

Title	Using high-density mutagenesis to identify the genetic requirements for the growth of Escherichia coli
Authors	Buttimer, Finbarr James
Publication date	2019
Original Citation	Buttimer, F. J. 2019. Using high-density mutagenesis to identify the genetic requirements for the growth of Escherichia coli. PhD Thesis, University College Cork.
Type of publication	Doctoral thesis
Rights	© 2019, Finbarr James Buttimer http://creativecommons.org/ licenses/by-nc-nd/3.0/
Download date	2024-04-25 12:37:22
Item downloaded from	https://hdl.handle.net/10468/8373

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

UCC Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

Using high-density mutagenesis to identify the genetic requirements for the growth of *Escherichia coli*

Finbarr James Buttimer, B.Sc

A thesis submitted for the degree of Doctor of Philosophy

> National University of Ireland, Cork, School of Microbiology, March 2019

Head of Department: Prof. Gerald Fitzgerald Supervisor: Dr. David Clarke

Table of Contents

Table of Figures	7
List of Tables	9
Declaration	11
Acknowledgements	12
List of abbreviations	15
Abstract	17
Chapter 1 Introduction	18
1.1. Escherichia coli: role in gut health and disease	19
1.1.1. Biology and population structure	19
1.1.2. Pathogenic and commensal <i>E. coli</i>	22
1.2. Colonisation of the gastrointestinal tract by <i>E. coli</i>	
1.2.1. Survival within the mouth, oesophagus, and gastric juice	30
1.2.2. The duodenum and bile resistance	34
1.2.2.1. The duodenum	34
1.2.2.2. <i>E. coli</i> growth in the presence of bile	
1.2.3. Colonisation and growth within the intestine	43
1.2.3.1. <i>E. coli</i> attachment and growth	43
1.2.3.2. Nutrient availability and the Restaurant Hypothesis	
1.2.3.3. E. coli adapation to changes in the intestine: nitrate	respiration
and gut inflammation	50
1.3. Functional genomics and transposon sequencing	55
1.3.1. Functional genomics	55
1.3.2. Transposon sequencing	56

1.3.3. TraDIS studies of <i>E. coli</i>	63
1.4. Objectives of this study	67

Chapter 2 Materials and Methods	68
2.1. Strains and growth conditions	69
2.2. Transposon mutant library construction	71
2.2.1. Preparation of electrocompetent <i>E. coli</i>	71
2.2.2. Transposon mutagenesis	71
2.2.3. Base library	73
2.3. Transposon library screening	73
2.3.1. Assay for growth in the presence of bile	73
2.3.2. Assay for anaerobic growth in the presence of nitrate	74
2.4. TraDIS	75
2.4.1. DNA preparation and shearing	77
2.4.2. AMPure XP cleanup	78
2.4.3. End-repair, dA-tailing, adaptor ligation	79
2.4.3.1. End-repair	79
2.4.3.2. dA-tailing	79
2.4.3.3. Adaptor ligation	80
2.4.4. Bead-based size selection and PCR enrichment of adaptor-	ligated
DNA	82
2.4.4.1. Bead-based size selection	82
2.4.4.2. Enrichment of adaptor-ligated DNA by PCR	82
2.4.5. qPCR	83
2.4.6. Illumina sequencing	
2.5. TraDIS data analysis	
2.5.1. Bio::TraDIS pipeline	

2.5.1.1. Appending transposon reads to Read 1	87
2.5.1.2. Assessing gene essentiality	89
2.5.2. Gene set analysis	90
2.5.3. Data visualisation	91
2.6. Validation of TraDIS and other analyses	91
2.6.1. End-point growth analysis of Keio library mutants	91
2.6.2. Competition assays	92
2.6.3. Anaerobic growth curves	93
2.6.4. Cell-free supernatant analysis	94
2.6.5. Computer software	

Chapter 3 TraDIS analysis of a pooled transposon mutant library of

<i>E. coli</i> MG165596		
Introduction	. 97	
Results and Discussion1	100	
3.1. TraDIS 1	100	
3.1.1. Sequencing results	100	
3.1.2. Functional enrichment analysis	105	
3.2. A comparative analysis of the essential genome of <i>E. coli</i> K-12 1	108	
3.2.1. Essential gene identified in all studies	110	
3.2.2. Essential genes identified uniquely by both TraDIS studies	114	
3.2.3. Essential genes identified by TraDIS uniquely in MG1655 1	117	
3.2.3.1. <i>ptsH</i> 1	118	
3.2.3.2. <i>tufA</i> and <i>tufB</i> 1	119	
3.2.3.3. <i>yciM</i> 1	120	
3.2.3.4. Prophage-associated genes	123	
3.2.3.5. SdsR	125	

3.2.4. Essential genes identified by TraDIS uniquely in BW25113	,
Conclusions	;

Chapter 4 TraDIS analysis of genetic requirements of *E. coli* growth

n the presence of bile128		
Introduction	129	
Results and Discussion	132	
4.1. TraDIS	132	
4.1.1. Sequencing results	133	
4.1.2. Genes with negative logFC values	137	
4.1.1. Genes with positive logFC values	139	
4.1.3.1. <i>dsbA</i>	140	
4.1.3.2. skp	144	
4.1.3.3. lpxM, kdsD, kdsC, lptC	147	
4.2. Comparison of end-point growth and logFCs	152	
4.2.1. Growth assay results	152	
4.2.2. Negative logFC and reduced growth	154	
4.2.3. Positive logFC and increased growth	156	
4.2.4. Mutants with no significant growth differences	157	
4.3. Comparison to <i>S. enterica</i> TraDIS	158	
4.3.1. Genes shared between <i>S. Typhi</i> and <i>E. coli</i>	160	
4.3.2. Species-specific differences	166	
Conclusions		

Introduction	172
Results and Discussion	176
5.1. Mutant library screen	176
5.2. TraDIS	182
5.2.1. Sequencing results	182
5.2.2. Essential genes and logFCs	182
5.2.3. Functional enrichment analysis	185
5.3. Gene category analysis - metabolism	187
5.3.1. Central metabolism	187
5.3.1.1. Glycolysis and pyruvate generation	190
5.3.1.2. Mixed acid fermentation	191
5.3.1.3. Acetate dissimilation	196
5.3.1.4. TCA cycle	197
5.3.2. A metabolic model informs results in TraDIS	200
5.3.3. Nitrate respiration in glucose nitrate	204
5.4. Gene category analysis - genes outside of central metabolism	208
5.4.1. Genes identified in nitrate-containing cultures	209
5.4.2. Functions unique to each growth condition	210
5.4.3. Genes with unknown function (y genes)	
	212
5.4.3.1. Y genes selected by TraDIS do not show a general growth	212
5.4.3.1. Y genes selected by TraDIS do not show a general growth defect	
	215

Chapter 6 General discussion	218
Bibliography	224
Appendix Gene lists and analyses	266

Table of Figures

Figure 1.1 Figure 1.2	Phylogenetic tree of intestinal pathogenic <i>E. coli</i> <i>E. coli</i> pathotypes and modes of interaction with intestinal enterocytes	20 24
Figure 1.3 Figure 1.4	Stresses faced by <i>E. coli</i> in different regions of the GI tract Consumption of protons during decarboxylation of a) glutamate	29 32
Figure 1.5 Figure 1.6 Figure 1.7	 and b) arginine (A) Anatomy of the gallbladder (B) Bile acid metabolism The mucosal epithelium of the (A) small intestine and (B) colon Distribution and composition of the healthy human gut microbiota 	37 44 48
Figure 1.8	The inflammatory host response creates a new niche in the intestine	51
Figure 1.9 Figure 1.10 Figure 1.11 Figure 1.12	The generation of nitrate during inflammation in the intestine An illustration of the typical transposon sequencing protocols Experimental strategy for TraDIS mutant screens Additional features identified through detailed analysis of high- resolution insertion data	53 57 61 63
Figure 2.1 Figure 2.2 Figure 2.3	TraDIS sequencing library preparation workflow TraDIS splinkerette adaptors Typical high sensitivity agilent bioanalyzer traces of DNA fragments post-ligation and post-PCR using TraDIS adaptors and primers.	76 81 81
Figure 2.4	HiSeq and MiSeq TraDIS recipes allow for 'dark' sequencing across the difficult monotemplate sequence of the transposon	86
Figure 2.5 Figure 3.1 Figure 3.2	The FASTQ file format Transposon insertions mapped to the MG1655 genome Biomodal distribution of insertion indices following TraDIS	88 102 103
Figure 3.3	analysis of the saturated mutant library constructed in MG1655 Transposon insertion plot demonstrating domain-level essentiality in the (p)ppGpp synthase/hydrolase-encoding <i>spoT</i>	105
Figure 3.4	Significantly enriched COG biological process terms in essential genes	107
Figure 3.5	Venn diagram comparing candidate essential genes for growth in LB in four different studies	109
Figure 3.6	Transposon insertion plots of genes classified as essential in PEC, Keio, and BW25113 TraDIS but not MG1655 TraDIS	111
Figure 3.7	Categories of genes unique to and shared by both TraDIS studies	115
Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12	The TCA cycle The PTS system in <i>E. coli</i> Transposon insertions in <i>tufA</i> and <i>tufB</i> Transposon insertions in <i>lapAB</i> and surrounding genes Map of the <i>E. coli</i> K-12 BW25113 genome illustrating its cryptic prophages	116 118 121 122 124
Figure 4.1	Scatterplots and R ² values of INPUT and OUTPUT replicate libraries	134
Figure 4.2 Figure 4.3	The prototypical disulfide bond (DSB)-forming system in <i>E. coli</i> (A) Transposon insertion plots of <i>dsbA</i> , <i>dsbB</i> , and <i>dsbC</i> and (B) competition assays of <i>dsbA</i> , <i>dsbB</i> , and <i>dsbC</i> whole-gene deletion mutants in strain BW25113, derived from the Keio library	141 143

- (A) Transposon insertion plots of *skp* and (B) Competition Figure 4.4 146 assay of the skp Keio whole-gene deletion mutant
- Figure 4.5 (A) Transposon insertion plots of IpxM, kdsD, kdsC, and IptC 148 and (B) Competition assay of IpxM, kdsD, and kdsC Keio whole-gene deletion mutants
- Figure 4.6 LPS transport in E. coli

- 151
- Figure 4.7 Keio library mutants whose genes displayed significant logFC 154 values in TraDIS, grouped by whether their end-point growth was significantly decreased, increased, or not changed
- Figure 4.8 Venn diagram comparing genes required for growth in bile in S. 159 Typhi and E. coli MG1655
- Figure 4.9 Transposon insertion plots of *sspA* from TraDIS conduced in 164 this study
- Figure 5.1 (A) Nitrate sensing two-component systems in *E. coli* and (B) 174 Formate dehydrogenase-to-nitrate reductase electron transfer 178
- Figure 5.2 Analysis of TraDIS culture conditions
- Functional groups shared between, and unique to, the three Figure 5.3 186 output libraries
- Figure 5.4 Central metabolism and mixed acid fermentation in glucose, 189 glucose nitrate, and glycerol nitrate
- Figure 5.5 Mixed acid fermentation with ATP and NAD⁺ generation steps 193 highlighted
- Figure 5.6 (A) Acetate assimilation and (B) transposon insertions in pta 194 and ackA in the INPUT and three output libraries
- Figure 5.7 (A) Transposon insertions in *sucCD* in the INPUT and three 199 output libraries and (B) Growth, normalised to the wild-type, of a Keio $\Delta sucC$ mutant
- Comparison between logFCs and flux through central 202 Figure 5.8 metabolism
- Figure 5.9 (A) Competition assays of a Keio $\Delta moaC$ mutant competed 207 against the wild type in M9 minimal medium supplemented with the indicated concentrations of carbon sources and (B) Endpoint growth of the $\Delta moaC$ mutant under the three conditions tested for TraDIS
- Components of the *E. coli* thioredoxin and glutaredoxin systems Figure 5.10 211
- Figure 5.11 Location of y genes in the MG1655 genome in glucose, glucose 213 nitrate, and glycerol nitrate
- Figure 5.12 End-point growth of a selection of Keio y gene mutants 216 following growth under TraDIS assay conditions

List of Tables

Table 1.1	Bile resistance mechanisms in <i>E. coli</i>	35
Table 1.2	TraDIS studies of <i>E. coli</i> and other Enterobacteriaceae	66
Table 2.1	Strains used in this study	69
Table 2.2	Primers and other oligonucleotides used in this study	70
Table 2.3	Numbers of kanamycin-resistant colonies within each mutant pool	72
Table 2.4	Layout of a typical sample sheet used in this study	85
Table 3.1	TraDIS sequencing statistics	100
Table 4.1	Mapping statistics for TraDIS library replicates	132
Table 4.2	Functional categories of genes with significant logFCs in TraDIS	136
Table 4.3	LogFC values of members of the <i>nuo</i> operon, encoding NADH dehydrogenase I	138
Table 4.4	Keio library mutants listed by increasing logFC value.	155
Table 4.5	Keio library mutants (listed by gene) that showed increased end-point growth alongside their equivalent logFC values	156
Table 4.6	Genes under negative selection in both <i>S</i> . Typhi and <i>E</i> . <i>coli</i> TraDIS studies.	160
Table 4.7	A comparison between some functional groups in TraDIS studies of <i>S</i> . Typhi and <i>E. coli</i>	167
Table 5.1	Optical densities, number of generations, and cell-free supernatant pH values of TraDIS mutant libraries grown in duplicate under the conditions tested	180
Table 5.2	Sequencing statistics of each TraDIS library in duplicate	183
Table 5.3	Prophage-associated genes under selection in glucose nitrate	215
Table A1	Genes identified as essential in MG1655 following growth on LB agar	267
Table A2	Genes identified as ambiguous in MG1655 following growth on LB agar	281
Table A3	Comparative analysis with Goodall <i>et al.</i> , 2018. Essential genes shared by all studies	282
Table A4	Comparative analysis with Goodall <i>et al.</i> , 2018. Essential genes shared by MG1655 and BW25113 TraDIS studies	290
Table A5	Comparative analysis with Goodall <i>et al.</i> , 2018. Essential genes unique to MG1655	292
Table A6	Comparative analysis with Goodall <i>et al.</i> , 2018. Essential genes unique to BW25113	297
Table A7	Genes with significant logFC values following growth in bile	299
Table A8	Functional enrichment analysis of genes with significant logFC values	311
Table A9	End-point growth of Keio library mutants vs TraDIS logFCs	313
Table A10	Comparative analysis of bile tolerance in <i>E. coli</i> and <i>S.</i> Typhi using TraDIS. Genes under negative selection uniquely in <i>E. coli</i>	318
Table A11	Comparative analysis of bile tolerance in <i>E. coli</i> and <i>S.</i> Typhi using TraDIS. Genes under negative selection	319

	uniquely in S. Typhi	
Table A12	Essential genes following growth under anaerobic conditions	322
Table A13	Genes with significant logFC values following growth under anaerobic conditions (Glucose p.329; Glucose nitrate p.336; Glycerol nitrate p.357)	329
Table A14	Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes shared under all conditions	365
Table A15	Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes unique to glucose	367
Table A16	Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes unique to glucose nitrate	368
Table A17	Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes unique to glycerol nitrate	372
Table A18	Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes shared by cultures grown in nitrate	373
Table A19	Comparative analysis of a mutant library grown under three different anaerobic conditions. Y genes	374

Declaration

I declare that the research presented in this thesis is my own work and that it has not been submitted for any other degree, either at University College Cork, or elsewhere. All external references and sources are clearly acknowledged and identified within the contents. I have read and understood the regulations of University College Cork concering plagiarism. Wherever contributions of others are involved, every effort has been made to indicate this clearly, by reference to the literature and by acknowledgement of collaborative research. This work was completed under the guidance of Dr. David Clarke at the School of Microbiology, University College Cork, Ireland.

Finbarr James Buttimer

July 2019

Acknowledgements

Any body of work requires the help and support of many different people and my case has been no exception. It is through the amazing support of my family, friends, and colleagues that I have been able to produce this work, and to have all these people in my life I am incredibly grateful.

First and foremost, I wish to thank my supervisor, Dr. David Clarke, for all his hard work, his constant support and guidance, and dedication to me and this project for the past four and a half years. Dave is an example of the dedicated and understanding person that a supervisor should be, and I am so grateful to have had him as a mentor.

I wish to thank, from the bottom of my heart, my parents, Noreen and Neil, and my brother and sister, Patrick and Catherine (and of course, the dog, Bran). It is difficult to describe just how much my parents and my family mean to me. They have always been there for me, always offering a listening ear, always supporting me through my ups and downs, or doing the little things like making a call or being around at home to have a chat. They were there for me throughout the hardest parts of my PhD and helped me stick with it, so if it weren't for them I wouldn't have written this thesis. Míle míle buíochas daoibh.

I would also like to dedicate this thesis to my late grandmother, Sheila O' Mahony (neé Curtin), who passed away before she could see it finished.

My PhD was funded by the Irish Research Council under a Government of Ireland Postgraduate Scholarship and co-funded by APC Microbiome Ireland. I would like to thank them for providing the financial support and facilities necessary to undertake this project. My thanks also everyone who has contributed to the work in this thesis, including Emma Smith (formerly of UCC), Francesca Short, Amy Cain, Christine Boinnett and Trevor Lawley of the Wellcome Trust Sanger Institute, and Fiona Crispie and Laura Finnegan of Teagasc Moorepark. With that I would also like to thank the technicians and staff of the School of Microbiology for all their help and guidance.

Thanks also to everyone, past and present, in office 435 for all the good food, good drink, hilarious chats, and all around brilliant craic. Also, my deepest thanks to everyone in lab 405, Alli, Marc, Ian, and Dana. The past four and a half years working with you have been an absolute blast.

Finally, I wish to thank my partner, my love, Sloane. Without Sloane there is no way I would have finished this PhD. Through thick and thin Sloane has been by my side, taking care of me, supporting and encouraging me, no matter what came our way. She has made me a better man. Je t'aime, ma chérie :)

I wrote the majority of this thesis by myself in a house in Kinsale, but my one companion was my little black and white cat, Willow. In honour of

Willow, here is an extract of a poem written by an Irish monk in the 9th century about writing with his cat:

Messe ocus Pangur bán, cechtar nathar fria shaindán: bíth a menmasam fri seilgg, mu menma céin im shaincheirdd.

Caraimse fos, ferr cach clú oc mu lebrán, léir ingnu; ní foirmtech frimm Pangur bán: caraid cesin a maccdán.

Ó ru biam, scél cen scís, innar tegdais, ar n-óendís, táithiunn, díchríchide clius, ní fris tarddam ar n-áthius.

("Pangur Bán and I at work, adepts, equals, cat and clerk: His whole instinct is to hunt, Mine to free the meaning pent. More than loud acclaim, I love books, silence, thought, my alcove. Happy for me, Pangur Bán child-plays round some mouse's den. Truth to tell, just being here, housed alone, housed together, adds up to its own reward: concentration, stealthy art". Translation by Séamus Heaney)

List of Abbreviations

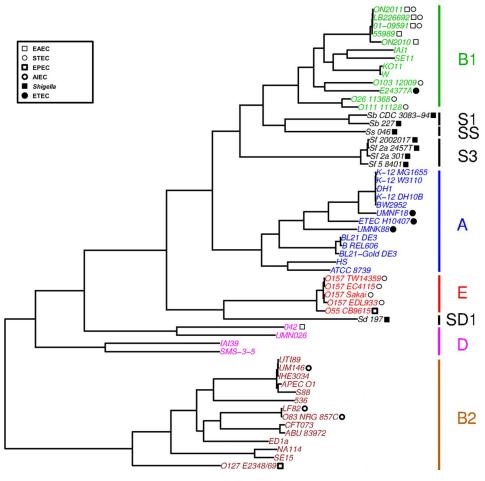
AcCoA	Acetyl coenzyme A	IM	Inner membrane
ACP	Acyl-carrier protein	INSeq	Insertion sequencing
AIEC	Adherent-invasive E. coli	KDO	2-keto-3-deoxy-octulosonate
APEC	Avian pathogenic <i>E. coli</i>	LB	Lysogeny broth
AR	Acid-resistance	LEE	Locus of enterocyte
			effacement
CD	Crohn's disease	logFC	Log2 fold-change
CDS	Protein-encoding sequence	LPS	Lipopolysaccharide
СІ	Competitive index	MLEE	Multilocus enzyme
			electrophoresis
СоА	Coenzyme A	NRA	Nitrate reductase A
COG	Clusters of orthologous	NRZ	Nitrate reductase Z
	groups		
DAEC	Diffusely-adherent E. coli	OD	Optical density
DSB	Disulfide bond	ОМ	Outer membrane
EAEC	Enteroaggregative E. coli	ОМР	Outer membrane protein
ECA	Enterobacterial common	PEC	Profiling of the <i>E. coli</i>
	antigen		chromosome
EcN	E. coli Nissle 1917	PEP	Phosphoenol pyruvate
ECOR	E. coli reference	PFL	Pyruvate-formate lyase
EHEC	Enterohaemorrhagic E. coli	PG	Peptidoglycan
EIEC	Enteroinvasive E. coli	РК	Pyruvate kinase
ETEC	Enterotoxigenic E. coli	PTS	Phosphotransferase system
ExPEC	Extraintestinal pathogenic E.	RNS	Reactive nitrogen species
	coli		
FNR	Fumarate-nitrate reductase	ROS	Reactive oxygen species

regulator

GI	Gastrointestinal	SPATE	Serine protease
			autotransporters of
			Enterobacteriaceae
GO	Gene ontology	STEC	Shiga toxin-producing E. coli
GSH	Glutathione	TLR	Toll-like receptor
HITS	High-throughput insertion	Tn-seq	Transposon sequencing
	tracking by deep sequencing		
HPLC	High-performace liquid	TraDIS	Transposon-directed
	chromatography		insertion site sequencing
IBD	Inflammatory bowel disease	UPEC	Uropathogenic <i>E. coli</i>
IFR	Insertion-free region	UTI	Urinary tract infection
IGR	Intergenic region		
IHF	Integration host factor		

Abstract

Escherichia coli is highly adapted to life within the mammalian gastrointestinal (GI) tract, capable of adapting to multiple environments en route to colonising the intestine. Moreover, the means by which the species copes with changes in the microenvironments of the GI tract strongly influences the nature of *E. coli*'s relationship with the host i.e. whether it exists as a commensal or pathogen. However, the response of E. coli to many of these conditions is complex, often employing a wholecell response. This necessitates the use of high-throughput approaches in order to fully understand factors the bacterium requires for growth under these conditions. This work outlines the use of transposon-directed insertion site sequencing (TraDIS) to describe genetic requirements for fitness of E. coli K-12 MG1655 during growth in the presence of bile and under anaerobic conditions in the presence of nitrate, representative of bile exposure in the duodenum and conditions of inflammation in the intestine. TraDIS reveals, in detail, genetic requirements for growth under these conditions, revealing new roles for many genes with no prior association with growth under these conditions. This work will, therefore, contribute to future studies of E. coli colonisation of the GI tract by identifying candidate genes required for fitness under these growth conditions.


Chapter 1 Introduction

1.1. Escherichia coli: role in gut health and disease

1.1.1. Biology and population structure

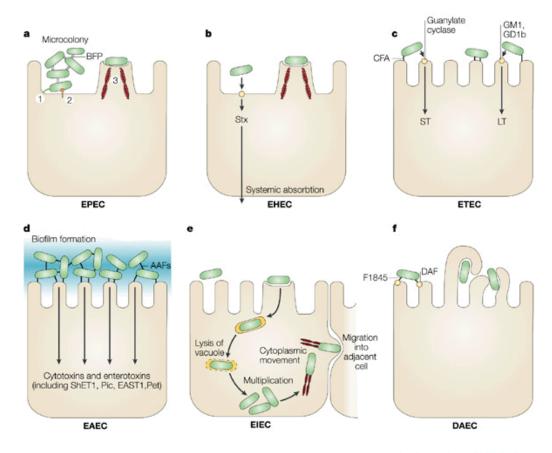
Escherichia coli is a Gram-negative, facultatively anaerobic, non-spore forming bacterium of the family Enterobacteriaceae (Scheutz & Strockbine, 2015). *E. coli* is the model organism of molecular biology and one of the best characterised organisms. Its primary habitat is the gastrointestinal (GI) tract of warm-blooded mammals and reptiles, with a secondary habitat in water, soil, and sediment (Berg, 1996; Gordon, 2004; Savageau, 1983). *E. coli* typically colonises the colonic mucosa where it exists as one of the most abundant facultative anaerobes in the human gut microbiota (Berg, 1996).

E. coli is a highly diverse species. Multiple methods exist for the classification of the population structure of *E. coli*, ranging from pathogenic phenotype (Kaper *et al.*, 2004), serotyping lipopolysaccharide (O), flagellar (H), and capsule (K) antigens (Evans Doyle J. & Evans, 1983), to whole genome sequencing (Sims & Kim, 2011). However, the population structure described by Ochman and Selander using the *E. coli* reference (ECOR) collection and multilocus enzyme electrophoresis (MLEE) forms the basis for current studies on the population structure of *E. coli*, with several refinements offered in the interim (Leimbach *et al.*, 2013; Ochman & Selander, 1984; Sims & Kim, 2011). Currently, *E. coli* is divided into five major phylogroups, A, B1, B2, D, and E (Figure 1.1).

Matthew A. Croxen et al. Clin. Microbiol. Rev. 2013; doi: 10.1128/CMR.00022-13

Figure 1.1. Phylogenetic tree of intestinal pathogenic *E. coli. E. coli* strains can be grouped into 5 main phylogenetic groups: A (blue), B1 (green), B2 (brown), D (pink), and E (red). Shigella/EIEC also form additional phylogroups (black). Pathotypes do not always group together in the same phylogroup. The hybrid EAEC and STEC strains are denoted with both an open square and open circle. Unmarked strains are either commensal, extraintestinal pathogenic *E. coli* (ExPEC), or avian-pathogenic *E. coli* (APEC). ETEC strains are isolated from both humans and animals, while DAEC is not represented in the phylogenetic tree. Adapted from Croxen *et al.*, 2013.

Groups A and B1 are the youngest lineages and consist primarily of nonpathogenic commensal strains, however B1 contains more of a mix of pathogens and commensals, including non-O157:H7 enterohaemorrhagic E. coli (EHEC). Phylogroup B2 is the most diverse lineage, comprised of many extraintestinal pathogenic E. coli (ExPEC) and adherent-invasive E. coli (AIEC) strains. Phylogroup D is not monophyletic and splits into subgroups D1 and D2 (Figure 1.1). Group D1 is composed of uropathogenic E. coli (UPEC) and enteroaggregative E. coli (EAEC) isolates and clusters towards groups A, B1, and E, whereas group D2, consisting of ExPEC and environmental strains, clusters more towards Е contains O157:H7 EHEC group B2. Finally, group and enteropathogenic E. coli (EPEC) strains. Group E is close to the 'E. coli pathotype' Shigella outgroup, retained as a genus for historical reasons (Pettengill et al., 2016). Genotypic variation in E. coli is not due to a clonal population structure, but rather the genome of *E. coli* is highly dynamic, undergoing extensive horizontal gene transfer and recombination between strains. Indeed, two strains can differ by as much as a megabase in genome size (Ochman & Jones, 2000). Nevertheless, each strain contains a shared 'core' genome including essential housekeeping genes and other indispensible functions, supplemented with an accessory genome, required for expressing various phenotypes and environmental adaptation (Rasko et al., 2008). The size of the core genome has been estimated in a number of different studies, ranging from approximately 1,400 genes to 2,800 genes (Fukiya et al., 2004; Kaas et al., 2012;


Lukjancenko *et al.*, 2010; Vieira *et al.*, 2011). Therefore, the core genome has been subdivided into 'soft-core' and strict core', i.e. genes present in at least 95% of all strains and 100% of all strains, respectively (Kaas *et al.*, 2012). A study of all publicly available *E. coli* strains estimated the soft-core genome to consist of 3,051 genes, and the strict-core genome at 1,702 genes (Kaas *et al.*, 2012). However, all core and accessory genes, known as the pangenome, are thought to consist of between 18,000 to 43,000 genes, a number thought to increase with the increasing availability of fully sequenced genomes. (Leimbach *et al.*, 2013; Rasko *et al.*, 2008; Snipen *et al.*, 2009). This extensive pangenome reflects the high diversity of the *E. coli* species.

E. coli is a microbe that has a complex relationship with its host. Over 90% of the human population carry strains of *E. coli*, in greater quantities than domestic or wild animals, with an intimate association between the types of strains hosted and environment, geography, or lifestyle (Gordon, 2004; Tenaillon *et al.*, 2010). The majority of strains exist as commensals; however, depending on host and microbe genetics and gut environmental conditions, many *E. coli* can also act as pathogens. In this way, *E. coli* represents a model organism for studying the paradigm of the commensal-to-pathogen switch (Leimbach *et al.*, 2013).

1.1.2. Pathogenic and commensal E. coli

E. coli are globally significant pathogens; diarrhoeal diseases alone caused by pathogenic *E. coli* led to approximately 420 million cases of

diarrhoea and over 250,000 deaths in 2010, a significant proportion of which occurred in children under 5 years old (Pires et al., 2015). However, E. coli are also a common cause of, or contributor to, sepsis, meningitis, urinary tract infections (UTIs), intra-abdominal infections, and nosocomial infections (Peleg & Hooper, 2010; Tenaillon et al., 2010). Pathogenic E. coli are typically divided into pathotypes, i.e. based on their mode of colonisation and infection (Figure 1.2). The majority of E. coli exist as commensals within the human gut, and indeed play multiple roles as members of the normal GI tract microbiota (Tenaillon et al., 2010). In the GI tract, commensal E. coli reside in the caecum and colon, colonising the mucus layer that covers the GI epithelium, and the bacteria are shed into the lumen and faeces with the degradation of mucus (Poulsen et al., 1994). Commensal E. coli colonise the neonatal colon soon after birth, helping to deoxygenate the colon, which is thought to facilitate the establishment of an anaerobic niche for beneficial obligate anaerobes such as Bifidobacterium, Bacteroides, and Clostridium (Bettelheim & Lennox-King, 1976; Guaraldi & Salvatori, 2012).

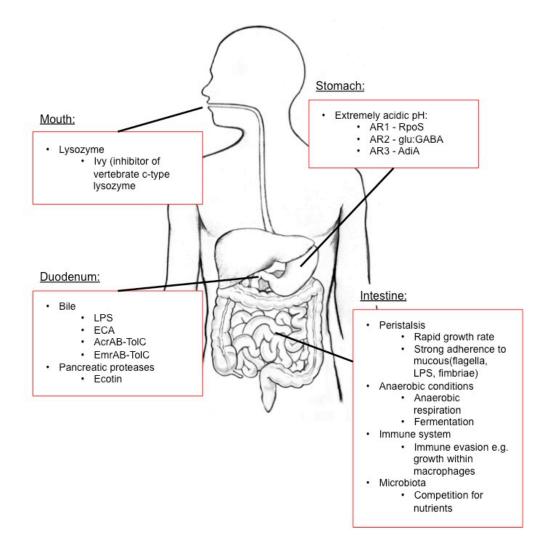
Nature Reviews | Microbiology

Figure 1.2. E. coli pathotypes and modes of interaction with intestinal enterocytes. a. Enteropathogenic E. coli (EPEC) adhere to small bowel enterocytes, but destroy the normal microvillar architecture, inducing the characteristic attaching and effacing (A/E) lesion. Cytoskeletal rearrangements are accompanied by an inflammatory response and diarrhoea. 1. Initial adhesion, 2. Protein translocation by type III secretion, 3. Pedestal formation. b. Enterohaemhorrhagic E. coli (EHEC) also induce the A/E lesion, but in the colon. The distinguishing feature of EHEC is the elaboration of Shiga toxin (Stx), the systemic absorption of which leads to potentially life-threatening complications. c. Similarly, Enterotoxigenic E. coli (ETEC) adhere to small bowel enterocytes and induce watery diarrhoea by the secretion of heat-labile (LT) and/or heat-

g

stable (ST) enterotoxins. **d.** Enteroaggregative *E. coli* (EAEC) adheres to small and large bowel epithelia in a thick biofilm and elaborates secretory enterotoxins and cytotoxins. **e.** Enteroinvasive *E. coli* (EIEC) invades the colonic epithelial cell, lyses the phagosome and moves through the cell by nucleating actin microfilaments. The bacteria might move laterally through the epithelium by direct cell-to-cell spread or might exit and reenter the baso-lateral plasma membrane. **f.** Diffusely-adherent *E. coli* (DAEC) elicits a characteristic signal transduction effect in small bowel enterocytes that manifests as the growth of long finger-like cellular projections, which wrap around the bacteria. AAF, aggregative adherence fimbriae; BFP, bundle-forming pilus; CFA, colonization factor antigen; DAF, decay-accelerating factor; EAST1, enteroaggregative E. coli ST1; LT, heat-labile enterotoxin; ShET1, Shigella enterotoxin 1; ST, heat-stable enterotoxin. Figure and text adapted from Kaper *et al.*, 2004.

Commensals can also provide a barrier to invasion by pathogenic strains, in a phenomenon known as colonisation resistance (Apperloo-Renkema et al., 1990). However, E. coli strains that are normally commensal or beneficial can, under certain circumstances, be detrimental to the host. For example, commensal E. coli are well documented reservoirs of antibiotic resistance determinants, which are thought to be shared between commensals and pathogens, or between humans and animals (Bailey et al., 2010; Karami et al., 2007; Skurnik et al., 2006; Stecher et al., 2012), although this has recently been shown not to occur between humans and livestock animals, necessitating further investigation (Ludden et al., 2019). Furthermore, commensals can change their behavior in response to changing environmental conditions, eliciting more pathogenic phenotypes. This is particularly noteworthy in the case of UPECs, where strains typically exist as commensals within the gut but cause disease when they invade the urinary tract (Sabaté et al., 2006). Also of note is the common observation that humans with inflammatory bowel disease (IBD), particularly Crohn's disease (CD), contain greater numbers of Enterobacteriaceae in their gut microbiota, particularly E. coli (Lopez-Siles et al., 2014; Martinez-Medina et al., 2006; Willing et al., 2009). One line of research suggests that this may be due to E. coli's ability to use anaerobic terminal electron acceptors, such as nitrate, produced by the host during inflammation for anaerobic respiration (Winter et al., 2013).


The boundary between commensal and pathogenic *E. coli* is blurred, and often as a result of the differing responses of strains to

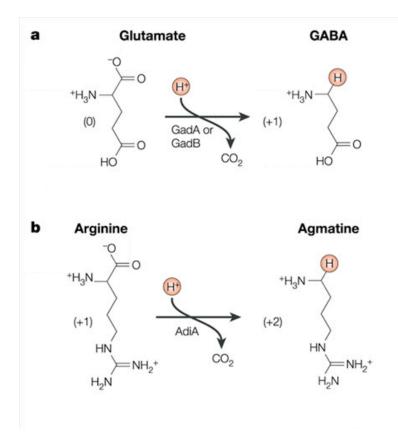
changes in microecology or environmental challenge (Leimbach et al., 2013). For example, virulence factors such as P fimbriae of UPEC strains exacerbate the course of UTI in allowing E. coli to colonise the kidneys, but these fimbriae also aid in colonisation of the gut (Le Gall et al., 2007; Wold et al., 1992). Another example occurs during gut inflammation. The ability to anaerobically respire nitrate allows E. coli and other Enterobacteriaceae to utilise the metabolic end-products of fermentation by Bacteroidia and Clostridia (e.g. formate and hydrogen) as electron donors, allowing *E. coli* to establish itself within its primary niche (Conway & Cohen, 2015; Faber & Bäumler, 2014; Jones et al., 2011). However, excessive nitrate production as a result of chronic gut inflammation favours E. coli's ability to respire using nitrate as a terminal electron acceptor, allowing it to outgrow other members of the microbiota and potentially exacerbating the symptoms of gut inflammatory diseases (Faber & Bäumler, 2014). Furthermore, certain pathotypes of E. coli, including adherent-invasive E. coli (AIEC), DAEC, and ExPEC, are thought to influence the symptoms of IBD in humans with genetic or immune defects (Mirsepasi-Lauridsen et al., 2019). These examples have led to the designation of certain commensal strains of E. coli as 'pathobionts', or resident microbes with pathogenic potential (Mirsepasi-Lauridsen et al., 2019). This highlights the importance of developing a greater understanding of the effects of environmental change on the behaviour of commensals to enable an accurate prediction of the commensal-to-pathogen switch. To do this, a detailed understanding of

the environmental conditions *E. coli* faces during colonisation of the GI tract is required.

1.2. Colonisation of the gastrointestinal tract by E. coli

All strains of *E. coli*, pathogen or commensal, must first colonise the gut, defined as achieving and maintaining a stable population without reintroduction (Meador *et al.*, 2014). Successful colonisation requires mechanisms to survive environmental stresses, but also mechanisms to compete against other microbes (typically other *E. coli* strains), in order to occupy a distinct niche. *E. coli* harbours a wide array of mechanisms that allow it to address these different environmental challenges i.e. stresses that it faces during colonisation of the human gut (Figure 1.3).

Figure 1.3. Stresses faced by *E. coli* in different regions of the GI tract. Stresses highlighted with bullet points, with adaptation mechanisms described in indented bullet points. Image adapted from NIDDK image library


(https://catalog.niddk.nih.gov/Catalog/ImageLibrary/searchresults.cfm?ke yword=93&type=keyword accessed 26 Nov 2018).

1.2.1. Survival within the mouth, oesophagus, and gastric juice

E. coli is not thought to be a prominent member of the healthy oral microbiome (Aas et al., 2005; Dewhirst et al., 2010). In fact, the presence of E. coli in the mouth has been used as an indicator of fecal contamination (Baydaş et al., 2007; Oliveira et al., 2012). Nevertheless, E. coli does need to passage through the mouth in order to colonise the gut, and as such contains mechanisms to survive the potential stresses in this environment. The principal innate anti-microbial mechanism contained within saliva is lysozyme, an enzyme that breaks the β -(1,4)glycosidic bond between the alternating N-acetylmuramic acid and Nacetylglucosamine residues in bacterial peptidoglycan, resulting in cell wall damage and lysis. E. coli harbours mechanisms that contribute to lysozyme resistance, including the innate protection provided by the outer membrane, but also specific mechanisms such as the production of lvy, an inhibitor of vertebrate C-type lysozyme (Deckers et al., 2008; Monchois et al., 2001). Similarly, E. coli is considered a non-permanent member of the oesophagus, with Enterobacteriaceae only prominent in disease states such as oesophagitis or Barrett's oesophagus (Amir et al., 2013; Di Pilato et al., 2016). However, the case of the neonatal meningitis-associated strain, E. coli K1, offers a notable example of the commensal-to-pathogen switch involving the oesophagus. K1 strains can be present in the stools of healthy infants, children, and adults, but are responsible for up to 80% of cases of meningitis in neonates, primarily derived from direct transfer of the pathogen from mother to infant at birth (Glode et al., 1977). With the aid of virulence factors such as Hek, K1

strains can invade and transcytose epithelial surfaces, access intravascular space, and then survive within the bloodstream, providing a route for access through the blood brain barrier (Fagan *et al.*, 2008; Kim, 2003). The susceptibility of neonates specifically is thought to be due to K1's ability to colonise the immature neonatal mucous barrier and other innate defenses (Birchenough *et al.*, 2013). The GI tract is thought to be the primary route of initial colonisation, and importantly, it has been shown that K1 can enter systemic circulation via the oesophagus in susceptible neonatal rat pups (Sarff *et al.*, 1975; Witcomb *et al.*, 2015).

Gastric acid of the stomach is the most inhospitable environment in the mammalian anatomy, with pH values as low as 1.5 - 2.5 (Martinsen *et al.*, 2005). Unlike other related Enterobacteriaceae such as *Salmonella* spp. (which can tolerate acid stress to pH 3), *E. coli* can tolerate extreme acid stress (approx. pH 2) for several hours (Audia *et al.*, 2001). Indeed, *E. coli* is as tolerant to acidic conditions as the notable stomach symbiont, *Helicobacter pylori* (Foster, 2004). *E. coli* bears three acid-resistance (AR) mechanisms, AR1, AR2, and AR3 (Figure 1.4; (Foster, 2004)).

Figure 1.4. Consumption of protons during decarboxylation of **a**) glutamate (AR2) and **b**) arginine (AR3). GadA and GadB are glutamate decarboxylases involved in AR2, AdiA is the arginine decarboxylase. Adapted from Foster, 2004.

AR2 and AR3 are both decarboxylase/antiporter-dependent acid resistance mechanisms, each using decarboxylases to replace α -carboxyl groups on their respective amino acid substrates (glutamate for AR2 and arginine for AR3) with a proton recruited from the cytoplasm, producing CO₂ and γ -amino butyric acid (AR2) or agmatine (AR3) as end-products. The consumption of the proton results in an increase in internal pH (Foster, 2004). Until recently, the mechanisms underpinning AR1 were largely unknown. AR1 is active under conditions where cells grown to stationary phase in LB broth buffered at relatively low acidity (pH 5.5),

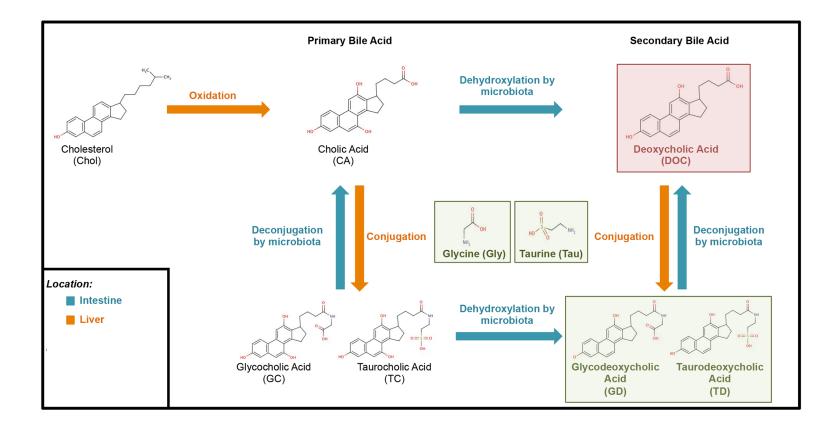
allowing cells to survive dilution into more highly acidic media (pH 2.5). In contrast, cells buffered at a higher pH are killed when diluted into the more acidic media. Similarly, cells grown under these conditions in the presence of glucose and not supplemented with glutamate or arginine are killed (Lin *et al.*, 1995). Recently, it was shown that AR1 utilises the same decarboxylase enzymes of AR2, but using an internally derived source of glutamate (Aquino *et al.*, 2017). Moreover, it was shown that there is a complex regulatory network underpinning AR1 and AR2, coordinated with carbon and nitrogen metabolism (Aquino *et al.*, 2017).

In a comparison with the highly acid-resistant EHEC strain O157:H7, commensal strains were shown to survive equally well in simulated gastric juice at pH 1.5, thus highlighting the universality of the acid stress response mechanism in *E. coli* (Foster, 2004; Lin *et al.*, 1996). However, the pH of gastric juice is not constant, and when elevated by the buffering effect of food or in conditions such as hypochlorhydria or achlorhydria, the risk of gastroenteritis caused by the outgrowth of foodborne bacteria increases (Martinsen *et al.*, 2005; Nalin *et al.*, 1978; Sarker & Gyr, 1992; Waterman & Small, 1998). While acid is considered to be the primary mechanism for antimicrobial control in gastric juice, other components such as the protease, pepsin, contribute to an antimicrobial effect (Zhu *et al.*, 2006). It is not clear whether or not *E. coli* harbours specific response mechanisms to pepsin, but the stomach environment remains a crucial barrier to colonisation.

1.2.2. The duodenum and bile resistance

1.2.2.1. The duodenum

The duodenum is an important junction that (i) connects the stomach and the jejunum, (ii) is linked to the liver and pancreas, and (iii) is largely responsible for the breakdown of food by the small intestine and regulates the emptying rate of the stomach. Significant environmental stresses are exerted within the duodenum, including the release of digestive enzymes from the pancreas such as trypsin and lipase, which can damage bacterial proteins and the cell envelope. In addition, bile is secreted into the duodenum from the gallbladder, which serves a dual role in the breakdown of fats and acting as an antimicrobial agent (Begley et al., 2005). The duodenum contains a lower microbial load compared to other regions in the GI tract in humans, yet it has been shown to harbour highly diverse microbiota, including a detectable level of а Escherichia/Shigella (Li et al., 2015). Interestingly, a study of commensal E. coli in pigs showed that some commensal strains of E. coli (from phylogroup A) were more likely to be found in the duodenum/ileum (both regions differed little in dispersion of strains) than in the colon/faeces (Dixit et al., 2004). E. coli contains specific mechanisms to withstand the selective pressures within the duodenum. For example, ecotin is a serine protease inhibitor produced by some strains of E. coli which allows for resistance to trypsin, but also other pancreatic-derived proteases, such as chymotrypsin and kallikrein (McGrath et al., 1995). Moreover, E. coli contains mechanisms to prevent degradation of its lipopolysaccharide (LPS) by lipases, including modification of acyl chains of the integral LPS


component, lipid A (Raetz *et al.*, 2007). The response to bile, however, has been studied in far more detail (Table 1.1).

Gene/Function	Function	Reference
Exclusion of bile acids		
LPS	Slows diffusion of bile acids across	(Begley <i>et al.</i> , 2005)
OmpC	outer membrane	(Nikaido, 2003)
MicF	Narrower porin inhibits bile acid entry	(Bernstein <i>et al.</i> , 1999)
	Negatively regulates the wider porin,	
	OmpF	
Exclusion of bile/efflux		
AcrAB-ToIC	Actively effluxes bile acids	(Thanassi <i>et al.</i> , 1997)
EmrAB-ToIC	Actively effluxes bile acids	(Lee <i>et al.</i> , 2000)
MdtABC-ToIC	Increases resistance to bile acids	(Baranova & Nikaido, 2002)
MdtM	Works in concert with AcrAB-ToIC to	(Paul <i>et al.</i> , 2014)
	efflux bile acids	
Repair and defense agair	nst damage	
dinD	DNA damage-inducible protein	(Bernstein <i>et al.</i> , 1999)
impB	Error-prone DNA repair	(Foster, 2007)
hupAB	Controls DNA supercoiling	(Begley <i>et al.</i> , 2005)
osmY	Response to hyperosmotic stress	(Begley <i>et al.</i> , 2005)
Modulation of virulence		
Alter motility expression		(Hamner <i>et al.</i> , 2013)
Alter expression of iron		(Hamner <i>et al.</i> , 2013)
acquisition genes		

Table 1.1. Bile resistance mechanisms in *E. coli*.

1.2.2.2. E. coli growth in the presence of bile

Bile is a complex mixture of bile acids, cholesterol, fatty acids, phospholipids, biliverdin, and multiple other substances. Bile is synthesised in pericentral liver hepatocyte cells and is released into the duodenum from the gall bladder via the common hepatic duct (Figure 1.5B). However, bile acids are absorbed along the entire length of the gut, conserving bile acid concentrations under normal conditions. Approximately 50% of the organic components of bile consist of bile acids, whose core structure consists of a steroid nucleus, which can be conjugated via a peptide bond to either glycine or taurine (Figure 1.5A). Primary bile acid and chenodeoxycholic acid. These primary bile acids may then be modified by bacteria in the intestine e.g. via deconjugation, dehyrdroxylation, and dehydrogenation to produce secondary bile acids, such as deoxycholic acid and lithocholic acid (Figure 1.5A; (Begley *et al.*, 2005)).

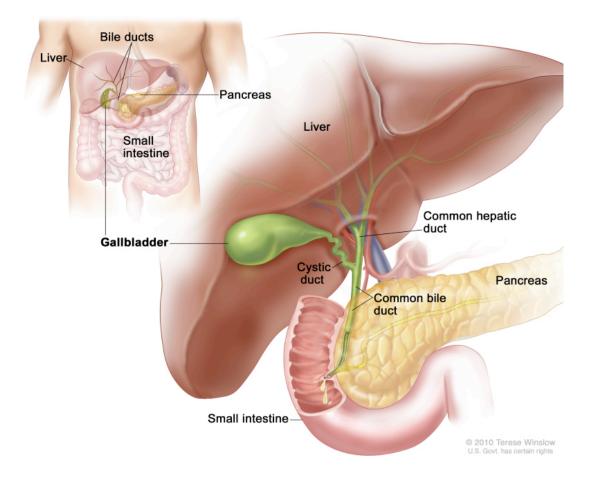


Figure 1.5. (A) Bile acid metabolism (adapted from (Bachmann *et al.*, 2015)). (B) Anatomy of the gallbladder (from https://www.ncbi.nlm.nih.gov/books/NBK65963/figure/CDR0000270720______198/ (accessed 25 Feb 2018).

The primary role of bile is to emulsify and solubilse fats from ingested food, allowing for their absorption in the small intestine (Russell, 2003). However, bile also acts as one of the most potent innate barriers to microbial colonisation of the GI tract, having a profound impact upon the ecology of the gut (Sarker & Gyr, 1992). Several studies have shown a role for bile in controlling microbial load in the gut, either by the increase in growth when bile is restricted (Berg, 1995; Inagaki et al., 2006), or reduction in bacterial overgrowth and translocation when bile acids were administered (Ding et al., 1993; Lorenzo-Zúñiga et al., 2003). Moreover, as the concentration of bile salts decreases further away from the duodenum and into the intestine, the microbial load increases (Hay & Zhu, 2016). Furthermore, bile acids can alter the community structure of the microbiome, as has been shown in rats, where significant increases in phylum *Firmicutes* and specific classes such as Clostridia were observed when the rats were fed increased levels of the bile acid, cholic acid (Islam et al., 2011; Ridlon et al., 2014). Bile can also determine the spatial distribution of different strains of the same species, as was shown in germ-free mice colonised with different E. coli mutants, whereby spatial distribution of the different mutants was determined by the tradeoff between the ability of those strains to withstand bile acids and their ability to compete for nutrients (De Paepe et al., 2011).

Bile is a potent antimicrobial agent for multiple reasons. Bile acts as a signal to other cells and systems within the GI tract, promoting an immune response to infection e.g. via the promotion of cathelicidin production in the hepatobiliary tract, or the activation of genes in the

ileum involved in enteroprotection via the farnesoid X receptor (D'Aldebert *et al.*, 2009; Inagaki *et al.*, 2006). Bile also displays physiochemical properties that are antimicrobial, primarily due to the lipiddissolving action of bile acids resulting in bacterial cell lysis, or the presence of immobilising immunoglobulin A and mucous within bile (Begley *et al.*, 2005; Hofmann, 1999). However, bile also elicits secondary effects, such as DNA damage, denaturing of proteins, induction of oxidative stress, pH stress, osmotic stress, or even the lowering of available concentrations of calcium and iron (Begley *et al.*, 2005).

Bacteria employ multiple systems in order to survive in the presence of bile (Table 1.1). The different responses can be summarized into four main strategies: exclusion of bile, extrusion of bile, repair and defense against damage, and modulation of virulence (Hay & Zhu, 2016). In Gram-negative bacteria, bile acids are either prevented from diffusing, or diffuse far more slowly, through the Gram-negative outer membrane due to the presence of the thick LPS layer (Nikaido, 2003). This is highlighted by the hypersensitivity to bile acids reported for LPS deeprough core mutants of *E. coli* K-12 substr. MG1655 (Møller *et al.*, 2003). Moreover, *pmrA* mutants, showing aberrant modification of LPS, show increased sensitivity to the bile acid derivative, deoxycholate (Froelich *et al.*, 2006). Porins are also important in excluding entry of bile acids, and both *E. coli* and *Salmonella* favour the narrower β -barrel porin, OmpC, over the wider-pored OmpF, in order to increase tolerance to bile acids (Nikaido, 2003; Thanassi *et al.*, 1997). Once past the outer membrane,

bile acids can reach, insert into, or pass through, the inner membrane into the cytoplasm. As a protective measure against this scenario, E. coli can actively efflux bile acids from the cytoplasm. The best-characterised and most important efflux system involved in bile efflux is the AcrAB-TolC efflux pump (Eicher et al., 2009; Thanassi et al., 1997). The AcrAB-TolC pump recognises multiple substrates; however, it has a specific affinity for bile acids, demonstrating that a specific response to bile is elicited by the cell. Other auxiliary efflux mechanisms are employed by *E. coli*, including: the EmrAB-ToIC efflux pump which actively effluxes bile salts and works in parallel with AcrAB-TolC (Lee et al., 2000; Thanassi et al., 1997); the major facilitator superfamily transporter, MdtM, which acts synergistically with AcrAB-ToIC to efflux bile salts (Paul et al., 2014); and MdtABC-ToIC that, when overproduced, increases resistance to a number of bile salts (Baranova & Nikaido, 2002). If efflux mechanisms fail, bile acids can damage proteins, DNA, membranes, and cause protein aggregation (Begley et al., 2005). In response to this damage, E. coli does induce the SOS response and multiple DNA repair mechanisms, as shown by the upregulation of several stress response genes required for the activation of the SOS response, DNA repair, and oxidative stress response mechanisms (Bernstein et al., 1999; Foster, 2007; Merritt & Donaldson, 2009). Finally, pathogens can respond in specific ways to the presence of bile by modulating their virulence properties. For example, Salmonella species downregulate the expression of their pathogenicity islands, which allows for increased expression of unique, Salmonella-associated genes involved in stress response and survival in the presence of bile

(Hernández *et al.*, 2012; Prouty *et al.*, 2006). Bile salts have also been shown to modulate the expression of virulence genes in the EHEC strain, 0157:H7, altering expression of flagellar and iron acquisition genes (Hamner *et al.*, 2013).

Enterobacteriaceae, including E. coli, show high resilience to the stresses induced by bile (Kramer et al., 1984). For example, resistance to detergents has been shown to be widespread across the E. coli phylogroups (D'Mello & Yotis, 1987; Jacobsen et al., 2009). Indeed, this resilience does pose a health risk. For example, Salmonella enterica Serovar Typhi can reside within the gallbladder, which can act as a reservoir in asymptomatic carriers (Dougan & Baker, 2014). Moreover, E. coli is one of the most commonly isolated microorganisms from bile in patients with community-acquired cholangitis (inflammation of the biliary tract) and choledocholithiasis (gallstones within the bile duct (Kaya et al., 2012; Razaghi et al., 2017)). However, while pathogenic E. coli do display some specialised responses to bile in terms of controlling the expression of some virulence genes, the major bile resistance mechanisms described above are shared between pathogens and commensals (Sistrunk et al., 2016). Indeed, one study has shown that many of E. coli strains involved in biliary tract infections were not associated with any of the pathotypes mentioned previously, indicating that they may be commensal or pathobiont strains (Razaghi et al., 2017).

1.2.3. Colonisation and growth within the intestine

1.2.3.1. E. coli attachment and growth

E. coli can be found in substantial numbers in the duodenum, jejunum, and ileum (Conway & Cohen, 2015). Multiple factors influence the numbers and distribution of microorganisms in these habitats (Donaldson *et al.*, 2016). Owing to the different roles of the small intestine and the large intestine, namely absorption of the products of digestion (vitamins, carbohydrates, proteins, and lipids) and the absorption of water and inorganic salts, respectively, the physical and histological structures of these environments differ (Figure 1.6).

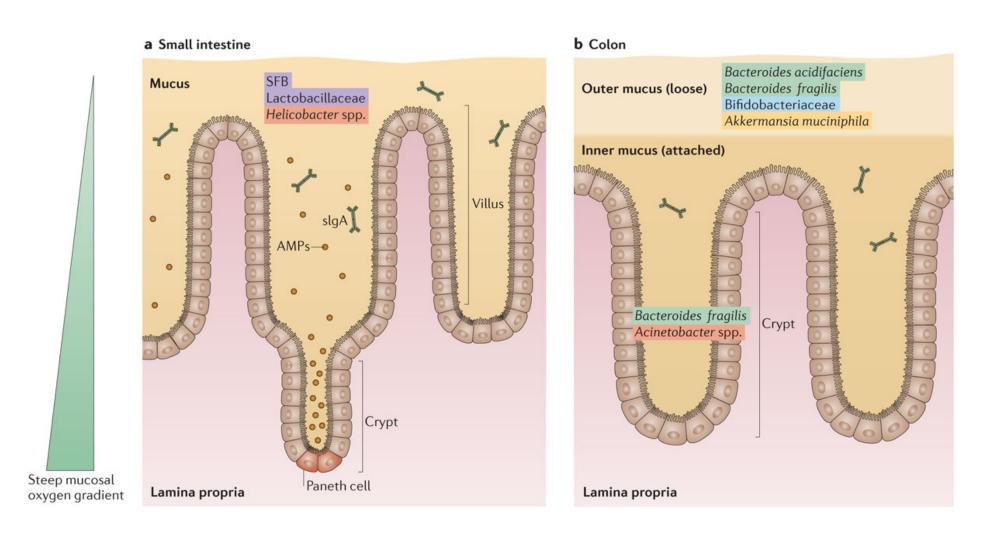


Figure 1.6. The mucosal epithelium of the (A) small intestine and (B) colon. From Donaldson et al., 2016.

Four microhabitats exist within the intestine: the surface of the epithelial cells, the deep mucous layer of the crypts, the mucous layer, and the lumen (Conway et al., 2013). To control excessive and aberrant overgrowth of the microbiota in each habitat, the intestine and mucosa provide both physical barriers to growth and precise immune surveillance and processing mechanisms. Peristalsis, required for moving luminal contents through the digestive tract, has a significant effect on bacterial ecology by controlling the rate of flow and mixing of luminal contents; excessive peristalsis would lead to washout of the microbiota in mucous, whilst too little peristalsis would result in insufficient mixing and microbial overgrowth (Cremer et al., 2016; Kim et al., 2016). Related to this is the rapid and high rate of turnover of the epithelium that is required to maintain tissue homeostasis. The continuous sloughing off of epithelial cells facilitates pathogen expulsion and can localise and confine inflammation or infection (Kim et al., 2010). Therefore, the growth rate of E. coli is set to maintain its population level ahead of the rate of mucous turnover (Conway & Cohen, 2015).

E. coli must embed itself within mucous in order to colonise efficiently and this is achieved using motility, fimbriae, LPS, and/or capsules (Conway *et al.*, 2013). Serine protease autotransporters of Enterobacteriaceae (SPATE) proteins are another colonisation mechanism widespread in *E. coli*, facilitating colonisation of mucous via a variety of functions such as immunoglobulin binding, mucous degradation, or utilising mucous as a nutrient source (Dautin, 2010). Pathogenic *E. coli* can also utilise specific colonisation mechanisms, for

example EPEC strains can directly attach to enterocytes using the bundle-forming pilus (Kaper *et al.*, 2004). Furthermore, mucous contains high concentrations of antimicrobial agents such as IgA, defensins, and cathelicidins, against which *E. coli* harbours multiple resistance or adaptation strategies. For example, *E. coli* may use Type 1 fimbriae to attach to mannosylated secretory IgA to enhance colonisation or increase turnover of fimbriated cells, and many strains produce the outer membrane (OM) protease, OmpT, which can degrade or otherwise process human antimicrobial peptides, including the human cathelicidin, LL-37 (Friman *et al.*, 1996; Gruenheid & Le Moual, 2012; Mason & Huffnagle, 2009; Thomassin *et al.*, 2012). Finally, specialised immune cells, such as M cells, Paneth cells, or dendritic cells, constantly sample the microbiota and their byproducts throughout the mucosa, presenting antigens to the adaptive immune system in specialised lymphoid tissue known as Peyer's Patches (Kim *et al.*, 2010).

Pathogenic and pathobiont *E. coli* strains elicit interesting mechanisms for evading or exploiting these immune mechanisms. For example, AIEC can utilise *de novo* pyrimidine biosynthesis to survive and replicate within macrophages in Crohn's disease patients (Thompson *et al.*, 2016). Some UPEC and diarrhoeagenic *E. coli*, such as K1, K4, or K5 strains, express capsules that mimic host tissue, allowing for the evasion or mitigation of phagocytosis and complement mediated killing (Cress *et al.*, 2014; Miajlovic *et al.*, 2014). *E. coli* can also escape phagocytosis by inhibiting immune signaling, such as the dampening of TLR-mediated cytokine release via the expression of Tir by EPEC strains, or the

inhibition of macrophage phagocytosis by manipulation of the FcγRIII-FcRγ complex (Van Avondt *et al.*, 2015). Commensal strains can also manipulate the immune system. For example, *E. coli* Nissle 1917 (EnN) can stimulate the production of β-defensin and chemokines in epithelial cell lines, resulting in the promotion of immune cell recruitment and the strengthening of the epithelial cell barrier (Sassone-Corsi & Raffatellu, 2015). Moreover, early-life colonisation by commensal *E. coli* and *Bifidobacterium infantis* has been associated with increased numbers of mature CD20⁺ B cells, indicating a potential interaction between early-life colonising *E. coli* and the developing immune system, resulting in colonisation resistance to pathogens (Lundell *et al.*, 2012; Sassone-Corsi & Raffatellu, 2015).

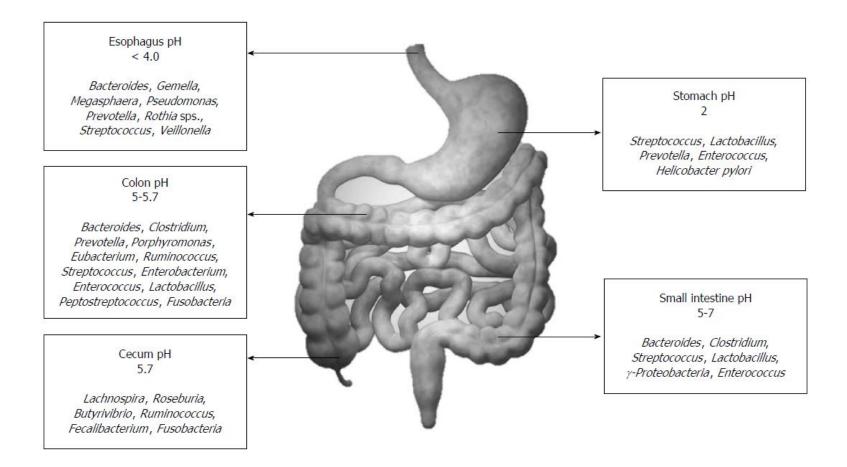


Figure 1.7. Distribution and composition of the healthy human gut microbiota. Adapted from Jandhyala et al., 2015.

1.2.3.2. Nutrient availability and the Restaurant Hypothesis

The environmental conditions of the intestine promotes the growth of huge numbers of microorganisms (Figure 1.7). Microbial load in the duodenum is as low as 10^3 cells per gram luminal content, increasing to 10^7 cells per gram in the ileum, to as many as 10^{12} cells per gram of luminal content in the colon (Sekirov *et al.*, 2010). The microbiota differs between the small and large intestines: the microbiota of the small intestine is not as well characterised as other regions, yet it is thought to contain predominantly *Streptococcus*, whereas the large intestine contains a much greater microbial load and diversity, dominated by anaerobes from the phyla Firmicutes (e.g. *Clostridia*) and Bacteroidetes (e.g. *Bacteroides*) (Hollister *et al.*, 2014; Jandhyala *et al.*, 2015). However, *E. coli* accounts for only 0.1% of the healthy intestinal microbiota, indicating that it does not utilise available nutrients within the large intestine as effectively as other species (Human Microbiome Project Consortium, 2012).

E. coli most commonly exists as a minority member of large, mixed-species biofilms within the gut mucosa (Conway & Cohen, 2015). In fact, the composition of the microbiota exerts the greatest influence on the engrafting ability of an *E. coli* strain, since it determines the nutritional niches that are available to the incoming strain (Conway & Cohen, 2015). In the colon, the mono- and di-saccharides that *E. coli* requires for growth are not provided directly from ingested food, but via the breakdown of complex polysaccharides in mucous or dietary fibre by anaerobes (Conway & Cohen, 2015). Therefore, it has been proposed that the

population of anaerobes within the mixed-species biofilm determines the profiles of sugars available for use by *E. coli* for growth (Conway & Cohen, 2015). The mixed-species biofilms are known as 'Restaurants', and the Restaurant Hypothesis states that the collection of strains of *E. coli* that reside within the intestine are those that can best assimilate the nutrients available within each Restaurant (Conway & Cohen, 2015). Studies using the streptomycin-treated mouse model support the hypothesis, showing that the effective use of nutrients is the primary determinant of colonisation by *E. coli* (Fabich *et al.*, 2008; Maltby *et al.*, 2013).

1.2.3.3. E. coli adaptation to changes in the intestine: nitrate respiration and gut inflammation

The GI tract is not a steady-state environment, with factors such as diet, antibiotic use, disease, age, and inflammation constantly altering environmental conditions within the gut (Conlon & Bird, 2014; Faber & Bäumler, 2014). Inflammation is an important mechanism to control the growth of microbes and resolve infections. However, a consequence of inflammation is that is can alter the gut environment in two significant ways: (i) by limiting the availability of trace elements such as iron and zinc, and (ii) through the generation of byproducts that alter the redox environment (Figure 1.8).

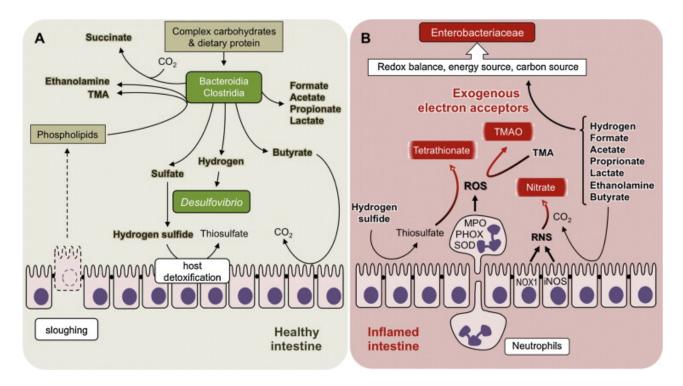
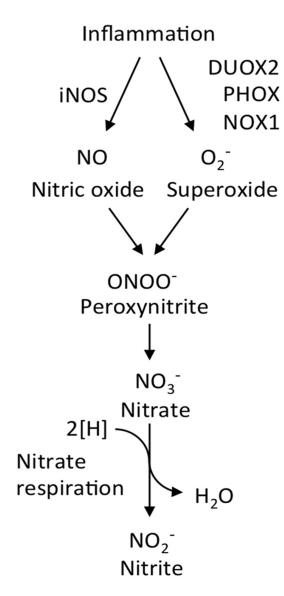



Figure 1.8. The inflammatory host response creates a new metabolic niche in the intestine. A The healthy intestine. B The

inflamed intestine. Adapted from Faber and Bäumler, 2014.

Alterations in the redox environment are largely due to changes in the expression of host genes such as NOX1 (NADPH oxidase 1), DUOX2 (dual-function NADPH oxidase 2), and iNOS (inducible nitric oxide synthase). Together, the proteins produced by these genes produce reactive oxygen species (ROS) and reactive nitrogen species (RNS), which create a hostile environment at the mucosal surface in order to limit microbial growth (Faber & Bäumler, 2014). However, the interaction of these various byproducts can also produce a variety of oxidised compounds that can be used as terminal electron acceptors by some bacteria. For example, iNOS generates nitric oxide that can react with superoxide radicals produced by NOX1 and DUOX2 to generate peroxynitrate (ONOO⁻), which itself can be further converted to nitrate (Figure 1.9). Thus, intestinal inflammation promotes the production of nitrate, a molecule that can be used as a terminal electron acceptor during anaerobic growth by facultative anaerobes such as E. coli (Faber & Bäumler, 2014; Winter et al., 2013).

Figure 1.9. The generation of nitrate during inflammation in the intestine (adapted from (Lopez *et al.*, 2012)).

Anaerobic nitrate respiration allows *E. coli* to both enhance its metabolic capacity and to boost its growth in the gut. Respiration allows for the maintenance of redox balance by transferring electrons from NADH to terminal electron acceptors such as nitrate, while at the same time preserving phosphoenolpyruvate (PEP) for anabolic reactions (Faber & Bäumler, 2014). Respiration also allows *E. coli* to use a broader range of carbon sources, such as the non-fermentable sugar, glycerol, or formate and hydrogen, as electron donors in the anaerobic respiratory electron transport chain (Cole & Richardson, 2013). This metabolic flexibility greatly enhances the competitiveness of *E. coli*, allowing the population of *E. coli* to expand in the gut during inflammation, i.e. resulting in an enterobacterial bloom (Jones *et al.*, 2011; Winter *et al.*, 2013).

During periods of inflammation in the gut, blood plasma nitrate levels have been shown to increase (Dykhuizen *et al.*, 1996). Moreover, increased levels of nitrate can be detected in the ceacal mucous of mice treated with dextran sulfate sodium (DSS), a trigger for gut inflammation (Dykhuizen *et al.*, 1996; Winter *et al.*, 2013). Humans with chronic gut inflammation characteristically have an increased abundance of Enterobacteriaceae, which may contribute to the pathogenesis of IBD (Alhagamhmad *et al.*, 2016; Kotlowski *et al.*, 2007). Moreover, nitrate produced in the inflamed mouse intestine has been shown to directly boost the growth of *E. coli* (Winter *et al.*, 2013). Therefore, it has been proposed that chronic inflammation alters the environment of the gut to favour the growth of *E. coli*, in particular via the provision of increased

amounts of nitrate which allow the bacterium to outgrow other members of the microbiota by anaerobic respiration. This may then lead to an increased abundance of *E. coli* under chronic inflammation, which, in turn, may promote or worsen the symptoms of IBD.

1.3. Functional genomics and transposon sequencing

1.3.1. Functional genomics

Functional genomics aims to describe gene functions and interactions using a wide array of genomic and transcriptomic technologies. Mutagenesis is a core component of the functional genomics toolkit, allowing for 'loss-of-function' annotations of genes, i.e. disruption or deletion of a genes results in reduced growth or physiological changes of the mutant that provide clues as to the function of the gene being investigated. Among the most widely used techniques for gene deletion or disruption in *E. coli* include λ Red recombinase-based gene deletion and transposon mutagenesis (Datsenko & Wanner, 2000; Goryshin et al., 2000). These techniques have been used to generate libraries representing mutants in the majority of genes in E. coli, allowing for comprehensive analyses of genetic requirements for growth under different conditions (Baba et al., 2006; Joyce et al., 2006). Until relatively recently, this has most commonly been conducted by screening libraries of defined knockout mutants, cultured separately in arrayed mutant pools. A notable example of this is the Keio collection, a library of 3864 singlegene deletion mutants constructed in the E. coli K-12 strain, BW25113, which has been used to broaden our understanding of growth

requirements of *E. coli in vitro* (Joyce *et al.*, 2006; Long & Antoniewicz, 2014). However, this approach has some limitations, including being labour-intensive to construct and screen, and only providing resolution to the gene level (Barquist *et al.*, 2013). More recently, approaches have been developed to overcome these issues, including what will be collectively termed here as 'transposon sequencing'.

1.3.2. Transposon sequencing

Transposon sequencing combines random transposon mutant libraries with massively parallel sequencing (Barquist *et al.*, 2013; van Opijnen & Camilli, 2013). These methods require transposon mutant libraries which are pooled together to allow for simultaneous and rapid screening of all mutants at the same time. Once screened, libraries are then processed, sequenced to identify transposon-genomic DNA junctions, and analysed, to precisely locate and quantify transposon insertions, allowing for the determination of genetic requirements for growth under a particular condition (Figure 1.10).

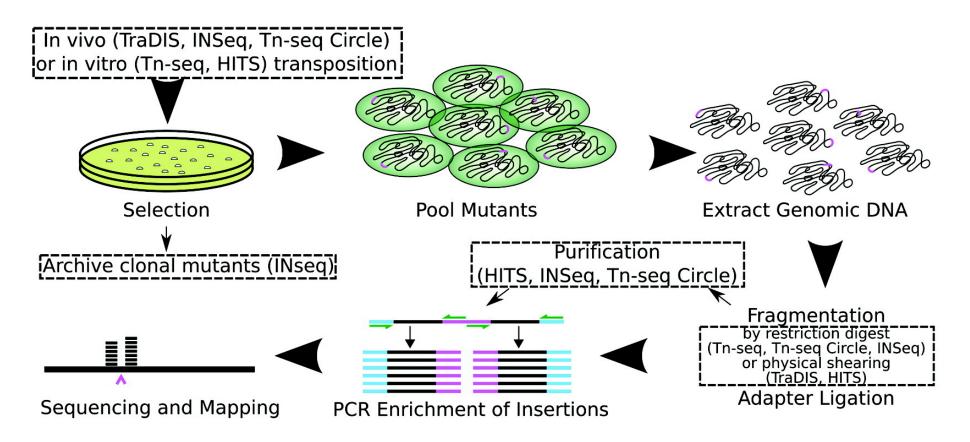
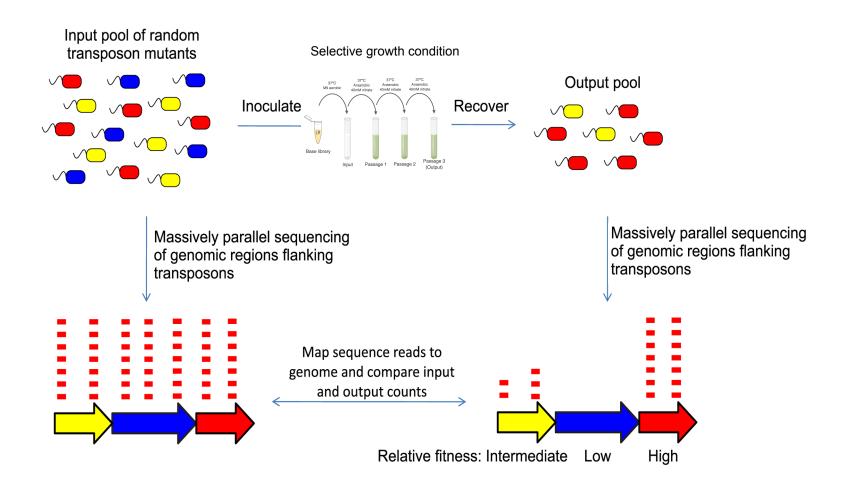
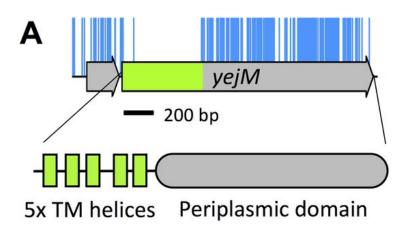


Figure 1.10. An illustration of the typical transposon sequencing protocols. Adapted from Barquist *et al.*, 2013.


