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Abstract—In this paper we study the performance of

constraint-based local search solvers on a GPU. The massively

parallel architecture of the GPU makes it possible to explore par-

allelism at two different levels inside the local search algorithm.

First, by executing multiple copies of the algorithm in a multi-

walk manner and, second, by evaluating large neighborhoods

in parallel in a single-walk manner. Experiments on three well-

known problem benchmarks indicate that the current GPU

implementation is up to 17 times faster than a well-tuned

sequential algorithm implemented on a desktop computer.

I. INTRODUCTION

In the last decade, the interest for the family of Local
Search methods and Metaheuristics for solving large combi-
natorial problems has been growing and has attracted much
attention from both the Operations Research and the Artificial
Intelligence communities for solving real-life problems [1].
Theses methods have been used in Combinatorial Optimiza-
tion for finding optimal or near-optimal solutions for several
decades and they are now widely used to solve real-life
problems when the search space is too large to be explored by
complete search algorithm, such as Mixed Integer Program-
ming or Constraint Solving. There also exist some efficient
general-purpose systems for Local Search, such as for instance
the commercial system Comet [2].

In general there exists two approaches to devise a parallel
local search solver: multi-walk and single-walk [3]. Multi-walk
methods consist in developing concurrent explorations of the
search space, either independently or cooperatively with some
communication between the processes. Sophisticated coopera-
tive strategies for multi-walk methods can be devised by using
solution pools [4], but require shared-memory or emulation
of central memory in distributed clusters, thus impacting on
performance. On the other hand, Single-walk methods consist
in using parallelism inside a single search process, e.g., for
parallelizing the exploration of the neighborhood.

Graphic Processing Units (GPUs) are nowadays available
in nearly all personal computers and they offer a potential
reduction in the computational time of local search solvers.
The thread hierarchy in a GPU consists of threads, blocks,
and grids. A block is a batch of threads (all executing the
same code) and blocks are grouped in a grid (blocks are
independent). This hierarchy matches the architecture of the
local search process by allowing the combination of multi-
walk and single-walk. Taking this into account, independent
local search algorithms can be allocated in different blocks,
each block exploiting parallelism by evaluating neighbors in
parallel.

The rest of the paper is structured as follows. Section II
presents a generic description of local search and the Adaptive
Search method; a generic, domain-independent constraint-
based local search algorithm. Section III presents a description
of parallel local search and the most relevant CPU and GPU
implementations in the area. Section IV details the architecture
of modern GPUs. Section V highlights the main considerations
to take into account when designing a local search algorithm
targeting a GPU. Section VI details the problems benchmarks
used in this paper. Section VII presents experiments of the
CPU and GPU implementations. A conclusion and discussion
of future work end the paper.

II. LOCAL SEARCH

Local Search algorithms start from an initial assignment
for the variables (usually random) and try to improve this
configuration, little by little, by small changes in the values
of the problem variables. Hence the term “local search” as, at
each time step, only new configurations that are “neighbors”
of the current configuration are explored. The definition of
what constitutes a neighborhood will of course be problem-
dependent, but basically it consists in changing the value of
a few variables only (usually one or two). The advantage
of Local Search methods is that they will usually quickly
converge towards a solution (if the optimality criterion and
the notion of neighborhood are defined correctly) and not
exhaustively explore the entire search space. This is however
at the loss of completeness of the search. These methods
naturally lead to concurrent execution, by considering the
development of several configurations at the same time. This
can be done sequentially by maintaining a pool of candidate
configurations (as in genetic algorithms) or in parallel if the
adequate hardware is available.

The domain of Constraint-based local search, that is, ap-
plying local search techniques to solve Constraint Satisfaction
Problems has been attracting some interest for about a decade
[5], [6], [2]. Constraint Satisfaction can obviously be seen as a
branch of Combinatorial Optimization in which the objective
function to minimize is the number of violated constraints: a
solution is therefore obtained when the function has value zero.
Constraint-based local search can tackle large size problem
instances, far beyond the reach of classical propagation-based
constraint solvers.

A. The Adaptive Search Method

Algorithm 1 presents the general scheme of the Adaptive
Search (AS) model, a generic constraint-based local search



method proposed nearly a decade ago [5], [7], [8]. This meta-
heuristic takes advantage of the structure of the problem in
terms of constraints and variables and can guide the search
more precisely than a single global cost function to optimize,
such as for instance the number of violated constraints. The
algorithm also uses a short-term adaptive memory in the
spirit of Tabu Search in order to prevent stagnation in local
minima and loops. Moreover it intrinsically copes with over-
constrained problems.

