The two missing pins in zone B of Fig. 2.8(a) are clearly 

distinguished by the absence of peaks in Fig. 2.9(d). This type of plot is helpful in automated 

 
(a)     (b) 

 
Fig. 2.8. (a) Top view of the TSSOP IC package with scanned regions A and B. Region B 

has two pins removed, and (b) side view of the TSSOP IC package. Notice the pin angular 

orientation on the highlighted pin region. 
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processing routines where pin verification can be performed by looking at the presence or 

absence of peaks. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 2.9. (a) 2-D optical intensity map obtained for the A region of the TSSOP IC using the 

proposed ECVFL-based sensor, (b) 2-D optical intensity map obtained for the B region of 

the TSSOP IC using the proposed ECVFL-based sensor, (c) 1-D normalized intensity plot 

for zone A of the IC component obtained using the proposed ECVFL-based sensor 

showing the presence of all pins, and (d) 1-D normalized intensity plot for zone B of the IC 

component obtained using the proposed ECVFL-based sensor showing the locations of the 

two missing pins. 
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Next, the proposed 3-D shape sensor is deployed to generate a complete 3-D point 

cloud map of a Fokker aircraft part having volumetric containment dimensions of 35 cm × 8 

cm × 4 cm. This 3-D part has conformal non-uniform surfaces making standard contact 

measurement techniques unusable for 3-D mapping. The aircraft part shape acquisition is 

experimentally carried out by utilizing a motorized stage covering an area OW=32 cm by 

OL=4 cm in the x-y plane with a step side resolution of 5 mm for a total of 504 points in the 

3-D point cloud. As shown in Fig. 2.10(a), the part surface varies from being mostly flat in 

the middle region to having two asymmetric slopes on the sides. Figure 2.10(b) shows the 

point cloud map obtained for the scanned aircraft part under test via the proposed shape 

sensor revealing the non-uniform surface regions optimized for aerodynamic air flow 

operations. Figure 2.10(c) shows a 1-D plot of h versus OL across the Fig. 2.10(a) aircraft 

part. 1-D traces such as Fig. 2.10(c) can be used as a quick inspection check for locating 

defects in shape profiles before carrying out a detailed 2-D scan. In order to obtain a 360° 

FOV coverage 3-D point cloud of a generic 3-D part, independent 3-D point clouds using 

different Field of Views (FOVs) must be acquired. These different point cloud datasets must 

be combined via software to obtain the complete 3-D object point cloud. 

 

 

 
(a)      (b) 

 
(c) 

 
Fig. 2.10. (a) Fokker aircraft part used in the 3-D shape sensing experiment, (b) 3-D point 

cloud map of the Fokker aircraft part obtained using the proposed 3-D shape sensor, and 

(c) 1-D plot of h versus OL, outlining the shape profile of the aircraft part shown in (a). 
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Note that the shape mapping time of the proposed shape sensor varies according to the 

application requirements. The scan area and the x-y step resolution are application specific 

factors which influence the time needed to complete the shape reconstruction process. Other 

factors include ECVFL response time, image processing algorithm efficiency and camera 

image acquisition time. For the Optotune ECVFL deployed in the experiment, it is 

recommended to permit a settling time of a minimum 15 ms for every new focal length value. 

Therefore, by considering 200 mA current range and using a 1 mA step, the time required to 

complete the current sweep in the ECVFL is 3 seconds. Since real-time image processing is 

involved for each acquired optical image of the scan laser spot, 10 seconds are required to 

scan a single depth value in the described experimental demonstrations. The total scan time 

can be optimized by using ultra-fast scanning technology. For example, the programmable 

high-speed Polarization Multiplexed Optical Scanner (PMOS) lens [29] having a reset time of 

a few microseconds (in the visible spectrum) can be deployed in conjunction with any other 

ECVFL device, such as the Varioptic Lenses having a 7.5 ms reset time [30], Optotune EL-

10-30 having a 15 ms reset time [23] or the TAG Lens 2.0 [31] by TAG Optics having a 20 

μs response time. To estimate a single depth scan time for a system made up of a combination 

of the PMOS lens and the TAG Lens 2.0, assuming 20 different focal length settings are 

needed to evaluate the depth, a single scan point takes approximately 1 ms with this 1 ms 

including the time needed for efficient image processing. Coupled with high speed scanning 

mirror technology, for example, the excelliSCAN mirror from ScanLab [32] having a 280 μs 

positioning time, a 50x50 resolution scan takes less than 2.5 seconds. In addition, 

compressive sensing techniques [33] can be deployed using the proposed 3-D shape sensor 

for sparse sampling zones to further reduce scan times and scan resolution required for 

adequate shape reconstruction. Furthermore, use of a laser line source rather than a laser point 

sampling tip for 3-D shape reconstruction can introduce parallel optical and electronic 

processing and can greatly reduce total scan time.  
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For example, Fig. 2.11(a) shows a proposed laser line source-based 3-D shape sensor. 

The single line is scanned across the 3-D target to acquire multiple 2-D point clouds that are 

stitched together to form a 3-D point cloud. Note that for faster data generation, multiple such 

line-based 3-D shape sensors can be combined to form a multi-line 3-D shape sensor. 

Furthermore, Fig. 2.9(b) shows an inter-line shift method that can be applied to produce a 

high resolution 3-D point cloud. In this method, all lines are shifted to multiple locations 

between a line pitch interval to acquire 3-D point clouds that are combined to produce a high 

spatial resolution 3-D point cloud data set. 

 

 
(a) 

 
(b) 

 
Fig. 2.11. (a) Proposed laser line source-based 3-D shape sensor optical design, and (b) top 

view of a laser line pattern with 4 lines illuminating a target for the proposed ECVFL-

based 3-D shape sensor. 
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Note that all distance sensors such as OCT [12], chromatic confocal [14] and WLI 

[11] have measurement uncertainties. Given that every system is different, a number of 

factors affect a system’s performance, e.g., OCT is sensitive to laser coherence stability and 

ToF is sensitive to timing jitter in hardware. For the proposed sensor experiment, there are 

also various sources of measurement uncertainty. Commercial ECVFLs such as Optotune 

EL-10-30 containing optical fluids are affected by temperature changes, which result in the 

focal length versus drive current calibration curves to vary over time. The axial resolution of 

the 3-D shape sensor is affected by a number of parameters. Fundamentally, it is limited by 

the by λ/4 Rayleigh criterion based focal depth resolution. However, the finite-sized current 

step of the ECVFL, the difficulty of camera image-processing algorithms to identify the 

image containing the smallest spot and the drifting of the ECVFL calibration curve over time 

affect measurement uncertainty. To reduce measurement uncertainties, both hardware and 

software robustness need to be developed. However, also note that the proposed 3-D shape 

sensor acquires each depth value for a focal length setting which focusses the beam to the 

smallest possible diffraction limited (and aberration reduced) sampling tip over the complete 

depth range, i.e., at every depth location, the sampling spot that used is the smallest possible. 

Prior-art 3-D sensors do not provide this capability over the 4 cm depth range demonstrated 

for the proposed sensor.  

The proposed 3-D shape sensor can be optimised for targets having varying degrees of 

optical reflectivity. For example, smooth target surfaces result in minimal scattering of the 

target illuminating laser spot. Difficulty in viewing laser spots striking such surfaces can be 

overcome by increasing the optical irradiance sensitivity parameter of the deployed camera 

sensor. Furthermore, noting that the sensor takes depth readings corresponding to the smallest 

focussed spot incident on the target, the high optical power density as well as spatial 

frequency spectrum of the focussed beam spot increases optical scattering [34], thereby 

increasing the spot’s likelihood of being imaged by a sensitive camera. 
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2.4 CONCLUSION 

In conclusion, the design of a novel 3-D shape sensor having high transverse 

resolution, single viewing axis and computer controlled 3-D spatial scanning is proposed and 

successfully demonstrated. Due to its unique in-line single view point design, and high 

transverse sampling resolution enabled by variable aperture-based input beam diameter 

control of focusing beam and ECVFL-based beam focus/defocus control, the proposed shape 

sensor is suitable for a variety of applications from 1-D borehole depth reconstruction to 2-D 

high resolution imaging to 3-D complex object reconstruction. This versatility and 

adaptability to different scenarios makes the proposed 3-D shape sensor an all-in-one device 

for micro-scale to macro-scale sensing applications. The use of a single laser spot for spatial 

sampling limits the operational speed of the proposed sensor and smart programming of scan 

regions is required to reduce scan times based on the user’s specific needs. Future work 

involves using a laser line source instead of a single laser point to introduce parallel 

processing and decrease shape sensing processing time. 
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CHAPTER 3 

 

SMART OPTICAL SHAPE SENSOR USING ELECTRONICALLY 

CONTROLLED LENS AND  

LASER LINE ILLUMINATION SCANNING2 

 

3.1 INTRODUCTION 

Light-based provides 3-D shape sensing with high spatial resolution and remote 

access with minimal physical contact affects. Applications for optical 3-D sensors include 

industrial manufacturing, cultural heritage preservation, medical and aerospace inspection, 

tracking systems, and position sensing [1-9]. Optical 3-D shape sensors have advantages and 

disadvantages based on particular application scenarios [10, 11]. Over the years, we have 

proposed and demonstrated the use of the ECVFL for several applications ranging from 

distance measurement [12-15], surface profiling [16], biological microscopy [17], vision 

testing [18], optical wireless [19], microwave signal processing [20], fibre-optic attenuation 

[21], laser beam analysis [22], optical beam steering [23], and others [24]. Specifically, in 

[15] it is introduced and demonstrated an ECVFL-based 3-D optical shape sensor that used 

laser point scanning to 3-D map objects with irregularities in shape that are difficult to 

measure using common shape sensor techniques. A feature of the ECVFL-based method is its 

optimized high transverse resolution for all target depths as well as the use of low temporal 

bandwidth signal processing (i.e., avoids high temporal bandwidth processing needed in laser 

radar-based distance sensing). However, the shape sensor described in [15] is limited in speed 

as it is based on laser point scanning to map an object 3-D shape contour. To improve the 

proposed optical shape sensor speed, in this chapter we propose and demonstrate a novel 

optical 3-D shape sensor design that combines the ECVFL with a scanning laser line 

illumination used along with line thickness measurement image processing. This single 

viewing optical axis sensor is designed to provide a high transverse resolution for all the 

target distance values within the sensor working depth range. This chapter describes the basic 

                                                 
2 J. P. La Torre, B. Bornemann, and N. A. Riza, “Smart optical shape sensor using electronically controlled 

lens and laser line illumination scanning,” IEEE Sensors Journal, vol. 17, no. 4, pp. 1005-1012, (2016). 
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principles of the proposed sensor, showcasing experimental results that demonstrates the 

improved sensor performance including a faster speed of operation. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
Fig. 3.1. (a) Proposed optical design of a single viewing axis laser line illumination 

based 3-D shape sensor. (b) Proposed camera module design used for image 

acquisition. (c) Camera module optical ray diagram. 
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3.2 PROPOSED LASER LINE BASED 3-D SHAPE SENSOR DESIGN 

Figure 3.1(a) shows the proposed 3-D shape that uses a laser line module (LLM) as 

the light source. The LLM arrangement contains a point laser source (diode) and a cylindrical 

lens of focal length Fc that is responsible for focussing the laser light along one dimension 

(e.g., transverse y-direction) in free-space to form a line illumination along the x-direction. 

This laser line illumination propagates along the z-direction. The light from the LLM passes 

through the ECVFL having an electronically controlled focal length Fe. Next, the light after 

the ECVFL travels through a Beam Splitter (BS) which divides the light optical path into two 

directions namely, the x-direction and the z-direction. Light along the z-direction propagates 

to strike the target object. The line shaped illumination falling over the target object is imaged 

by an on-axis camera module through the BS. The sensor is calibrated to work over a 

working distance defined as hR. The LLM, ECVFL and camera module are mounted on an x-

y motion motorized stage, with all these components interfaced to a Personal Computer (PC) 

having dedicated software for the sensor controls. In our prior works, a single laser spot was 

used as the sensing probe [12-15]. Using the same basic principle of light focusing for a line 

illumination, the width diameter 2wdiff of the line illumination on the target plane is given by 

[14, 25]: 


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where λ is the laser source wavelength and Dc is the input beam diameter at the entrance of 

the cylindrical lens. As the ECVFL with the LLM cylindrical lens forms a two-lens imaging 

system, its net focal length Fnet is given by [14,26]: 

,
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FFF
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where ds is the distance between the ECVFL and the LLM cylindrical lens. The 2wdiff value 

dictates the 3-D sensing transverse resolution Δy along the y-direction. The x-direction 

transverse resolution Δx of the sensor is dictated by the pixel pitch of the deployed image 

sensor viewing the laser line illumination. In addition, fundamentally, the axial resolution of 

the 3-D shape sensor is limited by the Rayleigh axial resolution limit d of the focusing beam 

given by [12]: 
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Figure 3.1(b) shows the proposed design of the camera module used in the 3-D shape 

sensor. An imaging lens L with a focal length F, a camera aperture labeled as SFC having 

diameter DA, and an imaging sensor chip constitute the camera module. The distance from the 

imaging sensor to L is denoted as di, d3 is the distance from L to the BS, and d2 is the distance 

from the BS to the edge of the sensor module. Acceptably sharp images of the target 

illuminated laser line are necessary over all the depth values within the sensor working range. 

Hence F and DA camera parameters need to be chosen carefully to allow a sufficient Depth of 

Field (DOF) interval value which will guarantee sharp in-focus subjects within the designed 

camera DOF. A detailed view of camera imaging lens operation is illustrated in Fig. 3.1(c) 

where the optical ray diagram is shown. F is the lens L focal length, DA is the lens aperture 

diameter, do is the lens to object distance, and di is the lens to image distance. Onear is the 

point on the optic axis on the object side representing the near limit of the DOF. Ofar is the 

point on the optic axis on the object side representing the far limit of the DOF. Ifar and Inear are 

the points on the optic axis on the image side that are the images of the points Onear and Ofar 

respectively. don is the lens to Onear distance while dof is the lens to Ofar distance. dif  is the lens 

to Ifar distance, and din is the lens to Inear distance. Ci is defined as the permissible diameter of 

the blur circle formed on the imaging sensor in order for an object to be considered 

sufficiently in focus while Co is the corresponding (conjugate) diameter in the object space. 

In Fig. 3.1(c) the shaded grey region on the object side represents the extent of the DOF. 

Using geometry, the DOF equation which is used to determinate the camera parameters is 

written as: 
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The detailed and rigorous derivation of Eqn. (3.4) is fully described in [15]. Note that 

the Eqn. (3.4) expression represents the DOF of the camera module, and not the DOF of the 

target illuminating beam. Additionally, to correctly design and verify the camera parameters 

involved, the thin lens equation is used which is defined as [26]: 

,
111

io ddF
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and following Eqn. (3.5), the imaging system magnification factor M is defined as [26]: 



- 41 - 

 

.
o

i

d

d
M        (3.6) 

 

To compute the sensor working distance hR, the classic ray-optics thin lens imaging 

Eqn. (3.5) and the Fnet Eqn. (3.2) are deployed for the two-lens system (see Fig. 3.2(a)) 

formed by the LLM and ECVFL. In Fig. 3.2(a), the point P is the back-projected laser virtual 

point source seen inside the LLM. The combined cylindrical lens-ECVFL lens system 

performs the thin-lens imaging operation between the target plane and the back-projected 

point P. By applying Eqn. (3.5) for the cylindrical lens Lc, one can write:  

,
111

icocc ssF
       (3.7) 

where so=soc is the lens-object distance and si=sic is the lens-image distance. Rearranging Eqn. 

(3.7) gives: 
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Fig. 3.2. (a) Side view ray optics diagram of the ECVFL and LLM cylindrical lens Lc based 

two lens system. TP: Target Plane. (b) Laser line illumination behavior due to different 

ECVFL focal length values. In this illustration, the optimum ECVFL value for is given by 

Fe,0. 
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Using geometry, the ECVFL object distance soe is: 

.icsoe sds        (3.9) 

Inserting Eqn. (3.8) into Eqn. (3.9) gives: 
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Next, using Eqn. (3.5) for the ECVFL gives: 
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where si=sie is the ECVFL-image distance. Rearranging Eqn. (3.11) gives: 
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Inserting Eqn. (3.9) into Eqn. (3.12) gives: 
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Next, inserting Eqn. (3.8) into Eqn. (3.13) gives: 
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Rearranging Eqn. (3.14), one can write: 
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Using Eqn. (3.15), the working distance h measured from the edge of the shape sensor 

module to the target is given by:  
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where from Fig. 3.3 the distance d1+d2 is the distance between the ECVFL and the edge of 

the shape sensor module. sie from Eqn. (3.15) is substituted into Eqn. (3.16) giving: 
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Using Eqn. (3.17) and Eqn. (3.18), the sensor distance range hR is: 
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Note that sie> d1+d2 so that the targeting beam is outside the sensor enclosure. As a 

sensor design example, consider the following optical design parameters to compute hR, i.e., 

soc = 3.13 cm, Fc = 2.7 cm, ds = 2 cm, maximum ECVFL focal length Fe-max = 12.5 cm, 

minimum ECVFL focal length Fe-min = 6.4 cm. In this case, hR = 4 cm. 

To determine the proposed shape sensor’s depth control sensitivity Δh, one can write: 
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where ΔFe is the step change in Fe introduced by changing the current i applied to the 

ECVFL, and dh/dFe is obtained by differentiating the Eqn. (3.17) expression with respect to 

Fe. Note that depending on the ECVFL device technology, its ΔFe is limited by the device’s 

opto-electro-mechanical characteristics plus its electronic driver’s current resolution Δi which 

in turn limits the Δh of the sensor. Finally, as previously mentioned, the sensor cannot 

spatially resolve a target depth change if it is smaller than the Rayleigh axial resolution limit 

of the focusing beam. 
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Figure 3.2(b) illustrates the working principle of the laser line illumination based 3-D 

shape sensor. The laser line illumination width varies with the ECVFL’s Fe. This changing 

line illumination width is observable along the y-direction using the sensor camera. In 

particular, the laser line illumination width control is done by changing the ECVFL drive 

current i, or voltage, within the admissible ECVFL’s operational range. Different Fe values 

correspond to different depth distances h. An optimum Fe value (and its relevant current i) is 

one that returns the thinnest illumination line on the camera while tuning the ECVFL Fe. 

Thus, using the sensor calibration map of h versus i, the measured optimum i value provides 

the target depth h value within the working range of the sensor as also successfully 

demonstrated in [12-15]. 

 

3.3 EXPERIMENT 

A detailed view of the experimental design is given in Fig. 3.3. The distance from the 

LLM’s edge to the ECVFL’s center is d0, the distance between the ECVFL’s center to the 

BS’s center is d1, and the distance between the BS’s center to the edge of the sensor module 

is d2. The sensor module is mounted on an x-y motorized platform designed to cover up to a 

400 mm × 400 mm scan area. A 5 mW ProPhotonix model 3D Pro laser is used as the LLM 

and has a λ = 660 nm [27]. For this LLM, the approximate parameters are: soc = 3.13 cm and 

Fc = 2.7 cm. An Optotune EL-6-18 lens [28] having a aperture diameter Ds of 6 mm is used 

as the ECVFL. The ECVFL is current i controlled by the PC through its corresponding USB 

lens driver interface from Optotune. The BS used is a Thorlabs model BS013. The parameter 

distances in the experiment are ds = 2 cm, d0 = 1.54 cm, d1 = 2.6.5 cm and d2 = 2.84 cm. The 

designed working range value of hR = 40 mm is adequate to scan the 3-D samples used in the 

experiments. This is consistent with the design example discussed in the previous section. Do 

note that as described in [14], by using an appropriate bias lens within the targeting system, 

the sensor working range can be further extended. The lateral transverse motion of the sensor 

module in the x-y plane is achieved using two stepper motors. The model P700 from 

Astrosyn driver card for the motors is controlled by a STM32F4 microcontroller from 

STMicroelectronics. The chosen steps of 2 mm resolution of the motors is sufficient to 

characterize the objects under test. The motors require in average 2 seconds to be relocated in 

a different scan position in the x-y plane. The CMOS sensor chip model UI-1250LE-M-GL 
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[29] used in the camera module is provided by IDS. The CMOS chip’s active sensor area is 

8.5 mm × 6.4 mm with a pixel size p of 5.3 µm and pixel count of 1600 × 1200 pixels. 

 

Equation (3.4) is employed to evaluate the theoretical DOF value; thus, parameters 

involved in the camera design need to be chosen in order to guarantee the DOF constraint 

plus an acceptable focus quality within the designed 40 mm range. In Fig. 3.1(c), DA = 1 mm, 

considering the experimental lighting conditions and target sample surface reflectance 

properties. The L used has F = 50 mm, d2 = 28.4 mm, d3 = 111.6 mm, and the object distance 

do = 160 mm, with do = d2 + d3 + h/2, where h/2 is the mid range working distance value. 

Substituting do and F in Eqn. (3.4), di = 72.7 mm. Considering a blur circle Ci of 80 µm and 

using the formula in Eqn. (3.3), the resulting DOF range is equal to 58.12 mm, a value that 

guarantees the correct operation of the 3-D shape sensor in the designed working range hR of 

40 mm. The experimental Field of View (FOV) for the camera module is determined by the 

distances used in the optical design, i.e., the lens L focal length and the CMOS imaging 

sensor chip active area. For the proposed 3-D shape sensor, the experimental FOV along the 

x-direction FOVx at the longest working distance range plane of dh0 = 180 mm is calculated 

as follows. The imaging sensor along the line direction has a pixel count of 1200. Knowing 

 
 

    (a)      (b) 

 
Fig. 3.3. (a) Experimental setup and (b) view of the proposed 3-D shape sensor using a 

laser line illumination. 
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the imaging sensor pixel size p, the sensor dimension is equal to 1200×5.3 µm = 6.36 mm. 

Using Eqn. (3.5), the FOVx value is calculated as: 
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x 16
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
 .   (3.22) 

Note that if required, the camera optics can be designed to cover a wider FOV. In Fig. 

3.4 it is shown a flow chart that highlights the constraints in the design as described 

previously.  

 

 

 

 
 

Fig. 3.4. Flowchart diagram for that shows the relationship among the designed working 

range hR, DOF, and FOV.  
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The sensor system is programmed to operate along with an in-house software Graphic 

User Interface (GUI) developed in C++/CLI language which controls in real-time the 3-D 

shape sensor operations. The GUI is responsible for synchronization operations and interprets 

the commands that are sent to the ECVFL from the lens driver controller. The GUI also 

manages the communication between the microcontroller and the motors and implements the 

designed image processing algorithm. 

The minimum laser line illumination width is dictated by the optimum Fe value which 

is linked to the current i applied to the ECVFL. Given a laser line illumination spread along 

the x-direction (row direction) as shown in Fig. 3.5(a), it is possible to determine a net 

irradiance value for a row of pixels in the image. This operation is done by adding the 

individual optical irradiances of each pixel in a row. Figure 3.5(b) shows an example 

irradiance distribution for the case of focussed and unfocussed illumination lines. Note in 

particular how a focused laser line translates into a sharp peak intensity profile. The measured 

profile intensity data experimentally obtained is used to measure the line illumination width. 

Figure 3.5(c) shows the result obtained with the described method. Similar results are 

obtained during the calibration training phase of the sensor over the experimental working 

distance. The average laser line illumination width wpx value is 20 pixels in the CMOS 

sensor. Using Eqn. (3.6) and the distances involved in the optical design, M at the mid range 

working distance is computed as M = -di/do = -(72.7 /160) = -0.454. Knowing M and by 

multiplying the imaging sensor pixel pitch size p with the line illumination width size in pixel 

unit wpx, the line illumination width value wL at the mid range working distance plane is 

computed as: 

,233
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which is the experimental line illumination width value at the mid range working distance. 

This value represents the experimental transverse resolution along the y-direction of the 

proposed 3-D shape sensor. 
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Fig. 3.5. (a) Laser line illumination width camera snapshot for an unfocused (left) and a 

focussed (right) beam. (b) Laser line illumination intensity versus CMOS sensor pixel 

location along y-direction for an unfocused (dotted line) and a focussed (solid line) laser 

line beam. (c) Experimentally measured laser line thickness (in CMOS sensor pixel count) 

versus ECVFL drive current for a given depth hi = 10 mm. (d) Laser line illumination 

falling over a cube shaped object. (e) Laser line illumination divided in n segments. 
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The line illumination scenario shown in Fig. 3.5(a) occurs only when the target depth 

profile is uniform along the line direction. A typical scenario could be the one shown in Fig. 

3.5(d) where the laser line illumination falls over an object having different heights with 

respect to the base of the target plane. In such scenarios, the laser line is programmed to have 

a minimum line width only in a portion of the overall laser line for a single ECVFL value Fe. 

As shown in Fig. 3.5(e) scenario, the illumination line is divided into n segments representing 

n independent illumination lines. This is done in order to individually evaluate each line 

segment. According to the object depth h, the n-th segment will have a unique line 

illumination width with respect to a particular ECVFL focal length. The tuning operation of 

the ECVFL Fe focal length affects all the n segments at the same time. Nevertheless, the 

recovery of the optimum Fe values for each segment is still possible, by observing the line 

width illumination behavior at each segment independently. As mentioned earlier for Fig. 

3.5(a), the line irradiance estimation operation along the x-direction was performed over the 

entire line length. For Fig. 3.5(e), the line irradiance estimation along the x-direction is 

performed only for the length of a given segment. This is done so one finds n optimum Fe 

values corresponding to the thinnest line segment. Knowing the corresponding optimum Fe 

values for each segment and using the calibration map obtained for the 3-D shape sensor, the 

depth information for each segment can be found. The value n needs to be chosen carefully 

according to the experimental conditions. Not only is n related to an increase in algorithm 

complexity, it is also sensitive to optical speckle. Specifically, when a laser light interacts 

with the target surface, optical speckle is created and recorded by the imaging sensor. An 

improper value of n negatively effects the line width evaluation due to the contribution of the 

coherently scattered light. For the experiment different values of n were considered to 

establish an n value that offers the best compromise in terms of depth measurement error and 

sensor performance for the adopted working range. A value of n = 16 was used in algorithm 

implementation. The n value also dictates the experimental transverse resolution along the x-

direction which is also correlated to the camera field of view. With the experimental 

parameters settings used, the transverse resolution along the x-direction is experimentally 

shown to be equal to 1 mm. 
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By experimentally compiling the 3-D sensor calibration map over the full designed 

working range using the optimum Fe values, the Fig. 3.6 sensor calibration curve is obtained. 