Transposon sequencing offers several advantages over defined mutant libraries. Transposon mutagenesis is a more rapid mutagenesis method compared to targeted gene deletions, and since transposon sequencing uses pooled mutant libraries, library screening is much more rapid. Massively parallel sequencing allows for extremely high depth of coverage, and since the precise location of transposon insertions can be determined, it can provide high-level resolution on requirements for protein domains, promoters, non-coding RNA, and intergenic regions. Moreover, multiplexing allows for several libraries to be sequenced simultaneously, allowing for much greater scalability of genetic screens to incorporate several growth conditions (Gray *et al.*, 2015).

Several iterations of transposon sequencing, including 'Tn-seq' (transposon sequencing), 'HITS' (high-throughput insertion tracking by sequencing), 'INSeg' (insertion sequencing), and deep 'TraDIS' (transposon-directed insertion site sequencing), have been developed and, whilst their guiding principles are similar, there are minor variations associated with each method (see Figure 1.10; (Barguist et al., 2013; van Opijnen & Camilli, 2013)). Transposon sequencing is typically applied to mutant libraries constructed using either the Tn5 or Himar1 Mariner transposons, since both transposons can be used in broad range of species, and insert with low bias for any particular region or sequence within the genome (Goryshin et al., 2000; Lampe et al., 1998). Tn-seq and INSeq utilise the Mariner transposon specifically, whereas HITS and TraDIS can use any transposon or insertional method. Once the mutant


library has been constructed by growing mutants on agar plates, the mutant colonies are pooled to create a library of mutated cells that are incubated under selective growth conditions. Genomic DNA is then extracted from the mutant pool, fragmented, and transposon insertiongenomic DNA junctions are enriched (Figure 1.10). Tn-seq and INSeq fragment DNA using the type II restriction enzyme, *Mmel*, which cleaves 20 bp downstream from its recognition site incorporated near the terminal repeats of the Mariner transposon. On the other hand, during TraDIS and HITS, DNA is fragmented physically by shearing and then DNA fragments of a specific size are selected by, for example, agarose gel electrophoresis (van Opijnen & Camilli, 2013). In all methods, sequencing adaptors are ligated to fragmented DNA ends, allowing for amplification of transposon-gDNA junctions using adaptor-specific and transposonspecific primers. To ensure greater amplification of transposon-containing DNA fragments only, TraDIS employs splinkerette adaptors, which only allow hybridisation of the reverse strand primer when the forward strand primer has generated a complementary strand (see Figure 2.2, Materials and Methods) (Barquist et al., 2016). Finally, following purification of PCR products, transposon-enriched DNA is subject to high-throughput sequencing using standard sequencing primers in conjunction with transposon-specific primers. This generates reads, or short sequences, corresponding to the transposon-gDNA junction, which are digitally counted to determine both the precise location of transposon insertions in

the genome, as well as the frequency of those insertions in the mutant library.

The design of a transposon sequencing experiment and the means by which the sequencing reads are analysed influence how genetic requirements for growth under a particular condition are determined (Figure 1.11). For example, a gene may be nominated qualitatively as 'essential' or 'non-essential' for survival, depending on whether or not transposons are absent from that gene to a sufficient degree following growth under a particular condition. For instance, TraDIS studies have used the 'insertion index', the number of transposon insertions within a protein coding sequence (CDS) as a qualitative measure of gene essentiality (Goodall et al., 2018; Langridge et al., 2009). However, following growth under a selective condition, transposons may not be entirely absent from a gene but altered in read counts to a statistically significant degree. This allows for genetic requirements for growth to be determined **quantitatively**, typically calculated as the ratio of observed reads in an input (control) mutant pool compared to an output (test) pool (Figure 1.11). These scores are usually expressed as log₂ fold change (logFC) or as a 'fitness value'. To help refine these measures of essentiality or fitness, transposon insertions and read counts can be visualised using software such as Artemis, allowing for the determination of essentiality of protein domains or noncoding regions where transposon insertions would be absent (for example, see Figure 1.12 (Goodall et al., 2018)).

Figure 1.11. Experimental strategy for TraDIS mutant screens. An input pool of random transposon insertion mutants is generated, and used to inoculate *in vitro* experimental conditions. Output pools of bacteria that are capable of survival and growth in each condition are harvested and their gDNA isolated. Massively parallel sequencing of the regions flanking each transposon allow the disrupted genes to be identified. Genetic requirements for growth can be measured qualitatively based on the presence or absence of transposon insertions (e.g. the non-essential yellow and red genes - represented by arrows - contain transposon insertions, unlike the essential blue gene which contains no insertions). Comparison of the sequence counts derived from the input and output pools can also allow the relative fitness of each mutant to be assessed. Adapted from (Chaudhuri *et al.*, 2013).

Figure 1.12. Additional features identified through detailed analysis of high-resolution insertion data. Insertions within the *yejM* protein coding sequence (CDS) are localised to a nonessential periplasmic domain. The 5' end of the CDS has no insertions and corresponds to the five essential transmembrane (TM) domains of YejM. Blue lines indicate transposon insertion sites. Grey arrows indicate non-essential genes/domains, while green arrows indicate essential genes/domains. Adapted from Goodall *et al.*, 2018.

1.3.3. TraDIS studies of E. coli

TraDIS has been applied to investigate important biological questions in a number of different bacteria, including *E. coli* (some published TraDIS studies are outlined in Table 1.2). The application of TraDIS has led to the discovery of new gene functions in *E. coli* that may have not been revealed using other methods. For example, TraDIS has been used to define the complement of genes required for capsule biosynthesis in the

K1-producing UPEC strain, PA45B, uncovering previously unidentified roles for two regulators, mprA and IrhA (Goh et al., 2017). Interestingly, a role for IrhA was identified as a result of the enrichment of transposon insertions oriented within an intergenic region (IGR) upstream of IrhA, suggesting that increased transcription of the gene significantly impacted capsule production (Goh et al., 2017). In addition, TraDIS was used to study motility of the fluoroquinolone-resistant sequence type, ST131, an emerging group of multidrug-resistant E. coli associated with disease, demonstrating that mutations in 30 genes induced hypermotility, including 8 IGRs (Kakkanat et al., 2017). TraDIS has also been used to study GI tract colonisation, invasion, and systemic survival of *E. coli* K1 in rat pups (McCarthy et al., 2018). This study identified 167 gene products required for GI tract colonisation, and 97 genes required for survival in human serum (McCarthy et al., 2018). Finally, a TraDIS-based approach was retrospectively applied in a study of O157:H7 colonisation of the bovine GI tract (Eckert et al., 2011). In this work, TraDIS was applied to a relatively small mutant pool of 1,805 mutants, and, when comparing their results to a previous signature-tagged mutagenesis screen (using the same mutant library), they were able to improve the assignment of fitness scores from 4.4% of the mutants analysed to 91.1%, including the identification of 41 additional attenuating insertions in the locus of enterocyte effacement (LEE) (Eckert et al., 2011). Furthermore, no further animal use was required in this study - TraDIS being applicable to use on

preserved cultures from the initial colonisation screen - which represents a significant cost and material benefit to *in vivo* screens.

Finally, as previously mentioned, TraDIS can offer an extremely high depth of coverage, allowing the determination of essentiality to the sub-gene or protein domain level. An excellent example of this has been demonstrated recently by Goodall *et al.*, which is discussed later in this thesis (see Chapter 3) (Goodall *et al.*, 2018).

Study	Reference
E. coli K1 in vitro growth, GI tract colonisation, and survival in serum	(McCarthy <i>et al</i> ., 2018)
Capsule production in K1 UPEC strain PA45B	(Goh <i>et al.</i> , 2017)
Motility in <i>E. coli</i> ST131	(Kakkanat <i>et al.</i> , 2017)
The essential genome of <i>E. coli</i> K-12	(Goodall <i>et al.</i> , 2018)
Serum resistance in <i>E. coli</i> ST131	(Phan <i>et al.</i> , 2013)
Susceptibility to T4 and T7 phage in O157:H7	(Cowley <i>et al</i> ., 2018)
Retrospective study of O157:H7 screened in cattle	(Eckert <i>et al</i> ., 2011)
S. Typhi adaptation to survival in water	(Kingsley <i>et al.</i> , 2018)
Twitching motility-mediated biofilm formation in Pseudomonas aeruginosa	(Nolan <i>et al</i> ., 2018)
The essential gene set of Yersinia pseudotuberculosis IP32953	(Willcocks <i>et al.</i> , 2018)

 Table 1.2. TraDIS studies of *E. coli* and other Enterobacteriaceae.

1.4. Objectives of this study

The overall objective of this work is to use TraDIS to characterise the genetic requirements for growth under conditions relevant to *E. coli* colonisation of the GI tract. Some aspects of *E. coli* colonisation remain poorly understood, therefore TraDIS should offer comprehensive and novel insights into colonisation mechanisms. To achieve this, a transposon mutant library of MG1655 was firstly subjected to analysis by TraDIS in order to understand the genetic requirements for growth in LB medium. The mutant library was then subject to growth in the presence of bile to allow a TraDIS-based analysis of the genetic requirements underpinning bile resistance in *E. coli*. Similarly, TraDIS was applied to the mutant library following anaerobic growth in the presence of the alternative terminal electron acceptor, nitrate, to understand global genetic requirements during anaerobic nitrate respiration.

Chapter 2 Materials and Methods

2.1. Strains and growth conditions

Strains and oligonucleotides used in this study are listed in Table 2.1 and Table 2.2. *E. coli* were routinely cultured in Lysogeny Broth (LB) (5 g/L Yeast Extract (Merck), 10 g/L NaCl (Sigma), 10 g/L Tryptone (Merck)). *E. coli* were cultured under anaerobic conditions in M9 minimal medium (33.9 g/L Na₂HPO₄, 15 g/L KH₂PO₄, 5 g/L NH₄Cl, 2.5 g/L NaCl, 1 g/L MgSO₄ 0.4% (w/v) glucose, 10 μ g/ml thiamine and 25 μ g/ml uridine adjusted to pH 7.4). For solid media, 1.5% (w/v) agar (Merck) was added. Bacteria were plated onto solid media, grown overnight at 37°C, and stored at 4°C until needed. Overnight cultures were inoculated with a single colony from solid agar and grown overnight in LB shaking at 37°C. Antibiotics were included in solid and liquid medium where appropriate at the following concentrations: Kanamycin (Sigma-Aldrich) 50 μ g/ml, Chloramphenicol (Sigma-Aldrich) 20 μ g/ml, Ampicillin (Sigma-Aldrich) 100 μ g/ml.

Strain	Characteristics	Source
<i>E. coli</i> K-12 <i>substr.</i> MG1655		Prof. Ian
	$E \rightarrow ih/C$ of $b = 0$ or $b = 1$	Henderson,
	F-, λ-, <i>ilvG</i> -, <i>rfb</i> -50, <i>rph</i> -1	University of
		Birmingham, UK
<i>E. coli</i> K-12 <i>substr.</i> BW25113		E. coli genetic
	F ⁻ , DE(<i>araD-araB</i>)567, <i>lacZ</i> 4787(del):: <i>rrnB-</i> 3,	stock centre
	LAM ⁻ , rph-1, DE(rhaD-rhaB)568, hsdR514	(CGSC), Yale,
		USA.

Table 2.1. Strains used in this study.

Primer	Sequence (5' - 3')	Tm (°C)	Description
			Splinkerette adaptor - top strand sequence * indicates
SpIA5_top	G*AGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T	N/A	a phosphorothioate group
			Splinkerette adaptor - bottom strand sequence. *
SpIA5_bottom	/5Phos/G*ATCGGAAGAGCGGTTCAGCAGGtttttttttttcaaaaaaa*a	N/A	indicates a phosphorothioate group
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.1	CAAGCAGAAGACGGCATACGAGATAACGTGATGAGATCGGTCTCGGCATTCC	65	ATCACGTTAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.2	CAAGCAGAAGACGGCATACGAGATAAACATCGGAGATCGGTCTCGGCATTCC	65	CGATGTTTAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.3	CAAGCAGAAGACGGCATACGAGATATGCCTAAGAGATCGGTCTCGGCATTCC	65	TTAGGCATAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.4	CAAGCAGAAGACGGCATACGAGATAGTGGTCAGAGATCGGTCTCGGCATTCC	65	TGACCACTAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.5	CAAGCAGAAGACGGCATACGAGATACCACTGTGAGATCGGTCTCGGCATTCC	65	ACAGTGGTAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.6	CAAGCAGAAGACGGCATACGAGATACATTGGCGAGATCGGTCTCGGCATTCC	65	GCCAATGTAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.7	CAAGCAGAAGACGGCATACGAGATCAGATCTGGAGATCGGTCTCGGCATTCC	65	CAGATCTGAT
			Splinkerette-specific primer with bardcoding sequence
SpIAP5.8	CAAGCAGAAGACGGCATACGAGATCATCAAGTGAGATCGGTCTCGGCATTCC	65	ACTTGATGAT
qPCR2.1	AATGATACGGCGACCACCGAG	70	P7-specific primer for library quantification
qPCR2.2	CAAGCAGAAGACGGCATACGA	67	P5-specific primer for library quantification
	AATGATACGGCGACCACCGAGATCTACACATGATGATATATTTTTATCTTGTGC		
Ez-Tn5	AATGTAACATCAGAG	>75.0	Transposon-specific sequencing primer
iPCRtagSeq	AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC	>75.0	Index read sequencing primer
Illumina_Read_1	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	N/A	Illumina Read 1 sequencing primer

 Table 2.2. Primers and other oligonucleotides used in this study.

2.2. Transposon mutant library construction

The MG1655 transposon mutant library used in this work was originally constructed by Dr. Emma Smith in the School of Microbiology, UCC.

2.2.1. Preparation of electrocompetent E. coli

Electrocompetent *E. coli* were prepared to allow for transformation with Tn5 transposomes (Epicentre). A single colony of *E. coli* K-12 MG1655 was suspended in 5 ml of LB and grown overnight at 37°C. 200 μ l of overnight culture was diluted into 100 ml fresh LB and grown, shaking, at 37°C, until the culture reached an OD₆₀₀ = 0.3 - 0.5. The culture was cooled on ice for 30 minutes, before being centrifuged at 3000 x *g* for 10 minutes at 4°C. The supernatant was discarded and pellets were resuspended in 100 ml of sterile, ice-cold, deionized water (dH₂O), followed by centrifugation. This step was repeated once more, resulting in two wash steps. The cell pellet remaining following the second centrifugation was resuspended in 3 ml sterile ice-cold dH₂O, centrifuged again, and then resuspended in 180 μ l sterile, ice-cold, 20% (v/v) glycerol. This mixture was aliquoted into 50 μ l volumes and used immediately or stored at -80°C for later use.

2.2.2. Transposon mutagenesis

Aliquots of electrocompetent MG1655 were transformed with the EZ-Tn5TM <KAN-2>Tnp TransposomeTM (Epicentre) by electroporation, following EZ-Tn5TM kit instructions. Briefly, 1 μ I volumes of transposome (containing the transposon DNA fragment and transposase enzyme) were

incubated with electrocompetent cells on ice for 1 min. The mixture was transferred to a 50 x 2 mm universal fit eletroporation cuvette (Cell Projects) and then subject to electroporation. Cells were immediately resuspended in 950 µl super optimal broth with catabolite repression (SOC; 20 g/L tryptone, 5 g/L yeast extract, 0.5 g/L NaCl, 2.5 mM KCl, 10 mM MgCl₂, 20 mM glucose) before incubating at 37°C, shaking for 1 h. Recovered cells were plated onto QTrays (Genetix) containing LB kanamycin agar and incubated for 24 h at 37°C. Colonies were counted, pooled, and resuspended into sterile LB 10% (w/v) glycerol before storage at -80°C. Transposon mutagenesis was conducted six times, creating six independent pools of transposon mutants (Table 2.3)

Transposon mutant pool	Numer of colonies (approx.)		
1	179,900		
2	175,500		
3	240,000		
4	90,600		
5	101,000		
6	132,000		
Total	919,000		

Table 2.3. Numbers of kanamycin-resistant colonies within each mutant pool.

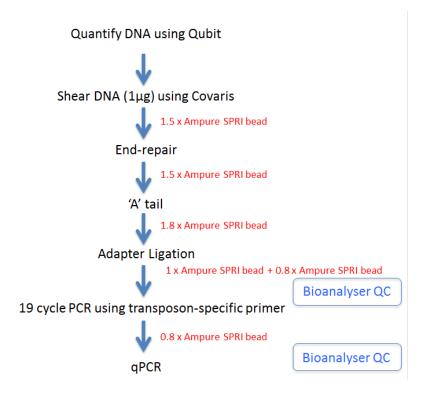
2.2.3. Base library

Aliquots of all 6 mutant pools were pooled together to generate a 'base library' composed of approx. 919,000 mutants (see Table 2.3). Mutant pools were resuspended to an OD_{600} of 1 in sterile LB broth with 10% (v/v) glycerol and aliquoted into 1 ml volumes. The 1 ml aliquots were pooled together, mixed, and aliquoted into further 1 ml volumes before storage at -80°C.

2.3. Transposon library screening

2.3.1. Assay for growth in the presence of bile

To investigate genetic requirements for growth in the presence of bile, the base library was screened in LB broth supplemented with 2% (w/v) and 10% (w/v) ox bile as described previously (Langridge *et al.*, 2009). A base library aliquot was grown in 500 ml ml sterile LB kanamycin broth overnight, shaking at 37°C. gDNA was isolated from 5 ml of culture using a Genomic-tip 100/G kit, and was thereafter denoted as the INPUT library. An equivalent of 3 x 10^7 cfu from the input culture was transferred to 1 ml sterile LB broth containing 0.02% (w/v) Ox-bile (Sigma-Aldrich) and incubated at 37°C for 50 minutes. The full volume of culture was then transferred to 50 ml sterile LB broth containing 2% (w/v) Ox-bile and incubated overnight, shaking at 37°C. 1 ml of this culture was transferred to 50 ml LB containing 10% (w/v) Ox-bile and incubated for 24h, shaking at 37°C. This culture was thereafter denoted as the OUTPUT library.


2.3.2. Assay for anaerobic growth in the presence of nitrate

100 µl aliquots (duplicates) of the base library was inoculated into 10 ml of sterile M9 broth and grown overnight, shaking aerobically, at 37°C. This was denoted the INPUT library and DNA was isolated as described. Cells were pelleted by centrifugation at 3000 x g for 10 minutes and then resuspended to an OD_{600} = 1 in sterile M9 salts solution (M9 salts in water only). 8 universal tubes were filled to the brim (approximately 33ml) with sterile M9 kanamycin broth, 4 cultures were each supplemented with 0.4% (w/v) glucose or 0.4% (w/v) glycerol. At this point, 40mM sodium nitrate was added to 2 tubes containing glucose or glycerol, in total giving 2 tubes with M9 and glucose only, 2 tubes with M9, glucose, and nitrate, and 2 tubes with M9, glycerol, and nitrate. In an anaerobic chamber, each universal tube was inoculated with input library culture to an OD_{600} = 0.05. Tubes were mixed gently and approximately 2 ml of liquid was removed from each tube (to create a headspace to allow cells to mix) before sealing tightly. Universal tubes were incubated at 37°C, shaking (to keep the *E. coli* cells suspended and cultures homogenous), for 24h, in an anaerobic jar. Culturing in universal tubes was repeated, using culture from the previous passage as inoculum (inoculum level at 1%) for a total of three passages. The third passage of each condition was denoted the OUTPUT snd gDNA was isolated from input and outputs cultures using a Genomic-tip 100/G.

2.4. TraDIS

I acknowledge and thank Francesca Short, Christine Boinett, and Amy Cain of the the Wellcome Trust Sanger Institute for carrying out the initial TraDIS sequencing and some preliminary analyses of the base library and mutant library following growth under anaerobic conditions (as per section 2.3.3), and Fiona Crispie and Laura Finnegan of Teagasc Moorepark for TraDIS sequencing of the mutant library following growth in bile (section 2.3.2). All analyses of TraDIS sequencing data discussed in this thesis were carried out by myself.

Standard TraDIS analysis was conducted as per previously established protocols (Barquist *et al.*, 2016). In order to carry out TraDIS, gDNA was used to generate sequencing libraries suitable for Illumina[®] sequencing technology (see Figure 2.1).

Figure 2.1. TraDIS sequencing library preparation workflow. From Barquist *et al.* 2016.

Briefly, this involved physical shearing gDNA into uniform fragments, then end-repairing and dA-tailing those fragments in order to allow the attachment of specialised adaptors (see Figure A1.2). These adaptors facilitated the amplification specifically of transposon-containing DNA fragments by PCR. qPCR was conducted on the PCR-amplified library in order to quantify the amount of transposon-containing DNA within the library, before sequencing the library following standard protocols for Illumina[®] sequencing. Library preparation was conducted using a custom protocol (courtesy of Francesca Short) adapted for use with the NEBNext[®] DNA Library Prep Reagent Set for Illumina[®] (NEB; see Figure 2.1). Appropriate working guidelines were followed throughout the protocol to ensure minimal contamination and sample loss, including use of low-bind tubes, separation of pre-PCR and post-PCR preparation areas and reagents, and use of filtered micropipette tips.

Transposon sequencing data was processed, mapped, and analysed using the Bio::TraDIS pipeline of command-line software utilities (Barquist *et al.*, 2016). This analysis generated lists of genes and statistical analyses as a measure of the numbers of transposon mutants within each TraDIS library.

2.4.1. DNA preparation and shearing

gDNA was quantified and subject to a quality check prior to TraDIS library construction using a Qubit fluorometer (Invitrogen). At least 1 µg high quality DNA was used for each library preparation. DNA was made up into 120 µl with elution buffer (EB; 10 mM Tris-Cl, pH 8.5) in a sterile microcentrifuge tube and mixed thoroughly. Resuspended DNA was transferred to a fresh, labeled microTUBE (Covaris; contains an AFA filament), and inserted into the holder of an M220 Focused-ultrasonicator (Covaris). DNA was sheared into 250 - 300 bp fragments using a with the following parameters: Peak Power 140; Duty Factor 10%; Cycles Per

Burst 200; Time 80 s. When sheared, samples were stored in tubes or transferred to a sterile, labeled microcentrifuge tube.

2.4.2. AMPure XP cleanup

Sheared DNA was purified using AMPure XP beads (Beckman Coulter). Prior to purification, magnetic beads were mixed and allowed to acclimate to room temperature for 30 mins. In a fume hood, 180 µl AMPure XP beads were added to 120 µl sheared DNA and mixed fully by pipetting up and down 10 times. The mixture was incubated at room temperature for 5 mins, before placing onto a magnetic rack for approximately 4 mins until the supernatant cleared. The supernatant was removed and transferred to a clearly labeled microcentrifuge tube, which was retained for quality control checks. 300 µl 80% ethanol was added to the tube containing the magnetic beads, ensuring the beads were not disturbed, and left for 30 s. The ethanol was removed and discarded, again ensuring that the beads were not disturbed. Ethanol was added and removed in this manner again for a total of 2 washes. The tube containing the magnetic beads was centrifuged briefly to collect any remaining ethanol at the bottom of the tubes, which was carefully removed by pipetting. Beads were air-dried for 2 - 3 mins until the magnetic bead pellet had the appearance of wet paint. Once dry, tubes were removed from the magnet and 52 µl EB was added to resuspend the magnetic beads. Tubes were vortexed thoroughly to resuspend the magnetic beads and then incubated for 5 mins at room temperature. Tubes were placed on a magnetic rack for 2 -

3 minutes until the supernatant was clear and 50 μ l of this cleared solution was transferred to a fresh, labeled microcentrifuge tube.

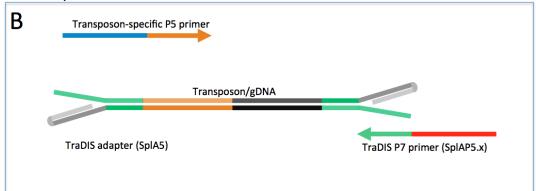
2.4.3. End-repair, dA-tailing, adaptor ligation

In order to sequence DNA, specialised sequencing adaptors have to be ligated to either end of the purified fragments. This required an initial repair of any overhanging breaks using T4 polynucleotide kinase and the DNA polymerase I Large (Klenow) fragment (included in the NEBNext[®] DNA Library Prep Reagent Set), followed by dA-tailing of the end-repaired DNA to allow the adaptor to anneal to the DNA fragments.

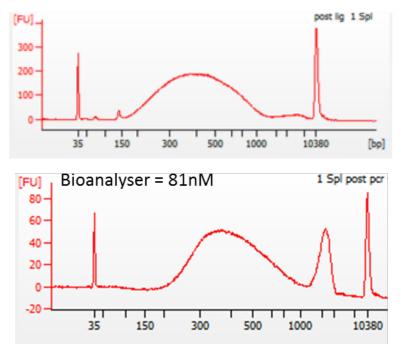
2.4.3.1 End-repair

The following components were mixed in a sterile 0.2 ml PCR tube (all components indicated apart from the sheared DNA are derived from the NEBNext[®] DNA Library Prep Reagent Set): purified sheared DNA (75 μ l); phosphorylation reaction buffer (10 μ l); T4 DNA polymerase (5 μ l); T4 polynucleotide kinase (5 μ l); dNTPs (4 μ l); DNA polymerase I, Large (Klenow; 1 μ l); sterile dH₂O (to 100 μ l). The mixture was incubated in a thermal cycler for 30 mins at 20°C and purified using 160 μ l AMPure XP beads. The mixture was eluted in 32 μ l EB into a fresh, sterile PCR tube.

2.4.3.2. dA-tailing


End-repaired DNA was dA-tailed by adding the following components into a sterile PCR tube (all components indicated apart from the end-repaired DNA are derived from the NEBNext[®] DNA Library Prep Reagent Set):

end-repaired, blunt DNA (32 µl); NEBuffer 2, 10X (5 µl); deoxyadenosine 5'-triphosphate (10 µl); Klenow fragment (3' \rightarrow 5' exo-; 3 µl). The mixture was incubated in a thermal cycler for 30 mins at 37°C and purified using 90 µl AMPure XP beads. The mixture was eluted into 10 µl EB in a fresh, sterile PCR tube.


2.4.3.3. Adaptor ligation

Specialised 'Splinkerette' indexed adaptors (see Figure 2.2) were ligated to dA-tailed DNA by adding the following components into a sterile PCR tube (all components apart from the dA-tailed DNA and Spl5 Adaptor are derived from the NEBNext[®] DNA Library Prep Reagent Set): dA-tailed DNA (10 μ l); Quick Ligation reaction buffer, 2X (25 μ l); Spl5 Adaptor, 10 μ M (10 μ l); Quick T4 DNA ligase 5 μ l). The mixture was incubated in a thermal cycler for 15 mins at 20°C. 3 μ l of USER Enzyme Mix was added and mixed by pipetting up and down, before incubating again in a thermal cycler at 37°C for 15 mins. The mixture was purified using 90 μ l AMPure XP beads and eluted in 100 μ l EB into a fresh, sterile PCR tube. To verify successful ligation of adaptors, a 1:10 dilution of purified ligated DNA was made in EB and 1 μ l was added to an Aglient High Sensitivity Chip (Aglient), to be analysed in an Agilent 2100 Bioanalyzer (Aglient). Successful ligation of adaptors was verified by the production of a characteristic molecular weight profile (Figure 2.3).

TraDIS Splinkerette

Figure 2.2. TraDIS splinkerette adaptors. Splinkerettes (green DNA strands with grey loops) are attached to either end of the transposon/gDNA fragment. Amplification of both strands can only occur if the transposon-specific primer (indicated) hybridises to the transposon-specific sequence first. Adapted from Barquist *et al.*, 2016.

Figure 2.3. Typical High Sensitivity Agilent Bioanalyzer traces of DNA fragments (1:10 dilution) post-ligation (top graph) and post-PCR (bottom graph) using TraDIS adaptors and primers. Adapted from Barquist *et al.* 2016.

2.4.4. Bead-based size selection and PCR enrichment of adaptor-ligated DNA

2.4.4.1. Bead-based size selection

Adaptor-ligated DNA was selected by bead-based size selection. This involved following the AMPure XP protocol to select for fragments of size 370 bp, approximately the same size as DNA fragments (250-300bp) with ligated adaptors (43 bp each). The protocol described in section 2.4.2. was followed, except starting with 100 μ l adaptor-ligated DNA and 70 μ l AMPure XP beads and eluting into 15 μ l Tris-HCl or Tris-EDTA (TE). All supernatants were retained for quality-control analysis.

2.4.4.2. Enrichment of adaptor-ligated DNA by PCR

The following components were added into a sterile PCR tube: DNA (15 μ I); sterile H₂O (5 μ I); KAPA Biosystems HiFi HotStart ReadyMix, 2X (25 μ I); 5' transposon-specific primer (0.5 μ I); SPIAP5.x barcoded primer (see Table 2.2), 10 μ M (5 μ I). The mixture was incubated in a thermal cycler with the following parameters: 95°C 3 mins; 19 cycles of 98°C (20 s), 65°C (30 s), 72°C (30 s); 72°C 5 mins; hold at 4°C. The mixture was purified twice using AMPure XP beads, first with 40 μ I beads and eluting into 50 μ I EB, then with 40 μ I beads and eluting into 50 μ I EB, then with 40 μ I beads and eluting into 30 μ I EB. To confirm PCR purification of adaptor-ligated DNA, 1 μ I of a 1:10 dilution of purified PCR product was run on a Bioanalyzer as described above (see Figure A1.2 for an example of a post-PCR Bioanalyzer profile).

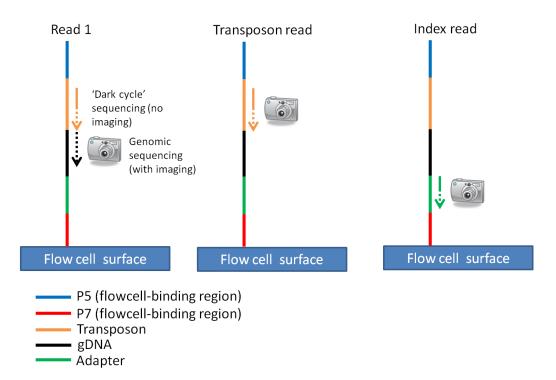
2.4.5. qPCR

The concentration of transposon-containing DNA fragments in each library was measured by quantitative PCR (qPCR). qPCR was conducted using the KAPA SYBR® FAST qPCR Master Mix (2X) Kit (KAPA biosystems). Two gPCR reactions were conducted per library: A. using Illumina library quantification DNA standards (KAPA Biosystems) and primers qPCR2.1 and qPCR2.2 (see Table 2.2), which target the P7 and P5 regions of the ligated adaptors, respectively; B. using the P5-targeting primer (qPCR 2.2) and the transposon-sequencing primer (see Table 2.2). Reaction A. is used to quantify the total concentration of DNA in each library, while reaction B. is used to quantify the percentage of DNA containing transposon-gDNA junctions. The two reactions were set up as follows: for reaction A. the following were added to a sterile PCR tube: purified adaptor-ligated DNA, diluted 1:5000 (13 µl); KAPA gPCR master mix with Illumina standards (39 μ I); sterile dH₂O (13 μ I). For reaction B. the following were added to a sterile PCR tube: purified adaptor-ligated DNA, diluted 1:5000 (13 µl); KAPA gPCR master mix, without Illumina primers (32.5 µl); transposon-specific sequencing primer, 10 µM (1.3 µl); qPCR primer 2.2, 10 μ M (1.3 μ I); sterile dH₂O (16.9 μ I). Each reaction mix was (total 65 µl) divided into three wells of a white Lightcycler[®] 480 96 well plate (Roche) such that 20 µl was in each well. This way reactions were conducted in triplicate. The plate was then incubated in a Lightcycler[®] 480 Instrument (Roche) under the following conditions: 95°C (5 min), and 35 cycles of 95°C (30 s) and 65°C (45 s). The concentration of the undiluted libraries was then calculated using the quantification

template spreadsheet, available from KAPA at https://www.kapabiosystems.com/document/kapa-library-quantificationdata-analysis-template/?dl=1 . The transposon-specific product typically made up to between 50% and 80% of the total DNA concentration. Libraries can be sequenced at a defined set of concentrations (4 nM, 2 nM, 1 nM, and 0.5 nM) and libraries were diluted to the nearest appropriate concentration in EB in sterile low-bind tubes prior to sequencing.

2.4.6. Illumina sequencing

The TraDIS library was sequenced on a MiSeq[™] (Illumina) sequencer. The library was denatured and loaded according to standard Illumina protocols. Briefly, 4 µl of 100 µM transposon-specific sequencing primer and 4 µl 100 µM Illumina Read 1 sequencing primer (see Table 2.2) were added to 600 µl buffer HT1 and added to port 19 of the MiSeq reagent cartridge. 4 µl of 100 µM Index read primer (iPCRtagseq; see Table 2.2) was added to 600 µl HT1 buffer and this mixture was added to port 19.


Sequencing was conducted using a custom TraDIS recipe as outlined in the sample sheet (Table 2.4). The sample sheet provided the MiSeqTM machine instructions for setup, performance, and analysis of the sequencing run. This recipe incorporates 'dark' cycles, whereby 10 sequencing cycles are conducted with no imaging, which optimises sequencing across the monotemplate sequence of the transposon during Read 1 ((Barquist *et al.*, 2016); Figure 2.4). Following this, the transposon

sequence was generated as a separate 10 bp sequence following Read 1

and before the Index read.

[Header] Investigator Name Project Name Experiment Name Date Workflow Chemistry		Tradis Tradis_Rerun_M GenerateFASTO Transposon10			
[Reads] 42	2				
[Settings]					
[Manifests]					
2	1 2 3 4	Sample_Name	GenomeFolder	Index TAAGAGACAG TAAGAGACAG TAAGAGACAG TAAGAGACAG	

 Table 2.4. Layout of a typical sample sheet used in this study.

Figure 2.4. HiSeq and MiSeq TraDIS recipes allow for 'dark' sequencing across the difficult monotemplate sequence of the transposon. The transposon-specific sequencing primer hybridises to the known transposon sequence 10 bp upstream of the junction with gDNA. Sequencing takes place with no imaging for 10 or 12 cycles (10 or 12 for MiSeq, 12 for Hiseq2500) and continues with imaging for 42 cycles. The transposon sequence is generated as a separate 10bp (MiSeq) or 12bp (HiSeq2500) read following read 1 and before the index read. From Barquist *et al.* 2016.

2.5. TraDIS data analysis

2.5.1. Bio::TraDIS pipeline

The Bio::TraDIS pipeline of command-line software utilities was employed to process, map, and analyse transposon sequencing data. A detailed protocol is available in Barquist *et al.* 2016, however some modifications were employed for this study. Sequencing data was mapped to the *E. coli* K.12 *substr.* MG1655 genome sequence .embl file, GenBank accession no. U00096.3 (Benson *et al.*, 2013).

2.5.1.1. Appending transposon reads to Read 1

Following some sequencing runs, transposon reads were generated in the header of the .fastq file as opposed to the sequence, which prevented use of the add_tradis_tags script at the beginning of the pipeline (Figure 2.5).

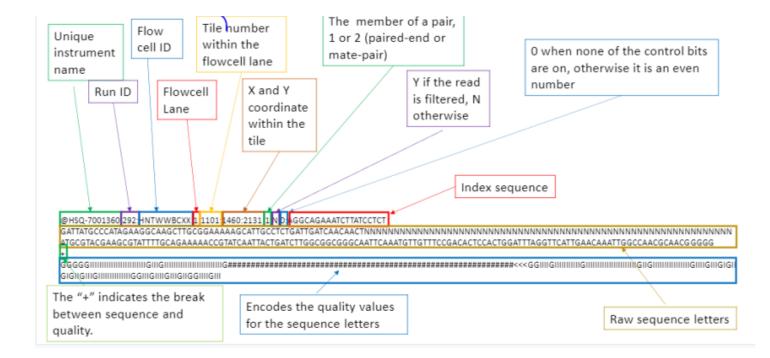


Figure 2.5. The FASTQ file format. In the Illumina FASTQ format, transposon indices were often parsed into the Index sequence section of the header (red box) of the sequence (blue box). Adapted from instead raw https://kscbioinformatics.wordpress.com/2017/02/03/raw-illumina-sequence-data-files-for-dummies-part-1/ Accessed: 30 Jan 2019.

To output the different reads (i.e. Read 1, Transposon Read, and Index Read - see Figure 2.4) into separate .fastq files, the bcl2fastq Conversion software v2.19 (Ilumina) was run on raw .bcl files obtained from the sequencing run under the following parameters:

nohup /usr/local/bin/bcl2fastq --runfolder-dir <RunFolder> --output-dir <BaseCalls> --sample-sheet /path/to/SampleSheet.csv --create-fastq-for-indexreads

In Galaxy v2.0.1.1 (https://usegalaxy.org/), the FASTQ joiner program (Blankenberg *et al.*, 2010) was used to append Index 1 (i.e. transposon) reads to Read 1 (i.e. chromosomal reads). Index 1 read files were entered into 'Left-hand Reads' and Read 1 read files into 'Right-hand Reads'. FASTQ Header Style was set to 'new' and no bases were entered between reads. The output .fastq files were gzipped and then brought forward for analysis by the Bio::TraDIS pipeline as outlined in the software protocols (Barquist *et al.*, 2016).

2.5.1.2. Assessing gene essentiality

Essentiality and/or fitness data generated by tradis_essentiality.R and tradis_compaison.R. in the form of .csv files were analysed in Microsoft Excel (2011). Statistical thresholds were intrinsically applied by tradis essentiality.R, therefore no further statistical analysis was

conducted on essential genes identified by this script. However, for fitness values (logFCs) generated by tradis_compaison.R, a p value cutoff of p < 0.05 was applied. q value thresholds were applied such that no more than 1 gene in the list of genes with a p value < 0.05 could be considered a false positive. This q value threshold was unique to each experiment. To verify essentiality and/or fitness values, genetic requirements for fitness were also assessed manually using transposon insertion plots. In Artemis (Carver *et al.*, 2012), gzipped plot files (e.g. '[library_name.replicon.name].insert_site_plot.gz) generated by the bacteria_tradis script were overlaid on the U00096.3 sequence using the 'Graph -> Add User Plot...' option. This generated a viewable version of transposon insert sites and read densities.

2.5.2 Gene set analysis

Lists of genes within statistical thresholds were grouped together by gene set analysis to infer biological meaning from the data. In this work, genes were primarily grouped by Clusters of Orthologous Groups (COGs), Gene Ontology (GO), or manually ((Kristensen et al., 2010), http://geneontology.org/). To group genes by COG, the gene list was entered into Ecogene's cross reference mapping and download tool (http://www.ecogene.org/ecodownload/crossref; (Zhou & Rudd, 2012)), selecting the 'oldCOG' option to output a list of genes with their associated COG values. Genes were grouped by GO using the Panther Classification System (http://www.pantherdb.org/; (Mi et al., 2017)). Manual assessment was conducted based on information available in

EcoCyc (https://ecocyc.org/), EcoGene (http://ecogene.org/), PubMed (https://www.ncbi.nlm.nih.gov/pubmed), and other online databases (Keseler *et al.*, 2017; The UniProt Consortium, 2017; Zhou & Rudd, 2012).

2.5.3. Data visualisation

A global overview of transposon insertion sites in a circular map of the MG1655 genome was generated by inputting transposon insertion counts for each gene into CiVi (http://civi.cmbi.ru.nl/; (Overmars *et al.*, 2015)). To measure correlation between transposon insertion sites and readcounts between library replicates, Microsoft Excel's RSQ function and the ggplot suite of tools in R were used to generate R² values and scatterplots, respectively (https://cran.r-project.org/web/packages/ggplot2/index.html).

2.6. Validation of TraDIS and other analyses

2.6.1. End-point growth analysis of Keio library mutants

To validate mutant phenotypes detected during TraDIS, single gene knockout mutants from the Keio collection were grown in triplicate under conditions mimicking those of the transposon library screen and their final OD values measured.

When analysing the growth of mutants in the presence of bile, collections of mutants were grown in well plates containing LB kanamycin supplemented with different concentrations of LB ox bile as per section

2.3.1. Final OD_{595nm} values of mutants following growth in LB 10% bile were measured on a Tecan GENios spectrophotometer. Changes in mutant growth were deemed statistically significant if the average mutant growth displayed a one standard deviation difference in value compared to the average growth of the plate as a whole.

When analysing the growth of mutants under anaerobic conditions, mutants and wild-type were grown in well plates containing M9 minimal medium supplemeted with different carbon sources and/or nitrate as per section 2.3.2. Cultures were grown under anaerobic conditions for one passage, and significant changes in mutant growth was determined by comparison to the wild-type. End-point growth was measured as previously described.

2.6.2. Competition assays

5 ml of overnight cultures (in triplicate) of mutant and wild type were centrifuged at 3,000 g for 10 minutes and cell pellets were resuspended in sterile PBS to an $OD_{600} = 1$. Equal volumes of wild type and mutant cells were added to 5 ml culture broth to an $OD_{600} = 0.05$ and incubated overnight at 37°C. Resuspended cells were serially diluted in PBS to a dilution of 10⁻⁷, and 100 µl of dilutions 10⁻⁶, 10⁻⁷, and 10⁻⁸ were plated onto LB (wild type) and LB kanamycin (mutant) agar, before incubation overnight. These plates were used to enumerate the concentration of cells in the input cultures. Following incubation, cultures were serially diluted in PBS to diluted in PBS to dilution 10⁻⁷, and 100 µl of dilutions 10⁻⁵, 10⁻⁶, and 10⁻⁷

were plated onto LB agar (to enumerate mutant + wild type cell count), and LB kanamycin agar (to enumerate mutant cell count) and incubated overnight. These plates were used to enumerate total cell count in the output culture. The competitive index (CI) of mutants was calculated as follows: $w = (ln_o/ln_i[mutant])/ln_o/ln_i[wild type])$, where w = fitness, i = input cfu/ml, o = output cfu/ml.

2.6.3. Anaerobic growth curves

The growth patterns of wild-type MG1655 grown under anaerobic conditions were characterised from cultures grown for 24 h in 96 well plates containing M9 minimal medium supplemented with different carbon sources and/or nitrate as per section 2.3.2. Overnight cultures of MG1655 were washed once in PBS and resuspended to an OD_{600} of 1 prior to inoculation. Each washed overnight culture was inoculated into three wells containing 150 µl of M9 medium such that each well contained an estimated starting OD_{600} equivalent to 0.01. The 96 well plate was incubated at 37°C for 24 h in a microplate spectrometer which was placed in an anaerobic fume hood. Cultures were grown under anaerobic conditions for 24 h and OD_{600} readings were taken every 15 minutes. Growth rates were determined based on the average slope of the curve for the duration of the exponential phase of growth. Total growth was calculated as the area under the curve.

2.6.4. Cell-free supernatant analysis

5 ml of transposon mutant library cultures grown under anaerobic conditions (see section 3.3.) were centrifuged at $12,000 \times g$ for 2 mins and supernatants transferred to fresh sterile microcentrifuge tubes. These supernatants were subject to further analyses to characterise the culture conditions following library screening.

Cell-free supernatants were analysed for succinic acid, lactic acid, acetic acid, formic acid, and ethanol by high performance liquid chromatography (HPLC) with a refractive index detector (Agilent 1200 HPLC system). An Agilent HiPlex H 300 x 7.7 mm column was used with 0.01 N H_2SO_4 as the elution fluid, at a flow rate of 0.6 ml min⁻¹. 20 µl of each sample was injected for analysis and the temperature of the column was maintained at 65°C.

Production of nitrite in cultures grown in the presence of nitrate indicates the activity of nitrate reductases. Nitrites were deteced using the Griess method (Griess & Bemerkungen, 1879). Three drops of Griess reagent (equal volumes 1 mg/ml *N*-(1-Naphthyl)ethylenediamine and 10 mg/ml sulfalinic acid) were added to 100 μ l of cell-free supernatants on a white porcelain tile. The presence of nitrites was confirmed by the emergence of a red pink colour.

2.6.5. Computer software

Growth curves, competition assays, and other data analysis was performed using Microsoft Excel (2011), Microsoft Powerpoint (2011), and GraphPad Prism (ver. 6). Statistical analyses were conducted using GraphPad Prism. Command line tools and R scripts were employed using Terminal (Apple Inc., ver. 2.5.3) and R for Mac OS X (ver. 3.5.3).

Chapter 3 TraDIS analysis of a pooled

transposon mutant library of E. coli MG1655

Introduction

Transposon sequencing technologies, such as TraDIS, allow for powerful and in-depth functional genomic analysis, connecting mutant phenotypes to gene function. Transposon sequencing and other methods such as defined mutant library analysis require that the composition of the starting mutant library be known, since changes in phenotypes during library screening must be traced back to their associated mutants. In other words, knowing which mutants are present or absent in the mutant library prior to screening is necessary.

TraDIS, as well as other transposon sequencing methods, uses pooled transposon mutant libraries which offers several advantages (Barquist *et al.*, 2013). Firstly, it allows for rapid and simultaneous screening of entire mutant libraries. For instance, mutant pools ranging from 10,000 to millions can be screened at once, as opposed to the 3864 mutants of the Keio library, each of which must be screened separately (Baba *et al.*, 2006; Barquist *et al.*, 2013; Eckert *et al.*, 2011; Goodall *et al.*, 2018; Langridge *et al.*, 2009). Secondly, the means by which mutants are identified in a pooled library allows for a highly detailed measure of gene essentiality. Locations of transposon insertions are identified by sequencing of transposon-gDNA junctions, allowing transposons to be located to their precise insertion site on the genome. This allows for the identification of essentiality to the level of protein domain and non-protein-encoding regions (such as promoters) (Barquist *et al.*, 2013). Finally, characterising the relative numbers of mutants in a pooled library results

in quantitative measures of gene fitness. The numbers of reads mapping to transposon insertions in the sequencing output can represent the relative proportion of those mutants within the total mutant population. The change in both transposon insertion frequency and number of reads can be represented as a log fold-change (logFC) score, which allows for a measure of mutant fitness even for non-essential genes during growth under selective conditions (Barquist *et al.*, 2016).

However, the use of pooled transposon mutant libraries can also be associated with various potential disadvantages. Firstly, pooling mutants will select against mutants that have a general slow growth phenotype or mutants present at low titres in the initial population (Grenov & Gerdes, 2008). Secondly, downstream analysis of pooled libraries is more complicated than for arrayed mutant libraries. For example, mutants in arrayed or defined mutant libraries are more easily traced e.g. to a coordinate of a multi-well plate, as opposed to requiring sequencing to locate insertions. Thirdly, transposon mutagenesis can lead to an over- or under-estimation of essential genes. This can be due to multiple factors, including structural features within DNA inhibiting transposon insertions (e.g. regions of extreme structure, DNA binding proteins occluding regions of DNA, proximity of a gene to the replication terminus), or secondary effects of mutations in nonessential genes i.e. polarity effects (Goodall *et al.*, 2018; Grenov & Gerdes, 2008).

Part of the optimal strategy for understanding genetic requirements for growth under any one particular condition should therefore couple transposon sequencing with defined mutant library screening. Previous

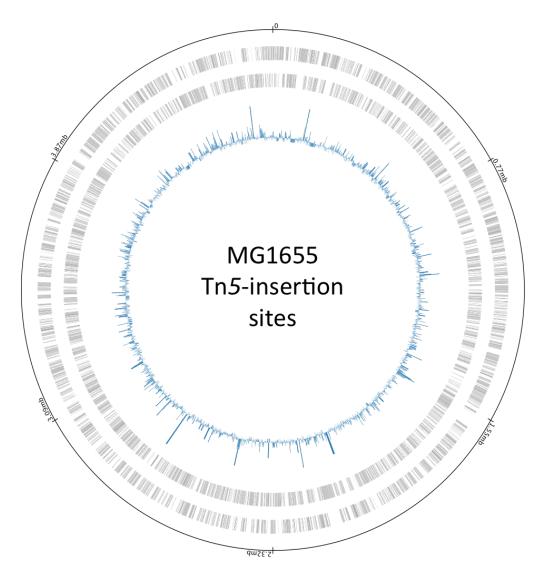
studies of gene essentiality in E. coli support this hypothesis. For instance, the numbers of essential genes identified during construction of the Keio collection of mutants, where essentiality was determined based on growth of mutants on selective agar, was 300 (Baba et al., 2006). On the other hand, while 302 genes are nominated as essential by the profiling of the E. coli chromosome (PEC) database (which collates essentiality data from single-gene essentiality studies and large-deletion mutants (Yamazaki et al., 2008)), not all of the identified genes are shared with the essential genes as defined by the Keio collection (Goodall et al., 2018). Furthermore, a recent comparison between these studies and a TraDIS-based approach of essentiality in E. coli K-12 showed that only 248 genes were shared between all 3 studies (Goodall et al., 2018). However, the differences in gene lists produced by these 3 studies could be explained by differences in methodology, as opposed to differences in absolute physiological or metabolic requirement for those genes (Goodall et al., 2018). Therefore, comparing different mutant library analyses allowed the building of a more robust consensus on the true nature of genetic requirements for growth in LB.

The aim of this chapter was to characterise a TraDIS mutant library constructed in *E. coli* MG1655, a domesticated strain of *E. coli* K-12, and to compare results from this TraDIS with previous studies of essential genes in *E. coli* (Goodall *et al.*, 2018). This was done to identify genes essential and/or important for growth in LB.

Results & Discussion

3.1. TraDIS

3.1.1. Sequencing results


A saturated transposon mutant library was constructed in MG1655 as described in Materials and Methods. Approximately 919,000 mutants were pooled as colonies from LB agar plates and prepared for TraDIS sequencing (as described in Materials and Methods). The transposon mutant library was constructed by Dr. Emma Smith and the TraDIS sequencing was carried out by the Wellcome Trust Sanger Institute. All subsequent analysis of the sequencing reads was carried out during this thesis. Sequencing statistics are listed in Table 3.1.

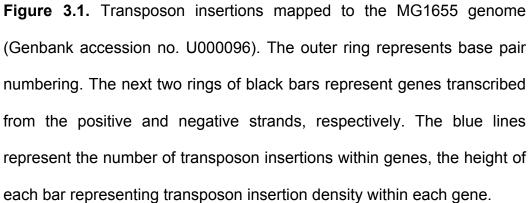
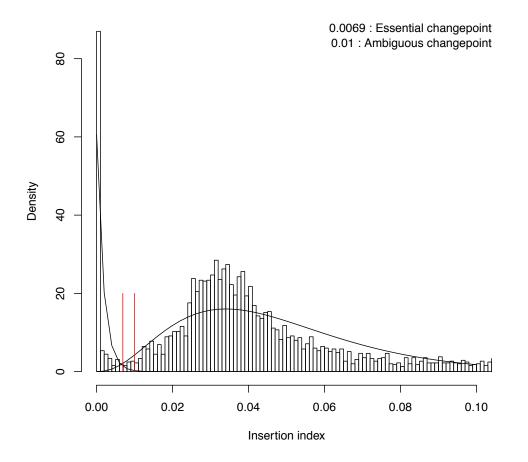

Total Reads	Reads Mapped	% Mapped	Unique Insertion Sites
1111496	906223	97.352	193495

 Table 3.1. TraDIS sequencing statistics


A total of 1,111,496 reads were obtained from the MiSeq run, of which approximately 84% contained the Tn5 transposon tag, with 97% of these reads mapping to the MG1655 reference genome (Genbank accession number U00096.2). In total there were 193,495 unique insertion sites, representing a density of approximately 1 insertion per 24 bp. Therefore, this mutant library has a similar insertion density to other high resolution transposon mutant libraries (Barquist *et al.*, 2013). Analysis of the sequencing reads revealed that the insertions were spread evenly across the genome (Figure 3.1) and in roughly equal proportions between positive and negative strands. For example, total insertions within genes (not including intragenic regions or other non-gene regions) on the positive and negative strands equaled 73,325 and 79,732 respectively.

An insertion index, defined as the number of insertions in a gene divided by gene length, was calculated for each gene. This number can act as a comparable measure of essentiality, since not all genes are of the same length. Insertions in the extreme 3' end of genes (equivalent to the final 10% of the gene) were excluded from analysis, since such mutations can still result in functional gene products (Barquist *et al.*, 2016). A histogram of insertion index values showed a bimodal distribution, indicating that both essential and non-essential genes could be clearly delineated based on insertion index values (Figure 3.2).

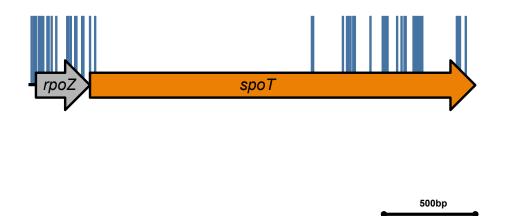

Gamma fits

Figure 3.2. Bimodal distribution of insertion indices following TraDIS analysis of the saturated mutant library constructed in MG1655. Clear bars represent the number of genes of a particular insertion index (x-axis). Ambiguously assigned genes lie between the red lines, indicating insertion indices of 0.0069 (left-hand line) and 0.01 (right-hand line). Essential genes displayed insertion indices <0.0069 (to the left of the left-hand red line), while non-essential genes displayed insertion indices <0.01 (right of the right-hand red line).

An exponential distribution was fitted to the left node, used as an indication of whether a gene was essential, whereas a gamma distribution was fitted to the right node, used as an indication of whether a gene was non-essential (Figure 3.2). The probability of whether a gene belonged to each node was calculated, and the ratio of these values was used to calculate a log likelihood ratio. This showed that genes with an insertion index of less than 0.0069 were likely to be essential, an insertion index of greater than 0.01 indicated a non-essential gene, and an insertion index between these two values indicated an ambiguous gene (Figure 3.2). Determining whether a gene is essential should not rely on this technique alone, since scoring methods are hugely influential in determining essentiality (Grenov & Gerdes, 2008). Moreover, many genes considered essential did contain transposon insertions within their coding sequence (CDS), raising the prospect that these genes may be falsely annotated as essential. One technique used to refine the scoring technique is to treat DNA as one contiguous sequence, as opposed to a range of discrete sequences i.e. genes. Using a refined statistical model for TraDIS, Goodall et al. were able to define the minimum length of DNA that could be considered as essential in E. coli K-12, known as insertionfree regions, or IFRs (Goodall et al., 2018). IFRs were calculated as being a minimum of 75 bp when considering the genome as a whole, or 47 bp within a gene. This offered both the ability to define essentiality within genes i.e. to the protein domain level (Figure 3.3), but also to noncoding regions. That said, manual assessment of transposon insertion plots formed the primary basis for determining essentiality of genes or

IFRs. Therefore, the previously calculated IFR values (Goodall *et al.*, 2018) in addition to manual inspection of transposon insertion plots, were considered when assessing gene essentiality as determined by insertion index. Applying these different thresholds and filters resulted in 428 genes being defined as essential in MG1655, with 32 given an ambiguous allocation (see Table A1, Appendix).

Figure 3.3. Transposon insertion plot demonstrating domain-level essentiality in the (p)ppGpp synthase/hydrolase-encoding *spoT* (orange). Transposon insertions (blue lines; not reflecting readcount differences) are primarily located in the 3' 'ACT' domain region, required for the amino acid concentration-dependent control of SpoT activity (Chipman & Shaanan, 2001).

3.1.2. Functional enrichment analysis

Clusters of orthologous groups (COGs) analysis was conducted to provide insight into the functions of the 428 essential genes (Tatusov *et al.*, 1997). This analysis showed that essential genes appeared to be

enriched in processes involved in the biosynthesis of integral cell components such as the cell membrane, the control of core cell processes like transcription, translation, and cell division, as well as the biosynthesis of metabolic enzymes and cofactors (Figure 3.4).

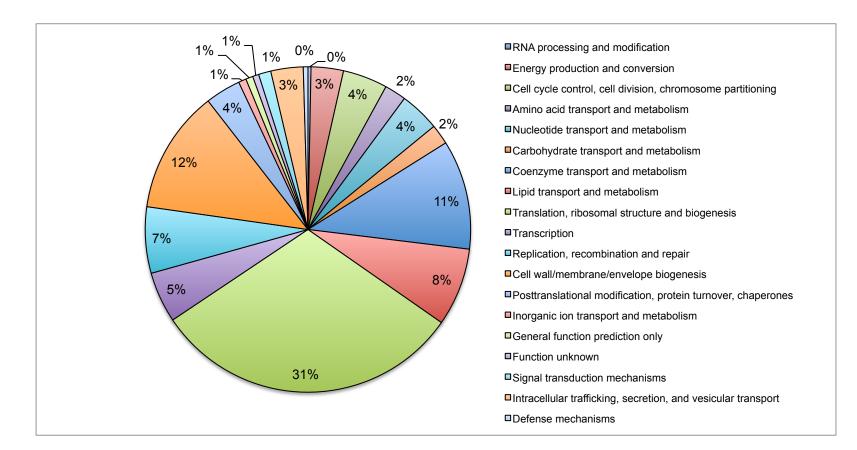
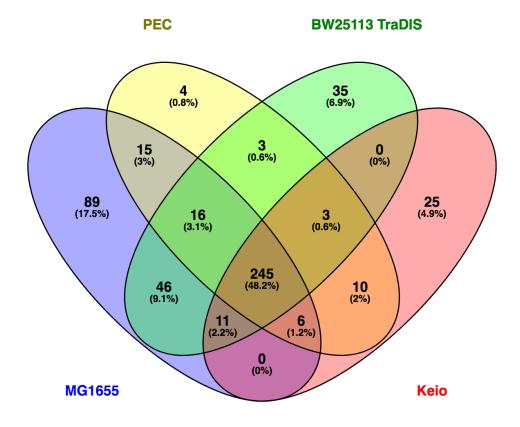



Figure 3.4. Significantly enriched COG biological process terms in essential genes.

3.2. A comparative analysis of the essential genome of E. coli K-12 An analysis of the essential genome of E. coli K-12 strain BW25113 using TraDIS following growth in LB was recently published (Goodall et al., 2018). BW25113 and MG1655 are both derivatives of the W1485 lineage of E. coli K-12, but these strains differ in a number of ways (Table 2.1 in Materials and Methods provides a full list of genotypic differences). For example, both araBAD, encoding enzymes for L-arabinose degradation, and rhaDAB, encoding enzymes for L-rhamose degradation, are deleted in BW25113. Furthermore, a section of *lacZ* (encoding β -galactosidase) in BW25113 is replaced with four tandem rrnB repeats and a frameshift mutation is found in *hsdR*, encoding a component of the Type I restriction enzyme, EcoKI (Grenier et al., 2014). In their study, Goodall et al. compared their list of essential genes with two other studies of gene essentiality in E. coli K-12: the PEC database (Yamazaki et al., 2008) and the Keio collection (Baba et al., 2006). This comparative analysis highlighted the significant impact of methodology on determining gene essentiality but also generated a more definitive list of candidate essential genes. Therefore, the essential gene list generated in this study was compared with the analysis undertaken by Goodall et al, not only to generate a more comprehensive understanding of genetic requirements for growth in E. coli, but also to potentially understand the impact of strain differences on gene essentiality. A Venn diagram illustrating numbers of genes shared between these four studies is presented in Figure 3.5. Candidate essential genes common to all studies of were identified; however, many essential genes that were unique to the two TraDIS

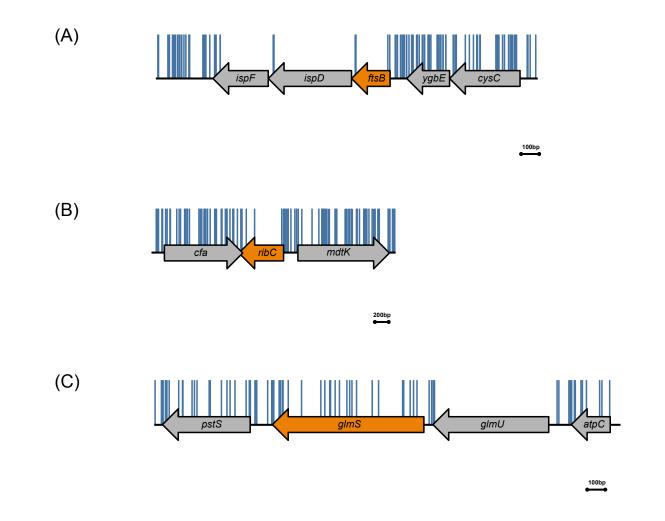
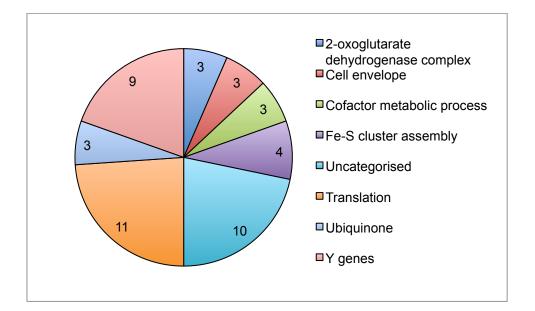
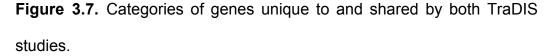

studies were also identified, again highlighting the importance of methodology in gene essentiality studies.

Figure 3.5. Venn diagram comparing candidate essential genes for growth in LB in this study (MG1655; blue), Profiling of the *E. coli* Chromosome database (PEC; Yamazaki *et al.,* 2008; yellow), the Keio library (Baba *et al*; red), and the TraDIS study conducted by Goodall *et al.* (BW25113 TraDIS; green).

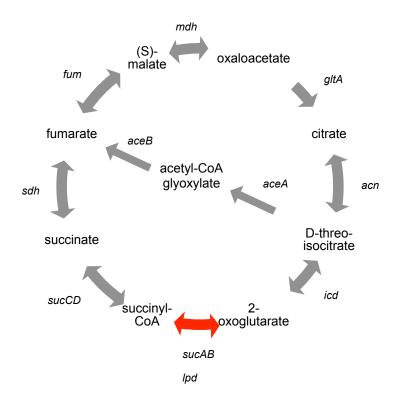
3.2.1. Essential genes identified in all studies

In their study, Goodall et al. identified 248 genes that were classified as essential in all studies (Goodall et al., 2018). When the MG1655 TraDIS data from this work was included in this analysis, the number of candidate essential genes was reduced to 245 (Figure 3.5). This suggests that three genes previously identified as essential were not classified as essential in MG1655. These three genes are *ftsB*, *ribC*, and *glmS*. Both *ftsB* and *ribC*, were annotated as ambiguous in this study. ftsB contained two insertions (Figure 3.6A), one at the extreme 3' end of the gene that could still produce a functional gene product, but another at the extreme 5' end of the gene which should interrupt expression of a functional gene product. However, the first 3 amino acids encoded by *ftsB* are not known to influence protein function (The UniProt Consortium, 2017). Therefore, ftsB could be reannotated in this study as essential. On the other hand, ribC contained two insertions, including one within a predicted lumazine substrate binding region (The UniProt Consortium, 2017). Therefore, ribC is likely to contain non-essential regions. However, the remainder of the gene contained no insertions, indicating that the majority of the protein was essential for survival. Therefore, ribC could also be nominated as an essential gene.


Figure 3.6. Transposon insertion plots of genes classified as essential in PEC, Keio, and BW25113 TraDIS but not MG1655 TraDIS. Blue lines indicate transposon insertions in the MG1655 library plotted on the MG1655 genome (Genbank accession No. U000096). Note that the length of the blue insertion lines is kept the same for illustrative purposes; the readcounts for each of the insertions above are not necessarily the same. Genes of interest highlighted in orange, namely (A) *ftsB*, (B) *ribC*, and (C) *glmS*. Other genes are highlighted in grey.


glmS, L-glutamine—D-fructose-6-Interestingly, encoding phosphate aminotransferase, was identified as essential in previous studies but non-essential in the MG1655 TraDIS (Figure 3.6C). The glmS gene is located directly upstream of the essential gene, glmU, encoding a fused N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase. Both enzymes are required for the synthesis of UDP-N-acetyl-a-D-glucosamine, an essential precursor of cell wall peptidoglycan (Kotnik et al., 2007). There appeared to be an equal number of insertions in both strands of *glmS*, as well as many insertions in the upstream gene, *atpC* (Figure 3.6C) This result is curious, since it has been previously shown that mutants of *glmS* could only grow in media supplemented with N-acetylglucosamine or glucosamine, or overexpression D-glucosamine-6-phosphate durina of catabolic isomerase, nagB, involved in the degradation of N-acetylglucosamine (Vogler et al., 1989; Wu & Wu, 1971). However, it must be noted that the insertion index for glmS (0.0115) was only marginally above the nonessential cutoff value (0.01). This may highlight the impact of the different ways in which TraDIS libraries were generated between this study and Goodall et al. In this study, TraDIS was conducted on transposon mutants taken directly from LB agar plates, whereas Goodall et al. analysed their library after passaging (growing) several times in LB (Goodall et al., 2018). Therefore, mutants with slow growth phenotypes, potentially including *glmS*, were under greater selective pressure and were thus removed from the library.

Interestingly, the essentiality of *glmS* mutants in previous studies was determined based on growth in liquid broth (Baba *et al.*, 2006; Goodall *et al.*, 2018; Vogler *et al.*, 1989; Yamazaki *et al.*, 2008). This study reveals that *glmS* mutants are able to form colonies on LB agar, suggesting either the presence of an exogenous source of N-acetylglucosamine/glucosamine for those mutants to use differences in metabolic requirements during growth on agar compared to liquid broth may permit the growth of *glmS* mutants.


3.2.2. Essential genes identified uniquely by both TraDIS studies

This study identified 428 genes as essential in MG1655 (Table A21). Of these, 245 genes were also classed as essential in *E. coli* in other studies (Goodall *et al.*, 2018), and an additional 46 genes were shared with the BW25113 TraDIS study (see Table A3 and Table A4, Appendix). These 46 genes therefore represent candidate essential genes that could only be identified using TraDIS. Using gene ontology (GO) and manual analysis, this group of genes was grouped into several categories, as shown in Figure 3.7.

Insertions in many of these genes are likely to have been identified due to polar effects of the insertion(s) on downstream essential genes (see Table A5, Appendix). In addition, mutants could be falsely identified as essential in TraDIS as the result of a slower growth rate that, in the context of a pooled library, would be out-competed by other mutants in the pool. For example, all three genes encoding the α -ketoglutarate dehydrogenase complex, *lpd, sucA,* and *sucB* are identified as essential in both TraDIS studies. This enzyme complex catalyses the oxidative decarboxylation of α -ketoglutarate to generate succinyl-coenzyme A (CoA) and CO₂ during the TCA cycle (Figure 3.8).

Figure 3.8. The TCA cycle. The interconversion of 2-oxoglutarate (α -ketoglutarate) to succinyl-CoA by the α -ketoglutarate dehydrogenase complex is highlighted in red.

Deletion mutants of *sucA, sucB,* and *lpd* have been shown to be unable to respire several different carbon sources in a Biolog assay, including L-aspartate, L-asparagine, and L-serine (Ito *et al.*, 2005; Sezonov *et al.*, 2007). Therefore, this reduced metabolic flexibility might induce a sufficient selection under the conditions of intense competition such as those experienced during pooled library screening. Other identified genes that might be explained in a similar manner include some that encode for ribosomal subunit proteins (e.g. *rplY, rplA,* and *rps* genes), deletion

mutants of which have been previously shown to reduce the growth rate of *E. coli* K-12 (Korepanov *et al.*, 2007), alongside mutations in members of the *isc* operon (e.g. *fdx, iscU,* and *iscS*) which have all been shown to result in significantly increased doubling times compared to the wild type (Tokumoto & Takahashi, 2001).

3.2.3. Essential genes identified by TraDIS uniquely in MG1655

In total, 89 genes were identified as being uniquely essential in MG1655 (see Table A5 and Figure 3.5). However, many of these genes (n = 37) were small tRNA genes in the region of 75 bp in length. As mentioned above, 75 bp was suggested to be the shortest IFR that could be considered significant (Goodall *et al.*, 2018). Therefore, the small size of these tRNA genes increases the chance that they will be falsely assigned as essential. In addition, all 7 rRNA operons in *E. coli* were represented in this group, comprising 20 genes in total that were identified as uniquely essential in MG1655. This is interesting, as there are 7 copies of the *rrn* operon in *E. coli* and disruption of one operon should not significantly affect growth (Asai *et al.*, 1999; Ellwood & Nomura, 1980). However, it is likely that the lack of insertions in these regions may be due to complex DNA secondary structure (Goodall *et al.*, 2018).

Therefore, as discussed here and in previous sections, false positives can be identified as a result of: (a) genes containing insertions but at a sufficiently low density to provide an essential insertion index score, e.g. *mtn, hscB*; (b) genes being too small to contain significant numbers of insertions e.g. *ibsC, ibsE* (both 59 bp in length); or (c)

insertions exhibiting polarity on nearby essential genes. When these genes are removed from the analysis, seven genes that were exclusively selected for essentiality in MG1655 remained: *ptsH*, *tufA/tufB*, *yciM*, *ydfK*, *ykgS*, *ynaE*, and the non-protein-encoding gene, *sdsR* (*ryeB*).

3.2.3.1. ptsH

The *ptsH* gene encodes HPr, the non-sugar-specific component of the sugar phosphotransferase system (PTS^{Sugar}), required for the transfer of a phosphoryl group from Enzyme I to Enzymes II (Figure 3.9).

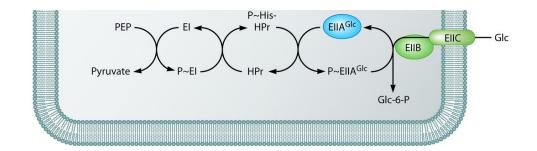
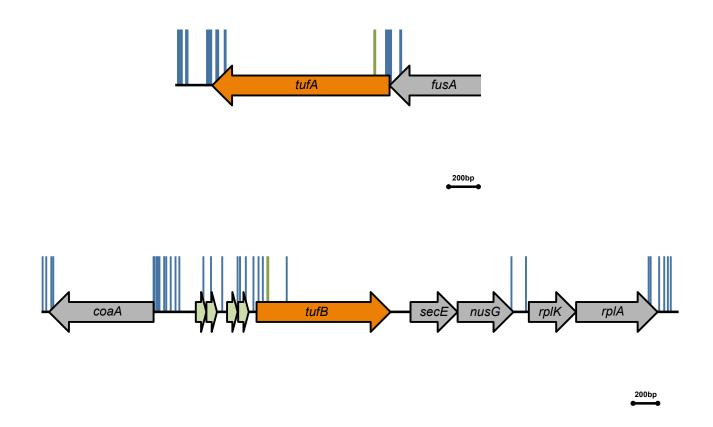


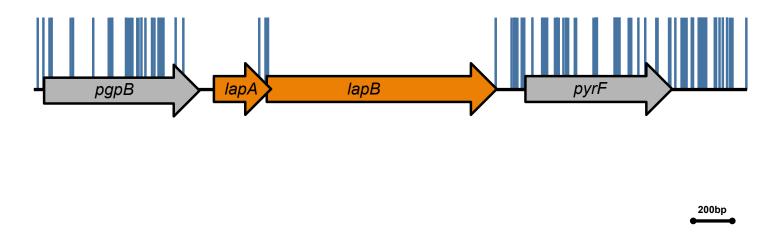
Figure 3.9. The PTS system in *E. coli*. Adapted from (Deutscher *et al.*, 2014).

HPr also has several important regulatory roles, including the allosteric activation of pyruvate kinase (PykF), phosphofructokinase (PfkB), glucosamine-6-phosphate deaminase (NagB), and inhibition of adenylate cyclase, Adk (Rodionova *et al.*, 2017). Moreover, dephosphorylated HPr binds to Rsd, an inhibitor of sigma70, thus preventing Rsd-mediated inhibition of sigma70 during exponential growth (Park *et al.*, 2013). Loss of HPr is not expected to result in a lethal phenotype, with no reports of significant growth defects with *ptsH* mutants

in either BW25113 or MG1655 in LB (Baba *et al.*, 2006; Gerdes *et al.*, 2003; Joyce *et al.*, 2006). TraDIS may have been able to identify a subtle phenotype for *ptsH* under the specific growth conditions in this study, since mutation of *ptsH* could result in global changes in carbon and energy metabolism in LB that would affect growth rate (Rodionova *et al.*, 2017). However, it is not clear why *ptsH* was not selected in the TraDIS study of BW25113 (Goodall *et al.*, 2018). The library constructed by Goodall and colleagues had an insertion density equivalent to 1 insertions per 5.14 bp, approximately five times more dense than our library of 1 insertion per 24 bp (Goodall *et al.*, 2018). Therefore, the MG1655 library constructed for this study is more likely to identify genes as essential due to growth rate differences, since a reduction in growth, and this readcount/insertion count thresholds may be met more quickly.


3.2.3.2. tufA and tufB

Both *tufA* and *tufB* encode the translation elongation factor Tu (EF-Tu), a protein that binds and delivers aminoacylated tRNAs, to the translating ribosome (see Figure 3.10). EF-Tu is also the most abundant protein in *E. coli* (Weijland *et al.*, 1992). It is possible to create viable mutants of *tufA*, however this results in reduced growth and ribosome production (Gausing, 1981). Interestingly, mutants of *tufB* have been shown previously to display growth rate defects in *E. coli* K-12 strain LB1001 (Van de Klundert *et al.*, 1978). Furthermore, in a comparative analysis using Tn-seq, *tufB* was shown to be essential in *Shigella flexneri* 2a 2457T but not BW25113 (Freed *et al.*, 2016). Therefore, transposon


sequencing appears to be able to identify strain-specific differences in the requirement for EF-Tu in *E. coli*. A molecular explanation for these different requirements has not yet been established.