The input of the method is a Constraint Satisfaction Prob-
lem (CSP), which is defined as a triple (X;D;C), where X
is a set of variables, D is a set of domains, i.e., finite sets
of possible values (one domain for each variable), and C a
set of constraints restricting the values that the variables can
simultaneously take. For each constraint, an error function
needs to be defined; it gives, for each tuple of variable values,
an indication of how much the constraint is violated. This idea
has also been proposed independently by [6], where it is called
“penalty functions”, and then reused by the Comet system [2],
where it is called “violations”. For example, the error function
associated with an arithmetic constraint |X � Y | < c, for a
given constant c > 0, can be max(0, |X � Y |� c).

AS relies on iterative repair, based on variable and con-
straint error information, seeking to reduce the error on the
variable with the highest error value. The basic idea is to
compute the error function for each constraint, then combine
for each variable the errors of all constraints in which it
appears, thereby projecting constraint errors onto the relevant
variables. This combination of errors is problem-dependent,
see [5] for details and examples, but it is usually a simple
sum or a sum of absolute values, although it might also be
a weighted sum if constraints are given different priorities.
Finally, the variable with the highest error is designated as
the “culprit” and its value is modified. In this second step,
the well known min-conflict heuristic [9] is used to select the
value in the variable domain which is the most promising, that
is, the value for which the total error in the next configuration
is minimal.

In order to prevent being trapped in local minima, the AS
method also includes a short-term memory mechanism to store
configurations to avoid (variables can be marked Tabu and
“frozen” for a number of iterations). It also integrates reset
transitions to escape stagnation around local minima. A reset
consists in assigning fresh random values to some variables
(also randomly chosen). A reset is guided by the number of
variables being marked Tabu. It is also possible to restart from
scratch when the number of iterations becomes too large (this
can be viewed as a reset of all variables but it is guided by the
number of iterations). The core ideas of adaptive search can
be summarized as follow:

• to consider for each constraint a heuristic function
that is able to compute an approximated degree of
satisfaction of the goals (the current error on the
constraint);

• to aggregate constraints on each variable and project
the error on variables thus trying to repair the worst
variable with the most promising value;

• to keep a short-term memory of bad configurations to

avoid looping (i.e. some sort of tabu list) together with
a reset mechanism.

A few improvements to the basic algorithm are important
and worth mentioning here, let us just briefly detail the
two main ones. Firstly, when following a plateau, a simple
stochastic scheme is used for deciding either to continue
on the plateau or to escape, by adding a probability p for
doing this. With good tuning (e.g., probability of 90% to 95%
of following a plateau) this boosts the performance of the
algorithm by an order of magnitude on some problems such as
MAGIC-SQUARE. Secondly, when too many variables become
Tabu, there is a risk of “freezing” the configuration and of
getting trapped around a local minimum. Diversification is then
performed by a (partial) reset, i.e., by assigning fresh values
to a given percentage of the problem variables (parameter RP

of the algorithm). A reset is triggered by the total number of
variables being marked Tabu at a given iteration (parameter
RL of the algorithm).

AS is a simple algorithm but it turns out to be
quite efficient in practice. A C-based implementation
of AS for permutation problems is available at
http://cri-dist.univ-paris1.fr/diaz/adaptive. We used this
version as a baseline of the GPU implementation. In [10] AS
is briefly compared with Comet [2] on some CSP benchmarks
included in the distribution of Comet such as the N-QUEENS
problem and the MAGIC-SQUARE problem. Adaptive Search
is one or two order of magnitude faster than Comet. Of
course, it should be noticed that Comet is a complete and
very versatile system while AS is just a C-based library. AS is
also compared on the COSTAS ARRAY problem in [11] with
Dialectic Search [12] and it is nearly one order of magnitude
faster.