The calibration points are acquired with a resolution of 2 mm in depth covering the complete 

designed 40 mm depth range and a best line fit is drawn through the points. With the 

calibration map available it is possible to pursue the line scanning operation of the entire 3-D 

target placed on the target plane. For a given x-y location, a series of images are acquired 

while sweeping through the ECVFL Fe over the desired depth range. Once the Fe sweeping is 

complete, the image processing algorithm evaluates all the images captured and extracts the 

laser line illumination width data (i.e., for all n segments). As mentioned earlier, the 

minimum width dimension extraction relative to the n-th segment is performed considering 

the optimum Fe value for each segment. Finally, the optimum Fe values obtained are 

evaluated using the calibration curve, thus obtaining the target depth value for the considered 

x-y location for each line segment. This process is repeated for a number of x-y positions 

using the programmed x-y motors step resolution to scan the object over the entire x-y plane. 

The accuracy of the calibration method for this experiment is dictated by factors such 

as the stability of the ECVFL optical and electrical properties over its focal length range, the 

optical spatial stability of the line illumination, the mechanical stability of the 2 mm step 

change motion stage, image corruption due to speckles in the observed illumination line, and 

ultimately the signal processing quantization noise in the image processing algorithm. 

 

 

 
 

Fig. 3.6. Experimental calibration depth h versus ECVFL drive current i for the designed 

40 mm depth range. Raw data (dots) and the best fit curve (solid line) are shown. The 

curve fitting operation was performed using MATLAB. 
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Several test scans were made to evaluate the performance of the proposed sensor. 

Shown in Fig. 3.7 (a) is an abstract representation of the cube deployed in the experimental 

demonstration. Figure 3.7(b) shows the delrin material object having two heights of 1 cm and 

2 cm and Fig. 3.7(c) shows the profile obtained using the 3-D shape sensor with a 5 mm x-y 

motor step resolution. All the measurements obtained were within ±2 mm with respect to the 

actual target depth, giving an error of less than 5% in the designed working range. Figure 

3.8(a) shows a delrin material object having a stair-case shape with 4 levels and a step height 

of 10 mm. The four different levels are at heights of 10 mm, 20 mm, 30 mm, and 40 mm. To 

3-D map the entire object, a 5 mm x-y motor step resolution is chosen. Experimentally a 

worst case ±2 mm depth measurement deviation (see Fig. 3.8(b)) compared to the actual 

target height values is observed. Again, the depth measurement error is < 5%. Next the shape 

sensor is used to map a delrin object material having a narrow crevice of 7 mm width and 15 

mm depth.  

 

 
Fig. 3.8. (a) Staircase sample delrin block having 10 mm, 20 mm, 30 mm, and 40 mm 

height for each step respectively. (b) Complete object 3-D profile obtained with proposed 

3-D shape sensor. 

 
Fig. 3.7. (a) Abstract representation of the two cubes deployed for the experimental 

demonstration (b) Sample delrin block made by two cubes having 1 cm and 2 cm heights, 

respectively. (c) 3-D profile obtained with the proposed 3-D shape sensor. 
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As shown in Fig. 3.9(a), the crevice is custom manufactured inside a solid block 30 

mm tall and 15 mm wide. Using the shape sensor in the 3-D scanning mode, a total of 26 

individual scans are obtained, in other words, using n = 16, 416 individual data points. The 

reconstructed 3-D object (see Fig. 3.9(b)) gives a worst case ±2 mm deviation from the actual 

target depth values, giving a less than 5% deviation error within the 40 mm designed depth 

working range. For visualization purposes a cut-section along the widest direction of the 

object is presented in Fig. 3.9(b) where the narrow crevice in the object is highlighted. 

Next, examined is the proposed sensor speed performance when compared to our ref. 

15 single laser spot scanning based 3-D sensor. In both sensors, the processing time depends 

on three factors, namely, the ECVFL settling time, the transverse motor step scan size and the 

laser line illumination width measurement algorithm execution time. The algorithm 

processing time is dependent on the PC processor power. This processing time for most 

modern electronics can be considered to be fast (near real-time) since the functions 

performed in the algorithm are not computationally demanding. For sake of simplicity, the 

time required to re-position the sensor using the motors in a new scan point can be excluded 

for both sensors comparison. This is appropriate since both sensors have the same motor 

configuration, therefore same re-positioning time. Regarding the ECVFL, it is necessary that 

before acquiring a laser line snapshot with the camera module, one allows a safe settling time 

for the device. The optical fluid contained in the Optotune ECVFL needs an average of 10 ms 

for this ECVFL model to adjust its position from a different current setting. For instance, the 

ECVFL can be programmed to operate using 100 distinct Fe values in the designed working 

 
 

Fig. 3.9. (a) Sample having a narrow crevice with a 15 mm depth and 7 mm width. (b) 

Partial cut-section 3-D profile reconstruction using the laser line shape sensor. 
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range. Therefore, allowing a total of 50 ms for the camera module to capture the image and 

sweeping the Fe for a total of 100 values implies an acquisition time of 5 seconds for each 

motor position. In the Fig. 3.9(a) target sample case, 26 scans are made to cover the entire 

target which takes about 2 minutes. With respect to ref. 15 where a different ECVFL, model 

EL-10-30 by Optotune, having 15 ms settling time was used, 10 seconds were required to 

cover a single depth scan position. Excluding the time for the motor to reach a different 

position, mapping the entire object with a single sampling laser spot implies an execution 

time of over 60 minutes. That being said, the improvement introduced with this new approach 

is significantly consistent, rated as 16 points per second versus 0.3 points per seconds, in 

other words, a 53 times per-point acquisition time improvement in terms of speed 

performance versus the ref. 15 3-D shape sensor. This time can be further improved by using 

commercially available high speed motorized x-y stage having faster re-position time. For 

instance, the ILS-LM Motor series by Newport provides motors having up to 500 mm/s 

maximum speed [30] compared to the 1 mm/s motor speed used in the described experiment. 

For the proposed sensor, the limitations are mainly related to the inevitable speckle 

that is generated when a laser light source interacts with the target material. An excess in 

speckle complicates the correct determination of the minimum line width. The solution for 

this problem is to use an optical diffuser with moving components to average out the 

unwanted effect [31, 32]. For example, Optotune manufactures a controllable laser speckle 

reducer that can be easily integrated in the proposed optical design such as the LSR-3010 

model [33]. Improvements can also be made in the image processing algorithm 

implementation. Note that for a given ECVFL focal length setting, the proposed algorithm 

computes the smallest possible diffraction limited (and aberration reduced) width of the 

illumination line for every given depth h of the target object within the designed working 

range. Therefore the use of an efficient and robust image processing evaluation algorithm that 

incorporates speckle reduction is key for minimizing experimental depth errors for the 

proposed 3-D shape sensor. Additionally, the development of efficient algorithms that are 

able to interface continuously with the scanning object and with the motor movement 

position can significantly improve the scanning time.  
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3.4 CONCLUSION 

In conclusion, proposed and demonstrated is the design of a novel single viewing axis 

laser line illumination based 3-D shape sensor that uses an ECVFL combined with line shape 

image processing to provide high transverse resolution imaging. The use of the laser line 

illumination scan method allows parallel target shape depth processing which results in an 

experimentally demonstrated 53 times per-point acquisition time improvement with respect to 

our previously demonstrated single laser point scanning based 3-D shape sensor. The sensor 

is deployed to successfully map objects having steep slope surfaces as well as internal 

cavities, such as crevices having narrow openings. The average experimental measurement 

error is computed to be less than 5% within the designed sensor working range of 40 mm. 

Speckle reduction strategies implementation as well as efficient decisional algorithms can 

further improve the performance of the proposed 3-D shape sensor. The proposed sensor can 

be deployed where traditional 3-D shape sensor techniques have limited performance due to 

off-axis placement constraints or where costs should be minimized without sacrificing 

imaging transverse resolution. 
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CHAPTER 4 

 

SMART ART DISPLAY  

PROJECTION SYSTEM3,4 

 

4.1 INTRODUCTION 

Displaying information is an integral part of the modern world of entertainment, 

education, medicine, augmented reality, automotive, advertising, and art installations [1-3]. 

Front projection systems are often required for these mentioned applications. The most 

popular front projection display technologies include Laser Scanning Displays (LSDs) [4], 

Liquid Crystal Displays (LCDs) [5] and Digital Light Processing (DLP) technology displays 

using a Digital Micromirror Device (DMD) [6]. Advantages of the LSD based solution over 

the LCD and DMD based projection display solutions are the improved depth of focus, 

contrast ratio and bright colour generation. One common limitation associated with current 

front projection technologies such as the market dominant LCD/DMD based projectors is 

their basically fixed in-focus projection distance within a fixed projected spatial frame. 

Specifically, there is image blurring and image distortion if the screen distance is not located 

within the depth-of-focus of the deployed projection imaging lens. To counter these depth-of-

focus limitations, one can deploy the classic LSD technology to create variable range in-focus 

variable frame projection. But this LSD technology also has its fundamental limitations. 

Specifically, as the projection distance varies, the pixel size in the projected image also varies 

resulting in a degradation of picture viewing quality, particularly for increasing screen 

distances. Furthermore, both LSD and LCD/DMD based projectors cannot operate with 

multi-depth conformal surface screens where they create severe projected image distortion.  

In this chapter, proposed for the first time is the Smart Art Display that aims to 

address the need for a front projection technology that will allow for non-distorted projection 

onto a multi-distance 3-D conformal surface [7]. In 2011, Prof. Riza’s research group has 

demonstrated the basic principles of a smart LSD for 2-D projection that deployed an ECVFL 

                                                 
3 J. P. La Torre, N. Mayes, and N. A. Riza, “Smart art display projection system,” in Photonics Ireland, 

Ireland, (2017).  

4 J. P. La Torre, N. Mayes, and N. A. Riza, “Laser display system for multi-depth screen Projection 

Scenarios,” Applied Optics, (under review), (2017). 
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to produce the smallest focused beam spot size possible at a specified 2-D screen location, 

allowing for an improved variable screen distance range with minimal reduction in display 

spatial resolution and image quality [8]. In 2013, a further step was made by conducting 

another proof-of-concept study using an ECVFL-based LSD that showed a 2-D screen 

variable distance range of up to 800 cm with a laser spot (image pixel) radius of less than 1 

mm over the variable screen distance range [9]. This chapter extends the smart LSD work 

idea. In fact, designed and tested is a first fully automated Smart Art Display for multi-depth 

screen applications such as found in artistic scenarios so the laser spot size and location is 

optimized for best artistic viewing with the 3-D multi-depth conformal screen. Additionally, 

the proposed system design incorporates a novel built-in embedded depth sensor for 3-D 

mapping of the screen projection surface to enable adaptive control of projected laser spot 

(pixel) to suit the specific screen distance for best artistic effects. 

 

 

 

 
 

 
Fig. 4.1. Example projection scenarios using a dual-depth screen and various projection 

technologies such as (a) Standard LCD/DLP projector with limited depth-of-focus; (b) 

Classic Laser Scanning Display (LSD) which presents image distortion; and (c) Proposed 

Smart Art Display which produce a high resolution image with no image distortion. 
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4.2 PROPOSED SMART ART DISPLAY PROJECTION SYSTEM 

To appreciate the impact of the proposed projection system, Fig. 4.1(a, b) show the 

limitations of LSD and LCD/DMD-based projection systems when projecting images onto a 

multi-distance screen surface. For the sake of simplicity, a two-level multi-distance 

projection screen scenario is presented in Fig. 4.1 with a near screen surface located at 

distance L1 and the far screen surface located at a distance L2. Figure 4.1(a) uses an 

LCD/DLP projector that shows a clear and sharp high resolution image displayed at the 

location L1 while at location L2 is present an image that is blurred and has lost its sharpness. 

In effect, at the L2 screen distance there is a degradation of the projected image spatial 

resolution with some distortion. These effects are due to the limited in-focus projection range 

known also as the projector’s depth-of-focus. Note that as the separation between the two 

screens increases, the resulting image projection on the far screen will progressively 

deteriorate. For LCD/DMD image projection, the SLM is programmed to spatially modulate 

the incident light falling on its entire surface creating a fixed image frame in the projected 

image. This aspect is also highlighted in Fig. 4.1(a) with a dashed contour area. If a 

projection application such as an artistic scenario requires projection onto a custom shaped 

screen located in brightly lit studio conditions, not only is a powerful light source required to 

power the projector as much light is wasted outside the shaped screen aperture, the projection 

system is also more complex and energy inefficient given laser and electronics cooling 

requirements. To counter some of these issues, Fig. 4.1(b) shows how a LSD has a different 

impact on the multi-depth screen scenario. Namely, the LSD projects only the spatial 

information required for image formation on the custom shaped screen leading to better 

energy usage. In Fig. 4.1(b), it is assumed that the projection optics in the deployed LSD is 

best suited to display a clear and sharp image at a screen located at a distance L1. If that is the 

case, inevitably the projected output image at L2 will be affected by the natural divergence of 

the laser beam used. Shown in Fig. 4.1(c) is the multi-distance projection scenario using the 

proposed Smart Art Display. Notice that at both the near and far planes, the projected image 

is always sharp and in-focus at the same time thus illustrating the power of the proposed 

smart art projection system. Additionally, as with the classic LSD, there is smart and efficient 

usage of light energy since no fixed format image frame is present at the projection screen 

making the Smart Art Display suitable for many artistic 2-D, 3-D and even 4-D (3D plus 

time) scenarios. 
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Figure 4.2 shows the design of the proposed Smart Art Display projection system. 

The design includes the use of a collimated laser beam that is obtained using the combination 

of a Gaussian laser module of wavelength λ, a Microscope Objective MO, a Pinhole P, and a 

collimation lens S. The collimated light passes through a Spatial Filter SF and a two lens 

system configuration consisting of ECVFL1 with F1 focal length and a Bias Lens BL. Finally, 

the light travels from the BL to the x-y scan mirror that is used for projecting the laser beam 

on the x-y plane of the screen. The ECVFL1 drive signal is varied to match the designed 

projection working range h for the given multi-depth screen. ECVFL1 undergoes a focal 

tuning operation which allows the realization of a variable beam spot size at the observation 

screen. For different screen distances, there is an optimum ECVFL1 focal length value that 

produces the highest spatial resolution viewing corresponding to the smallest focussed spot 

size on the screen location. From the observation of absolute changes in spot size using the 

viewing camera, a calibration map that correlates ECVFL1 focal length values versus screen 

distances is obtained implementing a screen distance sensing operation within the display 

hardware [8-10]. Thus the projection of a sharp and in-focus image at a certain known screen 

distance is obtained when this optimum ECVFL1 focal length value is used for the known 

screen distance. With fast focal sweep operations of ECVFL1, projected beam spots (or 

pixels within an image seen by the human eye) can be programmed for a multi-depth screen 

within the designed screen depth range of h. The deployed ECVFL1 is used in a two lens 

system configuration where the combined focal length Fnet is computed as: 

 
 

Fig. 4.2. (a) Side view ray optics diagram of the ECVFL and LLM cylindrical lens Lc 

based two lens system. TP: Target Plane. (b) Laser line illumination behavior due to 

different ECVFL focal length values. The optimum ECVFL value for distance 

measurement is given by Fe,0. 
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where Fb is the Bias Lens BL focal length and ds is the separation distance between 

ECVFL1 and BL. Using a collimated laser beam, one can calculate the distance L from BL to 

the observation screen where the smallest spot will be generated. Starting from the two-lens 

system equation, L can be computed as [11]: 
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A near in-line camera containing ECVFL2 observes the projected laser light spot on 

the screen localized 2-D spatial position. The screen distance L at this localized 2-D spatial 

position is measured within the Smart Art Display hardware that as mentioned earlier 

intrinsically forms an embedded distance sensor. Specifically, the in-line camera images the 

laser beam spot on the screen and by sweeping the ECVFL1 focal length and measuring the 

camera observed spot size, the display measures L. In this case, the camera needs to take in-

focus sharp images of the illuminated laser spot so the camera parameters should be designed 

such that the camera Depth-of-Field (DOF) is sufficient to have in-focus images. The Smart 

Art Display is expected to work with multi-depth screens; hence, ECVFL2 is placed inside 

the camera module to provide a larger camera DOF. For 3-D screen contour mapping of wide 

conformal surfaces, the deployed camera must have a wide enough field of view given the x-

y scan mirrors are engaged to scan the laser spot over the 3-D multi-depth screen platform.  

 

4.3 EXPERIMENT 

The proposed Fig. 4.2 Smart Art Display prototype system is implemented with a 15 

mW Melles Griot laser beam of wavelength λ=632 nm which is collimated using a 10X 

magnification MO, a 10 µm pinhole P, and a 20 cm focal length lens S. SF has a 4 mm 

aperture diameter Ds which limits the incident light aperture on ECVFL1 which is a model 

EL-6-18 from Optotune with a 6 mm clear aperture diameter. The focal length of ECVFL1 is 

controlled by an Optotune electrical lens driver which is connected to the controller. The BL 

has a focal length of 20 cm and is positioned at a distance ds=12 cm from ECVFL1. The x-y 

scan mirror is the GVS002 scanning galvo system from Thorlabs with independent x-scan 

and y-scan mirrors. Each mirror’s angle orientation is controlled by an electrical signal that is 
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provided by a Data Acquisition (DAQ) Card model 6211 from National Instruments. The 

Smart Art Display uses a near in-line embedded camera module for distance sensing. The 

imaging lens used within the camera module is labelled as ECVFL2 and is model EL-10-30 

from Optotune with a clear aperture diameter of 10 mm. The ECFVL2 focal length is also 

controlled using an Optotune electrical lens driver controller. ECVFL2 is positioned at a 

distance di=8.33 cm away from the CMOS sensor chip. To implement the imaging condition, 

the classical thin lens equation is used to design the ECVFL2 focal length for a given screen 

distance within the experimental projection range h of 65 cm. 

 

Figure 4.3 shows the screen distance versus ECVFL1 drive current calibration dataset 

(shown as dots) for a designed 65 cm range h. Each dot corresponds to the ECVFL1 current 

when the smallest laser spot was recorded on the CMOS sensor chip surface placed at a test 

screen location. The scanning galvo, DAQ card, ECVFL1, and camera module (including 

ECVFL2) are connected to a processor that controls the entire display operation. A 

MATLAB Graphic User Interface (GUI) is implemented to control beam spot size as well as 

beam scans to generate desired graphics display on a given multi-depth screen.  

Shown in Fig. 4.4 is a text sample output displaying information using 2 different line 

thicknesses. This indicates how an artist using this display can optically draw with changing 

laser pen widths depending on the application. Here the shown view size is 6 cm height by 11 

cm width, and the information is displayed on a flat screen. 

 
 

Fig. 4.3. Smart Art Display embedded distance sensor calibration data of localized screen 

distance L versus ECVFL1 current when observing the smallest laser spot on the projection 

screen that is covering a projection screen depth variation of h=65 cm. 
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Figure 4.5 shows the true Smart Art Display potential when compared with standard 

LCD/DMD based projectors. For the experimental demonstration, a Dell DLP projector 

model 2300-NP is used. Two circle shapes of identical geometrical dimensions are projected 

using the DLP projector onto a multi-distance screen with screen 1 located at L1=20 cm and 

screen 2 located at L2=70 cm. Fig. 4.5(a) shows the snapshot of the viewed scene (13 cm 

height by 15 cm width) created by the DLP projector. At the same time, two target letters are 

 
 

 
 

Fig. 4.5. Multi-distance screen projection test for two side-by-side screens with front screen 

L1 located at 20 cm position and back screen L2 located at 70 cm depth position. Projected 

circle images are shown using (a) Standard DLP Projector and (b) Smart Art Display. In (b) 

shown is the laser beam spot compensation operation for the projected circle shape using 

the Smart Art Display that results in a non-distorted sharp and high resolution image 

projection at both L1 and L2 show casing the power of the Smart Art Display. 

 
 

Fig. 4.4. Two sample “CAOS” lettering projections produced using two different laser pen 

thicknesses for text writing. Shown are also various pen thicknesses. 
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positioned at the screen distances L1 and L2 and are used to show that the viewing camera 

used to obtain the Fig. 4.5(a) snapshot has a sufficient depth-of-field as both target letter 

“A”’s are in focus. Fig. 4.5(a) shows that while the DLP projector created circle image 

projected at L1 is clear and sharp, the circle projected at L2 is not only out-of-focus and 

blurred but larger in size. This is because of the limited in-focus projection range of the DLP 

projector. On the contrary, when deploying the Smart Art Display in a similar scenario, these 

problems are eliminated. To project the circle shape at L1, a suitable ECVFL1 focal length 

value is used to display a clear and sharp projection image output. At the same time, the 

projected in-focus circle image at L2 due to the uncompensated Smart Art Display results in a 

bigger size image as the same settings for the galvanometer mirrors angles are used creating a 

lower resolution image as the laser spot has been optimized for L1 and not L2. However, with 

the proposed Smart Art Display, it is possible to control both image distortion and image 

resolution for projection over a multi-distance screen distance using electronically 

programmable optical components. This image distortion compensation operation is also 

shown in Fig. 4.5(b) where the circle displayed at L2 is compensated using an optimized 

focal length value. In other words, the in-focus undistorted human eye-based visualization of 

both circles is possible having the best resolution although located at different multi-distance 

screen depths. This optimized observation of images on a multi-depth screen can be 

performed by providing synchronization of the elements involved, the knowledge of the 

screen localized depth data, as well as by use of a sufficient fast focal sweep of the ECFVL1 

focal length value. Finally note that in Fig. 4.5(b), the compensation operation not only takes 

care of the output image resolution but it also adjusts the geometrical dimensions of the circle 

shape located at L2 to be comparable to the geometrical dimension at L1. In fact, depending 

on observer’s view point, different visual effects for different applications can be obtained by 

control of both the ECFVL1 as well as the galvo mirrors.  

As mentioned earlier, at the start of the Smart Art Display operations, a 3-D depth and 

contour map of the deployed multi-depth screen should be conducted. To achieve this 

operation, for a localized screen depth position, ECVFL1 is tuned to generate the smallest 

spot viewed by the camera with ECVFL2 focal length tuned to observe an in-focus image of 

the spot. Such observed spot is subject to image processing and then screen depth calculation 

using a prior recorded ECVFL1 current versus L calibration curve. For the proposed 

experiment, an evaluation test for 7 different screen distances is performed. with actual L 

values of 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, 65 cm, and 75 cm. An algorithm based on 
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small spot detection evaluated the spot size change for each ECVFL1 focal length tuning 

operation. The optimum focal length value corresponding to the smallest spot was obtained, 

and using the calibration map of ECVFL1 current versus the distance L (Fig. 4.3), the 

estimate of the screen distance L is computed. The experimental values obtained for this test 

with the embedded distance sensor were 12.8 cm, 24 cm, 34 cm, 42 cm, 53 cm, 63 cm, and 

71 cm with a measurement error that increased with L. As we have shown, distance sensing 

methods based on single spot size observation have limitations if a non-robust image 

processing algorithm is used [9]. However, better methods can be deployed to increase the 

distance sensing performance in the proposed display such as by using multi-image 

acquisition [11] and machine learning algorithms or engaging time of flight laser radar 

techniques. 

 

4.4 CONCLUSION 

In conclusion, proposed and demonstrated is a novel projection display called a Smart 

Art Display suitable for projection over multi-distance conformal screen. The system 

counters issues of loss of resolution, blurring, and distortion when using LSD and DLP/LCD 

projectors for multi-depth screens. The proposed system includes the use of an ECVFL for 

in-focus projection within a designed screen depth working range and an embedded distance 

sensor used for 3-D mapping of the screen projection surface profile. The proposed display 

can be deployed in artistic creations and art installations where an interaction between the 

displayed information within a 3-D screen platform and the human observer is desired for a 

better visual perception. Ultimately, viewers could even create an augmented reality 

interactive experience with real-time feedback to the display system. Future work includes 

the use of the robust methods for efficient distance sensing and the implementation of the 

Smart Art Display in a larger scale all-colour installation. 
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CHAPTER 5 

 

AGILE WAVEFRONT SPLITTING  

INTERFEROMETRY AND IMAGING USING  

A DIGITAL MICROMIRROR DEVICE5 

 

5.1 INTRODUCTION 

An optical interferometer is a powerful tool used in sensing, measurement and 

imaging applications. Ideally, an interferometer should be optically phase stable, operate over 

broadband spectrum (e.g., 350 nm to 2500 nm), and possess spatial and temporal 

programmability to enable the highest fringe contrast ratio optical interferometric detection. 

Because of its near common-path nature, the classical wavefront splitting interferometer is an 

ideal interferometer from a phase stability point-of-view [1-2]. One such wavefront splitting 

interferometer is the Young’s double slit interferometer. Earlier, Prof. Riza’s research group 

has proposed and demonstrated the use of the Texas Instrument (TI) Digital Micromirror 

Device (DMD) for various non-display applications such as variable delay lines, optical 

switching, wavelength equalization, imaging, RF photonics, etc [3-33]. 

In 1997, Prof. Riza’s research group has proposed using programmed gratings on the 

DMD to steer laser light [3]. More recently in 2009, our group proposed the use of the DMD 

to realize wavefront splitting interferometers as well as a variety of imagers [34]. Very 

recently, this DMD-based Young’s double slit interferometer design has been used to 

measure spatial coherence of a light source [35] and optical field values at a sample plane 

[36]. In this chapter, described is an SLM-based interferometer and several imager designs 

showing also basic experimental results from the [34] DMD-based Young’s double slit 

interferometer design. 

 

 

 

                                                 
5 J. P. La Torre, M. J. Amin and N. A. Riza, “Agile wavefront splitting interferometry and imaging using a 

digital micromirror device,” SPIE Photonics Europe - Optics, Photonics and Digital Technologies for Imaging 

Applications Conference, 98960B, Belgium, (2016). 
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5.2 SLM-BASED WAVEFRONT SPLITTING  

INTERFEROMETER DESIGNS 

Shown in Fig. 5.1 is the proposed agile electronically programmable wavefront 

splitting interferometer designs using a Spatial Light Modulator (SLM) such as (a) a 

transmissive SLM labelled in Fig. 5.1 with the number 855, (b) a DMD SLM labelled with 

the number 850 and (c) a Beamsplitter numbered 902 with a DMD SLM numbered as 950. 

Component numbering notation from the patent application in [34] is maintained to keep the 

originality of the dated works in [34]. 