3.2.3.3. yciM

The *yciM* gene (also called *lapB*) encodes a lipopolysaccharide assembly protein which couples LPS biosynthesis and transport (Figure 3.11; (Klein *et al.*, 2014). LapB is also employed during the heat shock response to maintain envelope integrity (Nicolaes *et al.*, 2014). The *lapB* gene is located immediately downstream from *lapA* and both genes are predicted to be transcribed as an operon (Nonaka *et al.*, 2006). Interestingly, *lapA* was identified as essential in both MG1655 and BW25113 TraDIS studies (this study and Goodall *et al.*, 2018).

Figure 3.10. Transposon insertions in *tufA* (top) and *tufB* (bottom). Blue lines indicate transposon insertions (length of line does not reflect readcounts). Green lines indicate transposon insertions in GTPase domains.

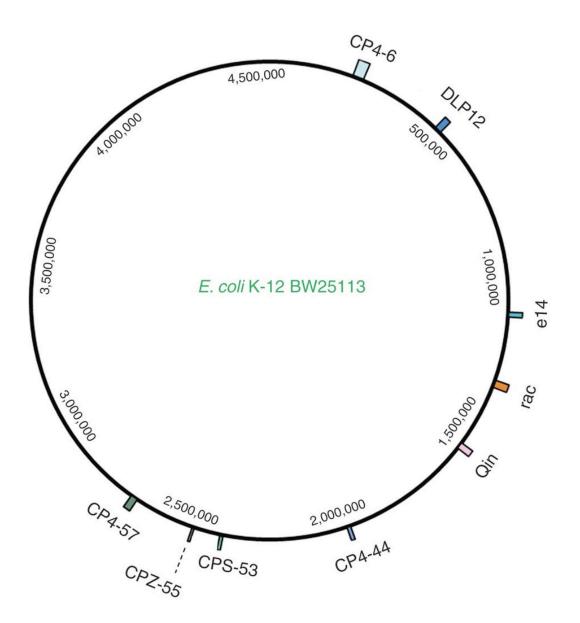


Figure 3.11. Transposon insertions in *lapAB* and surrounding genes. Blue lines indicate transposon insertions (length of line does not reflect readcounts).

However, *lapB* is only identified as essential in MG1655 and other studies are conflicting in their findings. For example, it has been shown that *lapB* mutants of BW25113 could grow in standard LB, although one study (Baba et al., 2006) deemed the growth of their mutant 'indeterminate' (Baba et al., 2006; Klein et al., 2014). On the other hand, another study showed that lapB was required for growth in MG1655 (Mahalakshmi et al., 2014). This study demonstrated that the $\Delta lapB$ mutant strain present in the Keio library contained a suppressor secondary mutation which mitigated the essentiality of *lapB*. Indeed, transfer of the $\Delta lapB$ mutation to the Keio parental strain (BW25113) or to MG1655 by P1 transduction resulted in no transductants in LB, showing that *lapB* was required for growth in both K-12 strains (Mahalakshmi et al., 2014). It should be noted that the essentiality of *lapB* was deemed 'unclear' in BW25113 following TraDIS, implying some *lapB* insertion mutants could grow, albeit poorly (Goodall et al., 2018). Therefore, while some studies do indicate MG1655 requires lapB, including this TraDIS analysis, it is not entirely clear whether this is the case in BW25113.

3.2.3.4. Prophage-associated genes

ynaE, ydfK, and *ykgS* were identified as essential in the MG1655 TraDIS only, and the genes are each found within the predicted genomes of the Rac, Qin, and CP4-6 prophages, respectively (Figure 3.12).

Figure 3.12. Map of the *E. coli* K-12 BW25113 genome illustrating its cryptic prophages. Adapted from Wang *et al.* (Wang *et al.*, 2010).

Both *ynaE* and *ydfK* appear to encode cold shock proteins that are upregulated in response to cold shock (Polissi *et al.*, 2003; Raghavan *et al.*, 2011), while *ykgS* is a small protein that is expressed at a greater level during stationary phase compared to exponential phase (VanOrsdel *et al.*, 2018). The precise role for these genes during growth is not known, however it is thought that cryptic prophages in *E. coli* may play an

important role during adaptation to some stresses (Wang *et al.*, 2010). It is difficult to explain why there was no selection for these genes in the BW25113 TraDIS, but it may be related to differences in library screening conditions, transposon density, or other unknown factors.

3.2.3.5. SdsR

One advantage of TraDIS is that it can also identify and measure the essentiality of non-protein-encoding regions of DNA. This is highlighted by the identification of the small regulatory RNA, SdsR (formerly RyeB), as being essential in MG1655. SdsR expression is activated in stationary phase or in cells exposed to heat shock, and is subject to control by σ^{S} (Fröhlich *et al.*, 2012). SdsR base-pairs with mRNA of the mismatch repair protein, MutS, repressing its synthesis post-transcriptionally (Gutierrez *et al.*, 2013). Furthermore, it has been shown to downregulate the synthesis of the major outer membrane porin, OmpD, in *Salmonella*, via Hfq-dependent base pairing with *ompD* mRNA (Fröhlich *et al.*, 2012). However, *mutS* is not identified as essential in any of the studies mentioned here, and *E. coli* K-12 strains do not encode an *ompD* homologue, therefore it is possible that SdsR interacts with other mRNAs in *E. coli* K-12.

3.2.4. Essential genes uniquely identified by TraDIS uniquely in BW25113 The comparative analysis carried out in this study identified 34 genes that were unique to the BW25113 TraDIS study published by Goodall *et al.* (Goodall *et al.*, 2018). Interestingly, many genes allocated as 'ambiguous'

in MG1655 TraDIS were considered essential in Goodall *et al*'s analysis (see Table A2 and Table A6, Appendix), suggesting that under certain conditions these mutants could survive. This may again highlight the impact of a number of different factors mentioned this chapter, including varying starting populations of mutants, differences in library screening, or differences in the composition of LB medium between studies. Either way, the absolute requirement for these genes (and indeed those unique to MG1655) for growth in LB is circumspect, and it is likely that most were selected for the very same reasons as genes unique to MG1655 TraDIS.

Conclusions

The composition of a pooled transposon mutant library in *E. coli* K-12 strain MG1655 was characterised using TraDIS. This library was found to contain 193,495 unique insertion sites in the MG1655 genome, providing a resolution of approximately 1 insertion every 24 bp. According to the parameters of insertion index and log likelihood ratio, 428 genes were found to be essential i.e. containing a sufficiently low insertion index to be considered as essential for growth on LB agar plates. Comparison of these 428 genes with other lists of essential genes in *E. coli* K-12 identified 247 genes that were universally essential for growth in LB. 46 genes were identified as essential uniquely in TraDIS studies of MG1655 and BW25113, while 89 genes were identified as essential by the MG1655 TraDIS study alone. Most genes in the latter two categories (i.e. TraDIS studies) were probably selected by due to reduced mutant growth

rates, however some genes, including *tufA*, *tufB*, and *lapB* were shown to be uniquely required for growth by MG1655 in a way that indicates potential strain-specific requirements for these genes. However, the comparative analysis also identified many 'false positives', annotating genes as essential not due to a core metabolic or physiological requirement for these genes, but due to reasons of e.g. growth rate differences of mutants, differences in library construction (e.g. selection on agar vs liquid broth), differences in library density, or gene size being too small to accurately assign essentiality (e.g. when applying an IFR filter). This highlights the importance of standardising production and analysis of TraDIS libraries to facilitate future comparative studies.

Chapter 4 <u>TraDIS analysis of genetic</u> requirements of *E. coli* growth in the presence <u>of bile</u>

Introduction

One of the strongest anatomical barriers to entry of colonising microorganisms to the GI tract is bile (Sarker & Gyr, 1992). Therefore, to understand *E. coli*'s responses to bile is crucial in describing the challenges the bacterium faces when colonising the GI tract. Moreover, it has been suggested that the infectivity of pathogenic bacteria could be directly associated with their ability to resist bile, but that this would require an understanding of the bacterium's ability to grow within environments that contain bile (Merritt & Donaldson, 2009).

Growth in the presence of bile involves withstanding its antimicrobial effects, the most potent of which is its ability to disrupt the cell membrane (Begley *et al.*, 2005). This can be seen microscopically, where cells exposed to bile are shrunken and empty, or biochemically, where cell leakage can be detected in cells exposed to bile via enzyme assays (Fujisawa & Mori, 1996; Leverrier *et al.*, 2003; Noh & Gilliland, 1993; de Valdez *et al.*, 1997). Also, many membrane-associated functions and structures are mobilised by bacteria upon exposure to bile such as OMPs, efflux pumps, and cell membrane biosynthesis genes (Lee *et al.*, 2000; Nikaido, 2003; Rincé *et al.*, 2003; Ruiz *et al.*, 2007; Thanassi *et al.*, 1997). Moreover, LPS, the enterobacterial common antigen (ECA), PhoPQ, Tol-Pal, and other membrane-linked functions have been shown to be required for bile resistance in members of the *Enterobacteriaceae* (Merritt & Donaldson, 2009; Nikaido, 2003; Ramos-Morales *et al.*, 2003; Ray *et al.*, 2000; van Velkinburgh & Gunn, 1999).

However, many factors contribute to the antimicrobial property of bile, including low pH, the presence of immunoglobulin A and antimicrobial peptides, high osmolarity, and calcium and iron chelators. Furthermore, bile acids (also referred to as bile salts) can induce oxidative damage that is harmful to DNA and proteins (Begley et al., 2005; Merritt & Donaldson, 2009). Owing to the fact that bile elicits so many antimicrobial effects at once, it is likely that several cellular systems are employed simultaneously in order to resist its effects, pointing towards the importance of studying bile resistance using whole-cell or systems-level analyses. Surprisingly, despite the advent of highthroughput genomic technologies, few studies of the whole-cell or wholegenome response of *E. coli* to bile exist. Using microarrays, it was shown that, in E. coli O157:H7, bile induces expression of the acrAB efflux system, the *basRS* two-component system, a lipid A modification system (arn, ugd), and increased resistance to polymyxin, suggesting that bile salt stress induces E. coli O157:H7 to produce protective mechanisms for the outer membrane (Kus et al., 2011). In a similar study in O157:H7 growing in the presence of bile salts, transcriptomic analysis showed significant alterations in the expression of the locus of enterocyte effacement (LEE) pathogenicity island, increased expression of the flagella hook-basal body structure, decreased expression of 'late' flagellar genes, such as those for the filament and stator motor, decreased expression of chemotaxis genes, and increased expression of genes required for iron scavenging and metabolism (Hamner et al., 2013). This

indicates that pathogenic *E. coli* may use bile as a signal to modulate virulence.

The first published TraDIS study identified the genomic requirements of Salmonella enterica Typhi during growth in LB medium supplemented with ox bile (Langridge et al., 2009). This study identified mutants in 168 genes that displayed significantly reduced fitness during growth in the presence of 10% ox bile. These genes grouped into energy membrane/surface metabolism. structures. central/intermediary metabolism, and the degradation of macromolecules (Langridge et al., 2009). Some genes within these categories were previously implicated in bile resistance, such as waa genes (encoding the LPS core), the acrABto/C bile salt efflux pump, the phoPQ two-component system, and dam DNA methyltransferase (Begley et al., 2005; Langridge et al., 2009). However, many genes had not previously been implicated in bile resistance, including over 30 putative/hypothetical genes (Langridge et al., 2009).

The aim of this study was to use TraDIS to comprehensively investigate the genetic requirements for the growth of *E. coli* K-12 in the presence of ox bile. Results obtained by TraDIS would then facilitate a comparative analysis with *S*. Typhi in order to identify conserved bile resistance strategies in the Enterobacteriaceae. This study reveals broad insights into the genetic requirements of *E. coli* during growth in bile, including genes with and without prior links to bile tolerance.

Results & Discussion

4.1. TraDIS

The MG1655 transposon mutant library described in Chapter 3 was inoculated into LB containing either 2% or 10% ox bile as described in Materials and Methods. Cultures were set up in duplicate, generating four libraries that were put forward for TraDIS sequencing. TraDIS sequencing was carried with the help of Fiona Crispie and Laura Finnegan of Teagasc Moorepark. All subsequent analysis was carried out during this thesis. The INPUT library was taken from the mutant library grown in LB and the OUTPUT library was taken after the INPUT library was grown in LB medium with 2% bile, followed by LB medium with 10% bile.

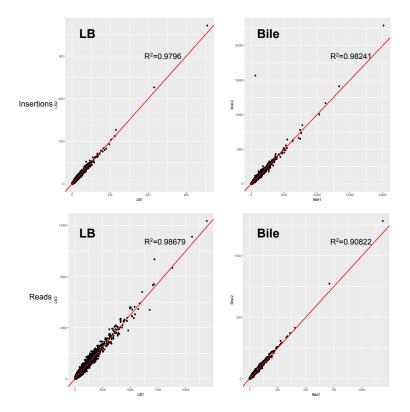

File	Total	% Mapped	Unique Insertion Sites	Sequence Length/UIS
	Reads		(UIS)	
INPUT 1	3551492	95.25184464	156452	29.66821773
INPUT 2	3611440	98.07458265	159343	29.12993982
OUTPUT 1	3372647	97.69497317	181451	25.58074632
OUTPUT 2	3377357	97.27516664	190842	24.32196267

Table 4.1. Mapping statistics for TraDIS library replicates.

4.1.1. Sequencing results

The sequencing reads were processed and mapped to the *E. coli* str. K-12 MG1655 reference genome (U00096) as described in Materials and Methods and mapping statistics are shown in Table 4.1. Approximately 3.5 million reads were generated for each library, with at least 95% of reads mapping to the MG1655 genome. Scatterplots of readcounts and transposon insertion counts for each gene between replicate libraries were generated and with the respective R^2 values calculated. These indicated a high degree of correlation between replicates (see Figure 4.1).

Fitness requirements for each gene were measured based on relative changes in mutant frequency between INPUT and OUTPUT libraries and were expressed as Log₂ fold-change (logFC) values for each gene. LogFC values were subsequently used as the primary measure of fitness (i.e. requirement for growth in bile). In total, mutants in 214 genes displayed significant logFCs (see Table A7, Appendix); mutants in 137 genes had a negative logFC value after growth in bile (suggesting that these genes were required for fitness under these conditions), while mutants in 77 genes had a positive logFC value after growth in bile (suggesting that mutations in these genes provided a fitness advantage during growth in bile; see Table A7).

Figure 4.1. Scatterplots and R² values of INPUT (left column; 'LB1' and 'LB2') and OUTPUT (right column; 'Bile1' and 'Bile2') replicate libraries. Insertion counts (top row) and readcounts (bottom row) are shown.

To identify general functions required for fitness in bile, all genes with significant logFC values were initially assigned a gene ontology (GO) term and then grouped by functional enrichment analysis. However, this resulted in many genes being classified into uninformative higher-order GO terms such as 'metabolic process'. Therefore, genes were analysed individually for annotation/predicted function by referral to online databases including Ecocyc (https://ecocyc.org/), Ecogene (http://ecogene.org/), PubMed (https://www.ncbi.nlm.nih.gov/pubmed), and others (Keseler et al., 2017; Mi et al., 2017; Zhou & Rudd, 2012). In this way, the following potential functional groups were manually generated: cell envelope constituent/homeostasis; lipopolysaccharide (LPS); enterobacterial common antigen (ECA), outer membrane proteins (OMPs); lipid transport; cell division; peptidoglycan (PG) synthesis and turnover; osmoregulation; NADH dehydrogenase; response to bile; oxidative stress; and DNA replication and repair (Table 4.2; also see Table A8, Appendix).

Functional group	Example gene/operon	Input insertion count	Ouput insertion count
Cell envelope constituents	ompA	19	3
LPS	waaQGPSBOJYZU	379	116
ECA	rfe-wzzE-wecBC-rffGHC-	242	71
	wecE-wzxE-rffT-wzyE-rffM		
Cell division	damX	23	1
PG synthesis and turnover	mltA	29	16
Osmoregulation	opgGH	78	9
NADH dehydrogenase I	nuoABCEFGHIJKLMN	91	1
Bile tolerance	acrAB	188	1

Table 4.2. Functional categories of genes with significant logFCs in TraDIS. Example genes/operons listed alongside total numbers

 of insertions in input and output libraries.

4.1.2. Genes with negative logFC values

The majority of the 214 genes identified by TraDIS displayed negative logFC values (n = 137 or 64%), of which many have previously been identified as important for bile adaptation and tolerance in E. coli and Salmonella (Hernández et al., 2012). These genes included the well characterised bile resistance mechanisms mentioned previously, such as acrAB-toIC (bile salt efflux), phoPQ (transcriptional response to bile), waa (LPS core biosynthesis), wec/rfe (ECA biosynthesis), tol-pal (cell envelope integrity), and dam (DNA methylation) (Merritt & Donaldson, 2009; Nikaido, 2003; Ramos-Morales et al., 2003; Ray et al., 2000; van Velkinburgh & Gunn, 1999). Furthermore, many genes with mutants showing reduced fitness were cell envelope-associated, eluding to the increased selective pressure bile can exert upon the cell membrane (Begley et al., 2005). Therefore, the list of genes with negative logFCs verified that TraDIS accurately described a condition under which bile was a selective pressure, and, as such, results obtained from TraDIS should accurately reflect genetic requirements for growth of E. coli in bile.

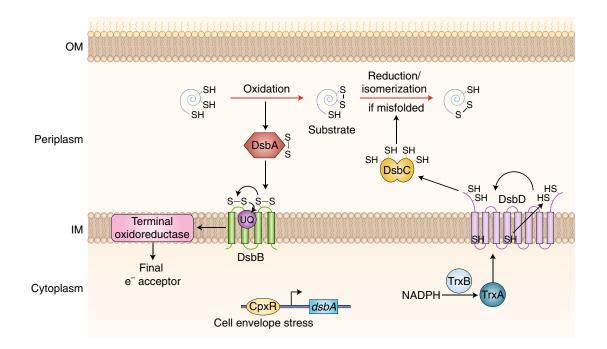
The roles of some genes with negative fitness scores during growth in bile were unexpected. For example, most *nuo* genes, encoding NADH dehydrogenase I, showed logFC values of < -8, indicating a substantial negative selection due to bile (see Table 4.3).

Gene	Function	logFC
nuoL	NADH:ubiquinone oxidoreductase, membrane subunit L	-9.099262266
nuoJ	NADH:ubiquinone oxidoreductase, membrane subunit J	-9.127948557
nuol	NADH:ubiquinone oxidoreductase, chain I	-8.31115119
nuoH	NADH:ubiquinone oxidoreductase, membrane subunit H	-9.077033141
nuoG	NADH:ubiquinone oxidoreductase, chain G	-10.51441405
nuoF	NADH:ubiquinone oxidoreductase, chain F	-9.991423561
nuoC	NADH:ubiquinone oxidoreductase, fused CD subunit	-9.710277668
nuoB	NADH:ubiquinone oxidoreductase, chain B	-9.408109621
nuoA	NADH:ubiquinone oxidoreductase, membrane subunit A	-4.275454887
nuoN	NADH:ubiquinone oxidoreductase, membrane subunit N	-9.064111238
nuoM	NADH:ubiquinone oxidoreductase, membrane subunit M	-9.358471301

Table 4.3. LogFC values of members of the *nuo* operon, encoding NADHdehydrogenase I.

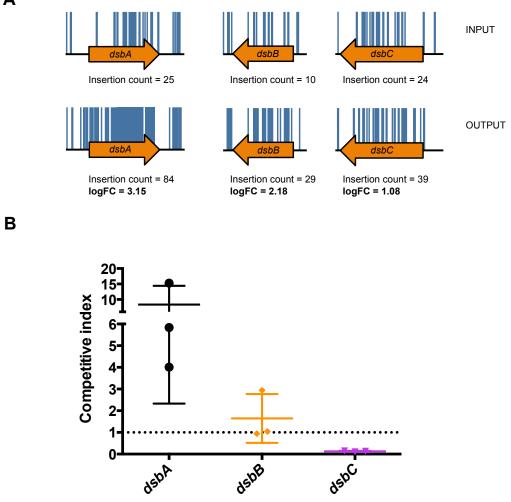
The role NADH dehydrogenase during growth in bile is not clear, although it has been shown to be required for bile resistance in *Listeria monocytogenes*, possibly by influencing cellular redox state (Wright *et al.*, 2016). NADH dehydrogenase is also embedded in the inner membrane, therefore it is also possible that disruption of this enzyme could disturb inner membrane integrity. Moreover, it has been shown previously that deletion of *nuo* operon genes prevented the stationary phase induction of the Cpx response, required for the coordination of the envelope stress response in *E. coli*, and that NADH dehydrogenase is generally required for maintaining basal levels of the activity of the Cpx two-component system (Guest *et al.*, 2017).

Furthermore, 17 unannotated y genes were included in this list, indicating that some processes required for fitness in bile remain to be characterised. Significantly, many of the y genes have putative functional annotations related to other processes selected in TraDIS, potentially validating these annotations. For example, the expression of yrbL, encoding a protein kinase-like domain-containing protein, has been shown to be upregulated by PhoP in response to Mg²⁺ concentration, and also in a mutant with a constitutively active EvgSA two-component system, which is known to interact with the PhoPQ system (Eguchi et al., 2004; Minagawa et al., 2003). Cell division genes form a significant functional group within the TraDIS dataset. YraP is implicated in the NIpD-mediated activation of AmiC (N-acetylmuramoyl-L-alanine amidase C), an important process during cell separation, and genes encoding these three proteins (i.e. yraP, nlpD, and amiC) are under negative selection in TraDIS (Tsang et al., 2017). Furthermore, yraP is a member of the RpoE (the cell envelope stress sigma factor, σ^{E}) regulon, suggesting it may have a role during envelope stress (Dartigalongue et al., 2001). The fitness requirement for yraP in bile may therefore be evidence that YraP plays a role in facilitating cell separation under conditions of cell envelope stress.


4.1.3. Genes with positive logFC values

A relatively large number of genes (approximately 36% of the total list) with positive logFC values were also identified, indicating that insertions in these genes improved relative fitness during growth in bile. For

example, mutants in the transcriptional repressor, *acrR*, show positive logFCs, suggesting that lifting AcrR-mediated repression is advantageous for growth in the presence of bile. In particular, AcrR is a repressor of *acrAB*, suggesting that derepression of this operon is advantageous since it would allow increased expression of this vital bile adaptation mechanism (Su *et al.*, 2007). However, the fitness advantage of mutants of several genes was less immediately clear, including mutants of *dsbA*, *skp*, *lptC*, *lpxM*, *kdsD*, and *kdsC*.

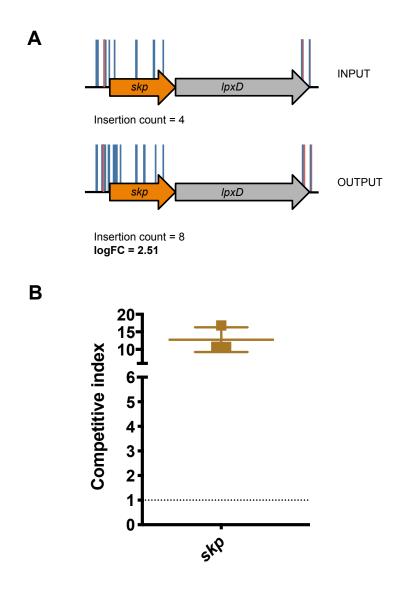

4.1.3.1. dsbA

DsbA is a periplasmic protein disulfide isomerase that is responsible for generating disulfide bonds in the *E. coli* periplasm (Landeta *et al.*, 2018; Shouldice *et al.*, 2011). The activity of DsbA requires redox activity, and DsbB is required to reoxidise DsbA during disulfide bond formation (Figure 4.2).

Figure 4.2. The prototypical disulfide bond (DSB)-forming system in *E. coli*. To start a new catalytic cycle, DsbB reoxidizes DsbA by transferring the electrons to ubiquinone. If DsbA introduces incorrect disulfides in the substrate, DsbC reduces the non-native DSBs and allows the formation of native bonds. The electrons for this reduction process come from cytoplasmic thioredoxin to DsbD, and then to DsbC. From Landeta *et al.*, 2018.

However, DsbA can introduce inappropriate disulfide bridges that negatively affect protein function (Berkmen et al., 2005). As a countermeasure to this, the DsbC/DsbD system corrects DsbA-induced misfolding so that disulfide bonds are formed in their correct positions (Vertommen et al., 2008). In TraDIS, dsbA, dsbB, and dsbC all had positive logFC values with observable increases in transposon insertion frequency in the output libraries (Figure 4.3A). Indeed, dsbA was represented among the genes with the most positive logFC values (logFC of +3.15), suggesting that insertion mutants in this system resulted in a substantial fitness advantage during growth in the presence of bile. This observation was verified by subsequent competition assays between a BW25113 $\Delta dsbA$ mutant from the Keio library and the wild type (Figure 4.3B). In this experiment, the $\Delta dsbA$ mutant displayed a competitive index (CI) of >4, confirming that the $\Delta dsbA$ mutant has a competitive advantage over the wild-type during growth in the presence of bile (Figure 4.3B). In contrast to what was observed in TraDIS, the $\Delta dsbB$ mutant from the Keio library did not display a significant competitive advantage over the wild type, and a $\Delta dsbC$ deletion mutant was less competitive than the wild type, in the presence of bile.

Figure 4.3. (**A**) Transposon insertion plots of *dsbA*, *dsbB*, and *dsbC*. Blue lines indicate transposon insertions (length not scaled to readcounts) in the input (top row) and output (bottom row). Insertion counts and LogFC values for each gene indicated. (**B**) Competition assay of *dsbA*, *dsbB*, and *dsbC* whole-gene deletion mutants in strain BW25113, derived from the Keio library. The dotted line indicates a competitive index of 1. Each dot represents the CI calculated from a biological replicate and experiments were carried out at least three times.


DsbA has a significant impact on the activity of a key mediator of bile resistance, PhoQ. The activity of the PhoQ sensor protein is repressed by MgrB, a protein that requires the generation of disulfide bonds at C28 and C39 via DsbA. Therefore, in the absence of either DsbA or DsbB, MgrB-mediated repression of PhoQ does not occur, resulting in the possible overexpression of PhoQ-regulated genes and increased bile resistance. Furthermore, *dsbA* knockout mutants have been shown to display increased abundances of proteins encoded by genes determined as being required for fitness in this study i.e. *ompA*, *opgG*, and *yrpG* (Vertommen *et al.*, 2008). Whether altered abundance of these proteins is also evident in *dsbB* and *dsbC* mutants is not known.

4.1.3.2 skp

Skp encodes a periplasmic chaperone, active during the folding and transport of OMPs to the outer membrane (OM). In particular, Skp is required for the folding and insertion of OmpA into the OM, as well as contributing to the assembly of the essential LPS assembly machinery component, LptA (Bulieris *et al.*, 2003; Schwalm *et al.*, 2013). However, Skp may interact with over 30 other proteins, primarily OMPs and other membrane-associated proteins (Jarchow *et al.*, 2008). According to TraDIS, insertions in *skp* were highly advantageous during growth in bile with a positive logFC value of 2.51 (Figure 4.4A). Moreover, when the Δskp mutant from the Keio library was tested in a competition assay against the wild type, it displayed a competitive index as high as 20,

confirming that the loss of *skp* function was highly advantageous during growth in bile (Figure 4.4B).

In the absence of Skp, OmpA is not released from the inner membrane (Schäfer *et al.*, 1999). OmpA is a nonspecific diffusion channel, therefore it could be hypothesized that loss of OmpA leads to increased bile resistance due to less crossover of harmful substances into the cell. However, this is unlikely as insertions in *ompA* mutants displayed negative logFC values (-3.37) in TraDIS, suggesting a fitness disadvantage associated with loss of OmpA. Moreover, it has been shown in *E. coli* O157:H7 that expression of *ompA* is not decreased in response to bile; in fact, expression of a repressor of *ompA* expression, *tdcA*, decreases in the presence of bile (Hamner *et al.*, 2013). A Tn10 transposon insertion mutant of *skp* has been shown to have an induced σ^{E} regulon and this might be responsible for the increased fitness observed in the presence of bile (Missiakas *et al.*, 1996).

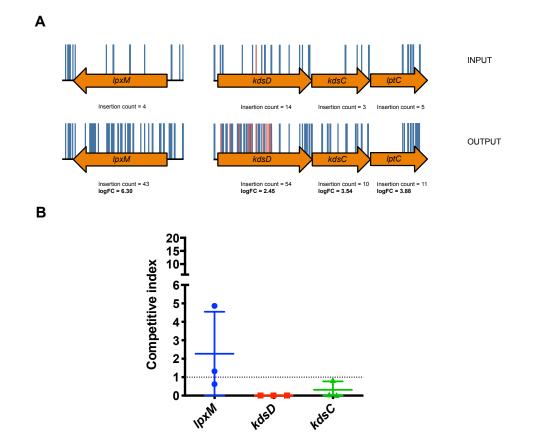


Figure 4.4. (A) Transposon insertion plots of *skp*. Insertions plots of the input (top row) and output (bottom row) are shown. The majority of transposon insertions in *skp* are oriented in one direction only, and so these orientations are highlighted by blue (plus strand) and red lines (minus strand). Newly acquired insertions are highlighted in purple The length of insertion lines is not scaled to readcounts. Insertion counts and logFC value indicated. **(B)** Competition assay of the *skp* Keio whole-gene deletion mutant. The dotted line indicates a competitive index of 1, equivalent to the competitiveness of the wild type.

The *skp* gene is located upstream from the essential gene, *lpxD*, involved in the third step of lipid A biosynthesis (Figure 4.4A). Both genes can be expressed on the same transcriptional unit, and expression is mediated by the transcriptional regulator, CpxR (Dartigalongue *et al.*, 2001). Examination of transposon insertion plots (Figure 4.4A) reveals that, after growth in bile, there is an apparent increase in transposon insertions in *skp*. However, these insertions are all oriented in one direction, indicating that *skp* is dispensable, and that expression from transposon insertions might somehow affect downstream *lpxD* expression in an advantageous way in the presence of bile. Therefore, while *skp* is definitely dispensable during growth in bile, the increased fitness associated with insertion in the *skp* gene may be the result of polar effects on neighbouring genes.

4.1.3.3. lpxM, kdsD, kdsC, lptC

Several genes with the most positive logFC values are involved in aspects of LPS biosynthesis and transport, including *lpxM*, *lptC*, *kdsD*, and *kdsC*. What is noticeable about these genes is the sheer number of new detectable insertions in these genes in the output library compared to the input, particularly in *lpxM* and *kdsD* (Figure 4.5A). This suggests that there were mutants in these genes in the input library, but these mutants were not detected during sequencing. However, the relative abundance of these mutations increased following growth in bile.

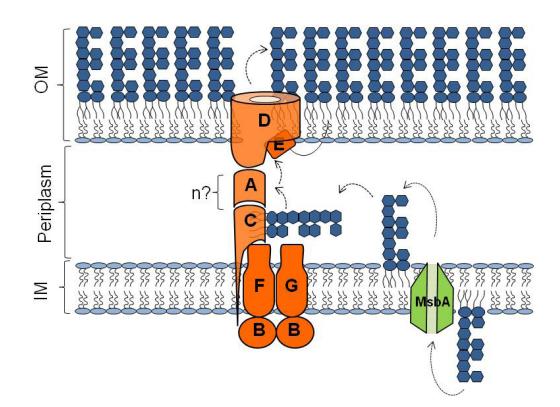


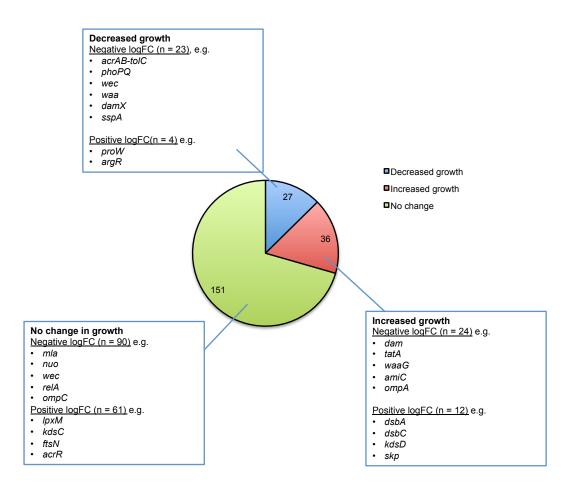
Figure 4.5. (**A**) Transposon insertion plots of *lpxM, kdsD, kdsC,* and *lptC*. Blue lines indicate transpon insertions (length not scaled to readcounts) in the input (top row) and output (bottom row). For *kdsD, kdsC,* and *lptC,* the orientation of transposon insertions is highlighted by blue (plus strand) and red lines (minus strand). LogFC values from TraDIS indicated. (**B**) Competition assay of *lpxM, kdsD,* and *kdsC* Keio whole-gene deletion mutants. The dotted line indicates a competitive index of 1, equivalent to the competitiveness of the wild type.

lpxM (Figure 4.5A) contained insertions in both orientations and throughout the gene (not shown), but Δ*lpxM* mutants showed a range of competitive indices, from 0.6 to 4.8 (Figure 4.5B). *lpxM* encodes a myristoyl-acyl carrier protein (ACP)-dependent acyltransferase, which transfers myristoyl-ACP to 2-keto-3-deoxy-octulosonate (KDO)₂-(lauroyl)-lipid IV_A. It has been reported that *lpxM* mutants display elevated σ^{E} levels and pentaacylated LPS, as opposed to hexaacylated LPS found in wild-type cells (Tam & Missiakas, 2005). The loss of *lpxM* in *Klebsiella pneumoniae* has been shown to cause increased sensitivity to bile (Clements *et al.*, 2007), however in *E. coli* a Δ*lpxM* knockout mutant was resistant to four times more deoxycholate than the wild type; therefore, it is likely the TraDIS is reflecting this phenotype (Karow & Georgopoulos, 1992).

The genes, *kdsC* and *kdsD*, encode 3-deoxy-D-mannooctulosonate 8-phosphate phosphatase and rabinose-5-phosphate isomerase, respectively. Together, these enzymes participate in the generation of KDO, a component of LPS. *kdsD* and *kdsC* mutants have been shown not to display defects in LPS biosynthesis or growth under standard laboratory conditions due to the presence of isozymes or other compensatory mechanisms (Meredith & Woodard, 2005; Sperandeo *et al.*, 2009). In this study, transposon insertions in *kdsC* and *kdsD* are either mostly or entirely inserted in one orientation, suggesting that these insertions may have advantageous polar effects on nearby genes e.g. the essential *lptC*, *lptA*, and/or *lptB*.

The *lptC* gene is transcribed with *kdsD* and *kdsC*, and encodes a component of the LPS transport system. Notably, the increase in insertions is localised to the C terminus-encoding region (Figure 4.5A (Sperandeo *et al.*, 2009)). A $\Delta lptC$ mutant was not available in the Keio collection and therefore this gene is considered to be essential for growth in E. coli (Baba et al., 2006; Sperandeo et al., 2009). However, the C terminal region of LptC is implicated in binding to LptA, the periplasmic component of the LPS transport apparatus, and it has previously been shown that mutations within this region result in a reduction of levels of this essential periplasmic component of the Lpt system (see Figure 4.6; (Sperandeo et al., 2011). It is interesting to note that DsbA and Skp also play roles in the assembly of LptD (Ruiz et al., 2010; Sperandeo et al., 2009), another component of the Lpt system, and that mutations in dsbA and skp are also advantageous in the presence of bile. This indicates a possible effect of bile on the requirements for the Lpt transport system which provides a fitness advantage to these mutants. However, it is also possible that the insertions within *lptC* provide a fitness advantage by increasing the expression of the downstream essential gene, *lptA*, since all transposons in *lptC* were inserted in one orientation only (Figure 4.5A).

Figure 4.6. LPS transport in *E. coli.* LPS is flipped across the inner membrane by the MsbA protein before being exported to the cell surface by the Lpt machinery (highlighted in orange). MsbA (highlighted in green) flips the lipid A-core molecule across the inner membrane. LptBGF, an ATP binding cassette transporter, together with LptC facilitate the release of LPS from the inner membrane. The periplasmic protein, LptA, acts as a bridge between the inner and outer membranes. The outer membrane complex LptDE assembles LPS at the cell surface. Figure adapted from (Martorana *et al.*, 2014).


4.2. Comparison of end-point growth and logFCs

Previously, results from TraDIS were compared to screens of defined mutant libraries in order to validate the list of essential genes obtained in TraDIS (see Chapter 3 of this thesis). This is because logFC values obtained from a TraDIS experiment do not provide information as to why a mutant was less fit under an experimental condition e.g. is it unviable? Is it viable but has a lower growth rate? Does it interact with other mutants in the pooled population in a manner detrimental to growth? Such information could be inferred by comparing logFC values with the end-point growth (i.e. OD of mutant cultures) of mutants after growth in the presence of bile, since final cell density can provide a simple measure of the ability of a mutant to grow in the absence of other competing mutants. Therefore, a selection of single-gene knockout mutants from the Keio library was grown in the presence of bile and compared to results of the TraDIS screen.

4.2.1. Growth assay results

214 mutants of the Keio library whose corresponding genes displayed significant logFC values in TraDIS, were assayed in triplicate for endpoint growth in LB supplemented with 10% bile, following initial growth in LB with 2% bile. This passaging in bile was done to ensure comparability of results with the TraDIS assay, which was screened under similar conditions (Langridge *et al.*, 2009). A difference in growth was deemed statistically significant if final OD₅₉₅ absorbance readings were two standard deviations above or below the mean absorbance measurement

of all mutant cultures together (see section 2.6.1, Materials and Methods). Following growth in bile, 27 mutants showed significantly decreased growth and 36 mutants showed significantly increased growth; the remaining 151 mutants showed no significant difference in growth (Figure 4.7). Within the Keio mutants showing decreased growth in bile, 23 genes had a negative logFC and 4 genes has a positive logFC after TraDIS analysis. Similarly, within the Keio mutants showing increased growth, 24 genes were associated with a negative logFC and 12 genes were associated with a positive logFC following TraDIS analysis. Finally, within the Keio mutants that showed no differences in growth, 90 genes were associated with a negative logFC and 61 genes were associated with a positive logFC following TraDIS analysis. Therefore, following this preliminary analysis, there does not appear to be a very good correlation between TraDIS and end-point growth assays. Indeed, only 35 genes (16.4%) showed agreement between TraDIS and Keio with respect to growth in bile. Genes were then categorised based on the correlation between growth value and logFC (see Table A9, Appendix).

Figure 4.7. Keio library mutants whose genes displayed significant logFC values in TraDIS, grouped by whether their end-point growth was significantly decreased (blue), increased (red), or not changed (green). A comparison to logFC values is shown for each category in the blue boxes.

4.2.2. Negative logFC and reduced growth

This category of genes (n = 23; see Table 4.4) represents those whose mutants are most sensitive to the deleterious effects of bile, exhibiting both reduced growth and fitness. Many of these functions include those which have been mentioned in this chapter, with well defined roles in bile tolerance and resistance. These genes included *acrAB-tolC*, *phoPQ*, *wec*

(*rff*), waa, damX, and rpoS (Begley et al., 2005). Other genes in this list, including *mltG*, *nlp*, *fimE*, *opgH*, and *tatC*, do not have well characterised roles in bile tolerance, yet their presence in this list indicates that they are probably required for optimal growth and fitness in bile.

Gene	logFC	% reduction	Gene	logFC	% reduction
		in growth			in growth
acrA	-13.457	32.6	rpoS	-6.148	13.9
phoQ	-11.490	11.8	wecB	-6.065	35.3
tolC	-11.047	17.4	fimE	-4.742	14.6
phoP	-10.992	13.8	wecC	-4.075	30.8
waaQ	-10.536	26.9	opgH	-3.467	24.7
acrB	-10.456	23.6	сvpА	-3.088	17.6
wecD	-8.995	23.8	yceG (mltG)	-2.934	18.4
nlpD	-8.597	15.6	nlpl	-2.692	24.4
lapA	-8.385	21.7	yajG	-1.695	14.7
tatC	-8.317	20.8	IpoA	-1.519	17.7
sspA	-7.338	33.3	rlmL	-0.555	13.8
damX	-6.295	14.2			
			l		

Table 4.4. Keio library mutants listed by increasing logFC value. Percentage reduction in growth indicated. Reduction in growth is calculated based on the percentage difference between the average mutant end-point OD₅₉₅ value and the average end-point OD₅₉₅ value of all other mutants assayed on the same well plate (see Materials and Methods for more detail).

4.2.3. Positive logFC and increased growth

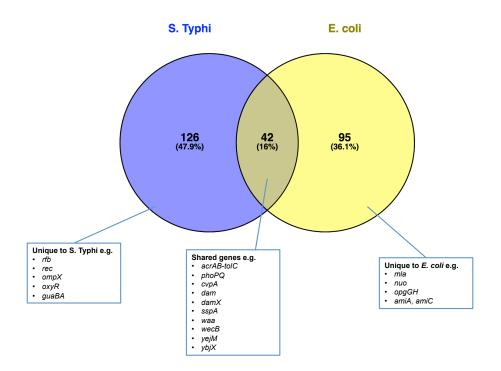
This list of genes (n = 12; see Table 4.5) included those whose mutants displayed an increased cell density and increased competitiveness in the presence of bile. This list also included some of the genes discussed previously, such as *dsbA*, and *skp*, further confirming that mutants in these genes are advantageous for growth in the presence of bile. Moreover, the $\Delta dsbB$ mutant, which previously was shown not to display increased CI in a competition assay, showed increased growth (Figure 4.3B). Similarly, the $\Delta kdsD$ mutant, which showed a substantial reduction in competitiveness compared to the wild type (Figure 4.5B) also showed increased growth, as discussed above. This would suggest that $\Delta dsbB$ and $\Delta kdsD$ mutants are capable of growing to high cell densities but probably at a slower growth rate, but also that competitive pressures were different in TraDIS and competition assays.

Gene	logFC	% increase in growth	Gene	logFC	% increase in growth
dsbA	3.154	49.4	kgtP	1.180	44.9
skp	2.510	38.0	ebgR	1.151	13.4
kdsD	2.458	15.2	rsmG	0.979	16.4
dsbB	2.188	23.2	uxuB	0.901	47.0
clsA	1.697	16.0	bacA	0.884	39.5
secG	1.531	22.0	eptB	0.852	18.4

Table 4.5. Keio library mutants (listed by gene) that showed increased

 end-point growth alongside their equivalent logFC values.

4.2.4. Mutants with no significant growth differences


The largest group of genes in this list encompassed those mutants with decreased logFC values but no significant differences in end-point growth of their Keio library equivalent mutants (n = 90). In other words, these mutants could grow to sufficiently high cell densities, but were negatively affected by the presence of competing populations of mutants. This phenotype is most likely explained by these mutants having reduced growth rates in the presence of bile, which would not necessarily limit their ability to reach a relatively high final OD_{595} , but would put them at a fitness disadvantage under competition. Notable genes or operons within this list include *mla, nuo, waa, wec, relA,* and *ompC* (see Table A9).

In addition, within this group are mutants that showed a fitness advantage (i.e. positive logFC values in TraDIS) but no significant changes in growth (n = 61). It is possible that these mutants displayed a fitness advantage because they were more resilient to the deleterious effects of bile, as opposed to being able to grow to greater numbers within the mutant pool. Again, the apparent discrepancies between TraDIS and end-point growth assays may reflect differences in assay conditions or else subtle changes between phenotypes of whole-gene deletion and transposon insertion mutants. Indeed, the non-congruence of outputs from TraDIS (i.e. logFC), end-point growth, and CI values indicates the need to employ a variety of different approaches in order to fully describe the role of a gene under a specified selective growth condition.

4.3. Comparison to S. enterica TraDIS

As mentioned in the introduction, TraDIS has been used previously to identify the genetic requirements for growth for *S. enterica* Typhi growth in the presence of bile (Langridge *et al.*, 2009). Therefore, in order to understand broader genetic requirements within the Enterobacteriaceae, a comparative analysis between *E. coli* and *S. enterica* TraDIS studies was conducted.

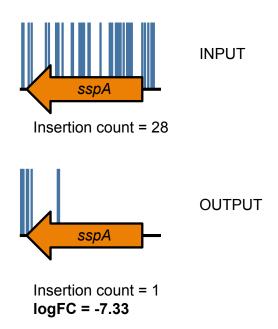
In *S.* Typhi, 168 genes displayed significant reductions in insertion count following growth in bile, and these were previously categorised into four main classes: energy metabolism, membrane/surface structures, degradation of macromolecules, and central/intermediary metabolism (Langridge *et al.*, 2009). It was not indicated, however, which genes displayed increased insertions following growth in bile, therefore the list of 168 genes was compared with genes displaying negative logFC values in *E. coli* (n = 137) Of these, 42 genes were shared with *E. coli* (Figure 4.8).

Figure 4.8. Venn diagram comparing genes required for growth in bile in *S. Typhi* and *E. coli* MG1655 (Langridge *et al.*, 2009 and this study). Example genes in each category are highlighted. Full gene lists can be found in Table 4.6 (shared genes), and Tables A10 and A11, Appendix (unique genes).

4.3.1. Genes shared between S. Typhi and E. coli

Most genes that were shared in both studies have been mentioned previously in this chapter and include the major bile resistance determinants or genes shown to play a role in optimal growth in bile, i.e. *acrAB, tolC, phoPQ, waa* genes, *wec* genes, *damX, dam,* and *rob* (encoding a response regulator which coordinates the response to organic solvents such as bile acids; see Table 4.6).

Gene	Function		
acrA	multidrug efflux system		
acrB	multidrug efflux system protein		
ampG	muropeptide transporter		
cpxR	response regulator in two-component regulatory system with CpxA		
cvpA	colicin V production protein		
dacA	D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 5)		
dam	DNA adenine methyltransferase		
damX	cell division protein that binds to the septal ring		
dedA	DedA family inner membrane protein		
dsdA	D-serine dehydratase		
ftsP	septal ring component that protects the divisome from stress;		
	multicopy suppressor of ftsI(Ts)		
galR	galactose-inducible d-galactose regulon transcriptional repressor;		
	autorepressor		
mlaA	ABC transporter maintaining OM lipid asymmetry, OM lipoprotein		
	component		
mltA	membrane-bound lytic murein transglycosylase A		


- *ompA* outer membrane protein A (3a;II*;G;d)
- *ompC* outer membrane porin protein C
- *phoP* response regulator in two-component regulatory system with PhoQ
- phoQ sensory histidine kinase in two-component regulatory system with PhoP
- *prc* carboxy-terminal protease for penicillin-binding protein 3
- *ptsP* PEP-protein phosphotransferase enzyme I; GAF domain containing protein
- *relA* (p)ppGpp synthetase I/GTP pyrophosphokinase
- *rfbD* dTDP-L-rhamnose synthase, NAD(P)-dependent dTDP-4dehydrorhamnose reductase subunit
- *rob* right oriC-binding transcriptional activator, AraC family
- *sanA* DUF218 superfamily vancomycin high temperature exclusion protein
- sspA stringent starvation protein A, phage P1 late gene activator, RNAPassociated acid-resistance protein, inactive glutathione S-transferase homolog
- *tig* peptidyl-prolyl cis/trans isomerase (trigger factor)
- toIC transport channel
- uvrD DNA-dependent ATPase I and helicase II
- *waaB* lipopolysaccharide 1,6-galactosyltransferase; UDP-Dgalactose:(glucosyl)lipopolysaccharide-1, 6-D-galactosyltransferase
- waaG UDP-glucose:(heptosyl)lipopolysaccharide alpha-1,3glucosyltransferase; lipopolysaccharide core biosynthesis protein;
 lipopolysaccharide glucosyltransferase I
- waaL O-antigen ligase
- waaO UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-Dgalactosyltransferase

- *waaP* kinase that phosphorylates core heptose of lipopolysaccharide
- waaQ lipopolysaccharide core biosynthesis protein
- waaRlipopolysaccharide1,2-glucosyltransferase;UDP-glucose:(glucosyl)LPS alpha-1,2-glucosyltransferase
- waaU lipopolysaccharide core biosynthesis
- *waaY* lipopolysaccharide core biosynthesis protein
- wecA UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase
- wecB UDP-N-acetyl glucosamine-2-epimerase
- wecC UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase
- *ybjX* DUF535 family protein
- *yejM* essential inner membrane DUF3413 domain-containing protein; lipid A production and membrane permeability factor

Table 4.6. Genes under negative selection in both *S.* Typhi and *E. coli*TraDIS studies.

Many other genes encode proteins with roles related to the functioning of the cell envelope, i.e. *ampG*, *cpxR*, *dacA*, *dedA*, *mltA*, *ompA*, *ompC*, *prc*, *sanA*, as well as the putative cell envelope-associated genes *ybjX* and *yejM* (Table 4.6). The presence of *yejM* (encoding a putative cardiolipin transport protein) is interesting, since deletion of the *yejM* gene has been reported to be lethal (De Lay & Cronan, 2008). Cardiolipins contribute to several activities within the bacterial membrane, including the PhoPQ-mediated remodeling of the cell membrane during infection and cytoskeletal arrangement during cell division in *E. coli* (Dalebroux *et al.*, 2015; Renner & Weibel, 2012).

The remaining genes shared by both studies are predicted to encode proteins involved in a variety of different functions, including *cvpA* (colicin production), *dsdA* (D-serine ammonia-lyase, involved in serine degradation), *tig* (trigger factor, required for folding of cytosolic proteins), and *relA* and *sspA* (stringent response; see Figure 4.9).

Figure 4.9. Transposon insertion plots of *sspA* from TraDIS conducted in this study. Blue lines indicate transposon insertions (length not scaled to readcounts) in the input (top row) and output (bottom row). Insertion counts and logFC value indicated.

The selection for both *relA* and *sspA* strongly implies a role for the stringent response in bile tolerance. The relA gene encodes GDP/GTP pyrophosphokinase, an enzyme responsible for producing the global regulatory molecules ppGpp and pppGpp (referred to collectively as (p)ppGpp). The primary role of RelA is the production of (p)ppGpp in response to amino acid starvation i.e. the stringent response. RelA associates with the ribosome and promotes the synthesis of (p)ppGpp when an uncharged tRNA binds to the acceptor site of the ribosome. The accumulation of ppGpp then results in the cessation of rRNA and tRNA synthesis (Brown et al., 2016). One study has shown a potential role for RelA in adaptation to bile salts in Enterococcus faecalis, in modulating the virulence properties of the bacterium such that it can more successfully proliferate in an oxidative environment (including in the presence of bile salts; (Yan et al., 2009)). SspA also associates with RNA polymerase and plays an important role in stress responses during stationary phase via inhibition of the accumulation of H-NS, in particular being essential for growth under acid stress (Hansen et al., 2005). The potential role of SspA in bile tolerance is less clear. SspA can account for over 50% of total protein synthesis during amino acid starvation in E. coli (O'Farrell, 1978) and it has been shown that the abundance of at least 11 proteins are altered in Δ*sspA* mutants, (Williams *et al.*, 1994). However, most of these 11 proteins were not identified, and of those that were, none were identified in either the TraDIS or Keio mutant screens (Williams *et al.*, 1994). This study did show, however, that $\Delta sspA$ mutants displayed reduced viability during long-term stationary phase, indicating a

role for the protein in withstanding stress. Therefore, the stringent response may have an important role to play in bile tolerance in *S*. Typhi and *E. coli* by coordinating stress responses, and particularly oxidative stress.

4.3.2. Species-specific differences

The comparative analysis indicated that a wide variety of functions play a role in bile tolerance in both species but is remarkable that there are far more genes unique to each species compared to the number of genes shared by both (see Figure 4.9, Table 4.6, Table A10, Table A11). However, when genes were arranged into functional groups, it appeared that *S*. Typhi and *E. coli* shared many functional groups without necessarily sharing the exact same genes (Table 4.7).

Functional group	Genes unique to S. Typhi	Genes unique to <i>E. coli</i>
Cell envelope	clsA, cpxA, fabR, ompX,	asmA, bepA, clsA, fabR,
constituents	rcsC, rcsD, rffM, rseB,	mlaB, mlaC, mlaD, mlaE,
	tamA, tamB, yrfF	mlaF, skp, yajG, yedD
LPS	pagP, rffM, pgi, rfbA, rfbB,	lpxT, rfaG, waaZ
	rfbC, rfbE, rfbH, rfbI, rfbK,	
	rfbP, rfbU, wbbH, wzzB	
PG synthesis/Cell	ldtB, mltC, mltD, mrcA,	envC, minC, nlpD, nlpI,
division	mrcB, slt, zapВ	tolA, ygeR, yraP, emtA,
		mipA, amiA, amiB, amiC,
		elyC
DNA/RNA	hfq, seqA, yejK, hcpA, sbcB,	rnhA, dcm, uup
	xseA, pcnB, topB, yejH,	
	pnp, rph, rapA, rmuC, recD,	
	recG, recJ	
Chaperones/protein	djlA, dsbD, fkpA, hslU, ridA	
folding		

Table 4.7. A comparison between some gene functional groups in TraDIS studies of *S*. Typhi and *E. coli*. Note that only genes under negative selection are included.

S. Typhi did appear to select for many more genes involved in nucleotide metabolism and the modification and maintenance of DNA, suggesting that bile salt-induced DNA damage may have been under greater selection in that TraDIS study (Langridge et al., 2009). Furthermore, while mutations in many protein chaperones appeared to offer a fitness advantage in E. coli, many genes encoding protein folding chaperones were under negative selection in S. Typhi (see Table 4.7). Together, these suggest either differences in the redox environment in which E. coli and S. Typhi TraDIS libraries were grown or may indicate that both species react differently to the challenge imposed by bile. This can be seen in the negative selection for rcsD, fkpA, ldtB, tgt, oxyR, and clsA in S. Typhi but these genes showing positive logFCs in E. coli. There was also a notable difference in the selection for LPS-associated genes between the two species (see Table 4.7), which could have had a significant impact on the structure of the cell envelope. In particular, genes involved in the production of O antigen subunits (i.e. wzzB, 12 rfb genes and pgi) were selected for uniquely in S. Typhi (Langridge et al., 2009), whereas MG1655 contains rough LPS i.e. its LPS molecules do not contain an O-specific polysaccharide, and so these genes were not under selection. This is significant, since the presence of the O antigen is known to influence bile resistance (Crawford et al., 2012). Therefore, LPS structure may also have influenced the differences in genetic requirements between the two species. Nevertheless, it would appear that E. coli and S. Typhi share many of the same functional requirements for bile tolerance.

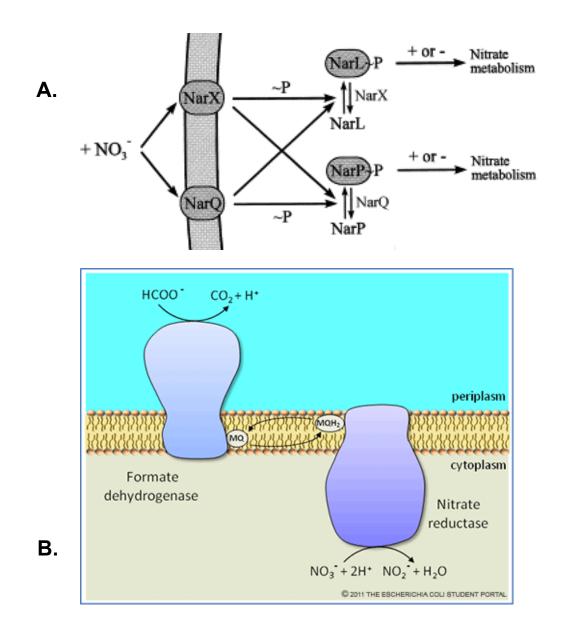
Conclusions

This study described the use of TraDIS to determine the genetic requirements for growth of *E. coli* in the presence of bile. In total, 214 genes were shown to exert a significant impact upon fitness. The majority of these genes displayed negative logFCs and included many whose roles in bile tolerance had been established previously (Begley *et al.*, 2005). However, TraDIS also identified several genes and functions that had no obvious prior link to bile tolerance, e.g. NADH dehydrogenase and a selection of y genes. Therefore, this study has expanded upon the repertoire of candidate genes involved in bile tolerance in *E. coli*. TraDIS also identified a substantial number of genes displaying positive logFCs, e.g. *dsbA* and *skp*, indicating that a trade-off exists between *E. coli* increasing its growth in the presence of bile and maintaining the function of certain cellular components.

This chapter also described a comparison between this TraDIS study with a similar study conducted in *S*. Typhi (Langridge *et al.*, 2009) in order to characterise bile tolerance in the Enterobacteriaceae. This showed that both species share a core set of genes with well established links to bile tolerance, but also that these species do not share many genes in common. However, comparing gene functional groups demonstrated that the requirements of both species to growth in bile share similar functionalities, despite differences in the requirements for specific genes. These differences may have arisen as a result of a range of different experimental conditions, including species differences, but the

absence of an O antigen in *E. coli* MG1655 may also have had a substantial effect. Future comparative studies should employ various Enterobacterial strains with both smooth and rough LPS in order to understand the effect of the O antigen (and species) on bile tolerance in greater detail.

Chapter 5 <u>TraDIS analysis of genetic</u> requirements of *E. coli* growth under anaerobic conditions in the presence of nitrate


Introduction

Anaerobic nitrate respiration is an important fitness determinant during *E. coli* colonisation of the GI tract, enhancing its metabolic capacity and boosting its growth within the oxygen-poor environments of the intestine. This is supported by the fact that *E. coli* unable to respire nitrate exhibit extreme colonisation defects, and that, under the fluctuating redox conditions of gut inflammation during which nitrate is produced, *E. coli* can boost its growth relative to other members of the GI microbiota (Faber & Bäumler, 2014; Jones *et al.*, 2011; Winter *et al.*, 2013). Therefore, understanding the mechanisms of nitrate respiration in *E. coli* is important when characterising the processes at play in gut health and disease.

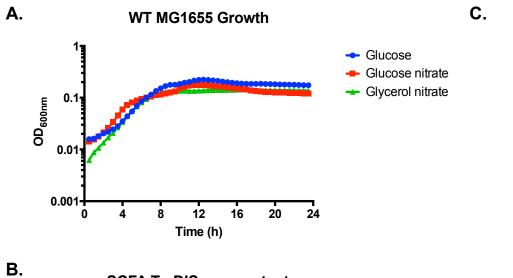
In the absence of oxygen and in combination with FNR, IHF, and/or other regulators, genes involved in anaerobic nitrate respiration are expressed (Cole & Richardson, 2013). Nitrate respiration fundamentally is the reduction of nitrate to ammonia via an electron transport chain. This chain is made up of a dehydrogenase, which accepts electrons from electron donors such as NADH or formate, a quinone to act as a redox carrier, and a terminal nitrate reductase, which reduces nitrate to nitrite (Figure 5.1B). Together, this generates a proton motive force, allowing for the production of ATP via the F_1F_0 ATPase. There is metabolic flexibility for this process in *E. coli* through the presence of three nitrate reductases, membrane-bound nitrate reductase A (NarGHI) and nitrate reductase Z (NarZYV), and the periplasmic nitrate

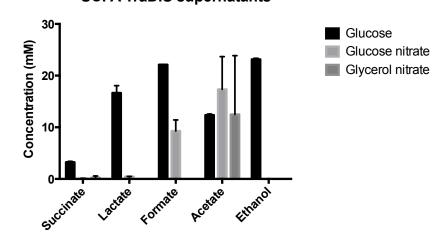
reductase, Nap. Each operates based on the concentration of nitrate present in the environment, with nitrate reductase A operating at higher concentrations than nitrate reductase Z or Nap (Cole & Richardson, 2013). Based on the variety of dehydrogenases and nitrate reductases available in *E. coli*, 5 potential variants of the nitrate electron transport chain exist, although in reality only formate dehydrogenase and NADH dehydrogenase I are thought to be able to operate in concert with *E. coli*'s nitrate reductases (Cole & Richardson, 2013).

The molecular mechanisms of the regulation of nitrate respiration and the reduction of nitrate to nitrate and ammonia have been well characterised (Cole & Richardson, 2013; Unden & Bongaerts, 1997). *E. coli* expresses two nitrate-sensing histidine kinases, NarX and NarQ, which are active in the presence of high (micromolar - millimolar) and low (as low as nanomolar) concentrations of nitrate in the environment, respectively (Cole & Richardson, 2013). When activated, they phosphorylate their cognate response regulators, NarL and NarP, respectively, although there is extensive cross-regulation between the two component systems (Figure 5.1A) (Unden & Bongaerts, 1997).

Figure 5.1. (A) Nitrate-sensing two component systems in *E. coli*. Adapted from Unden & Bongaerts, 1997. **(B)** Formate dehydrogenase-tonitrate reductase electron transfer. From http://ecolistudentportal.org/article_anaerobic_respiration; accessed 23 Jan 2019.

Studies that characterise the global response of the cell to nitrate have focused on analysing the regulons of the major nitrate response regulators i.e. NarP or NarL. For example, transcriptional analysis has showed that NarL is required to induce the expression of over 40 genes in response to nitrate (Constantinidou *et al.*, 2006). While most of these were directly involved in the nitrate respiratory apparatus or the detoxification of byproducts such as NO or nitrate, some included previously uncharacterised functions, such as the unannotated genes *yeaR* and *yoaG* (Constantinidou *et al.*, 2006; Goh *et al.*, 2005; Stewart, 1993). Furthermore, metabolomic analysis has shown that nitrate significantly shifts metabolic flux through the TCA cycle and the pentose phosphate pathway (Toya *et al.*, 2012). Studies on the global effects of nitrate respiration on *E. coli* are, however, lacking.


This study therefore aims to conduct an analysis of the genetic requirements for the growth of *E.coli* under anaerobic conditions in the presence of nitrate using TraDIS. The first section of the analysis is an indepth look at the effect of nitrate on central metabolism. This is followed by an overview of the requirements for growth under these conditions outside of central metabolism. Results presented in this chapter demonstrate the power of TraDIS as a global analytical method, identifying potential novel functions for both well characterised, and previously uncharacterised, genes.


Results & Discussion

5.1. Mutant library screen

The TraDIS transposon library described in Chapter 3 was initially cultured in M9 minimal medium under aerobic conditions with 0.4% (w/v) glucose as the carbon source. This input library was then passaged three times anaerobically in M9 minimal medium supplemented with glucose only ('glucose' \rightarrow expected fermentative conditions), glucose + 40 mM sodium nitrate ('glucose nitrate' \rightarrow expected nitrate respiration conditions) and glycerol + 40 mM sodium nitrate ('glycerol nitrate' \rightarrow expected nitrate respiration conditions). It should be noted that E. coli cannot ferment glycerol and anaerobic growth using glycerol requires the presence of a terminal electron acceptor. Results from TraDIS are dictated by the selective pressures present within the medium in which the mutant library is passaged. Therefore, in order to characterise the growth dynamics and selective pressures present within each growth condition, OD₆₀₀ values, pH readings, total number of generations, and metabolite profiles of cellfree supernatants were measured for both wild-type and pooled mutant library cultures (shown in Table 5.1 and Figure 5.2). Overall, cultures were grown for approx. 20 - 21 generations in glucose, approx. 19 generations in glucose nitrate, and approx. 16 - 19 generations in glycerol nitrate. Growth curves of MG1655 cells cultured under the three conditions showed an initial lag phase in glucose and glucose nitrate, but not in glycerol nitrate (Figure 5.2A). Thereafter, glucose nitrate and

glycerol nitrate appear to display similar growth rates during log phase, however in glucose and glucose nitrate, a form of diauxie emerges, with a flattening of the curve between 4 h and 8 h for glucose, or 8 h - 12 h for glucose nitrate. This may indicate some switch in transition in growth mode such as during the glucose-to-acetate transition (Enjalbert *et al.*, 2015). Interestingly, fermentative growth using glucose resulted in the highest OD_{600} value after 23 h (Figure 5.2A). However, pairwise comparisons of total growth curves indicated no significant differences in total growth between the three conditions. Therefore, while growth dynamics were different between the three different conditions, they did not ultimately show significant differences in overall bacterial growth.

Glucose

Glycerol nitrate

Glucose nitrate

SCFA TraDIS supernatants

Figure 5.2. Analysis of TraDIS culture conditions. **(A)** Growth curves of WT MG1655 grown in triplicate under anaerobic conditions at 37°C in M9 minimal medium supplemented with 0.4% (w/v) of carbon source and 40 mM nitrate, where indicated. **(B)** Metabolite profiles of cell-free supernatants of TraDIS libraries grown anaerobically on glucose (black bars), glucose nitrate (light grey bars), and glycerol nitrate (dark grey bars). Metabolite levels were measured by HPLC and measurements represent duplicate output library cultures. **(C)** Greiss method for detection of nitrate reductase activity from wild-type MG1655 cultures grown under the different growth conditions, as indicated. A red colour indicates the qualitative presence of nitrites and therefore nitrate reductase activity.

Sample	Passage	OD ₆₀₀	OD ₆₀₀	No. generations		рН	рН
		Rep1	Rep2	Rep1	Rep2	Rep1	Rep2
Input (M9 glucose aerobic)		2.51	2.18	8	8		
Glucose	1	1.09	0.76	7	6		
	2	1.1	0.95	7	7		
	3 (output)	1.09	0.972	7	7	4.72	4.74
Glucose nitrate	1	0.88	0.87	6	6		
	2	1.23	0.84	7	6		
	3 (output)	0.86	0.999	6	7	6.77	6.72
Glycerol nitrate	1	0.68	0.46	6	5		
	2	1.01	0.63	7	6		
	3 (output)	0.62	0.62	6	6	7.00	7.00

Table 5.1. Optical densities (OD_{600nm}), number of generations, and cell-free supernatant pH values of TraDIS mutant libraries grown in duplicate under the conditions indicated. Number of generations were calculated as the number of times a culture doubled from the starting OD_{600} of 0.01 to the indicated end point OD_{600} . Each passage of growth represents 24h at 37°C.

The presence of specific terminal end-products of metabolism in the cell-free supernatants at the end of the third passage of each growth condition was determined by HPLC (Figure 5.2B). This data showed substantial amounts of ethanol, lactate, formate and succinate produced in the glucose culture, indicative of mixed-acid fermentation. Ethanol, succinate and lactate were not detected in cultures grown with glucose nitrate and glycerol nitrate suggesting that significant levels of fermentation did not occur under these conditions. As expected, pH measurements also indicated increased acidity after growth with glucose compared to glucose nitrate, presumably due to the greater production of acidic byproducts such as acetate (Figure 5.2B, Table 5.1). Finally, the Griess method was used to detect the presence of nitrites in cell-free culture supernatants (Figure 5.2C). Nitrite production is indicative of the reduction of nitrate during anaerobic respiration (Griess & Bemerkungen, 1879). Therefore, as expected, no nitrite production was detected from E. coli growing under anaerobic conditions in the presence of glucose. In contrast, nitrites were detected in cell-free supernatants of E. coli grown with either glucose or glycerol in the presence of nitrate. Therefore, it appears that the primary metabolic mode of cells grown anaerobically on glucose is mixed-acid fermentation and the addition of nitrate results in a metabolic switch from mixed-acid fermentation to anaerobic respiration.

5.2. TraDIS

5.2.1 Sequencing results

TraDIS sequencing was carried out by the Wellcome Trust Sanger Institute. All subsequent analysis was carried out during this thesis. The reads from the MiSeq run were processed and mapped to the *E. coli* str. K-12 MG1655 reference genome (U00096). An average of 1.4 million reads was generated for each library, with at least 92% of reads mapping to the genome. Mapping statistics are shown in Table 5.2.

5.2.2. Essential genes and logFCs

TraDIS can readily provide lists of essential genes based on insertion indices. However, TraDIS can also be used to generate logFC values for genes when comparing readcounts between an input and output library. In this chapter, both insertion index and logFC were considered when analysing the results of TraDIS. This was done for the following reasons: 1. Selecting genes based on essential gene criteria (i.e. below the lowest calculated insertion index threshold) is straightforward and allows easy comparisons with other studies. e.g. 50 essential genes from growth on glucose, 50 from growth in glucose nitrate, and 46 from growth in glycerol nitrate were shared with a previously published list of genes essential for growth in M9 medium (Joyce *et al.*, 2006).

Sample	Total Reads	% Mapped	Unique Insertion Sites (UIS)	Sequence Length (bp)/UIS
INPUT 1	1380341	94.0584553	237355	19.54740789
INPUT 2	1358614	92.75704596	197456	23.49726015
Glucose 1	1383167	94.09060022	209089	22.1899526
Glucose 2	1394410	94.74634572	211883	21.89734429
Glucose_nitrate 1	1238074	92.69745641	110818	41.86752152
Glucose_nitrate 2	1515866	92.60251621	118058	39.29996273
Glycerol_nitrate 1	1594990	93.38922826	111960	41.44046981
Glycerol_nitrate 2	1550845	93.32456563	211923	21.89321121

 Table 5.2. Sequencing statistics of each TraDIS library in duplicate. Reads mapped to Genbank accession number U00096.

2. Comparing logFC values can identify genes with significant roles in fitness under certain conditions despite the gene being non-essential e.g. *sucC* is essential in glucose but not essential in glucose nitrate but does display a logFC value of -1.95 in glucose nitrate. 3. Using logFCs alone to compare genetic requirements for growth can, in some instances, falsely categorise genes as being required more under one condition than another because the total sequencing reads differed between growth conditions and between output libraries (Table 5.2). For example, *pgi* has a logFC value of -6.8 in glucose but -9.4 in glucose nitrate, despite having 0 insertions in both output libraries. As such, genes will be referred to below as essential or as 'important for growth/fitness' in the case of being non-essential but with a significant logFC value. Readcounts and/or transposon insertion plots will be provided for clarification, where required.

Essential gene lists were generated for the INPUT and output libraries as described previously (see Chapter 3 and Materials and Methods). The numbers of essential genes were as follows: INPUT - 573, glucose - 698, glucose nitrate - 834, and glycerol nitrate - 740. Many genes in the output lists were those selected for previously in either the INPUT or base library (see Chapter 3). Therefore, filtering the dataset to remove these genes resulted in the following numbers of essential genes specific for the particular growth condition: glucose - 200, glucose nitrate - 328, and glycerol nitrate - 182 (see Tables A12 and A13, Appendix). LogFC values were calculated for each gene by comparing insertion counts and readcounts from the INPUT and output libraries, and, after

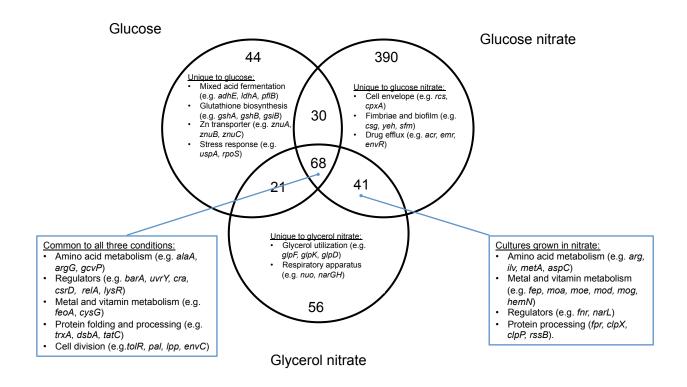
applying the appropriate statistical cutoffs, 163 genes showed significant logFCs after anaerobic growth using glucose, 529 genes with significant logFCs after anaerobic growth with glucose in the presence of nitrate, and 186 genes with significant logFCs after anaerobic growth on glycerol in the presence of nitrate.

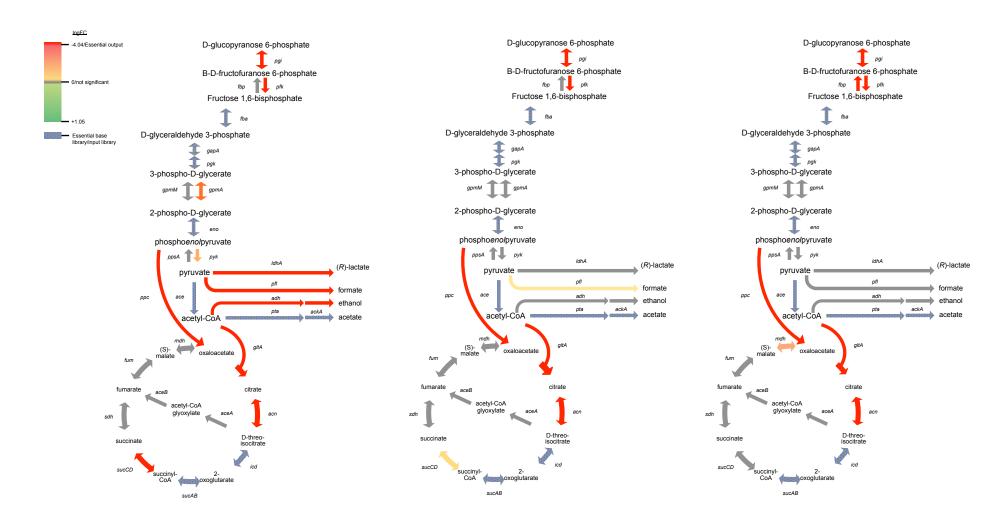
All genes with logFC values could reliably be designated as playing a role in fitness specifically under a growth condition, whereas this could not be said for all genes nominated as essential. Therefore, subsequent analyses of the genetic requirements for fitness under the three different growth conditions were based upon the logFC lists (glucose = 163 genes; glucose nitrate = 529 genes; glycerol nitrate = 186 genes; see Table A13), with referral to essentiality where necessary.