III. PARALLEL LOCAL SEARCH

As pointed out above, there are two main parallel tech-
niques to build parallel local search solvers. On one hand,
the parallel speedup of the single-walk approach is limited by
the Ambahl’s law. We recall that the Amdahl’s low indicates
that the parallel speedup of a given algorithm is bounded by
the sequential portions of the code. For instance, an algorithm
with 5% of sequential code has a maximum speedup of factor
20. On the other hand, the speedup of the multi-walk method
highly depends on the sequential behavior of the algorithm. It
is well-known that if the runtime distribution of a local search
algorithm follows a pure exponential law (i.e., non-shifted),
its parallel multi-walk version will have a linear speedup for
an unbounded number of cores [3]. However, in practice, only
very few examples have a runtime distribution following a
such an ideal case and the speedup is far from linear for a
large number of cores [13], [14].

A. Constraint-based Parallel Local Search

Most of the work in parallel constraint-based parallel local
search for traditional architectures (i.e., PC clusters) has been
devoted to using the multi-walk method, mainly because this
method provides two general advantages. First, it requires no
extra work to implement, and second it has been theoretically
and practically proven to be powerful in a wide range of



Algorithm 1 Adaptive Search Base Algorithm
Input: problem given in CSP format: some tuning parameters:
• variables Xi with their domains • TT: # iterations a variable is frozen
• constraints Cj w/error functions • RL: # frozen variables triggering a reset
• function to project errors on vars • RP: % of variables to reset
• cost function to minimize • MI: max. # iterations before restart

• MR: maximal # of restarts
Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart 0
2: repeat

3: Restart Restart+ 1
4: Iteration 0
5: Compute a random assignment A of variables in V

6: Opt Sol A

7: Opt Cost cost(A)
8: repeat

9: Iteration Iteration+ 1
10: Compute errors of all constraints in C and combine errors on each variable
11: . (by considering only the constraints in which a variable appears)
12: Select the variable X (not marked Tabu) with highest error
13: Evaluate costs of possible moves from X

14: if no improvement move exists then

15: mark X as Tabu until iteration number: Iteration+ TT

16: if the number of variables marked Tabu � RL then

17: randomly reset RP % variables in V (and unmark those Tabu)
18: end if

19: else

20: Select best move and change X , yielding the next configuration A
0

21: if cost(A0) < Opt Cost then

22: Opt Sol A A
0

23: Opt Cost cost(A0)
24: end if

25: end if

26: until Opt Cost = 0 (a solution is found) or Iteration �MI

27: until Opt Cost = 0 (a solution is found) or Restart �MR

28: output(Opt Sol, Opt Cost)

domains; moreover, this technique is not affected by the
Amdahl’s law.

A multi-walk adaptation of AS has been proposed recently
and has been implemented on massively parallel computers and
grid systems [10], Cell Broadband Engine [15], and devices
with Partitioned Global Address Space in [16]. Although for
a few problems such as the COSTAS ARRAY parallel speedup
can be linear (experiments on the BlueGene supercomputer
show linear speedup up to 8000 cores, see [17]), for many
problems speedup are good but suboptimal. There is therefore
a need for more complex parallelization schemes, for example
that would mix single-walks and multi-walks, i.e., parallelizing
both neighborhood search and multi-starts.

B. Local Search on GPUs

In [18] the authors use the GPU to accelerate the resolution
of a variety of problems such as Quadratic Assignment Prob-
lem and Traveling Salesman Problem. The authors propose the
use of texture memory to store the definition of the problem
and perform the execution of the local search algorithm on both
the CPU and the GPU. The CPU is in charge of the control of
the algorithm, and the GPU evaluates a rather expensive objec-
tive function for a large number of neighbors. This approach
allows the exploration of the multi-walk parallel algorithm by
executing different copies of the hybrid algorithm on multiple

GPUs, i.e., one local search process per GPU. The algorithm
reports speedups (w.r.t. to the sequential CPU implementation)
of up to 50 for traditional benchmark instances and up to 240
for benchmark instances that required vector of real values.

In the same direction as [18], other authors also use the
GPU to accelerate the performance of local search algorithms
by means of exploring very large neighborhoods (see [19] for a
recent survey). For instance, [20] indicate that the GPU+CPU
algorithm reports speedups up to a factor of 27 w.r.t. the
sequential implementation for the unrelated parallel machine
scheduling problem. [21] uses the GPU to efficiently explore
neighborhoods with millions of elements for the vehicle rout-
ing problem.

In [22] the authors proposes a framework for heterogeneous
systems with multiple CPUs and GPUs interconnected through
a network. The framework executes several copies of the local
search algorithm and allows cooperation by sharing the best so-
lution found so far for each algorithm. This information is then
exploited at each restart to properly craft a new assignment
for the variables to start with. The authors present extensive
experimental results targeting the TSP problem which indicate
that their approach scale up to thousands of cores (including
256 CPUs and 384 GPUs).

