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Abstract

Oxygen deprivation at birth leads to brain injury, which can have se-

rious consequences. It is the dominant cause of seizures. Quickly and

accurately detecting seizures is a challenging problem for neonates. A

severe shortage of medical professionals with the necessary expertise

for Electroencephalogram (EEG) analysis leads to significant delays

in decision-making and hence treatment. These problems are made

worse in disadvantaged communities. Artificial intelligence (AI) tech-

niques have been proposed to automate the process and compensate

for the lack of available expertise. However, these models are ’black

boxes’, and their lack of explainability dampens the wide adoption

by medical professionals. AI-assisted sonification adds explainability

to any such automated methodology, empowering medical profession-

als to make accurate decisions regardless of their level of expertise in

EEG analysis. The feasibility of an implementation of an AI-assisted

sonification algorithm on an edge device is presented and analyzed.

A lightweight derived algorithm for resource-constrained implementa-

tion scenarios is also evaluated and presented, suggesting suitability

for further ultra-low power, mobile and wearables implementations.

Furthermore, a neural network is analysed for the potential of low-

precision implementation, enabling inference on specialised hardware.
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1

Introduction

1.1 Overview

Deaths in neonates (within 28 days of birth) are of major concern. The World

Health Organisation estimate that in 2019 there were 2.4 million neonatal deaths,

with the majority occurring within the first week of life. 1 million deaths occur

within the first 24 hours (WHO, 2020). Death rates are worse in developing

countries, where 29.4 per 100 live births are affected. This is in contrast to

developed countries, where 3.5 neonates per 1000 live births are affected (Ye

et al., 2016).

One of the leading causes of a high death rate in babies is due to birth or perinatal

asphyxia (deprivation of oxygen). A common cause of brain asphyxia is hypoxic-

ischemic encephalopathy (HIE), where blood flow to the brain is impaired, and

oxygen delivery is obstructed. Brain asphyxia is the fifth biggest cause of mortal-

ity for children under the age of 5, resulting in 8.5% of deaths (Lawn et al., 2007).

Most of these deaths are preventable with sufficient care (Oza et al., 2014). There

1



1. INTRODUCTION

is a higher rate of HIE incidences in poorer countries than wealthier ones, where

there are as high as 26 per 1000 live births in developing countries and between

1 to 8 per 1000 live births in the developed world (Douglas-Escobar and Weiss,

2015).

Early detection of neonatal seizures is an essential yet difficult clinical task (Mur-

ray et al., 2008). Failure to detect such events within an optimal time window

may reduce treatment efficiency and ultimately increase mortality and morbidity

rates (Pavel et al., 2022).

Studies have shown that clinicians achieve less than 10% accuracy in diagnosing

neonatal seizures based on clinical signs alone (blinking or abnormal eye move-

ments) (Murray et al., 2008). When detecting a condition through clinical signs

is impossible, physiological signals must be measured and analysed. The most

common tool for monitoring and detecting abnormal brain function is the visual

analysis of EEG recordings. It records brain activity through electrodes placed

on the surface of the scalp and is the only reliable way to detect seizures (Murray

et al., 2008).

The expensive equipment and expertise required to analyse EEG for seizures are

only available in tertiary care hospitals. Even if the expertise is available, review-

ing and analyzing the recording takes a long time. It is reported in (Brogger et al.,

2018) that it takes from one-seventh up to half of the original recording length

for a medic to review/analyze an EEG recording, where individual recordings are

typically several hours long.

In underfunded health systems, the necessary equipment may not be accessible.

2



1.1 Overview

While in developed countries, expertise is the main limiting factor. A survey

carried out in (Boylan et al., 2010) showed that while 90 % of surveyed hospitals

in the US and Europe had access to EEG equipment, only half of Neonatal

Intensive Care Unit (NICU) personnel had formal training in interpreting the

signal. Only 9 % of them felt comfortable making a diagnosis based on data.

The lack of internal expertise leads to most diagnoses being made by specialist

external neurophysiologists. This delayed treatment likely caused an increased

morbidity rate as administration of anti-epileptic drugs within 24 hours of a

patient’s first seizure is crucial for a positive outcome (Pavel et al., 2022).

The challenges associated with detecting neonatal seizures and the lack of avail-

able expertise across clinical settings have prompted research into developing

automated neonatal seizure detection algorithms (Temko et al., 2011). These

algorithms are designed to be decision-support tools; they should alert clinical

staff when suspected seizure events are detected. Recent advances in deep learn-

ing allow for fast and accurate detection of seizures for neonates (Daly et al.,

2021; O’Shea et al., 2020), with high performance (95%- 97% AUC). These tech-

niques are particularly interesting as they allow real-time online analysis of EEG.

However, there is more to consider when evaluating models than absolute perfor-

mance. Explainability is a concept where an AI model’s output can be interpreted

and understood by humans at a reasonable level (Holzinger et al., 2019). These

“black-box” techniques lack explainability, a key feature for pervasive adoption

in a medical setting (Kundu, 2021).

Along with AI that provides an objective assessment of EEG, new methods of

subjective EEG analysis have emerged in sonification to support and comple-

3



1. INTRODUCTION

ment visual EEG assessment (Väljamäe et al., 2013). In (Gómez-Quintana et al.,

2021), a scheme in which AI is used as a “watchdog” for the presence of seizure

followed by a review using AM/FM sonification mechanism is presented. If the

AI inference engine detects a seizure, it generates an alarm, and a medical pro-

fessional can review the previous EEG with a compression ratio of 20 (the ratio

of the input EEG duration to the output audio duration).

However, this sonification mechanism does not (re)use the probabilities gener-

ated by the AI inference engine. A new AI-assisted sonification algorithm was

presented in (Gomez-Quintana et al., 2022), which combines the benefits of fast,

objective AI analysis with the acuity of the human ear to detect seizure frequency

evolution in time. In this algorithm, the probabilistic outputs of the AI inference

engine are used to identify the regions of EEG likely to contain a seizure event.

By variably processing and compressing EEG, greater overall compression can be

achieved while still detecting brief seizures.

1.2 Aim and Scope

This work aims to implement an EEG sonification algorithm on an edge device.

This will enable pervasive and ubiquitous EEG analysis. This thesis presents

the first implementation of the AI-assisted sonification algorithm in (Gómez-

Quintana et al., 2021) on a resource-constrained, low-cost edge device. The im-

plementation helps to identify the most computationally intensive blocks. An

example of a computationally intensive operation is to remove ECG interference,

time delay is estimated every 8 seconds by means of a convolution. This function

along with several others was shown to take up the majority of the execution

4



1.3 Research Contribution

time. Based on these observations, a new lightweight algorithm is derived, dras-

tically reducing the computation time. The AI element of the algorithm is also

optimised for a resource-constrained device.

1.3 Research Contribution

1. Deployment of an existing sonification algorithm to an edge device to allow

for cheap deployment in resource-constrained settings. Optimisations are

made to the algorithm by lowering the sampling rate from 256 Hz to 32

Hz and making some computations parallel. Inspecting the spectral output

of both algorithms shows that performance is unaffected. It’s shown that

further improvement is required to increase the usability of the algorithm

in a clinical environment.

2. A lightweight algorithm derived from the previously deployed algorithm has

been proposed to further decrease processing time in a resource-constrained

setting. Based on the timing results from the deployment of the original

algorithm, alternative, less computationally intensive functions were pro-

posed. In some cases where the function’s value was limited and no suitable

alternative was found, the function was removed. A survey was conducted

to compare the performance of both surveys. Performance between the two

algorithms was deemed to be the same.

3. Optimisation of the CNN used in the sonification algorithm is also explored.

The network is quantised to a variety of precisions (8 bit, 16 bit), and loss

in performance is measured. Quantise aware training is carried out in an

effort to reduce quantisation error. It’s found that the network can be

5
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quantised to 8 weights and 16 bit activation functions without any loss in

performance.

1.4 Thesis Outline

The remaining chapters of this dissertation are as follows:

Chapter Two presents state-of-the-art and common practices when assessing

newborn brain health. Automated seizure detection methods are explored.

An overview of seizures and their causes is given.

Chapter Three implements a previously presented sonification algorithm on

an edge device. Optimisations are made to the initial implementation. The

non-optimised and optimised versions of the algorithm are then compared

in terms of output and execution time.

Chapter Four focuses on further decreasing the execution time. A lightweight

version of the algorithm is proposed and tested.

Chapter Five optimises the neural network for deployment on an edge device

using low-precision operations.

Finally, Chapter Six gives conclusions and avenues for future work.

6



2

State of the Art

The period immediately after birth is of particular interest to medical pro-

fessionals. Abnormal developments in vital organs like the brain, heart or

lungs have the potential to cause permanent health implications or death.

In the postnatal period, neonates are not fully developed, and often, clin-

ical signs do not manifest. Therefore monitoring physiological signs is

paramount to successful diagnosis and treatment.

Seizures are common symptoms of neurological abnormality in neonates.

Seizures affect a person’s development and have a lasting effect on the qual-

ity of their life over a lifetime. The health implications are severe, and such

seizures must be cared for as clinical emergencies. Seizures occur when

underlying neurological disorders cause abnormal neuron firing patterns.

The current gold standard in clinical practice is the visual analysis of EEG.

However, its review is time-consuming and requires a high level of expertise

that’s not widely available.

The below sections present a broad overview of this traditional analysis,
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a review of current AI methods to automate the process and, finally, an

exploration of sonification methods. All of these methods offer pros and cons

in terms of explainability, performance and human involvement. Recent

developments combining AI and sonification are also explored.

2.1 The Brain

The human brain is a massive control centre, making decisions and au-

tonomously running vital systems to keep us alive. From the power of

100 billion neurons (Herculano-Houzel, 2009), our nervous system gathers

information and pilots the rest of our body.

Neurons are connected to each other via nerve tissue to transmit and receive

information (Sanei and Chambers, 2013) and glial cells, which support and

maintain the neurons’ environment. Most neurons are comprised of a cell

body, an axon for information transmission and dendrites for information

reception. A neuron transmits information through electrical potential. A

typical range for the potential is -70mV in resting conditions and +40mV

when neurons are in depolarisation mode (Barnett and Larkman, 2007). A

neuron can connect to 10000 neighbouring neurons even in simple connec-

tion patterns (Kandel et al., 2000). These large networks are what enable

humans to do complex tasks.

Early life is critical for brain development. The brain develops continuously

until adulthood, but the majority of development in terms of volume and

cognitive functions occurs in the first few years of life (Johnson, 2001; Stiles

and Jernigan, 2010). Newborns may suffer perinatal asphyxia during birth
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leading to permanent damage (Fenichel, 1983). HIE can have a lasting effect

on many facets of brain function (cognition, motor, behavioural, visual, and

hearing) (Miller and Ferriero, 2009).

2.2 EEG Acquisition

Figure 2.1: EEG acquisition flow from electrode to interpretation

Figure 2.1 shows a high-level diagram detailing the process from EEG acqui-

sition to interpretation. Electrodes are metal plates that measure electrical

activity in the brain through direct contact with the scalp. Electrodes are

usually located on patients’ heads using the 10-20 system. In this method-

ology, the numbers 10 and 20 refer to the distances between them. They

can either be 10 % or 20 % of the total distance of the skull apart (mea-

sured from front-back or right-left). In this way, the electrodes are always

positioned proportionately, and results can be inferred generally across in-

dividuals. An ordered arrangement of EEG electrodes is called a montage.