These SLMs operate with on/off or digital state pixels, much like a black and white 

state optical window to control passage/reflection of incident light. Specifically, SLM pixel 

locations can be spatially and temporally modulated to create custom wavefronts for near-

common path optical interference at an optical detector such as a CCD/CMOS sensor 805, a 

Focal Plane Array (FPA) sensor or a point photo-detector (PD). Figures 5.1 (a) and (b) show 

classic Young’s double slit (or point) implementations that generate fringes on the optical 

detection plane. These slit or point light sources on the DMD plane can be placed anywhere 

on its 2-D SLM plane and can also have different shapes and sizes to optimize fringe 

visibility.  
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(a) 

 

 
 (b) 

 

 
(c) 

 
Fig. 5.1. Proposed agile electronically programmable wavefront splitting interferometer 

designs using a Spatial Light Modulator (SLM) such as (a) a transmissive SLM, (b) a 

DMD SLM and (c) a Beamsplitter with a DMD SLM. Original version of the shown 

diagrams can be found in [34]. 
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It is well known that interferometry can not only be used to study the radiation in one 

of the paths of the interferometer but the system can also be used to study the coherence 

properties of the light source used to operate the interferometer. Fig. 5.1(c) shows a 

programmable wavefront splitting interferometer where a collimated horizontally or p-

polarized light representing a full wavefront enters a Polarizing Beam Splitter (PBS) and then 

passes through a Quarter Wave Plate (QWP) to strike the DMD at normal incidence. The 

DMD is used to produce two separate wavefronts of programmable beam sizes. Each beam 

follows a separate beam path striking separate mirrors M1 and M2 with M1 in the 

interferometer signal path and M2 in the reference path. Reflected light from M1 and M2 

strikes the DMD which redirects the reflected signal and reference light to the QWP and the 

PBS. Both light beams now being vertically or s-polarized get deflected by the PBS to enter 

beam combining and photo-detection optics. For example, the beam combining optics can be 

a lens and the photo-detection optics can be a point PD. Other types of beam combining 

optics can also be used such as a beam combining grating optic or a prism and mirror 

assembly, both engaged with 2-D CCD/CMOS sensor photo-detection. The mirror M2 can 

also be moved to produce phase shifts such as for scanned Fourier transform spectroscopy, 

for example, via a Lamellar grating produced by programming alternate pixels of the DMD, 

one pixel to go to M1 while the adjacent pixel is directed toward M2. Each 2 pixel beam can 

be combined on its return path via the DMD 950 with a lenslet array to form a multichannel 

interferometer. Note that it is not necessary that the two beams be side by side. Also, any 

wavefront division format can be delivered by programming the DMD to control beam 

powers, shapes, sizes and time duration. 

 

5.3 EXPERIMENTAL DEMONSTRATION OF  

YOUNG’S DOUBLE SLIT INTERFEROMETER 

The programmable Young’s double slit interferometer is experimentally implemented 

in the laboratory using the different setups shown in Fig. 5.2. A 15 mW Melles Griot He-Ne 

laser having a wavelength of λ = 633 nm is used along with collimation optics comprising of 

a Newport microscope objective model MV-10x having numerical value of 0.25 and 

magnification of 10x, a 15 µm diameter pinhole aperture, and a collimation lens having a 20 

cm focal length. The resulting collimated laser beam strikes the SLM at a normal incidence. 

In particular, the SLM used is the DLP3000 DMD chip which has a pixel pitch of 7.637 µm 
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and a pixel count of 608 by 684 micromirrors that are arranged in a diamond shape structure. 

Each individual micromirror is programmable and can change its θ = ±12˚ tilt orientation 

angle with respect to the DMD normal. To draw and display the agile Young’s slits, the 

DMD chip is interfaced with a processor.  

 

In the first setup shown in Fig. 5.2(a), a convex lens L1 having focal length FL1 = 5 

cm is located at a distance F = FL1 from the SLM device and is positioned along the +2θ 

direction. Along the same direction, a target imaging plane represented by a CCD sensor is 

placed at a distance F from the lens L1. In such a configuration, the CCD plane represents the 

Fourier (spatial frequency) transform plane where the SLM is the signal space plane. 

Additional generic optical module, labelled as Smart Module (SM) as illustrated in Fig. 5.2(a) 

can be used in the proposed optical design if required. For instance, the SM component used 

 
(a) 

 

 

 
(b) 

 
Fig. 5.2. Experimental optical designs (a) and (b) used to demonstrate the proposed DMD-

based Young’s double slit interferometers. 
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for this experiment is an optical Neutral Density (ND) filter used to attenuate the light 

intensity that strikes the CCD sensor in order to avoid saturation issues. The second 

experimental setup of Fig. 5.2(b) does not use a capturing lens or CCD sensor. Instead, a 

target screen is deployed for visualization purposes located at a distance L = 20 cm away 

from the SLM device. An off-axis imager device is used to capture an instant screen shot of 

the interference pattern on the screen. The imager deployed for the experiment is a 

commercial Nikon D3300 reflex camera.  

A collimated laser beam striking the SLM generates diffraction orders due to the 

grating nature of the DMD chip. If two slits are displayed/ programmed on the SLM, each of 

the orders diffracted in the +2θ direction contain a corresponding interference pattern due to 

diffraction at the slits. Such interference patterns can be visualized directly on a CCD sensor 

as in Fig. 5.2(a) or on the screen as in Fig. 5.2(b). It is important to note here that there are 

two sets of diffractions occurring simultaneously. One is due to the grating nature of the 

DMD and the other is due to presence of the programmable slits. In this experiment, the 

latter, i.e., the interference due to the slits, is of interest. 

The flexibility and programmability of the DMD chip deployed as the SLM allows 

different degrees of freedom in terms of slit dimensions, slit shape, slit separation distance, 

slit orientation, and number of slits to use. First, the Fig. 5.2(a) setup is implemented in the 

laboratory. Fig. 5.3 shows a representation of the slits displayed on the DMD and its 

corresponding interference pattern on the CCD sensor obtained when the slit separation 

distance d is equal to 64.8 µm (Fig. 5.3(a)) and 129.6 µm (Fig. 5.3(b)). The thickness of each 

slit is 21.6 µm. It can be seen in Fig. 5.3 that the location of the diffraction orders due to the 

grating nature of DMD chip stay the same, but only the interference pattern within each of 

these orders changes when the slit separation d is changed. 
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Next, the Fig. 5.2(b) setup is deployed. Here, the DMD chip is programmed to display 

slits having d values of 61.09 µm, 122.19 µm, 183.29 µm and 244.38 µm. The thickness (i.e., 

width) of each slit is 30.55 µm. Due to the diamond arrangement of the micromirrors on the 

DMD chip, the programmed slits deployed are oriented following the natural DMD chip 

structure, i.e. they are diagonally oriented at 45˚ angle from the DMD chip horizontal. Both 

slit orientations of +45˚ and -45˚ are used.  

The following equation to evaluate the fringe separation is deployed for the analysis 

of the Fig. 5.2(b) setup [37]: 

nL

xd
      (5.1) 

 
(a) 

 
(b) 

 
Fig. 5.3. (a) (left) Computer generated image of a double slit that is transferred onto the 

DMD chip to create two horizontal slits separated by 64.8 µm and the (right) corresponding 

far-field interference pattern produced on the CCD sensor when a 633 nm collimated laser 

beam is incident on DMD chip. (b) (left) Computer generated image of double slit that is 

transferred onto the DMD chip to create 2 horizontal slits separated by 129.6 µm and the 

(right) corresponding far-field interference pattern produced on the CCD sensor when a 633 

nm collimated laser beam is incident on DMD chip. 
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where λ is the wavelength of the light source, x represents the distance from the central fringe 

(which is the one containing the zeroth-order associated to the brightest diffraction spot), d is 

the distance between the slits displayed in the SLM device and n is the order of the fringe. 

The Fig. 5.2(b) experimental setup results are displayed in Fig. 5.4. Figure 5.4(a) 

shows a completely blank pattern programmed on SLM with all micromirrors reflecting light 

towards the +2θ direction and its corresponding off-axis view of the interference pattern 

striking the screen. Note that this diffraction pattern is only due to the grating nature of the 

DMD. A ruler is positioned on the screen to aid subsequent measurements. Notice that 

subsequent interference pattern will appear at each of the order location shown in Fig. 5.4(a) 

when slits are programmed on the DMD. Figure 5.4(b) shows the programmed diagonally 

oriented double slit at +45˚ on the SLM having d = 61.09 µm and its corresponding 

interference pattern on the screen. As expected, an interference pattern due to the 

programmed double slit is present in each diffraction order of the DMD grating diffraction 

pattern. Figure 5.4(c) shows the programmed diagonally oriented double slit at +45˚ on the 

SLM having d = 247.38 µm and its corresponding interference pattern on the screen. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 5.4. (a) (left) Computer generated image transferred onto the DMD chip representing 

all the micromirrors that deviates the light towards the screen direction to visualize on 

screen the diffraction order spots (right).(b) (left) Computer generated image of double slit 

that is transferred onto the DMD chip to create two diagonally oriented slits at +45˚ 

separated by 61.09 μm and the (right) corresponding far-field interference pattern produced 

on the CCD sensor when a 633 nm collimated laser beam is incident on DMD chip. (c) 

(left) Computer generated image of double slit that is transferred onto the DMD chip to 

create two diagonally oriented slits at +45˚ separated by 247.38 μm and the (right) 

corresponding far-field interference pattern produced on the CCD sensor when a 633 nm 

collimated laser beam is incident on DMD chip. 
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From the experimental findings and by using Eqn. (5.1), a comparison is conducted 

between the theoretical fringe spacing xth and the actual experimental fringe spacing xexp for 

both diagonal orientations. This comparison is summarized in Table 5.1. 

 

The results shown in Table 5.1 prove the effectiveness of the programmable SLM 

device as a programmable Young’s double slit interferometer even though the uncertainty 

error introduced by the measuring tool is evident when increasing the slit separation distance 

d. Specifically, one notes that as the fringe separation decreases, the uncertainty of the fringe 

separation measurement increases.  

 

5.4 IMAGING USING 3-D SCANNING APERTURES 

As shown in Fig. 5.5 and described earlier [38-40], Three Dimensional (3-D) optical 

scanners with a laser object illumination source and a single-point detector including the use 

of optical amplification in the signal processing Transmitter/Receiver chain can be used for 

active or laser-based imaging of 3-D objects. Here an Electronically Controlled Variable 

Focus Lens (ECVFL) can be used to electronically translate a scanning pixel along the light 

propagation axis providing for 3-D image depth information. 

Table 5.1. Experimental versus theoretical fringe separation. 

 

Slit Separation d 
Theoretical Fringe 

spacing xth 

Experimental fringe 

spacing xexp, +45˚ 

Experimental fringe 

spacing xexp, -45˚ 

[µm] [mm] [mm] [mm] 

61.09 2.0721 2.1587 2.1746 

122.19 1.0361 1.1429 1.0794 

183.29 0.6907 0.7619 0.6984 

244.38 0.5108 0.5873 0.5397 
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Figure 5.6(a) and Fig. 5.6(b) show the module design for implementing a smart 

camera for 3-D imaging via single point photo-detection and with focus and aperture size 

control via an ECVFL-SLM combination. The cascaded ECVFL 420 and DMD 450 devices 

are engaged within a novel design to deliver the powers of a specific application, in this case, 

a 3-D imager. As shown in Fig. 5.6(a), various transverse image planes at different axial 

directions (along beam direction) of a 3-D object 460 are imaged on to the DMD plane using 

a cascade of a fixed lens 430 and the ECVFL 420. Thus, by changing the ECVFL focal 

length by electronic control 440, a sequence of 2-D images of the object 460 at different axial 

depths (along the optic-axis of the system) are acquired using pin-hole profiling control of the 

DMD 450 and the focus/beam collection lens 433 and the single large area point photo 

detector 470. Thus, the DMD forms a moving pin- hole on the projected 2-D image 

plane/DMD plane where the object 2-D image occurs for a given axial/depth position of the 

3-D object 460. 

 
 

Fig. 5.5. Block diagram of a 3-D imager design using electronic beam 3-D scan/position 

controls and a single point photo-detector and optical illumination source. An original 

version of the shown diagram can be found in [40]. 



- 80 - 

 

 

The distance between focus/beam collection lens 433 and photo detector 470 is the 

focal length F2 of focus/beam collection lens 433. Object light enters at normal incidence on 

the DMD so the object image forms on the flat DMD plane, ideal for pin-hole sampling of the 

object 2-D image at a given ECVFL focus. The DMD 450 has ±θ state micromirrors. As 

shown, the pinhole is formed by assigning the -θ state to a select number of micromirrors in a 

given zone on the DMD 450 so that selected light from the object image is directed to 

focus/beam collection lens 433 where all this light is captured by photo detector 470 to 

represent light from a given part of the image zone. All the other micromirrors are set to the 

+θ state so all this light off the projected object image is directed to focus/beam collection 

lens 435 and physically blocked by a spatial block 490. A color filter 480 cascaded to the 

 
(a) 

 

 
 

(b) 

 
Fig. 5.6. Schematic block diagram of a module for implementing smart camera for 3-D 

imaging with focus and aperture size control via an ECVFL-SLM combination and single 

point photo-detection. Options of (a) Reflective SLM and (b) Transmissive SLM. An 

original version of the shown diagram can be found in [40]. 
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ECVFL 420 can be used to sample object image data on a per color (e.g., red, green, blue) 

basis. Spatial block 490 can be an electronically controlled LC color filter. 

As the DMD 450 can be programmed by an electronic controller 440, the pinhole on 

the projected image can be made to move across the entire image to form a 2-D point 

sampler, thus having photo detector 470 produce point-by-point object irradiance data that 

can be used by the processing electronics 440 to reconstruct the given 2-D image slice. Given 

the ECVFL varies its focus, plural object 2-D image slices can be reconstructed to make a 3-

D image of object 460 and hence realize a 3-D camera. The smallest pin-hole size is a single 

micromirror while bigger pinhole sizes and needed shapes can be used depending on the 

object type and imaging quality needed.  

Figure 5.6(b) shows a transmissive 3-D camera module design using a liquid crystal 

LC SLM 445 instead of the DMD shown in Fig. 5.6(a) although the working principles are 

similar. In this case, light entering the system is linearly polarized for proper LC SLM 

operations. Typically, the LC SLM 445 consists of two polarizers with LC material layer 

sandwiched in-between so that no separate external polarizer is needed in some cases of LC 

SLMs. In this embodiment, the entire 3-D camera is controlled by an electronic controller 

440 for optical power detection by the photodetector 470, SLM 445, color filter 480, and 

ECVFL control, and image processing at the processing and controller electronics 440. 

A typical SLM can have 1 million pixels implying 1 million pin-holes can sample a 

typical projected image falling on the flat SLM surface. Typically, pixels are square or 

rectangular design, so one can program the SLM to form a variety of pinhole shape such as 

hexagons, circles, ellipses, etc, to form the point-sampling head/delta function. Fixed lens 

430 can be replaced by a mechanically spinning head containing a variety of fixed but 

different focal length lenses to give more focus power to the 3-D camera module. 

Figure 5.7 is a schematic diagram showing the module for implementing combined 

projector and camera module for 3-D imaging with single point photo-detection. The basic 

design is the same as Fig. 5.6, except the spatial block 490 is replaced by a light source L1 

505 that feeds the DMD projection system. To act as a DMD image projector, a digital image 

is fed to the DMD 550. Light for projection that carries the chosen image is directed through 

the path containing the imaging lens combination of fixed lens 530 and ECVFL 520. To 

generate a 3-D image, one can change the ECVFL focal length to a direct image plane in the 

3-D object plane. 



- 82 - 

 

 

To actually see a 3-D object, the image planes must get independently illuminated 

such as via use of a special material that lights up when in this in-focus image plane. To send 

light through the image projection path, the DMD 550 micromirrors need to be set to their +θ 

state, and any -θ state indicates dark parts of the projected image that occur as light is rejected 

and sent into the collection lens 533 arm where it is collected by photo detector 570. In this 

projector operation case, photo detector 570 output is inactive or not used for processing. The 

color filter 580 is set in sequence to the appropriate colors for each image on the DMD 550 to 

complete the color projection operation. 

Alternatively, the color filter 580 can be removed and use three separate color sources 

in parallel with independent time modulation to generate the design color for the image. To 

operate the Fig. 5.7 module as a 3-D camera, the light source 505 is turned off and photo 

detector 570 is turned on to collect the light from the image on the DMD 550 with the DMD 

operated as a scanning pin-hole to sample the image point-by-point as done in the Fig. 5.6 

camera module. The rejected light is directed to collection lens 535 and falls on L1 505. One 

can also deploy a mechanical shutter MS1 in front of the L1 505 to act as a beam block like 

spatial block 490 in Fig. 5.6. Thus, the module forms both a 3-D camera and a 3-D image 

 
 

Fig. 5.7. Schematic block diagram of a module for implementing combined projector and 

camera module for 3-D imaging with single point photo-detection. An original version of 

the shown diagram can be found in [40]. 
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projector. In its basic mode with ECVFL inactive, the module forms both a 2-D camera via a 

point detector and a 2-D image projector. 

 

Figures 5.8(a) and 5.8(b) shows the proposed module for implementing a classic lens-

based aperture controlled camera with a digital 2-D SLM and 2-D detector array. Figure 

5.8(a) uses a transmissive LC SLM 655 cascaded with a fixed imaging lens 630 and an 

ECVFL 620. The SLM 655 produces a controlled aperture for the imaging camera 605 to 

 

 

 

 
(a) 

 

 
(b) 

 
Fig. 5.8. Schematic block diagram of a module for implementing a lens-based aperture 

controlled camera with a digital 2-D SLM and 2-D detector array. An original version of 

the shown diagram can be found in [40]. 



- 84 - 

 

control light throughput. The ECVFL 620 provides image focus control. Fixed lens 630 with 

the ECVFL 620 acts as the imaging lens that transfer the object plane to the CCD imager 

plane. The CCD 605 is a 2-D detector array. Figure 5.8(b) shows a similar aperture controlled 

camera module as Fig. 5.8(a) apart from the fact that the SLM 655 is a reflective DMD 650 

and the optical design is reflective. 

 

Figure 5.9 is a schematic diagram showing the module for implementing a classic 

lens-less pinhole camera with a digital 2-D SLM and 2-D detector array. Unlike the Figs. 

5.8(a) and 5.8(b) modules, the Fig. 5.9(a) and 5.9(b) configurations contain no lens for 

 

 

 
(a) 

 
(b) 

 
Fig. 5.9. Schematic block diagram of a module for implementing a lens-less pinhole 

camera with a digital 2-D SLM and 2-D detector array. An original version of the shown 

diagram can be found in [40]. 
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imaging. The imaging operation is produced by using the LC SLM 755 as a controlled size 

pinhole at the center of the SLM 655, making a classic Al-Hazen pinhole camera [41], but 

with an electronically programmable pinhole size to produce the best quality image in terms 

of focus, Field-of-View, etc. The Fig. 5.9(a) lens-less pinhole camera module uses a LC SLM 

755 and CCD 705 while the Fig. 5.9(b) module design includes a DMD 750, CCD 705, and 

spatial block 790. The LC SLM 755 has polarizers, much like a LC display to act a light 

on/off shutters on a SLM pixel basis. The DMD 750 uses the -θ state of micromirrors to 

represent the pinhole that then directs the light coming from the object to travel to the CCD 

705. The remaining micromirrors are set to the +θ state to send light away from the CCD 705 

and to the light block 790. 

Do note that for all the presented modules that use timed photo-detection to integrate 

light, the DMD can also operate as a timed on/off shutter due to its fast programming speeds.  

Hence, apart from controlling the speed of the photo-detector integration times, the DMD can 

also be engaged to modulate the light signals in time to produce powerful image processing 

effects. 

 

5.5 CONCLUSION 

Proposed is the design of a programmable SLM-based wavefront splitting 

interferometer such as a Young’s double slit interferometer. Using the DMD as the SLM, 

demonstrated is a programmable Young’s double slit interferometer that offers complete 

programmability over slit properties such as slit size, slit shape, slit width, slit time and 

number of slits. Other advantages of the demonstrated interferometer is its 100% spatial 

repeatability of the slits and the ability for the DMD to handle high power broad spectrum 

incident light. Given the demonstrated interferometer’s cost effectiveness and operational 

reliability, it can serve as a demonstration unit for optics education in schools and 

universities. This chapter has also presented several imager designs using 3-D scanning 

apertures. Specifically, these imager designs are empowered by using a combination of 

components including SLMs, ECVFLs, lenses, apertures, colour filters, CCD/CMOS sensors, 

and single point photo-detectors. Future work relates to the design and experimental 

demonstration of the proposed design modules for agile interferometry and imaging. 
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CHAPTER 6 

 

AN EMBEDDED SMART AGILE PIXEL  

IMAGER FOR LASERS6 

 

6.1 INTRODUCTION 

Over the years, the contribution of laser beams in shaping our everyday lives has 

increased dramatically. They are used in aircraft, automobile, construction, and security 

industries for a variety of applications. These include manufacturing, cutting, drilling, 

sensing, and tracking applications key to the design of many products of modern systems. In 

order to use laser beams effectively in these applications, it is important to know exactly the 

properties and characteristics of a particular laser beam. For a Gaussian laser beam which is 

commonly used in industries, these properties may include the 1/e2 width of the laser beam. 

As a Gaussian beam propagates through an optical system, the beam width, and possibly the 

beam transverse intensity distribution depends on optical components, and changes with 

respect to distance. It is important to track and measure these developments in beam profile 

so that the laser beam can be optimized and tailored to suit potential applications.  

There is extensive literature on various techniques deployed over the years to 

characterise a laser beam’s transverse profile [1-8]. Common techniques used for laser 

imaging purposes include mechanical knife edge profiling, slit profiling and image sensors 

such as using a CMOS or CCD chip placed at the laser beam cross-section. Issues of 

repeatability, resolution and consistency arise in mechanical motion based profilers such as 

the moving knife-edge and slit profilers. Knife-edge profilers assume the laser beam is 

perfectly Gaussian and Slit profilers suffer from data interpolation uncertainty as the acquired 

slices of optical irradiance maps are image processed to predict the viewed laser beam 

profile. CMOS chip or CCD based profilers require a laser beam to be attenuated in order for 

the sensors to avoid saturation or damage. This may cause unwanted effects on the beam 

                                                 
6 J. P. La Torre, M. J. Amin, M. Magno and N. A. Riza, “An embedded smart agile pixel imager for 

lasers,” 6th European Embedded Design in Education and Research Conference (EDERC), pp. 230-

234, Italy, (2014). 
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profile as a result of placing attenuating optical components. For high power lasers, i.e. >100 

mW, these sensors are less effective in giving an accurate and exact profile due to the large 

amount of beam attenuation required. 

A new imaging technique based on the use of a Digital Micromirror Device (DMD) 

has been proposed and demonstrated in the knife edge and pinhole scan modes [9-12]. This 

imager is able to withstand high laser powers without the need of attenuation or disruptions in 

the beam path, and has demonstrated high repeatability and accuracy in providing two 

dimensional (2-D) laser beam irradiance at any cross section along the beam propagation 

axis. In this chapter, an embedded version of the imager for laser beam mapping is presented. 

Embedded systems have been recognised as a fundamental enabling technology for a 

wide range of Cyber-Physical System (CPS) applications such as healthcare, security, 

entertainment industrial domains and others, due especially to the capability to perform real 

time digital signal processing in small size devices. Each device embodies an embedded 

general purpose processor that integrates computing, analog/digital converters and several 

other peripherals in order to collect and process data from the external world, generally 

collaborating to coordinate activities with other devices. 

Combining embedded device advances with mature techniques to monitor and detect 

laser beam profiles allows the development of high accuracy, low cost and small size devices 

[13-16]. In this chapter, presented is the design and implementation of a low cost and low 

power embedded system to achieve a high accuracy smart agile pixel imager for laser beam 

profiling. The proposed approach significantly extends the state-of-the-art with respect to 

embedded hardware and software co-design of such systems, combining an ultralow power 

microcontroller from Texas Instruments (TI) with a TI DMD chip through the novel 

integration of state-of-the-art profiling techniques directly processed on board. This 

innovation to the best of our knowledge is notable as it is the first such embedded digital 

processing system proposed in the literature. 

This chapter is organized as follows. The architecture of the system along with a brief 

description of the Gaussian laser beam is presented in section 6.2. Section 6.3 focuses on the 

description of individual experimental components used for the proposed embedded systems 

based profiler demonstration, as well as the experimental setup and results. Finally, section 

6.4 states the conclusions and the applications of the proposed embedded system based 

imager. 
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6.2 PROPOSED EMBEDDED SYSTEM BASED  

SMART AGILE PIXEL IMAGER DESIGN 

A basic block diagram representing the proposed embedded system based imager is 

shown in Fig. 6.1. Light from a test laser strikes a DMD chip consisting of a 2-D array of 

micromirrors which offer high reflectivity to incoming light. The orientation of each 

micromirror can be individually programmed to either a +θ direction, reflecting light towards 

Photodetector 1 (PD1), or -θ direction to reflect light towards PD2. Light striking the photo-

detectors generates a current proportional to the amount of light intensity falling on them. 

This current is translated to a voltage in the PD circuitry block shown in Fig. 6.1. The two 

voltage values, one for each PD, are read into a micro-controller via its Analog-to-Digital 

Converter (ADC) ports. The micro-controller is responsible for programming the micromirror 

orientation on the DMD chip, detecting the PD circuitry generated voltage, and analysing the 

acquired data to extract meaningful results. This acquired data is stored for further processing 

using a Personal Computer (PC). A detailed account of the system is presented in section 6.3 

which discusses experimental implementation of the proposed Fig. 6.1 imager. A brief 

overview of the imaging procedure is stated next. 

 

6.2.1 LASER BEAM IMAGING PROCESS 

With a test laser beam falling on the micromirror array, the DMD chip is programmed 

such that only one micromirror set (can be composed of multiple individual micromirrors) 

out of the 2-D micromirror array is oriented at +θ direction, while all the other micromirrors 

in the chip are in the -θ state. PD1 will detect light falling on just this micromirror set, or 

agile pixel, in +θ state. This PD1 reading is assigned as the intensity falling onto that 

micromirror set coordinate on the chip. Next, a different micromirror pixel set is oriented to 

 
 

Fig. 6.1. Proposed embedded smart agile pixel imager block diagram. 
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+θ direction, while the remaining are in -θ state. In other words, the agile pixel is at a 

different location. PD1 records the laser intensity for this different micromirror set only, 

thereby allowing the micro-controller to assign this new PD1 value to this second coordinate 

on the grid. This process, i.e., orientating each micromirror, and detecting and storing 

corresponding light intensity via micro-controller, is repeated for all micromirrors giving a 

complete 2-D irradiance pattern of the laser beam representing the beam cross section at the 

imaging plane (plane of the DMD chip). Such a scan is known as a pinhole scan, reminiscent 

of a moving pinhole or agile pixel across the DMD chip. With no need of attenuating 

components, and the ability to acquire the actual 2-D laser beam intensity profile instead of a 

1-D profile (e.g., via slit or knife-edge methods), this proposed laser imaging technique gives 

the true irradiance values in the beam cross section. 