In both essential and logFC lists, glucose nitrate displayed higher numbers of genes, suggesting that there may be a greater stress on cells during growth in glucose nitrate, i.e. more genes were required for full fitness.

5.2.3. Functional enrichment analysis

Functional enrichment analysis was conducted on the genes with significant logFC values (see Figure 5.3 and Tables A14-A17, Appendix).




Figure 5.3. Functional groups shared between, and unique to, the three output libraries.

5.3. Gene category analysis - metabolism

5.3.1 Central metabolism

Optimal metabolism is important for efficient growth and defects in metabolism would be expected to result in a fitness disadvantage. Therefore, in order to investigate the effects of the different growth conditions on metabolism, maps of central metabolism were constructed for each growth condition using the logFC as a reporter of fitness. Figure 5.4 highlights these pathways and the degree of selection for genes therein. Not surprisingly, all three conditions shared a requirement for functional glycolysis and the oxidative branch of the TCA cycle, however a number of notable differences in the profiles of genes under the different growth conditions was observed.

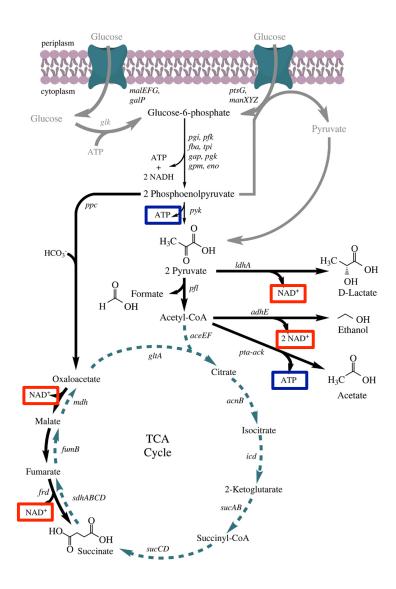
Figure 5.4 (overleaf). Central metabolism and mixed acid fermentation in glucose (left), glucose nitrate (centre), and glycerol nitrate (right). Pathway reactions are represented by coloured arrows. The degree of selection for genes in each pathway are highlighted by the colour scale as follows: bright red - genes essential in the output libraries; dark orange to green - genes displaying significant negative to positive logFC values, respectively; grey - non-essential genes displaying no significant changes in fitness; grey arrows with blue spots - genes essential in the base library or input library.

5.3.1.1. Glycolysis and pyruvate generation

Glycolysis is essential for the generation of both energy and essential precursor metabolites and this was clearly demonstrated clearly in that most genes in glycolysis were deemed to be essential in either the base or INPUT libraries. The very few differences that were observed did illustrate clear differences in metabolism between the 3 conditions. For example, mutants of *fbp* (encoding fructose-1,6-biphosphatase) showed a fitness defect exclusively during growth in glycerol nitrate as Fbp is required for gluconeogenesis.

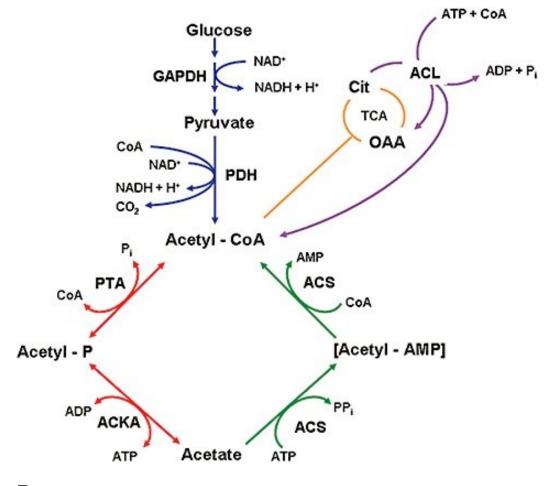
Another difference was the observed requirement for the gpmA gene, encoding phosphoglycerate mutase, during fermentative growth on glucose in the absence of nitrate. Phosphoglycerate mutase is responsible for the interconversion of 2-phospho-D-glycerate and 3phospho-D-glycerate, and E. coli has two non-homologous genes encoding enzymes to carry out this reaction, i.e. cofactor-dependent phosphoglycerate mutase (gpmA),and cofactor-independent phosphoglycerate mutase (gpmM) where the cofactor is 2,3bisphosphoglycerate. Previously, it was shown that during growth in super-optimal broth (SOB; a rich medium containing glucose), GpmA levels peak during mid-to-late log phase, as opposed to early exponential phase for GpmM. This suggests that during fermentative growth on glucose there may be an increased requirement for glycolytic activity to be maintained into late log phase (Fraser et al., 1999).

Pyruvate represents an important metabolic node, since it feeds into several other biosynthetic and metabolic pathways. During growth on


glucose, pyruvate can be generated by glycolysis but is primarily generated via the activity of the phosphotransferase (PTS) system, which converts PEP to pyruvate during the uptake of glucose and other sugars. However, there did not appear to be clear differences in selection for core PTS components between the three different growth conditions. Independently of the PTS, pyruvate kinase (PK) can also generate pyruvate from PEP as the final step in glycolysis. Two PK activities have been identified in *E. coli*: PKI, encoded by *pykF*, and PKII, encoded by *pykA*. PykF is the most active form of PK and, according to TraDIS, *pykF* was selected exclusively during fermentative growth in glucose (Ponce *et al.*, 1995). This supports the hypothesis that there is a greater demand for glycolysis during fermentation compared to respiration.

5.3.1.2. Mixed acid fermentation

During mixed-acid fermentation, pyruvate is oxidised to lactate, formate, ethanol, succinate, and acetate resulting in the production of ATP (by substrate-level phosphorylation) and the regeneration of NAD⁺ that has been consumed during glycolysis (Figure 5.5). TraDIS identified that all of the steps in mixed acid fermentation, with the exception of succinate production, were essential during anaerobic growth on glucose, but not essential during growth in the presence of nitrate. This is interesting considering the fact that measurable amounts of succinate were detected in supernatants of cultures grown under fermentative conditions in glucose (Figure 5.2B). Succinate is produced under anaerobic conditions in the presence of an alternative electron acceptor via fumarate reductase


(Unden & Bongaerts, 1997). However, succinate can also be produced via the TCA cycle by conversion of succinyl CoA to succinate by succinyl CoA synthetase (SucCD). In this study, *sucC* is scored as essential for anaerobic growth on glucose, suggesting that this may be the primary mechanism for succinate production during fermentative growth in glucose (Figure 5.4). The selection for *sucC* under these conditions has been demonstrated previously (see section 5.3.1.4, below). In addition, *IdhA*, encoding lactate dehydrogenase was also identified as an essential gene during anaerobic growth on glucose and, although lactate is produced during mixed-acid fermentation, a major fitness defect has not been previously observed for IdhA mutants during growth under these conditions (Mat-Jan et al., 1989a). Deletion of IdhA has been shown to result in slightly reduced growth and glucose consumptions rates in glucose minimal medium under anaerobic conditions (Kabir et al., 2005). Therefore, the identification of IdhA as an essential gene by TraDIS highlights the power of this technique in describing mutant phenotypes not normally detectable by standard approaches.

It is interesting to note that the secretion of lactate, succinate, and formate is known to be important in maintaining the essential proton motive force (pmf) under fermentative conditions (Trchounian & Trchounian, 2019). Therefore, the fact that all steps of the mixed-acid fermentation pathway that produce these compounds were essential in glucose, and that succinate was detectable in culture supernatants, would suggest that maintenance of the pmf is under significant selective pressure during competitive growth while cells are fermenting glucose.

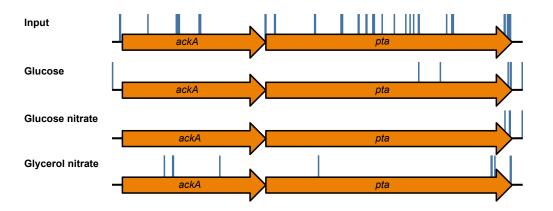


Figure 5.5. Mixed acid fermentation with ATP (blue boxes) and NAD⁺ (red boxes) generation steps highlighted. Adapted from Förster and Gescher 2014.

Α.

Β.

Figure 5.6. (**A**) Acetate assimilation (green) and dissimilation (red), and its connection to other pathways of central metabolism (other colours). Acetate dissimilation involves *ackA* (encoding acetate kinase) and *pta* (encoding phosphate acetyltransferase). Acetyl CoA generates acetyl phosphate via Pta, and acetyl phosphate is then converted to acetate (secreted from the cell) and ATP by AckA. From (Hu *et al.*, 2010) (**B**) Transposon insertions in *ackA* and *pta* in the INPUT and three output libraries. Blue lines indicate transposon insertions (length not scaled to readcounts).

5.3.1.3. Acetate dissimilation

During growth on glucose the production of acetate is an important source of ATP (Figure 5.6A). Both ackA (encoding acetate kinase) and pta (encoding phosphate acetyltransferase) are labeled as essential in the INPUT and all output libraries (Figure 5.4). However, examination of transposon insertion plots reveals several insertions in these genes in the INPUT, which are subsequently lost to differing degrees under the different growth conditions (Figure 5.6B). Nevertheless, it would appear that there is a strong selection on these genes under the three different growth conditions, highlighting the importance of acetate dissimilation for ATP generation. However, the requirement for acetate dissimilation during growth in glycerol, as well as the simultaneous production of detectable levels of acetate under those conditions, was surprising. While the production of high levels of acetate by *E. coli* growing using glycerol has been reported previously, it was thought that neither pta nor ackA were required under those conditions (Chang et al., 1999; Prohl et al., 1998). E. coli excretes acetate under a number of different conditions, including when carbon flux exceeds the capacity of the TCA cycle or other central metabolic pathways, or when recycling of CoA is required to convert pyruvate to AcCoA (Wolfe, 2005). Therefore, acetate dissimilation may be playing one, or a combination of, these essential roles under the three different growth conditions.

5.3.1.4. TCA cycle

Under anaerobic conditions, the TCA cycle divides into oxidative (citrate to α -ketoglutarate) and reductive (oxaloacetate to succinate) branches. In this way it does not operate to generate energy, but, rather, provides precursor metabolites for biosynthesis. The oxidative branch was essential under all three growth conditions (Figure 5.4), presumably as it is required for the production of the key metabolite, α -ketoglutarate, required for e.g. the biosynthesis of several amino acids. In contrast, enzymes of the reductive branch were not under significant selection, with the exception of succinyl CoA synthetase, which cataylses the interconversion between succinyl CoA and succinate.

Succinyl CoA synthetase is encoded by *sucCD*, mutants of which were under greatest selection in glucose (logFC values of -5.2 and -5.7, respectively), followed by glucose nitrate (-1.7 and -1.9, respectively), with no selection under glycerol nitrate (Figure 5.7A). Greater amounts of succinate were produced by cultures grown in glucose only (Figure 5.2B), however this does not necessarily suggest that there was a higher level of succinyl CoA synthetase activity under these conditions, since succinate can be produced via several different mechanisms in *E. coli* (Yu *et al.*, 2011). Nevertheless, these results are in agreement with a previous study where it was shown that *sucCD* insertion mutants could not grow in M9 medium anaerobically in the presence of glucose, but could grow in M9 medium supplemented with glycerol and nitrate (Mat-Jan *et al.*, 1989b). Moreover, it has been demonstrated that MG1655

knockout mutants of *sucCD* produced lower biomass following growth in a glucose minimal medium compared to the wild type (Veit *et al.*, 2007).

As mentioned above (section 5.3.1.2), the selection on *sucC* is probably related to the role of succinate secretion to generate a pmf under anaerobic fermentation conditions (Trchounian & Trchounian, 2019). The selection may also be related to its role in amino acid biosynthesis (see section 5.3.2, below). However, it was notable that the end-point growth a Δ *sucC* mutant isolated from the Keio library was not significantly different compared to the wild type following growth under all three conditions (Figure 5.7B), suggesting that *sucC* mutants are capable of growing to high densities under the three growth conditions but are particularly sensitive to population stresses, likely related to the low growth rates displayed by *sucCD* mutants (Yu *et al.*, 2006).

Α.

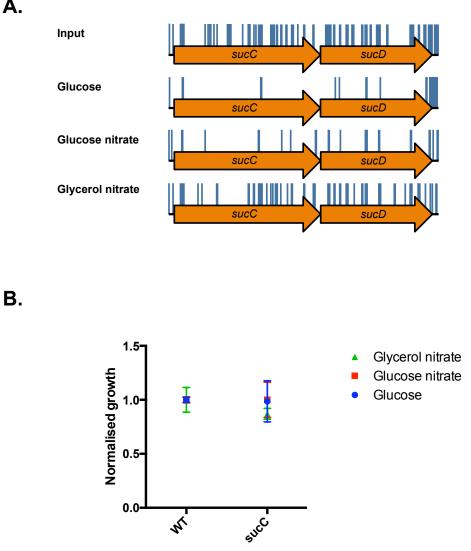
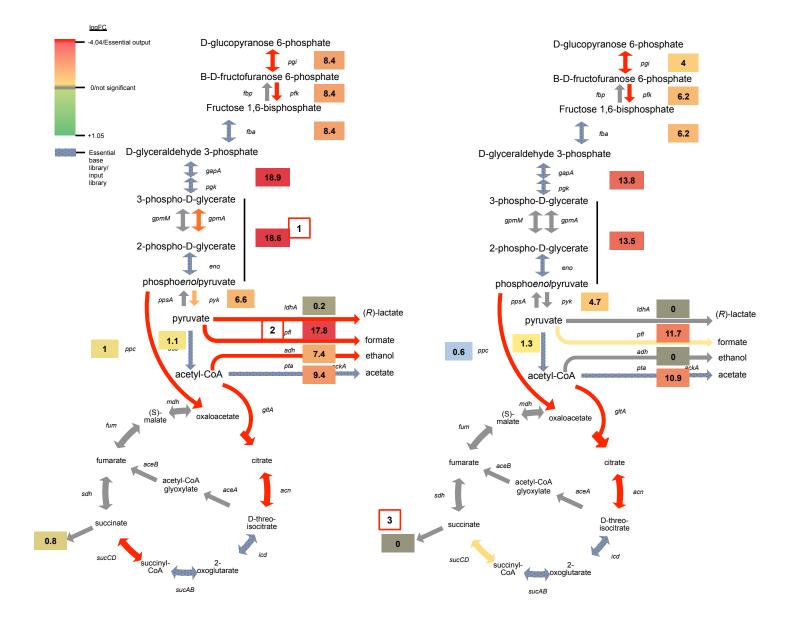


Figure 5.7. (A) Transposon insertions in sucCD in the INPUT and three output libraries. Blue lines indicate transpon insertions (length not scaled to readcounts). (B) Growth, normalised to the wild-type (line at y = 1), of a Keio $\Delta sucC$ mutant. Growth is compared to the wild type in M9 medium under anaerobic conditions, supplemented as indicated.


5.3.2. A metabolic model informs results in TraDIS

A model for the changes in flux through central metabolism and the respiratory chain associated with the addition of nitrate to M9 medium with glucose under anaerobic conditions was constructed using a combination of metabolomics and transcriptomics by Toya and colleagues (Toya et al., 2012). Removal of oxygen had the effect of reducing metabolic flux through the respiratory chain and the TCA cycle, and this was correlated with a reduction in the expression of genes encoding proteins involved in these processes. Upon the addition of nitrate, the respiratory chain became active again; however, gene expression and flux through the TCA cycle remained repressed. Moreover, the model showed that, during fermentative growth with glucose, approximately 66% of ATP is generated through glycolysis, falling to approx. 33% upon the addition of nitrate. Mapping logFC values of non-essential genes generated during TraDIS onto central metabolism displayed some patterns similar to the flux model generated by Toya et al. (Figure 5.9). For example, flux from 3-phospho-glycerate to PEP was increased during fermentative growth compared to nitrate respiration (Toya et al., 2012), which corresponds to the reduced fitness of gpmA and *pykF* mutants in glucose versus glucose nitrate. Similarly, flux to formate was greater in fermenting cells compared to respiring cells and this corresponds to TraDIS analysis identifying PFL as an essential enzyme in fermenting cells.

According to the metabolic model, flux from succinate to malate is decreased in fermenting cells, but increased in respiring cells (Toya *et al.*,

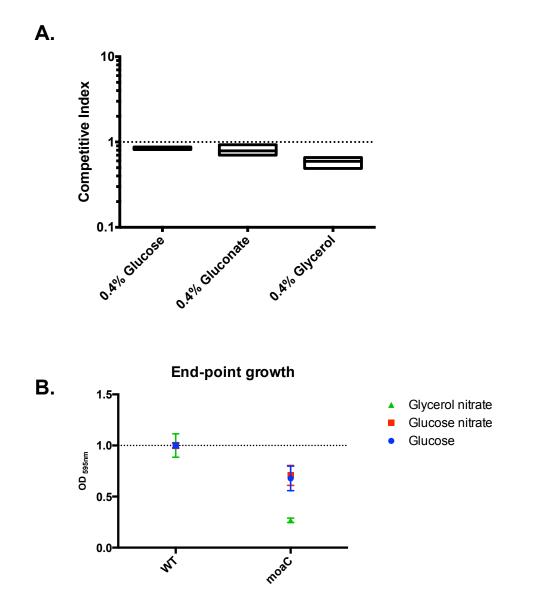
2012). However, in fermenting cells, there is also an increase in flux from succinate to other pathways e.g. diaminopimelate and L-methionine biosynthesis whilst there is no change in flux in respiring cells (Toya *et al.*, 2012). This suggests that succinyl CoA synthetase plays an important role in biosynthesis during fermentation, with a more prominent role in the TCA cycle during respiration. The importance of these distinct roles is reflected in the different logFC values for *sucCD* under these growth conditions. Together, these suggest that logFC values obtained in TraDIS can reflect degrees of metabolic flux through central metabolism.

However, TraDIS could also enhance the results of the metabolic model by outlining the importance of particular metabolic pathways for fitness, even in the instance where flux to those pathways was not particularly great. For example, there appeared to be relatively low flux to lactate during fermentation, despite the fact that *IdhA* was essential for growth in glucose (Figure 5.8). Therefore, even under low flux, lactate production under fermentative conditions was extremely important for cell survival. This may be related to the role of lactate secretion in the maintenance of the pmf, as previously mentioned (Trchounian & Trchounian, 2019), and would further highlight that cells are highly sensitive to disruption of the pmf during fermentative growth on glucose.

Figure 5.8. Comparison between logFCs and flux through central metabolism. Central metabolism during growth on glucose (left) and glucose nitrate (right) with logFC values mapped onto equivalent pathway arrows. Degrees of pathway selection are indicated by a colour scale as per Figure 5.4. Flux values (in mmol gDCW⁻¹ h⁻¹) adapted from Toya *et al.* 2012 are highlighted in coloured boxes, with a greater number representing a higher degree of metabolic flux (Toya *et al.*, 2012). Reactions mentioned in the text are highlighted as follows: 1. 3-phosphoglycerate to PEP; 2. Formate production via PFL; 3. Succinate to biosynthetic pathways.

5.3.3. Nitrate respiration in glucose nitrate

Growth using nitrate as a terminal electron acceptor is well-characterized at the genetic and biochemical level (Cole & Richardson, 2013). The ability to respire with nitrate is tightly regulated and requires the appropriate expression of a large number of genes (Constantinidou *et al.*, 2006; Goh *et al.*, 2005). Important regulatory genes such as *fnr* (encoding FNR, a protein required for activation of anaerobic respiration, including the expression of nitrate reductase genes) and *narL* (encoding a protein important for regulating the response to high levels of nitrate) were strongly selected during growth with nitrate. Moreover, molybdopterin is an essential cofactor for the functioning of nitrate reductases and several genes encoding molybodpterin biosynthesis proteins e.g. *moa*, *moe*, *mog*, were also under strong selection during growth in the presence of nitrate (Figure 5.3).


However, there was no selection for the genes encoding nitrate reductases during growth in the presence of glucose and nitrate, suggesting that nitrate reduction per se may not be important for fitness during growth on glucose in the presence of nitrate. This is despite clear evidence of nitrate reduction to nitrite, and the absence of ethanol and lactate (indicating alternative forms of NAD⁺ regeneration e.g. via respiratory pathways) in cell-free supernatants of the mutant library following growth in glucose with nitrate (Figure 5.2B, 5.2C). In contrast, there was a strong selection for *narG* and *narH*, encoding two of the three subunits of the NarGHI nitrate reductase A (NRA), and several *nuo* genes, encoding NADH dehydrogenase I, when the bacteria were

cultured in glycerol nitrate. This clearly suggests that nitrate respiration from NADH dehydrogenase I to NarGHI (Nitrate Reductase A, or NRA) was required for fitness in glycerol nitrate.

There are three nitrate reductases in *E. coli*, cytoplasmic NRA and NarZYX (Nitrate Reductase Z, or NRZ), and the periplasmic reductase, Nap. However, these three systems are not thought to be redundant, but rather complementary, operating according to the concentration of nitrate in the environment (Rodrigues *et al.*, 2006; Wang *et al.*, 1999; Wang & Gunsalus, 2000). Therefore, higher concentrations of nitrate induce the expression of NRA exclusively (as observed by selection of these genes during growth in glycerol nitrate), whereas lower concentrations allow for the expression of NRZ and Nap. Nonetheless, the lack of selection for NRA or any specific nitrate reductase-encoding genes during growth in glycose nitrate reductase suggest some functional redundancy in nitrate reductase activity in glucose nitrate.

To confirm that nitrate respiration is not required for fitness during growth in glucose nitrate, a $\Delta moaC$ mutant, deficient in molybdopterin biosynthesis and therefore containing no functional nitrate reductases (Johnson & Rajagopalan, 1987), was competed against wild type *E. coli* under similar conditions used during the mutant library screen (Figure 5.9A). In agreement with TraDIS, the $\Delta moaC$ mutant was less fit during growth on glycerol nitrate, but there was no obvious fitness defect during growth using glucose or another carbon source, gluconate. This was further confirmed with an end-point growth assay (Figure 5.9B), whereby the growth defects of mutants unable to produce molybdopterin were

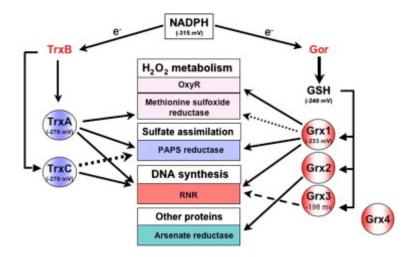
much greater when cells were grown in glycerol compared to glucose. This suggests that nitrate respiration is dispensable during anaerobic growth using a fermentable carbon source such as glucose.

Figure 5.9. (A) Competition assays of a Keio $\Delta moaC$ mutant competed against the wild type in M9 minimal medium supplemented with the indicated concentrations of carbon sources. Wild-type competitiveness is indicated by a line at 1. (B) End-point growth of the $\Delta moaC$ mutant under the three conditions tested for TraDIS. Growth is normalised to the wild type figure of 1.

During nitrate respiration, NAD⁺ can be regenerated via the activity of the NADH dehydrogenase, Nuo. Formate can also be generated in the absence of functional nitrate reductases, presenting another route by which NAD⁺ can be regenerated (Kaiser & Sawers, 1994). ATP can be formed by oxidative phosphorylation during nitrate respiration; however, ATP can also be generated via acetate dissimilation (Wolfe, 2005). Therefore, it is likely that, in the absence of nitrate respiration, cultures growing in glucose nitrate can generate redox balance and energy in sufficient amounts via alternative mechanisms. Furthermore, a proton motive force can be produced during glucose fermentation via the activity of the F_1F_0 ATPase, which can hydrolyse ATP and pump H⁺ ions out of the cell, and via the secretion of organic acids as previously mentioned (Trchounian & Trchounian, 2019). Therefore, cultures growing in glucose can display a high degree of metabolic flexibility. However, in carbon sources such as glycerol, the uptake of glycerol into the cell for gluconeogenesis and glycolysis requires functioning respiratory chains, therefore nitrate respiration is more essential for fitness during growth on this carbon source (Cole et al., 1988; Schryvers et al., 1978).

5.4. Gene category analysis - genes outside of central metabolism

Many genes encoding proteins predicted to participate in pathways or cellular processes other than central metabolism were also found in the TraDIS gene lists (Table A13). For example, within the 68 genes selected under all three growth conditions (see Figure 5.3) were gene functional groups such as cell division (e.g. *tolR, pal, lpp,* and *envC*), regulators


(e.g. *barA-uvrY, cra, csrD,* and *lysR*), and protein folding and processing mechanisms (e.g. *trxA, dsbA,* and *tatC*). However, many more genes and functional groups were selected under two or fewer growth conditions, highlighting that the addition of nitrate and/or carbon source exerts unique global selective pressures on the cell beyond central metabolism (see Figure 5.3).

5.4.1. Genes identified in nitrate-containing cultures

Non-central metabolism genes under selection uniquely in nitratecontaining cultures appeared to be primarily encoding functions directly related to the maintenance or regulation of the nitrate respiratory apparatus (see Table A18, Appendix). These included, for example, genes involved in molydbopterin biosynthesis (e.g. moa, mog, moe, *mod*), or the regulation of nitrate respiration (*fnr* and *narL*). Other genes in this category were also likely to play an indirect role in nitrate respiration, e.g. clpXP encodes the ClpXP serine protease, which has been shown to be involved in the degradation and turnover of FNR (Baker & Sauer, 2012; Mettert & Kiley, 2005). FNR contains an [4Fe-4S]²⁺ cluster which maintains the protein in a dimerized form, allowing it to act as a transcription factor. O_2 converts the [4Fe-4S]²⁺ cluster to [2Fe-2S]²⁺, converting FNR to an inactive, monomeric form. CIpXP targets and degrades the monomeric form of FNR, allowing to maintain appropriate levels of active FNR during aerobic growth (Lazazzera et al., 1996). The requirement for both *clpXP* and *fnr* in nitrate-containing cultures underpins the importance of optimally functioning FNR for fitness.

5.4.2. Functions unique to each growth condition

TraDIS demonstrated that each growth condition required unique functions or gene functional groups (see Figure 5.3 and Tables A15-A17). Some of these functional groups were expected, such as glycerol utilisation genes (e.g. *glpF*, *glpK*, and *glpD*) were unique to the glycerol nitrate list, however others were not, highlighting potential differences in environmental conditions induced by carbon source and/or nitrate. In addition, *gshA* and *gshB*, encoding both enzymes of the glutathione biosynthesis pathway, exhibited positive logFC values (+2.08 and +1.54, respectively) after growth in glucose. Glutathione (GSH) is an important component of the thiol redox system, responsible for controlling the redox state of cytoplasmic cysteine residues via thiol-disulfide exchange reactions. In *E. coli*, a variety of processes act as substrates to this system, ranging from DNA synthesis, to H₂O₂ metabolism, to sulfate assimilation, to arsenate reductase (Figure 5.10) (Toledano *et al.*, 2007).

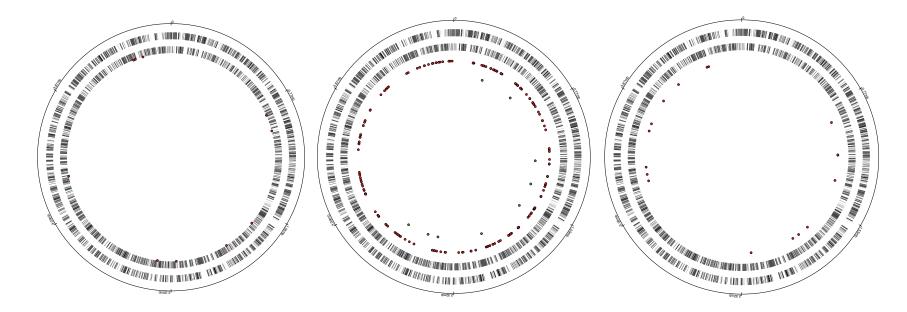


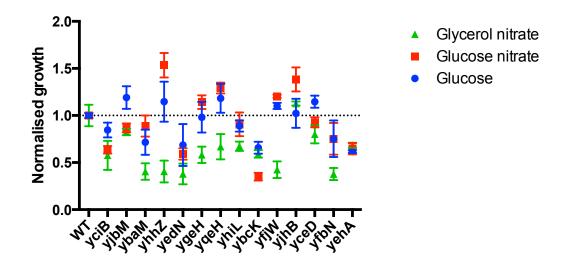
Figure 5.10. Components of the *E. coli* thioredoxin and glutaredoxin systems. From Toledano *et al.*, 2007.

The *E. coli* thiol redox system contains two functionally redundant branches, the thioredoxin and glutaredoxin branches, and inactivation of either branch does not appear to affect normal aerobic growth (Toledano *et al.*, 2007). Therefore, it was interesting to see an essential requirement for *trxA* (encoding thioredoxin 1) under all three conditions, but a significant fitness advantage for *gshA* and *gshB* mutants under fermentative conditions only. It has been shown previously that GSH plays a role in the formation of the active, [4Fe-4S] cluster-containing form of FNR (Tran *et al.*, 2000). Also, deletion of *fnr* in *E. coli* BW25113 has been shown to result in increased flux through formate, acetate, and ethanol production, all shown to be essential processes for growth under the glucose condition in this study (Kargeti & Venkatesh, 2017). Therefore, mutation of *gshA* and *gshB* may have provided a growth advantage under fermentative conditions by indirectly increasing flux through mixed acid fermentation pathways.

5.4.3. Genes with unknown function (y genes)

In *E. coli*, y genes i.e. genes without an annotated function, represent approximately a third of the genome (Ghatak *et al.*, 2019). Y genes formed a significant portion of each gene list, but fewer y genes were present in the glucose or glycerol nitrate gene lists compared with the glucose nitrate list, possibly reflecting the greater stress placed on the glucose nitrate system (see Figure 5.11 and Table A19, Appendix). The selection for y genes highlights that many unknown processes play a role during growth under these conditions, illustrating the power of TraDIS in identifying and characterising novel biological processes.

Figure 5.11. Location of y genes (red circles) on the MG1655 genome in glucose (left), glucose nitrate (middle), and glycerol nitrate (right).


Analysis of the predicted functions of proteins encoded by y genes resulted in some genes grouping into categories, including putative cell envelope-associated genes, putative regulators, fimbrial-like adhesin proteins, pseudogenes, and prophage genes (Table A19). Interestingly, an essential gene in glycerol nitrate, *yraP*, also displayed a reduced logFC value in the study of genetic requirements for bile (Chapter 4). As mentioned previously (see section 4.1.2, Chapter 4) YraP has been implicated in the activation of peptidoglycan hydrolase, AmiC (via NlpD) required for cell envelope invagination during cell division (Tsang *et al.*, 2017). *yraP* mutants are also more sensitive to SDS than the wild type, suggesting that *yraP* mutants exhibit defects in membrane integrity may have an increased fitness cost during growth under nitrate-respiring conditions (Onufryk *et al.*, 2005).

The inclusion of prophage genes solely in glucose nitrate (see Table 5.3) is notable, since prophages of *E. coli* K-12 are thought to contain mechanisms by which the bacterium can withstand stress (Wang *et al.*, 2010). It is also possible that that these genes were selected due to excision of prophages, which can occur upon encountering stressful conditions (Wang *et al.*, 2009). However, transposon insertion plots suggest that this probably did not occur, since many transposon insertions were present in specific genes (as opposed to being completely absent due to the absence of prophage DNA available for insertion). Therefore, prophages harboured genes with potentially important roles to play in fitness during anaerobic growth using glucose and nitrate.

Prophage	Gene(s) under selection
CP4-6	yagL, yagM
DLP12	аррҮ, уbcK, уbcL, уbcM, уbcY
e14	lit, mcrA, tfaP
Rac	trkG, ynaK
Qin	cspB, cspI, fixA, intQ, pinQ, ydfD, ydfJ
CP4-44	-
CPS-53	yfdK, yfdL, yfdQ
CPZ-55	-
CP4-57	alpA, yfjH, yfjI, yfjJ, yfjW

 Table 5.3.
 Prophage-associated genes under selection in glucose nitrate.

5.4.3.1. Y genes selected by TraDIS do not show a general growth defect As illustrated in Chapter 4, end-point growth analysis of Keio mutants could potentially reveal some information behind logFC values obtained in TraDIS. Therefore, Keio library mutants of y genes that displayed the greatest logFC values in glucose nitrate were grown under the three different growth conditions (Figure 5.12). This revealed 3 different groups of genes: those that grew poorly under all three conditions (*yehA*, *yciB*, *ybcK*), mutants that grew poorly in nitrate cultures only (*yjbM*, *yceD*), or mutants that grew poorly in glycerol nitrate only (*ybaM*, *yhhZ*, *ygeH*, *yqeH*, *yhiL*, *yfjW*, *yfbN*). Therefore, there is no correlation between growth and fitness under the conditions tested.

Figure 5.12. End-point growth of a selection of Keio y gene mutants following growth under the TraDIS assay conditions. The dotted line indicates the normalised wild type growth of 1.

Conclusions

In this study, TraDIS was employed to describe the genetic requirements for growth under anaerobic conditions in the presence of two different carbon sources and/or the addition of nitrate. In this way, it allowed the detailed description of global genetic requirements for growth under the conditions of anaerobic fermentation and anaerobic nitrate respiration. Of the three different growth conditions tested, it was shown that anaerobic growth in glucose with nitrate was the most stressful as demonstrated by the greater number of essential genes and genes with significantly reduced fitness values (as indicated by logFC values).

Genetic requirements for growth under the three different growth conditions were characterised based on differences in central metabolic

pathways and genes outside of central metabolism. In terms of central metabolism, differences were observed in each of the major pathways of central metabolism i.e. glycolysis, mixed acid fermentation, the TCA cycle, and nitrate respiration. Anaerobic growth in glucose without nitrate led to an increased flux requirement via glycolysis and an essential requirement for mixed acid fermentation. Anaerobic growth in glycerol and nitrate led to an essential requirement for glycerol uptake and nitrate respiration, but no fitness requirement for mixed acid fermentation pathways. However, anaerobic growth with glucose and nitrate allowed for a degree of metabolic flexibility, where neither mixed acid fermentation nor nitrate respiration were required for full fitness. Notably, when comparing fitness values from TraDIS to a metabolic flux model (Toya et al., 2012), it was shown that fitness values were able to reflect degrees of metabolic flux through the pathways of central metabolism. Therefore, TraDIS could be applied to future metabolic flux analyses to further inform metabolic requirements for growth.

TraDIS also described genetic requirements for growth outside of central metabolic pathways, demonstrating unique physiological and regulatory requirements induced by carbon source and/or the addition of nitrate. These included a large number of unannotated y genes, indicating that much has yet to be understood about the effect of carbon source, addition of nitrate, and/or anaerobic growth on cell physiology.

Chapter 6 General discussion

E. coli takes part in a complex relationship with its host, with single strains potentially existing as commensals, pathogens, or pathobionts. The nature of this relationship is influenced by a variety of different factors, including the response of the *E. coli* strain to the environmental conditions within the GI tract, ranging from stomach acid, to bile, to inflammation. It is a testament to the versatility of the species that *E. coli* can adapt to, and even thrive within, each of these stressful conditions. However, with the fact that the *E. coli* pangenome is thought to contain upwards of 43,000 genes (Snipen *et al.*, 2009), and that various systems within the bacterial cell can be employed simultaneously in response to environmental stresses, there exists a significant challenge towards fully understanding how the species adapts to life within the GI tract. Addressing this challenge requires the use of high-throughput experimental approaches.

In addressing this challenge, this study employed TraDIS to describe the genetic requirements for growth in the presence of bile and under anaerobic conditions in the presence of nitrate, two conditions faced by *E. coli* during its existence within the GI tract. This study generated lists of candidate genes putatively required for fitness under these conditions, providing many new insights for further study. However, this study also explored the use of TraDIS in a number of novel ways, e.g in the analysis of mutants with increased fitness values, in addressing the challenge of validating TraDIS data, and in demonstrating how TraDIS can be combined with other analytical approaches.

Mutants are often described in terms of their 'loss-of-function', i.e. where mutation of a gene reduces growth or fitness of the mutant. However, this work placed particular emphasis on the analysis of mutants displaying increased fitness (e.g. see section 4.1.3, Chapter 4), not least due to the fact that genes with positive logFC values comprised a substantial proportion of the genes under selection (e.g. 36% in the case of genes under selection in bile). Previous TraDIS studies have generally not conducted a substantial analysis on mutants displaying increased fitness (see Table 1.2, Chapter 1; see Stocks et al. for a recent example (Stocks et al., 2019)). However, this study has shown how investigating these mutants should be standard practice for fitness-related transposon sequencing studies. For example, mutants with positive fitness values can help to validate identify regulatory connections between genes and validate mutants with negative fitness values e.g. the positive selection on acrR in the presence of bile due to the derepression of acrAB in acrR mutants (see section 4.1.3, Chapter 4). Moreover, mutations causing increased fitness can offer unique insights into mechanisms of fitness that may not be identified in the list of negatively selected mutants e.g. the σ^{E} encoding rpoE is essential in E. coli (Goodall et al., 2018) and so mutantphenotype associations cannot be determined for this gene, but the positive selection for *skp* mutants may be due to *skp* mutants having an induced σ^{E} regulon, suggesting some role for the sigma factor in bile tolerance (see section 4.1.3.2, Chapter 4).

In high-throughput experimental approaches such as RNA-seq, validation is necessary in the instance where the expression of specific

genes or groups of genes needs to be verified. Typically, validation requires comparison of RNA-seq data with gene transcript levels obtained using a different approach such as qRT-PCR (Fang & Cui, 2011). However, when using RNA-seq to compare global gene expression levels, validation by qRT-PCR is not considered to be necessary. Rather, validation should derive from the use of appropriate numbers of technical and biological replicates in the RNAseq experiment (Fang & Cui, 2011). This study used fitness data from TraDIS to analyse global genetic requirements for growth; therefore, library screens in bile and under anaerobic conditions were conducted in biological duplicate. However, the fitness requirements for specific genes and groups of genes were also validated using a number of different approaches. These included comparison with previous library screens (e.g. Chapter 3), end-point growth of equivalent whole-gene knockout mutants (e.g. see section 4.2, Chapter 4), and competition assays (e.g. Figure 4.4). No single validation method was completely congruent with the TraDIS fitness data, but this is to be expected since the selective pressures that exist within the pooled mutant library screen are different to other experiments, e.g. the population pressures exerted by the growth of mutant and/or the wild type alone vs. the population pressures exerted by a heterogeneous population of 900,000+ mutants in a pooled library. However, the combining of results from the different validation approaches could offer insights into why particular genes were selected during TraDIS. For example, in the presence of bile, $\Delta dsbB$ mutants showed no significant increase in competitiveness during competition assays against the wild-

type (Figure 4.3B), but did show significantly increased end-point growth (Table 4.5), suggesting that *dsbB* mutants may have been at a competitive advantage in the pooled library by being able to grow to higher cell densities. Therefore, this study contributes to future transposon sequencing studies by highlighting that the verification of specific genes or groups of genes can be done using a multi-method analysis of whole-gene deletion mutants.

Finally, this study illustrated that results from TraDIS could be combined with other types of data. Specifically, it was shown that logFC values obtained in TraDIS could map onto metabolic flux values (see section 5.3.2, Chapter 5). This allowed for greater insights into the phenotypes underlying logFC values as well as a description of the importance of metabolic fluxes for fitness, regardless of how great or small the flux was. This may be of particular use for metabolic engineering since it would allow for a global analysis of metabolic bottlenecks or other barriers to optimising yields of particular products due to poor cell survival. It would be interesting to conduct metabolomics and transposon sequencing simultaneously in order to both validate this observation and explore its potential in metabolic engineering applications.

In conclusion, this work outlines the use of TraDIS to describe, in detail, the genetic requirements of *E. coli* for growth under a variety of different conditions relevant to colonisation of the GI tract. In doing so, the power and versatility of TraDIS as an analytical technique was

highlighted, and novel uses and interpretations of TraDIS data that could be of significant use in future studies was described.

Bibliography

- Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E.
 (2005). Defining the normal bacterial flora of the oral cavity. *J Clin Microbiol* 43, 5721–5732.
- Alhagamhmad, M. H., Day, A. S., Lemberg, D. A. & Leach, S. T. (2016). An overview of the bacterial contribution to Crohn disease pathogenesis. *J Med Microbiol* 65, 1049–1059.
- Amir, I., Konikoff, F. M., Oppenheim, M., Gophna, U. & Half, E. E. (2013). Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors. *Environ Microbiol* 16, 2905–2914.
- Apperloo-Renkema, H. Z., Van der Waaij, B. D. & Van der Waaij, D. (1990). Determination of colonization resistance of the digestive tract by biotyping of Enterobacteriaceae. *Epidemiol Infect* 105, 355–361.
- Aquino, P., Honda, B., Jaini, S., Lyubetskaya, A., Hosur, K., Chiu, J.
 G., Ekladious, I., Hu, D., Jin, L. & other authors. (2017).
 Coordinated regulation of acid resistance in *Escherichia coli*. *BMC Syst Biol* 11, 1.
- Asai, T., Zaporojets, D., Squires, C. & Squires, C. L. (1999). An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A 96, 1971–1976.

- Audia, J. P., Webb, C. C. & Foster, J. W. (2001). Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. *Int J Med Microbiol* 291, 97–106.
- Van Avondt, K., Sorge, N. M. van & Meyaard, L. (2015). Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling. PLOS Pathog 11, e1004644.
- Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M.,
 Datsenko, K. a, Tomita, M., Wanner, B. L. & Mori, H. (2006).
 Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2, 2006.0008.
- Bachmann, V., Kostiuk, B., Unterweger, D., Diaz-Satizabal, L., Ogg,
 S. & Pukatzki, S. (2015). Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae. *PLoS Negl Trop Dis* 9, e0004031.
- Bailey, J. K., Pinyon, J. L., Anantham, S. & Hall, R. M. (2010). Commensal *Escherichia coli* of healthy humans: a reservoir for antibiotic-resistance determinants. *J Med Microbiol* 59, 1331– 1339.
- Baker, T. A. & Sauer, R. T. (2012). ClpXP, an ATP-powered unfolding and protein-degradation machine. *Biochim Biophys Acta* 1823, 15–28.
- Baranova, N. & Nikaido, H. (2002). The baeSR two-component regulatory system activates transcription of the *yegMNOB* (*mdtABCD*) transporter gene cluster in *Escherichia coli* and

increases its resistance to novobiocin and deoxycholate. *J Bacteriol* **184**, 4168–4176.

- Barquist, L., Boinett, C. J. & Cain, A. K. (2013). Approaches to querying bacterial genomes with transposon-insertion sequencing. *RNA Biol* **10**, 1161–1169.
- Barquist, L., Mayho, M., Cummins, C., Cain, A. K., Boinett, C. J., Page, A. J., Langridge, G. C., Quail, M. A., Keane, J. A. & Parkhill, J. (2016). The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. *Bioinformatics* 32, 1109– 1111.
- Baydaş, B., Uslu, H., Yavuz, İ., Ceylan, İ. & Dağsuyu, İ. M. (2007). Effect of a chronic nail-biting habit on the oral carriage of Enterobacteriaceae. *Oral Microbiol Immunol* **22**, 1–4.
- Begley, M., Gahan, C. G. M. & Hill, C. (2005). The interaction between bacteria and bile. *FEMS Microbiol Rev* **29**, 625–651.
- Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman,
 D. J., Ostell, J. & Sayers, E. W. (2013). GenBank. Nucleic Acids Res 41, D36-42.
- **Berg, R. D. (1995).** Bacterial translocation from the gastrointestinal tract. *Trends Microbiol* **3**, 149–154.
- Berg, R. D. (1996). The indigenous gastrointestinal microflora. *Trends Microbiol* **4**, 430–435.
- Berkmen, M., Boyd, D. & Beckwith, J. (2005). The Nonconsecutive Disulfide Bond of *Escherichia coli* Phytase (AppA) Renders It

Dependent on the Protein-disulfide Isomerase, DsbC. *J Biol Chem* **280**, 11387–11394.

- Bernstein, C., Bernstein, H., Payne, C. M., Beard, S. E. & Schneider,
 J. (1999). Bile Salt Activation of Stress Response Promoters in Escherichia coli. Curr Microbiol 39, 68–72.
- Bettelheim, K. & Lennox-King, S. (1976). The acquisition of *Escherichia coli* by new-born babies. *Infection* **4**, 174–179.
- Birchenough, G. M. H., Johansson, M. E. V, Stabler, R. A.,
 Dalgakiran, F., Hansson, G. C., Wren, B. W., Luzio, J. P. &
 Taylor, P. W. (2013). Altered Innate Defenses in the
 Neonatal Gastrointestinal Tract in Response to Colonization by
 Neuropathogenic *Escherichia coli. Infect Immun* 81, 3264.
- Blankenberg, D., Nekrutenko, A., Gordon, A., Von Kuster, G., Taylor,
 J. & Coraor, N. (2010). Manipulation of FASTQ data with
 Galaxy. *Bioinformatics* 26, 1783–1785.
- Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V.
 (2016). Ribosome-dependent activation of stringent control. *Nature* 534, 277–280.
- Bulieris, P. V, Behrens, S., Holst, O. & Kleinschmidt, J. H. (2003). Folding and Insertion of the Outer Membrane Protein OmpA Is Assisted by the Chaperone Skp and by Lipopolysaccharide. *J Biol Chem* 278, 9092–9099.
- Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. (2012). Artemis: an integrated platform for visualization and

analysis of high-throughput sequence-based experimental data. *Bioinformatics* **28**, 464–469.

- Chang, D. E., Shin, S., Rhee, J. S. & Pan, J. G. (1999). Acetate metabolism in a *pta* mutant of *Escherichia coli* W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. *J Bacteriol* 181, 6656–6663.
- Chaudhuri, R. R., Morgan, E., Peters, S. E., Pleasance, S. J., Hudson,
 D. L., Davies, H. M., Wang, J., van Diemen, P. M., Buckley, A.
 M. & other authors. (2013). Comprehensive assignment of roles for *Salmonella typhimurium* genes in intestinal colonization of food-producing animals. *PLoS Genet* 9, e1003456–e1003456.
- Chipman, D. M. & Shaanan, B. (2001). The ACT domain family. *Curr* Opin Struct Biol 11, 694–700.
- Clements, A., Tull, D., Jenney, A. W., Farn, J. L., Kim, S.-H., Bishop, R. E., McPhee, J. B., Hancock, R. E. W., Hartland, E. L. & other authors. (2007). Secondary acylation of *Klebsiella pneumoniae* lipopolysaccharide contributes to sensitivity to antibacterial peptides. *J Biol Chem* 282, 15569–15577.
- Cole, J. A. & Richardson, D. J. (2013). Respiration of Nitrate and Nitrite. *EcoSal Plus.*
- Cole, S. T., Eiglmeier, K., Ahmed, S., Honore, N., Elmes, L., Anderson, W. F. & Weiner, J. H. (1988). Nucleotide sequence and gene-polypeptide relationships of the *glpABC* operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of *Escherichia coli* K-12. *J Bacteriol* 170, 2448–2456.

- **Conlon, M. A. & Bird, A. R. (2014).** The impact of diet and lifestyle on gut microbiota and human health. *Nutrients* **7**, 17–44.
- Constantinidou, C., Hobman, J. L., Griffiths, L., Patel, M. D., Penn, C.
 W., Cole, J. A. & Overton, T. W. (2006). A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as *Escherichia coli* K12 Adapts from Aerobic to Anaerobic Growth. *J Biol Chem* 281, 4802–4815.
- Conway, T., Krogfelt, K. A. & Cohen, P. S. (2013). The Life of Commensal *Escherichia coli* in the Mammalian Intestine. *EcoSal Plus*.
- Conway, T. & Cohen, P. S. (2015). Commensal and Pathogenic *Escherichia coli* Metabolism in the Gut. *Microbiol Spectr* **3**, 1–15.
- Cowley, L. A., Low, A. S., Pickard, D., Boinett, C. J., Dallman, T. J.,
 Day, M., Perry, N., Gally, D. L., Parkhill, J. & other authors.
 (2018). Transposon Insertion Sequencing Elucidates Novel Gene Involvement in Susceptibility and Resistance to Phages T4 and T7 in *Escherichia coli* O157. *MBio* 9 e00705-18.
- Crawford, R. W., Keestra, A. M., Winter, S. E., Xavier, M. N., Tsolis, R.
 M., Tolstikov, V. & Bäumler, A. J. (2012). Very Long O-antigen
 Chains Enhance Fitness during Salmonella-induced Colitis by
 Increasing Bile Resistance. PLOS Pathog 8, e1002918.
- Cremer, J., Segota, I., Yang, C.-Y., Arnoldini, M., Sauls, J. T., Zhang, Z., Gutierrez, E., Groisman, A. & Hwa, T. (2016). Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel. *Proc Natl Acad Sci U S A* **113**, 11414–11419.

- Cress, B. F., Englaender, J. A., He, W., Kasper, D., Linhardt, R. J. & Koffas, M. A. G. (2014). Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. *FEMS Microbiol Rev* 38, 660–697.
- D'Aldebert, E., Biyeyeme Bi Mve, M., Mergey, M., Wendum, D.,
 Firrincieli, D., Coilly, A., Fouassier, L., Corpechot, C., Poupon,
 R. & other authors. (2009). Bile Salts Control the Antimicrobial
 Peptide Cathelicidin Through Nuclear Receptors in the Human
 Biliary Epithelium. *Gastroenterology* 136, 1435–1443.
- D'Mello, A. & Yotis, W. W. (1987). The action of sodium deoxycholate on *Escherichia coli*. *Appl Environ Microbiol* **53**, 1944 LP – 1946.
- Dalebroux, Z. D., Edrozo, M. B., Pfuetzner, R. A., Ressl, S., Kulasekara, B. R., Blanc, M.-P. & Miller, S. I. (2015). Delivery of cardiolipins to the *Salmonella* outer membrane is necessary for survival within host tissues and virulence. *Cell Host Microbe* 17, 441–451.
- **Dartigalongue, C., Missiakas, D. & Raina, S. (2001).** Characterization of the *Escherichia coli* ςE Regulon. *J Biol Chem* **276**, 20866–20875.
- Datsenko, K. A. & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97, 6640–6645.
- Dautin, N. (2010). Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. *Toxins* 2, 1179–1206.

- Deckers, D., Vanlint, D., Callewaert, L., Aertsen, A. & Michiels, C. W. (2008). Role of the Lysozyme Inhibitor Ivy in Growth or Survival of *Escherichia coli* and *Pseudomonas aeruginosa* Bacteria in Hen Egg White and in Human Saliva and Breast Milk. *Appl Environ Microbiol* 74, 4434–4439.
- Deutscher, J., Aké, F. M. D., Derkaoui, M., Zébré, A. C., Cao, T. N.,
 Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E. & Joyet,
 P. (2014). The Bacterial Phosphoenolpyruvate:Carbohydrate
 Phosphotransferase System: Regulation by Protein
 Phosphorylation and Phosphorylation-Dependent Protein-Protein
 Interactions. *Microbiol Mol Biol Rev* 78, 231–256.
- Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu,
 W.- H., Lakshmanan, A. & Wade, W. G. (2010). The Human Oral Microbiome. *J Bacteriol* 192, 5002–5017.
- Ding, J. W., Andersson, R., Soltesz, V., Willén, R. & Bengmark, S. (1993). The Role of Bile and Bile Acids in Bacterial Translocation in Obstructive Jaundice in Rats. *Eur Surg Res* 25, 11–19.
- Dixit, S. M., Gordon, D. M., Wu, X.-Y., Chapman, T., Kailasapathy, K.
 & Chin, J. J.-C. (2004). Diversity analysis of commensal porcine *Escherichia coli* associations between genotypes and habitat in the porcine gastrointestinal tract. *Microbiology* 150, 1735–1740.
- Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. *Nat Rev Microbiol* 14, 20–32.

- Dougan, G. & Baker, S. (2014). Salmonella enterica Serovar Typhi and the Pathogenesis of Typhoid Fever. Annu Rev Microbiol 68, 317– 336.
- Dykhuizen, R. S., Masson, J., McKnight, G., Mowat, A. N., Smith, C. C., Smith, L. M. & Benjamin, N. (1996). Plasma nitrate concentration in infective gastroenteritis and inflammatory bowel disease. *Gut* 39, 393–395.
- Eckert, S. E., Dziva, F., Chaudhuri, R. R., Langridge, G. C., Turner, D. J., Pickard, D. J., Maskell, D. J., Thomson, N. R. & Stevens, M. P. (2011). Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of *Escherichia coli* O157:H7 screened in cattle. *J Bacteriol* 193, 1771–1776.
- Eguchi, Y., Okada, T., Minagawa, S., Oshima, T., Mori, H., Yamamoto,
 K., Ishihama, A. & Utsumi, R. (2004). Signal transduction
 cascade between EvgA/EvgS and PhoP/PhoQ two-component
 systems of *Escherichia coli*. J Bacteriol 186, 3006–3014.
- Eicher, T., Brandstätter, L. & Pos, K. M. (2009). Structural and functional aspects of the multidrug efflux pump AcrB. *Biol Chem* 390, 693–699.
- Ellwood, M. & Nomura, M. (1980). Deletion of a ribosomal ribonucleic acid operon in *Escherichia coli*. *J Bacteriol* **143**, 1077–1080.
- Enjalbert, B., Cocaign-Bousquet, M., Portais, J.-C. & Letisse, F. (2015). Acetate Exposure Determines the Diauxic Behavior of

Escherichia coli during the Glucose-Acetate Transition. *J Bacteriol* **197**, 3173–3181.

- Evans Doyle J., J. & Evans, D. G. (1983). Classification of Pathogenic Escherichia coli According to Serotype and the Production of Virulence Factors, with Special Reference to Colonization-Factor Antigens. *Rev Infect Dis* 5, S692–S701.
- Faber, F. & Bäumler, A. J. (2014). The impact of intestinal inflammation on the nutritional environment of the gut microbiota. *Immunol Lett* 162, 48–53.
- Fabich, A. J., Jones, S. a, Chowdhury, F. Z., Cernosek, A., Anderson,
 A., Smalley, D., McHargue, J. W., Hightower, G. A., Smith, J. T.
 & other authors. (2008). Comparison of carbon nutrition for pathogenic and commensal *Escherichia coli* strains in the mouse intestine. *Infect Immun* 76, 1143–52.
- Fagan, R. P., Lambert, M. A. & Smith, S. G. J. (2008). The hek outer membrane protein of Escherichia coli strain RS218 binds to proteoglycan and utilizes a single extracellular loop for adherence, invasion, and autoaggregation. Infect Immun 76, 1135–1142.
- Fang, Z. & Cui, X. (2011). Design and validation issues in RNA-seq experiments. *Brief Bioinform* 12, 280–287.
- Foster, J. W. (2004). *Escherichia coli* acid resistance: tales of an amateur acidophile. *Nat Rev Microbiol* **2**, 898–907.
- Foster, P. L. (2007). Stress-induced mutagenesis in bacteria. *Crit Rev Biochem Mol Biol* **42**, 373–397.

- Fraser, H. I., Kvaratskhelia, M. & White, M. F. (1999). The two analogous phosphoglycerate mutases of *Escherichia coli*. *FEBS Lett* **455**, 344–348.
- Freed, N. E., Bumann, D. & Silander, O. K. (2016). Combining Shigella Tn-seq data with gold-standard *E. coli* gene deletion data suggests rare transitions between essential and non-essential gene functionality. *BMC Microbiol* 16, 203.
- Friman, V., Adlerberth, I., Connell, H., Svanborg, C., Hanson, L. A. & Wold, A. E. (1996). Decreased expression of mannose-specific adhesins by *Escherichia coli* in the colonic microflora of immunoglobulin A-deficient individuals. *Infect Immun* 64, 2794 –2798.
- Froelich, J. M., Tran, K. & Wall, D. (2006). A pmrA Constitutive Mutant Sensitizes Escherichia coli to Deoxycholic Acid. J Bacteriol 188, 1180–1183.
- Fröhlich, K. S., Papenfort, K., Berger, A. A. & Vogel, J. (2012). A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. *Nucleic Acids Res* 40, 3623–3640.
- **Fujisawa, T. & Mori, M. (1996).** Influence of bile salts on β-glucuronidase activity of intestinal bacteria. *Lett Appl Microbiol* **22**, 271–274.
- Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. (2004). Extensive genomic diversity in pathogenic *Escherichia coli* and *Shigella* Strains revealed by comparative genomic hybridization microarray. *J Bacteriol* 186, 3911–3921.

- Le Gall, T., Clermont, O., Gouriou, S., Picard, B., Nassif, X., Denamur, E. & Tenaillon, O. (2007). Extraintestinal Virulence Is a Coincidental By-Product of Commensalism in B2 Phylogenetic Group Escherichia coli Strains. Mol Biol Evol 24, 2373–2384.
- Gausing, K. (1981). Rates of growth, ribosome synthesis and elongation factor synthesis in a *tufA* defective strain of *E. coli. Mol Gen Genet* 184, 272–277.
- Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E.,
 Daugherty, M. D., Somera, A. L., Kyrpides, N. C., Anderson, I.
 & other authors. (2003). Experimental determination and system
 level analysis of essential genes in *Escherichia coli* MG1655. *J Bacteriol* 185, 5673–5684.
- Ghatak, S., King, Z. A., Sastry, A. & Palsson, B. O. (2019). The y-ome defines the 35% of *Escherichia coli* genes that lack experimental evidence of function. *Nucleic Acids Res* **47**, 2446–2454.
- Glode, M. P., Sutton, A., Robbins, J. B., McCracken, G. H., Gotschlich, E. C., Kaijser, B. & Hanson, L. A. (1977). Neonatal Meningitis Due to *Escherichia coli* K1. *J Infect Dis* 136, s93–s97.
- Goh, E.-B., Bledsoe, P. J., Chen, L.-L., Gyaneshwar, P., Stewart, V. &
 Igo, M. M. (2005). Hierarchical Control of Anaerobic Gene Expression in *Escherichia coli* K-12: the Nitrate-Responsive NarX-NarL Regulatory System Represses Synthesis of the Fumarate-Responsive DcuS-DcuR Regulatory System. *J Bacteriol* 187, 4890–4899.

- Goh, K. G. K., Phan, M.-D., Forde, B. M., Chong, T. M., Yin, W.-F.,
 Chan, K.-G., Ulett, G. C., Sweet, M. J., Beatson, S. A. &
 Schembri, M. A. (2017). Genome-Wide Discovery of Genes
 Required for Capsule Production by Uropathogenic *Escherichia coli. MBio* 8, e01558-17.
- Goodall, E. C. A., Robinson, A., Johnston, I. G., Jabbari, S., Turner,
 K. A., Cunningham, A. F., Lund, P. A., Cole, J. A. &
 Henderson, I. R. (2018). The Essential Genome of *Escherichia coli* K-12. *MBio* 9, e02096-17.
- Gordon, D. M. (2004). The Influence of Ecological Factors on the Distribution and the Genetic Structure of *Escherichia coli*. *EcoSal Plus*.
- Goryshin, I. Y., Jendrisak, J., Hoffman, L. M., Meis, R. & Reznikoff,
 W. S. (2000). Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. *Nat Biotechnol* 18, 97–100.
- Gray, A. N., Koo, B.-M., Shiver, A. L., Peters, J. M., Osadnik, H. &
 Gross, C. A. (2015). High-throughput bacterial functional genomics in the sequencing era. *Curr Opin Microbiol* 27, 86–95.
- Grenier, F., Matteau, D., Baby, V. & Rodrigue, S. (2014). Complete Genome Sequence of *Escherichia coli* BW25113. *Genome Announc* 2, e01038-14.
- Grenov, A. I. & Gerdes, S. Y. (2008). Modeling competitive outgrowth of mutant populations: why do essentiality screens yield divergent results? *Methods Mol Biol* 416, 361–367.

- Griess, J. P. & Bemerkungen, Z. A. H. H. (1879). Über einige Azoverbindungen. Ber Deutch Chem Ges 12, 426–428.
- **Gruenheid, S. & Le Moual, H. (2012).** Resistance to antimicrobial peptides in Gram-negative bacteria. *FEMS Microbiol Lett* **330**, 81–89.
- **Guaraldi, F. & Salvatori, G. (2012).** Effect of breast and formula feeding on gut microbiota shaping in newborns. *Front Cell Infect Microbiol* 2, 94.
- Guest, R. L., Wang, J., Wong, J. L. & Raivio, T. L. (2017). A Bacterial Stress Response Regulates Respiratory Protein Complexes To Control Envelope Stress Adaptation. *J Bacteriol* **199**, e00153-17.
- Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodríguez-Rojas,
 A., Blázquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F. & other authors. (2013). β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4, 1610.
- Hamner, S., McInnerney, K., Williamson, K., Franklin, M. J. & Ford, T.
 E. (2013). Bile salts affect expression of *Escherichia coli* O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. *PLoS One* 8, e74647–e74647.
- Hansen, A.-M., Qiu, Y., Yeh, N., Blattner, F. R., Durfee, T. & Jin, D. J.
 (2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in *Escherichia coli*. *Mol Microbiol* 56, 719– 734.

- Hay, A. J. & Zhu, J. (2016). In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut. *Adv Appl Microbiol*, 96, 43–64.
- Hernández, S. B., Cota, I., Ducret, A., Aussel, L. & Casadesús, J. (2012). Adaptation and Preadaptation of Salmonella enterica to Bile. PLOS Genet 8, e1002459.
- Hofmann, A. F. (1999). Bile Acids: The Good, the Bad, and the Ugly. *Physiology* 14, 24–29.
- Hollister, E. B., Gao, C. & Versalovic, J. (2014). Compositional and functional features of the gastrointestinal microbiome and their effects on human health. *Gastroenterology* **146**, 1449–1458.
- Hu, L. I., Lima, B. P. & Wolfe, A. J. (2010). Bacterial protein acetylation: the dawning of a new age. *Mol Microbiol* 77, 15–21.
- Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. *Nature* **486**, 207– 214.
- Inagaki, T., Moschetta, A., Lee, Y.-K., Peng, L., Zhao, G., Downes, M.,
 Yu, R. T., Shelton, J. M., Richardson, J. A. & other authors.
 (2006). Regulation of antibacterial defense in the small intestine by
 the nuclear bile acid receptor. *Proc Natl Acad Sci U S A* 103, 3920–3925.
- Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. & Yokota, A. (2011). Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. *Gastroenterology* 141, 1773–1781.

- Ito, M., Baba, T., Mori, H. & Mori, H. (2005). Functional analysis of 1440 *Escherichia coli* genes using the combination of knock-out library and phenotype microarrays. *Metab Eng* **7**, 318–327.
- Jacobsen, L., Durso, L., Conway, T. & Nickerson, K. W. (2009). Escherichia coli O157:H7 and Other E. coli Strains Share Physiological Properties Associated with Intestinal Colonization. Appl Environ Microbiol 75, 4633–4635.
- Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M. & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. *World J Gastroenterol* 21, 8787–8803.
- Jarchow, S., Lück, C., Görg, A. & Skerra, A. (2008). Identification of potential substrate proteins for the periplasmic *Escherichia coli* chaperone Skp. *Proteomics* 8, 4987–4994.
- Johnson, M. E. & Rajagopalan, K. V. (1987). Involvement of *chlA*, *E*, *M*, and *N* loci in *Escherichia coli* molybdopterin biosynthesis. *J Bacteriol* 169, 117–125.
- Jones, S. A., Gibson, T., Maltby, R. C., Chowdhury, F. Z., Stewart, V., Cohen, P. S. & Conway, T. (2011). Anaerobic Respiration of *Escherichia coli* in the Mouse Intestine. *Infect Immun* 79, 4218-4226.
- Joyce, A. R., Reed, J. L., White, A., Edwards, R., Osterman, A., Baba,
 T., Mori, H., Lesely, S. A., Palsson, B. O. & Agarwalla, S.
 (2006). Experimental and computational assessment of conditionally essential genes in *Escherichia coli*. J Bacteriol 188, 8259–8271.

- Kaas, R. S., Friis, C., Ussery, D. W. & Aarestrup, F. M. (2012). Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse *Escherichia coli* genomes. *BMC Genomics* 13, 577.
- Kabir, M. M., Ho, P. Y. & Shimizu, K. (2005). Effect of *IdhA* gene deletion on the metabolism of *Escherichia coli* based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution. *Biochem Eng J* 26, 1–11.
- Kaiser, M. & Sawers, G. (1994). Pyruvate formate-lyase is not essential for nitrate respiration by *Escherichia coli*. *FEMS Microbiol Lett* 117, 163-168.
- Kakkanat, A., Phan, M.-D., Lo, A. W., Beatson, S. A. & Schembri, M.
 A. (2017). Novel genes associated with enhanced motility of *Escherichia coli* ST131. *PLoS One* 12, e0176290.
- Kaper, J. B., Nataro, J. P. & Mobley, H. L. (2004). Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–40.
- Karami, N., Martner, A., Enne, V. I., Swerkersson, S., Adlerberth, I. & Wold, A. E. (2007). Transfer of an ampicillin resistance gene between two *Escherichia coli* strains in the bowel microbiota of an infant treated with antibiotics . *J Antimicrob Chemother* 60, 1142– 1145.
- Kargeti, M. & Venkatesh, K. V. (2017). The effect of global transcriptional regulators on the anaerobic fermentative metabolism of *Escherichia coli*. *Mol Biosyst* **13**, 1388–1398.

- Karow, M. & Georgopoulos, C. (1992). Isolation and characterization of the *Escherichia coli msbB* gene, a multicopy suppressor of null mutations in the high-temperature requirement gene *htrB*. J Bacteriol 174, 702–710.
- Kaya, M., Beştaş, R., Bacalan, F., Bacaksız, F., Arslan, E. G. &
 Kaplan, M. A. (2012). Microbial profile and antibiotic sensitivity pattern in bile cultures from endoscopic retrograde cholangiography patients. *World J Gastroenterol* 18, 3585–3589.
- Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides- Martínez, C., Caspi, R., Fulcher, C., Gama-Castro,
 S., Kothari, A. & other authors. (2017). The EcoCyc database: reflecting new knowledge about *Escherichia coli* K-12. *Nucleic Acids Res* 45, 543–550.
- Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. *Proc Natl Acad Sci U S A* 113, 7–15.
- Kim, K. S. (2003). Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. *Nat Rev Neurosci* 4, 376–385.
- Kim, M., Ashida, H., Ogawa, M., Yoshikawa, Y., Mimuro, H. &
 Sasakawa, C. (2010). Bacterial Interactions with the Host Epithelium. *Cell Host Microbe* 8, 20–35.
- Kingsley, R. A., Langridge, G., Smith, S. E., Makendi, C., Fookes, M., Wileman, T. M., El Ghany, M. A., Keith Turner, A., Dyson, Z. A.

& other authors. (2018). Functional analysis of *Salmonella* Typhi adaptation to survival in water. *Environ Microbiol* **20**, 4079–4090.

- Klein, G., Kobylak, N., Lindner, B., Stupak, A. & Raina, S. (2014). Assembly of lipopolysaccharide in *Escherichia coli* requires the essential LapB heat shock protein. *J Biol Chem* 289, 14829– 14853.
- Van de Klundert, J. A., Van der Meide, P. H., Van de Putte, P. & Bosch, L. (1978). Mutants of *Escherichia coli* altered in both genes coding for the elongation factor Tu. *Proc Natl Acad Sci U S* A 75, 4470–4473.
- Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L. & Bubunenko, M. G. (2007). Importance of the 5 S rRNA-binding ribosomal proteins for cell viability and translation in *Escherichia coli. J Mol Biol* 366, 1199–1208.
- Kotlowski, R., Bernstein, C. N., Sepehri, S. & Krause, D. O. (2007). High prevalence of *Escherichia coli* belonging to the B2+D phylogenetic group in inflammatory bowel disease. *Gut* 56, 669– 675.
- Kotnik, M., Anderluh, P. S. & Prezelj, A. (2007). Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. *Curr Pharm Des* 13, 2283–2309.
- Kramer, V. C., Nickerson, K. W., Hamlett, N. V & O'Hara, C. (1984).
 Prevalence of extreme detergent resistance among the Enterobacteriaceae. *Can J Microbiol* **30**, 711–713.

- Kristensen, D. M., Kannan, L., Coleman, M. K., Wolf, Y. I., Sorokin, A., Koonin, E. V & Mushegian, A. (2010). A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. *Bioinformatics* 26, 1481– 1487.
- Kus, J. V, Gebremedhin, A., Dang, V., Tran, S.-L., Serbanescu, A. &
 Barnett Foster, D. (2011). Bile salts induce resistance to polymyxin in enterohemorrhagic *Escherichia coli* O157:H7. *J* Bacteriol 193, 4509–4515.
- Lampe, D. J., Grant, T. E. & Robertson, H. M. (1998). Factors affecting transposition of the *Himar1 mariner* transposon *in vitro*. *Genetics* 149, 179–187.
- Landeta, C., Boyd, D. & Beckwith, J. (2018). Disulfide bond formation in prokaryotes. *Nat Microbiol* **3**, 270–280.
- Langridge, G. C., Phan, M. D., Turner, D. J., Perkins, T. T., Parts, L., Haase, J., Charles, I., Maskell, D. J., Peters, S. E. & other authors. (2009). Simultaneous assay of every *Salmonella* Typhi gene using one million transposon mutants. *Genome Res* 19, 2308–2316.
- De Lay, N. R. & Cronan, J. E. (2008). Genetic interaction between the Escherichia coli AcpT phosphopantetheinyl transferase and the YejM inner membrane protein. Genetics 178, 1327–1337.
- Lazazzera, B. A., Beinert, H., Khoroshilova, N., Kennedy, M. C. & Kiley, P. J. (1996). DNA binding and dimerization of the Fe-S-

containing FNR protein from *Escherichia coli* are regulated by oxygen. *J Biol Chem* **271**, 2762–2768.

- Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., Ishida, H. & Lomovskaya, O. (2000). Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance. *J Bacteriol* 182, 3142–3150.
- Leimbach, A., Hacker, J. & Dobrindt, U. (2013). E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. *Between Pathog Commensalism*, pp. 3–32.
- Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P. & Jan, G. (2003). Susceptibility and adaptive response to bile salts in *Propionibacterium freudenreichii*: physiological and proteomic analysis. *Appl Environ Microbiol* **69**, 3809–3818.
- Li, G., Yang, M., Zhou, K., Zhang, L., Tian, L., Lv, S., Jin, Y., Qian, W., Xiong, H. & other authors. (2015). Diversity of duodenal and rectal microbiota in biopsy tissues and luminal contents in healthy volunteers. *J Microbiol Biotechnol* 25, 1136–1145.
- Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L. & Foster, J. W. (1995). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177, 4097–4104.
- Lin, J., Smith, M. P., Chapin, K. C., Baik, H. S., Bennett, G. N. & Foster, J. W. (1996). Mechanisms of acid resistance in enterohemorrhagic *Escherichia coli*. *Appl Environ Microbiol* 62, 3094–3100.

- Long, C. P. & Antoniewicz, M. R. (2014). Metabolic flux analysis of *Escherichia coli* knockouts: lessons from the Keio collection and future outlook. *Curr Opin Biotechnol* 28, 127–133.
- Lopez-Siles, M., Martinez-Medina, M., Busquets, D., Sabat-Mir, M.,
 Duncan, S. H., Flint, H. J., Aldeguer, X. & Garcia-Gil, L. J.
 (2014). Mucosa-associated *Faecalibacterium prausnitzii* and
 Escherichia coli co-abundance can distinguish Irritable Bowel
 Syndrome and Inflammatory Bowel Disease phenotypes. *Int J Med Microbiol* 304, 464–475.
- Lopez, C. A., Winter, S. E., Rivera-Chávez, F., Xavier, M. N., Poon, V., Nuccio, S.-P., Tsolis, R. M. & Bäumler, A. J. (2012). Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of *Salmonella* by Nitrate Respiration. *MBio* **3**, e00143-12.
- Lorenzo-Zúñiga, V., Bartolí, R., Planas, R., Hofmann, A. F., Viñado,
 B., Hagey, L. R., Hernández, J. M., Mañé, J., Alvarez, M. A. &
 other authors. (2003). Oral bile acids reduce bacterial
 overgrowth, bacterial translocation, and endotoxemia in cirrhotic
 rats. *Hepatology* 37, 551–557.
- Ludden, C., Raven, K. E., Jamrozy, D., Gouliouris, T., Blane, B., Coll,
 F., de Goffau, M., Naydenova, P., Horner, C. & other authors.
 (2019). One Health Genomic Surveillance of *Escherichia coli*Demonstrates Distinct Lineages and Mobile Genetic Elements in
 Isolates from Humans versus Livestock. *MBio* 10 e02693-18.

- Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. (2010). Comparison of 61 sequenced *Escherichia coli* genomes. *Microb Ecol* **60**, 708–720.
- Lundell, A.-C., Björnsson, V., Ljung, A., Ceder, M., Johansen, S.,
 Lindhagen, G., Törnhage, C.-J., Adlerberth, I., Wold, A. E. &
 Rudin, A. (2012). Infant B Cell Memory Differentiation and Early
 Gut Bacterial Colonization. *J Immunol* 188, 4315–4322.
- Mahalakshmi, S., Sunayana, M. R., SaiSree, L. & Reddy, M. (2014). yciM is an essential gene required for regulation of lipopolysaccharide synthesis in *Escherichia coli*. Mol Microbiol **91**, 145–157.
- Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. (2013). Nutritional Basis for Colonization Resistance by Human Commensal *Escherichia coli* Strains HS and Nissle 1917 against *E. coli* O157:H7 in the Mouse Intestine. *PLoS One* 8, e53957.
- Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D. & Garcia-Gil, J. L. (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. *Inflamm Bowel Dis* 12, 1136–1145.
- Martinsen, T. C., Bergh, K. & Waldum, H. L. (2005). Gastric Juice: A Barrier Against Infectious Diseases. Basic Clin Pharmacol Toxicol 96, 94–102.