Due to the newborn’s smaller head sizes, a smaller modified montage is

used (Jasper, 1958; Shellhaas et al., 2011).

The voltage at each electrode in a referential montage is measured with
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respect to the referential electrode (usually placed on the ears). Often, in

clinical practice, a bipolar montage is used. In a bipolar montage, an elec-

trode’s voltage is measured with respect to its surrounding electrodes. This

gives a better representation of localised brain activity. Figure 2.2 illus-

trates both the referential and bipolar montages. The 8 channel montage

relies on 9 electrodes, while the 18 channel relies on all 19 electrodes.

Figure 2.2: Diagram of bipolar and referential EEG montages (Gomez-Quintana

et al., 2022)

A firing neuron has electrical potential in the millivolt range ((Barnett and

Larkman, 2007)), but due to a dampening effect as the electrical signal

propagates through the scull and surrounding soft tissue by the time the

electrical signal is measured by an electrode, it is in the order of hundreds

of microvolts (Aurlien et al., 2004). To increase signal strength, an abrasive

gel removes the outermost layers of skin and increases the conductivity

between the electrode and the skin (Lloyd et al., 2015). Dry electrodes have

recently been investigated as a potential replacement (Di Flumeri et al.,

2019; O’Sullivan et al., 2019).
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When analysing EEG frequency, the content is grouped into 5 categories:

delta, theta, alpha, beta and gamma. The frequency ranges are shown

in Table 2.1. As previously stated, seizure activity occurs below 13 Hz

(Kitayama et al., 2003), so the delta, theta and alpha ranges dominate.

Activity in the ranges is useful for assessing a patient’s health. For example,

delta and theta bands dominate when awake, but alpha and beta activity

may occur during sleep (Tsuchida et al., 2013). Generally, spectral density

decrease with frequency. Figure 2.3 shows half an hour of healthy 8 channel

EEG and the corresponding PSD per channel.

Table 2.1: EEG frequency bands

Frequency Band Frequency Range (Hz)

Delta 0.5-4

Theta 4-8

Alpha 8-14

Beta 14-30

Gamma 30-100

EEG is measured in the microvolt (µV ) range. The electrical signal is weak

and is susceptible to many artefacts. Electrode disconnection, AC supply,

and other biosignals (ECG, EOG, EMG) interfere with the EEG. ECG is

a repetitive electrical signal and is in the range of millivolts (mV ) (White

and Van Cott, 2010). Hence, it is one of the most persistent causes of

interference. ECG artefacts can resemble seizures. However, it is possible

to distinguish seizures as their frequency evolves over time.

Visual interpretation of EEG in the time domain is a complex process (Hu-

sain, 2005). A patient’s EEG may be monitored over several days. Seizures
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Figure 2.3: PSD of healthy EEG
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are relatively rare events and are time-consuming to locate. It’s been shown

that there is substantial disagreement even amongst experts when diagnos-

ing seizures from EEG (Stevenson et al., 2019). Amplitude-integrated EEG

(aEEG) is often used to decrease the burden on a clinical practitioner. This

method temporally smooths and compresses the signal’s energy, making it

easier to interpret (Rakshasbhuvankar et al., 2015). Although aEEG makes

it easier to review several hours of EEG at once quickly, it also increases the

number of false alarms due to energy artefacts and leads to misdiagnoses of

short seizures (Rennie et al., 2004; Zhang et al., 2011).

2.3 Seizures

Neonatal seizures are common symptoms of HIE, strokes and infections

(Delanty et al., 1998; Ramantani et al., 2019). The typical mortality rate

for neonates suffering from seizures is 10 % (range 7-16 %). Of those who

survive, 50 % suffer permanent disability (McBride et al., 2000; Nagara-

jan et al., 2010; Scher et al., 1989; Uria-Avellanal et al., 2013). The rate

of reported seizure instances in the NICU varies from 1.5 to 3.5 out of

1000 patients (Eriksson and ZetterstrÖM, 1979; Lanska et al., 1995; Ro-

nen et al., 1999). Neonatal seizure detection is particularly challenging.

Adults present clinical signs including involuntary limb movement, breath-

ing cessation and blinking. Only 10 % of neonatal seizures are detectable

using clinical signs alone. Brain monitoring with EEG is the only way to

accurately detect seizures (Murray et al., 2008).

Seizures occur when a neuron’s activation becomes uncontrolled, and the
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surrounding network begins to discharge synchronously (Scharfman, 2007).

The related frequency content is between 0.5 and 13 Hz (Kitayama et al.,

2003). In contrast, a healthy patient’s neurons communicate independently,

and the discharge frequency can be modelled as random noise (Rankine

et al., 2006). The distinct electrical patterns in the brain during a seizure

make them detectable through EEG. A comparison of single-channel seizure

and non-seizure EEG is made in Figure 2.4.

Figure 2.4: Comparsion of healthy EEG and EEG containing a seizure in a single

channel.
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Figure 2.5: AI assisted decision making

2.4 AI for Automated Seizure Detection

AI is becoming popular to assist medical professionals in decision-making

across all domains (Figure 2.5) (Benjamens et al., 2020). AI has the po-

tential to fill the gaps in the availability of highly specialised expertise,

decreasing the time taken for a diagnosis and hence the time to treatment.

Neurophysiologists detect seizures by looking for repetitive abnormal fre-

quency and amplitude patterns in the signal (Scharfman, 2007). Figure

2.4 shows a repetitive pattern corresponding with a seizure. Seizures can

be distinguished from background healthy EEG due to their evolving fre-

quency and amplitude (Patrizi et al., 2003). Literature defines seizures as

events greater than ten seconds (Clancy and Legido, 1987).

Using domain knowledge, early rule-based seizure detection algorithms were

developed, exploiting frequency, correlation, entropy and pattern repetition

to make a classification (Faul et al., 2005; Gotman et al., 1997; Liu et al.,

1992; Roessgen et al., 1998). Over time computing power increased, and it

became possible to train statistical models using gradient descent to itera-

tively adjust parameters to minimise error. Models trained in this fashion
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are referred to as machine learning models. Using machine learning, state-

of-the-art performance in automated seizure detection was greatly improved

(Aarabi et al., 2006; Ansari et al., 2016; Tapani et al., 2019; Temko et al.,

2011; Thomas et al., 2010). All of these algorithms utilise traditional ma-

chine learning techniques consisting of a feature extraction stage to select

features that best summarise information related to seizures and model

trained to make a classification based on the features.

Further increases in computing power have allowed for the training of deep

learning models. Deep learning approaches do not require manual hand-

crafted features. Because features are automatically extracted, it is unclear

what causes a decision, and these models lack explainability. Convolu-

tional Neural Networks (CNN) have been used to achieve state-of-the-art

performance on the neonatal seizure detection problem (Daly et al., 2021;

O’Shea et al., 2020). They originated in the 1980s (Fukushima and Miyake,

1982), but their use has become widespread with the increase in deep learn-

ing methods. In CNNs, kernels are convoluted with the input to enhance

seizure patterns while maintaining the spatial relationship between input

components. After several convolution layers, a decision is made either by

a convolutional layer or, in a fully convolutional neural network, by global

pooling.

All AI models have some form of error. (Stevenson et al., 2019) showed

that even expert doctors disagree when diagnosing seizures. If the ground

truth labels are subjective in nature, there is an upper limit to the AI’s

performance. In a clinical environment, the cost of a wrong diagnosis leads
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to unnecessary treatment or even death. Using models with a high level

of explainability allow the traceback of errors to the underlying clinical

causes (Linardatos et al., 2020). For example, in (Ahmed et al., 2016), the

features contributing to wrong decisions are analysed so the people using

the models can interpret the decisions better. It is preferable for clinicians

to understand the reason why decisions are made. However, this level of

explainability is not achievable with deep learning approaches. To include

explainability in the decision process, traditional machine learning models

can be used at the cost of lower performance.

2.5 Sonification

Sonification is the use of non-speech audio to perceptualise data. The fully

automated AI seizure detection methods discussed above relieve clinicians

of the tedious task of manually assessing EEG. Although to get the best

performance, models which are not explainable must be used. Integrating

these models with sonification can combine high-performance levels with

explainability as the human is kept in the loop to interpret the output.

Because the cost of a wrong diagnosis is so high, a human must always

be kept in the loop. In the best-case scenario, a neurophysiologist would

review the EEG. However, due to the lack of available expertise, this is

difficult to put into practice. Sonification offers a solution as the EEG can

be brought into the audible domain and intuitively interpreted with minimal

training. The human ear has evolved to detect sound patterns accurately

and can easily differentiate a seizure’s evolving frequency from artefacts and
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background EEG. Sonifying EEG often temporally compresses the signal

yielding short review times. EEG sonification algorithms are analogous to

a stethoscope, where a doctor can hear abnormalities in the heart.

The seizure patterns have a characteristic evolving temporal and spatial evo-

lution (Clancy and Legido, 1987; Rose and Lombroso, 1970). Since most of

the neonatal EEG’s frequency content lies in the range 0.5-13 Hz (Kitayama

et al., 2003), EEG is inaudible. A sonification algorithm is used to shift the

frequency of EEG into the range of 20 Hz to 20 kHz (Huttunen et al., 2007)

to make these patterns detectable in audio. The phase vocoder was first

used in EEG sonification with a constant compression rate (Temko et al.,

2014a). Later, it was observed that increasing the rate of temporal com-

pression improves the algorithm’s performance as seizures and non-seizures

are more separable at higher frequencies (Gomez et al., 2018). Although

increasing the audio speed increases the algorithm’s general performance, it

can lead to missed short seizures. The effects of this problem were mitigated

in (Gomez-Quintana et al., 2022), where AI was used to locate seizures and

variably compress the EEG accordingly. Using this methodology, greater

temporal compression was achieved without affecting the detection of short

seizures. This methodology combined the excellent performance of a CNN

with the explainability of sonification algorithms.

Other sonification methods are presented in the literature. The most basic

of which increases the input signal’s sampling rate (Khamis et al., 2012;

Olivan et al., 2004). More elaborate methods based on tone synthesis (Baier

et al., 2007; Hermann et al., 2002), a mapping from EEG to musical notes
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(Loui et al., 2014), and a voice-like synthesiser (Parvizi et al., 2018). These

approaches are limited compared to (Gomez-Quintana et al., 2022) because

they are only guided by the EEG and do not convey all the information in

the signal.
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Implementation on an Edge

Device

A major obstruction to pervasive 24 hour EEG monitoring is the need for

more interpretation expertise. aEEG has been used as an alternative to

reduce the necessary level of expertise required; however, its use has led to

missing short and low-amplitude seizures (Hellström-Westas et al., 2006).

The previously proposed sonification algorithm promises to mitigate these

errors while requiring practitioners to undergo virtually no training (Gomez-

Quintana et al., 2022). For this technology to become widely adopted, it

must be low cost and available to clinicians at the cotside. Edge devices are

computers located physically close to the data source with enough comput-

ing resources to process data. The following chapter presents an implemen-

tation of the algorithm on an edge device. This device can be integrated

with existing EEG acquisition equipment cheaply.