In a different context, [23] uses the GPU to solve SAT
instances using a tree-based search algorithm, the algorithm



combines backtracking search and clauses learning. Also in
the context of SAT solving, in [24] the authors implement
the survey propagation algorithm on a GPU and showed that
the GPU version is up to 9 times faster than the sequential
algorithm implemented in the CPU.

IV. THE GPU ARCHITECTURE

Figure 1 describes the architecture of the GPU. This
architecture offers an interesting opportunity to improve the
performance of parallel local search solvers. Unlike a CPU
which usually consists of few processors units (usually dual or
quad cores), a GPU consists of a set of Stream Multiprocessors
(SMs), each one features multiple processing units with the
ability of executing thousands of operations concurrently.
Inside a SM, threads are grouped into warps. A warp executes
32 threads in a SIMD (Single Instruction, Multiple Data)
manner, that is all threads within a warp execute the same
operation on multiple data points. Furthermore, warps are
grouped into a block and blocks are grouped into a grid.
NVIDIA offers the Cuda Occupacy Calculator tool which
allows to determine the maximum number of active blocks
per grid, this number varies for a number of reasons including:
memory limitations, maximum number of threads per block,
and hardware limitations.

Generally speaking, a GPU uses two types of memory:
global and shared. Shared memory is usually limited to few
KiloBytes (e.g., 16KB or 48KB) per SM which is equally
divided into all blocks allocated for a given SM; an important
feature of shared memory is that it has low latency requiring
about 2 clock cycles to issue a memory instruction. On the
other hand, global memory allows to store a large amount of
data (e.g., 6GB), however, it has high latency and requires be-
tween 400 and 600 clock cycles to issue a memory instruction.
Moreover, GPUs are also equipped with texture and constant
memory sections for read-only operations; accessing these two
memories is usually faster than the global memory as they
include on-chip cache.

Branch divergence and coalesced memory are among the
most important aspects to take into consideration when de-
signing algorithms in a GPU. First, branch divergence refers
to the fact that threads within the same warp can take different
paths (e.g., if-else instructions), in this case different execution
paths are serialized. In the worst case-scenario a warp executes
one thread a time until completing the instruction. Second, in
order to obtain peak performance, accesses to global memory
should be coalesced, that is, individual threads must access in-
dependent and consecutive elements from the global memory;
non-coalesced accesses to global memory might result in an
important degradation in the performance of the algorithm.

V. CONSTRAINT-BASED LOCAL SEARCH ON A GPU

The thread hierarchy of the GPU matches the architecture
of the local search algorithm depicted in Section II and allows
to exploit parallelism at two different levels. Firstly, multi-
walk parallelism can be achieved by executing multiple copies
of Algorithm 1 in parallel using different blocks. This form
of parallelization is probably the most widely used one due
to its simplicity and it often provides a great speedup up to
few hundreds of cores. Secondly, the parallel nature of the

Shared 
Memory

Global Memory

.......
Shared 
Memory

Shared 
Memory

Shared 
Memory

Warps Warps Warps Warps

SM SM SM SM

Figure 1. GPU Architecture

GPU also allows to speedup the search process by including
parallelism inside the blocks in a single-walk manner; this
form of parallelism is also known as parallel neighborhood
evaluation. In the context of AS, it would consist in selecting
the two most suitable variables for swapping.

Broadly speaking, AS employs two strategies for selecting
the variables to swap. The first one (exhaustive-search), evalu-
ates all possible swaps at a given state of the search, and selects
uniformly at random, the best one. This method explores a
large neighborhood, which usually grows quadratically with
the size of the problem. The second one (heuristic-search),
employs a heuristic strategy to select the best move, it starts by
selecting the variable Xi with the highest error and then selects
another variable Xj that when swapping Xi and Xj minimizes
the global error; this method requires a linear complexity O(n),
where n is the number of variables of the problem. In both
situations, the goal is to select the best move in a considerably
large space.