- Martorana, A. M., Motta, S., Di Silvestre, D., Falchi, F., Dehò, G., Mauri, P., Sperandeo, P. & Polissi, A. (2014). Dissecting *Escherichia coli* Outer Membrane Biogenesis Using Differential Proteomics. *PLoS One* 9, e100941.
- Mason, K. L. & Huffnagle, G. B. (2009). Control of mucosal polymicrobial populations by innate immunity. *Cell Microbiol* 11, 1297–1305.
- Mat-Jan, F., Alam, K. Y. & Clark, D. P. (1989a). Mutants of *Escherichia* coli deficient in the fermentative lactate dehydrogenase. *J Bacteriol* 171, 342–348.
- Mat-Jan, F., Williams, C. R. & Clark, D. P. (1989b). Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in *Escherichia coli* K12. *Mol Gen Genet* 215, 276–280.
- McCarthy, A. J., Stabler, R. A. & Taylor, P. W. (2018). Genome-Wide Identification by Transposon Insertion Sequencing of *Escherichia coli* K1 Genes Essential for In Vitro Growth, Gastrointestinal Colonizing Capacity, and Survival in Serum. *J Bacteriol* 200 e00698-17.
- McGrath, M. E., Gillmor, S. A. & Fletterick, R. J. (1995). Ecotin: lessons on survival in a protease-filled world. *Protein Sci* **4**, 141–148.
- Meador, J. P., Caldwell, M. E., Cohen, P. S. & Conway, T. (2014). Escherichia coli pathotypes occupy distinct niches in the mouse intestine. Infect Immun 82, 1931–8.

- Meredith, T. C. & Woodard, R. W. (2005). Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase. J Bacteriol 187, 6936–6942.
- Merritt, M. E. & Donaldson, J. R. (2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. *J Med Microbiol* 58, 1533–1541.
- Mettert, E. L. & Kiley, P. J. (2005). ClpXP-dependent proteolysis of FNR upon loss of its O2-sensing [4Fe-4S] cluster. *J Mol Biol* 354, 220–232.
- Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D. & Thomas, P. D. (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. *Nucleic Acids Res* 45, 183– 189.
- Miajlovic, H., Cooke, N. M., Moran, G. P., Rogers, T. R. F. & Smith, S.
 G. (2014). Response of extraintestinal pathogenic *Escherichia coli* to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid. *Infect Immun* 82, 298–305.
- Minagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., Mori, H., Ishihama, A. & Utsumi, R. (2003). Identification and molecular characterization of the Mg2+ stimulon of *Escherichia coli*. J Bacteriol **185**, 3696–3702.
- Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. (2019). *Escherichia coli* Pathobionts Associated

with Inflammatory Bowel Disease. *Clin Microbiol Rev* **32**, e00060-18.

- Missiakas, D., Betton, J.-M. & Raina, S. (1996). New components of protein folding in extracytoplasmic compartments of *Escherichia coli* SurA, FkpA and Skp/OmpH. *Mol Microbiol* **21**, 871–884.
- Møller, A. K., Leatham, M. P., Conway, T., Nuijten, P. J. M., de Haan, L. A. M., Krogfelt, K. A. & Cohen, P. S. (2003). An *Escherichia coli* MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. *Infect Immun* 71, 2142–2152.
- Monchois, V., Abergel, C., Sturgis, J., Jeudy, S. & Claverie, J.-M.
 (2001). Escherichia coli ykfE Gene Encodes a Potent Inhibitor of C-type Lysozyme. J Biol Chem 276, 18437–18441.
- Nalin, D., Rhead, J., Rennels, M., O'Donnell, S., Levine, M.,
 Bergquist, E., Hughes, T. & Hornick, R. (1978). Cannabis,
 Hyphochlorhydria, and Cholera. *Lancet* 312, 859–862.
- Nicolaes, V., El Hajjaji, H., Davis, R. M., Van der Henst, C., Depuydt,
 M., Leverrier, P., Aertsen, A., Haufroid, V., Ollagnier de
 Choudens, S. & other authors. (2014). Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in *Escherichia coli*. J Bacteriol 196, 300–309.
- Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. *Microbiol Mol Biol Rev* 67, 593–656.

- **Noh, D. O. & Gilliland, S. E. (1993).** Influence of Bile on Cellular Integrity and β-Galactosidase Activity of *Lactobacillus acidophilus*. *J Dairy Sci* **76**, 1253–1259.
- Nolan, L. M., Whitchurch, C. B., Barquist, L., Katrib, M., Boinett, C. J., Mayho, M., Goulding, D., Charles, I. G., Filloux, A. & other authors. (2018). A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in *Pseudomonas aeruginosa*. *Microb genomics* 4.
- Nonaka, G., Blankschien, M., Herman, C., Gross, C. A. & Rhodius, V.
 A. (2006). Regulon and promoter analysis of the *E. coli* heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. *Genes Dev* 20, 1776–1789.
- **O'Farrell, P. H. (1978).** The suppression of defective translation by ppGpp and its role in the stringent response. *Cell* **14**, 545–557.
- Ochman, H. & Selander, R. K. (1984). Standard reference strains of *Escherichia coli* from natural populations. *J Bacteriol* 157, 690–693.
- Ochman, H. & Jones, I. B. (2000). Evolutionary dynamics of full genome content in *Escherichia coli*. *EMBO J* **19**, 6637–6643.
- Oliveira, A. M., Morais, M. B. de & Morais, T. B. (2012). A Novel and Potentially Valuable Exposure Measure: *Escherichia coli* in Oral Cavity and its Association with Child DayCare Center Attendance. *J Trop Pediatr* 58, 517–520.

- Onufryk, C., Crouch, M.-L., Fang, F. C. & Gross, C. A. (2005). Characterization of six lipoproteins in the sigmaE regulon. *J Bacteriol* **187**, 4552–4561.
- van Opijnen, T. & Camilli, A. (2013). Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. *Nat Rev Microbiol* 11, 435–42.
- Overmars, L., van Hijum, S. A. F. T., Siezen, R. J. & Francke, C. (2015). CiVi: circular genome visualization with unique features to analyze sequence elements. *Bioinformatics* **31**, 2867–2869.
- De Paepe, M., Gaboriau-Routhiau, V., Rainteau, D., Rakotobe, S., Taddei, F. & Cerf-Bensussan, N. (2011). Trade-Off between Bile Resistance and Nutritional Competence Drives *Escherichia coli* Diversification in the Mouse Gut. *PLOS Genet* 7, e1002107.
- Park, Y.-H., Lee, C.-R., Choe, M. & Seok, Y.-J. (2013). HPr antagonizes the anti-sigma70 activity of Rsd in *Escherichia coli*. *Proc Natl Acad Sci U S A* **110**, 21142–21147.
- Paul, S., Alegre, K. O., Holdsworth, S. R., Rice, M., Brown, J. A., McVeigh, P., Kelly, S. M. & Law, C. J. (2014). A singlecomponent multidrug transporter of the major facilitator superfamily is part of a network that protects *Escherichia coli* from bile salt stress. *Mol Microbiol* **92**, 872–884.
- Peleg, A. Y. & Hooper, D. C. (2010). Hospital-Acquired Infections Due to Gram-Negative Bacteria. *N Engl J Med* 362, 1804–1813.
- Pettengill, E. A., Pettengill, J. B. & Binet, R. (2016). Phylogenetic Analyses of *Shigella* and Enteroinvasive *Escherichia coli* for the

Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation. *Front Microbiol* **6**, 1573.

- Phan, M.-D., Peters, K. M., Sarkar, S., Lukowski, S. W., Allsopp, L. P., Moriel, D. G., Achard, M. E. S., Totsika, M., Marshall, V. M. & other authors. (2013). The Serum Resistome of a Globally Disseminated Multidrug Resistant Uropathogenic *Escherichia coli* Clone. *PLOS Genet* 9, e1003834.
- Di Pilato, V., Freschi, G., Ringressi, M. N., Pallecchi, L., Rossolini, G.
 M. & Bechi, P. (2016). The esophageal microbiota in health and disease. *Ann N Y Acad Sci* 1381, 21–33.
- Pires, S. M., Fischer-Walker, C. L., Lanata, C. F., Devleesschauwer,
 B., Hall, A. J., Kirk, M. D., Duarte, A. S. R., Black, R. E. &
 Angulo, F. J. (2015). Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases
 Commonly Transmitted through Food. *PLoS One* 10, e0142927.
- Polissi, A., De Laurentis, W., Zangrossi, S., Briani, F., Longhi, V., Pesole, G. & Deho, G. (2003). Changes in *Escherichia coli* transcriptome during acclimatization at low temperature. *Res Microbiol* 154, 573–580.
- Ponce, E., Flores, N., Martinez, A., Valle, F. & Bolivar, F. (1995). Cloning of the two pyruvate kinase isoenzyme structural genes from *Escherichia coli*: the relative roles of these enzymes in pyruvate biosynthesis. *J Bacteriol* **177**, 5719–5722.

- Poulsen, L. K., Lan, F., Kristensen, C. S., Hobolth, P., Molin, S. & Krogfelt, K. A. (1994). Spatial distribution of *Escherichia coli* in the mouse large intestine inferred from rRNA in situ hybridization. *Infect Immun* 62, 5191–5194.
- Prohl, C., Wackwitz, B., Vlad, D. & Unden, G. (1998). Functional citric acid cycle in an *arcA* mutant of *Escherichia coli* during growth with nitrate under anoxic conditions. *Arch Microbiol* 170, 1–7.
- Prouty, A. M., Brodsky, I. E., Manos, J., Belas, R., Falkow, S. & Gunn,
 J. S. (2006). Transcriptional regulation of *Salmonella enterica* serovar Typhimurium genes by bile. *FEMS Immunol Med Microbiol* 41, 177–185.
- Raetz, C. R. H., Reynolds, C. M., Trent, M. S. & Bishop, R. E. (2007). Lipid A Modification Systems in Gram-Negative Bacteria. *Annu Rev Biochem* **76**, 295–329.
- Raghavan, R., Sage, A. & Ochman, H. (2011). Genome-wide identification of transcription start sites yields a novel thermosensing RNA and new cyclic AMP receptor proteinregulated genes in *Escherichia coli*. J Bacteriol **193**, 2871–2874.
- Ramos-Morales, F., Prieto, A. I., Beuzón, C. R., Holden, D. W. &
 Casadesús, J. (2003). Role for Salmonella enterica
 Enterobacterial Common Antigen in Bile Resistance and Virulence.
 J Bacteriol 185, 5328 –5332.
- Rasko, D. A., Rosovitz, M. J., Myers, G. S. A., Mongodin, E. F.,
 Fricke, W. F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N.
 R. & other authors. (2008). The Pangenome Structure of

Escherichia coli: Comparative Genomic Analysis of *E. coli* Commensal and Pathogenic Isolates. *J Bacteriol* **190**, 6881–6893.

- Ray, M. C., Germon, P., Vianney, A., Portalier, R. & Lazzaroni, J. C.
 (2000). Identification by genetic suppression of *Escherichia coli* TolB residues important for TolB-Pal interaction. *J Bacteriol* 182, 821–824.
- Razaghi, M., Tajeddin, E., Ganji, L., Alebouyeh, M., Alizadeh, A. H. M., Sadeghi, A. & Zali, M. R. (2017). Colonization, resistance to bile, and virulence properties of *Escherichia coli* strains: Unusual characteristics associated with biliary tract diseases. *Microb Pathog* 111, 262–268.
- Renner, L. D. & Weibel, D. B. (2012). MinD and MinE interact with anionic phospholipids and regulate division plane formation in *Escherichia coli. J Biol Chem* 287, 38835–38844.
- Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. (2014). Bile acids and the gut microbiome. *Curr Opin Gastroenterol* **30**, 332–338.
- Rincé, A., Le Breton, Y., Verneuil, N., Giard, J.-C., Hartke, A. & Auffray, Y. (2003). Physiological and molecular aspects of bile salt response in *Enterococcus faecalis*. Int J Food Microbiol 88, 207– 213.
- Rodionova, I. A., Zhang, Z., Mehla, J., Goodacre, N., Babu, M., Emili,
 A., Uetz, P. & Saier, M. H. J. (2017). The phosphocarrier protein
 HPr of the bacterial phosphotransferase system globally regulates

energy metabolism by directly interacting with multiple enzymes in *Escherichia coli. J Biol Chem* **292**, 14250–14257.

- Rodrigues, M. L., Oliveira, T. F., Pereira, I. A. C. & Archer, M. (2006).
 X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. *EMBO J* 25, 5951–5960.
- Ruiz, L., Sánchez, B., Ruas-Madiedo, P., De Los Reyes-Gavilán, C. G.
 & Margolles, A. (2007). Cell envelope changes in *Bifidobacterium* animalis ssp. *lactis* as a response to bile. *FEMS Microbiol Lett* 274, 316–322.
- Ruiz, N., Chng, S.-S., Hiniker, A., Kahne, D. & Silhavy, T. J. (2010). Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. *Proc Natl Acad Sci U S A* **107**, 12245– 12250.
- **Russell, D. W. (2003).** The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. *Annu Rev Biochem* **72**, 137–174.
- Sabaté, M., Moreno, E., Pérez, T., Andreu, A. & Prats, G. (2006). Pathogenicity island markers in commensal and uropathogenic *Escherichia coli* isolates. *Clin Microbiol Infect* **12**, 880–886.
- Sarff, L. D., McCracken, G. H., Schiffer, M. S., Glode, M. P., Robbins,
 J. B., Orskov, I. & Orskov, F. (1975). Epidemiology of *Escherichia coli* K1 in healthy and diseased newborns. *Lancet* 1, 1099–1104.
- Sarker, S. A. & Gyr, K. (1992). Non-immunological defence mechanisms of the gut. *Gut* 33, 987–993.

- Sassone-Corsi, M. & Raffatellu, M. (2015). No Vacancy: How Beneficial Microbes Cooperate with Immunity To Provide Colonization Resistance to Pathogens. J Immunol 194, 4081–4087.
- Savageau, M. A. (1983). *Escherichia coli* Habitats, Cell Types, and Molecular Mechanisms of Gene Control. *Am Nat* 122, 732–744.
- Schäfer, U., Beck, K. & Müller, M. (1999). Skp, a Molecular Chaperone of Gram-negative Bacteria, Is Required for the Formation of Soluble Periplasmic Intermediates of Outer Membrane Proteins. J Biol Chem 274, 24567–24574.
- Scheutz, F. & Strockbine, N. A. (2015). Escherichia. Bergey's Man Syst Archaea Bact.
- Schryvers, A., Lohmeier, E. & Weiner, J. H. (1978). Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of *Escherichia coli. J Biol Chem* 253, 783–788.
- Schwalm, J., Mahoney, T. F., Soltes, G. R. & Silhavy, T. J. (2013). Role for Skp in LptD Assembly in *Escherichia coli*. *J Bacteriol* **195**, 3734–3742.
- Sekirov, I., Russell, S. L., Antunes, L. C. M. & Finlay, B. B. (2010). Gut Microbiota in Health and Disease. *Physiol Rev* **90**, 859–904.
- Sezonov, G., Joseleau-Petit, D. & D'Ari, R. (2007). Escherichia coli Physiology in Luria-Bertani Broth. *J Bacteriol* **189**, 8746 LP – 8749.
- Shouldice, S. R., Heras, B., Walden, P. M., Totsika, M., Schembri, M.A. & Martin, J. L. (2011). Structure and Function of DsbA, a Key

Bacterial Oxidative Folding Catalyst. *Antioxid Redox Signal* **14**, 1729–1760.

- Sims, G. E. & Kim, S.-H. (2011). Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs). Proc Natl Acad Sci U S A 108, 8329–8334.
- Sistrunk, J. R., Nickerson, K. P., Chanin, R. B., Rasko, D. A. & Faherty, C. S. (2016). Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. *Clin Microbiol Rev* 29, 819–836.
- Skurnik, D., Ruimy, R., Andremont, A., Amorin, C., Rouquet, P., Picard, B. & Denamur, E. (2006). Effect of human vicinity on antimicrobial resistance and integrons in animal faecal *Escherichia coli. J Antimicrob Chemother* **57**, 1215–1219.
- Snipen, L., Almoy, T. & Ussery, D. W. (2009). Microbial comparative pan-genomics using binomial mixture models. *BMC Genomics* 10, 385.
- Sperandeo, P., Dehò, G. & Polissi, A. (2009). The lipopolysaccharide transport system of Gram-negative bacteria. *Biochim Biophys Acta* - *Mol Cell Biol Lipids* 1791, 594–602.
- Sperandeo, P., Villa, R., Martorana, A. M., Samalikova, M., Grandori, R., Dehò, G. & Polissi, A. (2011). New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. *J Bacteriol* **193**, 1042–1053.

- Stecher, B., Denzler, R., Maier, L., Bernet, F., Sanders, M. J., Pickard,
 D. J., Barthel, M., Westendorf, A. M., Krogfelt, K. A. & other authors. (2012). Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. *Proc Natl Acad Sci U S A* 109, 1269–1274.
- **Stewart, V. (1993).** Nitrate regulation of anaerobic respiratory gene expression in *Escherichia coli. Mol Microbiol* **9**, 425–434.
- Stocks, C. J., Phan, M.-D., Achard, M. E. S., Nhu, N. T. K., Condon, N. D., Gawthorne, J. A., Lo, A. W., Peters, K. M., McEwan, A. G. & other authors. (2019). Uropathogenic *Escherichia coli* employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. *Proc Natl Acad Sci U S A* **116** (13), 6341-6350.
- Su, C.-C., Rutherford, D. J. & Yu, E. W. (2007). Characterization of the multidrug efflux regulator AcrR from Escherichia coli. *Biochem Biophys Res Commun* 361, 85–90.
- Tam, C. & Missiakas, D. (2005). Changes in lipopolysaccharide structure induce the σE-dependent response of *Escherichia coli*. Mol Microbiol 55, 1403–1412.
- Tatusov, R. L., Koonin, E. V & Lipman, D. J. (1997). A genomic perspective on protein families. *Science* **278**, 631–637.
- Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. (2010). The population genetics of commensal *Escherichia coli*. *Nat Rev Microbiol* **8**, 207–17.

- Thanassi, D. G., Cheng, L. W. & Nikaido, H. (1997). Active efflux of bile salts by *Escherichia coli*. *J Bacteriol* **179**, 2512–2518.
- The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res* **45**, 158–169.
- Thomassin, J.-L., Brannon, J. R., Gibbs, B. F., Gruenheid, S. & Le Moual, H. (2012). OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic *Escherichia coli* contribute differently to the degradation of human LL-37. *Infect Immun* 80, 483–492.
- Thompson, A. P., O'Neill, I., Smith, E. J., Catchpole, J., Fagan, A., Burgess, K. E. V, Carmody, R. J. & Clarke, D. J. (2016). Glycolysis and pyrimidine biosynthesis are required for replication of adherent–invasive *Escherichia coli* in macrophages. *Microbiology* 162, 954–965.
- Tokumoto, U. & Takahashi, Y. (2001). Genetic Analysis of the *isc* Operon in *Escherichia coli* Involved in the Biogenesis of Cellular Iron-Sulfur Proteins. *J Biochem* **130**, 63–71.
- Toledano, M. B., Kumar, C., Le Moan, N., Spector, D. & Tacnet, F. (2007). The system biology of thiol redox system in *Escherichia coli* and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. *FEBS Lett* **581**, 3598–3607.
- Toya, Y., Nakahigashi, K., Tomita, M. & Shimizu, K. (2012). Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol Biosyst 8, 2593–2604.

- Tran, Q. H., Arras, T., Becker, S., Holighaus, G., Ohlberger, G. & Unden, G. (2000). Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S].FNR) and in the control of FNR function. *Eur J Biochem* 267, 4817–4824.
- Trchounian, A. & Trchounian, K. (2019). Fermentation Revisited: How Do Microorganisms Survive Under Energy-Limited Conditions? *Trends Biochem Sci.* 44 (5), 391-400.
- Tsang, M.-J., Yakhnina, A. A. & Bernhardt, T. G. (2017). NIpD links cell wall remodeling and outer membrane invagination during cytokinesis in *Escherichia coli*. *PLoS Genet* **13**, e1006888.
- Unden, G. & Bongaerts, J. (1997). Alternative respiratory pathways of *Escherichia coli*: energetics and transcriptional regulation in response to electron acceptors. *Biochim Biophys Acta - Bioenerg* 1320, 217–234.
- de Valdez, G. F., Martos, G., Taranto, M. P., Lorca, G. L., Oliver, G. &
 de Ruiz Holgado, A. P. (1997). Influence of Bile on β Galactosidase Activity and Cell Viability of *Lactobacillus reuteri* when Subjected to Freeze-Drying. *J Dairy Sci* 80, 1955–1958.
- VanOrsdel, C. E., Kelly, J. P., Burke, B. N., Lein, C. D., Oufiero, C. E.,
 Sanchez, J. F., Wimmers, L. E., Hearn, D. J., Abuikhdair, F. J.
 & other authors. (2018). Identifying New Small Proteins in *Escherichia coli. Proteomics* 18, e1700064.
- Veit, A., Polen, T. & Wendisch, V. F. (2007). Global gene expression analysis of glucose overflow metabolism in *Escherichia coli* and

reduction of aerobic acetate formation. *Appl Microbiol Biotechnol* **74**, 406–421.

- van Velkinburgh, J. C. & Gunn, J. S. (1999). PhoP-PhoQ-regulated loci are required for enhanced bile resistance in *Salmonella* spp. *Infect Immun* 67, 1614–1622.
- Vertommen, D., Depuydt, M., Pan, J., Leverrier, P., Knoops, L., Szikora, J.-P., Messens, J., Bardwell, J. C. A. & Collet, J.-F. (2008). The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. *Mol Microbiol* 67, 336–349.
- Vieira, G., Sabarly, V., Bourguignon, P.-Y., Durot, M., Le Fevre, F., Mornico, D., Vallenet, D., Bouvet, O., Denamur, E. & other authors. (2011). Core and panmetabolism in *Escherichia coli*. J Bacteriol 193, 1461–1472.
- Vogler, A. P., Trentmann, S. & Lengeler, J. W. (1989). Alternative route for biosynthesis of amino sugars in *Escherichia coli* K-12 mutants by means of a catabolic isomerase. *J Bacteriol* 171, 6586–6592.
- Wang, H. & Gunsalus, R. P. (2000). The *nrfA* and *nirB* nitrite reductase operons in *Escherichia coli* are expressed differently in response to nitrate than to nitrite. *J Bacteriol* **182**, 5813–5822.
- Wang, H., Tseng, C. P. & Gunsalus, R. P. (1999). The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J Bacteriol 181, 5303–5308.

- Wang, X., Kim, Y. & Wood, T. K. (2009). Control and benefits of CP4-57 prophage excision in *Escherichia coli* biofilms. *ISME J* 3, 1164– 1179.
- Wang, X., Kim, Y., Ma, Q., Hong, S. H., Pokusaeva, K., Sturino, J. M.
 & Wood, T. K. (2010). Cryptic prophages help bacteria cope with adverse environments. *Nat Commun* 1, 147.
- Waterman, S. R. & Small, P. L. (1998). Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. *Appl Environ Microbiol* 64, 3882–3886.
- Weijland, A., Harmark, K., Cool, R. H., Anborgh, P. H. & Parmeggiani,
 A. (1992). Elongation factor Tu: a molecular switch in protein biosynthesis. *Mol Microbiol* 6, 683–688.
- Willcocks, S. J., Stabler, R. A., Atkins, H. S., Oyston, P. F. & Wren, B.
 W. (2018). High-throughput analysis of *Yersinia* pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of *Yersinia pestis*. *BMC Microbiol* 18, 46.
- Williams, M. D., Ouyang, T. X. & Flickinger, M. C. (1994). Starvationinduced expression of SspA and SspB: the effects of a null mutation in *sspA* on *Escherichia coli* protein synthesis and survival during growth and prolonged starvation. *Mol Microbiol* **11**, 1029– 1043.
- Willing, B., Halfvarson, J., Dicksved, J., Rosenquist, M., Jarnerot, G., Engstrand, L., Tysk, C. & Jansson, J. K. (2009). Twin studies

reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. *Inflamm Bowel Dis* **15**, 653–660.

- Winter, S. E., Winter, M. G., Xavier, M. N., Thiennimitr, P., Poon, V., Keestra, A. M., Laughlin, R. C., Gomez, G., Wu, J. & other authors. (2013). Host-Derived Nitrate Boosts Growth of *E. coli* in the Inflamed Gut. *Science* 339, 708 – 711.
- Witcomb, L. A., Collins, J. W., McCarthy, A. J., Frankel, G. & Taylor,
 P. W. (2015). Bioluminescent Imaging Reveals Novel Patterns of Colonization and Invasion in Systemic *Escherichia coli* K1 Experimental Infection in the Neonatal Rat. *Infect Immun* 83, 4528–4540.
- Wold, A. E., Caugant, D. A., Lidin-Janson, G., de Man, P. & Svanborg, C. (1992). Resident Colonic Escherichia coli Strains Frequently Display Uropathogenic Characteristics. J Infect Dis 165, 46–52.
- Wolfe, A. J. (2005). The acetate switch. *Microbiol Mol Biol Rev* 69, 12–50.
- Wright, M. L., Pendarvis, K., Nanduri, B., Edelmann, M. J., Jenkins,
 H. N., Reddy, J. S., Wilson, J. G., Ding, X., Broadway, P. R. &
 other authors. (2016). The Effect of Oxygen on Bile Resistance in *Listeria monocytogenes. J Proteomics Bioinform* 9, 107–119.
- Wu, H. C. & Wu, T. C. (1971). Isolation and characterization of a glucosamine-requiring mutant of *Escherichia coli* K-12 defective in glucosamine-6-phosphate synthetase. *J Bacteriol* 105, 455–466.

Yamazaki, Y., Niki, H. & Kato, J. (2008). Profiling of *Escherichia coli* Chromosome database. *Methods Mol Biol* **416**, 385–389.

- Yan, X., Zhao, C., Budin-Verneuil, A., Hartke, A., Rince, A., Gilmore,
 M. S., Auffray, Y. & Pichereau, V. (2009). The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in *Enterococcus faecalis* V583. *Microbiology* 155, 3226–3237.
- Yu, B. J., Sung, B. H., Lee, J. Y., Son, S. H., Kim, M. S. & Kim, S. C.
 (2006). sucAB and sucCD are mutually essential genes in Escherichia coli. FEMS Microbiol Lett 254, 245–250.
- Yu, C., Cao, Y., Zou, H. & Xian, M. (2011). Metabolic engineering of *Escherichia coli* for biotechnological production of high-value organic acids and alcohols. *Appl Microbiol Biotechnol* 89, 573– 583.
- Zhou, J. & Rudd, K. E. (2012). EcoGene 3.0. Nucleic Acids Res 41, 613–624.
- Zhu, H., Hart, C. A., Sales, D. & Roberts, N. B. (2006). Bacterial killing in gastric juice – effect of pH and pepsin on *Escherichia coli* and *Helicobacter pylori*. J Med Microbiol 55, 1265–1270.

Appendix Gene lists and analyses

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b0023	rpsT	20815	21078	-1	0	0	264	0
b0025	ribF	21407	22348	1	0	0	942	0
b0026	ileS	22391	25207	1	0	0	2817	0
b0027	IspA	25207	25701	1	0	0	495	0
b0029	ispH	26277	27227	1	0	0	951	0
b0031	dapB	28374	29195	1	0	0	822	0
b0048	folA	49823	50302	1	0	0	480	0
b0054	lptD	54755	57109	-1	0	0	2355	0
b0083	ftsL	91032	91397	1	0	0	366	0
b0084	ftsl	91413	93179	1	1	0.000628536	1767	1
b0085	murE	93166	94653	1	0	0	1488	0
b0086	murF	94650	96008	1	0	0	1359	0
b0087	mraY	96002	97084	1	0	0	1083	0
b0088	murD	97087	98403	1	0	0	1317	0
b0089	ftsW	98403	99647	1	0	0	1245	0
b0090	murG	99644	100711	1	0	0	1068	0
b0091	murC	100765	102240	1	0	0	1476	0
b0093	ftsQ	103155	103985	1	0	0	831	0
b0094	ftsA	103982	105244	1	0	0	1263	0
b0095	ftsZ	105305	106456	1	0	0	1152	0
b0096	lpxC	106557	107474	1	0	0	918	0
b0098	secA	108279	110984	1	0	0	2706	0
b0103	coaE	112599	113219	-1	4	0.003577818	621	2
b0116	lpd	127912	129336	1	4	0.003117693	1425	4
b0126	can	142008	142670	-1	0	0	663	0
b0154	heml	173602	174882	-1	2	0.000867303	1281	1
b0156	erpA	176610	176954	1	0	0	345	0
b0159	mtn	178455	179153	-1	5	0.006349206	699	4
b0166	dapD	185123	185947	-1	1	0.001345895	825	1
b0168	тар	188712	189506	-1	0	0	795	0
b4414	tff	189712	189847	1	0	0	136	0

Table A1. Genes identified as essential in MG1655 following growth on LB agar

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b0169	rpsB	189874	190599	1	0	0	726	0
b0170	tsf	190857	191708	1	0	0	852	0
b0171	pyrH	191855	192580	1	0	0	726	0
b0172	frr	192872	193429	1	0	0	558	0
b0173	dxr	193521	194717	1	2	0.000927644	1197	1
b0174	ispU	194903	195664	1	0	0	762	0
b0175	cdsA	195677	196534	1	0	0	858	0
b0176	rseP	196546	197898	1	0	0	1353	0
b0177	bamA	197928	200360	1	0	0	2433	0
b0179	lpxD	200971	201996	1	0	0	1026	0
b0180	fabZ	202101	202556	1	0	0	456	0
b0181	IpxA	202560	203348	1	0	0	789	0
b0182	lpxB	203348	204496	1	4	0.000966184	1149	1
b0184	dnaE	205126	208608	1	0	0	3483	0
b0185	accA	208621	209580	1	0	0	960	0
b0188	tilS	212331	213629	1	0	0	1299	0
b0194	proS	217057	218775	-1	0	0	1719	0
b0201	rrsH	223771	225312	1	5	0.001440922	1542	2
b0202	ileV	225381	225457	1	0	0	77	0
b0203	alaV	225500	225575	1	0	0	76	0
b0204	rrlH	225759	228662	1	6	0.001147666	2904	3
b0205	rrfH	228756	228875	1	0	0	120	0
b0206	aspU	228928	229004	1	0	0	77	0
b4586	ykfM	238257	238736	-1	2	0.002314815	480	1
b4688	ykgS	289653	289857	1	0	0	205	0
b0369	hemB	387977	388951	-1	2	0.001138952	975	1
b0408	secD	426871	428718	1	0	0	1848	0
b0409	secF	428729	429700	1	4	0.001142857	972	1
b0414	ribD	432679	433782	1	0	0	1104	0
b0415	ribE	433871	434341	1	0	0	471	0
b0417	thiL	434858	435835	1	3	0.002270148	978	2
b0420	dxs	437539	439401	-1	0	0	1863	0
b0421	ispA	439426	440325	-1	1	0.001234568	900	1

locus_tag	<u>gene_name</u>	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b0455	ffs	475672	475785	1	0	0	114	0
b0470	dnaX	491316	493247	1	0	0	1932	0
b0474	adk	496399	497043	1	0	0	645	0
b0475	hemH	497279	498241	1	0	0	963	0
b0524	lpxH	552441	553163	-1	0	0	723	0
b0525	рріВ	553166	553660	-1	1	0.002242152	495	1
b0526	cysS	553834	555219	1	0	0	1386	0
b0529	folD	556098	556964	-1	0	0	867	0
b0536	argU	563946	564022	1	0	0	77	0
b0634	mrdB	664424	665536	-1	0	0	1113	0
b0635	mrdA	665539	667440	-1	0	0	1902	0
b0639	nadD	669154	669795	-1	0	0	642	0
b0640	holA	669797	670828	-1	0	0	1032	0
b0641	lptE	670828	671409	-1	0	0	582	0
b0642	leuS	671424	674006	-1	0	0	2583	0
b0657	Int	688566	690104	-1	0	0	1539	0
b0659	ybeY	691097	691564	-1	3	0.002369668	468	1
b0662	ubiF	694324	695499	1	9	0.005665722	1176	6
b0666	metU	695887	695963	-1	0	0	77	0
b0668	glnW	695979	696053	-1	0	0	75	0
b0670	glnU	696088	696162	-1	0	0	75	0
b0672	leuW	696186	696270	-1	0	0	85	0
b0673	metT	696280	696356	-1	0	0	77	0
b0680	glnS	705316	706980	1	0	0	1665	0
b0684	fldA	710158	710688	-1	0	0	531	0
b0726	sucA	757929	760730	1	11	0.003568596	2802	9
b0727	sucB	760745	761962	1	2	0.000911577	1218	1
b0733	cydA	770681	772249	1	5	0.00353857	1569	5
b0734	cydB	772265	773404	1	2	0.001949318	1140	2
b0743	lysT	779777	779852	1	0	0	76	0
b0744	valT	779988	780063	1	0	0	76	0
b0745	lysW	780066	780141	1	0	0	76	0
b0746	valZ	780291	780366	1	0	0	76	0

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b0747	lysY	780370	780445	1	0	0	76	0
b0884	infA	925448	925666	-1	0	0	219	0
b0886	cydC	926697	928418	-1	6	0.001935484	1722	3
b0887	cydD	928419	930185	-1	4	0.002514142	1767	4
b0891	IoIA	936595	937206	1	0	0	612	0
b0893	serS	938651	939943	1	0	0	1293	0
b0910	cmk	960424	961107	1	4	0.00487013	684	3
b0911	rpsA	961218	962891	1	1	0.00066357	1674	1
b0914	msbA	965844	967592	1	0	0	1749	0
b0915	lpxK	967589	968575	1	0	0	987	0
b0917	ycaR	969896	970078	1	0	0	183	0
b0918	kdsB	970075	970821	1	0	0	747	0
b0922	mukF	973542	974864	1	0	0	1323	0
b0923	mukE	974845	975549	1	0	0	705	0
b0924	mukB	975549	980009	1	0	0	4461	0
b0930	asnS	986808	988208	-1	0	0	1401	0
b0954	fabA	1015175	1015693	-1	0	0	519	0
b0971	serT	1030848	1030935	-1	0	0	88	0
b1054	lpxL	1114885	1115805	-1	0	0	921	0
b1069	murJ	1127062	1128597	1	0	0	1536	0
b1091	fabH	1147982	1148935	1	1	0.001164144	954	1
b1092	fabD	1148951	1149880	1	0	0	930	0
b1093	fabG	1149893	1150627	1	0	0	735	0
b1094	acpP	1150838	1151074	1	0	0	237	0
b1098	tmk	1154347	1154988	1	0	0	642	0
b1099	holB	1154985	1155989	1	0	0	1005	0
b1116	lolC	1174650	1175849	1	0	0	1200	0
b1117	IoID	1175842	1176543	1	0	0	702	0
b1118	loIE	1176543	1177787	1	0	0	1245	0
b1131	purB	1189839	1191209	-1	2	0.001620746	1371	2
b1145	cohE	1201482	1202156	-1	0	0	675	0
b1204	pth	1257152	1257736	-1	3	0.003795066	585	2
b1207	prs	1260151	1261098	-1	0	0	948	0

locus tag	gene name	start	end	strand	read count	ins index	gene length	ins count
b1208	ispE	1261249	1262100	-1	0	0	852	0
b1209	IoIB	1262100	1262723	-1	0	0	624	0
b1210	hemA	1262937	1264193	1	1	0.000883392	1257	1
b1211	prfA	1264235	1265317	1	0	0	1083	0
b1212	, prmC	1265317	1266150	1	0	0	834	0
b1215	kdsA	1267388	1268242	1	0	0	855	0
b4419	IdrA	1268391	1268498	-1	0	0	108	0
b4421	ldrB	1268926	1269033	-1	0	0	108	0
b4423	ldrC	1269461	1269568	-1	0	0	108	0
b1231	tyrT	1286761	1286845	-1	0	0	85	0
b1274	topA	1329072	1331669	1	11	0.002565199	2598	6
b1277	ribA	1336594	1337184	-1	0	0	591	0
b1279	yciS	1338267	1338575	1	1	0.003584229	309	1
b1280	yciM	1338582	1339751	1	0	0	1170	0
b4672	ymiB	1344820	1344924	1	0	0	105	0
b1288	fabl	1348275	1349063	-1	0	0	789	0
b4526	ydaE	1415862	1416032	-1	1	0.006493506	171	1
b1356	racR	1417789	1418265	-1	18	0.004651163	477	2
b1373	tfaR	1430435	1431010	1	8	0.005780347	576	3
b1375	ynaE	1432015	1432248	-1	0	0	234	0
b4674	ynbG	1463189	1463254	-1	0	0	66	0
b1455	yncH	1524964	1525176	1	1	0.005208333	213	1
b1457	ydcD	1527946	1528428	1	4	0.006896552	483	3
b1471	yddK	1542782	1543771	-1	11	0.006734007	990	6
b1500	safA	1581786	1581983	-1	0	0	198	0
b1508	hipB	1590200	1590466	-1	1	0.004149378	267	1
b1544	ydfK	1631096	1631329	1	0	0	234	0
b1546	tfaQ	1632334	1632909	-1	6	0.005780347	576	3
b1570	dicA	1645958	1646365	1	0	0	408	0
b1637	tyrS	1713972	1715246	-1	0	0	1275	0
b1652	rnt	1726371	1727018	1	5	0.005136986	648	3
b1665	valV	1744459	1744535	1	0	0	77	0
b1713	pheT	1793581	1795968	-1	0	0	2388	0

<u>locus_tag</u>	<u>gene_name</u>	<u>start</u>	end	<u>strand</u>	read_count	ins_index	<u>gene_length</u>	ins_count
b1714	pheS	1795983	1796966	-1	0	0	984	0
b1715	pheM	1797250	1797294	-1	0	0	45	0
b1716	rpIT	1797417	1797773	-1	0	0	357	0
b1717	rpml	1797826	1798023	-1	0	0	198	0
b1718	infC	1798120	1798662	-1	0	0	543	0
b1719	thrS	1798666	1800594	-1	0	0	1929	0
b1740	nadE	1820482	1821309	1	2	0.002680965	828	2
b1779	gapA	1860795	1861790	1	0	0	996	0
b1807	yeaZ	1888596	1889291	-1	4	0.003189793	696	2
b4433	ryeB	1921188	1921308	-1	0	0	121	0
b4677	yobl	1944139	1944204	-1	0	0	66	0
b1866	aspS	1946774	1948546	-1	0	0	1773	0
b1876	argS	1958086	1959819	1	0	0	1734	0
b1909	leuZ	1989839	1989925	-1	0	0	87	0
b1910	<i>cy</i> sT	1989938	1990011	-1	0	0	74	0
b1911	glyW	1990066	1990141	-1	0	0	76	0
b1912	pgsA	1990293	1990841	-1	0	0	549	0
b4582	yoeA	2066659	2068498	1	51	0.006642512	1840	11
b2114	metG	2192322	2194355	1	25	0.004915347	2034	9
b2153	folE	2241006	2241674	-1	0	0	669	0
b2185	rpIY	2280539	2280823	1	0	0	285	0
b2198	ccmD	2293399	2293608	-1	20	0.005291005	210	1
b2231	gyrA	2334815	2337442	-1	0	0	2628	0
b2232	ubiG	2337589	2338311	1	1	0.001536098	723	1
b2234	nrdA	2342887	2345172	1	0	0	2286	0
b2235	nrdB	2345406	2346536	1	0	0	1131	0
b2311	ubiX	2426079	2426648	-1	1	0.001949318	570	1
b2315	folC	2429696	2430964	-1	0	0	1269	0
b2316	accD	2431034	2431948	-1	0	0	915	0
b2323	fabB	2438407	2439627	-1	0	0	1221	0
b4643	pawZ	2474606	2474620	1	0	0	15	0
b2396	alaX	2516063	2516138	-1	0	0	76	0
b2397	alaW	2516178	2516253	-1	0	0	76	0

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	<u>gene_length</u>	ins_count
b2400	gltX	2517279	2518694	-1	0	0	1416	0
b2401	valU	2518953	2519028	1	0	0	76	0
b2403	valY	2519195	2519270	1	0	0	76	0
b2404	lysV	2519275	2519350	1	0	0	76	0
b2411	ligA	2526183	2528198	-1	0	0	2016	0
b2412	zipA	2528269	2529255	-1	0	0	987	0
b2415	ptsH	2531786	2532043	1	0	0	258	0
b2472	dapE	2589629	2590756	1	0	0	1128	0
b2478	dapA	2596904	2597782	-1	0	0	879	0
b2496	hda	2616097	2616798	-1	2	0.003164557	702	2
b2511	der	2633906	2635378	-1	0	0	1473	0
b2514	hisS	2637323	2638597	-1	0	0	1275	0
b2515	ispG	2638708	2639826	-1	0	0	1119	0
b2525	fdx	2654770	2655105	-1	1	0.00330033	336	1
b2527	hscB	2656974	2657489	-1	15	0.006451613	516	3
b2529	iscU	2657925	2658311	-1	2	0.005730659	387	2
b2530	iscS	2658339	2659553	-1	6	0.004570384	1215	5
b2533	suhB	2661464	2662267	1	0	0	804	0
b2551	glyA	2682276	2683529	-1	7	0.00088574	1254	1
b2559	tadA	2695376	2695879	-1	1	0.002202643	504	1
b2563	acpS	2698640	2699020	-1	0	0	381	0
b2566	era	2700503	2701408	-1	0	0	906	0
b2568	lepB	2702357	2703331	-1	0	0	975	0
b2573	rpoE	2707459	2708034	-1	0	0	576	0
b2585	pssA	2720749	2722104	1	0	0	1356	0
b2588	rrfG	2724091	2724210	-1	0	0	120	0
b2589	rrlG	2724303	2727206	-1	0	0	2904	0
b2590	gltW	2727391	2727466	-1	0	0	76	0
b2591	rrsG	2727638	2729179	-1	6	0.001440922	1542	2
b2594	rluD	2733053	2734033	-1	1	0.001132503	981	1
b2595	bamD	2734168	2734905	1	0	0	738	0
b2606	rpIS	2742205	2742552	-1	1	0.003184713	348	1
b2607	trmD	2742594	2743361	-1	0	0	768	0

<u>locus_tag</u>	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	<u>gene_length</u>	ins_count
b2608	rimM	2743392	2743940	-1	1	0.002020202	549	1
b2609	rpsP	2743959	2744207	-1	0	0	249	0
b2610	ffh	2744456	2745817	-1	0	0	1362	0
b2614	grpE	2748137	2748730	-1	1	0.001869159	594	1
b2615	nadK	2748853	2749731	1	0	0	879	0
b2693	argY	2816220	2816296	-1	0	0	77	0
b2694	argV	2816495	2816571	-1	0	0	77	0
b2695	serV	2816575	2816667	-1	0	0	93	0
b2696	csrA	2816983	2817168	-1	0	0	186	0
b2697	alaS	2817403	2820033	-1	0	0	2631	0
b2746	ispF	2869323	2869802	-1	0	0	480	0
b2747	ispD	2869802	2870512	-1	0	0	711	0
b2779	eno	2904665	2905963	-1	0	0	1299	0
b2780	pyrG	2906051	2907688	-1	0	0	1638	0
b2827	thyA	2962383	2963177	-1	0	0	795	0
b2828	lgt	2963184	2964059	-1	0	0	876	0
b2851	ygeG	2989290	2989781	1	7	0.006772009	492	3
b2890	lysS	3031679	3033196	-1	3	0.002194587	1518	3
b2891	prfB	3033206	3034304	-1	0	0	1099	0
b2898	ygfZ	3039335	3040315	1	8	0.003397508	981	3
b2907	ubiH	3050362	3051540	-1	3	0.00094162	1179	1
b4665	ibsC	3054912	3054971	-1	0	0	60	0
b2925	fbaA	3068187	3069266	-1	0	0	1080	0
b2926	pgk	3069481	3070644	-1	0	0	1164	0
b2942	metK	3084728	3085882	1	0	0	1155	0
b2949	yqgF	3091522	3091938	1	4	0.002659574	417	1
b3018	plsC	3160766	3161503	-1	4	0.003007519	738	2
b3019	parC	3161737	3163995	-1	2	0.000491642	2259	1
b3030	parE	3171526	3173418	-1	0	0	1893	0
b3041	ribB	3181835	3182488	-1	0	0	654	0
b4666	ibsE	3193163	3193222	1	0	0	60	0
b3056	cca	3199913	3201151	1	2	0.000896057	1239	1
b3058	folB	3202243	3202611	-1	0	0	369	0

locus_tag	<u>gene_name</u>	<u>start</u>	end	strand	read_count	ins_index	gene_length	ins_count
b3064	ygjD	3207552	3208565	-1	0	0	1014	0
b3065	rpsU	3208803	3209018	1	0	0	216	0
b3066	dnaG	3209129	3210874	1	0	0	1746	0
b3067	rpoD	3211069	3212910	1	0	0	1842	0
b3069	ileX	3213620	3213695	1	0	0	76	0
b3123	rnpB	3268238	3268614	-1	0	0	377	0
b3164	pnp	3307055	3309190	-1	26	0.005200208	2136	10
b3165	rpsO	3309437	3309706	-1	0	0	270	0
b3168	infB	3311364	3314036	-1	7	0.001246883	2673	3
b3169	nusA	3314061	3315548	-1	8	0.002985075	1488	4
b3176	glmM	3320755	3322092	-1	0	0	1338	0
b3177	folP	3322085	3322933	-1	2	0.00130719	849	1
b3178	ftsH	3323023	3324957	-1	0	0	1935	0
b3179	rlmE	3325057	3325686	-1	3	0.005291005	630	3
b3183	obgE	3328604	3329776	-1	11	0.00094697	1173	1
b3185	rpmA	3330884	3331141	-1	0	0	258	0
b3186	rpIU	3331162	3331473	-1	0	0	312	0
b3187	ispB	3331732	3332703	1	0	0	972	0
b3189	murA	3333257	3334516	-1	0	0	1260	0
b3199	lptC	3340858	3341433	1	8	0.005780347	576	3
b3200	IptA	3341402	3341959	1	0	0	558	0
b3201	lptB	3341966	3342691	1	0	0	726	0
b3230	rpsl	3375837	3376229	-1	1	0.002824859	393	1
b3231	rpIM	3376245	3376673	-1	0	0	429	0
b3235	degS	3380222	3381289	1	7	0.005197505	1068	5
b3249	mreD	3396409	3396897	-1	0	0	489	0
b3250	mreC	3396897	3398000	-1	0	0	1104	0
b3251	mreB	3398066	3399109	-1	0	0	1044	0
b3255	accB	3403458	3403928	1	0	0	471	0
b3256	accC	3403939	3405288	1	0	0	1350	0
b3273	thrV	3421602	3421677	-1	0	0	76	0
b3274	rrfD	3421690	3421809	-1	0	0	120	0
b3275	rrlD	3421902	3424805	-1	0	0	2904	0

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b3276	alaU	3424980	3425055	-1	0	0	76	0
b3277	ileU	3425098	3425174	-1	0	0	77	0
b3278	rrsD	3425243	3426784	-1	0	0	1542	0
b3282	rimN	3428865	3429437	-1	0	0	573	0
b3287	def	3431712	3432221	1	0	0	510	0
b3288	fmt	3432236	3433183	1	0	0	948	0
b3294	rplQ	3437638	3438021	-1	0	0	384	0
b3295	rpoA	3438062	3439051	-1	0	0	990	0
b3296	rpsD	3439077	3439697	-1	0	0	621	0
b3297	rpsK	3439731	3440120	-1	0	0	390	0
b3298	rpsM	3440137	3440493	-1	0	0	357	0
b3299	rpmJ	3440640	3440756	-1	0	0	117	0
b3300	secY	3440788	3442119	-1	0	0	1332	0
b3301	rplO	3442127	3442561	-1	0	0	435	0
b3302	rpmD	3442565	3442744	-1	0	0	180	0
b3303	rpsE	3442748	3443251	-1	0	0	504	0
b3304	rplR	3443266	3443619	-1	0	0	354	0
b3305	rplF	3443629	3444162	-1	0	0	534	0
b3306	rpsH	3444175	3444567	-1	0	0	393	0
b3307	rpsN	3444601	3444906	-1	0	0	306	0
b3308	rplE	3444921	3445460	-1	0	0	540	0
b3309	rplX	3445475	3445789	-1	0	0	315	0
b3310	rpIN	3445800	3446171	-1	0	0	372	0
b3311	rpsQ	3446336	3446590	-1	0	0	255	0
b3312	rpmC	3446590	3446781	-1	0	0	192	0
b3313	rpIP	3446781	3447191	-1	0	0	411	0
b3314	rpsC	3447204	3447905	-1	0	0	702	0
b3315	rpIV	3447923	3448255	-1	0	0	333	0
b3316	rpsS	3448270	3448548	-1	0	0	279	0
b3317	rpIB	3448565	3449386	-1	0	0	822	0
b3318	rpIW	3449404	3449706	-1	0	0	303	0
b3319	rpID	3449703	3450308	-1	0	0	606	0
b3320	rpIC	3450319	3450948	-1	0	0	630	0

locus_tag	gene_name	<u>start</u>	end	<u>strand</u>	read_count	ins_index	<u>gene_length</u>	ins_count
b3321	rpsJ	3450981	3451292	-1	0	0	312	0
b3339	tufA	3468167	3469351	-1	3	0.001874414	1185	2
b3340	fusA	3469422	3471536	-1	0	0	2115	0
b3341	rpsG	3471564	3472103	-1	1	0.002057613	540	1
b3342	rpsL	3472200	3472574	-1	0	0	375	0
b3357	crp	3484142	3484774	1	4	0.001754386	633	1
b3384	trpS	3510656	3511660	-1	0	0	1005	0
b3398	yrfF	3524491	3526626	1	3	0.000520021	2136	1
b3433	asd	3571798	3572901	-1	0	0	1104	0
b3461	rpoH	3597952	3598806	-1	2	0.002597403	855	2
b3464	ftsY	3600773	3602266	-1	0	0	1494	0
b3559	glyS	3720351	3722420	-1	0	0	2070	0
b3560	glyQ	3722430	3723341	-1	0	0	912	0
b3593	rhsA	3760206	3764339	1	68	0.005912389	4134	22
b3608	gpsA	3780665	3781684	-1	1	0.001089325	1020	1
b3609	secB	3781684	3782151	-1	2	0.002369668	468	1
b3633	waaA	3806563	3807840	1	2	0.00086881	1278	1
b3634	coaD	3807848	3808327	1	0	0	480	0
b3637	rpmB	3809461	3809697	-1	0	0	237	0
b3639	dfp	3810754	3811974	1	0	0	1221	0
b3640	dut	3811955	3812410	1	0	0	456	0
b3648	gmk	3819451	3820074	1	0	0	624	0
b3699	gyrB	3875728	3878142	-1	0	0	2415	0
b3701	dnaN	3879244	3880344	-1	0	0	1101	0
b3702	dnaA	3880349	3881752	-1	0	0	1404	0
b3703	rpmH	3882359	3882499	1	0	0	141	0
b3704	rnpA	3882516	3882875	1	0	0	360	0
b3705	yidC	3883099	3884745	1	0	0	1647	0
b3730	glmU	3911853	3913223	-1	0	0	1371	0
b3756	rrsC	3939831	3941372	1	0	0	1542	0
b3757	gltU	3941458	3941533	1	0	0	76	0
b3758	rrlC	3941727	3944630	1	2	0.000382555	2904	1
b3759	rrfC	3944723	3944842	1	0	0	120	0

locus_tag	gene_name	<u>start</u>	end	strand	read_count	ins_index	gene_length	ins_count
b3760	aspT	3944895	3944971	1	0	0	77	0
b3761	trpT	3944980	3945055	1	0	0	76	0
b3783	rho	3964440	3965699	1	6	0.000881834	1260	1
b3793	wzyE	3976624	3977976	1	0	0	1353	0
b3796	argX	3980398	3980474	1	0	0	77	0
b3797	hisR	3980532	3980608	1	0	0	77	0
b3799	proM	3980758	3980834	1	0	0	77	0
b3804	hemD	3987111	3987851	-1	1	0.00149925	741	1
b3805	hemC	3987848	3988789	-1	0	0	942	0
b3835	ubiB	4018249	4019889	1	0	0	1641	0
b3843	ubiD	4023011	4024504	1	7	0.002973978	1494	4
b3850	hemG	4032631	4033176	1	2	0.004065041	546	2
b3851	rrsA	4033554	4035095	1	0	0	1542	0
b3852	ileT	4035164	4035240	1	0	0	77	0
b3853	alaT	4035283	4035358	1	0	0	76	0
b3854	rrlA	4035542	4038446	1	7	0.000764818	2905	2
b3863	polA	4044989	4047775	1	18	0.003188521	2787	8
b3865	yihA	4048156	4048788	-1	0	0	633	0
b3935	priA	4122635	4124833	-1	23	0.006565657	2199	13
b3936	rpmE	4125036	4125248	1	2	0.005208333	213	1
b3967	murl	4163451	4164308	1	4	0.001293661	858	1
b3968	rrsB	4164682	4166223	1	0	0	1542	0
b3969	gltT	4166395	4166470	1	0	0	76	0
b3970	rrlB	4166664	4169567	1	0	0	2904	0
b3971	rrfB	4169660	4169779	1	0	0	120	0
b3972	murB	4170080	4171108	1	0	0	1029	0
b3973	birA	4171105	4172070	1	54	0.003448276	966	3
b3974	coaA	4172099	4173049	-1	3	0.002336449	951	2
b3976	thrU	4173411	4173486	1	0	0	76	0
b3978	glyT	4173696	4173770	1	0	0	75	0
b3980	tufB	4173967	4175151	1	9	0.005623243	1185	6
b3981	secE	4175381	4175764	1	0	0	384	0
b3982	nusG	4175766	4176311	1	0	0	546	0

locus_tag	<u>gene_name</u>	<u>start</u>	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b3983	rplK	4176470	4176898	1	0	0	429	0
b3984	rpIA	4176902	4177606	1	0	0	705	0
b3985	rplJ	4178019	4178516	1	0	0	498	0
b3986	rpIL	4178583	4178948	1	0	0	366	0
b3987	rpoB	4179268	4183296	1	0	0	4029	0
b3988	rpoC	4183373	4187596	1	1	0.000263019	4224	1
b3997	hemE	4195739	4196803	1	0	0	1065	0
b4007	rrsE	4206170	4207711	1	0	0	1542	0
b4008	gltV	4207797	4207872	1	0	0	76	0
b4009	rrlE	4208066	4210969	1	0	0	2904	0
b4010	rrfE	4211063	4211182	1	0	0	120	0
b4040	ubiA	4251039	4251911	1	2	0.001272265	873	1
b4041	plsB	4252066	4254489	-1	2	0.00091659	2424	2
b4043	lexA	4255138	4255746	1	0	0	609	0
b4052	dnaB	4262337	4263752	1	0	0	1416	0
b4059	ssb	4272148	4272684	1	0	0	537	0
b4134	pheU	4360574	4360649	-1	0	0	76	0
b4142	groS	4368711	4369004	1	0	0	294	0
b4143	groL	4369048	4370694	1	0	0	1647	0
b4160	psd	4387415	4388383	-1	2	0.002290951	969	2
b4162	orn	4389627	4390172	1	0	0	546	0
b4164	glyX	4390495	4390570	1	0	0	76	0
b4168	yjeE	4393608	4394069	1	0	0	462	0
b4200	rpsF	4423141	4423536	1	0	0	396	0
b4201	priB	4423543	4423857	1	0	0	315	0
b4202	rpsR	4423862	4424089	1	2	0.004854369	228	1
b4226	рра	4447145	4447675	-1	0	0	531	0
b4258	valS	4479005	4481860	-1	0	0	2856	0
b4261	lptF	4484241	4485341	1	0	0	1101	0
b4262	lptG	4485341	4486423	1	0	0	1083	0
b4361	dnaC	4598261	4598998	-1	0	0	738	0
b4362	dnaT	4599001	4599540	-1	1	0.002057613	540	1
b4370	leuQ	4604338	4604424	-1	0	0	87	0

<u>locus_tag</u>	<u>gene_name</u>	<u>start</u>	end	strand	<u>read_count</u>	ins_index	<u>gene_length</u>	ins_count
b4372	holD	4605826	4606239	1	0	0	414	0

locus_tag	gene_name	start	end	<u>strand</u>	read_count	ins_index	gene_length	ins_count
b4662	sgrT	77388	77519	1	1	0.008403361	132	1
b0082	rsmH	90094	91035	1	11	0.009433962	942	8
b0418	pgpA	435813	436331	1	12	0.008547009	519	4
b0439	lon	458112	460466	1	34	0.00990566	2355	21
b0542	renD	565907	567470	1	45	0.009232955	1564	13
b0631	ybeD	661602	661865	-1	2	0.008403361	264	2
b4514	ybfQ	735668	735907	1	10	0.009259259	240	2
b4515	ybgT	773419	773532	1	1	0.009708738	114	1
b0956	matP	1017708	1018160	1	10	0.009803922	453	4
b1138	ymfE	1196756	1197460	-1	7	0.007874016	705	5
b1174	minE	1223502	1223768	-1	4	0.008298755	267	2
b1662	ribC	1740625	1741266	-1	6	0.006920415	642	4
b4537	yecJ	1985531	1985782	-1	11	0.008810573	252	2
b2276	nuoN	2388070	2389527	-1	32	0.009139375	1458	12
b2285	nuoE	2399574	2400074	-1	9	0.00886918	501	4
b2416	ptsl	2532088	2533815	1	17	0.007069409	1728	11
b2507	guaA	2628980	2630557	-1	23	0.007037298	1578	10
b2526	hscA	2655107	2656957	-1	34	0.008403361	1851	14
b2567	rnc	2701405	2702085	-1	19	0.008156607	681	5
b2583	yfiP	2717245	2717943	1	46	0.00952381	699	6
b2748	ftsB	2870531	2870842	-1	6	0.007117438	312	2
b4682	yqcG	2903579	2903719	1	1	0.007874016	141	1
b3167	rbfA	3310799	3311200	-1	8	0.008287293	402	3
b3198	kdsC	3340295	3340861	1	15	0.009784736	567	5
b3343	tusB	3472700	3472987	-1	3	0.007692308	288	2
b3482	rhsB	3617215	3621450	1	159	0.009441385	4236	36
b3607	cysE	3779764	3780585	-1	8	0.009459459	822	7
b3833	ubiE	4016878	4017633	1	5	0.007342144	756	5
b3855	rrfA	4038540	4038659	1	1	0.009259259	120	1
b4655	ythA	4504471	4504596	1	4	0.00877193	126	1
b4294	insA	4516550	4516825	1	8	0.008032129	276	2

Table A2. Genes identified as ambiguous in MG1655 following growth on LB agar

Table A3. Comparative analysis with Goodall *et al.*, 2018. Essential genes shared by all studies

locus_tag	gene_name	Function
b0185	accA	acetyl-CoA carboxylase
b3255	accB	acetyl CoA carboxylase
b3256	accC	acetyl-CoA carboxylase
b2316	accD	acetyl-CoA carboxylase
b1094	acpP	acyl carrier protein (ACP)
b2563	, acpS	holo-[acyl-carrier-protein] synthase 1
b0474	adk	adenylate kinase
b1876	argS	arginyl-tRNA synthetase
b3433	asd	aspartate-semialdehyde dehydrogenase
b0930	asnS	asparaginyl tRNA synthetase
b1866	aspS	aspartyl-tRNA synthetase
b0177	bamA	outer membrane protein assembly factor
b2595	bamD	lipoprotein required for OM biogenesis
b3973	birA	bifunctional biotin-[acetylCoA carboxylase] holoenzyme synthetase/ DNA-binding transcriptional repressor
b0126	can	carbonic anhydrase
b3056	сса	fused tRNA nucleotidyl transferase/2'3'-cyclic phosphodiesterase/2'nucleotidase and phosphatase
b0175	cdsA	CDP-diglyceride synthase
b3634	coaD	pantetheine-phosphate adenylyltransferase
b2696	csrA	pleiotropic regulatory protein for carbon source metabolism
b0526	cysS	cysteinyl-tRNA synthetase
b2478	dapA	dihydrodipicolinate synthase
b0031	dapB	dihydrodipicolinate reductase
b0166	dapD	tetrahydrodipicolinate succinylase
b2472	dapE	N-succinyl-diaminopimelate deacylase
b3287	def	peptide deformylase
b2511	der	GTPase; multicopy suppressor of ftsJ
b3639	dfp	fused 4'-phosphopantothenoylcysteine decarboxylase/phosphopantothenoylcysteine synthetase
b3702	dnaA	chromosomal replication initiator protein DnaA
b4052	dnaB	replicative DNA helicase
b4361	dnaC	DNA biosynthesis protein

locus tag	gene name	Function
b0184	dnaE	DNA polymerase III alpha subunit
b3701	dnaN	DNA polymerase III
b0470	dnaX	DNA polymerase III/DNA elongation factor III
b3640	dut	deoxyuridinetriphosphatase
b0173	dxr	1-deoxy-D-xylulose 5-phosphate reductoisomerase
b0420	dxs	1-deoxyxylulose-5-phosphate synthase
b2779	eno	enolase
b2566	era	membrane-associated
b0156	erpA	iron-sulfur cluster insertion protein
b0954	fabA	beta-hydroxydecanoyl thioester dehydrase
b2323	fabB	3-oxoacyl-[acyl-carrier-protein] synthase I
b1092	fabD	malonyl-CoA-[acyl-carrier-protein] transacylase
b1093	fabG	3-oxoacyl-[acyl-carrier-protein] reductase
b1288	fabl	enoyl-[acyl-carrier-protein] reductase
b0180	fabZ	(3R)-hydroxymyristol acyl carrier protein dehydratase
b2925	fbaA	fructose-bisphosphate aldolase
b2610	ffh	Signal Recognition Particle (SRP) component with 4.5S RNA (ffs)
b0684	fldA	flavodoxin 1
b3288	fmt	10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase
b0048	folA	dihydrofolate reductase
b2315	folC	bifunctional folylpolyglutamate synthase/ dihydrofolate synthase
b0529	folD	bifunctional 5
b2153	folE	GTP cyclohydrolase I
b0172	frr	ribosome recycling factor
b0094	ftsA	ATP-binding cell division protein involved in recruitment of FtsK to Z ring
b3178	ftsH	protease
b0084	ftsl	transpeptidase involved in septal peptidoglycan synthesis (penicillin-binding protein 3)
b0083	ftsL	membrane bound cell division protein at septum containing leucine zipper motif
b0093	ftsQ	Divisome assembly protein
b0089	ftsW	Lipid II flippase; integral membrane protein involved in stabilizing FstZ ring during cell division
b3464	ftsY	Signal Recognition Particle (SRP) receptor
b0095	ftsZ	GTP-binding tubulin-like cell division protein
b3340	fusA	protein chain elongation factor EF-G

locus tag	gene name	Function
b1779	gapA	glyceraldehyde-3-phosphate dehydrogenase A
b3730	glmU	fused N-acetyl glucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyl transferase
b0680	gInS	glutamyl-tRNA synthetase
b2400	gltX	glutamyl-tRNA synthetase
b3560	glyQ	glycine tRNA synthetase
b3648	gmk	guanylate kinase
b3608	gpsA	glycerol-3-phosphate dehydrogenase (NAD+)
b4142	groS	Cpn10 chaperonin GroES
b2614	grpE	heat shock protein
b2231	gyrA	DNA gyrase (type II topoisomerase)
b3699	gyrB	DNA gyrase
b1210	hemA	glutamyl tRNA reductase
b0369	hemB	5-aminolevulinate dehydratase (porphobilinogen synthase)
b3805	hemC	hydroxymethylbilane synthase
b3804	hemD	uroporphyrinogen III synthase
b3850	hemG	protoporphyrin oxidase
b0475	hemH	ferrochelatase
b0154	hemL	glutamate-1-semialdehyde aminotransferase (aminomutase)
b2514	hisS	histidyl tRNA synthetase
b0640	holA	DNA polymerase III
b1099	holB	DNA polymerase III
b0884	infA	translation initiation factor IF-1
b3168	infB	fused protein chain initiation factor 2
b1718	infC	protein chain initiation factor IF-3
b0421	ispA	geranyltranstransferase
b3187	ispB	octaprenyl diphosphate synthase
b2747	ispD	4-diphosphocytidyl-2C-methyl-D-erythritol synthase
b1208	ispE	4-diphosphocytidyl-2-C-methylerythritol kinase
b2746	ispF	2C-methyl-D-erythritol 2
b2515	ispG	1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase
b0029	ispH	4-hydroxy-3-methylbut-2-enyl diphosphate reductase
b0174	ispU	undecaprenyl pyrophosphate synthase
b1215	kdsA	3-deoxy-D-manno-octulosonate 8-phosphate synthase

locus tag	gene name	Function
b0918	kdsB	3-deoxy-manno-octulosonate cytidylyltransferase
b2568	lepB	leader peptidase (signal peptidase I)
b0642	leuS	leucyl-tRNA synthetase
b4043	lexA	DNA-binding transcriptional repressor of SOS regulon
b2828	lgt	phosphatidylglycerol-prolipoprotein diacylglyceryl transferase
b2411	ligA	DNA ligase
b0657	Int	apolipoprotein N-acyltransferase
b0891	IoIA	chaperone for lipoproteins
b1209	lolB	OM lipoprotein required for localization of lipoproteins
b1116	loIC	lipoprotein-releasing system transmembrane protein
b1117	loID	outer membrane-specific lipoprotein transporter subunit
b1118	loIE	lipoprotein-releasing system transmembrane protein
b3200	lptA	periplasmic LPS-binding protein
b0054	lptD	LPS assembly OM complex LptDE
b0641	lptE	LPS assembly OM complex LptDE
b4261	lptF	lipopolysaccharide export ABC permease of the LptBFGC export complex
b4262	lptG	lipopolysaccharide export ABC permease of the LptBFGC export complex
b0181	lpxA	UDP-N-acetylglucosamine acetyltransferase
b0182	lpxB	tetraacyldisaccharide-1-P synthase
b0096	lpxC	UDP-3-O-acyl N-acetylglucosamine deacetylase
b0179	lpxD	UDP-3-O-(3-hydroxymyristoyl)-glucosamine N-acyltransferase
b0524	lpxH	UDP-2
b0915	lpxK	lipid A 4'kinase
b0027	IspA	prolipoprotein signal peptidase (signal peptidase II)
b0168	map	methionine aminopeptidase
b2114	metG	methionyl-tRNA synthetase
b2942	metK	S-adenosylmethionine synthetase
b0087	mraY	phospho-N-acetylmuramoyl-pentapeptide transferase
b0635	mrdA	transpeptidase involved in peptidoglycan synthesis (penicillin-binding protein 2)
b0634	mrdB	cell wall shape-determining protein
b3251	mreB	cell wall structural complex MreBCD
b3250	mreC	cell wall structural complex MreBCD transmembrane component MreC
b3249	mreD	cell wall structural complex MreBCD transmembrane component MreD

locus_tag	gene_name	Function
b0914	msbA	fused lipid transporter subunits of ABC superfamily: membrane component/ATP-binding component
b0924	mukB	chromosome condensin MukBEF
b0923	mukE	chromosome condensin MukBEF
b0922	mukF	chromosome condensin MukBEF
b3189	murA	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
b3972	murB	UDP-N-acetylenolpyruvoylglucosamine reductase
b0091	murC	UDP-N-acetylmuramate:L-alanine ligase
b0088	murD	UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase
b0085	murE	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-diaminopimelate ligase
b0086	murF	UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase
b0090	murG	N-acetylglucosaminyl transferase
b3967	murl	glutamate racemase
b1069	murJ	probable peptidoglycan lipid II flippase required for murein synthesis
b0639	nadD	nicotinic acid mononucleotide adenylyltransferase
b1740	nadE	NAD synthetase
b2615	nadK	NAD kinase
b2234	nrdA	ribonucleoside-diphosphate reductase 1
b2235	nrdB	ribonucleoside-diphosphate reductase 1
b3169	nusA	transcription termination/antitermination L factor
b3982	nusG	transcription termination factor
b3183	obgE	GTPase involved in cell partioning and DNA repair
b4162	orn	oligoribonuclease
b3030	parE	DNA topoisomerase IV
b2926	pgk	phosphoglycerate kinase
b1912	pgsA	phosphatidylglycerophosphate synthetase
b1714	pheS	phenylalanine tRNA synthetase
b1713	pheT	phenylalanine tRNA synthetase
b4041	plsB	glycerol-3-phosphate O-acyltransferase
b3018	plsC	1-acyl-sn-glycerol-3-phosphate acyltransferase
b4226	ppa	inorganic pyrophosphatase
b1211	prfA	peptide chain release factor RF-1
b1212	prmC	N5-glutamine methyltransferase
b0194	proS	prolyI-tRNA synthetase

locus tag	gene name	Function
b1207	prs	phosphoribosylpyrophosphate synthase
b4160	psd	phosphatidylserine decarboxylase
b2585	pssA	phosphatidylserine synthase (CDP-diacylglycerol-serine O-phosphatidyltransferase)
b1204	pth	peptidyl-tRNA hydrolase
b2780	pyrG	CTP synthetase
b0171	pyrH	uridylate kinase
b1277	ribA	GTP cyclohydrolase II
b0414	ribD	fused diaminohydroxyphosphoribosylaminopyrimidine deaminase and 5-amino-6-(5-phosphoribosylamino) uracil reductase
b0415	ribE	riboflavin synthase beta chain
b0025	ribF	bifunctional riboflavin kinase/FAD synthetase
b3282	rimN	tRNA(ANN) t(6)A37 threonylcarbamoyladenosine modification protein
b3704	rnpA	protein C5 component of RNase P
b3317	rpIB	50S ribosomal subunit protein L2
b3320	rpIC	50S ribosomal subunit protein L3
b3319	rpID	50S ribosomal subunit protein L4
b3308	rpIE	50S ribosomal subunit protein L5
b3305	rpIF	50S ribosomal subunit protein L6
b3985	rplJ	50S ribosomal subunit protein L10
b3986	rpIL	50S ribosomal subunit protein L7/L12
b3231	rpIM	50S ribosomal subunit protein L13
b3310	rpIN	50S ribosomal subunit protein L14
b3301	rplO	50S ribosomal subunit protein L15
b3313	rpIP	50S ribosomal subunit protein L16
b3294	rplQ	50S ribosomal subunit protein L17
b3304	rpIR	50S ribosomal subunit protein L18
b2606	rpIS	50S ribosomal subunit protein L19
b1716	rpIT	50S ribosomal subunit protein L20
b3186	rpIU	50S ribosomal subunit protein L21
b3315	rpIV	50S ribosomal subunit protein L22
b3318	rpIW	50S ribosomal subunit protein L23
b3309	rplX	50S ribosomal subunit protein L24
b3185	rpmA	50S ribosomal subunit protein L27
b3637	rpmB	50S ribosomal subunit protein L28

locus_tag	gene_name	Function
b3312	rpmC	50S ribosomal subunit protein L29
b3302	rpmD	50S ribosomal subunit protein L30
b3703	rpmH	50S ribosomal subunit protein L34
b3295	rpoA	RNA polymerase
b3987	rpoB	RNA polymerase
b3988	rpoC	RNA polymerase
b3461	rpoH	RNA polymerase
b0911	rpsA	30S ribosomal subunit protein S1
b0169	rpsB	30S ribosomal subunit protein S2
b3314	rpsC	30S ribosomal subunit protein S3
b3296	rpsD	30S ribosomal subunit protein S4
b3303	rpsE	30S ribosomal subunit protein S5
b3341	rpsG	30S ribosomal subunit protein S7
b3306	rpsH	30S ribosomal subunit protein S8
b3230	rpsl	30S ribosomal subunit protein S9
b3321	rpsJ	30S ribosomal subunit protein S10
b3297	rpsK	30S ribosomal subunit protein S11
b3342	rpsL	30S ribosomal subunit protein S12
b3298	rpsM	30S ribosomal subunit protein S13
b3307	rpsN	30S ribosomal subunit protein S14
b2609	rpsP	30S ribosomal subunit protein S16
b3311	rpsQ	30S ribosomal subunit protein S17
b4202	rpsR	30S ribosomal subunit protein S18
b3316	rpsS	30S ribosomal subunit protein S19
b0098	secA	preprotein translocase subunit
b3981	secE	preprotein translocase membrane subunit
b3300	secY	preprotein translocase membrane subunit
b0893	serS	seryl-tRNA synthetase
b4059	ssb	single-stranded DNA-binding protein
b2533	suhB	inositol monophosphatase
b0417	thiL	thiamin-monophosphate kinase
b1719	thrS	threonyl-tRNA synthetase
b0188	tilS	tRNA(IIe)-lysidine synthetase

locus_tag	<u>gene_name</u>	Function
b1098 i	tmk	thymidylate kinase
b1274 a	topA	DNA topoisomerase I
b2607 a	trmD	tRNA m(1)G37 methyltransferase
b3384 i	trpS	tryptophanyl-tRNA synthetase
b0170 a	tsf	protein chain elongation factor EF-Ts
b1637 i	tyrS	tyrosyl-tRNA synthetase
b4040	ubiA	p-hydroxybenzoate octaprenyltransferase
b4258	valS	valyl-tRNA synthetase
b3633	waaA	3-deoxy-D-manno-octulosonic-acid transferase (KDO transferase)
b1807	yeaZ	protease specific for Gcp(YgjD)
b3064	ygjD	t(6)A tRNA modification protein; glycation-binding protein; genome maintenance protein
b3705	yidC	membrane protein insertase
b3865	yihA	GTP-binding protein required for normal cell division
b4168	yjeE	ADP-binding protein essential for nucleoid integrity
b2949	yqgF	predicted Holliday junction resolvase
b3398	yrfF	inner membrane protein
b2412 2	zipA	cell division protein involved in Z ring assembly