A Raspberry Pi 3B+ was chosen as an edge device due to its integrated au-
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dio output and connectivity options, including Ethernet, Wi-Fi and Blue-

tooth, high processing capabilities, and versatility in prototyping the sys-

tem. The integrated connectivity options allow the Pi to seamlessly interact

with existing EEG acquisition systems for seamless integration into various

hospital setups. The Raspberry Pi contains a Broadcom BCM2837B0 CPU

(Figure 3.1).

Some optimisations are made to reduce clinicians’ wait time. The Average

Processing Time (APT) was measured for the entire algorithm and each

function to evaluate their contribution to the overall execution time.

Figure 3.1: Picture of Raspberry Pi 3B+ chosen for implementation

3.1 Python vs MATLAB

This chapter focuses on migrating and optimising a MATLAB implementa-

tion of an algorithm to Python. MATLAB and Python are similar in some

ways as they are high-level, interpreted languages.
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In contrast to MATLAB, Python is a free, open-source language with many

available libraries and packages. Python’s libraries become particularly

advantageous when using AI models. Python is also more portable than

MATLAB, meaning without any changes the same code can be run in dif-

ferent environments independent of of operating system or even device. Its

portability makes it easier to implement on an edge device.

3.2 Algorithm Complexity

An algorithm’s complexity measures the number of calculations an algo-

rithm requires as the input size grows. It is calculated by finding the number

of multiply-accumulate operations an algorithm requires for an input of size

N. Using ”Big O Notation”, we can then simplify the expression and infer

how execution time will increase for a change in N. For example, if there

are 2N2 + N basic operations, this is represented using ”Big O Notation”

as O(N2). Constant scaling factors and lower powers of N are removed

because, for large values of N, the N2 term dominates (Sipser, 1996). In

this example, the number of basic operations to be computed will grow as

the square of the input size.

This technique is used for some of the functions below to investigate inter-

esting trends caused by the algorithm’s complexity.

3.3 System Overview

The AI-assisted sonification algorithm is composed of an AI engine to detect

seizures and a Digital Signal Processing (DSP) block to turn the EEG into
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sound. The Raspberry Pi processes both components. However, the AI

component runs online, outputting the probability of a seizure occurring in

an 8s chunk every second. In comparison, the DSP block executes offline,

on a long continuous EEG recording and the corresponding AI probabilities.

Figure 3.2 shows a high-level signal processing flow diagram.

The AI engine is a Convolutional Neural Network (CNN) (O’Shea et al.,

2020), which operates online to continuously detect the likelihood of a pa-

tient having a seizure. The EEG data and AI probabilities are then stored

in memory until a clinician wishes to review the recording. The DSP block

utilises the probabilities to sonify the EEG data, focusing the listener’s at-

tention on the segments most likely to contain seizure events. The DSP

block processes the data offline.

By pushing the algorithm to the edge, the proposed system can be easily

integrated with existing EEG acquisition systems over a serial link (shown

in Figure 3.3).

Figure 3.2: High-level sonification overview showing the signal acquisition, infer-

ence and signal processing flow
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Figure 3.3: System adaptation to an existing EEG acquisition system

3.4 Fully Convolutional Neural Network

A Fully Convolutional Neural Network (FCNN) developed in (O’Shea et al.,

2020) is used for the AI engine. Although it is common practice to use con-

volutional layers early on for feature extraction and fully connected layers

as the final classification layers, this architecture uses convolutional layers

for feature extraction and classification. The architecture is presented in

Figure 3.4. The FCNN was trained on a separate proprietary dataset and

later tested on the publicly available Helsinki dataset consisting of record-

ings from 79 neonates each of 1-2 hours long (Stevenson et al., 2019). On

the Helsinki dataset, the model achieved an AUC (Section 5.6) of 95.6%.

3.5 DSP Block

An AI-assisted phase vocoder algorithm that variably compresses and soni-

fies the EEG signals to allow users to perceive seizures audibly was first
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Figure 3.4: FCNN presented in (O’Shea et al., 2020) used to predict the likelihood

of a seizure

introduced in (Gómez-Quintana et al., 2021). The phase vocoder maps

the inaudible EEG signal frequencies from 0.5 - 13Hz (Kitayama et al.,

2003) into the audible range of 20 - 20kHz (Rankine et al., 2006). While

the algorithm can use any AI model which provides a probability output,

this implementation and analysis use the AI model developed in (O’Shea

et al., 2020). A block diagram of the signal processing flows associated

with the algorithm in (Gómez-Quintana et al., 2021) is shown in Figure

3.5. All channels are individually processed to ensure a high signal-to-noise

ratio. AI Attenuation, Spectral Subtraction and the Phase Vocoder all use

the output from the CNN to variably process and focus attention on likely

seizure events. The main blocks of the two algorithms are described below.

Figure 3.5: Block diagram showing signal processing flow in the DSP block
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3.5.1 Filtering

Filtering reduces interference and noise from a signal based on frequency. A

digital Infinite Impulse Response (IIR) filter attenuates frequencies outside

0.5 to 13 Hz. The filter calculates its output by mixing a delayed version of

the signal and the signal itself with a delayed version of the filter’s output.

The formula for applying an IIR filter is shown in Equation (3.1).

y[t] =
N∑
i=0

bi · x[t− i]−
M∑
j=1

aj · y[t− j] (3.1)

The 50 Hz supply voltage effect is strong, requiring an additional notch filter

to attenuate it to the necessary level. The filtering block will be executed

after acquisition and before the AI/CNN inference and will be ”always-on”,

continuously processing incoming EEG. The following block then stores the

filtered EEG data in memory for later access.

3.5.2 Downsampling

Downsampling lowers a signal’s sampling frequency by reducing the number

of samples in the signal while maintaining important information. The EEG

data is sampled to 256 Hz and is downsampled to 32 Hz during sonification.

The original sampling rate is an integer multiple of the desired frequency;

hence, decimation can be used. To decimate the signal from 256 to 32 Hz,

every 8th sample is taken.

In the first implementation, the downsampling happens in the vocoder

block. However, the Nyquist sampling theory states that to represent a

signal accurately, the sampling rate must be at least twice its frequency.
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To avoid aliasing, a signal must be low pass filtered to at least half the

sampling rate before downsampling. Thus the downsampling function can

be placed anywhere after the filtering in the algorithm.

3.5.3 ECG Removal

Sonification of ECG artefacts yields a high pitch which can sound similar

to a seizure causing a false positive. The artefact’s pitch is constant, and

with practice, a listener can distinguish the evolving pitch belonging to

seizures. To reduce the listener burden, a temporally varying parametric

model can be used to attenuate the presence of the interfering ECG signal.

ECG amplitudes are much larger than EEG signals (in the mV range versus

µV for EEG). ECG may contain the same frequency components as EEG,

so it can not be removed using a standard frequency filter. The interference

can be modelled with the following parametric equation, considering ECG

as a delayed version of the measured ECG with varying amplitude:

ŜEEG[t] = SEEG[t]− α · SECG[t− δ] (3.2)

Where SEEG is the EEG signal plus the interference from ECG; ŜEEG is

an estimation of the clean signal;SECG is the patient’s ECG signal. The

amount of interference from SECG is modelled by the parameters α and

δ. α determines the magnitude of the ECG to be subtracted based on the

strength of interference at that point in time. δ is the time delay between

the ECG signal and its interference. Both α and δ vary temporally, so these

parameters are recalculated every 8 seconds for 16-second segments. The

28



3.5 DSP Block

time delay is estimated using convolution, making this function computa-

tionally intensive.

3.5.4 Soft Limiting

Artefacts are commonly introduced to EEG signals due to electrode discon-

nection or other unwanted electrical impulses. The signal is first normalised

by dividing by 100 mV as seizures are expected to occur below this value.

A dynamic range compressor is applied to attenuate signals outside of this

range.

Dynamic range compression is a parametric model that uses an envelope

instead of the signal to reduce distortion while attenuating the signal into

the desired range. It is widely used in music to keep a song’s volume

consistent (Giannoulis et al., 2012).

An envelope is used to obtain a smoothed version of a signal’s intensity.

The function uses an ADSR (Attack, Decay, Sustain and Release) envelope

for intensity estimation. The envelope is applied to the signal by filtering

a kernel (the envelope’s impulse response) over the signal’s instantaneous

power. The general form of the ADSR’s impulse response is shown in Figure

3.6.

The shape of the impulse response can be defined as:
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Figure 3.6: General form of the impulse response for an ADSR envelope with

Attack, Delay, and Release times (TA, TD, TR) and the Sustain level S

h[t]dB =


− B

TA
t+B t ≤ TA

S
TD

(t− TA) TA < t ≤ TD + TA

B−S
TR

(t− TA − TD) + S TD + TA < t ≤ TD + TA + TR

(3.3)

The ADSR parameters TA, TD, TR determine the kernel length. To apply

the kernel as a digital filter the sampling frequency, fs, is used to convert

the parameter from seconds into samples. Therefore the total number of

coefficients, N, is equal to the length of the impulse response in samples:

N = (TA + TD + TR) · fs (3.4)

By examining the equation for an IIR filter (3.1), it can be seen that for

each data sample, where there is a total of N coefficients, there are N · N

real multiplication operations and N · (N + 1) real additions. The filter’s
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complexity can be represented using big O notation as O(N2). Since the

complexity is high, if a signal has a high sampling rate, execution times for

this function may be long.

3.5.5 AI Attenuation

The EEG signal is attenuated based on the predicted likeliness of a seizure

occurring at each point by the CNN. The attenuation factor at each point

is proportional to the probability of seizure. A segment with a probability

p[n] = 1 will be unchanged. The maximum attenuation occurs when p[n] =

0 and is determined by the variable Max. Max is a user-set parameter and

was chosen to be 20 dB for these experiments. Equation (3.5) shows how

this is applied to the input EEG x[n].

y[n] = x[n] · 10(
Max
20 )·(p[n]−1) (3.5)

Variably attenuating the signal increases the clarity of the audio, making

seizures easier to detect as non-seizures are attenuated.

3.5.6 Spectral Subtraction

Spectral subtraction aims to remove the background EEG from the signal

in the frequency domain, making the seizure content clearer. Background

EEG is normal EEG, not containing any seizures. The contribution of

background EEG to the spectral profile is calculated using the probabilities

for each window, pseizure, obtained for the signal, x(t), and by converting the

signal into the frequency domain using the Short Time Fourier Transform
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(STFT). Where X[n, k] = STFT{x[t]}, Pxx[n, k] = |X[n, k]|2, and the

background EEG’s spectral contribution, T [k], can be calculated as:

T[k] =
∑
n

Pxx[n, k]
1− pseizure[n]

Σn(1− pseizure[n])
(3.6)

The gain to be applied to the input signal can be calculated as follows:

G[n, k] =

{
1 if PXX [n, k] ≥ T [k]

PXX [n,k]
T [k]

otherwise
(3.7)

The gain can then be applied (Equation (3.8)). The first term increases the

attenuation factor by a maximum of 10 % (when the probability of seizure

is zero).

Y[n, k] = 10p[n]−1 ·G[n, k] · X[n, k] (3.8)

If the effect is more significant than the seizure’s, the signal is attenuated

proportionally to the likelihood of seizure. Otherwise, the signal is left

unchanged. The inverse STFT can then be calculated to synthesise the

denoised time series signal.