At a first glance, one could consider applying the parallel
reduction technique [25], which reduces the complexity to
O(log n) by applying a tree decomposition of the problem;
and returns the best candidate breaking ties in a rather deter-
ministic way. However, a key point to allow diversification in
the local search procedure consists in breaking ties with an
uniform distribution, then all candidates are equally likely to
be selected. Taking this into account, we decided to use the
traditional divide-and-conquer approach, where the problem
space is divided into several independent subspaces and select,
in parallel, the best candidate for each sub-space at a cost
of reconciling partial information in order to decide the best
action. This simple approach reduces the complexity of an
iteration to O(n/m +m), where m is the number of threads
per block.

As pointed out in the previous section, an important aspect
to take into consideration when designing algorithms in a GPU
is the administration of the global and shared memory. Ideally,
it would be desirable to store all relevant information in shared
memory. However, a CSP might contain thousands of variables
and constraints, and it would require too much memory. In a
nutshell, the main aspects to consider in the Adaptive Search
framework are the following:

• Current assignment: requires a linear space complexity
and represents the current value for the variables.



• Tabu list: a common way to implement a Tabu list
consists in maintaining a list with the age of the
variables (indicating the last time it was used). Thus,
a variable is Tabu if it has been used within the last
tabuTenure iterations.

• Incremental update: a critical aspect when implement-
ing efficient local search algorithms is to incrementally
update the objective function. As will be described
in Section VI for a few examples, AS employs a set
of extra variables to maintain an efficient incremental
evaluation of the error function.

• List of best candidate variables: when selecting the
swapping variables, it is necessary to maintain a list
with the variables that maximizes (or minimizes) the
objective function, then a variable from the list is
chosen with an uniform distribution.

The decision of using the global or shared memory is
entirely up to the problem. In a few cases, it would be possible
to only use the shared memory; however, as will be detailed
in Section VI, to tackle large and complex instances it would
necessary to extensively use the global memory.

VI. PROBLEM BENCHMARKS

In this section, we detail the benchmarks used for com-
parison and provide a brief description of how they are
implemented in the GPU. One key issue is to reduce accesses
to global memory in order to avoid degrading performance of
the GPU implementation.

Magic Square: This is problem 19 of CSPLib1. It consists
in completing a N ⇥ N matrix with numbers 1, 2, . . . , N2,
where each column, row, and the two main diagonals sum the
same objective number b. As described in [5], the Adaptive
Search model of this problem is an instance of magic square in
which b=N(N2+1)/2. The error function for each constraint
is defined as f(X)=X1+X1+. . .+Xk - b, and the global error
is the sum of the absolute value of the error for all constraints.

For an efficient incremental evaluation of the global error,
the algorithm maintains a list of 2n+2 elements with the
error of the columns, rows, and the two diagonals. This
way, obtaining the error of swapping two variables is then
done in constant time. AS uses exhaustive-search to identify
the most suitable variables to swap at each iteration of the
algorithm; therefore, the algorithm explore a neighborhood of
N

2 elements, where N is the input of the problem.

We decided to keep the list variables with the errors for
columns, rows, and the two diagonals in shared memory,
and the remaining variables in global memory. The GPU
implementation of the magic square problem uses the same pa-
rameter configuration as the CPU version, except that in order
to reduce accesses to global memory, the GPU implementation
does not clean the Tabu list after performing a reset.

Number Partition: This is problem 49 of CSPLib. It
consists in dividing a set of numbers from 1 to N into two
subsets, where both subsets have the same cardinality, the same
sum of numbers, and the same sum of squares of numbers. The

1www.csplib.org

model of this problem involves two set of N/2 variables each
one, and the global error is obtained as the sum the absolute
value of the errors of the two following constraints:

PN/2
i=1 Xi =

PN/2
i=N/2+1 Xi = N(N + 1)/4

PN/2
i=1 X

2
i =

PN/2
i=N/2+1 X

2
i = N(N + 1)(2N + 1)/12

At each iteration of the local search process the algorithm
uses exhaustive-search (or exhaustive search), and explores all
possible swaps by exchanging values from the two subsets.
Thus, the algorithm needs to explore a neighborhood of
(N/2)2 elements. For this problem, the shared memory is used
for the list of variables representing the current configuration,
and the global memory stores the remaining variables. The
GPU version of the algorithm uses the same parameters as the
CPU version, except that the CPU uses a Tabu list of size one,
and the GPU algorithm omits the Tabu list in order to reduce
accesses to global memory.