6.2.2 GAUSSIAN LASER BEAM 

Gaussian laser beams are commonly used in laser based industrial applications. This 

type of beam’s cross section beam intensity is I(x, z), where x is the transverse coordinate and 

z is the propagation distance, it is approximated by a Gaussian function and is given in one 

dimension (1-D) by [17]:  
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where A(z) is the amplitude and w(z) is the 1/e2 beam radius at a particular z. A 1-D plot 

representing a Gaussian beam transverse profile with normalized amplitude is given in Fig. 

6.2(a). Note that the 1/e2 diameter 2w stated in Fig. 6.2(a) is an important feature of a 

transverse Gaussian beam profile at a given distance. A 2-D transverse profile of a Gaussian 

beam is simulated and plotted in MATLAB [18] and shown in Fig. 6.2(b). From an industrial 

manufacturing point of view, the intensity distribution of a laser at the cutting/drilling plane 

needs to be shaped a certain way, in order to reduce unwanted optical power and material 

losses to give the required performance. If a Gaussian laser is used, it is important for the 

shape and width of the Gaussian beam to be verified before initiating any manufacturing 

process. In the next section, an experimental prototype imager is presented which is tailor 

made for exactly this purpose. 
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6.3 EXPERIMENTAL EMBEDDED BASED LASER BEAM IMAGER  

SETUP COMPONENTS 

An experimental prototype of the proposed embedded based laser beam imager is 

shown in Fig. 6.3. The different components used in this experimental setup are stated below 

and described in detail. 

 

 
 

Fig. 6.3. Detailed experimental block diagram of proposed embedded imager. 

     
(a)      (b) 

 
Fig. 6.2. (a) A simulated 1-D Gaussian beam intensity distribution showing the 1/e2 beam 

width 2w, (b) A simulated 2-D cross-section of a Gaussian laser beam intensity distribution 

using (a) for orthogonal axes of irradiance map.  
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6.3.1 TI DLP LIGHTCRAFTER EVALUATION BOARD 

Texas Instrument (TI) DLP LightCrafter evaluation board is used as the DMD Chip 

with model number DLP3000. The chip itself has physical dimensions of 3.7 mm (height) per 

6.6 mm (width). In terms of micromirrors, the chip has 608 x 684 micromirrors. These 

micromirrors are arranged in a diamond arrangement over the chip, with each micromirror 

being 7.64 µm x 7.64 µm. The chosen coordinate system for this diamond configuration has 

its x and y axes rotated 45 degrees with respect to the horizontal edge of the chip. A 

Graphical User Interface (GUI) programmed in the PC loads images onto the DMD via the 

LightCrafter TCP/IP interface. The nature of these images dictates the orientation of the 

micromirrors. Black pixels in the image cause corresponding micromirrors to point to +θ 

direction while white pixels correspond to micromirrors in the -θ state. Once a series of 

images are loaded onto the LightCrafter on-board memory, the micro-controller is able to 

cycle (scan) through them and collect corresponding PD readings. Note that these images 

need to be carefully chosen to complete the imaging process described earlier within the 

practical limitations of the hardware such as the on board memory on the LightCrafter 

dictating the amount of images allowed to be stored. 

6.3.2 MSP-EXP430FR5969 LAUNCHPAD EVALUATION KIT 

The micro-controller used in the experimental setup is the MSP430FR5969, in 

particular, the FR5969 LaunchPad evaluation module (EVM) that has on it several ADC 

channels, each featuring 12 bits of resolution. For profiling purposes, only two of them are 

used, one for each PD. An important function of the micro-controller in the setup is managing 

the synchronisation between the running through images on the DMD and acquiring PD 

voltage via ADC ports. The microcontroller is programmed to send to the LightCrafter 

evaluation board a certain number of pulses that correspond to the total number of images 

that are to be displayed on the DMD chip. This number is set using the GUI developed. In 

order to avoid damage to the ADC ports, the analog input signal from the PD circuitry cannot 

exceed the saturation voltage of the micro-controller. A buffer configuration block has been 

included in the voltage signal’s path through PD circuitry with the gain set to 1, before the 

signal is taken up by the ADC. The operational amplifier used for the buffer configuration 

does not allow the PD voltage to exceed the micro-controller saturation voltage threshold. An 

additional advantage of the buffer configuration is to provide impedance isolation between 

the PD and the micro-controller. 
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6.3.3 PHOTODETECTOR 

For the experimental prototype system, two Thorlabs SM05PD1A silicon based 

photodiodes are deployed as PDs. Each of them has a spectral response range from 350nm to 

1100nm. The output voltage level given by the PD circuitry depends on the input laser optical 

power on the chip and the load resistance chosen in the deployed PD circuit. 

6.3.4 SYNCHRONOUS COMMUNICATION 

A Direct Memory Access (DMA) ensures synchronous communication between the 

scanning of images on the DMD chip and the PD voltage acquisition by the micro-controller 

ADC. The DMA is controlled by a timer (TIM) which has its frequency set by the GUI. The 

same TIM in this scenario controls both the ADC sampling time and the image frame speed 

in the LightCrafter (DMD). TIM properties such as pre-scaler and period are initially set 

accordingly by the GUI. The image frame rate of the LightCrafter limits the overall profiling 

speed of the system. In this case, the frame rate on the DMD is set to 50 Hz to guarantee 

correct operation and allow a large amount of images. Moreover, during the ADC sampling 

execution process, another task managed by the system is serial communication. Data relating 

to the beam profile is sent through a serial port into a peripheral such as a PC where the GUI 

is designed to receive this data and eventually execute post processing operations. Powerful 

tools such as MATLAB can be used to perform analyses of the data received and plotting 

actions. 
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6.4 EXPERIMENTAL DEMONSTRATION 

For the experimental demonstration of the prototype embedded systems based imager, 

a Helium-Neon 05-LHP-991 Melles Griot laser is used, having a wavelength of 632.8 nm and 

optical power of 15 mW. Initially, a beam profile is captured using the proposed imager at a 

distance of d0 = 50 cm from the exit of the laser module, as shown in Fig. 6.4(a). The 2-D 

irradiance map at d0 = 50 cm is acquired using a 3 x 3 micro-mirrors set pinhole size, scan 

rate of 50 Hz and a total number of 5,306 images, and is shown in Fig. 6.4(b). By fitting 

Gaussian beam equations in MATLAB onto this acquired irradiance map, the 1/e2 beam 

diameters in both x and y dimensions are found to be 887.6 µm and 897.8 µm, respectively. 

The theoretically predicted value of the beam radius for this distance is 906 microns. Next, as 

part of the demonstration, a lens of focal length 20 cm is inserted in the laser path, and placed 

at a distance d1 = 30 cm from the exit of the laser module as shown in Fig. 6.5. The lens 

concentrates or focuses the optical power of the laser at around d2 = 20 cm, before the laser 

diverges as d2 is increased.  

 

 
(a) 

 
(b) 

Fig. 6.4. (a) Experimental setup with the imaging plane (DMD plane) at d0 = 50 cm away 

from the laser source. (b) MATLAB plot of embedded agile pixel imager acquired 2-D 

beam irradiance map obtained using an agile pixel size of 3x3 micromirrors during the 

imaging process. 
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Table 6.1 shows data acquired using the agile pixel imager for distances d2 values of 

20 cm, 25 cm and 30 cm. Pinhole sizes of 3 x 3 and 5 x 5 micromirrors sets are used for each 

d2. Using MATLAB fitting operations, beam radii wx and wy are computed corresponding to 

the diamond arrangement x and y coordinates, respectively. The last column of Table 6.1 

shows the 1/e2 values, wµ, computed within the micro-controller that are calculated by finding 

the transverse axis distance between the two 1/e2 crossing points of the 1-D intensity curve. 

These values have an error offset from the MATLAB fitted ones since each micromirror is 

7.64 microns wide, and 3 x 3 and 5 x 5 micromirror pinhole sizes represent the actual 

physical step size during the scanning process. When the micro-controller internally locates 

the physical location of the fitted irradiance corresponding to the 1/e2 beam intensity, error 

arises due to these large scanning step sizes. This difference in MATLAB curve-fitted 

estimates and micro-controller calculated values can be minimized by programming 

Table 6.1. Experimental data showing 1/e2 beam radii estimates extracted using MATLAB 

and micro-controller for different d2 values and pinhole sizes. 

 

Pinhole 

Size 

[micromirrors] 

Distance 

d2 

[cm] 

MATLAB  

1/e2 radius 

wx [µm] wy [µm] 
 

Micro-controller 1/e2 

radius 

[wµ] 

 

3×3 

 
 

21 

26 

31 
 

126.4 125.0 

143.2 141.4 

194.7 195.4 
 

126.0 

145.8 

194.4 
 

 

5×5 

 
 

21 

26 

31 
 

126.4 125.0 

143.2 141.4 

194.7 195.4 
 

126.0 

145.8 

194.4 
 

 

 

 

 
 

Fig. 6.5. Lens having 20 cm focal length incorporated in setup stated in Fig. 6.4(a). 

Distance d1 is kept fixed at 30 cm, while d2 is changed to values of 21 cm, 26 cm and 31 

cm. 
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interpolation and fitting algorithms within the micro-controller software. Fig. 6.6 displays 1-

D cross section MATLAB obtained plots for each of the d2 distances i.e., d2 = 20 cm, 25 cm 

and 30 cm. The 1/e2 threshold is marked using a black colored horizontal line on each plot. 

Table 6.1 and Fig. 6.6 show that for focused beams, with concentrated optical power, the 

embedded system based imager is able to adequately give beam profiles representing actual 

2-D beam irradiance. 

 

 

 

 

 

 

 
   (a)      (b) 

 
(c) 

 
Fig. 6.6. Embedded imager acquired 1-D plots showing imaging capability for different 

distances along beam propagation path. Imaging is carried out at d2 values of (a) 21 cm, 

(b) 26 cm and (c) 31 cm. The approximate 1/e2 threshold is also shown in each plot with a 

horizontal line. 
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6.5 CONCLUSION 

Presented is an embedded platform based agile pixel imager suitable for industrial 

laser beam profiling applications. The design uses a DMD chip along with embedded 

electronics including a micro-controller which orchestrates the imaging process and acquires 

data through its ADC ports. The experimental prototype is demonstrated for Gaussian laser 

beam profiling displaying accurate high resolution 2-D irradiance maps of beam cross 

section, enabling 1/e2 beam computation as well as file transfer to a PC for further analyses. 

Applications include high optical power laser beam profiling in industrial manufacturing and 

laser quality testing sector. Future work will address improvements in the micro-controller 

computed 1/e2 radii values via implementation of curve-fitting algorithms within the micro-

controller. 
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CHAPTER 7 

 

CODED ACCESS OPTICAL SENSOR  

(CAOS) IMAGER7 

 

7.1 INTRODUCTION 

Imaging of Electromagnetic (EM) radiation is of fundamental importance to medical, 

manufacturing, astronomy, aerospace, arts, entertainment, forensics, education, research, and 

defense sectors. For large scale deployment and impact from optical imagers, it is not only 

highly desirable to have the features mentioned earlier, but also important to realize 

portability, low energy consumption, and security of operations. Over the last 65 years, there 

have been tremendous technological advances in optical image sensor design including 

optoelectronic photo-detection CCD and CMOS sensor chips and their custom precision 

interface optics, as well as advances in coding and imaging techniques like Stimulated 

Emission Depletion (STED) using fluorescence to achieve spatial resolutions beyond the 

diffraction limit [1-11]. Nevertheless, these and other prior imager designs approached the 

optical imaging sensor challenge from a mainly fixed space-time-frequency pixel view point 

that to a large extent have increased system complexity and limitations, particularly when 

relying on fluorescence materials, wavelength sensitive coherent sources, detectors, and 

optics, as well as pixel-scale sensitive mechanical alignments and iterative image processing 

and recovery methods. 

Today, the airwaves are filled with trillions of human-made EM signals emanating 

from radiating static and mobile platforms ranging from very large to ultra-small such as cell 

phones, computers, airplanes, earth orbiting satellites, and ground-based radars. Each of these 

EM electronic devices has the remarkable capability to sift through trillions of different EM 

signals simultaneously incident on the device and to extract the unique EM signal directed 

specifically to the device. For example, each cell phone has its specific phone number that 

acts as its unique identifier code which is deployed in the sifting process. This amazing feat 

                                                 
7 N. A. Riza, M. J. Amin and J. P. La Torre, “Coded Access Optical Sensor (CAOS) imager,” Journal 

European Optical Society - Rapid Publications, vol. 10, 15021, pp.  (2015). 
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of very weak EM signal detection buried in wideband EM noise (created by all the unwanted 

EM signals) is achieved using highly sensitive Radio Frequency (RF) electronics with 

powerful on-chip encoding and decoding via analog and Digital Signal Processing (DSP) 

within energy efficient and compact high speed hardware [12, 13]. 

Earlier we have proposed and extensively demonstrated an agile pixel DMD-based 

imager that functions basically as the proposed CAOS imager, but with the agile pixels 

programmed in a limited SNR operations starring mode which acquires irradiance (i.e., 

intensity) data without any time-frequency modulation [14-20].With present-day RF/optical 

communications and a robust fully programmable smart image sensor design in mind, 

proposed is the CAOS imager design that has the potential to deliver high SNR images by 

uniquely exploiting the time-frequency signaling domain of agile pixels-based spatially 

distributed optical radiation that is received by one easy to align optical antenna with a single 

RF output [21]. Specifically, the proposed CAOS imager uses image optical irradiance agile 

pixel position coding via time-frequency modulation codes implemented by a programmable 

Two Dimensional (2-D) Optical Array Device (OAD) interfaced with a single point optical 

receive antenna called a point Photo-Detector (PD). Each agile pixel position with its 

corresponding irradiance value in the multi-agile pixels optical irradiance map has its unique 

time-frequency code, thereby unleashing the extreme sensitivity and processing power of 

electrical domain analog and digital signal post-processing implemented by modern 

electronic chip technologies [22]. 

This chapter starts by providing the design and working principles of the CAOS 

imager, including the key features and capabilities of the imager. An experimental CAOS 

imager demonstration is implemented based on using a visible band DMD as the OAD. The 

experimental CAOS system imaging quality is tested and compared using a commercial 

system laser beam with the laser manufacturer providing the accurate Gaussian laser beam 

irradiance map specifications [23]. In addition, significant performance improvement of the 

demonstrated CAOS imager SNR is compared with our previously demonstrated limited 

SNR agile pixel DMD-based starring mode imager [19, 20]. The chapter concludes with a 

summary of the key CAOS imager design and experimental results. 
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7.2 PROPOSED CAOS IMAGER DESIGN 

Figure 7.1 shows a possible implementation of the CAOS imager that can operate in 

two modes of imaging, i.e., passive mode and active mode. The passive mode of CAOS 

imager operation occurs when irradiance to be imaged comes from an external radiation 

source and falls on the OAD agile pixels-plane. The active mode of operation occurs when 

the OAD acts as an internal pixelated radiation source that illuminates the object undergoing 

imaging that for near-field imaging is placed at or adjacent to the OAD agile pixels-plane. 

The OAD is an electronically programmable device that allows one to select the location, 

shape, and size of any given nth agile pixel plus its time-frequency modulation characteristics 

to suit the particular imaging scenario. The pixel is called an agile pixel as its agility comes 

both in the spatial domain and time-frequency coding domain and can be electronically 

optimized for a given imaging scenario. The number of agile pixels N deployed is also 

application dependent. As an example, Fig. 7.1 shows N = 3 pixels each having a unique code 

cn(t) defined by its time-frequency modulation characteristics, i.e., the irradiance I1 due to 

agile pixel 1 (i.e., n = 1) is modulated at a higher temporal frequency (shown as a digital 

on/off time sequence) than the irradiance I2 due to agile pixel 2, which in turn is modulated at 

a higher temporal frequency than the irradiance I3 due to agile pixel 3. Lens S1 (or concave 

mirror optic) is positioned to collect the individually coded optical irradiance signals on the 

 
 

Fig. 7.1. CAOS imager implementation (side view). 
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OAD and deliver them to the point PD for optical-to-electrical signal conversion. Depending 

on the light’s coherence properties as well as the physical aperture sizes of the OAD, S1, PD, 

and agile pixel set, S1 can simply act as an imaging optic between the OAD and PD planes or 

operate in a focus mode or a combination of the two. It is important to note that when 

operating with coherent light, the PD aperture being large enough does a fringe averaging 

operation that washes out any optical interference effects, leaving the photo-current to 

represent the desired sum of the agile pixel irradiance values. Note that in some cases, optical 

signal amplification can be deployed before the light reaches the point PD. The light 

collection optic S1 is not required to have an exceptional optical quality so it can spatially 

resolve a pixel size on the OAD. In fact, if the OAD and PD have similar active area cross-

sections, they can be placed directly adjacent to each other, making an ultra-compact lens-

less imager design. The PD generated electrical signal can be written as: 






N

n

nnnn yxItcKti

1

),()()( ,    (7.1) 

where K is a constant depending on various photo-detection factors including the PD 

quantum efficiency. For the nth agile pixel on the OAD, xn, yn are the pixel central 

coordinates, In is the pixel irradiance, and cn(t) is the pixel time-frequency code. The PD 

generated electrical signal containing the temporally coded pixel irradiance data set (e.g., 3 

pixels for Fig. 7.1) next undergoes electrical amplification. This amplification operation can 

be stand-alone, i.e., electrically incoherent where simply the PD generated signal is 

electrically amplified by a fixed factor GA giving an amplified signal iA(t) = GA i(t). Another 

option is to implement electrically coherent amplification where the time-base reference 

frequency signal r(t) used to generate the different pixel temporal codes for the OAD also 

provides an electrical phase-reference for the electrical mixing operation inside a phase-

locked amplifier to produce an output signal iC(t) = GA r(t) i(t), similar to some extent to a 

super-heterodyne radio receiver. In both cases, the amplified signal undergoes RF filtering to 

block out the undesired frequency spectrum and retain the high gain signal containing the 

coded pixel irradiance values. 

Next the amplified and filtered electrical signal is fed to a signal processor module 

where it undergoes time/frequency domain signal transform analysis such as Fourier 

spectrum analysis or correlation analysis that is used to recover each agile pixel irradiance 

value given the known identifier code for the given agile pixel. Take the simple case where 
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pure frequency codes are deployed for the agile pixel coding, so cn(t)=cos(2πfnt) and 

incoherent electrical detection is used in the imager. In this case, simple time domain 

spectrum analysis or Fourier Transform (FT) in the f Hz frequency space can be conducted 

on the processed PD signal iA(t) with the signal processor output signal S(f) given by: 
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Assuming single sideband spectrum analysis and G being a fixed spectrum analysis 

gain factor, one can write Eqn. (7.2) as: 
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 (7.3) 

In Eqn. (7.3), one is assuming that a single frequency spectral code appears as a Delta 

function of zero 3-dB bandwidth in the f Hz frequency space. In reality, each finite time 

duration real code signal has some finite 3-dB spectral bandwidth in Hz. The key for very 

low inter-pixel crosstalk in the Eqn. (7.3) CAOS operation is to choose code frequencies not 

closely positioned in the instantaneous frequency space for the N simultaneously sampled 

agile pixels. As shown by the Eqn. (7.3) FT spectral output S(f) produced by the signal 

processor, a complete irradiance map at the time-frequency coded spatial locations on the 

OAD is generated by the CAOS system. In practice, the number of agile pixels processed 

simultaneously is application dependent as well as CAOS deployed hardware and software 

dependent. For the case of more complex cn(t) codes, time domain correlation processing can 

be implemented to decode the sampled pixel irradiances values. In fact, to unleash the full 

power of high speed DSP, the PD provided signal can undergo immediate digitization with 

all signal post-processing operations handled in the all-digital space. 
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To further elaborate on the signal flow workings of the Fig. 7.1 CAOS imager 

implementation, Fig. 7.2 shows a signal flow chart where shown are 3 different sizes, shapes, 

and positions of the agile pixels labelled as 1, 2, and 3 that are coded with codes c1, c2, and c3, 

respectively. All the time-frequency coded optical signals engage simultaneously on the PD. 

This optical analogy is similar to the cell phone scenario where numerous EM signals 

incident on the RF antenna is equivalent to the many optical agile pixels in the irradiance map 

incident simultaneously on the point PD. Decoding of agile pixel position based irradiance 

values is implemented by using the PD generated temporally varying electrical signal and 

subjecting it to high speed analog and digital electronics-based one Dimensional (1-D) 

coherent (i.e., electrical phase locked) or incoherent signal processing. With the agile pixel-

based irradiance values recovered from what looks like a chaotic RF signal, computer-based 

non-iterative image processing (2-D) and reconstruction techniques are used to stitch together 

the 2-D optical irradiance map observed by the CAOS Imager. Do note that the selected 

sizes, shapes, and locations of the agile pixels within a given sampling time slot can also be 

optimized to extract the desired image features with maximum SNR based on application 

specific intelligence. 

 
 

Fig. 7.2. CAOS imager signal flow chart. 
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Complete electronic programmability gives the CAOS imager powerful attributes 

both as a smart spatial sampler of irradiance maps and also for electronic processing to enable 

high performance encoding and decoding of the agile pixel irradiance map. Much like 

wireless and wired communication networks, the agile pixel can operate in different 

programmable time-frequency coding modes like Frequency Division Multiple Access 

(FDMA), Code-Division Multiple Access (CDMA), and Time Division Multiple Access 

(TDMA) [22], [24-26]. CDMA and FDMA will produce spread spectrum RF signals from the 

PD while TDMA is the staring-mode operation of the CAOS imager, one agile pixel at a time 

producing a DC signal. For full impact of the CAOS imager, agile pixel codes should include 

CDMA, FDMA or mixed CDMA-FDMA codes that produce not only PD signals on a broad 

RF spectrum but also engage sophisticated analog, digital, and hybrid information coding 

techniques to provide isolation (e.g., minimum cross-correlation) and robustness amongst 

time-frequency codes used for OAD pixel coding [27]. As pointed out earlier, coherent high 

sensitivity detection in the electrical domain can be used for decoding of the agile pixels. For 

example, high SNR correlation operations can be run in parallel using the code set to decode 

the pixel irradiances. These correlation operations can be implemented in physical hardware 

that forms a bank of 1-D time signal correlators or in a software-based DSP system or even a 

hybrid of the two approaches. 

The CAOS platform instantaneously brings the following unique features when 

compared to prior-art imagers: (a) the agile pixel space-time-frequency characteristics can be 

programmed to suit the imaging scenario with adaptive control deployed as needed; (b) 

staring mode PDs such as CCD/CMOS sensors naturally produce a photo-detection electrical 

noise spectrum that is dominant around the DC and lower frequency components [28]. The 

CAOS imager produces its photo-detected signal at a temporal frequency band that is away 

from the noisy part of the PD output near DC, thus creating a higher SNR signal for decoding 

signal processing. All electronics are fundamentally subjected to 1/frequency(f) or 1/f noise. 

By having the output signal frequency band for the PD in the CAOS imager away from DC, 

the 1/f noise in the signal processing electronics chain is also lower as f can be from many 

tens of Hertz to many GHz [29]. In addition, it has been known for many years that when 

using a single photo-detector for spatial light capture, simultaneous detection of light from 

different sampled spatial zones versus single zone light capture can lead to improved SNR of 

the time modulated photo-detected output signal [30]; (c) after photo-detection, electrical 

domain coherent detection such as with electronic mixing plus phased locked amplification 
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and filtering can provide detection of extremely weak signals buried in noise. The CAOS 

imager can exploit this coherent detection and processing feature in the robust electrical 

domain versus in a vibration/optical phase sensitive domain of optical interferometry; (d) the 

spatial imaging resolution of the CAOS imager is determined by the size of the agile pixel 

selected for time-frequency coded modulation on the OAD and not by the optical quality of 

the diffraction limited optic S1. For passive mode of operations, the OAD is a transmissive 

(or reflective) Spatial Light Modulator (SLM) device. In this case, the smallest size of the 

time-frequency modulating agile pixel is the smallest size of the programmable pixel in the 

SLM. Various SLM technologies can be deployed such as using optical MEMS/NEMS, 

liquid crystals, Multiple Quantum Wells, and nano-photonic devices. Optically addressed 

pixel structure-free SLMs can also be deployed as the OAD. In the case of imager active 

mode operations, the OAD is a light source array device like a 2-D optical display device, 

e.g., a 2-D laser array, a 2-D LED array, or a light source array coupled waveguide/fibre 

array device. Depending on the OAD technology, in the near future one can even envision a 

pixel size as small as an atomic radiator, thus easily beating the optical diffraction limit when 

deploying an active mode near-field CAOS imager. Because all agile pixel positions and their 

irradiances on the OAD are encoded in time-frequency and decoding of pixel information no 

longer depends on the optical diffraction limits of the lens optics in the imager, exceptionally 

low inter-pixel crosstalk levels can be achieved via the electronic signal processing 

operations even when the pixel sizes are much smaller than the Abbe diffraction limit [31]; 

(e) the optical signal incident on the PD as well as the PD generated electrical signal look 

chaotic and are inherently secure as the image cannot be recovered without the pixel codes 

needed for decoding at the receiver; (f) the CAOS platform is extendable to Three 

Dimensional (3-D) imaging techniques including light sheet, confocal, and wavelength 

diversity-based methods [32, 37], by also applying time-frequency coding to pixels in the 

third spatial dimension. In addition, the CAOS imager can be combined with classical 2-D 

CCD/CMOS-based imagers to interrogate sub-2-D image zones in the full 2-D image space 

where sub-critical data must be extracted from the image scene. 
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7.3 EXPERIMENT 

For a first demonstration of the basics of the CAOS imager, the 2-D irradiance map of 

a CW visible laser beam is chosen for imaging as it is well specified by the commercial laser 

system manufacturer and also showcases both extreme brightness zones and dim light zones. 