3.5.7 Variable Speed Phase Vocoder

The phase vocoder is an essential block in the sonification process. It was

first used to shift the EEG’s frequency into the audible domain without

any temporal compression (Temko et al., 2014b). Additionally, the phase

vocoder can variably compress the signal, focusing a listener’s attention on

seizure events. In this work, the Vocoder is used on EEG data. However,
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it was initially proposed for time-stretching speech signals (Flanagan and

Golden, 1966).

The magnitude of the signal is linearly interpolated at a varying compression

rate. After altering the frequency content, the phase difference between

points in the input signal is measured to keep horizontal coherence between

the phase neighbouring Fast Fourier Transform (FFT) bins.

Variable compression is achieved by taking the probability of the EEG con-

taining a seizure, as generated by the AI inference, and allotting more

listening time to predicted seizure events. Sections of the EEG where no

seizure is present are compressed more than where seizures are likely to be

present. The compression ratio, R[n], can be calculated based on the ra-

tio of the input sampling frequency, Fsin , the output sampling frequency,

Fsout and the AI dependent variable speed parameter, V S[n]:

R[n] =
Fsout /Fsin

V S[n]
(3.9)

Equation (3.10) gives the formula for calculating the relative playback

speed, VS[n], at a point in time.

V S[n] = V max

(
V min

V max

)AI[n]

(3.10)

The minimum compression factor, Vmin, is 60, while the maximum, Vmax,

is 3600. The values for Vmin and Vmax were previously selected and exper-

imented on in (Gomez-Quintana et al., 2022). AI[n] varies the compression

factor according to the likeliness of a seizure at each point in time. This vari-

able compression directs the listeners’ attention to where it is most needed

allowing efficient and accurate detection of seizures.
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After the variable speed is calculated the output duration, To, can be cal-

culated from the input duration, Ti:

To = Ti
1

N

N−1∑
n=0

V S[n] (3.11)

Ti and To can be measured in either STFT frames or seconds.

Equation (3.11) has important consequences when measuring the execution

time of the function, as the number of outputted STFT frames is calculated

on the variable speed. It follows that the function’s complexity depends not

only on the length of the input sequence but also on variable speed (which

depends on the value of the AI probabilities).

It can be easily shown that the complexity of internal functions is linearly

dependent on the number of output STFT frames. The complexity of the

vocoder, taking the STFT frames as input and where To is measured in

STFT frames, is O(To). Substituting (3.11) into this equation and removing

constants, the complexity is shown to be dependent on AI:

O(To) = O

(
Ti

N−1∑
n=0

(
V min

V max

)AI[n]
)

(3.12)

The expansion and compression rate (ER, CR) in the Vocoder is given as

follows:

ER =
1

CR
=

To

Ti

=
1

N

N−1∑
n=0

V S[n] (3.13)
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Even for patients with a high seizure burden, most of the EEG recording

is considered non-seizure. The imbalance between seizure and non-seizure

events generally leads to temporal compression, where To < Ti.

Figure 3.7: Signal processing flow in the Phase Vocoder (Gomez et al., 2018)

3.5.8 Mixer

The role of the mixer is to reduce an eight-channel EEG signal to stereo

sound for review. A delay is introduced between the left and right ear,

known as the Haas delay, which allows a listener to determine the location

of the electrode/seizure in the neonate’s brain. It has been shown that

using this approach, clinicians can differentiate between the left, central

and right hemispheres of sonified pairs of electrodes (Middlebrooks, 2015).

Theoretically, it could be used to locate seizures anywhere on the head.

3.6 Optimisations

Some practical optimisations can be made without altering the structure of

the algorithm to decrease execution time while leaving functionality com-

pletely unchanged.
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3.6.1 ECG Removal

ECG removal is one of the most computationally intensive functions, as the

time delay between the interfering reference ECG signal and EEG signal

varies temporally and must be estimated periodically using a convolution.

In the first implementation, the signals were split into 16s segments, then

iteratively converted to the frequency domain using an FFT and convo-

luted together to find the time delay. Computing FFTs and convolutions in

parallel can significantly speed up these processes. When computing itera-

tively, all the computing resources are assigned to one FFT even if not all

are needed, and the next can not begin until the first is finished. In parallel

computing, resources are shared over all FFTs at the same time. There-

fore, computing resources are used efficiently and execution time reduces.

Converting the time series data to matrices facilitates this process (Figure

3.8).

The ECG and EEG are converted to matrices with the FFT window size

and the number of frames as the matrix’s dimensions. The FFT can be

taken of the whole signal in the matrix, and the resultant matrices can be

convoluted by multiplication. The remaining steps in the process described

in section 3.5.3 can be executed in matrix form.

3.6.2 Early Down-sampling

The input signal was not downsampled in the MATLAB implementation

until the phase vocoder. The signal must only remain at the 256 Hz sam-

pling rate during the filtering stage to avoid aliasing. By downsampling to a
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Figure 3.8: Conversion of an EEG channel and an ECG signal from 1D time

series signals to a matrix representation

32 Hz signal directly after, all the proceeding stages need to process 8 times

fewer data samples. For algorithms with high complexity, it is particularly

beneficial in reducing execution time. Moving downsampling earlier means

that the CNN and the DSP block have the exact same preprocessing steps,

preventing the system from doing the same operation twice.

3.7 Results

Execution time results were recorded on a Raspberry Pi 3B+. The Pi’s CPU

has a max frequency of 1.4 GHz (RaspberryPi, 2022), although it is dynam-

ically varied to as low as 600 MHz to save on power consumption. In order

to yield more consistent and reproducible results, the clock is fixed to a fre-

quency of 800 MHz. Timing results are presented for three implementations

with increasing optimisation levels in Table 3.1. The first implementation

has no optimisation and is directly translated from the MATLAB code. The

second implementation includes an improved ECG removal function. The

final implementation down samples immediately after filtering to reduce the
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number of data samples to be processed.

To verify that these optimisations have not affected the algorithm, spectro-

grams generated using the final implementation are presented for both a

seizure and non-seizure recording.

3.7.1 Average Processing Time

To reduce percentage error while measuring a function’s execution time,

the Average Processing Time (APT) for 1 hour of EEG is measured and

averaged over ten iterations.

The execution time for every function except the Vocoder depends only

on the length of the inputted data. The phase vocoder has a variable

length output, and the number of computations the phase vocoder has to

do depends on the values of the AI probability (Equation (3.12)). Therefore

the APT varies greatly from file to file. To get a consistent measure, the

APT of the phase vocoder must be taken over the entire Helsinki dataset

and normalised to 1 hour. APT results are shown in Table 3.1.

3.7.2 Verification

This work was translational, and the output of optimisations should give

a 1:1 mapping when compared with the MATLAB implementation. The

changes can be verified objectively by plotting the audio output of both

implementations. A spectrogram is a visual representation showing how a

signal’s frequency content changes over time. It is calculated by taking the

Short Time Fourier Transform (STFT) of a signal which consists of many
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Table 3.1: Average processing time for 1 hour of EEG with both algorithms on

the Raspberry Pi 3b+

First Implementation (s) ECG Removal (s) Resampling (s)

ECG Removal 191.76 28.24 3.41

Mixer 5.77 - 0.58

AI Post Processing 0.29 - 0.29

Spectral Subtraction 62.12 - 9.84

Attenuation 10.41 - 0.99

Vocoder 12.09 - 12.09

Limiting 126.64 - 2.41

Total: 409.08 245.56 29.61

overlapping Fast Fourier Transforms (FFT). Sonified seizures are differen-

tiated from background EEG due to their high pitch sound with evolving

frequency. Hence spectrograms are the ideal way of visually interpreting

the audio, as frequency can be observed over time.

Figures 3.9 and 3.10 show the spectral output for two files, one containing a

seizure and one not. Figure 3.9 shows EEG file 31, which contains two dis-

tinct seizures. While 3.10 shows the output for EEG file 3, which contains

no seizures. In each figure, (a) displays the MATLAB output while (b)

shows Python. The spectrograms for both files show minimal differences,

and it can be concluded that algorithmic performance is not affected. Spec-

trograms are displayed here for two files to illustrate that the optimisations

to the algorithm do not affect performance. However, while testing the

spectral output was systematically reviewed for every file in the dataset.
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(a) MATLAB stereo output.

(b) Python stereo output.

Figure 3.9: (a) MATLAB generated audio and (b) Python generated audio for

an EEG recording containing seizures.
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(a) MATLAB stereo output.

(b) Python stereo output.

Figure 3.10: (a) MATLAB generated audio and (b) Python generated audio for

an EEG recording containing no seizures.
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3.8 Discussion

Examining the first implementation’s results, it becomes clear that the ECG

removal function is a bottleneck for performance. It takes up 46 % of

the total execution time. Optimisations made to this function improved

its execution time by 6.8x and the total execution time by 1.7x. Moving

the downsampling function earlier reduces the overall execution time of

the algorithm by 8.3x. However, it reduces the execution time of the soft

limiting function by 52.5x. This improvement can be explained by the high

complexity of the function, O(N2), as derived in section 3.5.4. As shown

in Equation (3.4), downsampling the signal by a factor of 8 reduces the

number of coefficients, N, by the same factor.

Although the APT for the algorithm was reduced by 13.8x, it still takes an

average of 29.61 seconds to sonify an hour of EEG. Moreover, on average,

the sonification will compress 1 hour of EEG into a 4.9-second audio clip.

The most optimised version of the algorithm takes an average of 6x longer

to process EEG than for a clinician to review the generated audio. The

sonification algorithm was designed to facilitate a fast review of many hours

of EEG. This wait time is unacceptable in a busy hospital environment.

The contribution of each function to the overall APT is shown in Figure

3.11. The Vocoder makes up 41 % of the execution time. It is the core block

in the sonification process, and this is proportionate to its value. The sub-

sequent three slowest blocks are Spectral Subtraction (33%), ECG Removal

(12%) and Limiting (8%). These steps are non-essential and are included

in the algorithm to improve audio clarity. In all cases, alternative methods
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should be investigated to determine if performance can be maintained by

using simpler versions or removing the function.

Figure 3.11: Pie chart showing the APT of each function as a proportion of the

overall APT

Moving the mixer earlier and operating using single-channel processing

should be investigated to reduce the execution time of all functions, in-

cluding the phase vocoder. Following this framework, a version of the al-

gorithm more suited for the resource constraints of an edge device could be

developed.

3.9 Conclusion

A first implementation of a seizure sonification algorithm on an edge device

is presented. The first implementation was slow, so several optimisations
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were made. ECG removal was sped up by unwrapping an iterative loop to

produce results in parallel, resulting in a 1.7x reduction in total execution

time. The input signal was downsampled earlier to reduce computational

load. The reduced input decreased the algorithm’s average execution time

by 8.3x and the limiting function’s APT by 52.5x due to its high complexity.

The optimisations lead to a total reduction in execution time of 13.8x. The

final implementation was validated by comparing its spectral output against

the original MATLAB implementation.

Although significant improvements in overall execution time were made,

the program still has a significant execution time. For pervasive use of the

sonification algorithm, this must be reduced.
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4

Modified Algorithm Towards

Lightweight Implementation

The previous chapter optimised the first implementation to reduce execu-

tion time by 13.8x. Even with these optimisations, it takes an average of

29.62 seconds to sonify 1 hour of continuous 8-channel EEG. A clinician

may have to review several hours of EEG for many patients in the NICU.