Table A4. Comparative analysis with Goodall *et al.*, 2018. Essential genes shared by MG1655 and BW25113 TraDIS studies

locus_tag	gene_name	Category	<u>Growth in Baba et al., 2006</u>	Potential polarity?
b0116	lpd	2-oxoglutarate dehydrogenase complex	Growth	Ν
b0726	sucA	2-oxoglutarate dehydrogenase complex	Growth	Ν
b0727	sucB	2-oxoglutarate dehydrogenase complex	Growth	Ν
b1054 b1091 b1279	lpxL fabH yciS (lapA)	Cell envelope Cell envelope Cell envelope	Growth Growth Growth	N Y - fabD Y - yciM (lapB)
b2551	glyA	Cofactor metabolic process	Growth	Ν
b3177	folP	Cofactor metabolic process	No growth	Y - glmM/ftsH
b3997	hemE	Cofactor metabolic process	No growth	Ν
b2525 b2529 b2530 b2898 b0734 b0887 b1508 b1652 b2594 b4372 b2827 b1715 b1500 b4201	fdx iscU iscS ygfZ cydB cydD hipB rnt rluD holD thyA pheM safA priB	Fe-S cluster assembly Fe-S cluster assembly Fe-S cluster assembly Misc Misc Misc Misc Misc Misc Misc Misc	Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth Growth N/A No growth	N N N N N N Y - lgt Y - $pheS$ N Y - $rpsR$, $rpsF$
b2608	rimM	Translation	Growth	Y - trmD

<u>locus_tag</u> b0659	<u>gene_name</u> ybeY	<u>Category</u> Translation	<u>Growth in Baba <i>et al.,</i> 2006</u> Growth	<u>Potential polarity?</u> N
b2890	lysS	Translation	Growth	Y - prfB
b2185	rpIY	Translation	Growth	N
b3984	rpIA	Translation	Growth	Y - rplK
b1717	rpml	Translation	Growth	Y - rpIT, infC
b0023	rpsT	Translation	Indeterminate	Ν
b3165	rpsO	Translation	Indeterminate	Ν
b4200	rpsF	Translation	Indeterminate	Y - priB
b3065	rpsU	Translation	No growth	Y - dnaG
b3983	rplK	Translation	No growth	Y - rpIA
b2232	ubiG	Ubiquinone	Growth	Ν
b2311	ubiX	Ubiquinone	Growth	Ν
b2907	ubiH	Ubiquinone	Growth	Ν
b1455	yncH	Y genes	Growth	Ν
b1457	ydcD	Y genes	Growth	Ν
b2851	ygeG	Y genes	Growth	Ν
b4526	ydaE	Y genes	Growth	Ν
b4586	ykfM	Y genes	N/A	Ν
b0917	ycaR	Y genes	Growth	Y - kdsB
b4672	ymiB	Y genes	N/A	Ν
b4674	ynbG	Y genes	N/A	Ν
b4677	yobl	Y genes	N/A	Ν

Table A5. Comparative analysis with Goodall *et al.*, 2018. Essential genes unique to MG1655

Lissential genes unique to MG 1055					
locus_tag	gene_name	Function	Insertions in CDS?	Comment	Likely essential?
b2415	ptsH	phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr)(<i>ptsH</i>)	No	No insertions	Yes
b3339	tufA	translation elongation factor EF-Tu 1(tufA)	Yes	Insertions mostly at extreme 3' end	Yes
b1280	yciM	LPS regulatory protein; putative modulator of LpxC proteolysis(<i>yciM</i>)	No	yciS essential in MG and BW tradis?	Yes
b1544	ydfK	cold shock protein, function unknown, Qin prophage(<i>ydfK</i>)	No	Surrounding genes have many insertions	Yes
b4688	ykgS	CP4-6 prophage; protein YkgS	Yes	Insertions mostly at extreme 3' end	Yes
b1375	ynaE	cold shock protein, Rac prophage(<i>ynaE</i>)	No	Surrounding genes have many insertions	Yes
b2198	ccmD	cytochrome c biogenesis protein; heme export ABC transporter holo-CcmE release factor(<i>ccmD</i>)	Yes	Insertions at extreme 5' end	Indeterminate
b4665	ibsC	toxic membrane protein(<i>ibsC</i>)	No	Gene length <75bp	Indeterminate
b4666	ibsE	toxic membrane protein(<i>ibsE</i>)	No	Gene length <75bp	Indeterminate
b4419	IdrA	toxic polypeptide, small(<i>ldrA</i>)	No	Surrounding genes have many insertions	Indeterminate
b4421	ldrB	toxic polypeptide, small(<i>ldrB</i>)	No	Surrounding genes have many insertions	Indeterminate
b4423	ldrC	toxic polypeptide, small(<i>ldrC</i>)	No	Surrounding genes have many insertions	Indeterminate
b3936	rpmE	50S ribosomal subunit protein L31(rpmE)	Yes	Growth rate?	Indeterminate
b3299	rpmJ	50S ribosomal subunit protein L36(<i>rpmJ</i>)	No	Growth rate?	Indeterminate
b3980	tufB	translation elongation factor EF-Tu 2(tufB)	Yes	Insertions mostly at extreme 5' end	Indeterminate
b0910	cmk	cytidylate kinase(cmk)	Yes	Contains insertions	No
b3357	crp	cAMP-activated global transcription factor, mediator of catabolite repression(<i>crp</i>)	Yes	Contains insertions	No
b2527	hscB	HscA co-chaperone, J domain-containing protein Hsc56; IscU-specific chaperone HscAB(<i>hscB</i>)	Yes	Contains insertions	No

locus_tag	gene_name	Function	Insertions in CDS?	Comment	Likely essential?
b0159	mtn	5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase(<i>mtn</i>)	Yes	Insertions throughout gene	No
b3164	pnp	polynucleotide phosphorylase/polyadenylase(pnp)	Yes	Insertions throughout gene	No
b3863	polA	DNA polymerase I	Yes	Contains insertions	No
b0525	рріВ	peptidyl-prolyl cis-trans isomerase B (rotamase B)(<i>ppiB</i>)	No	Polar on downstream lpxH	No
b3593	rhsA	Rhs protein with putative toxin 55 domain; putative polysaccharide synthesis/export protein; putative neighboring cell growth inhibitor(<i>rhsA</i>)	Yes	Insertions mostly at extreme 3' end but some in middle of gene. Gene length 4133 bp	No
b3179	rlmE	23S rRNA U2552 2'-O-ribose methyltransferase, SAM-dependent(<i>rImE</i>)	Yes	Insertions in one orientation, away from upstream essential ftsH	No
b4433	ryeB	small regulatory RNA SdsR	No	Only 104 bp long	No
b3609	secB	protein export chaperone(secB)	No	Downstream grxC (essential LB) has many insertions; upstream gpsA has few.	No
b1546	tfaQ	Qin prophage; putative tail fibre assembly protein(<i>tfaQ</i>)	Yes	Surrounding genes have few insertions.	No
b1373	tfaR	Rac prophage; putative tail fiber assembly protein(<i>tfaR</i>)	Yes	Surrounding genes have few insertions.	No
b4414	tff	ncRNA(<i>tff</i>)	No	Upstream of essential 30S subunit gene rpsB.	No
b0662	ubiF	2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol oxygenase(ubiF)	Yes	Contains insertions	No
b1471	yddK	pseudo(yddK)	Yes	Contains insertions	No
b1995	yoeA	pseudo(<i>yoeA</i>)	Yes	Contains insertions	No
b3853	alaT	tRNA(<i>alaT</i>)	No	Gene length <75bp	No
b3276	alaU	tRNA(<i>alaU</i>)	No	Gene length <75bp	No
b0203	alaV	tRNA(<i>alaV</i>)	No	Gene length <75bp	No
b2397	alaW	tRNA(<i>alaW</i>)	No	Gene length <75bp	No
b2396	alaX	tRNA(<i>alaX</i>)	No	Gene length <75bp	No
b2694	argV	tRNA(<i>argV</i>)	No	Gene length <75bp	No
b2693	argY	tRNA(<i>argY</i>)	No	Gene length <75bp	No

locus_tag	gene_name	Function	Insertions in CDS?	Comment	<u>Likely</u> essential?
b3760	aspT	tRNA(<i>aspT</i>)	No	Gene length <75bp	No
b0206	aspU	tRNA(<i>aspU</i>)	No	Gene length <75bp	No
b0670	glnU	tRNA(<i>glnU</i>)	No	Gene length <75bp	No
b0668	gInW	tRNA(gInW)	No	Gene length <75bp	No
b3969	gltT	tRNA(<i>gltT</i>)	No	Gene length <75bp	No
b3757	gltU	tRNA(<i>gltU</i>)	No	Gene length <75bp	No
b4008	gltV	tRNA(<i>gltV</i>)	No	Gene length <75bp	No
b2590	gltW	tRNA(<i>gltW</i>)	No	Gene length <75bp	No
b1911	glyW	tRNA(<i>glyW</i>)	No	Gene length <75bp	No
b4164	glyX	tRNA(<i>glyX</i>)	No	Gene length <75bp	No
b3852	ileT	tRNA(<i>ileT</i>)	No	Gene length <75bp	No
b3277	ileU	tRNA(<i>ileU</i>)	No	Gene length <75bp	No
b0202	ileV	tRNA(<i>ileV</i>)	No	Gene length <75bp	No
b3069	ileX	tRNA(<i>ileX</i>)	No	Surrounding genes have many insertions	No
b4370	leuQ	tRNA(<i>leuQ</i>)	No	Gene length <75bp	No
b0743	lysT	tRNA(<i>lysT</i>)	No	Next to other lysine tRNAs who have no insertions.	No
b2404	lysV	tRNA(<i>lysV</i>)	No	Next to valine tRNAs with no insertions.	No
b0745	lysW	tRNA(<i>lysW</i>)	No	Next to other lysine tRNAs who have no insertions.	No
b0747	lysY	tRNA(<i>lysY</i>)	No	Next to other lysine tRNAs who have no insertions.	No
b0673	metT	tRNA(<i>metT</i>)	No	Next to other glutamine tRNAs who have no insertions.	No
b0666	metU	tRNA(<i>metU</i>)	No	Next to other lysine tRNAs who have no insertions.	No
b4643	pawZ	tRNA(<i>pawZ</i>)	No	Gene length <75bp. Pseudogene.	No
b4134	pheU	tRNA(<i>pheU</i>)	No	Surrounding genes have many insertions	No
b3971	rrfB	5S ribosomal RNA of <i>rrnB</i> operon(<i>rrfB</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No

locus_tag	gene_name	Function	Insertions in CDS?	Comment	Likely essential?
b3759	rrfC	5S ribosomal RNA of <i>rrnC</i> operon(<i>rrfC</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No
b3274	rrfD	5S ribosomal RNA of <i>rrnD</i> operon(<i>rrfD</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No
b4010	rrfE	5S ribosomal RNA of <i>rrnE</i> operon(<i>rrfE</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No
b3788	rrfG	5S ribosomal RNA of <i>rrnG</i> operon(<i>rrfG</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No
b0205	rrfH	5S ribosomal RNA of <i>rrnH</i> operon(<i>rrfH</i>)	No	Surrounding genes have many insertions. 5S rRNA.	No
b3854	rrlA	23S ribosomal RNA of <i>rrnA</i> operon(<i>rrlA</i>)	Yes	Surrounding genes have many insertions. Investigate region with insertions.	No
b3970	rrlB	23S ribosomal RNA of rrnB operon(rrlB)	No	Surrounding genes have many insertions	No
b3758	rrlC	23S ribosomal RNA of <i>rrnC</i> operon(<i>rrlC</i>)	Yes	Surrounding genes have many insertions. Investigate region with insertions.	No
b3275	rrlD	23S ribosomal RNA of <i>rrnD</i> operon(<i>rrlD</i>)	No	Surrounding genes have many insertions	No
b4009	rrlE	23S ribosomal RNA of <i>rrnE</i> operon(<i>rrlE</i>)	No	Surrounding genes have many insertions	No
b2589	rrlG	23S ribosomal RNA of <i>rrnG</i> operon(<i>rrlG</i>)	No	Surrounding genes have many insertions	No
b0204	rrlH	23S ribosomal RNA of <i>rrnH</i> operon(<i>rrlH</i>)	Yes	Surrounding genes have many insertions.	No
b3851	rrsA	16S ribosomal RNA of <i>rrnA</i> operon(<i>rrsA</i>)	No	Surrounding genes have many insertions	No
b3968	rrsB	16S ribosomal RNA of <i>rrnB</i> operon(<i>rrsB</i>)	No	Surrounding genes have many insertions	No
b3756	rrsC	16S ribosomal RNA of <i>rrnC</i> operon(<i>rrsC</i>)	No	Surrounding genes have many insertions	No

locus_tag	gene_name	Function	Insertions in CDS?	Comment	<u>Likely</u> essential?
b3278	rrsD	16S ribosomal RNA of <i>rrnD</i> operon(<i>rrsD</i>)	No	Surrounding genes have many insertions	No
b4007	rrsE	16S ribosomal RNA of <i>rrnE</i> operon(<i>rrsE</i>)	No	Surrounding genes have many insertions	No
b2591	rrsG	16S ribosomal RNA of <i>rrnG</i> operon(<i>rrsG</i>)	No	Surrounding genes have many insertions	No
b0201	rrsH	16S ribosomal RNA of <i>rrnH</i> operon(<i>rrsH</i>)	Yes	Surrounding genes have many insertions	No
b3273	thrV	tRNA(<i>thrV</i>)	No	Gene length <75bp	No
b1231	tyrT	tRNA(<i>tyrT</i>)	No	Gene length <75bp	No
b0744	valT	tRNA(valT)	No	Gene length <75bp	No
b2401	valU	tRNA(valU)	No	Gene length <75bp	No
b1665	valV	tRNA(va/V)	No	Gene length <75bp	No
b2403	valY	tRNA(va/Y)	No	Gene length <75bp	No
b0746	valZ	tRNA(valZ)	No	Gene length <75bp	No

Table A6. Comparative analysis with Goodall et al., 2018.Essential genes unique to BW25113

<u>locus_tag</u> b0115 b4515 b3809 b2065	<u>gene_name</u> aceF cydX dapF dad	<u>Comment</u>
b2065 b2507	dcd guaA bisA	Ambiguous in MG1655
b3082 b2526 b1712 b1160 b0628	higA hscA ihfA iraM lipA	Ambiguous in MG1655
b1638 b2416 b3167	pdxH ptsl rbfA	Ambiguous in MG1655
b1564 b3386	relB rpe	Ambiguous in MG1655
b1089 b2935 b1252	rpmF tktA tonB	
b1265 b4638	trpL ttcc	
b0969 b3833 b1357 b1472	tusE ubiE ydaS yddL	Ambiguous in MG1655
b1549 b1648 b1935	ydfO ydhL yedM	
b2450 b2850 b2858	yffS ygeF ygeN	
b4621 b1138	yjbS ymfE	Ambiguous in MG1655

<u>locus_tag</u> b4682 b4683 gene_name yqcG yqeL <u>Comment</u> Ambiguous in MG1655

Table A7. Genes with significant logFC values following growth in bile

Table Ar.	Table A7. Genes with significant log-C values following growth in bile							
<u>locus_tag</u>	gene_name	function	logFC	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of 0.001510574)</u>		
b0463	acrA	multidrug efflux system	- 13.45762217	8.107981948	2.38E-147	1.99E-144		
b1129	phoQ	sensory histidine kinase in two-component regulatory system with PhoP	۔ 11.49034613	6.154695365	1.76E-28	2.23E-26		
b3035	toIC	transport channel	- 11.04748427	5.716194272	1.60E-18	1.49E-16		
b1130	phoP	response regulator in two-component regulatory system with PhoQ	۔ 10.99210588	5.664022857	1.50E-17	1.31E-15		
b3026	qseC	quorum sensing sensory histidine kinase in two- component regulatory system with QseB	-10.6742087	5.351889666	5.36E-15	3.95E-13		
b3625	waaY	lipopolysaccharide core biosynthesis protein	- 10.57156247	7.565681444	2.45E-101	1.29E-98		
b3632	waaQ	lipopolysaccharide core biosynthesis protein	- 10.53616871	9.294558163	2.65E-236	1.11E-232		
b2283	nuoG	NADH:ubiquinone oxidoreductase, chain G	۔ 10.51441405	5.193699119	2.71E-14	1.93E-12		
b0462	acrB	multidrug efflux system protein	۔ 10.45658313	8.828509649	1.84E-206	3.87E-203		
b2284	nuoF	NADH:ubiquinone oxidoreductase, chain F	- 9.991423561	4.690209138	2.24E-09	1.13E-07		
b2286	nuoC	NADH:ubiquinone oxidoreductase, fused CD subunit	- 9.710277668	4.416953636	2.95E-10	1.65E-08		
b2287	nuoB	NADH:ubiquinone oxidoreductase, chain B	- 9.408109621	4.129102475	7.82E-09	3.72E-07		
b1677	lpp	murein lipoprotein	- 9.360655383	4.08062559	1.41E-09	7.42E-08		
b2277	nuoM	NADH:ubiquinone oxidoreductase, membrane subunit M	۔ 9.358471301	4.084179683	1.27E-07	5.06E-06		
b2280	nuoJ	NADH:ubiquinone oxidoreductase, membrane subunit J	- 9.127948557	3.856570574	1.76E-08	8.12E-07		
b2278	nuoL	NADH:ubiquinone oxidoreductase, membrane subunit L	۔ 9.099262266	3.835265076	2.23E-08	1.01E-06		

<u>locus_tag</u>	gene_name	function	<u>logFC</u>	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of 0.001510574)</u>
b2282	nuoH	NADH:ubiquinone oxidoreductase, membrane subunit H	۔ 9.077033141	3.808122554	3.15E-08	1.36E-06
b2276	nuoN	NADH:ubiquinone oxidoreductase, membrane subunit N	- 9.064111238	3.7966679	2.36E-08	1.06E-06
b3790	wecD	TDP-fucosamine acetyltransferase	- 8.995135148	3.7328504	2.55E-08	1.13E-06
b0632	dacA	D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 5)	- 8.778923104	6.631207866	1.06E-49	3.18E-47
b2742	nlpD	activator of AmiC murein hydrolase activity, lipoprotein	- 8.597085736	8.630673946	2.86E-174	3.00E-171
b1279	lapA	lipopolysaccharide assembly protein A	۔ 8.385769457	3.178239246	1.04E-05	0.000297558
b3836	tatA	TatABCE protein translocation system subunit	۔ 8.359027723	3.143940262	9.28E-07	3.32E-05
b3631	waaG	UDP-glucose:(heptosyl)lipopolysaccharide alpha-1,3- glucosyltransferase; lipopolysaccharide core biosynthesis protein; lipopolysaccharide glucosyltransferase I	-8.33236493	6.716792399	2.44E-52	7.86E-50
b3839	tatC	TatABCE protein translocation system subunit	- 8.317076347	3.115936475	1.48E-05	0.000410424
b2281	nuol	NADH:ubiquinone oxidoreductase, chain I	-8.31115119	3.105603277	2.07E-06	6.97E-05
b3627	waaO	UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3- D-galactosyltransferase	- 8.058461143	7.132861909	7.29E-68	3.06E-65
b1782	mipA	scaffolding protein for murein synthesizing machinery	- 7.875083818	6.649558327	2.32E-47	6.08E-45
b3791	wecE	TDP-4-oxo-6-deoxy-D-glucose transaminase	-7.35178421	5.228702309	9.48E-13	6.31E-11
b3229	sspA	stringent starvation protein A, phage P1 late gene activator, RNAP-associated acid-resistance protein, inactive glutathione S-transferase homolog	- 7.338341577	7.070122812	4.18E-63	1.60E-60
b3613	envC	activator of AmiB,C murein hydrolases, septal ring factor	۔ 6.864721514	4.75839634	5.86E-10	3.19E-08
b0214	rnhA	ribonuclease HI, degrades RNA of DNA-RNA hybrids	۔ 6.466952214	3.568802069	8.39E-07	3.03E-05

locus_tag	gene_name	function	logFC	logCPM	<u>PValue</u>	<u>q.value (cutoff of</u> 0.001510574)
b3784	wecA	UDP-GlcNAc:undecaprenylphosphate GlcNAc-1- phosphate transferase	- 6.345422176	6.971113853	1.78E-41	3.56E-39
b3388	damX	cell division protein that binds to the septal ring	- 6.295504459	6.047208622	2.25E-19	2.14E-17
b3387	dam	DNA adenine methyltransferase	- 6.191379902	3.324487575	1.80E-05	0.000477657
b2741	rpoS	RNA polymerase, sigma S (sigma 38) factor	- 6.148878632	10.2161087	1.11E-141	7.75E-139
b3786	wecB	UDP-N-acetyl glucosamine-2-epimerase	- 6.065042639	6.498622476	5.37E-30	7.26E-28
b0739	tolA	membrane anchored protein in TolA-TolQ-TolR complex	- 5.930362556	3.072178617	9.36E-05	0.002121891
b3628	waaB	lipopolysaccharide 1,6-galactosyltransferase; UDP-D- galactose:(glucosyl)lipopolysaccharide-1, 6-D- galactosyltransferase	- 5.552127939	7.58817588	3.37E-58	1.18E-55
b3842	rfaH	transcription antitermination protein	- 5.489032561	3.46552811	5.20E-06	0.000162573
b2346	mlaA	ABC transporter maintaining OM lipid asymmetry, OM lipoprotein component	- 5.249988062	7.297589513	3.30E-34	5.54E-32
b3194	mlaE	ABC transporter maintaining OM lipid asymmetry, inner membrane permease protein	-5.17713926	6.375473821	3.82E-26	4.33E-24
b3195	mlaF	ABC transporter maintaining OM lipid asymmetry, ATP- binding protein	- 5.142729773	8.162446773	6.25E-34	1.01E-31
b2904	gcvH	glycine cleavage complex lipoylprotein	- 4.868416243	3.758523678	9.41E-06	0.000274105
b1856	терМ	murein DD-endopeptidase, space-maker hydrolase, septation protein	-4.86038371	6.728665286	3.67E-32	5.50E-30
b4313	fimE	tyrosine recombinase/inversion of on/off regulator of fimA	-4.74222024	13.59601667	9.56E-176	1.34E-172
b3912	cpxR	response regulator in two-component regulatory system with CpxA	4.732320293	4.853807006	1.01E-07	4.07E-06
b1830	prc	carboxy-terminal protease for penicillin-binding protein 3	- 4.721561537	6.380489668	7.08E-18	6.32E-16

locus_tag	gene_name	function	<u>logFC</u>	logCPM	<u>PValue</u>	<u>q.value (cutoff of</u> <u>0.001510574)</u>
b2435	amiA	N-acetylmuramoyl-l-alanine amidase I	۔ 4.666784349	6.584599099	7.20E-30	9.43E-28
b3649	rpoZ	RNA polymerase, omega subunit	- 4.525412657	6.094936654	1.31E-16	1.06E-14
b1048	opgG	OPG biosynthetic periplasmic beta-1,6 branching glycosyltransferase	- 4.428565763	6.826877857	2.66E-26	3.10E-24
b2188	уејМ	essential inner membrane DUF3413 domain-containing protein; lipid A production and membrane permeability factor	- 4.379544394	7.013388293	4.34E-28	5.35E-26
b3191	mlaB	ABC transporter maintaining OM lipid asymmetry, cytoplasmic STAS component	- 4.371585805	6.957828281	2.91E-38	5.54E-36
b3150	yraP	outer membrane lipoprotein	- 4.292027217	5.092370556	1.22E-06	4.28E-05
b2288	nuoA	NADH:ubiquinone oxidoreductase, membrane subunit A	۔ 4.275454887	3.958877556	0.00013782	0.002994899
b1193	emtA	lytic murein endotransglycosylase E	۔ 4.172616843	5.067818758	0.000411007	0.007695375
b3787	wecC	UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase	-4.07503752	6.544759978	2.62E-13	1.77E-11
b3192	mlaC	ABC transporter maintaining OM lipid asymmetry, periplasmic binding protein	۔ 4.063917144	5.896084057	5.36E-08	2.25E-06
b2817	amiC	N-acetylmuramoyl-L-alanine amidase	- 3.972138737	7.573107333	7.72E-48	2.16E-45
b2174	lpxT	lipid A 1-diphosphate synthase; undecaprenyl pyrophosphate:lipid A 1-phosphate phosphotransferase	- 3.659447131	7.970115437	2.97E-47	7.34E-45
b3785	wzzE	Entobacterial Common Antigen (ECA) polysaccharide chain length modulation protein	- 3.513526463	7.082187762	4.35E-15	3.32E-13
b1049	opgH	OPG biosynthetic ACP-dependent transmembrane UDP- glucose beta-1,2 glycosyltransferase; nutrient-dependent cell size regulator, FtsZ assembly antagonist	- 3.467307771	6.508859021	1.88E-19	1.83E-17
b3207	yrbL	Mg(2+)-starvation-stimulated protein	-3.46436912	6.972337621	1.10E-25	1.21E-23
b0957	ompA	outer membrane protein A (3a;II*;G;d)	- 3.370508115	5.847651978	3.98E-07	1.53E-05

locus_tag	gene_name	function	<u>logFC</u>	logCPM	<u>PValue</u>	<u>q.value (cutoff of</u> <u>0.001510574)</u>
b1604	ydgH	DUF1471 family periplasmic protein	- 3.270032231	7.533634092	1.11E-37	2.03E-35
b2531	iscR	isc operon transcriptional repressor; suf operon transcriptional activator; oxidative stress-and iron starvation-inducible; autorepressor	- 3.204867193	7.79130598	2.99E-44	6.61E-42
b2317	dedA	DedA family inner membrane protein	- 3.159649916	6.877252335	1.24E-21	1.24E-19
b4232	fbp	fructose-1,6-bisphosphatase I	- 3.126913274	7.639618964	9.88E-36	1.73E-33
b2313	сvpА	colicin V production protein	- 3.088368482	5.963595406	2.87E-08	1.25E-06
b0877	ybjX	DUF535 family protein	- 3.040792035	7.416931525	6.47E-28	7.76E-26
b3630	waaP	kinase that phosphorylates core heptose of lipopolysaccharide	- 2.962906875	5.136343118	9.01E-05	0.002065253
b1097	yceG (mltG)	septation protein, ampicillin sensitivity	- 2.934249077	6.30641219	1.63E-10	9.47E-09
b3193	mlaD	OM lipid asymmetry maintenance protein; membrane- anchored ABC family periplasmic binding protein	- 2.824128901	6.128215486	1.72E-05	0.00046237
b3753	rbsR	transcriptional repressor of ribose metabolism	- 2.741790731	9.331324783	1.94E-45	4.51E-43
b3163	nlpl	lipoprotein involved in osmotic sensitivity and filamentation	۔ 2.692187914	5.787844191	2.85E-05	0.000736581
b2865	ygeR	LysM domain-containing M23 family putative peptidase; septation lipoprotein	- 2.677389398	7.196411928	4.19E-17	3.52E-15
b0436	tig	peptidyl-prolyl cis/trans isomerase (trigger factor)	- 2.547921418	7.093621214	3.43E-15	2.66E-13
b0592	fepB	ferrienterobactin ABC transporter periplasmic binding protein	- 2.371796342	5.934981076	7.34E-06	0.000221538
b0209	yafD	endo/exonuclease/phosphatase family protein	- 2.334268969	5.685463045	0.000178755	0.003786366
b2299	yfcD	putative NUDIX hydrolase	- 2.249695085	5.971067154	5.36E-06	0.000165417

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of 0.001510574)</u>
b2215	ompC	outer membrane porin protein C	۔ 2.113010415	6.246736468	0.0002236	0.0046889
b0889	Irp	leucine-responsive global transcriptional regulator	۔ 2.111372737	6.634139281	2.06E-10	1.17E-08
b0759	galE	UDP-galactose-4-epimerase	- 2.072225453	5.904218461	0.000225232	0.004699616
b2144	sanA	DUF218 superfamily vancomycin high temperature exclusion protein	2.042948636	9.448720281	3.02E-24	3.16E-22
b2784	relA	(p)ppGpp synthetase I/GTP pyrophosphokinase	- 1.913792193	7.394577113	2.64E-12	1.68E-10
b0920	elyC	envelope biogenesis factor; DUF218 superfamily protein	۔ 1.839529726	6.577463941	5.86E-07	2.17E-05
b2813	mltA	membrane-bound lytic murein transglycosylase A	- 1.791409174	7.21764081	1.78E-06	6.12E-05
b0585	fes	enterobactin/ferrienterobactin esterase	۔ 1.783776862	6.491962774	2.00E-05	0.000525291
b1176	minC	inhibitor of FtsZ ring polymerization	۔ 1.769927978	6.303814662	1.98E-05	0.000522218
b2593	yfiH (pgeF)	UPF0124 family protein	۔ 1.764334883	6.29011286	1.51E-05	0.000416091
b2366	dsdA	D-serine dehydratase	۔ 1.762039446	7.588581876	2.86E-12	1.79E-10
b2903	gcvP	glycine decarboxylase, PLP-dependent, subunit P of glycine cleavage complex	۔ 1.727409141	7.680437843	1.40E-09	7.42E-08
b0434	yajG	putative lipoprotein	- 1.695713511	6.862551325	9.46E-09	4.46E-07
b0633	rlpA	septal ring protein, suppressor of prc, minor lipoprotein	۔ 1.687315928	6.502535855	1.23E-06	4.29E-05
b3493	pitA	phosphate transporter, low-affinity; tellurite importer	۔ 1.620857596	6.14873557	0.000231361	0.004756512
b1961	dcm	DNA cytosine methyltransferase	- 1.608714021	7.760474999	2.26E-07	8.92E-06

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of</u> <u>0.001510574)</u>
b2905	gcvT	aminomethyltransferase, tetrahydrofolate-dependent, subunit (T protein) of glycine cleavage complex	۔ 1.573287896	6.900182401	1.18E-06	4.20E-05
b3017	ftsP	septal ring component that protects the divisome from stress; multicopy suppressor of ftsl(Ts)	۔ 1.530552824	7.709805247	5.38E-11	3.23E-09
b3147	ІроА	OM lipoprotein stimulator of MrcA transpeptidase	- 1.519435943	6.357341874	4.87E-05	0.001188517
b2494	bepA	OM protein maintenance and assembly metalloprotease and chaperone, periplasmic	1.505296613	7.134477922	4.23E-08	1.79E-06
b2767	ygcO	putative 4Fe-4S cluster-containing protein	- 1.468248473	6.898021691	5.04E-06	0.000159049
b0433	ampG	muropeptide transporter	-1.3638939	8.516976105	1.48E-13	1.03E-11
b1954	dsrA		- 1.348764807	6.672725134	3.53E-05	0.000880266
b1831	proQ	RNA chaperone, putative ProP translation regulator	-1.29201986	7.590029178	3.51E-06	0.000111406
b3940	metL	Bifunctional aspartokinase/homoserine dehydrogenase 2	- 1.268421934	7.934006134	1.23E-08	5.75E-07
b3624	waaZ	lipopolysaccharide KdoIII transferase; lipopolysaccharide core biosynthesis protein	- 1.242886553	7.85455316	3.76E-09	1.84E-07
b0949	иир	replication regulatory ABC-F family DNA-binding ATPase	- 1.167099607	7.272010934	0.000301079	0.005819002
b3626	waaR	lipopolysaccharide 1,2-glucosyltransferase; UDP- glucose:(glucosyl)LPS alpha-1,2-glucosyltransferase	- 1.164278643	9.035383338	1.97E-12	1.27E-10
b1878	flhE	proton seal during flagellar secretion	- 1.104199313	6.960348587	8.05E-05	0.001853937
b2958	yggN	DUF2884 family putative periplasmic protein	۔ 1.062743664	7.534634164	2.43E-06	8.08E-05
b0240	crl	pseudogene	- 1.059985162	8.25727622	1.95E-09	9.96E-08
b2624	alpA	CP4-57 prophage; DNA-binding transcriptional activator	- 1.023915082	6.935118865	0.000236948	0.004814513
b1504	ydeS	putative fimbrial-like adhesin protein	-1.02006805	7.402301035	0.000100203	0.002247342
b3623 b3755	waaU yieP	lipopolysaccharide core biosynthesis putative transcriptional regulator	-1.01767509 -0.98741311	8.008665355 8.420198838	6.55E-07 9.88E-08	2.41E-05 4.02E-06

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of 0.001510574)</u>
b3590	selB	selenocysteinyl-tRNA-specific translation factor	۔ 0.981505802	7.512376007	7.06E-05	0.001654914
b1811	yoaH	UPF0181 family protein	- 0.980819156	7.028728975	0.000283544	0.005559586
b2837	galR	galactose-inducible d-galactose regulon transcriptional repressor; autorepressor	- 0.978401643	7.697924396	1.69E-05	0.000459134
b3813	uvrD	DNA-dependent ATPase I and helicase II	- 0.978270544	7.518025927	3.44E-05	0.000864776
b0908	aroA	5-enolpyruvylshikimate-3-phosphate synthetase	۔ 0.966731593	7.435982604	6.46E-05	0.001522289
b3182	dacB	D-alanyl-D-alanine carboxypeptidase	- 0.924773893	7.611253084	4.19E-05	0.001032932
b1283	osmB	osmotically and stress inducible lipoprotein	۔ 0.901281405	8.805236501	4.68E-07	1.77E-05
b4169	amiB	N-acetylmuramoyl-l-alanine amidase II	- 0.870078577	7.419245527	0.000159306	0.003443962
b0951	pqiB	paraquat-inducible, SoxRS-regulated MCE domain protein	۔ 0.866118046	7.815328994	4.16E-05	0.001032932
b1805	fadD	acyl-CoA synthetase (long-chain-fatty-acidCoA ligase)	- 0.854875141	7.736589524	5.25E-05	0.001266234
b3129	prlF	antitoxin of the SohA(PrIF)-YhaV toxin-antitoxin system	- 0.852319926	7.237348752	0.000532467	0.009667387
b2829	ptsP	PEP-protein phosphotransferase enzyme I; GAF domain containing protein	-0.82713541	8.551114631	6.19E-05	0.001466029
b1422	ydcl	putative DNA-binding transcriptional regulator	- 0.804020447	8.173811116	1.14E-05	0.000321011
b3260	dusB	tRNA-dihydrouridine synthase B	- 0.799394108	8.570638918	3.44E-06	0.000110086
b3622	waaL	O-antigen ligase	- 0.776520848	9.142252999	9.25E-06	0.000271351
b1688	ydiK	UPF0118 family inner membrane protein	- 0.775073608	7.856567079	0.000122918	0.002727606

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>PValue</u>	<u>q.value (cutoff of 0.001510574)</u>
b2040	rfbD	dTDP-L-rhamnose synthase, NAD(P)-dependent dTDP- 4-dehydrorhamnose reductase subunit	۔ 0.676910575	9.419089567	7.65E-06	0.000229033
b4017	arpA	ankyrin repeat protein	- 0.668534076	8.169577211	0.000397844	0.007516031
b1329	тррА	murein tripeptide (L-ala-gamma-D-glutamyl-meso-DAP) transporter subunit	- 0.640538419	10.70740394	8.78E-06	0.000260969
b4396	rob	right oriC-binding transcriptional activator, AraC family	- 0.639000143	8.398526648	0.000256711	0.005078523
b1498	ydeN	putative Ser-type periplasmic non-aryl sulfatase	- 0.625264807	9.296650257	0.000253191	0.005032623
b0948	rlml	23S rRNA m(2)G2445 and m(7)G2069 methyltransferases, SAM-dependent	- 0.555243132	8.549400296	0.000494122	0.009049562
b3872	yihL	putative DNA-binding transcriptional regulator	0.579156648	8.507917711	0.000300425	0.005819002
b4049	dusA	tRNA-dihydrouridine synthase A	0.580112164	8.540347956	0.000439225	0.008187146
b4159	mscM	mechanosensitive channel protein, miniconductance	0.592516104	9.20800717	0.000284333	0.005559586
b1784	yeaH	UPF0229 family protein	0.604413991	8.771918993	0.000137613	0.002994899
b2216	rcsD	phosphotransfer intermediate protein in two-component regulatory system with RcsBC	0.624163483	9.208025496	0.000113085	0.00252276
b2501	ppk	polyphosphate kinase, component of RNA degradosome	0.628703055	8.328575294	0.00051024	0.009304108
b1642	slyA	global transcriptional regulator	0.649660641	8.928393489	0.000191696	0.004040076
b3970	rrlB		0.654451948	8.31917915	0.000160946	0.003445548
b0431	суоВ	cytochrome o ubiquinol oxidase subunit l	0.698985055	8.196075032	0.000459033	0.008480995
b3275	rrlD		0.709145476	8.320174819	4.95E-05	0.001200805
b2589	rrlG		0.710873751	8.298183781	5.78E-05	0.001386148
b3758	rrlC		0.717869755	8.344692451	9.95E-05	0.002243892
b1188	усдВ	SpoVR family stationary phase protein	0.717903835	8.653744351	8.84E-06	0.000260969
b3347	fkpA	FKBP-type peptidyl-prolyl cis-trans isomerase (rotamase)	0.724046899	7.778160848	0.000406791	0.007650596
b3084	rlmG	23S rRNA m(2)G1835 methyltransferase, SAM- dependent	0.753226202	8.00114335	8.03E-05	0.001853937
b1162	bluR	repressor of blue light-responsive genes	0.766774299	7.708999428	0.00024483	0.004936614

locus_tag	gene_name	function	logFC	<u>logCPM</u>	PValue	<u>q.value (cutoff of</u> <u>0.001510574)</u>
b4089	alsR	d-allose-inducible als operon transcriptional repressor; autorepressor; repressor of rpiR	0.771258201	9.391007031	3.26E-06	0.000105268
b3854	rrlA		0.782361672	8.363212017	5.23E-06	0.000162573
b3516	gadX	acid resistance regulon transcriptional activator; autoactivator	0.784541293	12.07560767	7.33E-07	2.67E-05
b1629	rsxC	SoxR iron-sulfur cluster reduction factor component; putative membrane-associated NADH oxidoreductase of electron transport complex	0.796891837	8.214745947	9.61E-06	0.000277882
b0824	ybiY	putative pyruvate formate lyase activating enzyme	0.798649928	7.785494564	0.000237626	0.004814513
b2094	gatA	galactitol-specific enzyme IIA component of PTS	0.801465726	9.099413514	4.40E-07	1.68E-05
b4009 b0204	rrlE rrlH		0.808532047 0.843219071	8.328767036 8.406456906	3.12E-06 5.45E-07	0.000101592 2.04E-05
b0204 b4138	dcuA	C4-dicarboxylate antiporter	0.849357626	8.239717544	9.89E-06	0.000284173
b2095	gatZ	D-tagatose 1,6-bisphosphate aldolase 2, subunit	0.85137098	9.478773181	2.40E-08	1.07E-06
b3546	eptB	KDO phosphoethanolamine transferase, Ca(2+)-inducible	0.852124756	9.646212106	7.33E-08	3.01E-06
b3057	bacA	undecaprenyl pyrophosphate phosphatase	0.884538375	7.508418141	0.000247223	0.004961012
b1380	ldhA	fermentative D-lactate dehydrogenase, NAD-dependent	0.892783767	7.597092528	0.000229131	0.004756512
b4323	uxuB	D-mannonate oxidoreductase, NAD-dependent	0.901673842	7.798371995	6.00E-05	0.001428813
b1379	hslJ	heat-inducible lipoprotein involved in novobiocin resistance	0.909638125	7.21767908	0.000377907	0.007171685
b2677	proV	glycine betaine/proline ABC transporter periplasmic binding protein	0.90969709	10.91370345	3.72E-09	1.83E-07
b0819	ldtB	L,D-transpeptidase linking Lpp to murein	0.948952036	8.403290307	6.35E-08	2.64E-06
b3506	slp	outer membrane lipoprotein	0.958544376	11.13616288	5.82E-11	3.44E-09
b3740	rsmG	16S rRNA m(7)G527 methyltransferase, SAM-dependent; glucose-inhibited cell-division protein	0.97906325	9.392426229	3.36E-10	1.86E-08
b2517	rlmN	dual specificity 23S rRNA m(2)A2503, tRNA m(2)A37 methyltransferase, SAM-dependent	1.008919181	7.499823008	3.24E-05	0.000819146
b0406	tgt	tRNA-guanine transglycosylase	1.063667114	8.726711664	4.92E-11	2.99E-09
b2893	dsbC	protein disulfide isomerase II	1.083088733	7.787870984	2.42E-07	9.50E-06
b3455	livG	branched-chain amino acid ABC transporter ATPase	1.090469655	6.973007819	7.23E-05	0.001684905

<u>locus_tag</u> b2678	gene_name proW	<u>function</u> glycine betaine/proline ABC transporter permease	logFC 1.095003683	<u>logCPM</u> 8.163904505	<u>PValue</u> 3.94E-08	<u>q.value (cutoff of</u> <u>0.001510574)</u> 1.69E-06
b3507	dctR	Putative LuxR family repressor for dicarboxylate transport	1.09545967	11.2125188	2.17E-13	1.49E-11
b1632	rsxE	SoxR iron-sulfur cluster reduction factor component; electron transport inner membrane NADH-quinone reductase	1.127212934	7.036095554	0.000161022	0.003445548
b3166	truB	tRNA pseudouridine synthase B: tRNA pseudouridine(55) synthase and putative tmRNA pseudouridine(342) synthase	1.144623942	7.409559236	5.72E-06	0.00017525
b3075	ebgR	transcriptional repressor	1.151368264	6.932887096	0.000285005	0.005559586
b1627	rsxA	SoxR iron-sulfur cluster reduction factor component; inner membrane protein of electron transport complex	1.169947357	7.792863806	1.83E-06	6.23E-05
b2587	kgtP	alpha-ketoglutarate transporter	1.180160956	6.953663593	2.04E-05	0.000532458
b0405	queA	S-adenosylmethionine:tRNA ribosyltransferase- isomerase	1.187835883	7.01016126	1.70E-05	0.000459134
b3210	arcB	aerobic respiration control sensor histidine protein kinase, cognate to two-component response regulators ArcA and RssB	1.229681142	9.307796892	1.16E-09	6.22E-08
b3512	gadE	gad regulon transcriptional activator	1.27174923	8.275450062	2.77E-09	1.38E-07
b2064	asmA	suppressor of OmpF assembly mutants; putative outer membrane protein assembly factor; inner membrane- anchored periplasmic protein	1.273247699	8.923374869	2.52E-15	2.00E-13
b1630	rsxD	SoxR iron-sulfur cluster reduction factor component; putative membrane protein of electron transport complex	1.278368009	7.264470177	1.05E-05	0.000297558
b0423 b1928 b0092 b4381 b3961 b0464 b3175	thil yedD ddIB deoC oxyR acrR secG	tRNA s(4)U8 sulfurtransferase lipoprotein D-alanine:D-alanine ligase 2-deoxyribose-5-phosphate aldolase, NAD(P)-linked oxidative and nitrosative stress transcriptional regulator transcriptional repressor preprotein translocase membrane subunit	1.365058738 1.365059787 1.450737591 1.462385413 1.478100436 1.513325462 1.531438013	6.668968298 7.782160016 7.380420321 6.610761752 8.236178346 8.393222345 6.209670516	0.000452952 1.75E-10 1.53E-09 0.000230644 5.26E-15 1.48E-14 0.000249808	0.008405661 1.01E-08 7.95E-08 0.004756512 3.94E-13 1.07E-12 0.004989028

<u>locus_tag</u> b3196	gene_name yrbG	<u>function</u> putative calcium/sodium:proton antiporter	logFC 1.601064112	<u>logCPM</u> 9.21371762	<u>PValue</u> 1.14E-23	<u>q.value (cutoff of</u> <u>0.001510574)</u> 1.16E-21
b2314	dedD	membrane-anchored periplasmic protein involved in septation	1.608640931	7.47363505	2.68E-11	1.65E-09
b1249 b0699 b0015	clsA ybfA dnaJ	cardiolipin synthase 1 DUF2517 family protein chaperone Hsp40, DnaK co-chaperone	1.697342793 1.907445419 1.943807542	8.530837488 9.049417885 8.585002726	2.32E-24 3.83E-32 5.75E-32	2.50E-22 5.55E-30 8.04E-30
b3237	argR	I-arginine-responsive arginine metabolism regulon transcriptional regulator	2.10636033	6.475511609	6.03E-09	2.91E-07
b1185	dsbB	oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I	2.188350739	7.309277684	7.08E-17	5.82E-15
b3933	ftsN	essential cell division protein	2.213102993	8.392813398	2.05E-18	1.87E-16
b3963	fabR	transcriptional repressor of fabA and fabB	2.37776147	8.704663251	2.43E-43	5.09E-41
b3197	kdsD	D-arabinose 5-phosphate isomerase	2.458790821	8.567237116	1.63E-17	1.39E-15
b0178	skp	periplasmic chaperone	2.510734765	6.023270046	1.45E-06	5.04E-05
b2318	truA	tRNA pseudouridine(38-40) synthase	2.721837882	6.541443942	1.80E-12	1.18E-10
b0014	dnaK	chaperone Hsp70, with co-chaperone DnaJ	2.981012405	6.115589191	3.92E-07	1.52E-05
b4368	leuV		3.021861591	5.198315806	3.13E-05	0.000796542
b3860	dsbA	periplasmic protein disulfide isomerase I	3.154766263	9.69454157	6.16E-80	2.87E-77
b3198	kdsC	3-deoxy-D-manno-octulosonate 8-phosphate phosphatase	3.544988468	5.154735084	0.000135511	0.002991218
b3199	lptC	periplasmic membrane-anchored LPS-binding protein; LPS export protein	3.883968253	7.019669623	3.40E-33	5.29E-31
b1447	ydcZ	DUF606 family inner membrane protein	4.463060881	10.73044663	2.08E-06	6.97E-05
b1855	lpxM	myristoyl-acyl carrier protein (ACP)-dependent acyltransferase	6.304596163	8.445517501	1.24E-138	7.41E-136

(n = 93 genes	included)		
Gene	Category	Gene	<u>Category</u>
ompA	Cell envelope	sanA	PG synthesis and turnover
bepA	Cell envelope	emtA	PG synthesis and turnover
skp	Cell envelope	mltA	PG synthesis and turnover
asmA	Cell envelope	mipA	PG synthesis and turnover
clsA	Cell envelope	amiA	PG synthesis and turnover
yejM	Cell envelope	amiB	PG synthesis and turnover
mlaA	Cell envelope	dacA	PG synthesis and turnover
mlaB	Cell envelope	amiC	PG synthesis and turnover
mlaC	Cell envelope	elyC	PG synthesis and turnover
mlaD	Cell envelope	opgG	Osmoregulation
mlaE	Cell envelope	opgH	Osmoregulation
mlaF	Cell envelope	proQ	Osmoregulation
fabR	Cell envelope	proW	Osmoregulation
yajG	Cell envelope	proV	Osmoregulation
yedD	Cell envelope	nuoG	NADH dehydrogenase
waaB	LPS	nuoF	NADH dehydrogenase
waaG	LPS	nuoC	NADH dehydrogenase
waaL	LPS	nuoB	NADH dehydrogenase
waaO	LPS	nuoM	NADH dehydrogenase
waaP	LPS	nuoJ	NADH dehydrogenase
waaQ	LPS	nuoL	NADH dehydrogenase
waaR	LPS	nuoH	NADH dehydrogenase
waaU	LPS	nuoN	NADH dehydrogenase
waaY	LPS	nuol	NADH dehydrogenase
waaZ	LPS	nuoA	NADH dehydrogenase
kdsC	LPS	phoP	Bile tolerance
kdsD	LPS	phoQ	Bile tolerance
lptC	LPS	acrA	Bile tolerance
lpxM	LPS	acrB	Bile tolerance
ybjX	LPS	tolC	Bile tolerance

Table A8. Functional enrichment analysis of genes with significant logFC values following growth in bile (n = 93 genes included)

Gene	Category
rfaH	LPS
lpxT	LPS
yrbG	LPS
wecA	ECA
wecB	ECA
wecC	ECA
wecD	ECA
wecE	ECA
wzzE	ECA
yraP	Cell division
envC	Cell division
minC	Cell division
ftsN	Cell division
tolA	Cell division
nlpD	Cell division
ftsP	Cell division
ygeR	Cell division
nlpl	Cell division
prc	Cell division
dedD	Cell division
damX	Cell division

<u>Gene</u>	<u>logFC</u>	Gene	<u>logFC</u>	Key
				Significantly greater OD than
acrA	-13.45762217	yihL	0.579156648	plate average/positive logFC
				Significantly lower OD than plate
phoQ	-11.49034613	dusA	0.580112164	average/negative logFC
toIC	-11.04748427	mscM	0.592516104	
phoP	-10.99210588	yeaH	0.604413991	
qseC	-10.6742087	rcsD	0.624163483	
waaY	-10.57156247	ppk	0.628703055	
waaQ	-10.53616871	slyA	0.649660641	
nuoG	-10.51441405	rrlB	0.654451948	
acrB	-10.45658313	суоВ	0.698985055	
nuoF	-9.991423561	rrlD	0.709145476	
nuoC	-9.710277668	rrlG	0.710873751	
nuoB	-9.408109621	rrlC	0.717869755	
lpp	-9.360655383	усдВ	0.717903835	
nuoM	-9.358471301	fkpA	0.724046899	
nuoJ	-9.127948557	rlmG	0.753226202	
nuoL	-9.099262266	bluR	0.766774299	
nuoH	-9.077033141	alsR	0.771258201	
nuoN	-9.064111238	rrlA	0.782361672	
wecD	-8.995135148	gadX	0.784541293	
dacA	-8.778923104	rsxC	0.796891837	
nlpD	-8.597085736	ybiY	0.798649928	
lapA	-8.385769457	gatA	0.801465726	
tatA	-8.359027723	rrlE	0.808532047	
waaG	-8.33236493	rrlH	0.843219071	
tatC	-8.317076347	dcuA	0.849357626	
nuol	-8.31115119	gatZ	0.85137098	
waaO	-8.058461143	eptB	0.852124756	
mipA	-7.875083818	bacA	0.884538375	
wecE	-7.35178421	ldhA	0.892783767	
sspA	-7.338341577	uxuB	0.901673842	

Table A9. End-point growth of Keio library mutants vs TraDIS logFCs Gene logEC Gene logEC

<u>Gene</u>	<u>logFC</u>	Gene	<u>logFC</u>	Key
				Significantly greater OD than
envC	-6.864721514	hslJ	0.909638125	plate average/positive logFC
				Significantly lower OD than plate
rnhA	-6.466952214	proV	0.90969709	average/negative logFC
wecA	-6.345422176	ldtB	0.948952036	
damX	-6.295504459	slp	0.958544376	
dam	-6.191379902	rsmG	0.97906325	
rpoS	-6.148878632	rlmN	1.008919181	
wecB	-6.065042639	tgt	1.063667114	
tolA	-5.930362556	dsbC	1.083088733	
waaB	-5.552127939	livG	1.090469655	
rfaH	-5.489032561	proW	1.095003683	
mlaA	-5.249988062	dctR	1.09545967	
mlaE	-5.17713926	rsxE	1.127212934	
mlaF	-5.142729773	truB	1.144623942	
gcvH	-4.868416243	ebgR	1.151368264	
терМ	-4.86038371	rsxA	1.169947357	
fimE	-4.74222024	kgtP	1.180160956	
cpxR	-4.732320293	queA	1.187835883	
prc	-4.721561537	arcB	1.229681142	
amiA	-4.666784349	gadE	1.27174923	
rpoZ	-4.525412657	asmA	1.273247699	
opgG	-4.428565763	rsxD	1.278368009	
yejM	-4.379544394	thil	1.365058738	
mlaB	-4.371585805	yedD	1.365059787	
yraP	-4.292027217	ddlB	1.450737591	
nuoA	-4.275454887	deoC	1.462385413	
emtA	-4.172616843	oxyR	1.478100436	
wecC	-4.07503752	acrR	1.513325462	
mlaC	-4.063917144	secG	1.531438013	
amiC	-3.972138737	yrbG	1.601064112	
lpxT	-3.659447131	dedD	1.608640931	
wzzE	-3.513526463	clsA	1.697342793	

<u>Gene</u>	logFC	Gene	logFC	Key
				Significantly greater OD than
opgH	-3.467307771	ybfA	1.907445419	plate average/positive logFC
				Significantly lower OD than plate
yrbL	-3.46436912	dnaJ	1.943807542	average/negative logFC
ompA	-3.370508115	argR	2.10636033	
ydgH	-3.270032231	dsbB	2.188350739	
iscR	-3.204867193	ftsN	2.213102993	
dedA	-3.159649916	fabR	2.37776147	
fbp	-3.126913274	kdsD	2.458790821	
cvpA	-3.088368482	skp	2.510734765	
ybjX	-3.040792035	truA	2.721837882	
waaP	-2.962906875	dnaK	2.981012405	
yceG (mltG)	-2.934249077	leuV	3.021861591	
mlaD	-2.824128901	dsbA	3.154766263	
rbsR	-2.741790731	kdsC	3.544988468	
nlpl	-2.692187914	lptC	3.883968253	
ygeR	-2.677389398	ydcZ	4.463060881	
tig	-2.547921418	lpxM	6.304596163	
fepB	-2.371796342			
yafD	-2.334268969			
yfcD	-2.249695085			
ompC	-2.113010415			
Irp	-2.111372737			
galE	-2.072225453			
sanA	-2.042948636			
relA	-1.913792193			
elyC	-1.839529726			
mltA	-1.791409174			
fes	-1.783776862			
minC	-1.769927978			
yfiH	-1.764334883			
dsdA	-1.762039446			
gcvP	-1.727409141			

<u>Gene</u>	<u>logFC</u>
yajG	-1.695713511
rlpA	-1.687315928
pitA	-1.620857596
dcm	-1.608714021
gcvT	-1.573287896
ftsP	-1.530552824
IpoA	-1.519435943
bepA	-1.505296613
ygcO	-1.468248473
ampG	-1.3638939
dsrA	-1.348764807
proQ	-1.29201986
metL	-1.268421934
waaZ	-1.242886553
uup	-1.167099607
waaR	-1.164278643
flhE	-1.104199313
yggN	-1.062743664
crl	-1.059985162
alpA	-1.023915082
ydeS	-1.02006805
waaU	-1.01767509
yieP	-0.98741311
selB	-0.981505802
yoaH	-0.980819156
galR	-0.978401643
uvrD	-0.978270544
aroA	-0.966731593
dacB	-0.924773893
osmB	-0.901281405
amiB	-0.870078577

Key Significantly greater OD than plate average/positive logFC Significantly lower OD than plate average/negative logFC

<u>Gene</u>	<u>logFC</u>
pqiB	-0.866118046
fadD	-0.854875141
prlF	-0.852319926
ptsP	-0.82713541
ydcl	-0.804020447
dusB	-0.799394108
waaL	-0.776520848
ydiK	-0.775073608
rfbD	-0.676910575
arpA	-0.668534076
тррА	-0.640538419
rob	-0.639000143
ydeN	-0.625264807
rlml	-0.555243132

Key Significantly greater OD than plate average/positive logFC Significantly lower OD than plate average/negative logFC

Table A10. Comparative analysis of bile tolerance in *E. coli* and *S.* Typhi using TraDIS. Genes under negative selection uniquely in *E. coli*

alpA	терМ	rbsR	yraP
amiA	metL	rfaH	yrbL
amiB	minC	rlml	
amiC	mipA	rlpA	
aroA	mlaB	rnhA	
arpA	mlaC	rpoS	
bepA	mlaD	rpoZ	
crl	mlaE	selB	
dacB	mlaF	tatA	
dcm	тррА	tatC	
dsrA	nlpD	tolA	
dusB	nlpl	uup	
elyC	nuoA	waaZ	
emtA	nuoB	wecD	
envC	nuoC	wecE	
fadD	nuoF	wzzE	
fbp	nuoG	yafD	
fepB	nuoH	yajG	
fes	nuol	yceG (mltG)	
fimE	nuoJ	ydcl	
flhE	nuoL	ydeN	
galE	nuoM	ydeS	
gcvH	nuoN	ydgH	
gcvP	opgG	ydiK	
gcvT	opgH	yfcD	
iscR	osmB	yfiH (pgeF)	
lapA	pitA	ygcO	
IpoA	pqiB	ygeR	
lpp	prIF	yggN	
lpxT	proQ	yieP	
Irp	qseC	yoaH	

Table A11. Comparative analysis of bile tolerance in *E. coli* and *S.* Typhi using TraDIS. Genes under negative selection uniquely in *S*. Typhi

		I	
Gene	Function	<u>Gene</u>	Function
adh	Central metabolism	ldtB	Peptidogycan/cell division
frsA	Central metabolism	mltC	Peptidogycan/cell division
gltA	Central metabolism	mltD	Peptidogycan/cell division
pfkA	Central metabolism	mrcA	Peptidogycan/cell division
pfIA	Central metabolism	mrcB	Peptidogycan/cell division
pflB	Central metabolism	slt	Peptidogycan/cell division
ррс	Central metabolism	zapB	Peptidogycan/cell division
pagP	LPS	lepA	Amino acid metabolism/translation
pgi	O antigen	tyrR	Amino acid metabolism/translation
rfbA	O antigen	mnmE	Amino acid metabolism/translation
rfbB	O antigen	sdaA	Amino acid metabolism/translation
rfbC	O antigen	smpB	Amino acid metabolism/translation
rfbE	O antigen	tgt	Amino acid metabolism/translation
rfbH	O antigen	gcvA	Amino acid metabolism/translation
rfbl	O antigen	hfq	DNA/RNA
rfbK	O antigen	seqA	DNA/RNA
rfbP	O antigen	yejK	DNA/RNA
rfbU	O antigen	hupA	DNA/RNA
wbbH	O antigen	sbcB	DNA/RNA
rfbM	O antigen	xseA	DNA/RNA
wzzB	O antigen	pcnB	DNA/RNA
oxyR	Redox/protein folding	topB	DNA/RNA
ahpC	Redox/protein folding	yejH	DNA/RNA
djlA	Redox/protein folding	pnp	DNA/RNA
dsbD	Redox/protein folding	rph	DNA/RNA
fkpA	Redox/protein folding	radA	DNA/RNA
hslU	Redox/protein folding	rapA	DNA/RNA

ridA	Redox/protein folding	rmuC	DNA/RNA
sodA	Redox/protein folding	recD	DNA/RNA
ytfK	Redox/protein folding	recG	DNA/RNA
aphA	Nucleotide metabolism	recJ	DNA/RNA
deoB	Nucleotide metabolism	virK	S. Typhi-specific
guaA	Nucleotide metabolism	t2932	S. Typhi-specific
guaB	Nucleotide metabolism	t0641	S. Typhi-specific
nadR	Nucleotide metabolism	t2899	S. Typhi-specific
pncB	Nucleotide metabolism	t3184	S. Typhi-specific
purC	Nucleotide metabolism	t1165	S. Typhi-specific
purH	Nucleotide metabolism	t1847	S. Typhi-specific
sthA	Nucleotide metabolism	t0533	S. Typhi-specific
rcsC	Cell envelope	t3230	S. Typhi-specific
rcsD	Cell envelope	t1442	S. Typhi-specific
clsA	Cell envelope	t1077	S. Typhi-specific
срхА	Cell envelope	t1344	S. Typhi-specific
fabR	Cell envelope	t1707	S. Typhi-specific
ompX	Cell envelope	t0642	S. Typhi-specific
rseB	Cell envelope	t0412	S. Typhi-specific
tamA	Cell envelope	t2603	S. Typhi-specific
tamB	Cell envelope	t1040	S. Typhi-specific
rffM	Cell envelope	t2964	S. Typhi-specific
yrfF	Cell envelope	t1398	S. Typhi-specific
cysW	Transporters	t3099	S. Typhi-specific
cysA	Transporters	t1460	S. Typhi-specific
trkH	Transporters	t0335	S. Typhi-specific
proP	Transporters	t3015	S. Typhi-specific
mgtA	Transporters	t1486	S. Typhi-specific
glpT	Transporters	t3199	S. Typhi-specific
treB	Carbon metabolism	t2206	S. Typhi-specific

barA	Carbon metabolism
uvrY	Carbon metabolism
kdgR	Carbon metabolism
cpdA	Carbon metabolism
glpD	Carbon metabolism
rbsK	Carbon metabolism
ulaR	Carbon metabolism
manA	Carbon metabolism
gntR	Carbon metabolism

t4122 cspC cspE S. Typhi-specific Misc Misc

Essential genes in glucose	Essential genes	in glucose nitrate	Essential genes in glycerol nitrate
aceE	aceE	rpmG	apaH
ackA	ackA	rpoZ	arcA
acnB	acnB	rppH	argA
adhE	apaG	rseX	argB
араН	араН	rsmA	argC
argA	appY	rsmD	argE
argB	argA	rsmH	argG
argC	argB	rttR	aroD
argE	argC	ruvA	asnT
argG	argD	ruvB	aspC
argH	argE	ruvC	atpB
argR	argG	rydB	atpD
argW	argH	sapC	clpP
aroA	argQ	sapD	clpX
aroB	argR	sapF	Crr
aroD	argW	secM	cvpA
aroE	ariR	serW	cyaA
aroK	aroA	sgrT	cysA
arrS	aroB	shoB	cysD
aspC	aroD	sixA	cysG
atpA	aroE	smpB	cysN
atpB	aroK	sokA	cysP
atpC	aroL	spoT	cysQ
atpD	arrS	ssrA	cysU
bioB	asnU	tatC	cysW
carA	asnV	thrA	dsbB
carB	aspC	thrB	eda
clpB	atpA	thrC	epmA
clpP	atpB	tktA	fbp
crr	atpC	tolA	fepB
cvpA	atpD	tolB	fepC

 Table A12. Essential genes following growth under anaerobic conditions

Essential genes in glucose	Essential genes in	alucose nitrate	Essential genes in glycerol nitra
cysA	bhsA	tolC	fepD
cysD	bioA	tolQ	fepG
cysG	bioB	tolR	fes
cysH	bioC	tonB	fliQ
cysl	bioD	tpr	fnr
cysK	bioF	trkA	fur
cysN	carA	trkH	galU
cysP	carB	trpA	gcvR
cysQ	cfa	trpC	glpF
cysU	citX	trpD	glpK
cysW	clpP	trpE	gltA
dcd	clpX	trpL	hemN
dsbA	сорА	truA	higA
dsbB	corA	trxA	hisG
eda	срхА	trxB	hisl
envC	crr	ttcC	hisL
fepD	cspl	tusC	ibsD
ftsB	cvpA	tyrA	ihfA
ftsE	cysA	tyrU	ihfB
fur	cysD	uof	ilvA
galU	cysG	usg	ilvB
gcvR	cysH	wzb	ilvC
glgA	cysl	xerC	ilvD
glnV	cysK	xerD	ilvE
glnX	cysM	xseB	iscA
gltA	cysN	yafN	ivbL
gpmA	cysP	ybaM	lepA
hdfR	cysQ	ybbC	leuA
higA	cysU	ybcK	leuB
hisA	cysW	ybcV	leuC
hisD	dcd	ybfB	leuD
hisG	dgkA	ybfC	leuT
hisl	dsbA	ybfQ	leuV

Essential genes in glucose	Essential genes	in glucose nitrate	Essential genes in glycerol nitrate
hns	dsbB	yccE	leuX
ibsD	eda	yceD	lpp
ilvA	elaD	yceO	Irp
ilvC	envC	yceQ	lysA
ilvD	exbD	ycgX	lysR
ilvE	fepB	ychF	lysZ
ilvX	fepC	yciB	metA
ilvY	fepD	yciE	metB
iscA	fepG	yciG	metC
IdhA	fes	ydeO	metF
leuA	fnr	ydfO	metR
leuB	fpr	ydiE	metY
leuC	ftsB	yedN	mgtS
leuD	ftsE	yehA	minE
lipA	fur	yehC	moaA
lipB	galU	yehD	moaC
lpp	gcvR	yejL	moaD
Irp	gdhA	yejM	moaE
lysA	glnV	yfbN	mobA
lysR	glnX	yfdF	modA
metA	gltA	yfjl	modB
metB	glyY	yfjW	moeA
metC	gtrS	ygeH	moeB
metF	hflD	ygel	mog
metJ	hfq	ygeN	nadA
metR	higA	yhaC	nadC
metY	hinT	yhbJ	narG
minE	hisA	yheO	narH
nadA	hisD	yhhH	narl
nadB	hisG	yhhK	nuoB
nadC	hisl	yhhZ	nuoC
ndh	hisL	yhiL	nuoE
nudB	hns	yhiS	nuoF

Essential genes in glucose	Essential genes in	alucose nitrate	Essential genes in glycerol nitra
nuoB	ibsD	yibG	nuoG
nuoE	ilvA	yibV	nuoH
nuoF	ilvB	yibW	nuol
nuoG	ilvC	yigG	nuoJ
ompA	ilvD	yjbM	nuoK
ompR	ilvE	yjcF	nuoL
pal	ilvX	yjdK	nuoM
pdxA	ilvY	yjeA	nuoN
pdxB	iscA	yjgL	ompA
, pgi	ivbL	yjhB	ompR
pgl	kilR	yjiC	pal
pgm	lepA	ykgH	pdxB
pheA	leuA	ykgP	pgi
pheL	leuB	ykgR	pheA
ррс	leuC	ymfD	pheL
ppk	leuD	ymfE	pmrR
prc	leuP	ymgC	ррс
proA	leuT	yncl	prc
proC	leuX	yneG	proA
psrO	lipA	yneM	proC
pstB	lipB	ynfK	proK
pstS	lpp	ynfN	psaA
pta	Irp	yniD	psrO
ptsG	lysA	ypjJ	pstC
ptsN	lysR	yqcG	ptsN
purE	lysZ	yqeH	purN
purK	metA	yqeJ	rapZ
pyrB	metB	yqeL	rdIC
pyrC	metC	ytfl	relA
pyrD	metF	znuB	relB
pyrE	metR	zwf	rfaH
pyrF	mgrB		rfaP
rdlA	miaA		rng

Essential	genes in	glycerol	nitrate	
-	-			

Essential genes in glucose	Essential genes in glucose nitrate	Essential genes in glycerol nitrate
recA	micA	rnhA
recC	minE	rnlB
relA	mnmG	rpoZ
relB	moaA	rseA
rfaC	moaC	ruvB
rfaG	moaE	ruvC
rfaH	mobA	sapB
rfaP	modC	sapC
rng	moeA	sapD
rnhA	moeB	sapF
rnlB	mog	serU
rpe	mrcB	serW
rpmG	nadA	smpB
rppH	nadB	spoT
ruvB	nadC	sspA
ruvC	narl	ssrA
sapC	ndh	tatC
sapD	nhaA	thrA
sapF	nohQ	thrB
secM	nudB	thrL
sixA	nuoJ	tktA
smpB	ompA	tolA
speE	ompR	tolB
sspA	pabA	toIC
ssrA	pal	toIR
sucC	panB	tpr
sucD	panC	trkA
thrA	panD	trpC
thrB	pdxA	trpD
thrC	pdxB	trpE
tktA	pgi	truA
tolA	pgl	trxA
tolB	pgm	tyrA

tolCpheAtyrUtolQpheLulaRtolRpitAvalWtrkAppcxerCtrpAproAyafNtrpCproCybaMtrpDpstByceDtrpEpstCyceQtruAptaygeltrxAptaGyhcGtrxAptaGyhcGtrxAptaGyhcGtrxBpurKyktNtyrApurKyktNtyrApurKyktNtyrApurKyktNtyrApurNyohOuofpyrBypaAxerCpyrEyraPybQpyrFyraPybQrecGyfaCygelrecAygelrecGygelrecGyifErelByjeArelByjeArelByjeArelByiferfaGymgCrfaPyqcGrimP	Essential genes in glucose	Essential genes in glucose nitrate	Essential genes in glycerol nitrate
tolRpitAvalWtrkAppcxerCtrpAproAyafNtrpCproCybaMtrpDpstByceDtrpEpstCyceQtrpLpstSyecJtruAptaygeltrxAptsGyhcBtrxBptsNyheOttcCpurEyhfGtusCpurKyktNuofpyrBypaAxerCpyrCypdKybQpyrFyraPybfQpyrFyraPyftSrdICyftSyftSrdICyifEyifErecGyifEyifErelByifEyifFrfaCymgCymgCrfaP			
trkAppcxerCtrpAproAyafNtrpCproCybaMtrpDpstByceDtrpEpstCyceQtrpLpstSyecJtruAptaygeltrxAptsGyhcBtrxBpurEyhfGtusCpurKypAxerCpyrBypaAxerCpyrFyraPybfQpyrFyraPybfQpyrFyraPyccEraCyraPybfQpyrFyraPyccEraCyraPyftSrdICyraPyftSrdICyiffygeNrecAyiffyjeArelByiffyiffralAyiff <td< td=""><td>tolQ</td><td>pheL</td><td>ulaR</td></td<>	tolQ	pheL	ulaR
trpAproAyafNtrpCproCybaMtrpDpstByceDtrpEpstCyceQtruAptaygeltrxAptsGyhcBtrxBptsNyheQttcCpurEyhfGtusCpurKykfNtyrApyrBypaAxerCpyrCypdKxerDpyrFyraPybfQpyrFyraPyfcErdlAyfrSyfcErdlAyfrSyfsSrdlCyifEygeNrecCyifErelByifFrfaCymfCrfaP	toIR	pitA	valW
trpA proA yafN trpC proC ybaM trpD pstB yceQ trpL pstC yceQ truA pta ygel trxA ptsG yhG txA ptsG yhG txC purK yhG tusC purK ykN uof pyrB ypaA xerD pyrC ypdK xerD pyrF yraC ybfQ pyrF yraP ybfQ pyrF yraP yfcE rdIA yffS yffS rdIC ygeN yffS rdIC ygeN yffE reA yjeF yffF rfaC ymfC yjeF rfaC ymfC yffF rfaC ymfC	trkA	ppc	xerC
trpD pstB yceD trpE pstC yceQ trpL pstS yecJ truA pta ygel trxA ptsG yheB trxB ptsN yheO ttcC purE yhfG tusC purK yktN tyrA purN yohO uof pyrB ypaA xerC pyrC ypdK xerD pyrP yqcG ybbC pyrF yraP ybfQ pyrF yraP ybfQ rd/A yreC yrdE rd/A yreC yfgl recC yreC yffS rd/A yreC yfeF rd/A yreC yfeF rd/A yreC	trpA	proA	yafN
trpE pstC yceQ trpL pstS yecJ truA pta ygel trxA ptsG yhcB trxB ptsN yheO ttcC purE yhfG tusC purK ykfN tyrA purN yohO uof pyrB ypaA xerC pyrC ydK ybbC pyrF yceG ybfQ pyrF yceQ yceQ rdfA yfF yceQ rdfA yffS yffS rdIC ygeN ygeN recG y/ifF yifeA relB yjeA yjeA relA yjeF	trpC	proC	ybaM
trpL pstS yecJ truA pta ygel trxA ptsG yhcB trxB ptsN yheO ttcC purE yhffG tusC purK ykfN tyrA purN yohO uof pyrB ypaA xerC pyrC ypdK xerD pyrE yraP ybfQ pyrF yraP yccE racC yceQ yfcE rdIA yffS yffS rdIA yffS yffS rdIA yffS yffE reA ygeN yfeF rfaC yffF yfifE reIA yjeF yfeF rfaC ymfE ymfE rfaG ymgC	trpD	pstB	yceD
truA pta ygel trxA ptsG yhcB trxB ptsN yheO ttcC purE yhfG tusC purK ykfN tyrA purN yohO uof pyrB ypaA xerC pyrC ypdK xerD pyrF yraP ybfQ pyrF yraP ybfQ pyrF yraP ybfQ pyrF yraP yceQ rbfA yraP yfsS rdIC ygeN ygeN recG yifE yifE relA yifA yifF rfaC ymfE ymfE rfaG ymfE ymgC rfaP	trpE	pstC	yceQ
trxAptsGyhcBtrxBptsNyheOttcCpurEyhfGtusCpurKykfNtyrApurNyohOuofpyrBypaAxerCpyrCypdKxerDpyrEyraPybfQpyrFyceEyccEraCCyceQyffSrdlAyffSrdlAyffSrdlAyffSrecAygeNrecGyifErfaCyifFrfaCyifFrfaCymfErfaGymgCrfaP	trpL	pstS	yecJ
trxB ptsN yheO ttcC purE yhfG tusC purK ykfN tyrA purN yohO uof pyrB ypaA xerC pyrC ypdK xerD pyrF yqcG ybbC pyrF yraP ybdQ pyrF yraP yceQ rbfA yffS rdIC ygeI ygeI recA yjeA relB yieF rfaC ymfE rfaG ymgC rfaP	truA	pta	ygel
ttcCpurEyhfGtusCpurKykfNtyrApurNyohOuofpyrBypaAxerCpyrCypdKxerDpyrDyqcGybbCpyrFyraPybtQpyrFyceQyccEracCyceQyfsrdlAyffSrdlCygeNrecGyifErelAyjeArelByjeFrfaGymfErfaGymgCrfaP	trxA	ptsG	yhcB
tusC purK ykfN tyrA purN yohO uof pyrB ypaA xerC pyrC ypdK xerD pyrD yqcG ybbC pyrF yraP ybfQ pyrF yceE yccE racC yceQ yfcE rdlA yffS yfgE rdlC ygel ygeN recG yifE yjeF rfaC yifE yfeF rfaC ymfE yfeF rfaC ymfE			•
tyrApurNyohOuofpyrBypaAxerCpyrCypdKxerDpyrDyqcGybbCpyrFyraPybfQpyrFyraPyccEracCyceQyfcErdIAyffSrdICygeNrecAyffErelAyjeArelByjeFrfaCymfErfaGymfErfaP			
uofpyrBypaAxerCpyrCypdKxerDpyrDyqcGybbCpyrEyraPybfQpyrFyccEracCyceQrbfAyftErdlCygelrecAygeNrecGyifErelByjeFrfaCymfErfaGymfErfaGymgCrfaP			
xerCpyrCypdKxerDpyrDyqcGybbCpyrEyraPybfQpyrFyccEyccQrbfAyfcEyfcErdlAyffSrdlCygelrecAygeNrecGyifErelAyjeFrfaCymfErfaGymfErfaGymgCrfaP			-
xerDpyrDyqcGybbCpyrEyraPybfQpyrFyccEracCyceQrbfAyfcErdlAyffSrdlCygelrecAygeNrecGyifErelAyjeFrfaCymfErfaGymgCrfaP			
ybbCpyrEyraPybfQpyrFyccEracCyceQrbfAyfcErdlAyffSrdlCygelrecAygeNrecCyhbJrecGyifErelAyjeFrfaCymfErfaGymgCrfaP			
ybfQpyrFyccEracCyceQrbfAyfcErdlAyffSrdlCygelrecAygeNrecCyhbJrecGyifErelByjeFrfaCymfErfaGymgCrfaP			
yccEracCyceQrbfAyfcErdlAyffSrdlCygelrecAygeNrecCyhbJrecGyifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP			yraP
yceQrbfAyfcErdlAyffSrdlCygelrecAygeNrecCyhbJrecGyifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP			
yfcrdlAyffSrdlCygelrecAygeNrecCyhbJrecGyifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP	-		
yffSrdlCygelrecAygeNrecCyhbJrecGyifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP			
ygel recA ygeN recC yhbJ recG yifE relA yjeA relB yjeF rfaC ymfE rfaG ymgC rfaP			
ygeNrecCyhbJrecGyifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP	-		
yhbJ recG yifE relA yjeA relB yjeF rfaC ymfE rfaG ymgC rfaP			
yifErelAyjeArelByjeFrfaCymfErfaGymgCrfaP			
yjeA relB yjeF rfaC ymfE rfaG ymgC rfaP			
yjeF rfaC ymfE rfaG ymgC rfaP			
ymfE rfaG ymgC rfaP			
ymgC rfaP			
	-		
yqcG nmP			
	yqcG	rime	