The CAOS imager is set-up in the lab as shown in Fig. 7.3. A TI DMD is deployed as the 

OAD. Components used in the present experiment are: TI DLP LightCrafter (LCr) evaluation 

board with pico DMD chip micro-mirror binary tilt states of +12˚ and -12˚, the 12˚ state beam 

directed to PD, aluminium visible band coated square pixels of 7.64 µm sides aligned in a 

diagonal geometry with a total micromirror count of 608×684 and deployed frame rate up-to 

400.4 Hz; Lens S1 with 4 cm focal length; Point PD is a Thorlabs silicon visible band model 

SM05PD1A; A STM32F4 is the micro-controller with a 12-bit Analog-to-Digital Converter 

(ADC) is used to control the DMD and interface with the Personal Computer (PC); A 15mW 

λ= 633 nm Melles-Griot single-mode Gaussian laser beam is used for imager testing where 

the data sheet indicates the beam characteristics [23]. 

 

 
(a) 

 
(b) 

 
Fig. 7.3. (a) CAOS imager optical experimental setup. (b) Schematic representation of (a). 
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Because of the slow data transfer speed and significant memory limitations of this low 

cost TI LCr board built for pico-projectors, the full image of the incident laser beam 

irradiance is generated by operating the CAOS imager agile pixel in a hybrid FDMA plus 

TDMA mode by scanning 3 agile pixels in a raster format line scan. For example, agile pixels 

1, 2 and 3 modulate at frequency codes f1, f2 and f3 Hz. After the irradiance data is recorded, 

agile pixels 4, 5 and 6 are also set to modulate at f1, f2 and f3 Hz and the subsequent 

irradiance data is recorded, and so on. Furthermore, in-coherent stand-alone electrical 

detection of the PD acquired electrical signal data is used to generate the post-processing 

signal that contains the coded pixel irradiance values. The PD electrical signal is digitized 

using the ADC of the micro-controller and fed to the PC where it is subject to DSP via a Fast 

Fourier-Transform (FFT) operation in MATLAB. As mathematically indicated in the earlier 

section, the agile pixel irradiance values are proportional to the FFT spectral peak values and 

are obtained directly from the frequency domain of the FFT data. Specifically, the imager 

operation 2-D scan parameters are: 2160 agile pixels time modulating via FDMA coding in 

sets of three with each set modulating for 6.24 seconds followed by a 14 seconds delay before 

the next set modulates to ensure synchronisation between PC, micro-controller and LCr 

DMD board. The size of each agile pixel is 6×6 micromirrors and the sampling rate of the 

ADC is set to 2.4 kHz to acquire the PD signal. A total of 720 (2160/3) text files having 

coded irradiance map data are generated from the PD signal ADC data. With the available 

processing unit, a program in MATLAB which takes 5 seconds to run, implements the FFT 

algorithm on the 720 files and extracts the relevant electrical spectral peak values which 

represent the normalized optical irradiances of the agile pixel sampled laser beam map. Using 

this decoded data, the 2-D irradiance map is plotted and an inbuilt 2-D Gaussian fitting 

function in MATLAB is used to estimate the 1/e2 beam radius.  
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Figure 7.4(a) shows the coded 1-D time signal produced by the PD and recorded by 

the ADC for three agile pixels at the DMD chip plane coded with on/off modulations of f1 = 

80.1 Hz, f2 = 133.4 Hz, and f3 = 200.2 Hz resulting from the two-tilt state nature of the DMD 

chip micromirrors. Figure 7.4(b) shows the FFT signal processing decoding of the three agile 

pixel irradiances I1, I2, and I3 at the DMD chip plane that were coded with the FDMA-TDMA 

coding. Because in theory, there are no FFT frequency spectral peak overlaps between the 3 

coded agile pixels (i.e., when one assumes that each FFT spectral peak resembles a narrow 

spectral Delta function with no frequency content outside its main spectral lobe), one can 

consider that there is very low optical crosstalk between the 3 agile pixel decoded irradiances, 

a fundamental feature of the CAOS imager. In reality, when operating in this FDMA only 

mode, one must choose the coding frequencies to have minimal instantaneous spectrum 

overlap and with additional filtering, one can pluck spectral/optical irradiance data with 

 
(a) 

 
(b) 

Fig. 7.4. (a) Coded 1-D time signal produced by the PD for three agile pixels on the DMD 

chip. (b) FFT signal processing decoding of the three micromirror agile pixel irradiances 

I1, I2, and I3 that are proportional to the normalized spectral values computed by the FFT 

operation. 
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essentially minimal inter-pixel crosstalk. Figure 7.5(a) shows the 2-D irradiance of 2160 agile 

pixels data (60×36 = 2160) from the experimental CAOS imager using 60 1-D line scans 

across the DMD chip with each line scan consisting of 36 agile pixels. Specifically, Fig. 

7.5(a) shows the normalized optical intensity versus distance in mm covered during the 1-D 

line-by-line scanning process using 3 simultaneous and side-by-side placed agile pixels 

moving along each scan line. Figure 7.5(a) is explained using Fig. 7.5(b). Figure 7.5(b) on the 

left side shows the optical irradiance distribution incident on a simulated DMD chip having a 

micromirror grid of 6 rows and 9 columns. Figure 7.5(b) on the right side shows the pixel-by-

pixel irradiance map over the simulated chip beginning with the irradiance contribution from 

row 1 and onwards. In Fig. 7.5(a), the inter-pixel pitch in the line scan direction is 64.8 

microns (6×micromirror diagonal of 10.8 µm). Note that in the line scan plot, the maximum 

value of the coded electrical spectral component obtained via the FFT corresponding to a 

particular agile pixel in the scan is normalized and given a value of 1. Figure 7.5(c) shows a 

zoom of the FFT acquired decoded irradiance data to estimate the average null or noise floor 

in the imager giving an estimated normalized average minimum noise floor of 0.00014267 

leading to an imager electrical SNR of 77 dB. This is equivalent to a 38.5 dB optical 

irradiance SNR with optical SNR computed as: 

.
00014267.0

1
log10log10 



















floornoisespectralFFT

valuesprectalFFTMax
SNR  (7.4) 

Imager electrical SNR is two times the optical SNR. Note that previously we have 

proposed and demonstrated a DMD-based staring mode agile pixel optical imager that 

demonstrated an optical SNR of 10.7 dB, resulting in an image electrical SNR of 21.4 dB [19, 

20]. Our present results point to the greatly improved SNR of the CAOS imager, even though 

coherent detection is not deployed in the electronics of the decoder to achieve image 

decoding. Figure 7(d) shows the full decoded 2-D irradiance map produced by the CAOS 

imager using the FFT decoding data. Using the acquired CAOS imager-based irradiance 2-D 

spatial beam map and 2-D Gaussian fitting in MATLAB, obtained are 1/e2 laser beam waist 

radii of wx = 526.0 µm and wy = 530.1 µm. In comparison, using Gaussian laser beam 

propagation theory and the laser manufacturer data sheet 325 µm minimum beam waist 

radius and 67.5 cm beam travel distance to DMD, one gets wx = wy = 529.9 µm. This 

manufacturer specified beam radius value is within 0.75% error (i.e., 100% (529.9-

526)/529.9) of the CAOS imager Fig. 7.5(d) data provided 2-D Gaussian fitting measurement 
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[23]. A 1-D comparison of the central cross-section of the measured laser beam image with 

the expected Gaussian beam envelope using manufacturer’s values is presented in Fig. 7.5(e). 

The marker dots show normalized raw (i.e., unprocessed) CAOS imager acquired 

experimental irradiance data while the dashed curve, which matches well with the dots, is the 

theoretically expected 1-D Gaussian normalized irradiance envelope at the same propagation 

distance. 

 

 
(a) 

 

 
(b) 

 
Fig. 7.5. (a) 2-D irradiance of 2160 agile pixels data from the experimental CAOS imager 

using 60 1-D line scans across DMD chip. (b) (Left) The optical irradiance distribution 

representation of a laser spot incident on an example 6 pixels (in a column) by 9 pixels (in 

a row) DMD chip.(Right) The total pixel-by-pixel optical irradiance on the chip is 

represented in a single 1-D plot, which includes the optical irradiance contributions of each 

row of the DMD chip. 
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Fig. 7.5. (c) Zoomed version of Fig. 7.5(a) irradiance data to estimate the average null 

or noise floor in the imager (d) The fully decoded 2-D irradiance map produced by 

CAOS Imager showing raw (i.e., unprocessed) intensity values, normalized to 1. (e) 

Comparison of central cross-section data of the CAOS imager acquired laser beam 

image (dots) vs. laser manufacturer provided theoretically expected Gaussian beam 

envelope (dashed line). 
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7.4 CONCLUSION 

In conclusion, presented is the CAOS imager agile pixel platform for optical imager design 

that engages an electronically programmable OAD to enable agile pixel coded multiple 

access of an optical irradiance map subjected to the imaging operation. The CAOS imager 

can electronically adapt to the specific imaging application and its specific needs to sift out 

desired image information, including under extreme lighting conditions. As a proof-of-

concept demonstration, a CAOS imager is demonstrated using a low cost DMD as the OAD 

with a laser test beam map providing the extreme contrast imaging zone. Image data acquired 

for the laser beam map shows an excellent 77 dB electrical SNR with a 0.75% spatial beam 

measurement error, illustrating the power of the CAOS platform where time/frequency 

domain signal processing of photo-detected data can deliver excellent SNR properties. 

Compared to our previous starring-mode agile pixel DMD imager, the CAOS imager has 

demonstrated a near 55 dB or over 5 orders of magnitude improvement in electrical SNR. 

The CAOS platform can also be configured to engage polarization diversity, optical field 

modulation/encoding and coherent optical detection with DSP decoding to deliver advanced 

sensing capabilities. In addition, CAOS enables direct image content manipulations using 

both optical and electronic information processing. It is important to note that in order to 

realize the full potential of the CAOS imager, dedicated high speed OAD, PD, and chip-scale 

control and signal processing hardware and software must be developed and optimized. 

Given the maturity and pace of development of today’s electronics, laser array, nano-

photonic, nano-mechanical and optical modulation and display technologies including high 

speed parallel drive optoelectronic devices and pipelined processor architectures, this goal is 

feasible and can lead to creating critical impact via the CAOS agile pixel space-time-

frequency programmable smartness platform matched for certain imaging environments. 
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CHAPTER 8 

 

CAOS-CMOS CAMERA8 

 

8.1 INTRODUCTION 

Depending on the application, imaging systems are called scanners, profilers, 

cameras, imagers, and optical sensors. Classic state-of-the-art optical imager designs in a 

variety of applications deploy photo-detector arrays such as the Charge Coupled Devices 

(CCDs) and the Complementary Metal Oxide Semiconductor (CMOS) optical sensor devices. 

In 2014, a new Global Shutter Sony Pregius model IMX174 CMOS sensor was introduced 

that has a 72.94 dB dynamic range [1]. In addition, recent CMOS sensor research devices 

from major commercial manufacturers are showing 80 dB dynamic ranges [2]. Techniques 

and sensor architectures used to achieve these high dynamic ranges are diverse and include 

pixel level light integration time control, pixel level electronic gain control including non-

linear conversion gain control, and doubling pixel size for large quantum well size in the 

rolling shutter mode [3]. Nevertheless, there exists a strong need for an alternative imager 

design that operates under extreme contrast and brightness conditions (i.e., irradiance contrast 

levels > 104:1 requiring over 80 dB camera dynamic range). Such an imager which ideally 

has the ability to provide a large quantum well capacity with time-space pixel agility, optical 

spectrum flexibility, and exceptional inter-pixel crosstalk control and suppression. Starting in 

2001, we proposed and extensively demonstrated (using a DMD: Digital Micromirror 

Device) an agile pixel Spatial Light Modulator (SLM)-based optical imager based on single 

pixel and dual pixel photodetection with a large quantum well capacity that is suited for 

operations with both coherent and incoherent light across broad spectral bands, i.e., 337 nm - 

2500 nm [4-11]. This imager design operates with the agile pixels programmed in a limited 

Signal-to-Noise Ratio (SNR) operations starring time-multiplexed mode where acquisition of 

image irradiance (i.e., intensity) data is done one agile pixel at a time across the SLM plane 

where the desired incident image radiation is present. In effect, the agile pixel electronically 

                                                 
8 N. A. Riza, J. P. La Torre and M. J. Amin, “CAOS-CMOS camera,” Optics Express, vol. 24, no. 12, pp. 

13444-13458, (2016). 
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adapts in a deterministic way to the imaging scenario to extract the user desired image data. 

This imager does not use pseudo-random spatial coding of the optical radiation with iterative 

computational signal processing of the detected photo-current to produce an estimated 

“computational” image as some imagers do. Our imager physically samples and detects the 

true optical irradiance information and then deploys computer processing to stitch the agile 

pixel data to produce the user desired image map. This imager can operate adaptively to 

electronically reprogram its user specified agile pixel settings to improve the desired imaged 

data quality. To put things in context, it is important to note that imaging with a single pixel 

(or single point detector) goes back to the late 1960’s when the USSR space program and 

NASA explored robust imager designs for space missions [12,13]. Today, our proposed 

SLM-based agile pixel imager design [4] is being called by some as a single pixel 

imager/camera (as one point photo-detector can be used for light detection versus a multi-

element detector array). This basic imager has been engineered to implement Compressed 

Sensing (CS) based imaging [14] where the DMD imparts pseudo-random spatial codes on 

the light irradiance under observation and spatial correlation methods and iterative imaging 

processing are deployed to create an estimate of the true image that is considered of sparse 

spatial content. Note that we are not proposing an imager having the same compressive 

sensing working principle. Interestingly, essentially the same optical design as our proposed 

SLM-based imager has been used to form a ghost computational [15] and ghost compressive 

imager [16], but in this case, the SLM codes the light before it strikes the object to be imaged. 

It is also important to note that coding of optical radiation for designing a variety of single 

photo-detector optical instruments has been around for over 50 years and has been deployed 

in a variety of ways (moving 2-D binary spatial codes) to extract spectral and spatial 

information [17-21]. For example, in [17] a single pixel spectrometer encodes infrared optical 

spectra with two dimensionally patterned rotating gratings while in [21] a single pixel active 

3-D imager (using a laser) deploys 2-D spatial codes (of CDMA variety) to encode and 

decode scanned object pixel irradiances in the 3-D sample space. In addition, the DMD has 

also been used with classic CCD/CMOS cameras to realize imaging spectrometers [22] and 

control camera blooming [23], Field of View (FOV) and pixel level irradiance integration 

times [24]. 

Motivated by modern day advances in RF wireless, optical wired communications and 

ultra-high speed electronic signal processing and photonic device technologies and using our 

prior-art SLM-based imager design [4], recently proposed and demonstrated is a new and 
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improved imager design platform called Coded Access Optical Sensor (CAOS) [25-27] that 

has the ability to provide high dynamic range low inter-pixel crosstalk images using time-

frequency-space coded agile pixels. Presented in this chapter is a novel hybrid imager design 

that combines the CMOS/CCD sensor or any photo-detector array (PDA) sensor with the 

CAOS imager platform within one fully programmable optical camera unit. Specifically, the 

CAOS-CMOS/CCD imager functions as a smart high dynamic range image information sifter 

that is guided by raw image data generated from a CCD/CMOS PDA sensor. This chapter for 

the first time describes the implemented optical design and operations of a CAOS-CMOS 

camera including an experiment demonstrating the powers of its high dynamic range to 

decipher objects under extreme contrast and brightness conditions. 

 

8.2 THE CAOS-CMOS CAMERA DESIGN 

 

Figure 8.1 shows the design of the proposed CAOS-CMOS imager. Lens L1 directs 

the irradiance to be imaged from an external light distribution plane onto the agile pixels-

plane of the programmable Two Dimensional (2-D) DMD. The point PD engaged with the 

DMD via the lens L2 operating in the Scheimpflug [28] imaging condition forms the CAOS 

imaging platform. In contrast, the CMOS PDA engaged with the DMD via the lens L3 

 

 

 
 

Fig. 8.1. The CAOS-CMOS Camera design. 
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operating in the Scheimpflug imaging condition forms the CMOS imager. The DMD consists 

of a multi-pixel grid of micromirrors. Each micromirror is electronically programmable and 

has two distinct tilt states, i.e., ±θ digital tilt states. In the proposed hybrid CAOS-CMOS 

imager design, the DMD provides two functions. First, it performs a spatial routing function 

for camera platform selection by forming a programmable beam splitter that directs chosen 

target scene irradiance pixels to either the point PD port or the CMOS PDA port. Second, the 

DMD imparts CAOS mode temporal modulation to certain pixels in the target scene 

irradiance map. Specifically, these selected agile pixels on the DMD can operate in different 

time-frequency coding modes like Frequency Division Multiple Access (FDMA), Code-

Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA). CDMA 

and FDMA will produce spread spectrum electrical signals from the point PD while TDMA 

is the staring-mode operation of the CAOS platform with one agile pixel at a time producing 

a DC signal per agile pixel position (same as our original DMD-imager). For full impact of 

the CAOS platform, agile pixel codes should include CDMA, FDMA or mixed CDMA-

FDMA codes that produce not only a point PD signal with a broad electrical spectrum (that 

looks like a chaotic electrical signal), but also incorporates advanced information coding 

techniques to provide isolation (e.g., minimum cross-correlation) and robustness amongst the 

simultaneously deployed time-frequency codes. The proposed Fig. 8.1 design also shows the 

placement of optional Smart Modules (SM) labelled as SM1, SM2, and SM3 in the system. 

Depending on the camera application, each SM can contain a variety of electronically 

programmable optical conditioning elements such as variable apertures, on/off shutters, 

variable focus lenses, spectral filters, polarizers, and variable attenuators. When engaged with 

electronic post-processing, the SMs can improve imaging performance parameters including 

limiting saturation of the point PD and PDA. The choice of point PD and PDA also depends 

on the application. For example, a variety of point PDs can be used such as avalanche PDs, 

bolometers and photo-multiplier tubes while PDA’s can be CMOS/CCD and Focal Plane 

Array (FPA) devices. Note that a silicon CMOS PDA with a limited spectral range can 

modified for broader band operations using heterogeneous integration of thin film detectors 

on silicon CMOS circuitry [29,30]. As shown in Fig. 8.1, the point PD can also be combined 

with a Variable Gain Amplifier (VGA) module with phase-locking operations. All 

electronically programmable components are controlled by the camera processor that can 

adapt component drive conditions to deliver the desired camera imaging performance.  
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The CAOS-CMOS camera high dynamic range operation can be explained using the 

following example. Imagine the camera focussed on a given far field scene using controlled 

SM1 parameters with all DMD micromirrors set to their -θ state to direct all the imaged scene 

irradiance to the CMOS PDA. Now imagine that the scene happens to contain a high 

brightness target called target 1 as well as an extremely low brightness target called target 2. 

Furthermore, assume that the difference in irradiance between the target 1 maximum 

irradiance pixel and target 2 maximum irradiance pixel exceeds the dynamic range capability 

of the CMOS sensor. In such a high contrast imaging scenario, the CMOS sensor will fail to 

register the target 2 in the viewed scene. In fact, if target 1 pixels have significant optical 

irradiance due to being a high brightness target, all the CMOS sensor pixels can saturate 

causing a full white image to be seen as the output of the CMOS sensor. In such a scenario, a 

variable optical attenuator in SM1 and/or SM3 can be engaged to start attenuating the optical 

irradiance reaching the CMOS sensor. The assumption here is that such an attenuation 

process does not spoil the final quality of the viewed image. Given adequate attenuation, the 

irradiance value of the maximum irradiance pixel in target 1 can be brought down to the level 

just below saturation of the CMOS pixel. At this stage, target 1 becomes visible to the CMOS 

sensor providing a within CMOS sensor dynamic range limit gray-scale image of target 1. 

Target 2 remains undetected by the CMOS sensor. Also, as the camera processor has 

determined the location and pixel-based irradiances of target 1, the target free zones in the 

CMOS sensor viewed scene are recorded. Next, the CAOS mode of the camera is engaged by 

turning on the ± θ state temporal coded modulations for the DMD pixels in the target free 

zones. The point PD now provides a coded electrical signal that can undergo electronic signal 

processing (e.g., Fourier Transform when using FDMA codes) to decode and recover the 

relative irradiance values of the pixels from the target 1 free zones. In general, the point PD 

gives a time-frequency encoded current i(t) which can be written as: 





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n

nnnn yxItcKti
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),()()( .    (8.1) 

For the nth agile pixel on the DMD, In is the pixel irradiance at the pixel central 

coordinates (xn,yn), cn(t) is its time-frequency code, N is the total number of simultaneously 

coded agile pixels and K is a constant depending on various photo-detection factors. The next 

stage of signal conditioning is amplification where i(t) can be electrically amplified by a fixed 

factor GA giving iA(t): 



- 128 - 

 

)()( tiGti AA  .     (8.2) 

Electrical coherent amplification using a phase-locked amplifier can also be deployed 

for weak optical irradiance signal amplification. The signal iA(t) next undergoes time-

frequency domain processing such as the Fourier Transform (FT) to recover the optical 

irradiance value at each agile pixel using the known agile pixel FDMA modulation codes. 

Using Eqns. (8.1) and (8.2), and assuming pure frequency codes cn = cos(2πfnt) are used for 

agile pixel coding where fn is the frequency code for the nth agile pixel, the output S(f) of the 

Fourier Transform of iA(t) is written as: 
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The Eqn. (8.3) expression can be simplified further. Assuming single sideband 

spectrum analysis and using G as a fixed spectrum analysis gain factor, Eqn. (8.3) can be 

reformulated as: 
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 (8.4) 

Equation (8.4) assumes that a single frequency spectral code appears as a delta 

function. In reality, each finite time duration signal has a finite spectral bandwidth. The Eqn. 

(8.4) expression indicates that the nth agile pixel coded irradiance (having a unique identifier 

frequency code) separates out into a spectral peak in the frequency domain at f = fn having an 

amplitude proportional to In(xn,yn). Note that if FDMA codes are used, the simultaneously 

sampled agile DMD pixels need to be programmed with these unique frequency codes to 

enable decoding of the optical irradiances at these pixel locations in the resulting spectral 



- 129 - 

 

domain. The FDMA frequency codes need to be chosen carefully to avoid 

interference/crosstalk due to inter-modulation products and frequency harmonics between 

chosen frequency codes. Using Eqn. (8.4), the irradiance map of the image at the DMD plane 

can be reconstructed by sampling the amplitude of S(f) at each coded frequency location, and 

then assigning each amplitude to its corresponding agile pixel location, allowing a complete 

2-D image reconstruction. Because the point PD combined with the VGA, SM1/SM2 control, 

and electronic decoding can avoid point PD optical saturation and produce high 

computational signal processing gain, target 2 will register in the viewed camera image when 

using the CAOS mode. To calibrate the low brightness target 2 relative to the high brightness 

target 1, the CAOS mode is also applied to at least the maximum irradiance zone of the 

known target 1 zone so a relative irradiance map for both targets can be generated. In effect, 

the CAOS-CMOS camera via smart camera processing operations can produce a true image 

from a high brightness and high contrast imaging scenario.  

How the camera sifts through the viewed pixels in the scene in the CAOS mode 

depends on the camera application and optical scene characteristics. In other words, the size, 

location and temporal characteristics of the coded agile pixel as well as the number of 

simultaneous agile pixels used during sifting is determined by the camera processor in 

collaboration with the CMOS sensor gathered real-time images plus machine learning 

parameters acquired via prior training of the application deployed camera. In effect, speed of 

acquisition of full images via the proposed camera is not only hardware and software 

dependent, but also application dependent with trade-offs between agile pixel sizes and 

sampled pixel total count versus camera response time.  
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8.3 EXPERIMENTAL DEMONSTRATION OF  

THE CAOS-CMOS CAMERA 

For a first demonstration of the basics of the CAOS-CMOS imager, the experimental 

setup implemented in the laboratory is shown in Fig. 8.2. L1, L2, and L3 have a diameter of 

2.54 cm while the focal lengths of L1, L2 and L3 are 7.5 cm, 2.5 cm, and 4.0 cm, 

respectively. The DMD used is Texas Instrument’s DLP 3000 DMD chip having a 

micromirror pitch of 7.637 μm, a 608×684 micromirror array arranged in a diamond 

configuration and a micromirror tilt angle θ = ±12° with respect to the DMD normal. The 

CMOS PDA sensor deployed is IDS UI-1250LE-M-GL monochrome CMOS camera module 

which uses the sensor EV76C570ABT with a dynamic range of 51.3 dB, having a pixel size 

of 4.5 μm, an exposure time of 87.2 ms, a frame-rate of 11.5 frames per second and a pixel 

count of 1600×1200 pixels [31]. The Dynamic Range (DR) of an optical image sensor is 

given by [1, 32]:  
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where Pmax and Pmin are the photo-cell (i.e., sensor pixel) maximum detected optical power 

and the noise-limited minimum detected optical power, respectively. 
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The distance between the centers of L1 and the DMD chip is 7.9 cm, the distance 

between the centers of the DMD and L2 is 8.4 cm, the distance between the centers of the L2 

and the PD is 3.7 cm, the distance between the centers of the DMD and L3 is 8.8 cm, and the 

distance between the centers of the L3 and the CMOS sensor is 7.3 cm. The SM1 deployed 

consists of a controllable aperture set to a diameter of 1.85 cm for the complete duration for 

the experiment. Note that for this demonstration, SM2 and SM3 are not deployed. The 

processor block in Fig. 8.2 consists of dedicated circuitry to control the DMD, a PD circuit 

for PD current-to-voltage conversion, a Laptop and a microcontroller (μC) STM32F4 from 

STMicroelectronics comprising of a 12-bit Analog-to-Digital Converter (ADC). The PD 

voltage from the PD circuit is acquired by the ADC which is then real time transferred to the 

Laptop using a USB communication serial interface. Note that this voltage is limited to 3 V 

which is the maximum limit of the ADC deployed in the experiment. The Laptop is also 

connected to the DMD circuitry via USB to control the tilt states of the individual DMD 

micromirrors. The size, shape and time-frequency codes of the agile pixels on the DMD chip 

are completely programmable. The CMOS sensor is interfaced with the Laptop directly via a 

USB connection. A custom designed Graphical User Interface (GUI) is developed in 

C++/CLI language using Visual Studio 2012 in the Laptop to manage CAOS-CMOS camera 

operations.  

 

 
 

Fig. 8.2. Snapshot of the CAOS-CMOS camera experimentally setup in the laboratory. 
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Shown in Fig. 8.3 is the observed image scene acquired with a commercial Nikon 

D3300 camera in ambient light conditions. The Fig. 8.3 target scene consists of Rolson’s 5W 

Aluminium Z2 LED Torch with a head diameter of 53 mm and luminosity of 180 lumens, a 

custom-made traffic sign and an incandescent light bulb with a line filament. The torch 

represents a bright light source, the traffic sign is a dim passive target while the filament in 

the light bulb is a current controlled variable brightness target. All three targets lie in the 

same plane located at a distance 1.38 m from L1. To ensure adequate lighting of the target 

scene, particularly of the passive traffic sign region, ambient room light is turned on. In 

addition, the target scene is also illuminated using two LED work lights (model Streetwize 

multi-purpose rechargeable torch/work light), providing adequate scene lighting. Note that 

the Fig. 8.3 image field of view is analogous to the field of view of the CAOS-CMOS 

camera. 