In this case, sonification will take in the order of minutes to process the

raw EEG for review. Despite the significant improvement in execution time

presented in the previous chapter, it takes 6 times longer to process EEG

than to review the generated audio. To improve the processing further, the

algorithm’s structure must be changed.

Data compression already occurs in the algorithm and can be exploited to

reduce the number of data samples processed at each stage. Data compres-

sion occurs in the phase vocoder, which compresses the data temporally by

an average of 1.4x over the Helsinki dataset, and also in the mixer, which
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(a)

(b)

Figure 4.1: Block diagram of (a) the proposed lightweight algorithm and (b) the

original algorithm showing the accumulative data compression at each stage

reduces the number of channels to produce stereo sound (two channels).

All other stages can run faster by rearranging the algorithm to reduce data

at more computationally intensive stages. Moving these blocks to the start

of the algorithm significantly reduces processing time. In cases where func-

tions still run slowly, suitable alternatives are considered.

The following chapter focuses on utilising these ideas to propose a lightweight

algorithm. The lightweight algorithm is compared with the original algo-

rithm in terms of average processing time and classification performance

(as measured by a survey). An in-depth statistical analysis is performed to

evaluate differences in the surveys.
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4.1 Overview

An overview of the two algorithms is shown in Figure 4.1 (a) and (b) for the

lightweight and original algorithms, respectively. The algorithms are colour

coded to make it easy to identify changes. Corresponding functions have the

same colour in both algorithms, while functions which are removed entirely

are grey in 4.1 (b). The accumulated data compression is presented at the

inputs and outputs of each block. Details of the changes and the added

data compression follow.

4.2 Data Compression

Although both data and temporal compression reduce the duration of the

output audio, it is important to distinguish between them. Temporal com-

pression occurs either in the phase vocoder or by increasing the playback

speed of the audio, essentially decreasing the length of the output in sec-

onds. Data compression reduces the number of data points in the signal,

decreasing the length of the output in samples. Data compression is ac-

complished by channel reduction (in the mixer), compression in the phase

vocoder, and downsampling of the signal.

The input EEG signals are 1-2 hours in duration and are downsampled

to 32 Hz across all 8 channels. Processing this large quantity of data is

computationally intensive. The data can be compressed significantly by

rearranging some of the signal processing blocks. Reducing the number of

data points leads to a proportionate decrease in the average processing time

of the algorithm.
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In Figure 4.1, the accumulative compression is shown relative to the al-

gorithm’s 8-channel 32 Hz input signal at all points. There is no data

compression in the original algorithm until the last two stages of the al-

gorithm (the mixer and the phase vocoder). The late data compression

results in the most computationally intensive blocks processing the most

data. The phase vocoder variably compresses the EEG signal to draw the

listener’s attention to likely seizures resulting in a temporally warped signal

with average data compression of 1.4x over the Helsinki data set. The mixer

reduces the number of channels in the signal, going from 8-channel EEG

to 2-channel stereo sound. These blocks can be rearranged to significantly

speed up the algorithm.

4.3 Simplifications

Some functions in the original algorithm were ’over-engineered’, and sim-

pler alternatives can be implemented, which, although theoretically worse,

within the practical constraints of this problem, their performance is similar

for binary classification of seizures.

4.3.1 Mixer

In the modified version of the algorithm the mixer is moved first to reduce

the data to be processed. The original mixer uses the Haas delay, adding

a slight delay between the left and right ears, allowing for spatial location

of the seizure in the neonate’s brain. This delay puts the AI probabilities

out of sync with the EEG signal and, therefore, had to be removed to move
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the mixer first. This functionality does not affect the binary classification

results used for performance evaluation. Without the Haas delay, stereo

sound is no longer advantageous; hence mono mixing is used to decrease

the number of EEG channels further to one. As such, the lightweight algo-

rithm no longer processes each channel individually. In figure 4.1, the lite

algorithm’s mixer is referred to as mixer* to differentiate between the two

mixers.

4.3.2 Limiting

Artefacts are commonly introduced to EEG signals due to electrode dis-

connection or other unwanted electrical impulses. Seizures are expected

to occur below 100 mV with these artefacts resulting in high amplitude

spikes. In the original algorithm, the soft limiter reduces the signal gain

progressively before reaching this threshold to reduce the signal distortion.

In the lightweight algorithm, a hard limit is used, where values outside the

limit are set equal to the limit. Hard limiting results in increased signal

distortion. However, seizure EEG occurs below the limit and only affects

artefacts. The distortion is known as clipping, where values above the limit

become a flat line at the limit (Figure 4.2).

4.4 Function Removal

In cases where slow functions were deemed ineffective in comparison to their

computational costs, they were completely removed. This only applied to

two functions where similar processing had already been undertaken and it

was absolutely necessary to improve performance.
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Figure 4.2: Example of a sine wave being clipped above a limit of +0.7

4.4.1 ECG Removal

Sonified ECG artefacts present as high-pitched notes, which can sound simi-

lar to seizures to untrained individuals. However, a listener can easily distin-

guish between ECG interference and seizure patterns because the frequency

of seizures evolves over time.

The differences in frequency evolution are observed empirically when soni-

fied ECG and seizures are presented using time-frequency distribution (TFD)

plots. Figures 4.3(a) and (b) are obtained by plotting the square of the

STFT magnitude in three dimensions. They show the TFD of sonified

EEG, but this is a feature of the raw signal, not the sonification process.
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(a) TFD of sonified ECG artefact

(b) TFD of sonified seizure

Figure 4.3: (a) TFD of sonified ECG artefact (b) TFD of sonified seizure
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4.4.2 Spectral Subtraction

Spectral subtraction was removed as it was observed not to have an effect

that justifies its execution time. The AI Attenuation function still processes

the signal based on the AI probabilities, and most of the benefits of AI-based

processing can be maintained with only one function.

4.5 Experimental Setup

The algorithm’s effectiveness is subjective as it involves interpretation from

a human listener. Hence, a human must be involved in the final test-

ing process to verify that the aforementioned changes do not affect the

algorithm’s classification performance. The subjective classification per-

formance is measured with a survey. Execution times of the lightweight

algorithm’s functions are also measured and compared to that of the orig-

inals. Timing and survey results are obtained on the Helsinki dataset. A

detailed explanation of the methodology used follows.

4.5.1 Dataset

The publicly available Helsinki dataset was used to conduct the survey. It

consists of 79 full-term neonates from Helsinki University Hospital NICU

(Neonatal Intensive Care Unit) (Stevenson et al., 2019). There is a single

recording for each baby with a median duration of 74min (IQR: 64 to 96min)

with a total of 112 h of EEG recordings in the dataset. Three expert

doctors independently annotate each 1 second segment containing either a

seizure/non-seizure. Where the experts disagreed majority vote was taken.
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An average of 460 seizures were annotated by each expert, with 39 babies

having seizures by consensus. The EEG signals have a 24 bit resolution and

were sampled at 256 Hz.

4.5.2 Average Processing Time Methodology

Testing was done using the same process outlined in the previous chap-

ter. When measurements were taken, the Raspberry Pi was used with a

clock frequency fixed at 800 MHz. The average processing time (APT) re-

sults for implementing the two algorithms are presented in Table 4.1. The

performance of every block except the vocoder is solely dependent on the

number of EEG samples to be processed. The execution time of the phase

vocoder depends on a patient’s seizure burden. Therefore it is necessary to

get results over the whole dataset and normalise for 1 hour of EEG.

4.5.3 Survey Methodology

An audio file was generated from each of the 79 EEG recordings in the

Helsinki database. Participants listened to each audio file and were then

asked if they heard a seizure in the file or not. The majority vote was then

taken amongst participants to make a classification. Figure 4.4 shows the

simple user interface used to carry out the survey. It was identical for both

surveys.

The original AI-sonification algorithm described in Chapter 3 was verified

in (Gomez-Quintana et al., 2022) using a survey of over 30 participants,

including a medical and non-medical cohort. Changes to the algorithm

in the development stage were evaluated using small in-lab surveys (n =
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Figure 4.4: Screenshot of an example survey question

5). Similarly to the exploratory surveys, the survey to validate the Lite

algorithm used a small group of non-clinical participants (n=7). In order

to reduce statistical variance from comparing two groups (the original 30

and the new 7 participants), the survey was repeated on the same group

using both the original and proposed lightweight algorithm.

The survey participants were split into two groups, A and B. The order

in which the groups did the survey was stratified, so Group A listened to

the output of the adapted algorithm first, while Group B did the survey

based on the original algorithm first. The participants in each group took

the other survey several days later. This was done to mitigate the effects of

fatigue and novelty on results when comparing the performance of the two

algorithms.
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4.5.4 Evaluation Metrics

The execution time, AI performance and survey results must all be inter-

rogated using robust metrics. Although the AI performance and execution

time are measured similarly in other chapters, some statistical measures

must be introduced to properly interpret the survey results. The measures

used are as follows.

4.5.4.1 Sensitivity and Specificity

The survey results are interpreted by taking a majority vote of all partic-

ipants. The dataset is imbalanced, containing more samples with seizures

than not. Sensitivity (a measure of true positive rate) and specificity (a

measure of false positive rate) will be used instead to measure performance

better. Equations (4.1) and (4.2) show the respective formulas.

Sensitivity =
True Positives

True Positives + False Negatives
(4.1)

Specificity =
True Negatives

True Negatives + False Positives
(4.2)

4.5.4.2 Variance

Variance is a measure of the spread or dispersion of a data set and is used

to show the spread of each participant’s performance. It is calculated as the

average squared deviation of each data point from the data set’s mean. A

significant variance indicates that the data points are spread out over a wide

range, while a small variance indicates that the data points are concentrated

closer to the mean. It is useful for understanding data distribution and
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comparing different data sets’ dispersion. The formula for variance, σ2, is

given in Equation (4.3), where x is a data point, µ is the mean of the data

set, and N is the number of data points in the set.

σ2 =

∑
(X − µ)2

N
(4.3)

4.5.4.3 Binary Cross Entropy Loss

Binary Cross Entropy (BCE) is commonly used to measure the loss of model

predictions in binary classification problems (Ruby and Yendapalli, 2020).

It measures dissimilarities between predictions and labels. It is given by

the formula:

BCE = − 1

N

N∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi ) (4.4)

Where yi is the label and ŷi is the maximum probability of a seizure occur-

ring in any channel, ch, at the time, t:

ŷi = max
t

{AI[t]} = max
t

{
max
ch

{AI[ch, t]}
}

(4.5)

4.5.4.4 Cohen’s Kappa

The Kappa statistic is used to measure the inter-rater agreement level be-

tween annotators (McHugh, 2012). For this work, the raters are the ma-

jority vote from the survey participants. Specifically, when measuring re-

liability amongst two annotators, Cohen’s Kappa is used. A score of 1

indicates perfect agreement, while a score of -1 indicates perfect disagree-

ment. The Kappa statistic is defined by the probability of agreement, p,
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and the probability of agreement by chance, pe:

κ =
p− pe
1− pe

(4.6)

And SDκ is calculated as:

SDκ =

√
p(1− p)

(1− pe)
2 (4.7)

The confidence interval can be calculated with the following expression:

CI(α) = κ± ZS(n, α) ·
SDκ√

n
(4.8)

Where ZS(n, α) is the z score for n = 79 patients and α is the estimation

error for a 95% confidence interval (=0.05).