Essential genes in glucose	Essential genes in glucose nitrate
yqeJ	rnb
yqeL	rng
znuB	rnhA
zwf	rpe

Table A13. Genes with significant logFC values following growth under anaerobic conditions Glucose

Glucose						
locus_tag	gene_name	function	logFC	<u>logCPM</u>	Pvalue	<u>q.value (cutoff =</u> 0.002188183)
b3008	metC	cystathionine beta-lyase, PLP-dependent	-9.877686805	5.960575564	6.79E-23	3.17E-20
b1262	trpC	fused indole-3-glycerolphosphate synthetase/N-(5- phosphoribosyl)anthranilate isomerase	-9.570003527	5.662675708	6.31E-20	2.21E-17
b3939	metB	cystathionine gamma-synthase, PLP-dependent	-9.112287133	5.225864686	2.88E-14	4.03E-12
b0750	nadA	quinolinate synthase, subunit A	-9.004585791	5.123251498	4.34E-16	9.10E-14
b0071	leuD	3-isopropylmalate dehydratase small subunit	-8.992720357	5.112257624	4.64E-16	9.27E-14
b0073	leuB	3-isopropylmalate dehydrogenase, NAD(+)-dependent	-8.934201588	5.057164605	3.12E-15	5.24E-13
b0889	Irp	DNA-binding transcriptional dual regulator, leucine-binding	-8.702971266	4.840150774	3.99E-14	5.08E-12
b0720	gltA	citrate synthase	-8.688344067	4.826801145	9.52E-14	1.11E-11
b0740	tolB	periplasmic protein	-8.658008392	4.799547754	4.62E-09	2.69E-07
b2838	lysA	diaminopimelate decarboxylase, PLP-binding	-8.3221699	4.488213521	1.65E-10	1.24E-08
b3771	ilvD	dihydroxyacid dehydratase	-8.284034367	4.454113845	1.56E-11	1.34E-09
b3172	argG	argininosuccinate synthetase	-8.2641262	4.436609082	1.05E-09	7.09E-08
b1241	adhE	fused acetaldehyde-CoA dehydrogenase/iron-dependent alcohol dehydrogenase/pyruvate-formate lyase deactivase	-8.12711882	7.872053704	7.91E-85	3.32E-81
b1677	lpp	murein lipoprotein	-7.900902967	4.109992488	2.60E-09	1.63E-07
b1236	galU	glucose-1-phosphate uridylyltransferase	-7.878700631	4.088975404	1.21E-07	5.58E-06
b3774	ilvC	ketol-acid reductoisomerase, NAD(P)-binding	-7.876510967	4.088309685	2.42E-09	1.56E-07
b0243	proA	gamma-glutamylphosphate reductase	-7.82690662	4.044089608	3.51E-09	2.08E-07
b3829	metE	5-methyltetrahydropteroyltriglutamate-homocysteine S- methyltransferase	-7.82644191	4.043940389	2.74E-09	1.69E-07
b0003	thrB	homoserine kinase	-7.826208391	4.043865783	3.52E-09	2.08E-07
b3770	ilvE	branched-chain amino-acid aminotransferase	-7.774685514	3.998199548	5.97E-09	3.43E-07
b3734	atpA	F1 sector of membrane-bound ATP synthase, alpha subunit	-7.665041285	3.902036552	1.16E-07	5.40E-06
b3082	higA	antitoxinof the HigB-HigA toxin-antitoxin system	-7.636458714	3.876997395	4.98E-07	2.13E-05
b2557	purL	phosphoribosylformyl-glycineamide synthetase	-7.574807889	3.824873226	2.77E-08	1.47E-06
b0738	toIR	membrane spanning protein in ToIA-ToIQ-ToIR complex	-7.572592923	3.82432976	7.04E-06	0.000226398
b3941	metF	5,10-methylenetetrahydrofolate reductase	-7.511670273	3.771142666	1.62E-07	7.41E-06

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff =</u> 0.002188183)
b4214	cysQ	PAPS (adenosine 3'-phosphate 5'-phosphosulfate) 3'(2'),5'-bisphosphate nucleotidase	-7.482096727	3.744301418	1.71E-06	6.63E-05
b0052	pdxA	4-hydroxy-L-threonine phosphate dehydrogenase, NAD- dependent	-7.415258488	3.687584547	1.90E-06	7.20E-05
b0688	pgm	phosphoglucomutase	-7.415073771	3.68754482	1.18E-06	4.87E-05
b0741	pal	peptidoglycan-associated outer membrane lipoprotein	-7.377321087	3.657572462	3.29E-06	0.000120244
b1101	ptsG	fused glucose-specific PTS enzymes: IIB component/IIC component	-7.297952271	5.706412079	1.01E-16	2.50E-14
b0386	proC	pyrroline-5-carboxylate reductase, NAD(P)-binding	-7.230981929	3.534708156	1.37E-06	5.42E-05
b3738	atpB	F0 sector of membrane-bound ATP synthase, subunit a	-7.193334958	3.502621757	1.25E-06	5.09E-05
b2026	hisl	fused phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase	-7.191195924	3.502131514	5.26E-06	0.000178101
b0908	aroA	5-enolpyruvylshikimate-3-phosphate synthetase	-7.15347799	3.469505817	4.03E-06	0.000141899
b2414	cysK	cysteine synthase A, O-acetylserine sulfhydrolase A subunit	-7.112094744	3.43552738	6.83E-06	0.000222436
b0004	thrC	threonine synthase	-7.068107284	3.400440397	1.89E-06	7.20E-05
b3732	atpD	F1 sector of membrane-bound ATP synthase, beta subunit	-7.023007051	3.364533461	5.53E-06	0.000184365
b2320	pdxB	erythronate-4-phosphate dehydrogenase	-6.979605952	3.328391368	9.38E-06	0.000287369
b2574	nadB	quinolinate synthase, L-aspartate oxidase (B protein) subunit	-6.960080683	5.387086801	2.51E-16	5.55E-14
b0242	proB	gamma-glutamate kinase	-6.883184995	3.252122544	6.38E-06	0.000209413
b4025	pgi	glucosephosphate isomerase	-6.874187571	5.303674869	9.79E-16	1.87E-13
b2762	cysH	3'-phosphoadenosine 5'-phosphosulfate reductase	-6.834755334	3.212856519	7.49E-05	0.001930143
b2296	ackA	acetate kinase A and propionate kinase 2	-6.672237763	3.087050515	7.13E-05	0.001848065
b0032	carA	carbamoyl phosphate synthetase small subunit, glutamine amidotransferase	-6.669598307	3.086576331	7.01E-05	0.001828404
b3916	pfkA	6-phosphofructokinase I	-6.551968573	2.99651939	4.85E-05	0.001296019
b3860	dsbA	periplasmic protein disulfide isomerase I	-6.352981601	7.057432395	1.79E-34	1.25E-31
b0957	ompA	outer membrane protein A (3a;II*;G;d)	-6.130712955	4.615455605	6.58E-10	4.61E-08
b0074	leuA	2-isopropylmalate synthase	-5.838044041	5.647205694	1.13E-16	2.63E-14
b0729	sucD	succinyl-CoA synthetase, NAD(P)-binding, alpha subunit	-5.776216715	6.714728724	1.33E-35	1.12E-32
b3828	metR	DNA-binding transcriptional activator	-5.51646693	4.066183682	3.08E-08	1.61E-06

locus_tag	gene name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff =</u>
	•					<u>0.002188183)</u>
b3035	toIC	transport channel	-5.353209404	5.185658504	9.63E-13	9.63E-11
b0109	nadC	quinolinate phosphoribosyltransferase	-5.317714739	4.659802707	7.56E-11	5.99E-09
b0002	thrA	fused aspartokinase I and homoserine dehydrogenase I	-5.284121069	5.498559803	1.25E-14	1.87E-12
b2839	lysR	DNA-binding transcriptional dual regulator	-5.260991633	5.760905306	3.54E-15	5.72E-13
b0728	sucC	succinyl-CoA synthetase, beta subunit	-5.258319888	6.560345317	2.59E-27	1.36E-24
b3772	ilvA	threonine deaminase	-5.249993753	5.090254374	4.65E-12	4.44E-10
b2752	cysD	sulfate adenylyltransferase, subunit 2	-5.24209839	5.09123256	4.89E-10	3.54E-08
b3960	argH	argininosuccinate lyase	-5.197876611	3.798178878	1.48E-06	5.80E-05
b1274	topA	DNA topoisomerase I, omega subunit	-5.030603652	3.658171887	3.09E-06	0.000113892
b2313	cvpA	membrane protein required for colicin V production	-4.996645249	3.627671696	8.47E-06	0.000263298
		fused glutamine amidotransferase (component II) of				
b1263	trpD	anthranilate synthase/anthranilate phosphoribosyl	-4.967863743	4.84040049	5.09E-10	3.62E-08
		transferase				
b2526	hscA	DnaK-like molecular chaperone specific for IscU	-4.956951853	3.597911834	4.64E-06	0.000159784
b2019	hisG	ATP phosphoribosyltransferase	-4.950454069	4.329668247	2.17E-08	1.17E-06
b3956	ррс	phosphoenolpyruvate carboxylase	-4.863018325	4.745887213	4.33E-10	3.19E-08
b1264	trpE	component I of anthranilate synthase	-4.811190017	4.214310622	5.50E-08	2.78E-06
b1693	aroD	3-dehydroquinate dehydratase	-4.80050788	3.468888593	1.36E-05	0.000405783
b2020	hisD	bifunctional histidinal dehydrogenase/ histidinol dehydrogenase	-4.797627706	3.469424595	1.98E-05	0.000575367
b0072	leuC	3-isopropylmalate dehydratase large subunit	-4.788054198	5.034248852	1.06E-11	9.25E-10
b2751	cysN	sulfate adenylyltransferase, subunit 1	-4.662832897	5.216618836	5.36E-11	4.33E-09
b3631	rfaG	glucosyltransferase I	-4.647271826	6.592416267	2.74E-28	1.64E-25
b0739	tolA	membrane anchored protein in ToIA-ToIQ-ToIR complex	-4.542624532	4.453088306	4.80E-07	2.08E-05
b1830	prc	carboxy-terminal protease for penicillin-binding protein 3	-4.511852143	5.861861158	2.66E-14	3.85E-12
b2340	sixA	phosphohistidine phosphatase	-4.459348753	4.746300899	3.50E-08	1.81E-06
b2763	cysl	sulfite reductase, beta subunit, NAD(P)-binding, heme- binding	-4.41734534	3.876612531	5.35E-06	0.000179601
b0049	араН	diadenosine tetraphosphatase	-4.270757477	5.089450706	8.01E-10	5.51E-08
b2592	clpB	protein disaggregation chaperone	-4.236488634	7.913801793	4.30E-53	6.01E-50
b2501	, ppk	polyphosphate kinase, component of RNA degradosome	-4.225773438	7.792660693	7.19E-14	8.62E-12

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff =</u> <u>0.002188183)</u>
b3368	cysG	fused siroheme synthase 1,3-dimethyluroporphyriongen III dehydrogenase and siroheme ferrochelatase/uroporphyrinogen methyltransferase	-4.157578102	5.000667134	9.40E-08	4.43E-06
b1185	dsbB	oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I	-4.14564326	5.522307594	3.68E-12	3.59E-10
b4155	yjeA	EF-P-lysine34-lysine ligase	-4.066552616	4.902934609	2.08E-07	9.29E-06
b0033	carB	carbamoyl-phosphate synthase large subunit	-4.049365814	4.903087638	3.78E-07	1.65E-05
b0118	acnB	bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase	-3.928822854	4.801304773	4.16E-05	0.001118572
b2423	cysW	sulfate/thiosulfate ABC transporter subunit	-3.906285273	4.976681305	1.18E-08	6.49E-07
b3247	rng	ribonuclease G	-3.904650104	6.093117989	8.34E-13	8.54E-11
b0239	frsA	fermentation-respiration switch protein; PTS Enzyme IIA(Glc)-binding protein; pNP-butyrate esterase activity	-3.859524415	7.675827373	1.45E-47	1.52E-44
b1850	eda	multifunctional 2-keto-3-deoxygluconate 6-phosphate aldolase and 2-keto-4-hydroxyglutarate aldolase and oxaloacetate decarboxylase	-3.823018333	3.851012825	2.32E-05	0.000645956
b1380	ldhA	fermentative D-lactate dehydrogenase, NAD-dependent	-3.768671639	6.357721025	6.05E-08	3.02E-06
b3781	trxA	thioredoxin 1	-3.688585478	4.772862575	1.30E-05	0.000390414
b2822	recC	exonuclease V (RecBCD complex), gamma chain	-3.627512593	4.731711443	9.06E-08	4.32E-06
b3613	envC	activator of AmiB,C murein hydrolases, septal ring factor	-3.622443434	6.718019614	3.07E-13	3.40E-11
b2300	yfcE	phosphodiesterase activity on bis-pNPP	-3.603994448	5.302661246	2.22E-09	1.46E-07
b1857	znuA	zinc transporter subunit: periplasmic-binding component of ABC superfamily	-3.558226292	6.653358793	1.67E-15	3.05E-13
b2784	relA	(p)ppGpp synthetase I/GTP pyrophosphokinase	-3.492474935	7.333602488	9.01E-12	8.22E-10
b3205	yhbJ	gImZ(sRNA)-inactivating NTPase, glucosamine-6- phosphate regulated	-3.482728587	5.430107511	1.04E-08	5.85E-07
b3839	tatC	TatABCE protein translocation system subunit	-3.449558009	6.594080216	8.53E-17	2.24E-14
b3290	trkA	NAD-binding component of TrK potassium transporter	-3.21585534	4.38397544	3.72E-06	0.000133509
b3429	glgA	glycogen synthase	-3.129446551	6.44525508	3.39E-13	3.65E-11
b0755	gpmA	phosphoglyceromutase 1	-3.127498311	6.396306195	3.08E-15	5.24E-13

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff =</u> <u>0.002188183)</u>
b0890	ftsK	DNA translocase at septal ring sorting daughter chromsomes	-3.06398268	4.716820648	8.23E-07	3.45E-05
b3021 b2297	mqsA pta	antitoxin for MqsR toxin; predicted transcriptional regulator phosphate acetyltransferase	-3.021254016 -2.879456965	5.537314633 4.567723118	6.33E-09 8.43E-06	3.59E-07 0.000263298
b0902	pfIA	pyruvate formate lyase activating enzyme 1	-2.818384087	7.0526443	1.55E-10	1.18E-08
b0767	pgl	6-phosphogluconolactonase	-2.788918323	5.668575642	5.39E-08	2.76E-06
b0903	pfIB	pyruvate formate lyase l	-2.760815255	8.522955142	5.49E-17	1.54E-14
b1859	znuB	zinc transporter subunit: membrane component of ABC superfamily	-2.746876857	5.312908221	3.08E-06	0.000113892
b3405	ompR	DNA-binding response regulator in two-component regulatory system with EnvZ	-2.669690831	5.732452948	4.09E-06	0.000141899
b1232	purU	formyltetrahydrofolate hydrolase	-2.65584935	6.426578955	6.21E-13	6.52E-11
b2425	cysP	thiosulfate-binding protein	-2.549598844	6.036650093	3.94E-06	0.000140363
b1858	znuC	zinc transporter subunit: ATP-binding component of ABC superfamily	-2.527866456	6.079349803	2.50E-09	1.59E-07
b3630	rfaP	kinase that phosphorylates core heptose of lipopolysaccharide	-2.503892757	5.110698147	3.32E-06	0.000120244
b3911	срхА	sensory histidine kinase in two-component regulatory system with CpxR	-2.485264902	8.343866482	9.14E-20	2.95E-17
b0912	ihfB	integration host factor (IHF), DNA-binding protein, beta subunit	-2.462999374	5.340060329	2.30E-06	8.62E-05
b0077	ilvl	acetolactate synthase III, large subunit	-2.432712107	6.99191795	3.99E-14	5.08E-12
b2741	rpoS	RNA polymerase, sigma S (sigma 38) factor	-2.28832011	6.14884197	8.97E-08	4.32E-06
b3930	menA	1,4-dihydroxy-2-naphthoate octaprenyltransferase	-2.283979715	6.834113827	7.63E-06	0.000240993
b3163	nlpl	lipoprotein involved in osmotic sensitivity and filamentation	-2.247934928	5.6594604	7.30E-06	0.000232259
b3495	uspA	universal stress global response regulator	-2.239740795	7.41444384	3.39E-05	0.000922421
b1176	minC	cell division inhibitor	-2.213189634	6.941272965	7.64E-12	7.13E-10
b2188	yejM	predicted hydrolase, inner membrane	-2.135126353	6.848540511	5.22E-11	4.30E-09
b2290	alaA	valine-pyruvate aminotransferase 2	-2.068767117	7.942808659	2.28E-22	9.57E-20
b1109	ndh min D	respiratory NADH dehydrogenase 2/cupric reductase	-2.026132989	5.885073262	7.06E-06	0.000226398
b1175 b0121	minD	membrane ATPase of the MinC-MinD-MinE system	-1.950413117	7.425924333 6.309573973	5.27E-15 1.17E-05	8.20E-13 0.000352366
00121	speE	spermidine synthase (putrescine aminopropyltransferase)	-1.947111079	0.3095/39/3	1.1/E-05	0.000352366

locus_tag	gene_name	function	<u>logFC</u>	logCPM	Pvalue	<u>q.value (cutoff =</u> 0.002188183)
b0585	fes	enterobactin/ferric enterobactin esterase	-1.906095516	5.884663404	9.60E-06	0.000292238
b0120	speD	S-adenosylmethionine decarboxylase	-1.884043785	6.511625557	2.65E-05	0.00073231
b0080	cra	DNA-binding transcriptional repressor-activator for carbon metabolism	-1.870649324	6.472646678	6.43E-07	2.73E-05
b1593	ynfK	predicted dethiobiotin synthetase	-1.823466815	6.256317143	1.46E-05	0.000432505
b3933	ftsN	essential cell division protein	-1.741387412	6.10020507	2.96E-05	0.000810986
b0075	leuL	leu operon leader peptide	-1.690484345	6.42286185	2.25E-05	0.000628548
b0484	сорА	copper transporter	-1.659125299	8.170393789	7.87E-18	2.36E-15
b1812	pabB	aminodeoxychorismate synthase, subunit I	-1.606313856	7.4868262	2.73E-07	1.21E-05
b4218	ytfL	inner membrane protein, UPF0053 family	-1.581293423	7.594920672	1.04E-11	9.25E-10
b2330	prmB	N5-glutamine methyltransferase	-1.537275109	6.875445146	1.30E-06	5.18E-05
b3432	glgB	1,4-alpha-glucan branching enzyme	-1.500788882	7.966667667	2.12E-05	0.000600143
b3252	csrD	targeting factor for csrBC sRNA degradation	-1.475911332	8.06721401	3.56E-14	4.82E-12
b1096	pabC	4-amino-4-deoxychorismate lyase component of para- aminobenzoate synthase multienzyme complex	-1.422266459	6.843289563	1.04E-06	4.31E-05
b3409	feoB	fused ferrous iron transporter, protein B: GTP-binding protein/membrane protein	-1.414812691	8.693810847	4.19E-14	5.17E-12
b0406	tgt	tRNA-guanine transglycosylase	-1.383602401	7.719513079	7.57E-08	3.74E-06
b1249	cls	cardiolipin synthase 1	-1.340272139	7.273139359	1.83E-06	7.04E-05
b3408	feoA	ferrous iron transporter, protein A	-1.276612527	7.432111792	1.94E-07	8.78E-06
b0819	ybiS	L,D-transpeptidase linking Lpp to murein	-1.112947598	7.89184208	1.28E-06	5.15E-05
b1661	cfa	cyclopropane fatty acyl phospholipid synthase (unsaturated-phospholipid methyltransferase)	-1.108982403	7.335002453	9.24E-06	0.000285359
b1676	pykF	pyruvate kinase I	-1.065559994	7.171812847	1.99E-05	0.000575367
b0919	ycbJ	conserved protein	-0.939535991	7.538559992	5.27E-05	0.001401194
		vancomycin high temperature exclusion protein; mutants				
b2144	sanA	have a defective envelope more permeable to vancomycin at 42 degrees	-0.755495375	9.48761452	4.07E-06	0.000141899
b4141	yjeH	predicted transporter	0.667347796	8.847998102	2.07E-05	0.000595574
b3940	metL	fused aspartokinase II/homoserine dehydrogenase II	0.668284054	9.197728295	1.74E-05	0.000511619
b0830	gsiB	glutathione periplasmic binding protein, ABC superfamily transporter	0.736473597	9.167451285	3.40E-05	0.000922421

locus_tag	gene_name	function	logFC	logCPM	<u>Pvalue</u>	<u>q.value (cutoff =</u> <u>0.002188183)</u>
b1243	oppA	oligopeptide transporter subunit	0.76357489	8.724166605	5.09E-06	0.00017372
b3780	rhIB	ATP-dependent RNA helicase	0.820019648	8.899124762	2.21E-05	0.000621677
b0381	ddlA	D-alanine-D-alanine ligase A	0.917493042	9.06825475	8.69E-08	4.24E-06
b1824	yobF	predicted protein	0.922173491	7.64787107	6.38E-05	0.001675392
b2786	barA	hybrid sensory histidine kinase, in two-component regulatory system with UvrY	1.014427146	11.38237041	3.78E-11	3.18E-09
b1914	uvrY	DNA-binding response regulator in two-component regulatory system with BarA	1.027145787	9.271608784	2.79E-09	1.70E-07
b2829	ptsP	fused PTS enzyme: PEP-protein phosphotransferase (enzyme I)/GAF domain containing protein	1.036221077	9.675391387	9.76E-11	7.59E-09
b2903	gcvP	glycine decarboxylase, PLP-dependent, subunit (protein P) of glycine cleavage complex	1.095457083	9.826901999	1.44E-13	1.63E-11
b0059	rapA	RNA polymerase-associated helicase protein (ATPase and RNA polymerase recycling factor)	1.292103347	10.42964037	1.38E-09	9.20E-08
b3181	greA	transcript cleavage factor	1.314013256	6.792704055	5.69E-05	0.001501875
b4260	рерА	multifunctional aminopeptidase A: a cyteinylglycinase, transcription regulator and site-specific recombination factor	1.382370758	8.826883534	1.95E-08	1.06E-06
b2947	gshB	glutathione synthetase	1.544847185	6.566575326	6.18E-06	0.00020435
b2688	gshA	glutamate-cysteine ligase	2.089686175	8.831550986	6.16E-20	2.21E-17
b3783	rho	transcription termination factor	2.456384738	5.474325994	2.11E-05	0.000600143
b1849	purT	phosphoribosylglycinamide formyltransferase 2	4.173653583	10.73466199	5.91E-54	1.24E-50

Table A13. -Glucose nitrate

Success initiate								
locus_tag	gene_name	function	logFC	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)		
b2784	relA	(p)ppGpp synthetase I/GTP pyrophosphokinase	-11.18475759	7.254643588	1.14E-25		2.25E-23	
b3924	fpr	ferredoxin-NADP reductase	-10.45654815	6.535842049	5.83E-28		1.44E-25	
b3008	metC	cystathionine beta-lyase, PLP-dependent	-9.912646016	6.003259678	6.76E-17		5.20E-15	
b2839	lysR	DNA-binding transcriptional dual regulator	-9.670635283	5.76811679	7.07E-15		4.17E-13	
b1101	ptsG	fused glucose-specific PTS enzymes: IIB component/IIC component	-9.63963832	5.738481548	1.72E-13		8.12E-12	
b1262	trpC	fused indole-3-glycerolphosphate synthetase/N-(5- phosphoribosyl)anthranilate isomerase	-9.602195677	5.702138445	2.54E-14		1.37E-12	
b0585	fes	enterobactin/ferric enterobactin esterase	-9.491201028	5.594780301	4.44E-14		2.33E-12	
b0592	fepB	iron-enterobactin transporter subunit	-9.422965642	5.529153904	3.75E-13		1.64E-11	
b0767	pgl	6-phosphogluconolactonase	-9.414776235	5.521117115	1.60E-13		7.60E-12	
b0002	thrA	fused aspartokinase I and homoserine dehydrogenase I	-9.396992632	5.504069722	2.34E-13		1.07E-11	
b4025	pgi	glucosephosphate isomerase	-9.21904103	5.333172597	5.84E-12		2.17E-10	
b0438	clpX	ATPase and specificity subunit of CIpX-CIpP ATP- dependent serine protease	-9.208207816	5.323071825	6.02E-12		2.21E-10	
b0783	moaC	molybdopterin biosynthesis, protein C	-9.148150436	5.265126756	1.18E-09		2.76E-08	
b3939	metB	cystathionine gamma-synthase, PLP-dependent	-9.147793484	5.264915496	1.56E-10		4.51E-09	
b0588	fepC	iron-enterobactin transporter subunit	-9.083067014	5.203299897	8.76E-11		2.62E-09	
b2751	cysN	sulfate adenylyltransferase, subunit 1	-9.082216561	5.202785392	1.58E-11		5.39E-10	
b3035	toIC	transport channel	-9.071023435	5.192187237	2.53E-11		8.34E-10	
b0928	aspC	aspartate aminotransferase, PLP-dependent	-9.049933273	5.171690199	3.68E-10		9.94E-09	
b0750	nadA	quinolinate synthase, subunit A	-9.037511437	5.16028208	3.09E-11		1.01E-09	
b0071	leuD	3-isopropylmalate dehydratase small subunit	-9.026519225	5.149701062	3.38E-11		1.09E-09	
b0590	fepD	iron-enterobactin transporter subunit	-8.980120685	5.105644308	6.10E-11		1.89E-09	
b0073	leuB	3-isopropylmalate dehydrogenase, NAD(+)-dependent	-8.968392597	5.09448148	9.33E-11		2.77E-09	
b3772	ilvA	threonine deaminase	-8.967720159	5.094085644	8.19E-11		2.47E-09	
b2752	cysD	sulfate adenylyltransferase, subunit 2	-8.967082977	5.093718068	9.25E-10		2.23E-08	
b1062	pyrC	dihydro-orotase	-8.93426283	5.061353831	2.73E-06		3.17E-05	
b0072	leuC	3-isopropylmalate dehydratase large subunit	-8.894784201	5.024961165	1.35E-10		3.93E-09	

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
		fused siroheme synthase 1,3-dimethyluroporphyriongen III				
b3368	cysG	dehydrogenase and siroheme	-8.83018226	4.964236353	8.32E-10	2.03E-08
		ferrochelatase/uroporphyrinogen methyltransferase				
b4013	metA	homoserine O-transsuccinylase	-8.792083736	4.927708012	7.79E-09	1.49E-07
b2422	cysA	sulfate/thiosulfate transporter subunit	-8.79103979	4.927135512	3.99E-10	1.07E-08
b2423	cysW	sulfate/thiosulfate ABC transporter subunit	-8.790878123	4.927045116	4.26E-10	1.11E-08
b0630	lipB	octanoyltransferase; octanoyl-[ACP]:protein N- octanoyltransferase	-8.736200802	4.8756199	7.30E-10	1.82E-08
b0889	Irp	DNA-binding transcriptional dual regulator, leucine-binding	-8.736033114	4.875527776	7.87E-10	1.94E-08
b0033	carB	carbamoyl-phosphate synthase large subunit	-8.72322437	4.863021278	1.65E-08	2.94E-07
b2424	cysU	sulfate/thiosulfate ABC transporter permease	-8.707979304	4.849160581	1.11E-09	2.62E-08
b0740	tolB	periplasmic protein	-8.695361314	4.83663592	3.66E-07	5.16E-06
		fused glutamine amidotransferase (component II) of				
b1263	trpD	anthranilate synthase/anthranilate phosphoribosyl	-8.693109466	4.835452072	2.68E-09	5.67E-08
b0945	pyrD	dihydro-orotate oxidase, FMN-linked	-8.679823805	7.024976372	9.07E-12	3.22E-10
00945	руг		-0.079023003	1.024970372	9.07 E-12	3.22E-10
b3958	argC	N-acetyl-gamma-glutamylphosphate reductase, NAD(P)- binding	-8.62070059	4.767210325	1.60E-08	2.87E-07
b0589	fepG	iron-enterobactin transporter subunit	-8.604279694	4.752388176	3.50E-09	7.28E-08
b3956	ррс	phosphoenolpyruvate carboxylase	-8.589287214	4.738258151	3.21E-09	6.72E-08
b3781	trxA	thioredoxin 1	-8.556589594	4.708433021	1.33E-07	2.05E-06
b0109	nadC	quinolinate phosphoribosyltransferase	-8.509615651	4.664281448	6.61E-09	1.30E-07
b0957	ompA	outer membrane protein A (3a;II*;G;d)	-8.475732163	4.633237475	4.34E-08	7.33E-07
b3237	argR	DNA-binding transcriptional dual regulator, L-arginine- binding	-8.373960072	4.53832441	5.26E-07	7.25E-06
b0437	clpP	proteolytic subunit of CIpA-CIpP and CIpX-CIpP ATP- dependent serine proteases	-8.31884375	4.48776082	4.25E-07	5.96E-06
b3771	ilvD	dihydroxyacid dehydratase	-8.317784289	4.487270104	3.27E-08	5.63E-07
b3172	argG	argininosuccinate synthetase	-8.299862944	4.470450064	2.65E-07	3.88E-06
b0739	tolA	membrane anchored protein in TolA-TolQ-TolR complex	-8.261459988	4.435344212	2.86E-07	4.12E-06
b2297	pta	phosphate acetyltransferase	-8.260756119	4.435023535	5.87E-08	9.76E-07

						a voluo (outoff
<u>locus_tag</u>	<u>gene_name</u>	function	<u>logFC</u>	<u>logCPM</u>	<u>Pvalue</u>	<u>q.value (cutoff</u> 0.000716332)
b3959	argB	acetylglutamate kinase	-8.180388911	4.362014242	8.62E-08	1.39E-06
b3290	trkA	NAD-binding component of TrK potassium transporter	-8.095792398	4.28538605	1.57E-07	2.40E-06
b2500	purN	phosphoribosylglycinamide formyltransferase 1	-8.050847494	4.245202963	7.12E-07	9.54E-06
b1264	trpE	component I of anthranilate synthase	-8.006014314	4.204538244	2.98E-07	4.27E-06
b1677	Ipp	murein lipoprotein	-7.935354972	4.141035257	6.98E-07	9.38E-06
b3774	ilvC	ketol-acid reductoisomerase, NAD(P)-binding	-7.910658041	4.119090786	6.95E-07	9.37E-06
b0003	thrB	homoserine kinase	-7.860159357	4.074266865	8.62E-07	1.12E-05
b3828	metR	DNA-binding transcriptional activator, homocysteine- binding	-7.859765268	4.074108698	7.76E-07	1.03E-05
b3204	ptsN	sugar-specific enzyme IIA component of PTS	-7.859666746	4.074069157	8.06E-07	1.06E-05
b0243	proA	gamma-glutamylphosphate reductase	-7.859567856	4.074029616	8.80E-07	1.14E-05
b3770	ilvE	branched-chain amino-acid aminotransferase	-7.807320408	4.027821279	1.38E-06	1.70E-05
b0775	bioB	biotin synthase	-7.66310283	6.037447966	6.82E-17	5.20E-15
b0738	toIR	membrane spanning protein in TolA-TolQ-TolR complex	-7.610179423	3.854248181	8.83E-05	0.000701023
b2557	purL	phosphoribosylformyl-glycineamide synthetase	-7.608458977	3.853662571	3.81E-06	4.25E-05
b4048	ујbM	predicted protein	-7.578503923	3.827278731	1.52E-05	0.000144069
b3941	metF	5,10-methylenetetrahydrofolate reductase	-7.546668849	3.799977038	1.05E-05	0.00010453
b3960	argH	argininosuccinate lyase	-7.546668645	3.799977038	1.03E-05	0.000104046
b2699	recA	DNA strand exchange and recombination protein with protease and nuclease activity	-7.545699344	3.799638078	5.49E-06	5.89E-05
b1850	eda	multifunctional 2-keto-3-deoxygluconate 6-phosphate aldolase and 2-keto-4-hydroxyglutarate aldolase and	-7.545089129	3.799426241	1.04E-05	0.00010421
		oxaloacetate decarboxylase				
b4214	cysQ	PAPS (adenosine 3'-phosphate 5'-phosphosulfate) 3'(2'),5'-bisphosphate nucleotidase	-7.512234945	3.771517165	3.91E-05	0.00034303
b0688	pgm	phosphoglucomutase	-7.445712578	3.714533784	3.38E-05	0.000298502
b0052	pdxA	4-hydroxy-L-threonine phosphate dehydrogenase, NAD- dependent	-7.445573244	3.71449058	4.45E-05	0.000384048
b0741	pal	peptidoglycan-associated outer membrane lipoprotein	-7.41375577	3.685987463	6.52E-05	0.000539595
b2313	cvpA	membrane protein required for colicin V production	-7.341517844	3.625193627	3.52E-05	0.000310005
b2894	xerD	site-specific tyrosine recombinase	-7.340956705	3.625017292	1.89E-05	0.000176525
b4687	shoB	toxic membrane protein	-7.304080064	3.593844842	3.18E-05	0.000281989

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b0386	proC	pyrroline-5-carboxylate reductase, NAD(P)-binding	-7.265944304	3.561898506	4.24E-05	0.000369247
b3738	, atpB	F0 sector of membrane-bound ATP synthase, subunit a	-7.225289444	3.528785816	4.13E-05	0.000360204
b0908	aroA	5-enolpyruvylshikimate-3-phosphate synthetase	-7.184514582	3.4952347	8.19E-05	0.000659255
b0564	appY	DNA-binding global transcriptional activator; DLP12 prophage	-7.144448132	3.461444497	5.48E-05	0.00046385
b1693	aroD	3-dehydroquinate dehydratase	-7.144292547	3.461398882	5.00E-05	0.000428945
b2020	hisD	bifunctional histidinal dehydrogenase/ histidinol dehydrogenase	-7.143362548	3.461125207	6.34E-05	0.000526384
b0004	thrC	threonine synthase	-7.101145513	3.426240651	5.88E-05	0.000492458
b3613	envC	activator of AmiB,C murein hydrolases, septal ring factor	-6.929164836	6.662600734	1.18E-25	2.25E-23
b0785	moaE	molybdopterin synthase, large subunit	-6.868864849	5.294768666	2.19E-10	6.15E-09
b4245	pyrB	aspartate carbamoyltransferase, catalytic subunit	-6.310573528	4.782123339	9.65E-06	9.80E-05
b4171	miaA	delta(2)-isopentenylpyrophosphate tRNA-adenosine transferase	-6.191999724	4.66455824	6.83E-08	1.11E-06
b2425	cysP	thiosulfate-binding protein	-6.075749121	5.877368636	4.16E-13	1.78E-11
b0049	араН	diadenosine tetraphosphatase	-5.776059662	5.083765539	1.39E-08	2.54E-07
b0131	panD	aspartate 1-decarboxylase	-5.725710117	4.245781276	2.40E-06	2.82E-05
b3911	срхА	sensory histidine kinase in two-component regulatory system with CpxR	-5.679446541	8.185044155	7.31E-43	3.83E-40
b0544	ybcK	DLP12 prophage; predicted recombinase	-5.384593648	5.612138489	7.05E-09	1.38E-07
b3957	argE	acetylornithine deacetylase	-5.33844691	5.1937161	1.77E-07	2.67E-06
b1252	tonB	membrane spanning protein in TonB-ExbB-ExbD transport complex	-5.249205015	4.603002151	8.82E-07	1.14E-05
b3631	rfaG	glucosyltransferase I	-5.207662804	6.617215812	1.32E-20	1.63E-18
b1661	cfa	cyclopropane fatty acyl phospholipid synthase (unsaturated-phospholipid methyltransferase)	-5.120147891	6.873769264	1.20E-20	1.52E-18
b1552	cspl	Qin prophage; cold shock protein	-5.106824157	3.715194939	8.53E-05	0.000683949
b2846	yqeH	conserved protein with bipartite regulator domain	-5.046910752	5.200029254	9.45E-06	9.64E-05
b4042	dgkA	diacylglycerol kinase	-5.03050752	5.19864747	7.52E-08	1.22E-06
b0074	leuA	2-isopropylmalate synthase	-5.008302466	5.705556051	2.11E-09	4.59E-08
b1254	yciB	predicted inner membrane protein	-4.93613468	5.203317049	1.94E-06	2.31E-05
b3671	ilvB	acetolactate synthase I, large subunit	-4.918726966	7.807636977	7.73E-49	9.83E-46

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b3829	metE	5-methyltetrahydropteroyltriglutamate-homocysteine S- methyltransferase	-4.755211033	4.116101939	2.73E-05	0.000244664
b4660	yhiL	pseudogene	-4.70815705	6.21143162	1.05E-08	1.96E-07
b1334	fnr	DNA-binding transcriptional dual regulator, global regulator of anaerobic growth	-4.689498906	6.338091013	9.14E-12	3.22E-10
b0484	сорА	copper transporter	-4.659683484	7.878410981	1.59E-53	3.34E-50
b4325	yjiC	predicted protein	-4.600451439	5.358780314	1.31E-07	2.02E-06
b3818	yigG	conserved inner membrane protein	-4.549768091	5.269219778	2.61E-06	3.05E-05
b2818	argA	fused acetylglutamate kinase homolog (inactive)/amino acid N-acetyltransferase	-4.517672851	5.23896739	4.01E-06	4.44E-05
b2273	yfbN	conserved protein	-4.460534429	5.556780736	1.36E-05	0.000132159
b4612	yrhD	hypothetical protein	-4.459228684	5.616089477	2.66E-07	3.88E-06
b0009	mog	molybdochelatase incorporating molybdenum into molybdopterin	-4.296341295	5.990815484	1.14E-09	2.67E-08
b1058	yceO	predicted protein	-4.296018359	4.532586757	1.26E-05	0.000123066
b1166	ariR	connector protein for RcsB regulation of biofilm and acid- resistance	-4.295642531	5.280072789	4.33E-08	7.33E-07
b3773	ilvY	DNA-binding transcriptional dual regulator	-4.241291777	5.363478053	4.33E-06	4.73E-05
b3860	dsbA	periplasmic protein disulfide isomerase I	-4.179913579	7.163161338	9.70E-18	9.24E-16
b0774	bioA	7,8-diaminopelargonic acid synthase, PLP-dependent	-4.17172153	5.966646137	1.16E-08	2.13E-07
b2318	truA	pseudouridylate synthase I	-4.113506807	5.467185264	1.47E-06	1.79E-05
b0826	moeB	molybdopterin synthase sulfurylase	-4.050137384	5.723106101	8.38E-06	8.64E-05
b0720	gltA	citrate synthase	-4.048902424	4.941678373	5.52E-05	0.000465796
b2188	yejM	predicted hydrolase, inner membrane	-4.019626729	6.686681156	1.29E-17	1.13E-15
b1593	ynfK	predicted dethiobiotin synthetase	-4.016846444	6.032348595	9.77E-09	1.84E-07
b3839	tatC	TatABCE protein translocation system subunit	-3.905256958	6.60814834	4.79E-07	6.65E-06
b3459	yhhK	pantothenate synthesis protein, predicted acetyltransferase	-3.827324457	6.036080054	7.43E-09	1.44E-07
b0827	moeA	molybdopterin biosynthesis protein	-3.780127596	6.046797539	4.17E-10	1.09E-08
b4279	yjhB	predicted transporter	-3.690031273	5.873137474	8.55E-05	0.000683949
b0777	bioC	malonyl-CoA methyltransferase, SAM-dependent	-3.648782492	5.924274414	3.04E-05	0.000270638
b2108	yehA	predicted fimbrial-like adhesin protein	-3.564876557	5.824385689	3.65E-06	4.11E-05

locus_tag	gene_name	function	logFC	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b0051	rsmA	16S rRNA dimethyladenosine transferase, SAM- dependent	-3.446132983	5.824748133	1.04E-05	0.00010421
b0217	yafT	lipoprotein	-3.390244719	6.645618851	1.57E-09	3.47E-08
b0764	modB	molybdate transporter subunit	-3.231715142	6.684980547	4.10E-13	1.77E-11
b3442	yhhZ	conserved protein	-3.178486436	6.359213251	3.29E-08	5.65E-07
b1505	ydeT	pseudogene	-3.171650493	8.014320539	3.75E-33	1.12E-30
b4495	yedN	pseudogene	-3.158735598	5.194675892	5.11E-05	0.000437318
b0781	moaA	molybdopterin biosynthesis protein A	-3.132984223	6.718503272	1.89E-13	8.82E-12
b2852	ygeH	predictedtranscriptional regulator	-3.122891167	5.73991846	1.21E-05	0.000118541
b0134	panB	3-methyl-2-oxobutanoate hydroxymethyltransferase	-3.115749023	6.186132502	2.54E-07	3.76E-06
b0279	yagM	CP4-6 prophage; predicted protein	-3.11002534	6.989086844	1.58E-10	4.53E-09
		vancomycin high temperature exclusion protein; mutants				
b2144	sanA	have a defective envelope more permeable to vancomycin	-3.108893411	9.022742707	2.60E-43	1.56E-40
		at 42 degrees				
b2352	gtrS	serotype-specific glucosyl transferase, CPS-53 (KpLE1) prophage	-3.096695416	6.103931847	1.07E-07	1.68E-06
b1499	ydeO	transcriptional activator for mdtEF	-3.090450058	5.938958689	1.27E-06	1.57E-05
b2642	yfjW	CP4-57 prophage; predicted inner membrane protein	-2.949161514	6.029586683	2.68E-05	0.000241362
b1761	gdhA	glutamate dehydrogenase, NADP-specific	-2.939411151	6.881156667	1.23E-09	2.83E-08
b1812	pabB	aminodeoxychorismate synthase, subunit I	-2.899488645	7.308124752	2.11E-16	1.38E-14
b1182	hlyE	hemolysin E	-2.898316474	6.83724966	1.02E-09	2.45E-08
b3493	pitA	phosphate transporter, low-affinity	-2.847202379	7.118895954	4.02E-10	1.07E-08
b1096	pabC	4-amino-4-deoxychorismate lyase component of para- aminobenzoate synthase multienzyme complex	-2.823669013	6.625884328	2.42E-10	6.75E-09
b1497	ydeM	conserved protein	-2.792415885	7.620829213	5.11E-09	1.03E-07
b3867	hemN	coproporphyrinogen III oxidase, SAM and NAD(P)H dependent, oxygen-independent	-2.772649622	7.320490407	7.79E-17	5.83E-15
b2965	speC	ornithine decarboxylase, constitutive	-2.764549426	7.835123759	3.65E-26	8.05E-24
b1139	lit	e14 prophage; cell death peptidase, inhibitor of T4 late gene expression	-2.747029306	7.288666605	1.15E-08	2.12E-07
b4650	yibS	pseudogene	-2.740379415	8.141389656	5.59E-23	8.69E-21
b4590	ybfK	hypothetical protein	-2.738954742	6.021522415	1.85E-05	0.000172885

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b3047	yqiH	predicted periplasmic pilin chaperone	-2.721203095	7.51427333	1.48E-17	1.27E-15
b0310	ykgH	predicted inner membrane protein	-2.710012905	5.660833035	7.62E-05	0.000618991
b4280	yjhC	predicted oxidoreductase	-2.697726427	7.825930096	1.21E-17	1.08E-15
b2367	emrY	predicted multidrug efflux system	-2.695545885	8.451580136	1.14E-23	1.91E-21
b0234	yafP	predicted acyltransferase with acyl-CoA N-acyltransferase domain	-2.692376721	6.884492973	9.04E-12	3.22E-10
b2071	yegJ	predicted protein	-2.655591343	5.585906562	2.43E-05	0.000222659
b3889	yiiE	predicted transcriptional regulator	-2.632115743	6.365017614	1.14E-06	1.42E-05
b0603	ybdO	predicted DNA-binding transcriptional regulator	-2.609921165	7.433615581	4.50E-14	2.33E-12
b3359	argD	bifunctional acetylornithine aminotransferase/ succinyldiaminopimelate aminotransferase	-2.593379632	7.414874656	2.17E-07	3.22E-06
b4017	arpA	ankyrin repeat protein	-2.504068446	8.175078784	6.27E-23	9.39E-21
b3629	rfaS	lipopolysaccharide core biosynthesis protein	-2.457290703	6.701600902	9.20E-08	1.48E-06
b0531	sfmC	pilin chaperone, periplasmic	-2.419189101	7.563582604	8.29E-09	1.58E-07
b1235	rssB	response regulator binding RpoS to initiate proteolysis by ClpXP; required for the PcnB-degradosome interaction during stationary phase	-2.345036958	6.917576351	1.38E-09	3.13E-08
b1983	yeeN	conserved protein, UPF0082 family	-2.344281309	8.098086088	1.43E-16	9.80E-15
b4462	ygaQ	pseudogene	-2.341587209	7.759435043	1.11E-05	0.000110036
b4345	mcrC	5-methylcytosine-specific restriction enzyme McrBC, subunit McrC	-2.27317908	6.959039301	1.80E-09	3.96E-08
b2625	yfjl	CP4-57 prophage; predicted protein	-2.271681672	6.457212816	8.05E-06	8.33E-05
b3912	cpxR	DNA-binding response regulator in two-component regulatory system with CpxA	-2.255416612	7.468130251	4.18E-12	1.58E-10
b0278	yagL	CP4-6 prophage; DNA-binding protein	-2.246747698	8.04820258	1.07E-17	9.72E-16
b3623	waaU	lipopolysaccharide core biosynthesis	-2.241404962	7.496107025	6.18E-12	2.25E-10
b4299	yjhl	KpLE2 phage-like element; predicted DNA-binding transcriptional regulator	-2.228221523	8.532349322	8.35E-19	8.75E-17
b4346	mcrB	5-methylcytosine-specific restriction enzyme McrBC, subunit McrB	-2.220762931	9.0885033	4.13E-21	5.41E-19
b3247	rng	ribonuclease G	-2.214975896	6.321363805	1.30E-05	0.000126649
b3048	yqil	conserved protein	-2.213540138	8.741132135	7.27E-24	1.27E-21

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b3264	envR	DNA-binding transcriptional regulator	-2.210659836	7.715588186	1.82E-17	1.49E-15
b0136	yadK	predicted fimbrial-like adhesin protein	-2.203870606	7.360231932	1.85E-07	2.78E-06
b1951	rcsA	DNA-binding transcriptional activator, co-regulator with RcsB	-2.199719577	7.171825659	2.24E-08	3.96E-07
b0765	modC	molybdate transporter subunit	-2.185426971	6.131699784	7.83E-05	0.000633643
b2669	stpA	DNA binding protein, nucleoid-associated	-2.180592355	8.530910514	4.31E-18	4.30E-16
b1409	ynbB	predicted CDP-diglyceride synthase	-2.154851088	6.525066347	2.90E-06	3.34E-05
b1690	ydiM	inner membrane protein, predicted transporter	-2.153402782	9.209800553	3.29E-13	1.45E-11
b2290	alaA	valine-pyruvate aminotransferase 2	-2.131180278	7.977959437	1.71E-19	1.94E-17
b1502	ydeQ	predicted fimbrial-like adhesin protein	-2.126425831	7.100403334	4.34E-07	6.07E-06
b1258	yciF	predicted rubrerythrin/ferritin-like metal-binding protein	-2.124843139	6.722438526	4.24E-06	4.64E-05
b1168	ycgG	predicted cyclic-di-GMP phosphodiesterase	-2.10127729	8.499801494	5.68E-20	6.62E-18
b1221	narL	DNA-binding response regulator in two-component regulatory system with NarX (or NarQ)	-2.100854126	6.699001692	7.27E-07	9.67E-06
b1121	ycfZ	inner membrane protein	-2.054295804	7.688044496	5.85E-10	1.49E-08
b2774	ygcW	predicted dehydrogenase	-2.047109875	8.01204064	2.56E-15	1.56E-13
b2271	yfbL	predicted peptidase	-2.044149113	8.363171081	5.11E-20	6.12E-18
b1557	cspB	Qin prophage; cold shock protein	-2.038929572	6.848244295	6.16E-06	6.54E-05
b3504	yhiS	pseudogene	-2.026175613	7.262925171	3.22E-08	5.59E-07
b1223	narK	nitrate/nitrite transporter	-2.014875034	7.220459205	1.04E-07	1.64E-06
b1040	csgD	DNA-binding transcriptional activator for csgBA	-1.997938555	7.076901267	1.98E-07	2.94E-06
b1496	yddA	fused predicted multidrug transporter subunits of ABC superfamily: membrane component/ATP-binding component	-1.997279562	9.591210745	4.66E-19	5.14E-17
b0364	yaiS	conserved protein	-1.993152744	8.009759369	2.15E-15	1.32E-13
b0326	yahL	predicted protein	-1.986788104	7.3591027	1.19E-07	1.85E-06
b1041	csgB	curlin nucleator protein, minor subunit in curli complex	-1.965426362	6.890815571	9.47E-08	1.51E-06
b3723	bglG	transcriptional antiterminator of the bgl operon	-1.961329397	8.919459564	1.72E-16	1.16E-14
b0728	sucC	succinyl-CoA synthetase, beta subunit	-1.957211603	6.896538472	5.51E-06	5.89E-05
b1175	minD	membrane ATPase of the MinC-MinD-MinE system	-1.956291511	7.47339284	2.34E-08	4.12E-07
b0508	hyi	hydroxypyruvate isomerase	-1.952523701	7.294702604	4.93E-09	1.00E-07
b3429	glgA	glycogen synthase	-1.950481928	6.662585999	2.26E-05	0.000208334

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b3412	bioH	pimeloyI-ACP carboxylesterase	-1.935785636	6.36861946	2.55E-05	0.000232023
b1735	chbR	rRepressor, chb operon for N,N'-diacetylchitobiose utilization	-1.93193687	7.732413499	7.28E-13	2.99E-11
b0121	speE	spermidine synthase (putrescine aminopropyltransferase)	-1.922663981	6.359179846	3.92E-05	0.00034303
b3120	yhaB	predicted protein	-1.917875206	6.626792799	1.93E-05	0.000179744
b0080	cra	DNA-binding transcriptional repressor-activator for carbon metabolism	-1.914291307	6.508000228	4.51E-05	0.00038844
b2778	ygcG	predicted protein	-1.883576494	7.870089074	8.31E-09	1.58E-07
b1576	ydfD	Qin prophage; predicted protein	-1.875526842	8.403793266	5.73E-12	2.14E-10
b1320	ycjW	predicted DNA-binding transcriptional regulator	-1.874752286	8.282623682	9.88E-15	5.67E-13
b0763	modA	molybdate transporter subunit	-1.846539266	7.226477005	3.46E-07	4.91E-06
b4455	hokA	toxic polypeptide, small	-1.841232879	6.957769124	2.95E-05	0.000263868
b0546	ybcM	DLP12 prophage; predicted DNA-binding transcriptional regulator	-1.834317234	7.877714702	7.19E-13	2.98E-11
b4494	arpB	pseudogene	-1.826393002	9.558497085	5.36E-23	8.64E-21
b0209	yafD	conserved protein	-1.816067621	6.784423935	1.85E-06	2.23E-05
b0729	sucD	succinyl-CoA synthetase, NAD(P)-binding, alpha subunit	-1.79385656	7.098269464	5.77E-07	7.91E-06
b2372	yfdV	predicted transporter	-1.770218165	8.310869789	2.33E-14	1.27E-12
b0779	uvrB	excinulease of nucleotide excision repair, DNA damage recognition component	-1.765984847	7.695881102	3.49E-11	1.12E-09
b4640	yoeG	pseudogene	-1.762283723	7.618428693	1.44E-07	2.20E-06
b2623	yfjH	CP4-57 prophage; predicted protein	-1.751624894	7.821489932	7.59E-09	1.46E-07
b2055	wcaE	predicted glycosyl transferase	-1.744489276	7.306465959	6.15E-08	1.02E-06
b0833	yliE	predicted cyclic-di-GMP phosphodiesterase, inner membrane protein	-1.741857018	9.470829396	6.49E-19	6.98E-17
b2371	yfdE	predicted CoA-transferase, NAD(P)-binding	-1.737370786	8.430965533	7.94E-17	5.84E-15
b0938	elfA	predicted fimbrial-like adhesin protein	-1.716988505	8.247639677	6.45E-11	1.99E-09
b2847	yqel	predicted transcriptional regulator	-1.707265921	6.947211892	8.98E-07	1.15E-05
b1159	mcrA	e14 prophage; 5-methylcytosine-specific restriction endonuclease B	-1.697114537	7.456191535	8.63E-09	1.63E-07
b1968	yedV	predicted sensory kinase in two-component regulatory system with YedW	-1.678737769	8.927240451	1.88E-15	1.18E-13

locus_tag	gene_name	function	<u>logFC</u>	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b0077	ilvl	acetolactate synthase III, large subunit	-1.678263332	7.183238436	3.80E-06	4.25E-05
b1498	ydeN	conserved protein	-1.676482799	9.292484297	1.04E-16	7.41E-15
b1234	rssA	predicted phospholipase, patatin-like family	-1.665977923	7.92702817	1.69E-12	6.67E-11
b3043	ygiL	predicted fimbrial-like adhesin protein	-1.661903295	8.416691665	1.16E-13	5.72E-12
b0691	ybfG	pseudogene	-1.659413614	8.733273849	5.26E-15	3.15E-13
b4311	nanC	N-acetylnuraminic acid outer membrane channel protein	-1.656151719	9.015417078	1.46E-13	7.06E-12
b4647	mokA	pseudogene	-1.655038892	7.126256859	8.24E-07	1.08E-05
b1773	ydjl	predicted aldolase	-1.626928334	7.541369096	2.67E-07	3.89E-06
b1566	flxA	Qin prophage; predicted protein	-1.616586966	7.068379019	5.46E-05	0.000463116
b0535	fimZ	predicted DNA-binding transcriptional regulator	-1.615376255	7.37437355	9.42E-08	1.51E-06
b0138	yadM	predicted fimbrial-like adhesin protein	-1.609503165	8.403383412	2.72E-13	1.22E-11
b2624	alpA	CP4-57 prophage; DNA-binding transcriptional activator	-1.606152573	6.938208183	7.45E-06	7.79E-05
b0406	tgt	tRNA-guanine transglycosylase	-1.593833141	7.711098361	2.65E-09	5.63E-08
b1504	ydeS	predicted fimbrial-like adhesin protein	-1.570732236	7.288674273	1.66E-06	2.00E-05
b4181	yjfl	conserved protein, DUF2170 family	-1.567506102	6.843860283	5.73E-05	0.000480348
b1694	ydiF	fused predicted acetyl-CoA:acetoacetyl-CoA transferase: alpha subunit/beta subunit	-1.554920615	9.142611051	1.23E-16	8.59E-15
b2064	asmA	predicted assembly protein	-1.553949009	7.634299666	2.60E-07	3.83E-06
b4559	yjdO	predicted protein	-1.549364993	6.977823246	1.01E-05	0.000101396
b0137	yadL	predicted fimbrial-like adhesin protein	-1.54762863	9.427734718	6.13E-17	4.85E-15
b4497	yeeL	pseudogene	-1.53431686	8.120517286	3.38E-09	7.06E-08
b3146	rsml	16S rRNA C1402 ribose 2'-O-methyltransferase, SAM- dependent	-1.506741368	6.979559232	1.48E-05	0.000141319
b3215	yhcA	predicted periplasmic chaperone protein	-1.502290477	8.183209634	2.70E-10	7.44E-09
b2163	yeiL	DNA-binding transcriptional activator of stationary phase nitrogen survival	-1.497111743	8.493101262	7.53E-12	2.72E-10
b1022	pgaC	predicted glycosyl transferase	-1.49594091	9.648478673	1.11E-13	5.56E-12
b3624	rfaZ	lipopolysaccharide core biosynthesis protein	-1.490084635	8.058133844	4.43E-05	0.000384048
b0769	ybhH	conserved protein	-1.48764128	8.634543684	1.94E-11	6.50E-10
b3875	ompL	outer membrane porin L	-1.481691363	8.440403289	3.73E-10	1.00E-08
b2760	casA	CRISP RNA (crRNA) containing Cascade antiviral complex protein	-1.479923653	9.899564229	9.80E-17	7.08E-15

						q.value (cutoff
locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	0.000716332)
b4238	nrdD	anaerobic ribonucleoside-triphosphate reductase	-1.467997195	7.890540221	8.16E-10	2.00E-08
b2626	yfjJ	CP4-57 prophage; predicted protein	-1.456309029	9.386531603	1.27E-15	8.05E-14
b3622	rfaL	O-antigen ligase	-1.448909429	8.821701205	2.45E-10	6.81E-09
b3408	feoA	ferrous iron transporter, protein A	-1.436996811	7.435714081	3.73E-06	4.19E-05
b0499	ylbH	pseudogene	-1.435545112	8.175045202	5.59E-09	1.12E-07
b1691	ydiN	Inner membrane protein, predicted MFS superfamily transporter	-1.416461155	9.213372232	1.11E-09	2.62E-08
b0239	frsA	fermentation-respiration switch protein; PTS Enzyme IIA(Glc)-binding protein; pNP-butyrate esterase activity	-1.405042162	8.086652354	1.37E-09	3.11E-08
b1545	pinQ	Qin prophage; predicted site-specific recombinase	-1.397147706	6.954156417	8.56E-05	0.00068404
b0141	yadN	predicted fimbrial-like adhesin protein	-1.389994835	8.302601558	6.04E-10	1.52E-08
b4348	hsdS	specificity determinant for hsdM and hsdR	-1.374709081	9.623595133	1.65E-12	6.61E-11
b1023	pgaB	biofilm adhesin polysaccharide PGA export lipoprotein with a polysaccharide deacetylase activity needed for export	-1.365542858	9.582914773	1.21E-11	4.18E-10
b4116	adiY	DNA-binding transcriptional activator	-1.359157609	9.085407446	4.41E-13	1.87E-11
b1029	ycdU	predicted inner membrane protein	-1.354848137	8.825995501	2.87E-06	3.32E-05
b1615	uidC	predicted outer membrane porin protein	-1.351428822	8.301405653	5.56E-10	1.44E-08
b0990	cspG	cold shock protein homolog, cold-inducible	-1.344737259	7.158282952	3.03E-05	0.000270391
b2368	emrK	EmrKY-ToIC multidrug resistance efflux pump, membrane fusion protein component	-1.329349235	8.758211831	2.20E-09	4.76E-08
b0511	ybbW	predicted allantoin transporter	-1.327670694	9.04118319	1.90E-10	5.38E-09
b3138	agaB	N-acetylgalactosamine-specific enzyme IIB component of PTS	-1.312271841	7.740233063	1.06E-06	1.34E-05
b1044	ymdA	predicted protein	-1.303592628	8.217456401	4.22E-09	8.68E-08
b2037	rfbX	predicted polisoprenol-linked O-antigen transporter	-1.303255088	8.691135111	7.02E-06	7.37E-05
b0241	phoE	outer membrane phosphoporin protein E	-1.299962478	9.509018164	1.69E-11	5.70E-10
b4636	ybfl	pseudogene	-1.299607232	7.372273815	2.61E-05	0.000236031
b1772	ydjH	predicted kinase	-1.288685389	8.048429911	1.08E-07	1.68E-06
b2360	yfdQ	CPS-53 (KpLE1) prophage; predicted protein	-1.276423754	8.771522386	2.90E-12	1.13E-10
b1365	ynaK	Rac prophage; conserved protein	-1.274312857	9.006253453	1.07E-07	1.68E-06
b3563	yiaB	inner membrane protein, YiaAB family	-1.269983615	7.454389581	9.63E-06	9.80E-05
b4313	fimE	tyrosine recombinase/inversion of on/off regulator of fimA	-1.264425156	9.02544183	1.09E-11	3.80E-10

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b0304	ykgC	predicted pyridine nucleotide-disulfide oxidoreductase	-1.253071424	10.00427182	3.27E-12	1.26E-10
b0545	ybcL	DLP12 prophage; secreted protein, UPF0098 family	-1.252785124	8.567049977	5.57E-08	9.31E-07
b3142	, yraH	predicted fimbrial-like adhesin protein	-1.25109417	8.432294271	1.02E-08	1.91E-07
b1407	ydbD	predicted PF10971 family periplasmic methylglyoxal resistance protein	-1.247603987	9.779154932	5.58E-10	1.44E-08
b3252	csrD	targeting factor for csrBC sRNA degradation	-1.241348193	8.180780772	5.98E-09	1.19E-07
b3659	setC	predicted sugar efflux system	-1.230042901	9.412666653	3.19E-11	1.04E-09
b4184	yjfL	inner membrane protein, UPF0719 family	-1.213114281	8.360725023	2.63E-09	5.62E-08
b1785	yeal	predicted diguanylate cyclase	-1.209623953	7.769312419	1.24E-05	0.000121215
b1915	yecF	conserved protein, DUF2594 family	-1.205478396	7.640074176	2.93E-06	3.36E-05
b4312	fimB	tyrosine recombinase/inversion of on/off regulator of fimA	-1.203531495	8.253963012	3.75E-07	5.27E-06
b1696	ydiP	predicted DNA-binding transcriptional regulator	-1.203224619	8.148570176	7.25E-07	9.67E-06
b2339	yfcV	predicted fimbrial-like adhesin protein	-1.199458205	7.832259086	1.36E-05	0.000132159
b2370	evgS	hybrid sensory histidine kinase in two-component regulatory system with EvgA	-1.198206081	10.28384016	1.62E-10	4.63E-09
b4257	yjgN	inner membrane protein, DUF898 family	-1.195643017	7.807392278	1.55E-06	1.88E-05
b2109	yehB	predicted outer membrane protein	-1.194292266	10.83511631	3.48E-12	1.33E-10
b2548	yphF	predicted sugar transporter subunit: periplasmic-binding component of ABC superfamily	-1.192629595	9.462481198	5.10E-09	1.03E-07
b0301	ykgB	inner membrane protein, DUF417 family	-1.190460499	9.224151594	7.85E-10	1.94E-08
b4145	yjeJ	predicted protein	-1.184053058	9.32237182	3.39E-06	3.86E-05
b3587	yiaW	inner membrane protein, DUF3302 family	-1.180233388	7.603613332	4.21E-06	4.62E-05
b2354	yfdK	CPS-53 (KpLE1) prophage; conserved protein	-1.178240729	8.329689265	7.95E-07	1.05E-05
b2149	mglA	fused methyl-galactoside transporter subunits of ABC superfamily: ATP-binding components	-1.175244753	9.823508414	1.43E-12	5.77E-11
b2374	frc	formyl-CoA transferase, NAD(P)-binding	-1.17509232	9.023050437	3.54E-09	7.32E-08
b3626	rfaJ	UDP-D-glucose:(galactosyl)lipopolysaccharide glucosyltransferase	-1.171343923	8.614695214	1.94E-07	2.90E-06
b2777	queE	7-carboxy-7-deazaguanine synthase; queosine biosynthesis	-1.169619838	8.389229627	1.58E-08	2.84E-07
b4365	yjjQ	DNA-binding transcriptional regulator	-1.168267972	9.934923621	1.29E-10	3.77E-09
b3557	insJ	IS150 transposase A	-1.167087619	8.511742205	1.54E-08	2.80E-07

						q.value (cutoff
<u>locus_tag</u>	<u>gene_name</u>	function	<u>logFC</u>	<u>logCPM</u>	<u>Pvalue</u>	0.000716332)
b1877	yecT	predicted protein	-1.161305301	8.34858634	6.73E-06	7.09E-05
b1734	chbF	phospho-chitobiase; general 6-phospho-beta-glucosidase activity	-1.161277364	9.10667351	2.22E-05	0.000205151
b0461	tomB	Hha toxicity attenuator; conjugation-related protein	-1.159696091	9.00462877	5.57E-09	1.12E-07
b3861	yihF	conserved protein, DUF945 family	-1.159351242	9.551026411	2.43E-08	4.26E-07
b2522	sseB	rhodanase-like enzyme, sulfur transfer from thiosulfate	-1.15490054	7.850334032	1.66E-06	2.00E-05
		anti-repressor for YcgE, blue light-responsive; FAD-				
b1163	ycgF	binding; has c-di-GMP phosphodiesterase-like EAL domain, but does not degrade c-di-GMP	-1.152874608	9.415209341	1.70E-09	3.75E-08
b3046	yqiG	pseudogene	-1.150245971	10.23982291	2.30E-11	7.67E-10
b0719	ybgD	predicted fimbrial-like adhesin protein	-1.149083982	9.121402892	4.07E-10	1.07E-08
b2252	ais	predicted LPS core heptose(II)-phosphate phosphatase	-1.144634752	8.7201984	3.06E-09	6.45E-08
b1330	ynal	MscS family inner membrane protein	-1.142410365	8.631749688	8.92E-07	1.15E-05
b0901	ycaK	conserved protein	-1.137177728	9.056830125	1.06E-09	2.53E-08
b0902	pfIA	pyruvate formate lyase activating enzyme 1	-1.136994547	7.445509477	7.46E-05	0.000611959
b1503	ydeR	predicted fimbrial-like adhesin protein	-1.136973348	7.706230988	5.94E-06	6.32E-05
b1363	trkG	Rac prophage; potassium transporter subunit	-1.134791129	8.40863797	6.29E-07	8.51E-06
b1762	ynjl	inner membrane protein	-1.1335447	9.382515228	1.48E-09	3.32E-08
b0533	sfmH	predicted fimbrial-like adhesin protein	-1.132556869	8.277990975	9.42E-07	1.20E-05
b1090	plsX	probable phosphate acyltransferase	-1.131175648	7.546904397	5.12E-05	0.000437407
b3896	yiiG	conserved lipoprotein	-1.119750808	10.10943649	5.74E-10	1.47E-08
b0300	ykgA	pseudogene	-1.118572119	7.458341308	5.49E-05	0.000464494
b3117	tdcB	catabolic threonine dehydratase, PLP-dependent	-1.115825894	9.240655614	9.70E-08	1.54E-06
b0647	ybeT	conserved protein, Sel1 family	-1.103064522	8.873245332	8.56E-07	1.12E-05
b2305	yfcl	conserved protein	-1.101293874	9.145529698	1.48E-05	0.000141541
b0532	sfmD	predicted outer membrane export usher protein	-1.097172728	9.900530234	3.41E-10	9.29E-09
b0587	fepE	regulator of length of O-antigen component of lipopolysaccharide chains	-1.093866067	9.049372104	5.99E-10	1.51E-08
b1450	mcbR	colanic acid and biofilm gene transcriptional regulator, MqsR-controlled	-1.092887117	8.71106595	2.65E-08	4.61E-07
b0462	acrB	multidrug efflux system protein	-1.08788792	8.743144273	8.09E-08	1.31E-06
b2032	wbbK	lipopolysaccharide biosynthesis protein	-1.072042705	9.083870957	6.75E-08	1.11E-06

						a volue (outoff
locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b1862	yebB	conserved protein, DUF830 family	-1.071989838	8.262282603	2.27E-05	0.000209315
b3104	yhal	inner membrane protein, DUF805 family	-1.070614854	7.593778417	2.53E-05	0.000230938
b2272	yfbM	conserved protein, DUF1877 family	-1.049949122	8.119942133	4.21E-06	4.62E-05
b0463	acrA	multidrug efflux system	-1.049755086	8.071824756	2.72E-05	0.000244571
b2877	mocA	CTP:molybdopterin cytidylyltransferase	-1.045980103	8.944150757	4.48E-09	9.16E-08
b3680	yidL	predicted transcriptional regulator, AraC family	-1.039687723	9.451881017	4.34E-08	7.33E-07
b0787	ybhM	inner membrane protein, UPF0005 family	-1.035324624	9.436042147	1.09E-08	2.03E-07
b3720	bglH	carbohydrate-specific outer membrane porin, cryptic	-1.034303178	10.54424559	1.48E-09	3.32E-08
b1155	tfaP	e14 prophage; predicted protein	-1.030144578	8.475101878	1.39E-06	1.70E-05
b1535	ydeH	diguanylate cyclase, required for pgaD induction	-1.029861125	8.759946082	2.74E-07	3.98E-06
b3595	yibJ	pseudogene	-1.011347031	8.031431271	4.66E-06	5.06E-05
b2677	proV	glycine betaine transporter subunit	-1.007555473	10.37998213	8.72E-10	2.11E-08
b4133	cadC	DNA-binding transcriptional activator	-1.006872739	10.29547962	2.92E-07	4.20E-06
b3214	gltF	periplasmic protein	-0.998682777	10.03681597	1.96E-07	2.92E-06
b2863	ygeQ	pseudogene	-0.995910287	9.401537433	1.68E-07	2.54E-06
b1579	intQ	pseudogene	-0.995438739	9.420467681	1.08E-06	1.35E-05
b2373	oxc	oxalyl CoA decarboxylase, ThDP-dependent	-0.988465811	9.423875803	2.29E-06	2.71E-05
b0584	fepA	iron-enterobactin outer membrane transporter	-0.979666383	7.957473086	1.70E-05	0.000160499
b1766	, sppA	protease IV (signal peptide peptidase)	-0.977610384	8.06972095	5.91E-05	0.00049256
b1798	leuE	neutral amino-acid efflux system	-0.976195088	9.087933286	4.69E-07	6.54E-06
b2355	yfdL	pseudogene	-0.976005081	8.098584525	8.77E-05	0.000697723
b3562	yiaA	inner membrane protein, YiaAB family	-0.974672533	8.969366946	6.19E-07	8.41E-06
b4579	yaiX	pseudogene	-0.971977321	8.078354099	7.97E-05	0.000644241
b3874	yihN	inner membrane protein, predicted transporter	-0.970199332	10.16320322	7.12E-09	1.38E-07
b1495	yddB	predicted porin protein	-0.945272475	10.44600106	1.56E-08	2.82E-07
b0562	ybcY	pseudogene	-0.933848785	9.3307018	3.78E-06	4.23E-05
b4310	nanM	N-acetylneuraminic acid mutarotase	-0.932110673	10.14120244	2.61E-08	4.57E-07
b0551	quuD	DLP12 prophage; predicted antitermination protein	-0.931324873	8.205501911	7.79E-06	8.12E-05
b3625	rfaY	lipopolysaccharide core biosynthesis protein	-0.927136467	7.973416343	8.93E-05	0.000708095
b1932	yedL	predicted acyltransferase	-0.922789269	8.658063311	1.01E-06	1.29E-05
b2845	yqeG	predicted transporter	-0.922180688	9.647045084	1.23E-06	1.52E-05
b2274	yfbO	conserved protein	-0.921099619	8.016976055	2.73E-05	0.000244664