 

The point PD (i.e., photo-cell) in the experiment is a Silicon Switchable Gain Detector 

PDA36A by Thorlabs [33] having an active area of 13 mm2 (3.6 mm×3.6 mm). This point PD 

is operated at its in-built 70 dB gain setting and the output is terminated to a 50 Ω resistor. In 

this setting, the PD provides a gain GA of 2.38×106 V/A, a maximum voltage output Vmax of 5 

V and a Bandwidth (BW) = 5 kHz. The rise time tr of the PD is computed as tr = 0.35/BW = 

70 μs [34]. Since the ADC used has a maximum input voltage limit of 3 V, Vmax is limited to 

3 V. The maximum current output imax can be found from imax=Vmax/GA = 3/(2.38 × 106) = 

1.26×10-6 A. Using a wavelength responsivity R(λ) of 0.35 A/W at λ = 550 nm (central 

 
 

Fig. 8.3. Field of View of the target scene as viewed from the CAOS-CMOS camera in the 

experimental demonstration. 
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wavelength of the visible range), the maximum detectable optical power Pmax of the PD is 

computed as: 
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To compute the dynamic range of the point PD, it is desirable to compute its 

minimum detectable optical power Pmin. For that, the Noise Equivalent Power (NEP) [35] of 

the PD is used. NEP is the optical power incident on the detector that needs to be applied to 

equal the noise power from all sources in the detector. For the PD in the experiment, the 

wavelength dependent NEP(λ) at λ = 950 nm is 2.10×10-12 W/√Hz. R(950 nm) is also known 

to be 0.65 A/W from the point PD datasheet. Since the point PD is operated in the visible 

range, NEP(550 nm) is required and is computed as: 
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where in this setting, NEPmin = NEP(950 nm) and Rmax=R(950 nm). Thus, NEP(550 nm) can 

be computed as: 
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Since the PD BW is 5 kHz at the 70 dB setting, Pmin can be computed as: 

.1084.2105)550()( 103

min WnmNEPBWNEPP    (8.9) 

Therefore, the point PD electrical Dynamic Range (DR), defined earlier [1, 32] as 20 

log(Pmax/Pmin), is computed to be 82.0668 dB at the settings used in the experiment. This 

designed DR value for the point PD will be compared to the experimentally demonstrated 

CAOS mode camera DR.  
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To begin the experimental demonstration, the CMOS mode of the CAOS-CMOS 

camera is deployed. With the torch off and the bulb on, an image of the scene is acquired 

using the CMOS mode and shown in Fig. 8.4(a). All three of the torch, traffic sign and bulb’s 

filament are clearly seen in Fig. 8.4(a). Next, the torch is turned on, causing the CMOS 

sensor to saturate completely due to the high light intensity, as shown in Fig. 8.4(b). To 

combat CMOS sensor saturation, Thorlabs Neutral Density (ND) filters are incorporated into 

SM1. Attenuating the optical irradiance from the scene by a factor of 1,000 compared to Fig. 

8.4(b) results in the image shown in Fig. 8.4(c). The Fig. 8.4(c) image shows that only the 

torch region is completely saturated while the other targets are not visible. Next, the scene is 

attenuated by a factor of 3,200 compared to Fig. 8.4(b) resulting in the image in Fig. 8.4(d). 

This Fig. 8.4(d) image gives a clearer boundary of the torch region. However, the bright 

zones in the torch region in Fig. 8.4(d) are still saturated. Attenuating the optical irradiance 

from scene by a factor of 10,000 compared to Fig. 8.4(b) results in the image in Fig. 8.4(e). 

The Fig. 8.4(e) image gives an even clearer outline of the torch region with the bright zones 

of the torch falling just under the saturation limit, indicating that this is the amount of 

attenuation required to bring the bright torch region to the unsaturated range of the CMOS 

sensor. However, in Fig. 8.4(e), the filament bulb and the traffic sign are absent, indicating 

 

 
 

Fig. 8.4. Images of the scene viewed using the CMOS mode of the CAOS-CMOS camera. 

(a) Unsaturated scene with a torch off, (b) saturated scene due to torch lighting, (c) scene 

of (b) attenuated by a factor of 1,000, (d) scene of (b) attenuated by a factor of 3,200, (e) 

scene of (b) attenuated by a factor of 10,000, and (f) logarithmic scale image of the 

irradiance data from image (e). 
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that the optical irradiance from these zones have been attenuated into the noise floor of the 

CMOS sensor. This conclusion is further confirmed by viewing Fig. 8.4(f) that shows the 

logarithmic scale image of the irradiance data from the Fig. 8.4(e) image. Thus the CMOS 

mode of the CAOS-CMOS camera fails to register at the same time both the bright region of 

the torch and the dim regions of the traffic sign and the filament of the viewed scene. 

Nevertheless, the CMOS-mode of the camera has provided the camera system with the 

locations (within the CMOS sensor pixel grid) of scene regions where a possible yet to be 

seen target may exist. With this CMOS-mode provided scene intelligence, the high DR 

CAOS mode of the CAOS-CMOS camera is deployed. Specifically, one can use smart 

CAOS-mode scanning of these possible target-free regions such as by performing DMD 

programmed horizontal and vertical slit scans over a given sub-region to quickly identify 

regions of the scene with possible low light level targets. If the fast scans indicate presence of 

such low light level targets, the DMD can be programmed in the agile pixel pin-hole CAOS 

mode to spatially resolve the specific pixel-grid locations of these targets in the viewed scene. 

It is important to note that the CAOS-CMOS camera is a fully programmable adaptive system 

that efficiently engages both the CMOS-mode and the CAOS-mode to search for targets with 

the high DR scene environment and no a priori scene information is required for successful 

imaging operations. Such coordinated operations also speed up the CAOS mode target search 

operations of the proposed hybrid camera. In summary, compared to a CAOS-only mode 

camera, the CAOS-CMOS camera has the ability to speed-up CAOS-mode operations by 

only scanning the scene regions where the CMOS-mode failed to register seeing a target.  

For the present experiment where we already know the locations of the deployed high 

brightness and low light level test targets, we do not require a CAOS mode target search 

operation using the CMOS-mode provided Fig. 8.4(f) image data. Thus to implement a 

complete experimental image acquisition comparison of the CMOS mode versus the CAOS 

mode, an agile pixel pin-hole scan of the entire scene is done using the CAOS mode. For this 

CAOS mode implementation, there is no attenuation installed in SM1. The target scene 

consists of the torch on and the filament on, i.e., the same setting which resulted in the 

CMOS mode giving a saturated image in Fig. 8.4(b). In the experimental demonstration, the 

PD signal iA(t) is digitized using the ADC in the μC and stored in the Laptop. This allows the 

Fourier Transform operation to be conducted using MATLAB, in which the Fast Fourier 

Transform (FFT) function is utilized. Additionally, the number of simultaneously coded agile 

pixels on the DMD chip is 2 (i.e., N = 2). This is due to hardware limitations of speed and 
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memory imposed by the low cost DMD board and the interfacing between the DMD 

circuitry, μC and the laptop. Because of this limitation, image reconstruction in the CAOS 

mode is accomplished using a hybrid FDMA and TDMA mode of operations. First, two 

simultaneously time-frequency FDMA coded agile pixels modulate and direct the coded light 

to the PD. After the PD signal is digitized and transferred to the laptop, the next set of two 

agile pixels at different locations from the previous set of pixels is modulated with the same 

unique frequency codes as the previous set, and the corresponding PD signal is acquired and 

stored. This is repeated in time (implementing TDMA) until all the PD signals from all agile 

pixels covering the desired scan zone have been acquired. Note that ideally, the image can be 

acquired almost instantly in the FDMA mode, given that all the pixels modulate with 

different codes at the same time. In the CAOS mode demonstration, the programmed agile 

pixel has dimensions of 20×20 micromirrors, resulting in a pixel dimension of 152 μm×152 

μm. This 20×20 micromirror pixel size is chosen to ensure that adequate irradiance 

emanating from the passive traffic sign region in the scene is captured to register an 

irradiance reading above the noise floor of the system. It is also important not to saturate the 

ADC input voltage limit when choosing the pixel size and number of pixels. For example, the 

ADC in the experiment has a 3 V limit, which means the PD voltage resulting from the PD 

current to voltage conversion circuitry must have a peak value of less than 3 V in to avoid 

saturation of the ADC readings. It turns out that when using the 20×20 micromirror pixel and 

with N = 2, the maximum voltage reading from the ADC in the demonstration (which occurs 

when the agile pixels are located at the brightest zone of the torch in the scene) is 2.8 V. Note 

that if N = 3 is chosen, the ADC in the present experimental setting will saturate when the 

pixels are located in the torch region. In such a scenario an ADC with a higher input voltage 

limit could be used, a smaller agile pixel size could be deployed, GA can be reduced or N can 

be adjusted. Therefore, the choice of these parameters is important from the CAOS 

performance point of view. Using the chosen 20 × 20 micromirror pixel size and N = 2, a 

total of 868 agile pixels (i.e., 434 separate agile dual-pixel sets) are modulated on the DMD 

chip in the hybrid FDMA-TDMA mode to obtain the complete image of the Fig. 8.3 scene. 

The 868 pixel scan consists of 28 rows and 31 columns in the DMD’s diamond arrangement 

of micromirrors. The two frequency codes chosen are f1 = 133.4 Hz and f2 = 200.2 Hz. This 

choice of frequency codes ensures that the resulting intermodulation products between the 

frequencies and their harmonics do not affect the frequency domain amplitudes at f1 and f2. 
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The steps implemented to extract the optical irradiance data at each pixel of the image 

using the CAOS mode are:  

1. Using the hybrid FDMA-TDMA mode, the point PD sequentially (TDMA) 

acquires the optical irradiance signals from all 434 agile pixel sets modulating at 

FDMA codes f1 and f2.  

2. The resulting PD voltage values for all sets are sampled at 2.4 kHz using the 

ADC and stored into the laptop memory as 434 “.txt” files (one per modulating 

dual-pixel set).  

3. For each file, the resulting digitized signal is subject to the FFT operation in 

MATLAB.  

4. In the resulting frequency domain plots of |S(f)| vs. f in MATLAB for each file, 

the magnitude of S(f) at f1 = 133.4 Hz and f2 = 200.2 Hz are recorded. Note that 

these |S(f1)| and |S(f2)| values for all 434 dual-pixel sets give the relative optical 

irradiance strength at their respective agile pixel locations.  

5. All |S(f1)| and |S(f2)| values acquired for all files are assigned to the corresponding 

868 agile pixel locations to obtain the complete DMD plane optical irradiance 

map I(x, y). 
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(a) 

 
(b) 

 
(c) 

 
Fig. 8.5. 2-D image reconstruction of the target scene using the CAOS mode of the CAOS-

CMOS camera. (a) scaled irradiance map I(x,y) is shown, (b) scaled irradiance map of the 

logarithm of I(x,y) values is shown, and (c) same plot as in (b) but with additional labels of 

regions R1, R2, R3 and R4 as well as location of traces T1, T2 and T3 used for 

quantitative image analysis purposes. 
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Figure 8.5(a) shows the acquired 2-D image reconstruction I(x, y) of the target scene 

imaged on the DMD plane using the CAOS mode. The color coding in the Fig. 8.5(a) plot 

indicates the scaled relative intensity of the acquired I(x, y) map, and is reported in the 

manuscript for visual illustration purpose only. Figure 8.5(a) is plotted in the diamond 

coordinates of the DMD chip micromirror layout. The Fig. 8.5(a) image map shows the shape 

of the torch region and is comparable to the CMOS sensor acquired image in Fig. 8.4(e). The 

Fig. 8.5(a) CAOS mode obtained scaled I(x, y) map includes both the traffic sign as well the 

filament bulb data, but these are not visible due to the limited DR of the mechanism (e.g., 

computer display, printed hand copy on paper) to display the irradiance map. To enable high 

DR viewing of the scene, the logarithm of scaled I(x, y) data is taken and plotted as Fig. 

8.5(b) to reveal the true power of the CAOS mode. In Fig. 8.5(b), the torch, traffic sign and 

filament regions are simultaneously “seen”, demonstrating the presence of two more targets 

in the field of view of the camera that were otherwise unseen by the CMOS mode of the 

hybrid camera. 

For an analysis of the Fig. 8.5(b) CAOS-mode acquired image, different sets of two 

pixels are marked in Fig. 8.5(c), which is the same plot as Fig. 8.5(b), as regions R1, R2, R3 

and R4. R1 covers a segment of the torch, R2 has one pixel covering the filament and one in 

the background, R3 samples the traffic sign irradiance while R4 is on the black background 

and acts as a comparison. Figure 8.6 shows the resulting FFT plots in MATLAB for all four 

regions R1, R2, R3 and R4. Note that in the Fig. 8.6 frequency domain plots, only the peaks 

at frequencies 133.4 Hz and 200.2 Hz are of interest since these correspond to the modulation 

codes of the pixels. The 150 Hz peak labelled in each of the Fig. 8.6 plots is present due to 

the photodetection of light sources (including room lighting and torch) powered by the mains 

electricity supply. 150 Hz is the 3rd harmonic of the 50 Hz mains electricity supply [36] and is 

picked up in the FFT operation over all agile pixels. However, this 150 Hz peak does not 

carry I(x, y) data since the peaks at FDMA code frequencies of 133.4 Hz and 200.2 Hz are 

the ones of interest. Figure 8.6(a) plots the frequency domain amplitude for R1, giving 

heights of |S(f)| = 1940 for f1 = 133.4 and |S(f)| = 401.7 for f2 = 200.2 Hz. The peak at f1 of 

frequency domain amplitude = 1940 is the highest recorded peak in the CAOS mode acquired 

image.  
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Figure 8.6(b) plots |S(f)| for R2 covering the filament. In Fig. 8.6(b), the amplitude 

|S(f1)| = 3.125 indicates the pixel covering the filament while the pixel covering the scene 

background has a relative irradiance of |S(f2)| ~0.1. Figure 8.6(c) plots |S(f)| for R3 covering 

the traffic sign, giving |S(f1)| = 0.2823 and |S(f2)| = 0.3037. Figure 8.6(d) plots |S(f)| for R4 

covering the background of the scene. Figure 8.6(d) shows that no significant irradiance is 

being picked up by the frequency domain plot at the two frequencies of interest, i.e., |S(f1)| 

and |S(f2)| ~0.1, which is the noise floor of the experimental system. Also marked in Fig. 

8.5(c) are line traces T1, T2, and T3. Trace T1 passes through the torch region, T2 passes 

through the traffic sign region while T3 passes through the filament region. The 1-D optical 

irradiance I(y) along the y-direction of the DMD chip for traces T1, T2, and T3 are shown in 

Figs. 8.7(a), 8.7(b), and 8.7(c), respectively. These Fig. 8.7 plots illustrate the variation of 

optical irradiance along different line regions of the image. 

  
(a)    (b) 

  
(c)     (d) 

 
Fig. 8.6. The frequency domain plots of chosen CAOS acquired signals at regions (a) R1 

covering a segment of the torch, (b) R2 covering the filament, (c) R3 covering the traffic 

sign, and (d) R4 covering the black background. Note that only |S(f)| peaks at frequencies 

f1 = 133.4 Hz and f2 = 200.2 Hz indicate the scaled relative optical irradiance at the 

corresponding agile pixels. The peak at 150 Hz appearing in each plot is due to the 3rd 

harmonic of the 50 Hz electricity mains supply. 
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To evaluate the Dynamic Range of the Fig. 8.5 CAOS mode acquired image, note that 

the highest measured relative irradiance value (|S(f)|) is 1940 which is for the torch region of 

the scene. Whereas, the lowest recorded “signal” (above the noise floor of ~0.1) is measured 

to be |S(f)| 0.153. Using these values, the DR of the CAOS mode is computed to be 20 

log(1940/0.153) = 82.06 dB. Note that this result matches the DR of 82.0668 dB calculated 

earlier for the point PD used in the experiment. Therefore, the DR obtained by the CAOS 

mode is limited by the DR of the point PD. In the experiment, due to the weak optical 

irradiance for the traffic sign portion of the scene, the 70 dB gain setting of the point PD 

amplifier is deployed. If, for example, the lower gain 30 dB setting of the PD VGA is used 

which provides GA = 0.75×104 V/A, NEP(970 nm) = 2.34×10-12 W/√Hz and BW = 5.5 MHz, 

the point PD DR is be computed to be 100.7432 dB, a near 19 dB improvement in camera DR 

compared to the 70 dB VGA gain setting. However, the trade-off for getting higher DR using 

the reduced VGA gain means lower photocurrent from reduced optical irradiance scene 

regions such as the traffic sign in Fig. 8.3. In such a scenario, another parameter which can be 

adjusted is the agile pixel size. In the experimental demonstration, a 20×20 micromirror pixel 

 

 

  
(a)     (b) 

 

 
(c) 

 
Fig. 8.7. Plots showing the measured scaled irradiances along Fig. 8.5(c) labeled traces (a) 

T1, (b) T2, and (c) T3. 
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size is deployed. Using a larger pixel size increases the per pixel coded optical irradiance 

striking the point PD, increasing the likelihood of detection of weak light irradiances 

although at the expense of output image resolution. In this case, one must also be careful not 

to exceed the voltage limit of the ADC as increasing the agile pixel size also increases the 

light irradiance collected from the bright regions of the scene. Note that there is also a trade-

off between the CAOS-mode imaging speed and N, the number of simultaneously sampling 

agile pixels as N increases. In other words, to operate the camera at faster imaging speed, the 

larger number of modulating agile pixels can result in a stronger total optical irradiance 

striking the point PD. In order to avoid saturation of the point PD, the VGA gain needs to be 

reduced and this affects the detection of weak irradiance regions in the viewed scene. 

The smart operation of the hybrid camera uses the fast speed acquisition CMOS-mode 

acquired images that undergoes threshold image processing to first identify the spatial 

locations of any high brightness targets. To implement a fast operations CAOS-mode, a 

search mode is implemented to look for low optical irradiance targets such as by using 

orthogonal direction line (slit) scans, e.g., along x and y directions of the DMD plane. For the 

case in the experiment, the right-hand side of the CMOS-mode image (see Fig. 8.4(c)) 

appears dark that is about half the image frame. Considering a slit width of 20 micromirrors, 

there are 15 and 28 slit positions covering the x and y direction scans, respectively. Using a 

slit reset time of 5 seconds (includes modulating and loading time), the experimental system 

takes 75 seconds to generate a x-slit scan and 140 seconds to generate a y-slit scan. Via image 

processing, the acquired 2-D slit data provides zoomed locations of possible weak irradiance 

targets. For the experiment, the 2-D slit scan mode indicates presence of weak irradiance 

targets in the zoomed 15×28 agile pixel count region. With N = 2, 420 (15×28) agile pixels, 

FDMA modulation in sets of 2 agile pixels, a set loading and acquisition time of 6 seconds 

(presently highly limited by our non-optimized electronic boards), a 21 minutes image 

acquisition time is required. For a full DR analysis and comparison between the CMOS-mode 

image and the CAOS mode image of the hybrid camera, a complete CAOS-mode scan of the 

DMD chip (28×31 agile pixels) is acquired as shown in Fig. 8.5. Deploying CMDA codes 

using a current state-of-the-art 32 kHz frame rate DMD-based CAOS mode [37], one can 

estimate much faster image generation time. Assuming a scanning grid of 1000 agile pixels 

on the DMD plane, one can deploy 100 different CDMA orthogonal or pseudo-random codes 

[38] with each code having a length of 100 bits and each code assigned to a certain agile pixel 

in a 100 agile pixels grouping. Given a 32 kHz frame rate, a single bit time duration is 1/(32 
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× 103) s = 31.25 μs. A code of 100 bits has a duration of 31.25 μs × 100 = 3.125 ms. Thus in 

3.125 ms, irradiance data from 100 simultaneously modulating codes programmed to 

spatially specific 100 agile pixels is acquired. To use 100 CDMA codes for 1000 agile pixels, 

TDMA is deployed to modulate 100 agile pixels at a time to cover the scan region, using 100 

separate codes for each 100 agile pixel sets. Therefore, the total irradiance acquisition 

duration becomes 3.125 ms ×10 = 31.25 ms, similar to what is considered real-time video 

rates. Note that if TDMA is not deployed and a 100 pixel image is desired, 100 CAOS coded 

pixels can be simultaneously deployed, giving a total imaging time of 3.125 ms or an image 

refresh rate of near 300 Hz. Thus using the programmability feature of the CAOS mode and 

even faster frame rate DMDs, one can expect faster image acquisition. This statement 

assumes that the CMOS/PDA sensor has image refresh rates that match or exceed the CAOS-

mode imaging rate and with today’s CMOS optical sensor technology, this is indeed the case. 

Ultimately, image smear of fast moving targets depends on the speed of the target and the 

proposed imager can be programmed to avoid or reduce image smear. 

Today, fast (> 65 MHz) sampling rate 14-bits ADCs are available [39] for digitizing 

the point PD signal to implement fast decoding and image processing. Note that in the 

deployed CAOS mode, inter-pixel crosstalk effects are minimal. There is zero crosstalk 

between the time multiplexed pixel data sets acquired using the TDMA mode as the pixel sets 

are acquired at different instants in time. In the CAOS mode deploying orthogonal CDMA 

codes, one minimizes the inter-pixel crosstalk by using orthogonal codes [38], while 

frequency codes in a pixel set in the CAOS FDMA mode are selected suitably to avoid 

spectral overlap. This pixel readout mechanism is unlike CMOS/CCD sensors where the 

optical and electrical crosstalk effects are ever-present due to the hardwired pixel array 

structure and charge readout architectures, thus limiting inter-pixel crosstalk performance in 

these cameras. 

In summary, camera programmable parameters such as point PD VGA gain and 

bandwidth, number of simultaneous agile pixels, agile pixel size, total agile pixels in sampled 

scene, SM settings as well as incident lighting levels of the sampled scene zones all affect the 

performance of the CAOS mode. Used in conjunction with the CMOS mode processed image 

data, a search mode with a quick raw scan using larger agile pixels is used to provide a coarse 

resolution irradiance distribution map before optimizing the different camera parameters for 

the different scene zones to implement smart image reconstruction via the CAOS mode. 
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8.4 CONCLUSION 

For the first time, proposed and demonstrated is a CAOS-CMOS camera that combines the 

time-frequency agile pixel CAOS imager with the traditional CMOS camera architecture to 

realize a powerful, high dynamic range imaging platform. The CAOS-CMOS camera design 

deploys a DMD chip which receives the incoming optical irradiance from a target scene and 

selectively directs it towards the CAOS arm and the CMOS arm of the camera. In the 

experimental demonstration, a target scene consisting of a bright light source and two dim 

light sources near the CAOS-mode noise floor are used to investigate the performance limits 

of both the CAOS and CMOS operational modes of the hybrid camera. The CMOS camera, 

rated at 51.3 dB DR according to the manufacturer, is experimentally shown to provide an 

image having insufficient dynamic range, whereas the CAOS-mode camera exhibited a DR 

of 82.06 dB under the experimental conditions and successfully reconstructed the target scene 

completely. This experimental 82.06 dB DR value of the CAOS operational mode is limited 

due to the components used in the demonstration. Much higher DR values are obtainable 

using the CAOS mode of the camera using different programmable settings of the camera 

smart components plus the improved electronic capabilities of the ADC, and/or by deploying 

coherent detection via phase-locked loop amplification. The high DR imaging performance of 

the CAOS-CMOS camera has diverse applications across the fields of astronomy, machine 

vision, safety and surveillance, undersea observations and marine science, medical imaging 

and extreme environment imaging. 
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CHAPTER 9 

 

DEMONSTRATION OF 136 DB  

DYNAMIC RANGE CAPABILITY FOR  

A SIMULTANEOUS DUAL OPTICAL BAND  

CAOS CAMERA9 

 

9.1 INTRODUCTION 

The real world is rich in color and irradiance distributions creating a massive data set 

of extreme contrast irradiance values spread across various optical spectral bands. Smartly 

mining for a full irradiance range scene image data set with desired color information is a 

challenge for today’s dominant multi-pixel camera technology [1] where the limited 

instantaneous dynamic range (e.g., < 80 dB) and spectral sensitivity of the camera can fail to 

capture the true scene data that may be vital to the application. Industrial machine vision [2], 

food processing [3], archaeology and art conservation [4] along with biology, military, 

undersea environmental monitoring, material (e.g., soil) composition inspection, mining and 

mineralogy, and astronomy, are example imaging scenarios where data sets can exist with 

extreme optical contrast (e.g., 107:1) bright targets across multiple simultaneous broad 

spectral bands, e.g., Ultra-Violet (UV) + Visible or UV + Near Infrared (NIR),  or Visible + 

Near IR  or visible and Short Wave IR (SWIR). For example, a scene can exist with two 

simultaneous and spatially adjacent targets, one being a very bright visible-NIR target and the 

other being a very low brightness visible-NIR target. Under these dual-band extreme contrast 

conditions, target recovery becomes a challenge for prior-art multispectral imaging 

instruments that deploy wavelength sensitive optics, e.g., gratings and mechanically or 

electronically tunable filters combined with traditional Photo-Detector Arrays (PDAs) such as 

CCD, CMOS, and Focal Plane Array (FPA) multi-pixel devices [5-10]. Specifically, it is 

mainly the PDA in the spectral imager that limits its dynamic range performance. This is 

because a bright target will saturate the pixel in the multi-pixel detector as each pixel in the 

PDA has a limited quantum well capacity, i.e. the amount of charge that the pixel can hold 

                                                 
9 N. A. Riza and J. P. La Torre, “Demonstration of 136 dB dynamic range capability for a simultaneous 

dual optical band CAOS,” Optics Express, vol. 24, no. 26, pp. 29427-29443, (2016). 
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before saturation. In addition, due to spillover effects, the bright target creates crosstalk noise 

in the neighboring pixels of the PDA. As an example, one commercial multispectral imager 

offers a 60 dB dynamic range which is inadequate for extreme contrast spectral imaging [11]. 