Costas Array: This is a hard combinatorial problem
abstracted from radar and sonar applications [26]. It consists
in placing N marks in a N⇥N grid, such that there is exactly
one mark per row, column, and the N(N�1)/2 vectors joining
the marks are all different. This problem is modeled using the
difference triangle, in which N variables form a permutation
of numbers from 1 to N , and the j � th row of the triangle
contains the differences between the variables Xi+j - Xi,
where j 2 [1, N � 1] and i 2 [1, N � j]. In order to obtain
the cost of a given assignment for the variables the algorithm
computes the global error by checking the first (N � 1)/2
rows of the triangle. In this case, AS uses heurisitc-search to
identify the best move at each iteration of the local search
process. Since this problem requires a rather small number of
variables and constraints, we decided to store all variables in
shared memory.

VII. EXPERIMENTS

This section compares the performance of the CPU and
GPU implementations of AS. All the experiments were per-
formed using a 6-core processor (Xeon W3670 at 3.20 Ghz)
and 12MB of RAM, a GPU NVIDIA Tesla C2075 which
features 14 SMs, 6GB of global memory, 1.15 Ghz clock
rate and up to 48KB of shared memory per SM, and a GPU
GeForce GTX 760 which features 6 SMs, 2GB of global
memory, 1.15 GHz clock rate and up to 48KB of shared
memory per SM. Although both GPUs allow more than a
thousand threads per block, the following experimentation
is limited to up to 512 threads per block due to hardware
limitations. e.g., shared memory and registers per SM. We
implemented the GPU algorithm using CUDA version 5. For
all the experiments we used the default reset function described
in Section II, and in the following results we report the median
value of 20 executions unless otherwise stated.

At the time this article was written, the price of the
baseline processor was US$ 824.50, the Tesla GPU was US$
1784.99 and the Geforce GPU was US$ 288.52 as indicated
at www.amazon.com. Tesla GPUs are usually more expensive
than the GeForce ones as they support double precision,
error-correcting code, and usually provide more dedicated
memory; we refer the reader to www.nvidia.com for a complete



Table I. GPU (TESLA) PERFORMANCE OF MAGIC SQUARE 200 (TIME
IN SECS)

````````Blocks
Threads 32 64 128 256 512

1 492 280 96 60 79
7 116 56 48 26 17
14 59 35 28 20 16

28 64 64 23 27 18
56 52 24 37 39 25

description of both GPUs. Hereafter, we will observe that
in addition of the speedup gained with the GPU w.r.t. the
sequential CPU version, the GeForce GPU also provides an
important price/performance benefit, that is, a lower cost and
higher performance.

We start our analysis with Figure 2, which depicts the
quantile-quantile plot (Q-Q plot) of the number of iterations
required to solve three small size instances of Magic Square
(20), Partition (2600), and Costas Array (15) for the CPU
and GPU implementations of AS. The Q-Q plot displays the
quantiles of the data of the two samples of 500 runs. A given
quantile is a point in a sample for which a certain fraction of
the sample lies, e.g., the 0.3 quantile is the point for which
30% falls below and 70% above. For example the well-known
median value of a sample is the 0.5 quantile (also noted 50%
quantile). A quantile-quantile plot will depict, for the same
quantile, the value in one sample as abscissa and the value
of the other one as ordinate. Thus, checking if both samples
match is straightforward: if points are on the diagonal (y = x),
then both samples perfectly fit. The dimension of both axes are
the number of iterations.

Although the GPU implementation reuses large portions of
the original algorithm, the figure shows that the two versions
behave similarly but are not perfectly identical. This is due the
slightly differences indicated the previous section to provide
an efficient GPU algorithm.

Tables I & II report the runtime in seconds to solve Magic
Square problem (N=200, 300 and 400) on the GPU (Tesla)
using different configurations for the grid, i.e., varying the
ratio threads/block. We set the minimum number of threads
per block to 32 as this is minimum allowed by CUDA and
the number of blocks varies from 1, 7, 14, 28, and 56.
Bold number indicate the best performance obtained in this
table. As expected, we observe a reduction in the runtime by
only using the multi-walk parallel scheme (columns), however,
the speedup changes when increasing the number of threads
per block. For instance, when using 32 threads per block,
we observe a maximum speedup of 9.46 (1 block vs. 56
blocks), but when using 512 threads per block, we observe
a maximum speedup of 3.16. There are several aspects that
influence the speedup of the multi-walk algorithm in the GPU,
such as divergent branch, non-coalesced memory, bandwidth
occupancy, warp synchronization, etc. We recall that such
speedup differences should not be observed in homogeneous
cluster with nodes that have similar computation capabilities.
For these reasons, increasing the number of threads per block
might degrade the performance of the multi-walk parallel
algorithm.

The best performance with the GPU (Tesla) for Magic
Square 200 is 16 secs, this value is obtained when using 14

Table II. GPU (TESLA) PERFORMANCE OF MAGIC SQUARE 300 AND
400 (TIME IN SECS)

Size
````````Blocks