To compare agreement levels between different sets of raters, it is necessary

to measure the statistical significance to ensure that the two kappa scores

are similar. The t statistic is used to compare distributions with the Kappa

means and variance. When both distributions have the same number of

samples, the t statistic is given by:

t =
κ1 − κ2√
SD2

κ1
+SD2

κ2

n

(4.9)

Where κi and SDκi
are the mean and SDs of the ith distribution, and n is

the number of samples. The p-value is calculated from the t statistic using

the inverse of the cumulative density function.
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4.5.4.5 Area Under the Curve (AUC)

AUC is commonly used to measure a models predictive power based on

the ability of the probabilistic output to measure how separable two classes

in a binary classifier are. The classification threshold is varied between 0

and 1 and the sensitivity and specificity metric are calculated. Plotting the

sensitivities and specificities gives the ROC curve.

In this work it is used to measure the discriminating power of different

features on classifications from the surveys. When used in this way it can be

interpreted similarly to a correlation metric. A value close to one indicates

the feature was highly correlated with the associated outcomes, while an

AUC close to 0.5 indicates no correlation.

4.6 Average Processing Time Results

The average processing time was measured to obtain a consistent measure

of the improvements of overall execution time after the algorithms modifi-

cations. Results are shown in Table 4.1.

Figure 4.5 shows the APT of each function as a percentage of the cor-

responding function in the original. It gives a visual illustration of the

individual contribution of each function to the overall speedup. AI Post

Processing was unaffected, while the Limiting APT decreased more than

200 times. Overall, the lightweight algorithm is an order of magnitude

faster than the original. This speedup proportionally decreases energy con-

sumption and drastically increases the system’s responsiveness. The 13.3x
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Table 4.1: Average processing time for 1 hour of EEG with both algorithms on

the Raspberry Pi 3b+

Function Original (s) Lightweight(s)

ECG Removal 3.41 -

Mixer 0.58 0.37

AI Post Processing 0.29 0.29

Spectral Subtraction 9.84 -

Attenuation 0.99 0.11

Vocoder 12.09 1.44

Limiting 2.41 0.01

Total: 29.62 2.23

decrease in APT is due to data compression and simplifications.

4.7 Survey

The survey results are interpreted using the previously defined statistical

measures in terms of agreement and absolute performance. The answers of

the 7 participants were combined by means of a majority vote and compared

to the expert’s annotations.

4.7.1 Survey Results

Table 4.2 shows the confusion matrix calculated using this methodology for

both surveys. The confusion matrix presents the actual number of seizures

and non-seizures vs the predicted quantities, hence showing the number of

True Positives, False Positives, True Negatives and False Negatives.

The sensitivity and specificity are derived from the confusion matrix for

each algorithm are presented in Table 4.3. The lightweight and original
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Figure 4.5: APT of corresponding functions in the original and lightweight algo-

rithm normalised to respective function’s original APT

Table 4.2: Confusion matrix of survey results for both the lightweight and original

algorithm

Predicted

Original Lightweight

Seizure Non-Seizure Seizure Non-Seizure

A
ct
u
a
l

Seizure 40 6 40 6

Non-Seizure 6 27 5 28
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algorithms show the same sensitivity, while the lightweight algorithm shows

an improved specificity. This difference in specificity is due to a single

additional false positive by the original algorithm.

Table 4.3: Specificity and Sensitivity results from survey

Original Lightweight

Sensitivity 0.870 0.870

Specificity 0.818 0.848

Table 4.4 shows results on an individual basis. In contrast to the majority

voting results, the average specificity of the lightweight algorithm is lower

than the original but has a significantly higher variance. Majority voting

compensates for the variance and causes an increase in performance.

Some interesting trends arise from survey stratification. Both groups A

(participants P1-P3) and B (participants P4-P7) achieved a higher individ-

ual sensitivity in the second survey they completed. Sensitivity is a more

critical measure when it comes to seizure detection. It measures the pro-

portions of annotated seizures correctly detected in the survey. In turn,

the second survey each participant completes presents a decrease in their

individual specificity.

Kappa values are calculated and plotted with confidence intervals to make

comparisons in the agreement between annotators and the algorithms. There

is no statistically significant disagreement between annotators and the orig-

inal algorithm, and annotators and the lightweight as the p-value is calcu-

lated as 0.223.
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Figure 4.6: Cohen’s Kappa with 95% confidence interval
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Table 4.4: Individual participant sensitivity and specificity with variances from

survey

Original Lightweight

Sensitivity Specificity Sensitivity Specificity

P1 0.870 0.757 0.717 1.000

P2 0.935 0.666 0.760 0.970

P3 0.891 0.696 0.826 0.848

P4 0.81 0.576 0.870 0.758

P5 0.717 0.848 0.804 0.697

P6 0.760 0.970 0.891 0.454

P7 0.739 0.848 0.869 0.606

Average ± Vari-

ance

0.829 ± 0.008 0.766 ± 0.018 0.820 ± 0.004 0.762 ± 0.038

4.7.2 Error Analysis

Although performance is shown to be similar for both algorithms, the par-

ticipants interpreted the output for 9 of the recordings differently (2 of

which contained seizures).

The Cohen Kappa score measures the agreement level between algorithms

as 0.767. Where a kappa score between 0.61 and 0.8 indicate substantial

agreement.

To analyse the causes of disagreement, features are extracted from EEG

segments the algorithms and disagreed on. The chosen features are the

Binary Cross Entropy of the AI predictions, the number of annotators who

disagreed and the certainty of decision for both algorithms calculated. The

AUC or discriminating power of each feature is given in Table 4.5. The cer-

tainty is measured by the fraction of votes past the decision threshold. This
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metric’s max value is 0.5 (representing total confidence), and the minimum

is 0 (representing an even split of votes). The power of these features to

discriminate between the classifications the algorithms agreed (70 patients)

and disagreed on (9 patients) is measured using AUC. The leading cause of

disagreement between the surveys is a high degree of uncertainty amongst

participants (an AUC of 0.902 and 0.865 for the lightweight and original

algorithms).

Table 4.5: Average ± CI95 for annotator disagreement, Binary Cross Entropy

(BCE) of AI predictions and the certainty of decisions for the recordings the algo-

rithms agreed and disagreed on. The final row shows the AUC score, a measure of

each metric’s discriminating power

Disagreement BCE LW Certainty Original Certainty

Agreed (n=70) 0.2 ± 0.104 0.260 ± 0.0411 0.414 ± 0.0319 0.410 ± 0.0329

Disagreed (n=9) 0.556 ± 0.405 0.449 ± 0.183 0.119 ± 0.109 0.198 ± 0.102

AUC 0.681 0 .735 0.902 0.865

4.8 Discussion

EEG monitoring is the gold standard for assessing a patient’s brain health.

It is non-invasive, and its use in neonatal encephalopathy is widespread

(Pisani and Pavlidis, 2018). The necessary interpretation expertise is often

unavailable in clinical settings (Boylan et al., 2010). Even where there are

onsite expert clinicians, expertise is not available 24/7. These problems

are exacerbated in the developing world (Haider and Bhutta, 2006). With-

out the relevant expertise, healthcare professionals use aEEG (simplified

EEG) or clinical signs for seizure detection. These alternative interpreta-

tion methods contain limited information and lead to missed seizures (Hell-
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ström-Westas et al., 2006; Murray et al., 2008; Rennie et al., 2004; Zhang

et al., 2011).

Even when sufficient expertise is available, timely treatment is critical to

preventing long-term damage due to encephalopathy. (Pavel et al., 2022)

studies the effects of varying treatments on neonatal seizures. Only 17 %

of the babies who received medication had received it within 1 hour of a

seizure occurring. It was shown that babies who received treatment within

an hour had a lower seizure burden after treatment than those who received

treatment outside this window.

Due to the widespread need for timely care, upskilling healthcare profession-

als in asphyxia treatment has been ranked as the second highest research

priority for improving newborn health and birth outcomes by 2025 (Yoshida

et al., 2016).

To overcome obstacles in detection, the original sonification algorithm was

proposed. It enabled a human listener to classify EEG recordings as seizure/non-

seizures with the same proficiency as expert doctors with virtually no train-

ing. It improved over previous sonification methodologies as it possessed

a variable time compression factor, enabling high temporal compression

without missing short seizures (Gomez-Quintana et al., 2022).

The technology needed to be made amenable for implementation on an

edge device to make this process pervasive in EEG monitoring. An edge

implementation allows the cotside analysis of sonified EEG. Using low-cost

hardware in resource-constrained environments where the necessary exper-
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tise is scarce is particularly advantageous. A lightweight version of the

algorithm was developed to these ends. The following subsections deeply

analyse the disagreement between the algorithms and their causes, along

with changes in execution time and the limitations of the presented work.

4.8.1 Execution Time

The execution time of the lightweight algorithm is 13.3x faster than that

of the original. This performance increase is due to decreased data at each

point in the algorithm and, in some cases altering functions to be more

amenable for execution on an edge device. The average wait time for a

medic to sonify 1 hour of EEG is now 2.23 seconds. Since 1 hour of EEG

is compressed to 5 seconds of audio on average, the processing time is less

than half of the review time. The wait time is now deemed acceptable to

put into clinical practice.

Compared to the first implementation presented in the previous chapter,

the lightweight algorithm is 183.4x faster. Figure 4.7 visually shows the

improvements in execution time due to algorithmic changes discussed in

the current and previous chapter.

4.8.2 Algorithm Performance

The algorithm’s performance is measured in absolute terms using sensitivity

and specificity. Both algorithms have a higher sensitivity than specificity.

Sensitivity is more important in clinical practice as the risk of unnecessary

treatment associated with false positives is less severe than the risk of death
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Figure 4.7: Average Processing Time shown for each Optimisation

associated with missed seizures. The sensitivity and specificity are high for

both algorithms and are in line with what was previously reported.

The surveys were stratified to ensure a fair evaluation of the two algorithms.

All participants achieved a higher sensitivity in the second survey. The in-

crease in detected seizures shows participants become more tuned to the

sounds of seizures over time. Although the increase in sensitivity is ac-

companied by a decrease in specificity, sensitivity is more important in the

medical domain making this change desirable.

The algorithm’s performance is also measured in terms of the agreement be-

tween the lightweight, original and annotators. All the Kappa’s are greater

than 0.6 and indicate substantial agreement. The highest agreement level

was between the lightweight and original algorithms. This was expected
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and indicates no fundamental change in the sonification algorithm, as the

core vocoder block was unchanged. The p-value comparing the distribu-

tion between annotators and the lightweight, and the annotators and the

original algorithm shows no statistically significant difference in agreement

between the two algorithms and the ground truth.

4.8.3 Error Analysis

Table 4.5 shows that disagreement between annotators contributes to dif-

fering classifications in the two surveys, with an AUC of 0.681. When the

algorithms disagreed, often the annotators did too. This implies that some

disagreement is due to the subjective nature of the ground truth. On av-

erage, at least one annotator would consider the output of both algorithms

correct.

The algorithm’s disagreement is also a function of the FCNN’s performance.