To counter the pixel saturation problem and extract a higher dynamic range from the limited 

dynamic range PDA, a High Dynamic Range (HDR) processing technique has been applied 

to multispectral imaging where gradual optical attenuation is applied to the scene to acquire 

multiple images and electronic imaging processing is used to reach an unsaturated final 

image [12-13]. Although this HDR approach and other methods (e.g., increasing pixel size, 

controlling pixel integration time, resetting pixel output voltage or using non-linear 

amplification at each pixel site) can improve the dynamic range of a camera under overall 

bright light scene conditions [14], a fundamental problem can occur when further attenuation 

of the weak light target in the scene will send the PDA pixel irradiance information into the 

noise floor of the limited instantaneous dynamic range PDA. Thus, a spectral camera that 

avoids or limits the use of scene light attenuation and also avoids calibration and control of 

the many individual pixels in a PDA is highly desirable for obtaining true high (e.g. > 130 

dB) contrast images. Furthermore, it would also be highly beneficial that this extreme (e.g. > 

130 dB) instantaneous dynamic range imager has simultaneous dual-broadband channel 

detection with all-optical or electronic domain fine tuning capabilities within each band and 

additionally provides a low (e.g. < -50 dB) inter-pixel isolation and inter-band isolation 

levels. Such an imager can be envisioned to work in unison with traditional prior-art PDA-

based multispectral and/or hyperspectral imagers to extract the desired application specific 

pixel data for smart spectral imaging.  

Therefore, to put things in context, earlier we proposed and demonstrated an agile 

pixel imager (called by some as a single pixel camera/imager) using a Texas Instruments (TI) 

Digital Micromirror Device (DMD) that deploys a point Photo-Detector (PD) and agile pixel 

programming to spatially map an incident irradiance pattern [15]. In effect, the large micro-

mirror count (e.g., 1 million micro-mirrors) DMD when combined with the large quantum 

well capacity point PD forms a PDA. Furthermore, an agile pixel programmed as a desirable 

shaped and positioned light sampler on the DMD extracts the incident irradiance on the DMD 

and transfers it for capture by the point PD, thus forming the agile pixel imager. To add 

operational robustness, a two point PD design has also been proposed and demonstrated for 

this agile pixel imager [16]. This starring-mode imager has been demonstrated for various 

spectral bands including UV, visible, and NIR [17], plus a design has been demonstrated that 
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enables imaging plus optical spectrum analysis [18]. Recently, we have also shown how our 

original DMD imager can deploy space-time-frequency agile pixel processing to realize a 

much improved near 80 dB dynamic range imager called the Coded Access Optical Sensor 

(CAOS) camera [19-23]. Specifically, the CAOS imager assigns independent time-frequency 

codes to selected agile pixels in the image and simultaneously detects all the light and uses 

Radio Frequency (RF) wireless type time-frequency domain signal processing in-parallel to 

decode all agile pixel irradiances of the selected image pixels. The CAOS imaging mode is 

similar to operations of a mobile phone wireless network where specific telephone numbers 

are assigned to mobile phone users within a network of many simultaneous users where 

extreme sensitivity electronic signal processing is used to recover phone data from the very 

weak RF signal picked up by the phone’s electronic receiver. CAOS exploits the same 

extreme sensitivity and detection principles used in RF wireless networks to greatly enhance 

the dynamic range of our original agile pixel imager. Furthermore, simultaneous agile pixels 

detection via CAOS-mode can improve imaging speed. Note that the basic starring mode 

DMD imager design has also been used for compressive sensing-based imaging [24] where 

image recovery is based on image projection measurements and iterative algorithm image 

processing. In contrast, the imaging works described by us [15-23] and demonstrated in this 

chapter directly sample and preserve the true optical irradiances of the incident image and the 

imaging procedures are not based on compressive sensing techniques. One must also 

appreciate that both coding of light (e.g. via rotating patterned gratings for spectroscopy [25] 

and a moving reticle for television pictures [26]) and single PD irradiance map detection date 

back to over 50 years [27-28] and advances in devices and techniques within the modern 

wired and wireless optical and electronic communications and display infrastructure are 

seeding the CAOS imaging platform. In addition, DMDs have been used with CCD/CMOS 

imagers for spectrometry [29] plus control of camera parameters such as blooming [30], Field 

of View (FOV) and pixel level irradiance integration times [31]. 

Building on our prior works in two point PD DMD-based imaging and the CAOS 

camera, this chapter for the first time provides the workings of the desired extreme contrast 

bright multi-spectral target scenario dual optical band CAOS imager design that features 

extreme (> 130 dB) instantaneous dynamic range as well as low (e.g. < ̶50 dB) inter-pixel and 

inter-channel crosstalk. A proof-of-concept dual-band imager is experimentally demonstrated 

using visible and near infrared LED targets in a viewed scene. All-optical narrowband 

filtering as well as CAOS-mode RF domain filtering is engaged for the first time with the 
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CAOS-mode encoded image pixel data to extract finer wavelength content from the imaged 

agile pixel. Compared to our previous 80 dB CAOS mode dynamic range performance [19-

20], it is shown for the first time how using a higher resolution ADC with both amplitude 

range and sampling duration control along with a larger dataset DSP implementation extends 

the imager dynamic range to a desired 136 dB level. This chapter provides the detailed design 

and experimental analysis of the proposed simultaneous dual band CAOS imager. 

 

9.2 SIMULTANEOUS DUAL OPTICAL BAND  

CAOS CAMERA DESIGN 

 

Shown in Fig. 9.1 is the proposed simultaneous dual optical band CAOS camera 

design. Multi-wavelength light passes through imaging lens L and a Smart Module (SM) 

optic to be incident on the DMD1 plane. The SM optic can contain light conditioning optics 

such as variable focal lenses, variable apertures, variable attenuators, and polarizers. The user 

decides the components make-up of the SM optics as well as on the two different spectral 

bands for camera operations called spectral band 1 and spectral band 2. Given the spectral 

band 1 and 2 wavelengths, the user selects the appropriate point PD unit detector technology 

deployed in the camera.  

 

 
 

Fig. 9.1. Proposed simultaneous dual optical band CAOS imager design. 
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The PD unit as shown can also use a Variable Gain Amplifier (VGA) module or 

engage optical amplification before photo-detection. Selected agile pixels on the DMD1 

plane are time-frequency modulated with specific CAOS-mode codes enabling the image 

irradiance to acquire different RF codes, much like different telephone numbers assigned to 

different pixels in the optical image. The TI DMD1 micromirror has two tilt states causing 

the optical image time-frequency modulated light signals to simultaneously show up in both 

PD channels of the CAOS camera. As the DMD1 is a digital-only spatial light modulator, 

each agile pixel time-frequency modulation produces its CAOS-mode specific square wave 

electrical signal at the point PD outputs. L1 and L2 act as imaging lenses between the DMD1 

and PD1/PD2 planes. For multispectral imaging operations, F1 and F2 are fixed broadband 

spectral filters matched to spectral bands 1 and 2, respectively. For hyperspectral imaging 

operations, TF1 and TF2 are tunable spectral filters matched to spectral bands 1 and 2, 

respectively. For example, F1, TF1 and PD1 in channel 1 of the camera can deploy visible 

channel devices while F2, TF2 and PD2 in channel 2 arm can use NIR wavelength selection 

components. Because the TI DMD1 operates between approximately 320 nm to 2500 nm 

wavelengths [32], a variety of dual bands can be realized for the proposed camera. There are 

various options for the required TF1/TF2 modules such as designs using bulk Acousto-

Optical Tunable Filters (AOTFs), DMD, volume Bragg gratings, and liquid crystals [33-36]. 

PD1 and PD2 units provide RF signals whose RF spectra contain CAOS coded agile pixel 

irradiance data for the optical filtered light from the two different spectral bands of the 

camera. Specifically, PD1 and PD2 provide spectral image data for spectral bands 1 and 2, 

respectively. Decoding this detected RF spectra using time-frequency electronic signal 

processing recovers the agile pixel irradiance values for the selected wavelengths. RF signals 

from both PD1 and PD2 are recorded simultaneously and subjected to high speed electronic 

processing. 

There are a number of innovative design features of the Fig. 9.1 imager design that 

create enhanced imaging performance in terms of dynamic range, inter-pixel crosstalk, inter-

band crosstalk, and within broadband channel spectral channel crosstalk. Note the DMD 

time-frequency modulation CAOS-mode operation instantaneously sends selected agile 

pixels input image light to both optical detection channels of the imager. Because the two 

detection channels are physically separated, fixed broadband optical filters (F1/F2) matched 

to the point PD (PD1/PD2) broad wavelength band can be deployed to greatly reject the 

unwanted band light, implementing spatially powered optical spectral filtering. The CAOS-
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mode creates agile pixel light signals with RF modulation, each pixel having its unique 

electronic RF spectral signature that is decoded after photo-detection using RF wireless-style 

processing. Furthermore, note that TF1/TF2 can be programmed in an additional CAOS-

mode to time-frequency modulate selected hyperspectral wavelength channels within agile 

pixels, allowing the use of RF spectral processing to detect specific narrow spectral band 

image data. Because RF domain signal processing can operate with extreme dynamic ranges, 

electronic filtering can be used to further reject optical spectral crosstalk within a broadband 

optical channel. Thus the proposed Fig. 9.1 imager can engage both optical and electronic 

filtering to reject unwanted optical wavelengths. In the same spirit, spatial crosstalk between 

agile pixels in the image can also be reduced using RF domain electronic processing. 

Another innovative feature that is empowered by the CAOS-mode is the use of 

controlled ADC and DSP operations to extend the instantaneous dynamic range of the imager 

and in-turn improve image spatial and spectral crosstalk performance. Specifically, proposed 

and shown experimentally for the first time in this chapter is how using a higher resolution 

ADC with both amplitude range and sampling duration control along with a higher data set 

DSP implementation extends the imager dynamic range by creating significant signal 

processing gain and noise floor suppression. This electronic digital domain feature is possible 

because of the CAOS mode agile pixel operations via point PD detection that naturally 

produces an RF spectrum rich data set that can engage the power of wireless-style DSP 

processing. For example, consider an N-bit ADC using a sampling rate of fs kilo-

samples/second with an agile pixel sampling duration time of ts seconds. The voltage range of 

such an ADC can also be programmable and can be set between various voltage ranges to 

create a zoomed in extreme resolution detection of a weak signal. The output of the N-bit 

ADC then undergoes DSP, for example, spectrum analysis via DSP Discrete Fourier 

Transform (DFT) operation computed by the FFT algorithm implemented in a dedicated 

processor. The DFT produces processing gain resulting in noise suppression. Specifically, 

FFT-based processing gain in dB is equal to 10 × log(M/2) where M is the number of points 

in the FFT [37,38]. Given that the output of a point PD has a designed Dynamic Range (DR) 

of A dB, subjecting the point PD signal to FFT processing leads to a final output enhanced 

camera DR of A+10×log(M/2) dB. For example, a two million point FFT can produce an 

additional 60 dB processing gain for the imager, enabling exceptional agile pixel image and 

spectral map capture. 
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As described in our prior CAOS related work [20], the speed of operation of a CAOS 

platform-based imager depends on a number of factors associated with using the CAOS 

mode. These factors include the frame rate of the DMD1, response time of the point PDs, the 

number of activated simultaneous agile pixels on the DMD1, the time-frequency modulation 

code temporal parameters (e.g. code duration and frequency), ADC sampling rate and total 

sampling duration of an activated agile pixel, the speed of DSP to compute agile pixel 

irradiance values, number of hyperspectral channels, and speed of operation of the 

hyperspectral channel selection optical devices. Thus, one must optimize the CAOS camera 

parameters to meet the application specific imaging requirements. Also note that the spectral 

image pixel maximum dynamic range obtained via our imager depends not only on the 

mentioned optical control and electronic processing parameters, but inherently depends on 

the sampled scene spectral content and its spatial irradiance map. Hence the dynamic range 

and speed of the imaging operation should be optimized using initial scans by the proposed 

dual-band CAOS imager working in unison with image spatial and spectral intelligence 

gathered via prior-art spectral sensor systems and other CAOS camera hardware-based 

computational imaging methods. 

 

9.3 VISIBLE-NIR SIMULTANEOUS DUAL OPTICAL BAND  

CAOS CAMERA EXPERIMENT  

The proposed CAOS camera design for simultaneous dual-band imaging is 

implemented in the laboratory for the visible and NIR bands. The camera optical assembly 

uses a low cost DLP3000 TI DMD chip having a micromirror pitch of 7.637 μm, a 608 × 684 

micromirror array arranged in a diamond configuration and a micromirror tilt angle θ=±12° 

with respect to the DMD normal. This DMD1 with its controls has a frame update rate up to 

4000 Hz. Lenses L, L1, L2 have focal lengths of 5 cm, 2.54 cm, and 2.54 cm, respectively. 

Distances for experiment are: L to DMD1 = 5.3 cm; DMD1 to L1 = 8.4 cm; DMD1 to L2 = 

8.4 cm; L1 to PD1 = 3.7 cm; and L2 to PD2 = 3.7 cm. The camera visible band Channel 1 

(CH1) uses a PD1 that is a Thorlabs switchable gain silicon detector model PDA36A with an 

active area of 3.6 mm×3.6 mm. The NIR Channel 2 (CH2) of the camera uses PD2 that is a 

Thorlabs switchable gain germanium detector model PDA50B with an active area having a 5 

mm diameter. Fundamentally, PD1 silicon PD technology covers the spectral range from 350 

nm to 1100 nm whereas PD2 based on germanium-based photo-detection covers wavelengths 
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from 800 nm to 1800 nm. The visible channel in the camera deploys a Thorlabs bandpass 

color filter F1 model FGS900M having 315 nm to 710 nm transmission wavelength range. 

The NIR channel in the camera uses a Thorlabs high pass filter F2 model FEL0800 having 

800 nm cut-off lower wavelength and a recommended upper wavelength of 2200 nm. To 

conduct the first basic narrowband imaging tests in the visible band, narrow bandwidth 

Thorlabs filters representing TF1 are mechanically deployed in the visible channel of the 

camera. Specifically FB450-40, FB550-40, FB620-10 filters have wavelengths centered at 

450 nm, 550 nm, and 620 nm and Full Width Half Maximum (FWHM) bandwidths equal to 

40 nm, 40 nm and 10 nm, respectively. The CAOS visible-NIR simultaneous dual optical 

band imager is first setup using 50 Ω PD signal terminations, a STMicroelectronics 

STM32F4 microcontroller board using 12-bit ADCs and a Personal Computer (PC) that 

implements the FFT DSP. The control and synchronization of these components along with 

the DMD1 is done through the developed in-house Graphic User Interface (GUI) software. 

 

The CAOS visible-NIR simultaneous dual optical band imager is deployed to image 

the scene shown in Fig. 9.2 made up by four bright LEDs having central wavelengths of 450 

nm, 525 nm, 625 nm and 1450 nm with FWHM values of 20 nm, 25 nm, 14 nm, and 105 nm, 

respectively. These blue, green, red, and NIR LEDs have optical powers of 7 mW, 4 mW, 12 

mW, and 5 mW, respectively. Both PD1 and PD2 units have VGAs with variable gain 

settings from 0 dB to 70 dB. To register the photo-detected signals, these gains are set to 70 

dB. To acquire viewed images by the camera for the visible band and NIR band, the camera 

is programmed in CAOS-mode so that two simultaneously agile pixels on the DMD1 are 

 

 
 

Fig. 9.2. Shown is the Visible-NIR bands target scene created using 3 visible LEDs and 1 

NIR LED. Photos show LEDs off (left) and LEDs on (right). These photos are taken with 

a Nikon D3300 DLSR visible camera. 
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used to time-frequency modulate the dual-band optical image irradiance falling in the DMD1 

chip. Each agile pixel is square shaped and programmed to have a 152.74 μm (20 

micromirrors) agile pixel side. These two simultaneously agile pixels are programmed in the 

Frequency Division Multiple Access (FDMA) CAOS-mode [19] to oscillate at the RF 

frequencies of f1 = 133.4 Hz and f2 = 200.2 Hz. Both PD1 and PD2 generate these coded RF 

signals that undergo analog-to-digital conversion using the 12-bit ADCs operating at a 

sampling rate of 2.4 kilo-samples/second and a total sampling time duration of 6 seconds. 

Square wave signal frequencies f1 and f2 are selected such that their harmonics do not overlap 

in the frequency space to create inter-pixel crosstalk. The 6 seconds PD sampling time is 

chosen to produce a sampled signal with a time-bandwidth product that closely matches M, 

the number of points in the implemented FFT. With the deployed point PD modules, the 

generated photodetector photocurrent iPD(t) is given by: 

),()(
1

titi
N

n nPD  
      (9.1) 

where in(t) is the photo-current produced by the CAOS-mode nth agile pixel amongst the set 

of N agile pixels simultaneously falling on the point PDs.  

The photo-current in(t) is given by: 
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where In(x,y) is the spatially averaged irradiance in W/m2 at the nth agile pixel location 

centered at the xn,yn coordinates of the image map incident on the DMD1. Irradiance 

averaging is done over An, the area of the nth agile pixel on the DMD1. cn(t) is the time-

frequency CAOS code used for the nth agile pixel. R(λ) is the point PD responsivity value in 

units of A/W for a given wavelength λ. D(λ) ranges between 0 and 1 (1 is for 100% micro-

mirror reflectivity) and is the optical attenuation factor due to the CAOS-mode DMD1 (or 

DMDs when TF1/TF2 contains a DMD) for a given wavelength λ. Recall that the DMD has a 

broadband spectral response from 320 nm to 2500 nm [32]. However the reflectance of the 

DMD window material is not uniform in this range. In [32] TI demonstrated that for the 

visible region range of 420 nm to 700 nm, the typical transmittance observed for the deployed 

DMD is approximately 97% indicating that D(λ)~1 for the 3 LED visible colours used in our 

experiment. Regarding the NIR wavelength region, the transmittance varies according to the 

specific NIR wavelength. For the test target LED having a 1450 nm wavelength, the 
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transmittance is approximately 72% giving a D(λ)~0.72. To compute the true DMD1 plane 

incident spectrally distributed image irradiance, D(λ) is considered in the post-processing for 

image generation. 

The VGA voltage output vn(t) at the ADC input due to the nth agile pixel current 

contribution in(t) is given by: 

,)()( Ann Gtitv       (9.3) 

where GA is the trans-impedance gain of the VGA. Thus vn(t) can be computed as: 

.)()(),()()( Annnn GDRAyxItctv      (9.4) 

The FFT DSP is implemented on the vn(t) signal which is a scaled version of the agile 

pixel optical irradiance as one can write vn(t) as: 

),,()( yxIKtv nn       (9.5) 

where the scaling factor K is: 
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The FFT DSP value for the nth agile pixel is given as |Sn(f)|=FFT[vn(t)] with 

frequency f in Hz. The digital data from the ADC representing vn(t) is fed to the PC that 

implements 16384 point FFT-based agile pixel decoding to recover the visible band and NIR 

band irradiance values at the selected agile pixels. 

To cover the entire scene being projected on the DMD1 chip plane, a total of 442 

individual agile pixels are programmed and scanned in time sequence with N = 2 agile pixels 

per PD1/PD2 detection time slot. For the CAOS-mode FDMA codes, c1(t) and c2(t) are unity 

amplitude square wave signals with time periods of 1/f1 and 1/f2, respectively. Line-by-Line 

scanning is used giving a total agile pixel line scan length of 442 (number of pixels)×216 μm 

(pixel diagonal) = 95.48 mm. Presented in Fig. 9.3 is the scaled irradiance data acquired via 

FFT processing as cameras typically provide scaled irradiance images. 
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Figure 9.3(a) shows the visible scaled irradiance map obtained using the CAOS 

camera visible channel while Fig. 9.3(b) shows the NIR scaled irradiance map obtained using 

the CAOS camera infrared channel. In both cases shown in Fig. 9.3, the base 10 logarithm of 

the experimentally obtained scaled irradiance map Is(x,y) = K×I(x,y) is plotted along the 

scene x-y axes. Figure 9.3 shows that indeed the CAOS dual optical band imager has 

correctly located the positions of the 3 visible targets and 1 NIR target in the viewed scene. 

 

 
(a) 

 
(b) 

 
Fig. 9.3. (a) Visible scaled irradiance map obtained using the CAOS visible-NIR 

simultaneous dual optical band imager visible channel. (b) NIR scaled irradiance map 

obtained using the CAOS camera infrared channel. 
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Note that at this stage of camera operations, one has not conducted narrow spectral 

channel imaging within desired spectral channels for the detected dual-band images. To do 

so, the camera switches to its narrower band operations spectral camera mode by engaging 

TF1 and TF2 fine channel wavelength tuning in the two independent broadband channels in 

the camera. Specifically, since we are using 3 different color visible targets, the visible 

channel is tested for hyperspectral imaging by mechanically inserting a specific color 

wavelength filter (specifications of filters defined earlier) within the visible light channel of 

the camera. Figure 9.4 shows the experimentally obtained CAOS narrow spectral band 

irradiance maps at (a) λ = 450 nm with FWHM of 40 nm, (b) λ = 550 nm with FWHM of 40 

nm and (c) λ = 620 nm with FWHM of 10 nm. The electronic FFT processed signal shown in 

Fig. 9.5 shows the detected light location (on the agile pixel scan line) and its normalized 

irradiance. Specifically, Fig. 9.5(a) plot is generated from PD2 while Fig. 9.5(b) plot is 

generated from PD1. This Fig. 9.5 data shows that the unwanted wavelength band falls in the 

noise floor of the FFT trace giving a measured inter-spectral band optical isolation of 10 log 

[1/(2.88 x 10-4)] = -35.3 dB (or an electrical isolation of -70.6 dB) between the visible and 

  
(a)     (b) 

 
(c) 

Fig. 9.4. Narrower spectral channel CAOS visible-NIR simultaneous dual optical band 

imager scaled irradiance maps at (a) λ = 450 nm with FWHM of 40 nm, (b)  

λ = 550 nm with FWHM of 40 nm and (c) λ = 620 nm with FWHM of 10 nm. 
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NIR bands for PD1. Regarding the measured inter-spectral band optical isolation for CH2, its 

value is computed as 10 log [1/(9.97 x 10-4)] = -30 dB (or an electrical isolation of -60 dB). 

Note that the inter-spectral band camera isolation can be further improved if cascading of 

multiple F1 and F2 filters is used in the CH1 and CH2 paths, respectively. 

 

 
(a) 

 
(b) 

 
Fig. 9.5. Shown is the normalized optical irradiance plotted versus agile pixel scan 

distance as the agile pixel conducts a line-by-line scan over the DMD1 plane making 442 

agile pixels. Plot in (a) is generated from PD2 (NIR channel) while plot in (b) is generated 

from PD1 (Visible channel). Note that (b) is obtained by unrolling into a 1-D array, the 2-

D array data shown in Fig. 9.4(b). 
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Note that one can compute the optical (and electronic) contrast of the detected narrow 

spectral channel images by using the experimentally measured agile pixel irradiance values 

via the FFT spectral trace |S(f)| data. One can compute the image electrical contrast DRim in 

dB as: 
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    (9.7) 

Here |S(f)|max and |S(f)|min are the maximum and minimum values of the electronically 

processed FFT signal for a given narrow spectral band image map. For the experimental 

narrow spectral band images at 450 nm, 550 nm, 625 nm, and 1450 nm, |S(f)|max values are 

510.5, 110.4, 788.9, and 58.15, respectively. At 450 nm, 550 nm, 625 nm, and 1450 nm, the 

|S(f)|min values are 0.1473, 0.1587, 0.1315, and 0.1578, respectively. Given these values, the 

narrow spectral band images at 450 nm, 550 nm, 625 nm, and 1450 nm have measured 

electrical contrast ratios of 70.78 dB, 57.125 dB, 75.56 dB, and 51.32 dB, respectively. Note 

that the measured narrow spectral band image contrast value is strongly dependent on the 

various camera parameters such as optical filter and PD spectral responses. 