Threads 128 256 512

300 14 107 75 54

28 76 80 79

400 14 298 160 273
28 191 279 209

Table III. CPU PERFORMANCE OF MAGIC SQUARE (TIME IN SECS)
XXXXXXXCores

Size 200 300 400

1 72 970 2572
3 35 115 710
6 24 98 483

blocks and 512 threads per block. We attribute this optimal
value to the fact that the reference GPU uses 14 SM. On
the other hand, it also important to notice that this optimal
performance obtained with the GPU is 4.5 times faster than
the sequential CPU version (see Table III) and 1.5 times faster
than the best runtime obtained with the CPU using 6 cores.
Furthermore, the best result obtained for Magic Square 300 (54
secs) is 17 times faster than the sequential algorithm, and 1.8
times faster than the best CPU multi-core implementation (with
6 cores). And for Magic Square 400 the best result of the GPU
(160 secs) is 16 times faster than the sequential CPU version2,
and 3 times faster than the best CPU multi-core performance
(with 6 cores). We believe that increasing the size of the
problem might also increase the difference in the performance
between the GPU and the CPU. At this point it is worth
noticing that parallel versions of local search algorithms can
achieve super-linear speedups w.r.t. the sequential algorithm
(e.g., CPU implementation of Magic Square 300). This is
the case for instance when the sequential runtime distribution
follows a lognormal distribution, which is heavy-tailed. This
is because the sequential algorithm exhibits the heavy tail
phenomena, this phenomena is less relevant when executing
the algorithm in parallel [14].

Interestingly, the performance using a single GPU outper-
forms a multiple-walk implementation of AS for the Magic
Square problem (size 400) on a supercomputer using 64
cores, i.e., 198 secs (Hitachi HA8000 Supercomputer with 64
cores) vs. 160 secs (GPU with 14 blocks and 256 threads),
see [10] for complete details of the performance of AS on the
supercomputer.

Let us now switch our attention to the Partition problem
(size 9600). Table IV, this table depicts the experimental results
of the GPU (Tesla). In this case, we observe that the best
performance is 6 secs, obtained when using 14 blocks and
512 cores. On the other hand, the GPU reports a speedup of
17 w.r.t. the sequential implementation, and a speedup of 5
against the best parallel CPU implementation (with 6 cores).

Tables VII and VI show the results of two instances of the
Costas array problem (i.e., N=18 and N=19). Unlike Magic
Square and partition, which involve the exploration of large
neighborhoods (quadratic w.r.t. the size of the problem), the
Costas array problem requires to explore a small neighborhood

2The runtime of the CPU sequential version of Magic Square (N=400) was
computed as the median value of 11 executions
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Figure 2. Q-Q plot of the CPU and GPU implementations for three different CSPs based on 500 runs per algorithm.