The AI’s performance was measured using binary cross entropy. With an

AUC of 0.735, when the AI performance is low there is an increase in the

disagreement between the two algorithms.

The most significant factor in differing classifications is the certainty among

survey participants, with AUCs of 0.902 and 0.865 for the lightweight and

original algorithms, respectively. The relatively poor performance in the

areas mentioned above likely contributed to the uncertainty. The low deci-

sion certainty for these nine samples indicates they are difficult to classify

using the existing algorithms and that the lightweight algorithm improved

on the specificity of the original by chance.
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4.8.4 Survey Limitations

The major limitation of this survey is the small number of participants

involved (n = 7). A majority vote is taken to reduce variance due to the

small number of participants. Additionally, the end goal of the project is to

be used by medical personnel but the 7 participants are from non-clinical

backgrounds and may not fully understand the condition they are trying

to diagnose. The previously conducted survey showed that clinical and

non-clinical participants perform at different operating points in terms of

sensitivity and specificity. Further work must be carried out to guarantee

the performance of the lightweight algorithm on a clinical cohort.

The survey is conducted using the publicly available Helsinki dataset, con-

sisting of 79 EEG recordings 1-2 hours long. The use of a public dataset

is beneficial as it allows results to be easily reproduced. However, it comes

with some limitations. The dataset is curated, and further research must be

conducted to test the solution in a real clinical setting. Audio generation is

also not tested for long EEG (>2 hours), which may be required in clinical

practice.

A notable change in the lightweight algorithm is the absence of the ECG

removal function. A comparative survey must also be completed on other

datasets to ensure performance is not only maintained because there are

low levels of ECG interference present in this dataset.

Survey participants’ performance is expected to increase with practice.

So although participants’ initial performance was similar, it is uncertain
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whether this holds for the upper bound of performance after participants

undergo extensive training.

4.8.5 Survey Availability

The surveys used for both implementations, along with the entire database

of generated audio files, are available at the following links:

Original: https://sergigomezquintana.github.io/EEGsoundSurvey/

Lightweight: https://feargalos.github.io/

4.9 Conclusion

To further decrease the execution time of the algorithm, a lightweight ver-

sion was proposed. Improvements were made by exploiting existing data

compression in the vocoder and mixing the channels. The role of each func-

tion was examined, and some were optimised by using alternative methods

or removed if deemed not performance critical. The changes in the algo-

rithm resulted in a 13.3x decrease in execution time. The average processing

time to sonify 1 hour of EEG is now 2.23 seconds.

A survey was carried out comparing the performance of the two algorithms.

Results were similar, showing a sensitivity and specificity 0.870 and 0.848,

respectively, for the lightweight algorithm and 0.870 and 0.818 for the orig-

inal. The level of agreement between both algorithms and the ground truth

annotations was measured using Cohen’s Kappa. It was shown there is no

statistically significant disagreement as the p-value between the two Kappas

was 0.223 (>0.05). The Kappa score between the two algorithms is 0.767,
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indicating substantial agreement. The causes of disagreement between the

two algorithms were investigated using AUC. Uncertainty was the most

significant factor when comparing files the algorithms agreed and disagreed

on. The AUC for uncertainty is 0.902 for the lightweight and 0.865 for

the original. The high level of uncertainty among patients the algorithms

disagreed on implies that the lightweight algorithm’s improved specificity

was obtained by chance.

The improvement in APT is significant and makes the algorithm more us-

able in a clinical setting. Making the algorithm amenable for edge de-

ployment enables pervasive cheap, cotside EEG monitoring for neonates.

Improvements in monitoring lead to an improved standard of care and the

potential for decreased morbidity rates.
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5

Low Precision CNN Inference

In the previous chapters, a neural network is used to achieve variable com-

pression during sonification. AI inference is fundamental to the algorithm,

and the network must be optimised to run on an edge device to decrease

the memory and computational resources required. Large neural networks

with many parameters are used to learn complex patterns and achieve high-

performing models. The network’s size presents a difficulty when deploying

models on resource-constrained devices where memory is scarce and often

only low-precision operations are available. The research area focused on

deploying machine learning to the edge is known as Tiny ML. The idea is to

decrease the number of bits used to represent the network (Quantisation)

and remove unnecessary weights (Pruning) to allow faster low-memory in-

ference. This chapter investigates the feasibility of operating the network

at lower precision levels.
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5.1 TensorFlow Ecosystem

The TensorFlow ecosystem is an open-source framework developed by Google

for training, optimising and deploying models. TensorFlow can be used on

machines with high computational power (servers, desktops). TensorFlow

Lite compresses and optimises neural networks trained with TensorFlow for

deployment on mobile devices (TensorFlow, 2022a). The optimised model

can be deployed using TensorFlow Lite Micro on bare metal microcontrollers

with C++ (David et al., 2021) (Figure 5.1).

This work optimised a model trained using TensorFlow in (Daly et al., 2021)

using quantisation in TensorFlow lite.

Figure 5.1: Tensorflow Ecosystem

5.2 Quantisation

Quantisation is a common optimisation technique applied to reduce the pre-

cision of a model’s weights to reduce the model’s size and computational re-

quirements. It is the process of mapping a large range of values to a smaller

one. Quantisation error is defined as the finite error in the value mapping

between the original and smaller range. As well as for model optimisation,

quantisation is widely used in signal processing and data compression. The

quantisation process and the resultant error are shown in Figure 5.2 from
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the digital sampling of an analogue signal. The same principle applies to

quantising neural network weights.

The neural network weights are stored by default as 32-bit floating point

numbers when the network is trained. The network size and inference time

can be improved by representing weights as 8 or 16-bit integers. The small-

est possible datatype in C is an 8-bit integer. Moreover, TensorFlow Lite is

the framework used for quantisation in this work, and it supports 8-bit inte-

gers as the maximum quantisation. Although some weight-sharing schemes

have been proposed, where two weights are stored in the same integer ad-

dress, to deploy models at even lower precisions, the minimum precision

considered in this work is 8 bits.

Although it is advantageous to quantise the weights for the execution on the

Raspberry Pi, to move onto smaller, more energy-efficient microcontrollers,

it may become a necessity. The limitation occurs because some CPUs and

Neural Processing units (NPU) cannot make computations on 32-bit rep-

resentations. Although 32 bit NPUs exist they are not common, as these

chips are often meant for ultra-low power computing where lower precision

operations offer memory and speed advantages.

5.2.1 Post-Training Quantisation

Post-training quantisation directly converts a model’s weights to a lower

precision without altering the training process. It is convenient. However,

the resultant quantisation error can be high.

Quantisation can be used after training to represent a model’s weights using
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Figure 5.2: The continuous analogue signal 5Tanh(x), where x ∈ [0, 10000], and

the discrete quantised version. The y-axis is given in base-2 format. The bottom

graph shows the associated quantisation error
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8-bit integer two’s complement representation in the range [-128, 127]. The

zero point is set to zero or any number between [-128, 127]. The scale is cal-

culated using a representative dataset containing a few hundred randomly

selected unlabelled input data points to calibrate the quantisation (Jacob

et al., 2018). Figure 5.3 shows an example mapping.

Figure 5.3: Float 32 to Int 8 Quantisation Mapping

The relationship can be expressed mathematically as:

float value = ( int value − zero point )× scale (5.1)

5.2.1.1 Full Integer

Full integer quantisation forces all operations and weights to either 16 or

8-bit weights. For example, in an 8-bit quantisation scheme, weights and

activations are quantised to 8-bit integers, and only integer operations are

used. For some embedded platforms, it is necessary to use this form of

quantisation (TensorFlow, 2022c).

5.2.1.2 8-bit weights with 16-bit Activations

This is a special case of mixed precision full integer quantisation. When

the quantisation error is due to the activations alone, this quantisation
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type can significantly improve a quantised model’s accuracy without a sig-

nificant increase in model size. It is beneficial when the activation functions

are sensitive to quantisation. It is an experimental framework created by

Tensorflow, and its kernel operations are not yet optimised. As such, in-

ference runs noticeably slower than the full 8-bit integer quantisation on a

CPU (TensorFlow, 2022b).

5.2.1.3 Dynamic-Range Quantisation

This type of quantisation dynamically de-quantises activations during in-

ference and yields minimal performance loss. Because the activations are

floating point, they can not be used in integer-only hardware like an NPU.

5.2.2 Quantisation Aware Training

Steps can be taken to reduce quantisation errors as part of the training

process (Jacob et al., 2018). In quantise aware training, low precision op-

erations are simulated during forward propagation, while backward propa-

gation is unchanged.

5.3 Preproccessing

The raw EEG signal is filtered using a 0.5 to 12.8 Hz band pass filter.

Seizures are not expected to occur outside this range. Immediately after

filtering, the signal is downsampled from 256 Hz to 32 Hz. The AI’s pre-

processing stage is identical to that of the sonification algorithm. Figure

5.4 illustrates the preprocessing signal flow as a block diagram.
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Figure 5.4: Block diagram of preproccessing stages

5.4 Fully Convolutional Neural Network (FCNN)

The AI probabilities used for the survey were generated using the FCNN

developed in (O’Shea et al., 2020). The current state of the art has since

been improved in (Daly et al., 2021), where an AUC of 96.4 % was achieved

on the Helsinki database (Stevenson et al., 2019), which constitutes a 0.8 %

improvement over the previous model. The architecture of the two models is

fundamentally the same. However, residual connections are added to obtain

a deeper model. The state-of-the-art model is optimised for deployment in

this work. The changes in architecture from the two networks are studied.

Generally speaking, FCNN is advantageous over a traditional CNN as it

contains fewer parameters than a network with fully connected layers, mak-

ing training and inference easier. Residual connections mitigate the effect

of a vanishing gradient problem to allow for a deeper network (He et al.,

2015). Additionally, the input can be of any size because there are no

fully connected layers. This makes for easier deployment as the number of

channels varies greatly.

5.4.1 Residual Connections

Residual connections allow the network to learn a mapping between the

block’s input and output. They are advantageous because they increase
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the maximum network depth before performance is limited by the vanishing

gradient problem. For FCNNs, an increase in network depth increases the

receptive field and the effective input size, which corresponds to an increase

in performance.

5.4.2 Feature Extraction Blocks

Feature extraction blocks consist of 3 convolutional layers with a Rectified

Linear Unit (ReLU) activation function and average pooling.

The convolutional layers extract meaningful patterns from the EEG signal

while maintaining the spatial relationship in the waveform. A 2D convo-

lution is applied with a 1D kernel with all N-channels of the EEG. The

1D kernel processes each channel individually. A ReLU activation function

is applied, which enables the neural network to learn non-linear patterns.

Average pooling is used to reduce the dimensionality of the outputted fea-

ture maps. These blocks, shown visually in Figure 5.5, can be stacked to

maximise the network’s performance.

5.4.3 Classification Block

The other block used in the network is the classification block (Figure 5.6).

The network is fully convolutional and, as such, has no fully connected layer

to make a classification. Instead, the patterns extracted by the convolutions

are classified using a global pooling layer. Average pooling reduces dimen-

sionality across time, and max pooling reduces dimensionality across the

channels to find the channel with the most ’seizureness’. All channels are

processed individually, and the channel most closely resembling a seizure is

80



5.4 Fully Convolutional Neural Network (FCNN)

Figure 5.5: Feature Extraction Block of CNN

then taken to make a classification. Loss is calculated against the max prob-

ability of seizure, and weak labels can be used to train the network. Weak

labels, in this case, are annotations that specify when a seizure occurs but

not in what channel. There is much more data available with weak labels

than strong ones. The network’s ability to train on more data contributed

to its state-of-the-art performance.