- 163 - 

 

 

As described in the design section, the proposed dual band CAOS imager can also 

engage the CAOS-mode in a suitable TF1/TF2 module to bring the power of RF domain 

signal processing and filtering into effect for in-band wavelength analysis for the selected 

agile pixels in the imaged scene. To demonstrate this imager feature, a TF1 filter based on the 

DMD spectral filter design, described in [33], is placed within the CAOS imager 

implemented in the laboratory. This TF1 design is shown in Fig. 9.6(a) and uses a 500 

lines/mm visible band transmission amplitude grating G with another DMD called DMD2 

(same technical specifications as DMD1) and an lens L3 of focal length of 3 cm that images 

the DMD2 plane onto the PD1 plane. The distance between L3 and PD1 is 4 cm. G is placed 

 
(a) 

 

 
(b) 

 
Fig. 9.6. (a) Shown is the design of the DMD2-based TF1 module used in Channel 1 of 

the CAOS camera that implements CAOS-mode narrower wavelength optical spectral 

detection. (b) Photograph of the DMD2 plane spatially distributed visible spectrum 

produced by light coming from the DMD1 programmed CAOS-mode white light agile 

pixel. 
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just after the lens L1 in the Channel 1 assembly to produce a spatially distributed white light 

spectrum (showing the main red, green, blue wavelength bands across ~400-700 nm) along 

the DMD2 horizontal axis (see Fig. 9.6(b)) covering a length of ~4.5 mm (the chip length is 

6.57 mm). To create a suitable white light agile pixel on the imager DMD1 plane, a 5 W LED 

white light torch having a luminosity of 180 lumens [37] placed 60 cm from L with a focal 

length of 7.5 cm is imaged on to the imager DMD1 plane where a 1.527 mm×1.527 mm 

CAOS mode agile pixel is formed at a f0 = 400 Hz test code frequency. This pixel’s entire 

white light irradiance shows up as spatially separated wavelength channels on DMD2 plane, 

all carrying a carrier code of 400 Hz that are summed up at PD1. The white light pixel 

generated current undergoes 2,097,152 points FFT signal processing to produce a white light 

agile pixel scaled irradiance data signal shown in Fig. 9.7(a). The data acquisition parameters 

using a higher performance ADC are: 16 bit resolution ADC, sampling rate of 20 kilo-

samples/sec and sampling duration of 60 seconds. 
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(a)     (b) 

 

  
(c)     (d) 

 
Fig. 9.7. Shown are the detected RF spectrum peaks |S(f)| for different visible band 

spectral selections programmed by the CAOS-mode of DMD2 in TF1. (a) |S(f = f0)| = 

49.68 × 10-4 obtained when the entire DMD2 is programmed to direct all spectral 

components of the white light agile pixel at f = f0 = 400 Hz CAOS-mode to PD1. (b) |S(f0 

+ f3)| = 0.4581×10-4 obtained when DMD2 is programmed to direct only the red color 

spectral band light to PD1 using a f3 = 50 Hz CAOS-mode. (c) |S(f0+f2)| = 1.091×10-4 

obtained when DMD2 is programmed to direct only the green color spectral band light to 

PD1 using a f2 = 62.5 Hz CAOS-mode. (d) |S(f0+f3)| = 0.4597 ×10-4 and |S(f0 + f1)| = 

1.074×10-4 obtained when DMD2 is programmed to simultaneously direct the red and 

blue color spectral band light components to PD1 using f3 = 55.5 Hz (red) and f1 = 83.3 

Hz (blue) CAOS-mode. 
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To independently monitor the color content of this white light agile pixel, different 

CAOS codes are assigned to the different color/spatial zones defined as a second set of time-

frequency CAOS mode agile pixels with frequencies f1, f2, f3 for blue (λ1), green (λ2), and red 

(λ3) spectral bands, respectively. The spatial size of the agile pixel on DMD2 determines the 

spectral bandwidth of the spectral selection. DMD2 is programmed with a square agile pixel 

with a side length of 382 µm and a diagonal length (along the wavelength spread axis) of 540 

µm. Given the 500 lines/mm grating period and a distance of 4.8 cm between G and DMD2, 

each agile pixel of a 540 µm width on DMD2 makes a spectral filter bandpass of (0.54 

mm/4.5 mm)×300 nm = 36 nm. In contrast to the CAOS coding of the agile pixels in the 

image space on DMD1, the DMD2 agile pixels simultaneously implement wavelength coding 

for the multi-color light for all agile pixels on DMD1. Figure 9.7 highlights the detected 

peaks |S(f)| for different visible band spectral selections programmed by the CAOS-mode of 

DMD2 in TF1. Figure 9.7(a) gives |S(f = f0)| = 49.68×10-4 obtained when the entire DMD2 is 

programmed to direct all spectral components of the white light agile pixel at f = f0 = 400 Hz 

CAOS-mode to PD1. In this case, DMD2 does not time-frequency modulate the incident 

light, creating a strong carrier signal at 400 Hz observed in the FFT spectrum. Figure 9.7(b) 

gives |S(f0 + f3)| = 0.4581×10-4 obtained when DMD2 is programmed to direct only the red 

color spectral band light to PD1 using a f3 = 50 Hz CAOS-mode. In this case, the double 

CAOS-mode implementation using DMD1 and DMD2 produces double sideband time-

frequency optical modulation, creating at f0+f3 and f0-f3 the FFT spectrum sidebands around 

the carrier f0. It is adequate to use either sideband spectral strength to determine the relative 

spectral strength of the incident multispectral light. Similarly, Fig. 9.7(c) gives |S(f0 + f2)| = 

1.091×10-4 obtained when DMD2 is programmed to direct only the green color spectral band 

light to PD1 using a f2 = 62.5 Hz CAOS-mode and Fig. 9.7(d) gives |S(f0 + f1)| = 1.074×10-4 

and |S(f0 + f3)| = 0.4581×10-4 obtained when DMD2 is programmed to simultaneously direct 

only the blue and red color spectral band light components to PD1 using f1 = 83.3 Hz (blue) 

and f3 = 55.5 Hz (red) CAOS-mode. This white light agile pixel blue (λ1,f1), green (λ2,f2), red 

(λ3,f3) color data indicates that compared to the red light content, blue and green light spectral 

contents are a factor of ~2.3 larger, a result also confirmed using optical power and filter-

based direct spectral measurements of the light exiting the white light LED. Thus the 

deployment of a programmable CAOS-mode TF1 and TF2 modules within the proposed dual 

band CAOS imager empowers spectral imaging, allowing the user to sift out desired 

simultaneous spectral features via electronic domain signal processing for high dynamic 

range spectral monitoring. 
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9.4 CAOS CAMERA EXTREME DYNAMIC RANGE  

ANALYSIS AND EXPERIMENT 

The camera dynamic range DR in dB is defined as: 
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 DR (dB) = 20×log(Pmax/Pmin) where Pmin is the minimum detectable optical power by 

the PD and Pmax is the maximum detectable optical power by the PD. To determinate the DR 

of both PD1 and PD2 modules in the optical design shown in Fig. 9.1, one must note that 

each point PD-VGA module has its own electrical characteristics such as the PD GA, PD 

bandwidth (BW), and PD Noise Equivalent Power (NEP). These PD module parameters are 

dependent on the VGA switchable gain setting used during the optical image acquisition 

operation via the CAOS-mode agile pixels sampling. Considering an ADC having a 

maximum input voltage limit Vmax, the PD’s maximum current output imax can be found as 

imax = Vmax/GA. GA varies according to the impedance termination used which can be either a 

high impedance (Hi-Z) such as used in the CAOS camera extreme dynamic range test to be 

described next or the 50 Ω impedance termination such as used previously in the 

microcontroller-based imaging system test setup in the dual band imager experiment. The 

maximum detectable optical power Pmax at a point PD can be found as Pmax = imax/R(λ). To 

compute the DR for the point PD, it is necessary to first compute the minimum detectable 

optical power Pmin at the point PD. In order to do so, the NEP value of the PD needs to be 

considered. The NEP, which is the sensitivity of the PD device, represents the minimum 

optical signal that can be optically detected per square root bandwidth with units of W/√Hz. 

The NEP value is wavelength dependent and to compute its value the following generalized 

formula is used: 
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where NEPmin corresponds to the NEP value at the PD’s peak wavelength λp and Rmax 

is the responsivity value at the peak wavelength. By knowing the NEP value at the detected 

wavelength it is possible to compute the minimum detectable optical power Pmin as: 

,)(min BWNEPP       (9.10) 
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where BW is the measurement electrical bandwidth of the PD unit. With both Pmax 

and Pmin values determined, the point PD DR and hence the raw camera DR is computed. 

To obtain the designed DR values for the wavelengths used in the dual band CAOS 

imager experiment, the following considerations are taken into account. The maximum 

voltage value Vmax that the 12-bit ADC is able to sense is equal to 3 V. This 3 V value 

represents the PD1/PD2 optical saturation limitation for the dual band CAOS imager. The 

demonstrated imager PD1/PD2 units have VGA gains set to 70 dB with PD1 data sheet 

specified bandwidth BW1 = 5×103 Hz and PD2 bandwidth BW2 = 210 Hz. Both PDs are 

designed to have 50 Ω termination impedances giving data sheet specified gains GA1 = GA2 = 

2.38 × 106 V/A. Via datasheets, λp = 970 nm and Rmax = 0.65 A/W for PD1 and λp = 1550 nm 

and Rmax = 0.85 A/W is for PD2. NEPmin corresponds to the NEP value at the PD’s peak 

wavelength λp. For PD1, NEPmin is equal to 2.10×10-12 [W/√Hz] whereas for PD2, NEPmin is 

equal to 4.63×10-12 [W/√Hz]. The hyperspectral imager experimental test wavelengths λ1 = 

450 nm, λ2 = 550 nm, λ3 = 625 nm, and λ4 = 1450 nm have computed responsivity values 

R(λ1) = 0.114 A/W, R(λ2) = 0.22 A/W, R(λ3) = 0.299 A/W, and R(λ4) = 0.8175 A/W, 

respectively. The computed maximum detectable optical power at the specific wavelengths is 

Pmax1 = 1.10×10-5 W, Pmax2 = 5.73×10-6 W, Pmax3 = 4.21×10-6 W and Pmax4 = 1.54×10-6 W. 

Using the computed NEP(λ) values for the 4 wavelengths, the computed minimum detectable 

optical power by PD1 at the specific wavelengths is Pmin (λ1) = 8.46×10-10 W, Pmin (λ2) = 4.39 

×10-10 W, Pmin (λ3) = 3.23×10-10 W, and Pmin (λ4) = 6.97×10-11 W. Using the calculated Pmax 

and Pmin values, the designed PD DR values in dB for the test wavelengths gives DR(λ1) = 

DR(λ2) = DR(λ3) = 82.3 dB and DR(λ4) = 86.88 dB. Indeed, these designed DR values are 

more than adequate to capture the deployed hyperspectral image targets that register at best 

an experimentally measured electrical contrast of 75.56 dB for the red LED target. 

In order to test the extreme DR range (and image contrast) performance of the 

presented CAOS camera, a super bright target in the form of a 15 mW 633 nm Melles Griot 

He-Ne laser is deployed as a target in the viewed scene. In this experimental setup, Thorlabs 

Neutral Density (ND) filter-based variable optical attenuators are deployed to attenuate the 

laser light to simulate a high contrast target that reaches an extreme optical contrast ratio of 

107:1 (or an equivalent camera electrical DR of 140 dB). By deploying x-y slit scanning on 

the DMD1 plane, the spatial location of the deployed CAOS agile pixel is positioned to 

sample the high brightness laser target so that PD1 generates the maximum signal. A CAOS-

mode modulation frequency of f = f1 = 400 Hz is used in the experiment with N = 1 as there 
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is one agile pixel. Given the red wavelength, only the PD1 channel of the camera is engaged. 

Specifically, the PD1 output is connected to a high termination impedance Data Acquisition 

(DAQ) card model 6211 from National Instrument that has programmable high speed 16-bit 

ADCs [38]. PD1 can handle extreme optical power levels to produce maximum 10 V output 

signals and the DAQ card has a specified Vmax = 10 V. Given the presence of a strong bright 

source (a laser beacon) in the target scene, the PD1 VGA gain is set to 0 dB which in-turn as 

per datasheet sets the PD1 unit BW = 10 MHz and PD gain to GA = 1.51×103 V/A for the 

high termination impedance setting. The computed R(λ = 633nm) = 0.312 A/W and the 

computed maximum detectable optical power using Vmax = 10 V is Pmax = 21×10-3 W. At 0 

dB setting, NEPmin = 2.91×10-11 [W/√Hz] and NEP(λ = 633nm) = 6.06×10-11 [W/√Hz] giving 

a computed minimum detectable optical power is Pmin = 1.92×10-7 W. Using PD1, the 

designed raw DR capability of the CAOS camera when using the maximum acceptable DAQ 

voltage range of 10 V is computed to be 100.88 dB. However, using the deployed laser with 

the agile pixel size matched to the multispectral imaging experiments agile pixel size of 

20×20 micromirrors, (152.74 μm × 152.74 μm), an approximately 2 V signal is produced 

from PD1, i.e., a factor of 5 below the PD1 total light detection capacity. In effect, the 

designed PD1 DR for the CAOS camera extreme DR test is 86.9 dB. It is well known that the 

Signal-to-Noise Ratio (SNR) in dB for a P-bit ADC is given by SNR(dB) = 6.02 × P + 1.76 

[39]. With P = 16 bits, the deployed DAC has an SNR of 98.08 dB that is adequate for 

capturing the direct output of PD1 with a designed DR of 86.9 dB. Another point to note is 

that about 1/5 of the full well capacity of PD1 is used in our experiment implying that one 

could simultaneously detect 5 such extremely bright agile pixels in the scene by using up the 

full 10 V range of the PD1 output. Of course, one can decrease the agile pixel sampling area, 

thus reducing the total optical power collected by PD1 which leads to simultaneously 

registering a larger number of agile pixels in the image space. It is important to point out that 

the CAOS camera inherently makes the best and most efficient use of the relatively large full 

quantum well capacity of the point detectors PD1 and PD2. Such is not the case in prior-art 

PDA-based cameras where an incident bright extreme contrast image causes the many high 

spatial resolution smaller capacity quantum wells to be partially filled while many other 

quantum wells in the PDA are over filled and create spill over to nearby wells, thus causing 

pixel saturation and inter-pixel crosstalk noise. In short, CAOS is also quantum well capacity 

efficient. 
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The 16-bit DAC uses a sampling rate fs of 20 kilo-samples/second with a DAQ card 

sampling duration time ts set to 5 seconds. The voltage range of the DAQ is programmable 

and set to the -10 to +10 V range. The output of the 16-bit DAC undergoes RF spectrum 

analysis via DSP DFT operation computed by the FFT algorithm implemented in the PC. As 

mentioned earlier, the DFT produces processing gain resulting in noise suppression and the 

CAOS camera employs this special DFT capability to pull out the desired agile pixel data 

signal from the noise background created under extreme image contrast conditions. 

Specifically, FFT-based processing gain in dB is equal to 10×log(M/2) where M is the 

number of points in the FFT [39, 40]. M is first calculated as M = fs×ts and subsequently 

increased to a power of 2 number for computational efficiency purposes so that the algorithm 

complexity decreases from O(n2) to O(n log n) where “O” stands for order of [41]. For the 

first stage of the high dynamic range experiment, fs×ts = 100,000. With M = 217 = 131,072 

satisfying the algorithm efficiency condition for the FFT implemented in MATLAB gives a 

designed processing gain GFFT = 10 log (M/2) = 48.16 dB. Given that the output of PD1 has a 

designed DR of 86.9 dB, subjecting the PD1 signal to FFT processing leads to a final output 

designed camera DR of 86.9 + 48.16 = 135.06 dB. 

To initiate the extreme dynamic range test to reach this 135.06 dB camera DR, optical 

attenuation of the laser beam is gradually increased using the optical ND filters starting with 

Optical Density (OD) values of 1, 3, 4, 5, 5.3 and 5.5 giving photo-detected output electrical 

signal attenuations of 20 dB, 60 dB, 80 dB, 100 dB, 106 dB and 110 dB, respectively. Here 

electrical attenuation in dB is equal to 20×log(10OD). The signal FFT spectral traces for laser 

light optical attenuations of 0 dB, 50 dB, and 55 dB are shown in Figs. 9.8(a), 9.8(b), and 

9.8(c), respectively. Note that when optical attenuation reaches 55 dB, the fundamental RF f 

= f1 = 400 Hz FFT spectral peak due to the photo-detected square wave signal disappears into 

the spectrum trace noise floor. At this stage, the CAOS camera has demonstrated a camera 

dynamic range near 100 dB (50 dB × 2) where camera DR is 20×log(|S(f1)|max/|S(f1)|min) with 

|S(f1)|max determined at the zero optical attenuation setting and |S(f1)|min determined when the 

RF spectral peak almost disappears in the spectral trace noise floor. Specifically, the Fig. 

9.8(b) data gives an experimental DR = 98.6 dB, nearly matching the expected DR of 100 dB 

using the 50 dB optical attenuator. At the 55 dB optical attenuation of the target light, the 

camera produces the Fig. 9.8(c) FFT spectral signal where no clear f1 peak is seen. In this 

instance, the DAQ is switched to its -200 mV to +200 mV super-resolution 50X DAC range 

compression mode. Doing so produces the Fig. 9.8(d) FFT spectral trace result where the 
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peak is again clearly visible indicating a recovered camera DR of 110 dB. This recovery is 

possible because the DAC signal sampling resolution is improved by a factor of 50, changing 

from 30 mV to 6 μV allowing finer signal quantization, thus improving the digitization 

quality of the very weak RF signal produced by PD1. 

 

 

 

  
(a)    (b) 

 

  
(c)    (d) 

 
Fig. 9.8. Highlighted are the detected peak |S(f1)| for different optical attenuation, DAQ 

voltage range configuration, and sampling duration time. (a) |S(f1)| = 1.228 obtained for a 

10 V DAQ range setting when no optical attenuation is used and ts = 5 s. (b) |S(f1)| = 

1.43×10-5 obtained for a 10 V DAQ range setting when ND filter is equal to OD = 5 and ts 

= 5 s. (c) Peak at f1 buried in system noise floor for a 10 V DAQ range setting when ND 

filter is equal to OD = 5.5 and ts = 5 s. (d) |S(f1)| = 3.56×10-6 obtained for a 200 mV DAQ 

range setting when ND filter is equal to OD = 5.5 and ts = 5 s. 
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The Fig. 9.9(a) FFT trace giving a measured DR of 116.2 dB is obtained when a PD 

signal electrical attenuation of 120 dB is implemented using a ND filter with an OD of 6. An 

increase of the target light attenuation using a ND filter with a 6.3 OD (which is equal to 126 

dB electrical attenuation) results in the FFT trace shown in Fig. 9.9(b) where once more the 

FFT spectral peak carrying the irradiance information of the CAOS-mode agile pixel signal is 

buried in the spectrum noise. In order to extract the CAOS pixel irradiance information from 

the FFT spectral peak, the sampling duration acquisition time parameter of the DAC is 

increased by a factor of 12, i.e., from 5 seconds to 60 seconds. For the MATLAB FFT, this 

increase in integration time increases the M value to 221 = 2,097,152 giving a FFT processing 

gain of GFFT = 60.2 dB. As it is shown in Fig. 9.9(c), using this increased processing gain 

recovers the FFT peak which is well visible with respect to the noise floor giving an 

experimental CAOS camera DR of 125.7 dB. With the increased GFFT, the designed camera 

DR = 86.9 + 60.2 = 147.1 dB. Next the attenuation is further increased to a value of 6.6 OD 

which corresponds to a PD signal electrical attenuation of 132 dB. For this attenuation, Fig. 

9.9(d) gives an experimental CAOS camera DR value of 130.5 dB. As shown in Fig. 9.9(e), 

by further increasing the applied optical attenuation to a value of 6.9 OD which is equivalent 

to 138 dB PD signal attenuation, one can no longer recover the super weak CAOS pixel 

irradiance signal since it is hidden in the FFT spectrum noise floor. From Fig. 9.9(e) a 

|S(f1)|min = 2×10-7 just above the noise floor gives an experimental CAOS camera DR of  

136 dB. This extreme DR number of 136 dB showcases the power of the proposed 

wavelength sensitive CAOS camera technology. 

Do note that the approximately 11 dB difference in experimental versus designed 

camera DR is due to several factors that includes error tolerances of optical and electronic 

components specifications from the datasheets, measurement errors due to deployed test 

instruments, and drift from the perfect linearity assumed for the point PD responses as well as 

their built-in trans-impedance amplifiers. Specifically, the deployed point PDs are designed 

for an ideal linear response in regions sufficiently far from the PD saturation point and the PD 

noise floor [42]. In an optimized CAOS camera design for application-specific field 

deployment, the experimental camera can be appropriately calibrated to produce true image 

irradiance data. 
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Fig. 9.9. (a) |S(f1)| = 1.902×10-6 obtained for a 200 mV DAQ range setting when ND filter 

is equal to OD = 6 and ts = 5 s. (b) Peak at f1 buried in system noise floor for a 200mV 

volts DAQ range setting when ND filter is equal to OD = 6.3 and ts = 5 s. (c) S(f1)| = 

6.371×10-7 obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 6.3 

and ts = 60 s. (d) S(f1)| = 3.662×10-7 obtained for a 200 mV DAQ range setting when ND 

filter is equal to OD = 6.6 and ts = 60 s. (e) Peak at f1 buried in system noise floor for a 

200mV volts DAQ range setting when ND filter is equal to OD = 6.9 and ts = 60 s. 
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9.5 CONCLUSION  

For the first time, proposed and demonstrated is a novel spectral CAOS camera design 

that has the inherent capability to provide very high dynamic range with simultaneous dual-

band spectral imaging. The imager features low inter-pixel and spectral channel crosstalk via 

application dependent agile-pixels CAOS-mode programmability that allows electronic signal 

processing-based optical irradiance monitoring and filtering both in the image spatial domain 

as well as the optical spectral domain. When used with classic multispectral and 

hyperspectral imagers, this camera can extract useful spectrum specific irradiance image 

pixel data required by the end user. In effect, the proposed spectral CAOS camera can be 

programmed as a precision spatial and spectral irradiance sifter that pulls out otherwise 

unseen image data. Because the CAOS camera hardware allows the placement of 

programmable spatial masks on the DMDs, for certain sparse data set scenarios, the 

compressive sensing algorithm implementation is possible by first using the proposed 

camera’s non-CAOS staring mode [15] to record the point PD voltage value for each spatial 

mask in a sequence of P masks and then combining this point PD data set with the spatial 

mask data set via numerical optimization based post-processing to produce an estimate of the 

imaged scene. Thus after iterative computation using higher P values and modified 

optimization criteria, one gets an improved estimated sparse image data set of a limited 

dynamic range that can also be used to assist the camera CAOS-mode extreme dynamic range 

region of interest imaging operations. In such a hybrid design case, the agile pixel can be 

thought of as a space-time-frequency representation that combines time-frequency 

encoding/decoding of CAOS with spatial-coding of classic transform and compressive 

sensing as well as ghost imaging [43]. Speed of CAOS camera sifting operations depends on 

various factors including agile pixel size, pixel count, detector integration time, DSP 

algorithm and PC speed, as well as application dependent conditions and the parameters of 

the imager. Experiments for the first time using the proposed spectral imager have been 

successfully conducted with a 4 LED spatially distributed multi-colour (3 visible LEDs and 1 

IR LED) test target observed using the CAOS-mode to spatially sample the image space and 

mechanically placed narrowband spectral filters to determine the specific target spectral 

bands. Images of the targets for the visible and NIR bands show a better than -60 dB inter-

band measured electrical isolations. Fully programmable CAOS-mode spectral filtering 

implemented with a DMD-based narrowband filter placed within the CAOS imager 

demonstrates simultaneous wavelength filtering and monitoring of red, green, and blue bands 
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of a white light LED target. Therefore, the power of dual CAOS-mode operations is 

demonstrated here, one CAOS-mode for the image space and one CAOS-mode for the optical 

spectral space. To increase camera dynamic range, proposed is the use of a higher resolution 

ADC with both range and sampling duration parameter control along with a larger data set 

electronic DSP to extract higher DSP gain and realize additional noise suppression. 

Specifically, by experimentally engaging programmable 16-bit ADC control and the 60 dB 

DSP gain of a near 2 million point FFT applied to the point PD signal, an extreme dynamic 

range of 136 dB has been demonstrated for the CAOS camera agile pixel using an optical 

variable attenuator irradiance controlled visible laser target. These fundamental experiments 

point to the power of the CAOS camera for diverse applications in imaging. Future work 

using a much higher speed (e.g., 32 kHz frame rate) DMD relates to the optimization and 

extensions of the proposed dual band CAOS camera design to application specific 

demonstrations in multispectral and hyperspectral imaging including hybrid (H) CAOS 

camera designs engaging prior-art spectral imagers as well as prior-art computational 

imaging methods within the CAOS hardware platform. 
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CHAPTER 10 

CONCLUSIONS 

 

To summarize, this thesis is focused on innovations in two macro research fields 

namely, shape sensing and imaging. Specifically, proposed and experimentally demonstrated 

are smart and elegant optical and electronic system designs to existing real world problems in 

the shape sensing and imaging domains. In each chapter, I present the detailed design and 

experiments for each innovation as the research builds over the thesis work to improve the 

system performances for both the shape sensing and imaging applications. 

Starting from the shape sensing field, my thesis has proposed system design 

solutions based on different optical components emphasizing the use of an electronically 

controlled variable focus lens (ECVFL) for beam forming operations. Using the ECVFL and 

an illumination laser light source, it has been successfully demonstrated how starting from 

simple elements a 3-D shape sensor can be designed and experimentally demonstrated. 

Strengths of the proposed sensor are its highly programmable working range and its small 

transverse resolution. Depending on the application, improvements in the sensor design are 

proposed by change of the optical beam parameters of the light source. First a laser spot 

sampling was deployed to shape sense. Next, laser line sampling was used to enable faster 

shape sensing while keeping a flexible working range and the smallest transverse resolution. 

For these two presented designs, further improvements can be achieved with the use of a 

more efficient and robust image processing algorithm as well as better performing optical 

devices having faster response. It is also shown how the key components in the shape sensing 

sensor can be embedded into a projection system that forms a smart art display. Traditional 

projection systems are designed to display content information onto a flat 2-D surface. 

However, when the surface presents irregularities or it is a multi-distance conformal screen, 

current projection technologies have limitations. I have shown using experimental 

demonstrations how the projected image suffers distortion, losses its sharpness and presents 

artefacts that have a negative impact on the desired image projection. On the other hand, 

when using the proposed projection system design in this thesis, it is shown that one can 

obtain a clear and in-sharp image projection onto a multi-distance conformal surface over a 

designed programmable working range. The proposed design can be deployed in an artistic 

scenario where irregularities are common and user interaction is required for better user 
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visual perception. Here, the proposed display design can be improved using better performing 

ECVFLs and faster x-y scan mirrors. Additionally, by using the combination and 

synchronization of many laser wavelengths in the proposed display system, one can enrich 

the viewed output projection quality. 

The second part of the thesis involves extensive use of a DMD chip device for the 

realization of smart imaging modules. First I present the DMD-based module that is a 

programmable Young’s double slit interferometer. I show a successful demonstration of 

experiments with Young’s interference fringes. The thesis next presents for the first time the 

design and implementation of a novel embedded smart agile pixel imager suitable for laser 

beam imaging. The simplicity of the design and functionality is based on a cost-effective 

microcontroller device. Several applications require the laser monitoring for verifying 

particular features, e.g. laser beam width. It is well known that because of the strong laser 

irradiance intensity levels, monitoring such spatial features in a beam is not a trivial task and 

current imaging technology requires strong optical attenuation that can spoil a beam’s true 

spatial content. By adopting the imager design proposed in this thesis, one can image the 

laser beam automatically with electronic control without any optical attenuation. Another 

imager design introduced and experimentally demonstrated in this thesis is the CAOS 

camera. Both coherent (laser) and incoherent (white light scene) imaging operations have 

been studied with the CAOS camera. The CAOS camera is special because it can achieve 

extremely high imaging dynamic ranges and experiments I conducted showed an extreme 

linear dynamic range of 136 dB. This result is a major advance in imaging technology when 

compared to state-of-art imaging sensor technologies.  I also demonstrated the CAOS imager 

as a multi-spectral and hyper-spectral imager showcasing its multi-wavelength capabilities. 

I would like to conclude this thesis by saying that the CAOS camera has great 

potential for imaging applications in science and industry. The CDMA mode of the camera 

mentioned in the thesis could significantly improve the camera performance in terms of 

speed. In addition, the CAOS smart camera that uses the hybrid imager design by combining 

with CMOS sensors holds great promise. In terms of software improvements in the CAOS 

camera, benefits can be derived by using machine learning algorithms. Finally, the deployed 

DMD chip device and board used in this thesis was from a low cost DMD projector unit and 

has extra unnecessary hardware. Therefore, the development of a custom Application 

Specific Integrated Circuit (ASIC) for the CAOS camera is required and it will further reduce 

the hardware complexity of the overall system. It is expected that with the fast pace of 
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development of today’s electronics, CMOS sensors, programmable optical devices and 

computational algorithms, the proposed smart design modules in this thesis can benefit many 

real-world scenarios. 

 

 

 