Table IV. GPU(TESLA) PERFORMANCE OF PARTITION 9600 (TIME IN
SECS)

````````Blocks
Threads 32 64 128 256 512

1 521 279 104 123 84
7 68 45 32 9 9
14 37 28 16 9 6

28 37 30 14 10 9
56 43 30 12 8 9

Table V. CPU PERFORMANCE OF PARTITION (TIME IN SECS)
XXXXXXXCores

Size 9600

1 102
3 49
6 30

of N elements, where N is usually a small number. Therefore,
for this problem we increase the number of blocks up to 112
(being 144 the maximum number of blocks allowed for this
GPU, i.e., 12 blocks per SM). In this case, the best performance
observed for the GPU is about 2 times faster than the sequential
CPU implementation for Costas 18, and about 3 times faster
for Costas 19; however, due to the great speedup capabilities
of the AS to solve the Costas array problem the best parallel
CPU implementation (with 6 cores) is faster than the GPU
one.

Even though the parallel multi-core implementation for
Costas is better than the GPU (Tesla) one, these results
are encouraging due to the fact that for this problem the
GPU is being underused. Notice that for this problem the
algorithm does not exploit parallelization in a single-walk
manner. Indeed, part of our future work will be to support
the multi-walk method at a warp level, i.e., executing multiple
local search processes inside a single block.

Finally, Table VIII shows the results using the GeForce
GPU with the best two configurations obtained in the previous
experiments, i.e., 14 and 28 blocks, and 512 threads per block

Table VI. GPU (TESLA) PERFORMANCE OF COSTAS ARRAY (TIME IN
SECS)

XXXXXXXSize
Blocks 1 7 14 28 56 112

18 204 34 22 10 8 5

19 1453 189 128 72 33 21

Table VII. CPU PERFORMANCE OF COSTAS ARRAY (TIME IN SECS)
XXXXXXXSize

Cores 1 3 6

18 10 4 0.3

19 66 24 19

Table VIII. GPU (GEFORCE) PERFORMANCE FOR MAGIC
SQUARE,PARTITION AND COSTAS (TIME IN SECS)

Blocks
512 threads/block

Blocks
1 thread/block

Magic Square Partition Costas
200 300 400 9600 18 19

14 14 76 248 7 112 1 828 17 59 292 6

(Magic Square and Partition) and 1 thread block (Costas). We
recall that Costas does not include single walk parallelization.
In this table we observe that the GeForce GPU reports nearly
the same results as the Tesla one for Magic Square and
Partition. For instance, the best results obtained in the Tesla
GPU for Magic Square (N=400) is 209 seconds vs. 248
seconds for the GeForce GPU; for the Partition problem both
GPUs reported 6 seconds as best result; and for Costas the
GeForce GPU is considerably faster than the Tesla one, and
this GPU is also faster than the multi-core version for Costas-
19 (8 seconds vs. 19 seconds). We attribute the important
performance difference in the Costas problem to the fact that
for this problem all relevant information is stored in the local
memory and the global memory is not used, therefore factors
such as coalesced memory and bandwidth are not relevant in
this particular example.

One of the main advantages of the Tesla over the GeForce
GPU is the double precision, however, AS does not require
intensive double precision operations. Therefore, even thought
the GeForce GPU is considerably cheaper (price-wise) than
the Tesla GPU, the performance is comparable and sometimes
better. In addition, we observe that the GeForce GPU is a
promising alternative to traditional CPUs, obtaining a higher
performance for a lower cost.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a GPU implementation of
the Adaptive Search framework. This new version of Adaptive
Search exploits the architecture of the GPU to device a parallel
local search algorithm. Thus, the algorithm exploits parallelism
by executing multiple local search processes and at the same



time allows the exploration of the large neighborhoods in
parallel. Unlike other local search implementations which are
problem dependent and combine the execution of the CPU
and the GPU, in this work the entire local search process
is executed on the GPU; therefore, the performance is not
bounded to a robust CPU. Extensive experiments using three
well-known problem benchmarks indicate that the GPU (Tesla
C2075) provides speedups up to 17 w.r.t. a well tuned sequen-
tial version of the Magic Square and Partition problems, and
up to 3 for the sequential CPU version of the Costas Array
problem. Furthermore, we believe that increasing the input size
for the problems might also increase the difference between
the CPU and the GPU. In addition, we also observed that
a much cheaper GPU (GeForce GTX 760) report a higher
performance than traditional multi-core architectures, on a set
of well-known constraint satisfaction problems, for a lower
price.

The current GPU version of AS allows the execution of
only one local search process per block, and limits the number
of threads for the parallel evaluation of the neighborhood
to 512 (max. number of threads per block); however, differ-
ent problems might require more computational power. For
instance, more threads to evaluate the neighborhood (e.g.,
Partition and Magic Square), and other problems can exploit
better the parallelization by executing multiple local search
processes per block (e.g., Costas array). We also plan to study
very large neighborhoods using the GPU, we recall that the
current version is an adapted version of CPU implementation,
however, the parallel nature of the GPU allows more flexibility.
Furthermore, we plan to extend the current implementation to
support execution on multiple GPUs and clusters of GPUs.
Lastly, we believe that there is significant room for improving
the performance of the parallel algorithm by means of includ-
ing cooperation between the solvers. Local search solvers can
exploit parallelization by exchanging information such as the
best assignment for the variables found so far, and using this
information to push the trajectory of the algorithm to promising
areas of the search space [27].
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