After global pooling, the softmax function converts the output into a proba-

bility. Since average and max pooling are used for classification, the network

can operate on any input length with any number of channels. However, in-

creasing the window length affects the receptive field, which in turn affects

performance.

This block is placed at the end of the network and only occurs once.
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Figure 5.6: Final Classification Block of FCNN

5.4.4 Network Comparison

The network optimised in this chapter has three extra convolutional layers

compared with the network used to generate probabilities in the previous

chapters. The increase in depth corresponds to an increase in performance.

The difference is shown visually in Figure 5.7.

5.5 Training Procedure

The network is finetuned using quantise aware training from the weights

of the best previously performing model to reduce quantisation error. The

original model was trained on a proprietary dataset not available to the au-

thor of this work. The network has to be retrained on the Helsinki dataset

to obtain a baseline to get a fair measure of performance loss. Details on

finetuning follow, but the sole goal of this retraining is to decrease quanti-

sation error, not absolute performance. So no innovations are presented in

terms of the network architecture.
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Figure 5.7: Comparison of both FCNN architectures
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5.5.1 K Fold Cross Validation

Patient-independent K-fold cross-validation is used to measure model per-

formance. K is selected as 5 for these experiments. The patients are divided

into five groups (each containing approximately 20 % of the data). One fold

is used for testing, while the others are used for training. The test fold is

alternated until all folds are used for the test set. No data from any baby

is used simultaneously in training and testing. This simulates the clini-

cal scenario where patient generalisation is key and evaluates the model’s

patient-independent performance (Saeb et al., 2016).

Figure 5.8: Illustration of alternating test fold

5.5.2 Optimiser

RAdam (Rectified Adam) is used as an optimiser. This is similar to Adam

but accounts for variance in the adaptive learning rates early in the learning

process (Liu et al., 2019).
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5.5.3 Loss

Binary cross entropy, or log loss (as defined in Equation (4.4)), is used

to measure loss. The function is widely used for classification problems.

The parameters are then updated through backpropagation to minimise

the loss calculated from the maximum predicted probability of seizure in

all channels. The network works on weak labels, where annotations are not

channel specific, so the loss is calculated based on the max probability of

seizure in any channel.

5.5.4 Data Augmentation

To reduce generalisation error, data augmentation is used. Vertical, hori-

zontal, and magnitude scaling are randomly applied. Cutmix and mixup

are also applied. Cutmix is when part of the windowed EEG is swapped

out with another section of EEG which can be taken for any patient in the

dataset or either class. If segments from different classes are combined, the

labels are mixed in the ratio of the segements. Mixup is similar except the

two different segments are linearly combined to form a new segment. The

labels are mixed in the same ratio.

5.6 AUC

The metric used to measure the performance of the neural networks is

the Area Under the Curve (AUC) calculated from the Receiver Operating

Characteristic (ROC). The ROC plots the sensitivity against specificity at

different decision thresholds for the model’s probabilistic output (Bradley,
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1997). AUC is advantageous over accuracy for imbalanced datasets where

accuracy may give misleading results. For example, a model performing well

on the majority class will have high accuracy, even if it performs poorly on

the minority class (Huang and Ling, 2005). Seizures are rare events, and a

model producing many false negatives (missing seizures) will still possess a

high accuracy.

Sensitivity =
True Positives

True Positives + False Negatives
(5.2)

Specificity =
True Negatives

True Negatives + False Positives
(5.3)

The perfect model would score an AUC = 1, giving a right angle in the

ROC. The worst obtainable score is an AUC = 0.5, meaning the classifier

has no predictive power and is the equivalent of tossing a coin to detect

seizures. The worst model would yield a ROC consisting of a straight line,

from the top left corner to the bottom right corner of the graph. An example

ROC curve is shown in Figure 5.9.

5.7 Results

The results reported in (Daly et al., 2021) are generated by taking an en-

semble of three sets of weights from different training rounds. The ensemble

achieves 0.11 % better than the best-performing single model. For imple-

mentation, the best-performing model is taken as the ensemble’s marginal

increase in performance is not justified by the three-fold increase in infer-

ence time. The new baseline performance is an AUC of 96.32 %. The results
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Figure 5.9: Example Receiver Operating Characteristic curve and the correspond-

ing AUC. The worst case scenario, AUC = 0.5, is also shown
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of each quantisation level are presented in Table 5.1. The quantisation er-

ror for the post-training quantisation results is reported as the fall in AUC

score according to this baseline, while the performance loss of the quantise

aware method is measured relative to the Helsinki Baseline.

Table 5.1: Results for varying levels of precision and quantisation methods

AUC (%) Error (%)

Baseline 96.32 -

Dynamic 96.29 0.03

Int 8x16 96.38 -0.06

PT Full Integer 63.88 32.44

Helsinki Baseline 96.61 -

QA Full Integer 88.84 7.77

5.8 Discussion

Some models are more suited to quantisation than others, and this model

seems to quantise well up to a point.

The model performance after the dynamic quantisation is almost identi-

cal to the baseline. It uses floating-point fallback, so although it enables

some model compression and faster inference, it cannot run on integer-only

hardware. This limits its potential for implementation

Full integer quantisation at 8-bit precision significantly reduced AUC from

96.32 % to 63.88 %. The quantisation error of 32.44 % is unacceptable. Int

8 weights, with int 16 activations, were investigated as an alternative. This

type of quantisation led to no loss in performance. The biggest source of

error was found to be from the Batch Normalisation Layers. TF Lite treats
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Batch Normalisation as an activation function, and quantisation error is

significantly reduced at the higher precision level. Although the kernels

are not currently optimised for general CPUs, specialised hardware like the

Arm Ethos U55 chip can run this model efficiently (Arm, 2022).

Despite the potential for quantising a model with 16-bit activations, mi-

crocontrollers with NPUs are more widely available for full 8-bit quantised

networks. To reduce quantisation error, quantise aware training was used

on the Helsinki dataset. The performance of the 8-bit quantised model was

88.84 %, a fall in AUC of 7.77 % compared to the Helsinki baseline. Al-

though the quantisation error was decreased by a factor of 4.2, the fall in

AUC is still unacceptable.

The algorithm’s performance has been shown to rely on the CNNs perfor-

mance (Gomez-Quintana et al., 2022). Therefore, a fall in AUC will directly

affect the sonification algorithm’s classification performance. The network

should be quantised to 16 bits to ensure performance is unaffected while

minimising memory and inference time.

5.9 Conclusions

The Fully Convolutional Neural Network enables variable compression dur-

ing sonification and is optimised for size. As inference is a key part of the

sonification algorithm, a range of quantisation schemes are investigated to

achieve a high level of optimisation. The network can be quantised to 16-

bit activations with 8-bit weights allowing full integer operations with no

loss in performance. Quantising the model opens up the potential for a
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future ultra-low power embedded systems implementation and integration

with highly-specialised integer-only hardware.
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Conclusions and Future

Directions

The brain is a person’s essential control centre and is vulnerable in the early

stages of life. Health complications in the first few years of life can cause

permanent disability. Asphyxia after birth usually presents in the form of

seizures. Detecting these seizures is a challenging clinical task. Since only

ten per cent of neonatal seizures show clinical signs, EEG must be used to

monitor brain health. Visual EEG analysis is the current gold standard,

but it is challenging to interpret and requires a highly skilled neurologist to

make diagnoses. Even when expertise is available, it is not available round

the clock, nor is it trivial to treat a patient promptly due to the time taken

to make a diagnosis. These problems are made worse in disadvantaged

communities. Solutions for automating EEG interpretation using AI alone

have been proposed. However, these models must choose between explain-

ability and performance (deep learning vs traditional machine learning),

but all options push the human out of the decision-making loop. Sonifica-
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tion is advantageous as it keeps a human involved in the decision process.

This thesis focused on deploying an AI-assisted sonification algorithm on an

edge device. The algorithm combines the absolute performance of a CNN

while adding interpretability from the sonification element. Pushing this

algorithm onto an edge device makes it available cheaply to underfunded

communities where it is needed most.

The algorithm was first implemented on a Raspberry Pi 3B+ with Python.

The average time to sonify 1 hour of EEG was 409.1 seconds. It was seen

that the ’ECG Removal’ function was a bottleneck to performance. It was

optimised by changing slow iterative calculations to fast parallel matrix

operations. The average processing time to sonify 1 hour of EEG then de-

creased to 245.6 seconds. Finally, the signal was downsampled early in the

sonification process because the frequency content of seizures is generally

less than 13 Hz, so processing at the original sampling rate of 256 Hz is re-

dundant. This decreased the average processing time to 29.6 seconds. This

represents a 13.8x reduction in execution time from the first implementa-

tion of the algorithm. The spectral output was compared, and it was shown

after optimisations that the algorithm produced nearly identical outputs.

From these results, it was concluded that this version of the algorithm was

not amenable to an edge implementation. On average, processing time was

6 times longer than review time, making the algorithm unusable in the real

world. To improve execution time, more drastic changes needed to be made

to the algorithm. Data compression existed in the algorithm already but

was not yet exploited to improve processing time. It was utilised by reorder-
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ing the blocks of the algorithm. The mixer and phase vocoder reduce data

using channel reduction and temporal compression, reducing the number

of EEG samples to be processed by each proceeding stage. The execution

time of each function was analysed, and their contribution to the algorithm

was qualitatively assessed in comparison. In cases where the execution time

outweighs the function’s value, a suitable alternative was implemented in-

stead. And in some cases, the functions were removed. The fundamental

structure of the algorithm was changed, and the performance had to be

evaluated by means of a survey. The survey showed no statistical signifi-

cance in the performance of the two algorithms. The algorithms produced

different classifications for 9 of the 79 audio files in the survey. The underly-

ing causes of these misclassifications were examined by looking at different

features AUC between the files the algorithms agreed and disagreed on.

Although disagreement between annotators (68.1 %) and AI performance

(73.5 %) played a role, the biggest contributor was found to be uncertainty

among survey participants (90.2 % for the lightweight and 86.5 % for the

original). This suggests underlying performance was unaffected, and any

disagreement between algorithms was due to uncertainty and chance. This

further confirms the performance of the lightweight algorithm.

The changes resulted in a 13.3x reduction in execution time. Compared to

the first implementation of the algorithm, the lightweight version is 183.4x

faster. The average wait time is now acceptably low for adoption in a

clinical setting.

The CNN used in the sonification algorithm is optimised for deployment
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on an edge device. The model’s weights are quantised to 8 bits while the

activation is quantised to 16-bit integers without any loss of performance.

The model was retrained using quantise aware training in an attempt to

fully quantise the model to 8 bits. The loss in performance was still too

large. The mixed precision 8 and 16 bit model is still able to run on integer-

only hardware and opens up future possibilities to put the network on an

NPU.

Although work has been carried out moving this algorithm to the edge, an

implementation in C/C++ would be faster and more power efficient than

in Python. Specialised hardware, such as a dedicated DSP processor and a

Neural Processing Unit, could be used to decrease execution time further.
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