<u>locus_tag</u>	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b1309	усјМ	predicted glucosyltransferase	-0.916416195	9.082833557	6.06E-07	8.27E-06
b3508	yhiD	predicted Mg(2+) transport ATPase, inner membrane protein	-0.905877307	9.624406262	4.35E-08	7.33E-07
b0139	htrE	predicted outer membrane usher protein	-0.90570193	11.17622988	1.10E-07	1.72E-06
b2734	pphB	serine/threonine-specific protein phosphatase 2	-0.900935822	8.920122778	4.61E-06	5.02E-05
b4088	alsB	D-allose transporter subunit	-0.900326103	9.449144566	7.81E-07	1.03E-05
b1695	ydiO	predicted acyl-CoA dehydrogenase	-0.894495714	7.979168137	8.66E-05	0.00069027
b1319	ompG	outer membrane porin G	-0.891981329	9.198407592	8.03E-06	8.33E-05
b1769	ydjE	predicted transporter	-0.891465374	9.431380262	6.65E-05	0.000547701
b2351	gtrB	CPS-53 (KpLE1) prophage; bactoprenol glucosyl transferase	-0.888322646	9.997551625	8.85E-06	9.07E-05
b0834	yliF	predicted diguanylate cyclase	-0.885639832	9.755485038	1.71E-05	0.000160738
b1494	pqqL	predicted peptidase	-0.880779347	9.883791154	6.45E-08	1.06E-06
b2028	ugd	UDP-glucose 6-dehydrogenase	-0.879922671	9.231397934	1.12E-06	1.41E-05
b0703	ybfO	pseudogene	-0.877983038	9.780967594	1.43E-07	2.20E-06
b3876	yihO	predicted transporter	-0.871924504	10.29539353	3.42E-07	4.87E-06
b4524	ycjV	pseudogene	-0.862298172	8.07733218	7.60E-05	0.000618411
b1969	yedW	predicted DNA-binding response regulator in two- component system with YedV	-0.855763785	9.38082216	1.03E-06	1.31E-05
b1238	tdk	thymidine kinase/deoxyuridine kinase	-0.847970321	9.010128033	3.41E-06	3.86E-05
b0135	yadC	predicted fimbrial-like adhesin protein	-0.846776492	10.31512954	5.73E-06	6.12E-05
b0343	lacY	lactose permease	-0.84254226	9.043489083	2.34E-05	0.000214854
b1967	hchA	Glyoxalase III and Hsp31 molecular chaperone	-0.83901273	9.300435312	5.20E-06	5.61E-05
b0645	ybeR	predicted protein	-0.832220083	8.905084811	8.75E-06	9.00E-05
b3324	gspC	general secretory pathway component, cryptic	-0.809281154	9.657420425	4.80E-06	5.20E-05
		diguanylate cyclase; cold-and stationary phase-induced				
b1490	dosC	oxygen-dependent biofilm regulator; positively regulates csgBAC and pgaABCD	-0.808140044	9.472360155	1.65E-05	0.000156212
b2035	rfc	O-antigen polymerase	-0.80495099	9.794978569	3.46E-06	3.91E-05
b4317	fimD	outer membrane usher protein, type 1 fimbrial synthesis	-0.799748364	11.33819063	4.17E-06	4.60E-05
b0319	yahE	predicted protein	-0.798534151	8.80498941	7.81E-05	0.000633099

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> <u>0.000716332)</u>
b1024	pgaA	biofilm adhesin polysaccharide PGA export, predicted OM protein	-0.796333055	10.87637205	1.49E-05	0.000141541
b1250	kch	voltage-gated potassium channel	-0.787502757	9.296065846	1.56E-05	0.000148348
b4571	wbbL	pseudogene	-0.782071724	9.037149272	8.93E-06	9.13E-05
b2761	удсВ	Cas3 predicted helicase needed for Cascade anti-viral activity	-0.778511293	10.72104568	3.37E-06	3.84E-05
b0342	lacA	thiogalactoside acetyltransferase	-0.775347982	9.172445734	2.66E-05	0.000240392
b0513	ybbY	predicted uracil/xanthine transporter	-0.773370601	9.003360704	2.60E-05	0.000235914
b4316	fimC	chaperone, periplasmic	-0.766348305	9.086305593	7.20E-05	0.000592035
b3078	ygjl	predicted transporter	-0.764235471	9.647310898	1.20E-05	0.00011841
b4600	ydfJ	pseudogene	-0.758557687	12.82441042	3.03E-06	3.47E-05
b3561	wecH	O-acetyltransferase for enterobacterial common antigen (ECA)	-0.748888965	10.65888916	2.39E-06	2.82E-05
b3558	insK	IS150 transposase B	-0.747344304	9.509502969	1.38E-05	0.000133094
b4580	yaiT	pseudogene	-0.744090084	10.89649032	8.03E-06	8.33E-05
b1905	ftnA	ferritin iron storage protein (cytoplasmic)	-0.740152145	9.321156153	5.56E-05	0.000467007
b4061	yjcC	predicted cyclic-di-GMP phosphodiesterase	-0.740007277	10.35250906	1.83E-05	0.000171237
b3115	tdcD	propionate kinase/acetate kinase C, anaerobic	-0.739452329	9.469281515	1.10E-05	0.000109909
b0491	ybbM	inner membrane protein, UPF0014 family	-0.737588312	9.42112118	1.21E-05	0.000118541
b0328	yahN	amino acid exporter for proline, lysine, glutamate, homoserine	-0.729062653	9.906510561	6.64E-06	7.01E-05
b2888	ygfU	predicted transporter	-0.72692791	9.604597613	1.17E-05	0.000116136
b0076	leuO	DNA-binding transcriptional activator	-0.714901212	9.698672019	4.06E-05	0.00035496
b3491	yhiM	inner membrane protein, DUF1323 family	-0.709411531	10.31944483	8.09E-06	8.36E-05
b1786	yeaJ	predicted diguanylate cyclase	-0.708487114	9.768956848	4.81E-05	0.000413633
b1481	bdm	biofilm-dependent modulation protein	-0.695949086	9.552434043	5.33E-05	0.000454165
b4267	idnD	L-idonate 5-dehydrogenase, NAD-binding	-0.695454502	9.925470099	5.55E-05	0.000467007
b3173	yhbX	predicted hydrolase, inner membrane	-0.685830031	10.85080988	4.45E-05	0.000384048
b4031	xylE	D-xylose transporter	-0.668337796	10.47793716	6.56E-05	0.000541534
b2647	урјА	adhesin-like autotransporter	-0.644866045	11.54410855	7.52E-05	0.000614885
b4308	yjhR	pseudogene	-0.641502971	10.57628901	7.55E-05	0.000615634
b3632	rfaQ	lipopolysaccharide core biosynthesis protein	0.694286991	11.07487251	6.02E-05	0.00050091

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> <u>0.000716332)</u>
b3599	mtlA	fused mannitol-specific PTS enzymes: IIA components/IIB components/IIC components	0.715571516	9.246265304	4.44E-05	0.000384048
b3407	yhgF	predicted transcriptional accessory protein	0.733537643	9.428379208	2.31E-05	0.000212445
b4392	slt	lytic murein transglycosylase, soluble	0.734365726	8.901721873	3.76E-05	0.000330508
b0679	nagE	fused N-acetyl glucosamine specific PTS enzyme: IIC, IIB, and IIA components	0.742226493	8.97204689	3.19E-05	0.000282054
b4242	mgtA	magnesium transporter	0.749203753	8.994869232	5.90E-05	0.00049256
b3196	yrbG	predicted calcium/sodium:proton antiporter	0.761757199	8.886263696	5.34E-05	0.000454165
b0473	htpG	protein refolding molecular co-chaperone Hsp90, Hsp70- dependent; heat-shock protein; ATPase	0.795829746	9.182295924	7.25E-06	7.60E-05
b3780	rhIB	ATP-dependent RNA helicase	0.812988106	8.942263028	8.19E-05	0.000659255
b3416	malQ	4-alpha-glucanotransferase (amylomaltase)	0.833069967	8.826753437	5.49E-06	5.89E-05
b2552	hmp	fused nitric oxide dioxygenase/dihydropteridine reductase 2	0.845105714	8.728029963	1.44E-05	0.000138086
b3207	yrbL	predicted protein	0.845967038	8.201077483	7.48E-05	0.00061249
b0153	fhuB	fused iron-hydroxamate transporter subunits of ABC superfamily: membrane components	0.848944659	8.483643109	1.37E-05	0.000132754
b3785	wzzE	Entobacterial Common Antigen (ECA) polysaccharide chain length modulation protein	0.861135242	9.014273264	1.63E-06	1.97E-05
b2905	gcvT	aminomethyltransferase, tetrahydrofolate-dependent, subunit (T protein) of glycine cleavage complex	0.861389718	9.058284688	1.04E-06	1.31E-05
b0284	paoC	PaoABC aldehyde oxidoreductase, Moco-containing subunit	0.88026726	8.797956361	2.73E-06	3.17E-05
b3084	rlmG	23S rRNA mG1835 methyltransferase, SAM-dependent	0.88249578	8.449008862	2.15E-05	0.000199458
b3469	zntA	zinc, cobalt and lead efflux system	0.885831466	9.067405664	5.77E-07	7.91E-06
b4221	ytfN	large conserved protein, DUF490 family	0.90906686	10.38681983	4.82E-06	5.21E-05
b3159	yhbV	predicted protease	0.90928033	8.310925829	8.29E-05	0.000665683
b4015	aceA	isocitrate lyase	0.929864755	8.306277094	4.01E-06	4.44E-05
b3092	uxaC	uronate isomerase	0.950857974	8.648850532	2.41E-06	2.82E-05
b3260	dusB	tRNA-dihydrouridine synthase B	0.958074386	8.951286484	1.91E-06	2.29E-05
b2837	galR	DNA-binding transcriptional repressor	0.964197677	8.266420316	1.87E-05	0.000174586
b0699	ybfA	predicted protein	0.974684343	8.381652672	3.14E-06	3.59E-05

						q.value (cutoff
<u>locus_tag</u>	<u>gene_name</u>	function	<u>logFC</u>	<u>logCPM</u>	Pvalue	0.000716332)
b2158	yeiH	inner membrane protein, UPF0324 family	0.9885938	8.424883109	2.19E-06	2.60E-05
b4014	aceB	malate synthase A	0.991564554	8.43951499	4.89E-07	6.77E-06
b4102	phnF	predicted DNA-binding transcriptional regulator of phosphonate uptake and biodegradation	0.991614453	8.12889453	1.00E-05	0.000101321
b0852	rimK	ribosomal protein S6 modification protein	0.991860666	7.698005844	6.48E-05	0.000536733
b3510	hdeA	stress response protein acid-resistance protein	1.010529878	10.86154642	2.91E-10	7.99E-09
b3806	cyaA	adenylate cyclase	1.012503491	8.003740129	6.21E-06	6.58E-05
b2938	speA	biosynthetic arginine decarboxylase, PLP-binding	1.025830984	8.925381009	6.36E-08	1.05E-06
b0676	nagC	DNA-binding transcriptional dual regulator, repressor of N- acetylglucosamine	1.027890873	8.711887335	2.67E-06	3.11E-05
b3635	mutM	formamidopyrimidine/5-formyluracil/ 5-hydroxymethyluracil DNA glycosylase	1.041047421	8.2840559	1.22E-06	1.51E-05
b0195	yaeB	conserved protein, UPF0066 family	1.048015354	7.768166043	2.45E-05	0.000223675
b1129	phoQ	sensory histidine kinase in two-component regulatory system with PhoP	1.052989651	8.306831816	8.73E-07	1.13E-05
b0877	ybjX	conserved protein	1.06567693	9.362589767	2.37E-09	5.09E-08
b3940	metL	fused aspartokinase II/homoserine dehydrogenase II	1.066410645	9.50307197	1.51E-09	3.37E-08
b2667	ygaV	tributyltin-inducible repressor of ygaVP	1.113122349	8.783471812	3.64E-07	5.16E-06
b0605	ahpC	alkyl hydroperoxide reductase, C22 subunit	1.132967881	7.920194506	3.07E-05	0.000272705
b4111	proP	proline/glycine betaine transporter	1.140957816	9.351877395	1.13E-10	3.34E-09
b2709	norR	Anaerobic nitric oxide reductase DNA-binding transcriptional activator	1.14822518	8.452620606	1.94E-06	2.31E-05
b3961	oxyR	DNA-binding transcriptional dual regulator	1.154961893	8.649424927	6.54E-09	1.29E-07
b4251	yjgJ	predicted transcriptional regulator	1.175296669	8.530257614	1.23E-09	2.83E-08
b0198	metl	DL-methionine transporter subunit	1.198079013	7.568719218	1.25E-05	0.000121842
b4391	yjjK	fused predicted transporter subunits of ABC superfamily: ATP-binding components	1.239490171	8.905911815	7.19E-11	2.19E-09
b1823	cspC	stress protein, member of the CspA-family	1.257384831	9.372692153	1.39E-12	5.66E-11
b4457	csrC		1.259187624	7.845955896	1.59E-07	2.42E-06
b3753	rbsR	DNA-binding transcriptional repressor of ribose metabolism	1.290988827	8.336823302	3.41E-08	5.83E-07
b4371	rsmC	16S rRNA m(2)G1207 methyltransferase	1.332765305	7.521554415	1.06E-06	1.34E-05
b0197	metQ	DL-methionine transporter subunit	1.334155247	7.657893703	1.62E-05	0.000153646

locus_tag	gene_name	function	logFC	<u>logCPM</u>	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b3963	fabR	DNA-binding transcriptional repressor	1.33581746	8.583121957	1.41E-11	4.86E-10
b2903	gcvP	glycine decarboxylase, PLP-dependent, subunit (protein P) of glycine cleavage complex	1.35161472	10.05436586	3.20E-16	2.06E-14
b2579	yfiD	autonomous glycyl radical cofactor	1.424867312	7.097096855	1.20E-05	0.000118535
b1049	opgH	membrane glycosyltransferase	1.430159352	8.714192918	1.30E-14	7.28E-13
b2477	bamC	lipoprotein required for OM biogenesis, in BamABCDE complex	1.434393834	8.621491933	3.66E-11	1.16E-09
b0677	nagA	N-acetylglucosamine-6-phosphate deacetylase	1.445788816	8.295694849	7.01E-11	2.14E-09
b4375	prfC	peptide chain release factor RF-3	1.446165855	7.990548622	7.13E-09	1.38E-07
b0436	tig	peptidyl-prolyl cis/trans isomerase (trigger factor)	1.448694457	8.858078821	1.92E-14	1.06E-12
b3676	yidH	inner membrane protein, DUF202 family	1.535974682	7.12622966	9.80E-06	9.93E-05
b3871	typA	GTP-binding protein	1.5602021	8.924178184	1.87E-16	1.25E-14
		multifunctional aminopeptidase A: a cyteinylglycinase,				
b4260	рерА	transcription regulator and site-specific recombination factor	1.567148895	9.012174849	7.27E-15	4.23E-13
b4377	уjjU	predicted phospholipase, patatin-like family	1.598833457	8.911410952	1.74E-17	1.46E-15
b4408	csrB		1.621428872	8.114593358	2.33E-13	1.07E-11
b0814	ompX	outer membrane protein X	1.628397378	8.245466294	4.29E-14	2.28E-12
b0196	rcsF	predicted outer membrane protein, signal	1.637082356	7.474830797	2.23E-08	3.96E-07
b2682	ygaZ	probable L-valine exporter, norvaline resistance	1.638270041	7.476135854	1.21E-08	2.21E-07
b1048	opgG	osmoregulated periplasmic glucan (OPG) biosynthesis periplasmic protein	1.661877057	8.465671151	3.28E-13	1.45E-11
b2217	rcsB	DNA-binding response regulator in two-component regulatory system with RcsC and YojN	1.680189754	8.601556572	6.46E-14	3.26E-12
b1304	pspA	regulatory protein for phage-shock-protein operon	1.734264495	7.4750051	2.80E-07	4.05E-06
b3687	ibpA	heat shock chaperone	1.74321486	7.882240361	1.46E-13	7.06E-12
b0059	rapA	RNA polymerase-associated helicase protein (ATPase and RNA polymerase recycling factor)	1.775236446	10.83567125	1.08E-18	1.11E-16
b2513	yfgM	conserved protein, UPF0070 family	1.788714507	7.055356501	6.15E-07	8.38E-06
b2168	fruK	fructose-1-phosphate kinase	1.789724841	7.591052313	4.35E-11	1.36E-09
b3556	cspA	RNA chaperone and anti-terminator, cold-inducible	1.794562115	8.284949421	1.02E-14	5.77E-13

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> 0.000716332)
b4390	nadR	bifunctional DNA-binding transcriptional repressor/ NMN adenylyltransferase	1.825438812	9.915638455	1.86E-25	3.39E-23
b1914	uvrY	DNA-binding response regulator in two-component regulatory system with BarA	1.826116835	9.89980296	2.15E-21	3.10E-19
b2215	ompC	outer membrane porin protein C	1.890763507	9.622987328	2.63E-12	1.03E-10
b1831	proQ	RNA chaperone, probable regulator of ProP translation	1.890863014	7.498213787	1.34E-09	3.07E-08
b2786	barA	hybrid sensory histidine kinase, in two-component regulatory system with UvrY	1.892488051	12.0721507	7.22E-26	1.51E-23
b3191	mlaB	ABC transporter maintaining OM lipid asymmetry, cytoplasmic STAS component	1.9012909	9.149911519	3.39E-21	4.59E-19
b2516	rodZ	cytoskeletal protein required for MreB assembly	1.902914388	6.871360278	1.13E-06	1.41E-05
b3181	greA	transcript cleavage factor	1.932895225	7.301730688	5.06E-08	8.49E-07
b0759	galE	UDP-galactose-4-epimerase	1.959739202	7.236735029	2.11E-09	4.59E-08
b3206	npr	phosphohistidinoprotein-hexose phosphotransferase component of N-regulated PTS system (Npr)	1.99618964	6.68390844	3.93E-06	4.38E-05
b3192	mlaC	ABC transporter maintaining OM lipid asymmetry, periplasmic binding protein	2.003098266	8.379494313	3.78E-11	1.19E-09
b3194	mlaE	ABC transporter maintaining OM lipid asymmetry, inner membrane permease protein	2.018592104	7.961915861	5.39E-14	2.76E-12
b2346	mlaA	ABC transporter maintaining OM lipid asymmetry, OM lipoprotein component	2.055634878	9.137104056	7.31E-18	7.13E-16
b2815	metW		2.110796386	6.365243483	1.41E-05	0.000135824
b2829	ptsP	fused PTS enzyme: PEP-protein phosphotransferase (enzyme I)/GAF domain containing protein	2.15792221	10.56294265	3.16E-32	8.83E-30
b0611	rna	ribonuclease I	2.256328189	9.389455407	1.02E-17	9.51E-16
b3195	mlaF	ABC transporter maintaining OM lipid asymmetry, ATP- binding protein	2.256809534	10.12463383	4.65E-35	1.50E-32
b3071	yqjl	predicted transcriptional regulator, PadR family	2.29796337	7.606402996	5.58E-17	4.50E-15
b3229	sspA	stringent starvation protein A	2.572029868	6.833663536	1.39E-06	1.70E-05
b4368	leuV		2.680726236	6.298480809	2.14E-06	2.54E-05
b4203	rpll	50S ribosomal subunit protein L9	2.711454721	8.665483891	5.18E-39	1.81E-36
b1095	fabF	3-oxoacyl-[acyl-carrier-protein] synthase II	2.73202337	9.066532399	8.50E-43	3.88E-40

locus_tag	gene_name	function	logFC	logCPM	Pvalue	<u>q.value (cutoff</u> <u>0.000716332)</u>
b3193	mlaD	ABC transporter maintaining OM lipid asymmetry, anchored periplasmic binding protein	2.883968103	8.362859797	5.92E-30	1.55E-27
b1849	purT	phosphoribosylglycinamide formyltransferase 2	3.114932089	9.805819837	1.08E-55	4.51E-52
b0623	cspE	DNA-binding transcriptional repressor	3.157081834	8.88961655	2.13E-48	1.78E-45
b2572	rseA	anti-sigma factor	3.177657285	7.562183118	2.93E-21	4.10E-19
b2684	mprA	DNA-binding transcriptional repressor of microcin B17 synthesis and multidrug efflux	3.500495683	8.607309689	9.24E-43	3.88E-40
b3783	rho	transcription termination factor	3.636104597	6.545837709	4.48E-13	1.88E-11
b2617	bamE	lipoprotein component of BamABCDE OM biogenesis complex	3.845467948	9.162334554	9.38E-49	9.83E-46
b2571	rseB	anti-sigma E factor, binds RseA	4.174457428	9.843858702	6.51E-42	2.48E-39
b0178	skp	periplasmic chaperone	4.488457614	9.020232339	2.90E-27	6.76E-25
b2512	bamB	lipoprotein required for OM biogenesis, in BamABCDE complex	4.575863157	9.087828104	5.48E-47	3.83E-44

Table A13 -Glycerol nitrate

Giycerol n	Giycerol hitrate								
locus_tag	gene_name	function	logFC	logCPM	Pvalue (cutoff 0.05)	<u>q.value (cutoff</u> <u>0.001831501)</u>			
b1334	fnr	DNA-binding transcriptional dual regulator, global regulator of anaerobic growth	-10.24626081	6.211411398	1.19E-27		5.57E-25		
b3008	metC	cystathionine beta-lyase, PLP-dependent	-9.955337888	5.925089284	2.33E-20		6.99E-18		
b0009	mog	molybdochelatase incorporating molybdenum into molybdopterin	-9.872761617	5.843997623	3.10E-20		8.67E-18		
b0438	clpX	ATPase and specificity subunit of ClpX-ClpP ATP- dependent serine protease	-9.252985917	5.240499335	1.86E-14		2.52E-12		
b0783	moaC	molybdopterin biosynthesis, protein C	-9.189591971	5.180111975	3.12E-11		2.85E-09		
b2752	cysD	sulfate adenylyltransferase, subunit 2	-9.012963279	5.009761906	2.01E-11		1.92E-09		
b3772	ilvA	threonine deaminase	-9.012331387	5.009438246	5.60E-13		6.35E-11		
b4013	metA	homoserine O-transsuccinylase	-8.833938691	4.840219087	2.39E-10		1.80E-08		
b3956	ррс	phosphoenolpyruvate carboxylase	-8.633073414	4.650250024	2.49E-11		2.32E-09		
b3781	trxA	thioredoxin 1	-8.603182574	4.621527682	5.85E-09		3.23E-07		
b3771	ilvD	dihydroxyacid dehydratase	-8.361368855	4.397260819	4.41E-10		3.04E-08		
b0764	modB	molybdate transporter subunit	-8.250530276	6.471077013	4.44E-34		3.73E-31		
b2019	hisG	ATP phosphoribosyltransferase	-8.183196809	4.233408478	2.97E-09		1.73E-07		
b3290	trkA	NAD-binding component of TrK potassium transporter	-8.140044505	4.194227506	2.81E-09		1.66E-07		
b2500	purN	phosphoribosylglycinamide formyltransferase 1	-8.096504323	4.154325851	2.98E-08		1.44E-06		
b1264	trpE	component I of anthranilate synthase	-8.050100586	4.112759867	6.14E-09		3.35E-07		
b1677	lpp	murein lipoprotein	-7.978243272	4.048371416	2.59E-08		1.31E-06		
b0243	proA	gamma-glutamylphosphate reductase	-7.904037618	3.9815428	3.01E-08		1.44E-06		
b3204	ptsN	sugar-specific enzyme IIA component of PTS	-7.903943688	3.981509959	2.70E-08		1.35E-06		
b0003	thrB	homoserine kinase	-7.903476508	3.981345756	3.05E-08		1.44E-06		
b3770	ilvE	branched-chain amino-acid aminotransferase	-7.851802584	3.935044621	4.73E-08		2.16E-06		
b1088	yceD	conserved protein, DUF177 family	-7.825312741	3.911349436	1.26E-07		5.44E-06		
b3734	atpA	F1 sector of membrane-bound ATP synthase, alpha subunit	-7.741944546	3.837597725	5.17E-07		2.01E-05		
b3082	higA	antitoxinof the HigB-HigA toxin-antitoxin system	-7.71325284	3.812224266	1.72E-06		5.73E-05		
b2557	purL	phosphoribosylformyl-glycineamide synthetase	-7.651981655	3.759501439	1.65E-07		6.81E-06		
b0738	tolR	membrane spanning protein in ToIA-ToIQ-ToIR complex	-7.65028289	3.75902092	1.66E-05	0.0	00427829		

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b3941	metF	5,10-methylenetetrahydrofolate reductase	-7.588975674	3.705121332	7.16E-07	2.68E-05
b4214	cysQ	PAPS (adenosine 3'-phosphate 5'-phosphosulfate) 3'(2'),5'-bisphosphate nucleotidase	-7.558830313	3.677859366	5.02E-06	0.000149545
b0052	pdxA	4-hydroxy-L-threonine phosphate dehydrogenase, NAD- dependent	-7.492002003	3.620451362	6.48E-06	0.00018905
b0741	pal	peptidoglycan-associated outer membrane lipoprotein	-7.45477837	3.59017803	1.01E-05	0.000281163
b1262	trpC	fused indole-3-glycerolphosphate synthetase/N-(5- phosphoribosyl)anthranilate isomerase	-7.39254793	5.630035951	3.35E-16	5.41E-14
b2313	cvpA	membrane protein required for colicin V production	-7.383571895	3.529375458	3.75E-06	0.000115062
b2526	hscA	DnaK-like molecular chaperone specific for IscU	-7.347572605	3.498271265	2.06E-06	6.69E-05
b0826	moeB	molybdopterin synthase sulfurylase	-7.328838687	5.568594659	1.12E-15	1.68E-13
b0386	proC	pyrroline-5-carboxylate reductase, NAD(P)-binding	-7.308195285	3.46583354	4.41E-06	0.000133172
b3927	glpF	glycerol facilitator	-7.280668408	5.521697188	5.16E-16	8.03E-14
b2026	hisl	fused phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase	-7.268517487	3.432892934	1.33E-05	0.000356923
b0908	aroA	5-enolpyruvylshikimate-3-phosphate synthetase	-7.230240502	3.399821552	1.10E-05	0.00030275
b2414	cysK	cysteine synthase A, O-acetylserine sulfhydrolase A subunit	-7.188810722	3.365456378	1.73E-05	0.000443403
b2020	hisD	bifunctional histidinal dehydrogenase/ histidinol dehydrogenase	-7.188338366	3.365346269	7.12E-06	0.000204728
b1693	aroD	3-dehydroquinate dehydratase	-7.187471462	3.365126066	4.98E-06	0.000149458
b0004	thrC	threonine synthase	-7.145061556	3.330009843	5.94E-06	0.000175646
b2320	pdxB	erythronate-4-phosphate dehydrogenase	-7.05633063	3.257145443	2.41E-05	0.000599298
b0242	proB	gamma-glutamate kinase	-6.960061593	3.180087149	1.64E-05	0.000424326
b3926	glpK	glycerol kinase	-6.959755009	6.555033024	1.71E-29	1.03E-26
b2784	relA	(p)ppGpp synthetase I/GTP pyrophosphokinase	-6.919090338	7.200899084	1.16E-22	4.07E-20
b0726	sucA	2-oxoglutarate decarboxylase, thiamin-requiring	-6.910831659	3.140297288	6.55E-05	0.001529395
b3839	tatC	TatABCE protein translocation system subunit	-6.856261099	6.452927687	2.92E-26	1.23E-23
b0912	ihfB	integration host factor (IHF), DNA-binding protein, beta subunit	-6.815496877	5.075314054	1.47E-12	1.59E-10
b0071	leuD	3-isopropylmalate dehydratase small subunit	-6.815356435	5.075241016	1.78E-12	1.87E-10
b0439	lon	DNA-binding ATP-dependent protease La	-6.803234598	3.056535283	6.29E-05	0.001482418

locus_tag	gene_name	function	<u>logFC</u>	<u>logCPM</u>	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b3170	rimP	ribosome maturation factor for 30S subunits	-6.748171863	3.013190136	7.76E-05	0.001757259
b0720	gltA	citrate synthase	-6.510930037	4.787931669	1.21E-10	9.78E-09
b2424	cysU	sulfate/thiosulfate ABC transporter permease	-6.497066524	4.774798545	8.92E-11	7.35E-09
		fused glutamine amidotransferase (component II) of				
b1263	trpD	anthranilate synthase/anthranilate phosphoribosyl transferase	-6.483230722	4.76165311	3.50E-10	2.53E-08
b0073	leuB	3-isopropylmalate dehydrogenase, NAD(+)-dependent	-5.916094831	5.030371165	6.75E-11	5.67E-09
b0002	thrA	fused aspartokinase I and homoserine dehydrogenase I	-5.817988964	5.446649728	4.03E-13	4.84E-11
		fused siroheme synthase 1,3-dimethyluroporphyriongen III				
b3368	cysG	dehydrogenase and siroheme	-5.779727265	4.902131423	1.16E-09	7.15E-08
		ferrochelatase/uroporphyrinogen methyltransferase				
b0033	carB	carbamoyl-phosphate synthase large subunit	-5.669121254	4.800049428	3.03E-08	1.44E-06
b3828	metR	DNA-binding transcriptional activator, homocysteine- binding	-5.648938996	4.003315945	2.31E-07	9.41E-06
b0740	tolB	periplasmic protein	-5.639549478	4.773330429	1.27E-06	4.41E-05
b3671	ilvB	acetolactate synthase I, large subunit	-5.5558189	7.726688674	2.76E-48	1.16E-44
b1712	ihfA	integration host factor (IHF), DNA-binding protein, alpha subunit	-5.516217699	3.886095238	1.01E-06	3.66E-05
b2600	tyrA	fused chorismate mutase T/prephenate dehydrogenase	-5.45793055	3.83617999	1.17E-06	4.13E-05
b0957	ompA	outer membrane protein A (3a;II*;G;d)	-5.425575237	4.574686527	7.27E-08	3.28E-06
b0784	moaD	molybdopterin synthase, small subunit	-5.408369137	4.559079612	1.14E-08	6.07E-07
b3867	hemN	coproporphyrinogen III oxidase, SAM and NAD(P)H dependent, oxygen-independent	-5.346959759	7.089604661	5.14E-43	1.08E-39
b0072	leuC	3-isopropylmalate dehydratase large subunit	-5.318104353	4.972596262	8.33E-10	5.38E-08
b2838	lysA	diaminopimelate decarboxylase, PLP-binding	-5.303404375	4.463559745	1.41E-07	6.05E-06
b0437	clpP	proteolytic subunit of CIpA-CIpP and CIpX-CIpP ATP- dependent serine proteases	-5.264264492	4.42939017	1.05E-06	3.77E-05
b3172	argG	argininosuccinate synthetase	-5.245744124	4.412501594	6.02E-07	2.32E-05
b0688	pgm	phosphoglucomutase	-5.236701228	3.648443237	2.92E-05	0.000708968
b2276	nuoN	NADH:ubiquinone oxidoreductase, membrane subunit N	-5.217122141	5.788746056	6.07E-15	8.50E-13
b2423	cysW	sulfate/thiosulfate ABC transporter subunit	-5.211525643	4.876536812	3.21E-09	1.82E-07
b0214	rnhA	ribonuclease HI, degrades RNA of DNA-RNA hybrids	-5.201371288	3.619207637	6.75E-06	0.0001956

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b2278	nuoL	NADH:ubiquinone oxidoreductase, membrane subunit L	-5.157596518	6.125592815	6.68E-19	1.48E-16
b2284	nuoF	NADH:ubiquinone oxidoreductase, chain F	-5.133465408	6.104163287	1.99E-16	3.35E-14
b4232	fbp	fructose-1,6-bisphosphatase I	-5.105293392	7.131913147	1.10E-28	5.80E-26
b0763	modA	molybdate transporter subunit	-5.096871071	6.847275953	4.17E-33	2.92E-30
b2281	nuol	NADH:ubiquinone oxidoreductase, chain I	-4.945331449	4.63316728	1.60E-07	6.72E-06
b1224	narG	nitrate reductase 1, alpha subunit	-4.548347239	8.243603751	4.22E-40	5.90E-37
b2114	metG	methionyl-tRNA synthetase	-4.461424064	3.730783089	1.62E-05	0.000423375
b3957	argE	acetylornithine deacetylase	-4.301249935	5.145341843	1.48E-06	5.02E-05
b3939	metB	cystathionine gamma-synthase, PLP-dependent	-4.223981442	5.25434012	2.54E-06	8.01E-05
b3857	mobA	molybdopterin-guanine dinucleotide synthase	-4.193947399	5.2262159	3.39E-06	0.000105416
b3035	tolC	transport channel	-4.150020189	5.186175164	8.10E-07	2.96E-05
b2287	nuoB	NADH:ubiquinone oxidoreductase, chain B	-4.134807793	5.475694681	1.20E-06	4.21E-05
b2422	cysA	sulfate/thiosulfate transporter subunit	-4.061011652	4.922327991	1.49E-07	6.30E-06
b2318	truA	pseudouridylate synthase I	-4.040781518	5.390448467	2.15E-05	0.000540553
b4191	ulaR	transcriptional tepressor for the L-ascorbate utilization (ula) divergon	-3.904376924	5.39006463	3.78E-09	2.12E-07
b0588	fepC	iron-enterobactin transporter subunit	-3.847805648	5.214278359	2.07E-06	6.69E-05
b0827	moeA	molybdopterin biosynthesis protein	-3.797284326	5.970521434	1.04E-07	4.60E-06
b3205	yhbJ	gImZ(sRNA)-inactivating NTPase, glucosamine-6- phosphate regulated	-3.745723743	5.372166384	2.69E-05	0.000661581
b2283	nuoG	NADH:ubiquinone oxidoreductase, chain G	-3.718937619	6.88547825	1.41E-10	1.12E-08
b3958	argC	N-acetyl-gamma-glutamylphosphate reductase, NAD(P)- binding	-3.703615569	4.782312666	1.30E-05	0.000353404
b0781	moaA	molybdopterin biosynthesis protein A	-3.696847251	6.600487931	2.13E-18	4.26E-16
b3860	dsbA	periplasmic protein disulfide isomerase I	-3.611431123	7.13187855	3.81E-20	1.00E-17
b3630	rfaP	kinase that phosphorylates core heptose of lipopolysaccharide	-3.560400509	4.956162421	1.65E-07	6.81E-06
b0750	nadA	quinolinate synthase, subunit A	-3.550983836	5.193302118	4.63E-08	2.13E-06
b1225	narH	nitrate reductase 1, beta (Fe-S) subunit	-3.454662035	5.945121349	5.82E-11	4.99E-09
b2277	nuoM	NADH:ubiquinone oxidoreductase, membrane subunit M	-3.43537714	5.79545253	2.25E-10	1.72E-08
b0785	moaE	molybdopterin synthase, large subunit	-3.362008959	5.33424555	1.11E-06	3.95E-05
b2839	lysR	DNA-binding transcriptional dual regulator	-3.322288045	5.826769629	1.17E-09	7.15E-08

b1223 nark nitrate/nitrie transporter 3.275999661 6.97486453 1.79E-18 3.76E-11 b2285 nuoE NADH-ubiquinone oxidoreductase, chain E 3.276686005 5.931632682 3.67E-10 2.61E-05 0.00062806 b2285 nuoA NADH-ubiquinone oxidoreductase, membrane subunit A 3.176686005 5.931632682 3.67E-10 2.61E-00 b2288 nuoA NADH-ubiquinone oxidoreductase, membrane subunit A 3.1132/13148 5.403574565 2.00E-05 0.00050894 b2282 nuoH NADH-ubiquinone oxidoreductase, membrane subunit H 3.064345773 5.076689129 8.58E-06 0.000240 b4225 glpD sn-glyceori-3-phosphate isomerase -3.00717788 5.419284534 6.32E-07 2.41E-05 b0590 fepD ionon-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.00033047 b0494 apaH diadenosine tetraphosphatase -2.86671944 5.159145591 6.52E-14 8.30E-11 b1235 rssB ClpXP; required for the PcnB-degradosome interaction during stranoraphase -2.27	locus_tag	gene_name	function	<u>logFC</u>	logCPM	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b2425 cysP thiosulfate-binding protein -3.176685059 5.331632882 3.67E-10 2.61E-00 b2288 nuoA NADH:ubiquinone oxidoreductase, fused CD subunit -3.152713148 5.403574565 2.00E-05 0.0000508944 b2288 nuoC NADH:ubiquinone oxidoreductase, fused CD subunit -3.152713148 5.403574565 2.00E-05 0.0002000 b2282 nuoH NADH:ubiquinone oxidoreductase, fused CD subunit -3.063435773 5.076689129 8.58E-06 0.000200 b4265 gipD sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding -2.999522432 6.934383293 1.56E-17 2.86E-11 b5050 fepD iron-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.001482411 b5235 rssB ClpXP; required for the PonB-degradosome interaction -2.772378824 6.662823721 6.52E-14 8.30E-12 b1235 rssB ClpXP; required for the PonB-degradosome interaction -2.70367195 5.980480773 1.98E-08 1.02E-00 b1433 pcnB poly(A) polymerase I -2.703467195	b1223	narK	nitrate/nitrite transporter	-3.275999661	6.97486453		3.76E-16
b2288 nuoA NADH:ubiquinone oxidoreductase, membrane subunit A -3.152713148 5.40374565 2.00E-05 0.000509344 b2286 nuoC NADH:ubiquinone oxidoreductase, fused CD subunit -3.113493188 6.07886874 7.18E-10 4.78E-00 b2282 nuoC NADH:ubiquinone oxidoreductase, membrane subunit H -3.064345773 5.076689129 8.58E-06 0.000240 b4025 pgi glucosephosphate isomerase -3.007177885 5.419284534 6.32E-07 2.41E-00 b3426 glpD rs-glycorol-3-phosphate dehydrogenase, aerobic, rAD/NAD(P)-binding -2.91962325 5.199268219 1.21E-05 0.00013047 b0590 fepD iron-enterobactin transporter subunit -2.91962325 5.19946591 6.32E-05 0.00148241 b3924 fpr ferredoxin-NADP reductase -2.6867144 6.62823721 6.52E-14 8.30E-11 b1235 rssB ClpXP; required for the PcnB-degradosome interaction during stationary phase -2.705926894 5.417351207 1.55E-06 5.22E-00 b1363 fcnA ferrous iron transporter, protein A -2.642	b2285	nuoE	NADH:ubiquinone oxidoreductase, chain E	-3.263644323	4.407593662	2.54E-05	0.000628067
b2286 nuoC NADH:ubiquinone oxidoreductase, fused CD subunit -3.113493188 6.07868704 7.18E-10 4.78E-00 b2282 nuoH NADH:ubiquinone oxidoreductase, membrane subunit -3.007177885 5.076689129 8.58E-06 0.000240 b4025 glp glucosephosphate isomerase -3.007177885 5.419284543 6.32E-07 2.41E-00 b3426 glpD iron-enterobactin transporter subunit -2.996922432 6.934383293 1.56E-17 2.86E-11 b0590 fepD iron-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.00033047 b03924 fpr feredoxin-NADP reductase -2.772378824 6.62823721 6.52E-14 8.30E-12 b1235 rssB ClpXP; required for the PonB-degradosome interaction during stationary phase -2.705928844 5.41731207 1.55E-06 5.22E-05 0.0014201 b3408 feoA ferrous iron transporter, protein A -2.642682127 7.13110436 5.13E-18 9.78E-11 b3408 feoA ferrous iron transporter, protein A -2.64208056 <t< td=""><td>b2425</td><td>cysP</td><td>thiosulfate-binding protein</td><td>-3.176685059</td><td>5.931632682</td><td>3.67E-10</td><td>2.61E-08</td></t<>	b2425	cysP	thiosulfate-binding protein	-3.176685059	5.931632682	3.67E-10	2.61E-08
b2282 nuoH NADH:ubiquinone oxidoreductase, membrane subunit H -3.064345773 5.076689129 8.58E-06 0.000240 b4025 gip glucosephosphate isomerase -3.007177865 5.419284534 6.32E-07 2.41E-03 b3426 glpD FAD/NAD(P)-binding -2.996922432 6.934383293 1.56E-17 2.86E-14 b0590 fepD iron-enterobactin transporter subunit -2.91962225 5.199068219 1.21E-05 0.00033047 b03924 fpr feredoxin-NADP reductase -2.772378824 6.662823721 6.52E-14 8.30E-11 b1235 rsspnose regulator binding RpoS to initiate proteolysis by -2.772378824 6.662823721 6.52E-14 8.30E-11 b1235 rssB ClpXP; required for the PCnB-degradosome interaction -2.705467195 5.900480773 1.99E-08 1.02E-00 b3408 feoA ferrous iron transporter, protein A -2.642082127 7.131109436 5.13E-18 9.78E-14 b3813 entrobactin/ferric enterobactin setsease -2.64282127 7.31109436 5.13E-18 9.78E-14	b2288	nuoA	NADH:ubiquinone oxidoreductase, membrane subunit A	-3.152713148	5.403574565	2.00E-05	0.000508942
b4025 pgi glucosephosphate isomerase -3.007177885 5.419284534 6.32E-07 2.41E-05 b3426 glpD sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding -2.996922432 6.934383293 1.56E-17 2.86E-11 b0590 fepD iron-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.00033047 b04049 apaH diadenosine tetraphosphatase -2.86671944 5.159145591 6.32E-05 0.001482411 b3924 fpr fereductase -2.72378824 6.662823721 6.52E-14 8.30E-11 b1235 rssB ClpXP; required for the PonB-degradosome interaction during stationary phase -2.705926894 5.417351207 1.55E-06 5.22E-00 b1433 ponB poly(A) polymerase I -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 feoA ferrous inor transporter, protein A -2.64268217 7.131109436 5.13E-18 9.78E-11 b3613 envC astivator of AmiB, C murein hydrolases, septal ring factor -2.64268212 5.735472752 1	b2286	nuoC	NADH:ubiquinone oxidoreductase, fused CD subunit	-3.113493188	6.078868704	7.18E-10	4.78E-08
b3426 glpD rs-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding 2.996922432 6.934383293 1.56E-17 2.66E-11 b0590 fepD iron-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.00033047 b0392 fpr ferredoxin-NADP reductase -2.772378824 6.662823721 6.52E-14 8.30E-12 b1235 rssB ClpXP; required for the PcnB-degradosome interaction during stationary phase -2.772378824 6.662823721 6.52E-14 8.30E-12 b1235 rssB ClpXP; required for the PcnB-degradosome interaction during stationary phase -2.705926894 5.417351207 1.55E-06 5.22E-00 b1433 pcnB poly(A) polymerase I -2.705926894 5.417351207 1.55E-06 5.22E-00 b3408 feoA ferrous iron transporter, protein A -2.6242082127 7.131109436 5.13E-18 9.78E-11 b3813 envC activator of AmiB, C murein hydrolases, septal ring factor -2.6242082125 5.304325517 5.300E-05 0.00125701 b3836 dam DNA adenine methyltransferase	b2282	nuoH	NADH:ubiquinone oxidoreductase, membrane subunit H	-3.064345773	5.076689129	8.58E-06	0.0002401
D3426 <i>GIPD</i> FAD/NAD(P)-binding -2.99692232 6.93483293 1.50E-17 2.66E-17 b0590 <i>fepD</i> iron-enterobactin transporter subunit -2.91962325 5.199068219 1.21E-05 0.00033047 b0242 <i>fpr</i> ferredoxin-NADP reductase -2.816671944 5.159145591 6.32E-05 0.001482411 b3235 <i>rssB</i> ClpXP; required for the PcnB-degradosome interaction during stationary phase -2.728416111 6.792665745 1.21E-13 1.49E-1 b3773 <i>ilvY</i> DNA-binding transcriptional dual regulator -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 <i>feoA</i> ferrous iron transporter, protein A -2.6422682127 7.131109436 5.13E-18 9.78E-10 b3613 <i>envC</i> activator of AmiB, C murein hydrolases, septal ring factor -2.622008568 6.798613789 8.59E-10 5.47E-00 b3887 <i>dam</i> DNA adenine methyltransferase -2.61230655 5.834235517 5.30E-05 0.001237013 b3986 <i>cyaA</i> adenylate cyclase -2.248073273 5.59035028 2	b4025	pgi	glucosephosphate isomerase	-3.007177885	5.419284534	6.32E-07	2.41E-05
b0049 apaH diadenosine tetraphosphatase -2.86671944 5.159145591 6.32E-05 0.001482414 b3924 fpr ferredoxin-NADP reductase -2.772378824 6.662823721 6.52E-14 8.30E-12 b1235 rssB ClpXP; required for the PcnB-degradosome interaction during stationary phase -2.728416111 6.792665745 1.21E-13 1.49E-11 b3773 <i>iVY</i> DNA-binding transcriptional dual regulator -2.703467195 5.980480773 1.99E-08 1.02E-00 b143 pcnB poly(A) polymerase I -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 feor ferror activator of AmiB, C murein hydrolases, septal ring factor -2.6242802127 7.13109436 5.13E-18 9.78E-10 b3387 <i>dam</i> DNA adenine methyltransferase -2.60682122 5.73472752 1.89E-06 6.19E-05 b3085 fes enterobactin/ferric enterobactin setrase -2.408073273 5.59035028 2.36E-05 0.000123732 b3163 n/p/ lipoprotein involved in osmotic sensitivity and filamentation disulfide isomerase I	b3426	glpD		-2.996922432	6.934383293	1.56E-17	2.86E-15
b3924fprferredoxin-NADP reductase response regulator binding RpoS to initiate proteolysis by ClpXP; required for the PcnB-degradosome interaction during stationary phase-2.7723788246.6628237216.52E-148.30E-12b3773 <i>il</i> /YDNA-binding transcriptional dual regulator-2.7059268945.4173512071.55E-065.22E-03b313 <i>ponB</i> poly(A) polymerase I-2.7034671955.9804807731.99E-081.02E-00b3408feoAferrous iron transporter, protein A-2.6426821277.1311094365.13E-189.78E-10b3613 <i>envC</i> activator of AmiB, C murein hydrolases, septal ring factor-2.60881225.7354727521.89E-066.19E-00b3887 <i>dam</i> DNA adenine methyltransferase-2.606821225.7354727521.89E-066.19E-00b0928 <i>aspC</i> aspartate aminotransferase, PLP-dependent-2.675025645.3103398597.61E-050.001737320b3806 <i>cyaA</i> adenylate cyclase-2.2943159096.6207231151.85E-091.11E-00b1185 <i>dsbB</i> oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2347192056.6084299243.08E-091.77E-07b0765 <i>modC</i> molybdate transporter subunit-2.1772022226.0637971481.43E-064.92E-00b1221 <i>narL</i> for regulatory system with NarX (or NarQ)-2.1772022226.063791481.43E-064.92E-00b0765 <i>modC</i> molybdate transporter subunit-2.1772022225.9212828822.71E-050.00	b0590	fepD	iron-enterobactin transporter subunit	-2.91962325	5.199068219	1.21E-05	0.000330471
b1235response regulator binding RpoS to initiate proteolysis by during stationary phase-2.7284161116.7926657451.21E-131.49E-11b3773 <i>ilvY</i> DNA-binding transcriptional dual regulator-2.7059268945.4173512071.55E-065.22E-00b0143 <i>pcnB</i> poly(A) polymerase I-2.7034671955.9804807731.99E-081.02E-00b3408 <i>feoA</i> ferrous iron transporter, protein A-2.6426821277.1311094365.13E-189.78E-10b3403 <i>feoA</i> ferrous iron transporter, protein A-2.6220085686.7966137898.59E-105.47E-00b3807 <i>dam</i> DNA adenine methyltransferase-2.6008621225.7354727521.89E-066.019E-00b0928 <i>aspC</i> aspartate aminotransferase, PLP-dependent-2.5750025645.3103398597.61E-050.001737324b3163 <i>nlpl</i> lipoprotein involved in osmotic sensitivity and filamentation-2.4880732735.590350282.36E-050.00058889b3306 <i>cyaA</i> adenylate cyclase-2.2043159096.6207231151.85E-091.11E-00b1185 <i>dsbB</i> oxidoreductase that catalyzes reoxidation of DsbA protein regulatory system with NarX (or NarQ)-2.21772226.6037971481.43E-064.92E-00b0551 <i>modC</i> molybate transporter subunit-2.1772023226.0637971481.43E-064.92E-00b0565 <i>modC</i> molybate transporter subunit-2.1772023226.0637971481.43E-064.92E-00b1221 <i>narL</i> DNA-binding response regulato	b0049	apaH	diadenosine tetraphosphatase	-2.86671944	5.159145591	6.32E-05	0.001482418
b1235 rssB ClpXP; required for the PonB-degradosome interaction during stationary phase -2.728416111 6.792665745 1.21E-13 1.49E-11 b3773 i/vY DNA-binding transcriptional dual regulator -2.703467195 5.890480773 1.99E-08 5.22E-00 b3408 feoA ferrous iron transporter, protein A -2.703467195 5.890480773 1.99E-08 1.02E-00 b3613 envC activator of AmiB, C murein hydrolases, septal ring factor -2.642682127 7.131109436 5.13E-18 9.78E-10 b3653 dam DNA adenine methyltransferase -2.602103065 5.834235517 5.30E-05 0.00125701 b3654 fers enterobactin/ferric enterobactin esterase -2.60682122 5.735472752 1.89E-06 6.19E-05 0.00173732 b3163 nlpl lipoprotein involved in osmotic sensitivity and filamentation -2.302785308 6.81978066 2.26E-06 7.25E-06 0.20058889 b3236 mdh malate dehydrogenase, NAD(P)-binding -2.302785308 6.801978066 2.26E-06 7.25E-06 b3806 cyaA ad	b3924	fpr	ferredoxin-NADP reductase	-2.772378824	6.662823721	6.52E-14	8.30E-12
during stationary phase c b3773 <i>ilv</i> Y DNA-binding transcriptional dual regulator -2.705926894 5.417351207 1.55E-06 5.22E-00 b0143 <i>pcnB</i> poly(A) polymerase I -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 <i>feoA</i> ferrous iron transporter, protein A -2.642682127 7.131109436 5.13E-18 9.78E-10 b3613 <i>envC</i> activator of AmiB,C murein hydrolases, septal ring factor -2.622108656 6.798613789 8.59E-10 5.47E-70 b3387 <i>dam</i> DNA adenine methyltransferase -2.601230655 5.834235517 5.30E-05 0.001257019 b0585 <i>fes</i> enterobactin/ferric enterobactin esterase -2.60682122 5.735472752 1.89E-06 6.19E-09 b0928 <i>aspC</i> aspartate aminotransferase, PLP-dependent -2.575002564 5.310339859 7.61E-05 0.001737320 b3163 <i>nlpl</i> lipoprotein involved in osmotic sensitivity and filamentation -2.2488073273 5.59035028 2.36E-05 0.000588894 b3236 <i>mdh</i> malat			response regulator binding RpoS to initiate proteolysis by				
b3773 i/vY DNA-binding transcriptional dual regulator -2.705926894 5.417351207 1.55E-06 5.22E-06 b0143 pcnB poly(A) polymerase I -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 feoA ferrous iron transporter, protein A -2.642682127 7.131109436 5.13E-18 9.78E-10 b3613 envC activator of AmiB,C murein hydrolases, septal ring factor -2.622008568 6.798613789 8.59E-10 5.47E-00 b3637 dam DNA adenine methyltransferase -2.601230655 5.834235517 5.30E-05 0.00125701 b0585 fes enterobactin/ferric enterobactin esterase -2.675002564 5.310339859 7.61E-05 0.00173732 b3163 nlpl lipoprotein involved in osmotic sensitivity and filamentation -2.488073273 5.59035028 2.36E-05 0.00058889 b3236 mdh malate dehydrogenase, NAD(P)-binding -2.302785308 6.081978066 2.26E-06 7.25E-09 b3806 cyaA adenylate cyclase -2.294315909 6.620723115 1.85E-09	b1235	rssB	CIpXP; required for the PcnB-degradosome interaction	-2.728416111	6.792665745	1.21E-13	1.49E-11
b0143 pcnB poly(A) polymerase I -2.703467195 5.980480773 1.99E-08 1.02E-00 b3408 feoA ferrous iron transporter, protein A -2.642682127 7.131109436 5.13E-18 9.78E-10 b3613 envC activator of AmiB,C murein hydrolases, septal ring factor -2.629008568 6.798613789 8.59E-10 5.47E-00 b3387 dam DNA adenine methyltransferase -2.621230655 5.834235517 5.30E-05 0.001257019 b0585 fes enterobactin/ferric enterobactin estrase -2.60682122 5.735472752 1.89E-06 6.19E-05 b0928 aspC aspartate aminotransferase, PLP-dependent -2.48073273 5.59035028 2.36E-05 0.001237324 b3163 nlpl lipoprotein involved in osmotic sensitivity and filamentation -2.488073273 5.59035028 2.36E-05 0.00058889 b3236 mdh malate dehydrogenase, NAD(P)-binding -2.290185069 6.620723115 1.85E-09 1.11E-07 b1185 dsbB oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I -2.290185069			during stationary phase				
b3408feoAferrous iron transporter, protein A-2.6426821277.1311094365.13E-189.78E-10b3613envCactivator of AmiB,C murein hydrolases, septal ring factor-2.6290085686.7986137898.59E-105.47E-00b3387damDNA adenine methyltransferase-2.6212306555.8342355175.30E-050.001257019b0585fesenterobactin/ferric enterobactin esterase-2.606821225.7354727521.89E-066.19E-09b0928aspCaspartate aminotransferase, PLP-dependent-2.5750025645.3103388597.61E-050.001737329b3163nlpllipoprotein involved in osmotic sensitivity and filamentation-2.4880732735.590350282.36E-050.000588894b3236mdhmalate dehydrogenase, NAD(P)-binding-2.20248159096.6207231151.85E-091.11E-07b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2347192056.6084299243.08E-091.77E-07b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.21772023226.0637971481.43E-064.92E-09b0765modCmolybdate transporter subunit-2.1772023226.0637971481.43E-064.92E-09b0051rsm416S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756	b3773	ilvY	DNA-binding transcriptional dual regulator	-2.705926894	5.417351207	1.55E-06	5.22E-05
b3613 envC activator of AmiB, C murein hydrolases, septal ring factor -2.629008568 6.798613789 8.59E-10 5.47E-00 b3387 dam DNA adenine methyltransferase -2.621230655 5.834235517 5.30E-05 0.001257019 b0585 fes enterobactin/ferric enterobactin esterase -2.60682122 5.735472752 1.89E-06 6.19E-05 b0928 aspC aspartate aminotransferase, PLP-dependent -2.575002564 5.310339859 7.61E-05 0.001737324 b3163 nlpl lipoprotein involved in osmotic sensitivity and filamentation -2.488073273 5.59035028 2.36E-05 0.000588894 b3236 mdh malate dehydrogenase, NAD(P)-binding -2.290185069 6.620723115 1.85E-09 1.11E-00 b3806 cyaA adenylate cyclase -2.290185069 5.67585859 5.17E-05 0.00123957 b1185 dsbB disulfide isomerase I DNA-binding response regulator in two-component regulatory system with NarX (or NarQ) -2.234719205 6.608429924 3.08E-09 1.77E-07 b1221 narL DNA-binding response regulator in two-component regulatory system with NarX (or NarQ) -2.177202322 6.0		pcnB					1.02E-06
b3387 dam DNA adenine methyltransferase -2.621230655 5.834235517 5.30E-05 0.001257019 b0585 fes enterobactin/ferric enterobactin esterase -2.60682122 5.735472752 1.89E-06 6.19E-09 b0928 aspC aspartate aminotransferase, PLP-dependent -2.575002564 5.310339859 7.61E-05 0.001737320 b3163 nlp1 lipoprotein involved in osmotic sensitivity and filamentation -2.488073273 5.59035028 2.36E-05 0.000588894 b3236 mdh malate dehydrogenase, NAD(P)-binding -2.302785308 6.081978066 2.26E-06 7.25E-09 b3806 cyaA adenylate cyclase -2.290185069 5.67585859 5.17E-05 0.001239579 b1185 dsbB oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I -2.290185069 5.67585859 5.17E-05 0.001239579 b1221 narL DNA-binding response regulator in two-component regulatory system with NarX (or NarQ) -2.177202322 6.608429924 3.08E-09 1.77E-07 b0765 modC molybdate transporter subunit -2.177202322 6.063797148 1.43E-06 4.92E-09 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.78E-16</td>							9.78E-16
b0585fesenterobactin/ferric enterobactin esterase-2.606821225.7354727521.89E-066.19E-09b0928aspCaspartate aminotransferase, PLP-dependent-2.5750025645.3103398597.61E-050.001737320b3163nlpllipoprotein involved in osmotic sensitivity and filamentation-2.4880732735.590350282.36E-050.000588890b3236mdhmalate dehydrogenase, NAD(P)-binding-2.3027853086.0819780662.26E-067.25E-09b3806cyaAadenylate cyclase-2.2943159096.6207231151.85E-091.11E-07b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase IDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-07b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756		envC					5.47E-08
b0928aspCaspartate aminotransferase, PLP-dependent-2.5750025645.3103398597.61E-050.001737320b3163nlpllipoprotein involved in osmotic sensitivity and filamentation-2.4880732735.590350282.36E-050.00058889b3236mdhmalate dehydrogenase, NAD(P)-binding-2.3027853086.0819780662.26E-067.25E-09b3806cyaAadenylate cyclase-2.2943159096.6207231151.85E-091.11E-07b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase l-2.2901850695.675858595.17E-050.001239579b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.1772023226.0637971481.43E-064.92E-09b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756		dam	5				
b3163nlpllipoprotein involved in osmotic sensitivity and filamentation malate dehydrogenase, NAD(P)-binding b3806-2.4880732735.590350282.36E-050.000588894b3806cyaAadenylate cyclase oxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.4880732735.590350282.36E-050.000588894b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2943159096.6207231151.85E-091.11E-0b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-0b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756							6.19E-05
b3236mdh malate dehydrogenase, NAD(P)-binding b3806-2.302785308 -2.2943159096.081978066 6.6207231152.26E-06 1.85E-097.25E-09 1.11E-01b185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2901850695.675858595.17E-050.001239579b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-01b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.1772023226.0637971481.43E-064.92E-09b0751rsmAfiest RNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756		•	•				
b3806cyaAadenylate cyclase-2.2943159096.6207231151.85E-091.11E-0b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2901850695.675858595.17E-050.001239579b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-07b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.1772023226.0637971481.43E-064.92E-09b0051rsmA16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756		•					0.000588894
b1185dsbBoxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I-2.2901850695.675858595.17E-050.001239579b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-07b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.1772023226.0637971481.43E-064.92E-09b0751rsmA16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756							
b1185dsbBdisulfide isomerase I-2.2901850695.675858595.17E-050.001239545b1221narLDNA-binding response regulator in two-component regulatory system with NarX (or NarQ)-2.2347192056.6084299243.08E-091.77E-07b0765modCmolybdate transporter subunit 16S rRNA dimethyladenosine transferase, SAM2.1772023226.0637971481.43E-064.92E-05b0051rsmA16S rRNA dimethyladenosine transferase, SAM2.140770225.9212828822.71E-050.000662756	b3806	cyaA		-2.294315909	6.620723115	1.85E-09	1.11E-07
b1221 narL regulatory system with NarX (or NarQ) -2.234/19205 6.608429924 3.08E-09 1.77E-0 b0765 molybdate transporter subunit -2.177202322 6.063797148 1.43E-06 4.92E-09 b0051 rsm4 16S rRNA dimethyladenosine transferase, SAM- -2.14077022 5.921282882 2.71E-05 0.000662756	b1185	dsbB	disulfide isomerase I	-2.290185069	5.67585859	5.17E-05	0.001239575
b0051 rsm4 16S rRNA dimethyladenosine transferase, SAM2 14077022 5 921282882 2 71E-05 0 000662750	b1221	narL		-2.234719205	6.608429924	3.08E-09	1.77E-07
	b0765	modC		-2.177202322	6.063797148	1.43E-06	4.92E-05
	b0051	rsmA	-	-2.14077022	5.921282882	2.71E-05	0.000662756

locus_tag	gene_name	function	logFC	logCPM	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b0080	cra	DNA-binding transcriptional repressor-activator for carbon metabolism	-2.062286024	6.411638626	1.46E-06	4.99E-05
b3409	feoB	fused ferrous iron transporter, protein B: GTP-binding protein/membrane protein	-2.008126611	8.542288277	4.72E-21	1.52E-18
b4383	deoB	phosphopentomutase	-1.972698094	7.113903977	2.03E-10	1.58E-08
b3631	rfaG	glucosyltransferase I	-1.916720297	6.852068873	1.84E-06	6.09E-05
b3026	qseC	quorum sensing sensory histidine kinase in two- component regulatory system with QseB	-1.882706064	7.016851866	3.08E-08	1.44E-06
b3574	yiaJ	DNA-binding transcriptional repressor of yiaK-S operon	-1.845313759	7.279072193	6.40E-10	4.33E-08
b0484	сорА	copper transporter	-1.735698387	8.139142271	1.65E-17	2.88E-15
b0121	speE	spermidine synthase (putrescine aminopropyltransferase)	-1.686434832	6.345043762	1.47E-05	0.000394198
b2264	menD	bifunctional 2-oxoglutarate decarboxylase/ SHCHC synthase	-1.603688248	7.347690167	2.61E-07	1.05E-05
b1232	purU	formyltetrahydrofolate hydrolase	-1.601162905	6.602740737	6.03E-06	0.000177
b1176	minC	cell division inhibitor	-1.588083248	7.055586906	6.60E-07	2.50E-05
b1770	ydjF	predicted DNA-binding transcriptional regulator	-1.521942776	8.464514427	2.43E-15	3.52E-13
b1603	pntA	pyridine nucleotide transhydrogenase, alpha subunit	-1.506285611	7.121298073	1.56E-05	0.000415036
b1175	minD	membrane ATPase of the MinC-MinD-MinE system	-1.46356281	7.524913471	9.98E-09	5.37E-07
b2290	alaA	valine-pyruvate aminotransferase 2	-1.44457321	8.071996059	7.22E-12	7.40E-10
b1761	gdhA	glutamate dehydrogenase, NADP-specific	-1.425645416	7.095182256	2.47E-06	7.84E-05
b3616	tdh	threonine 3-dehydrogenase, NAD(P)-binding	-1.360979882	6.988192623	2.03E-05	0.000513675
b3166	truB	tRNA U55 pseudouridine synthase	-1.323030242	6.697151224	7.00E-05	0.001607462
b2965	speC	ornithine decarboxylase, constitutive	-1.306733364	8.066436442	1.16E-08	6.09E-07
b2501	ppk	polyphosphate kinase, component of RNA degradosome	-1.280099597	8.200549855	3.76E-10	2.63E-08
b4488	ilvG	pseudogene	-1.244649564	7.226809132	8.19E-06	0.000232301
b3930	menA	1,4-dihydroxy-2-naphthoate octaprenyltransferase	-1.242805799	7.055041582	5.19E-05	0.001239575
b0676	nagC	DNA-binding transcriptional dual regulator, repressor of N- acetylglucosamine	-1.235500786	7.561393271	1.17E-05	0.000321694
b3252	csrD	targeting factor for csrBC sRNA degradation	-1.229031342	8.123824136	2.94E-07	1.17E-05
b2707	srlR	DNA-bindng transcriptional repressor	-1.204260533	7.206828145	7.51E-06	0.000214665
b1222	narX	sensory histidine kinase in two-component regulatory system with NarL	-1.162663029	7.581364564	7.66E-07	2.82E-05

locus_tag	gene_name	function	logFC	<u>logCPM</u>	<u>Pvalue (cutoff</u> 0.05)	<u>q.value (cutoff</u> 0.001831501)
b1812	pabB	aminodeoxychorismate synthase, subunit I	-1.155004069	7.597660336	4.11E-07	1.61E-05
b2144	sanA	vancomycin high temperature exclusion protein; mutants have a defective envelope more permeable to vancomycin at 42 degrees	-1.098747531	9.359237045	9.46E-10	5.93E-08
b0584	fepA	iron-enterobactin outer membrane transporter	-0.892292631	7.927569063	1.62E-05	0.000423375
b4390	nadR	bifunctional DNA-binding transcriptional repressor/ NMN adenylyltransferase	0.729386652	9.087215147	1.60E-05	0.000421446
b0401	brnQ	Branched-chain amino acid transport system 2 carrier protein; LIV-II transport system for Ile, Leu, and Val	0.773879073	8.423668391	6.94E-05	0.001601407
b2158	yeiH	inner membrane protein, UPF0324 family	0.782708693	8.234698098	4.60E-05	0.001110182
b0059	rapA	RNA polymerase-associated helicase protein (ATPase and RNA polymerase recycling factor)	0.816609275	10.10051801	8.43E-06	0.000237597
b4141	yjeH	predicted transporter	0.818915265	8.934355898	7.24E-07	2.69E-05
b1823	cspC	stress protein, member of the CspA-family	0.849725964	9.042005844	3.62E-06	0.00011166
b3529	yhjK	predicted diguanylate cyclase	0.855478799	9.244665229	8.48E-08	3.79E-06
b3253	yhdH	predicted oxidoreductase, Zn-dependent and NAD(P)- binding	0.863854519	8.430353495	2.67E-06	8.37E-05
b2903	gcvP	glycine decarboxylase, PLP-dependent, subunit (protein P) of glycine cleavage complex	0.882809182	9.677320818	1.27E-08	6.60E-07
b1824	yobF	predicted protein	1.046005136	7.722692538	4.18E-06	0.000127328
b3780	rhlB	ATP-dependent RNA helicase	1.079850628	9.06160068	2.83E-08	1.40E-06
b2786	barA	hybrid sensory histidine kinase, in two-component regulatory system with UvrY	1.098021572	11.42990721	3.49E-11	3.12E-09
b1914	uvrY	DNA-binding response regulator in two-component regulatory system with BarA	1.10569565	9.316454154	1.13E-07	4.95E-06
b1198	dhaM	fused predicted dihydroxyacetone-specific PTS enzymes: HPr component/EI component	1.118807089	8.795159616	2.67E-07	1.07E-05
b2521	sseA	3-mercaptopyruvate sulfurtransferase	1.197426679	8.397586029	2.77E-10	2.04E-08
b1201	dhaR	DNA-binding transcription activator of the dhaKLM operon	1.267317206	9.201449493	1.77E-11	1.73E-09
b1200	dhaK	dihydroxyacetone kinase, PTS-dependent, dihydroxyacetone-binding subunit	1.267413298	8.06625522	7.93E-10	5.20E-08
b2571	rseB	anti-sigma E factor, binds RseA	1.350615189	7.379953847	6.73E-05	0.001560814

locus_tag	gene_name	function	<u>logFC</u>	logCPM	Pvalue (cutoff 0.05)	<u>q.value (cutoff</u> 0.001831501)
b3791	rffA	TDP-4-oxo-6-deoxy-D-glucose transaminase	1.411669084	8.752361927	1.32E-11	1.32E-09
b1199	dhaL	dihydroxyacetone kinase, C-terminal domain	1.469106005	6.655344072	7.78E-05	0.001757259
b1084	rne	fused ribonucleaseE: endoribonuclease/RNA-binding protein/RNA degradosome binding protein	1.50880981	7.992764854	4.81E-13	5.61E-11
b2168	fruK	fructose-1-phosphate kinase	1.675351141	7.449603936	4.40E-11	3.85E-09
b1284	yciT	global regulator of transcription; DeoR family	1.734680115	8.961422792	1.40E-19	3.45E-17
b1849	purT	phosphoribosylglycinamide formyltransferase 2	1.749533854	8.607558539	3.48E-19	8.12E-17
b3790	rffC	TDP-fucosamine acetyltransferase	1.8097286	7.857258347	3.55E-14	4.65E-12
b2912	fau	conserved protein, 5-formyltetrahydrofolate cyclo-ligase family	1.865522658	7.521691234	9.16E-13	1.01E-10
b3934	cytR	DNA-binding transcriptional dual regulator	2.02436647	8.793370599	1.95E-25	7.43E-23
b4260	рерА	multifunctional aminopeptidase A: a cyteinylglycinase, transcription regulator and site-specific recombination factor	2.405265436	9.621110782	3.17E-38	3.33E-35

Table A14. Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes shared under all conditions

Oches .			
Gene	Function	Gene	Function
aroA	Essential for growth in M9 medium (Joyce et al., 2006)	ompA	Cell envelope
aroD	Essential for growth in M9 medium (Joyce et al., 2006)	rfaG	Cell envelope
carB	Essential for growth in M9 medium (Joyce et al., 2006)	sanA	Cell envelope
cysD	Essential for growth in M9 medium (Joyce et al., 2006)	рерА	Central metabolism
cysP	Essential for growth in M9 medium (Joyce et al., 2006)	pgi	Central metabolism
cysQ	Essential for growth in M9 medium (Joyce et al., 2006)	pgm	Central metabolism
fes	Essential for growth in M9 medium (Joyce et al., 2006)	сорА	Metal and vitamin metabolism
gltA	Essential for growth in M9 medium (Joyce et al., 2006)	cysG	Metal and vitamin metabolism
hisD	Essential for growth in M9 medium (Joyce et al., 2006)	feoA	Metal and vitamin metabolism
ilvA	Essential for growth in M9 medium (Joyce et al., 2006)	trkA	Metal and vitamin metabolism
ilvD	Essential for growth in M9 medium (Joyce et al., 2006)	cvpA	Miscellaneous
leuB	Essential for growth in M9 medium (Joyce et al., 2006)	cysW	Miscellaneous
leuC	Essential for growth in M9 medium (Joyce et al., 2006)	purT	Miscellaneous
leuD	Essential for growth in M9 medium (Joyce et al., 2006)	rapA	Miscellaneous
metB	Essential for growth in M9 medium (Joyce et al., 2006)	rhIB	Miscellaneous
metC	Essential for growth in M9 medium (Joyce et al., 2006)	speE	Miscellaneous
metF	Essential for growth in M9 medium (Joyce et al., 2006)	tolC	Miscellaneous
metR	Essential for growth in M9 medium (Joyce et al., 2006)	envC	Peptidoglycan synthesis and cell division
nadA	Essential for growth in M9 medium (Joyce et al., 2006)	lpp	Peptidoglycan synthesis and cell division
pabB	Essential for growth in M9 medium (Joyce et al., 2006)	minD	Peptidoglycan synthesis and cell division
pdxA	Essential for growth in M9 medium (Joyce et al., 2006)	pal	Peptidoglycan synthesis and cell division
ррс	Essential for growth in M9 medium (Joyce et al., 2006)	tolB	Peptidoglycan synthesis and cell division
proA	Essential for growth in M9 medium (Joyce et al., 2006)	tolR	Peptidoglycan synthesis and cell division
proC	Essential for growth in M9 medium (Joyce et al., 2006)	dsbA	Protein processing
purL	Essential for growth in M9 medium (Joyce et al., 2006)	tatC	Protein processing
thrA	Essential for growth in M9 medium (Joyce et al., 2006)	trxA	Protein processing
thrB	Essential for growth in M9 medium (Joyce et al., 2006)	apaH	Regulation
thrC	Essential for growth in M9 medium (Joyce et al., 2006)	barA	Regulation
trpC	Essential for growth in M9 medium (Joyce et al., 2006)	cra	Regulation
trpD	Essential for growth in M9 medium (Joyce et al., 2006)	csrD	Regulation
trpE	Essential for growth in M9 medium (Joyce et al., 2006)	lysR	Regulation
•	-		-

Gene	Function
alaA	Amino acid metabolism
argG	Amino acid metabolism
gcvP	Amino acid metabolism
ilvE	Amino acid metabolism

GeneFunctionrelARegulationuvrYRegulation

Table A15. Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes unique to glucose

Control al	inque le glacece		
Gene	Function	Gene	Function
carA	Amino acid metabolism	adhE	Mixed acid fermentation
cysH	Amino acid metabolism	ldhA	Mixed acid fermentation
cysl	Amino acid metabolism	pflB	Mixed acid fermentation
glgB	Amino acid metabolism	ftsK	Peptidoglycan synthesis and cell division
leuL	Amino acid metabolism	ftsN	Peptidoglycan synthesis and cell division
cls	Cell envelope	ldtB	Peptidoglycan synthesis and cell division
ddIA	Cell envelope	clpB	Protein processing
ompR	Cell envelope	oppA	Protein processing
ackA	Central metabolism	rpoS	Regulation
acnB	Central metabolism	sixA	Regulation
atpD	Central metabolism	uspA	Regulation
gpmA	Central metabolism	ycbJ	y genes
ndh	Central metabolism	yfcE	y genes
pfkA	Central metabolism	ytfL	y genes
pykF	Central metabolism	znuA	Zinc transport
recC	DNA	znuB	Zinc transport
topA	DNA	znuC	Zinc transport
gshA	Glutathione biosynthesis		
gshB	Glutathione biosynthesis		
gsiB	Glutathione biosynthesis		
galU	Miscellaneous		
mqsA	Miscellaneous		
nadB	Miscellaneous		

Miscellaneous Miscellaneous

Miscellaneous Miscellaneous

Miscellaneous

prc prmB

speD epmA Table A16. Comparative analysis of a mutant library grown under three different anaerobic conditions.Genes unique to glucose nitrate (not including y genes).

•			
Gene	Function	Gene	Function
gcvT	Amino acid metabolism	mgtA	Miscellaneous
leuE	Amino acid metabolism	kch	Miscellaneous
leuO	Amino acid metabolism	npr	Miscellaneous
leuV	Amino acid metabolism	insJ	Miscellaneous
metW	Amino acid metabolism	insK	Miscellaneous
metQ	Amino acid metabolism	gspC	Miscellaneous
tdcB	Amino acid metabolism	gltF	Miscellaneous
tdcD	Amino acid metabolism	mokA	Miscellaneous
metl	Amino acid metabolism	hokA	Miscellaneous
argA	Amino acid metabolism	shoB	Miscellaneous
argB	Amino acid metabolism	frc	Miscellaneous
argD	Amino acid metabolism	охс	Miscellaneous
argR	Amino acid metabolism	arpA	Miscellaneous
ompG	Cell envelope	arpB	Miscellaneous
asmA	Cell envelope	casA	Miscellaneous
mlaA	Cell envelope	hlyE	Miscellaneous
ompC	Cell envelope	speA	Miscellaneous
bamB	Cell envelope	tfaP	Miscellaneous
mlaB	Cell envelope	trkG	Miscellaneous
bamC	Cell envelope	rna	Miscellaneous
bamE	Cell envelope	sseB	Miscellaneous
mlaD	Cell envelope	hsdS	Miscellaneous
mlaE	Cell envelope	tomB	Miscellaneous
mlaF	Cell envelope	opgG	Osmolarity
cpxR	Cell envelope	ордН	Osmolarity
envR	Cell envelope	proV	Osmolarity
rcsF	Cell envelope	proQ	Osmolarity
rcsB	Cell envelope	proP	Osmolarity
rcsA	Cell envelope	nagA	Peptidoglycan synthesis and cell division
fabF	Cell envelope	nagE	Peptidoglycan synthesis and cell division
fabR	Cell envelope	rodZ	Peptidoglycan synthesis and cell division
	•		

-			
<u>Gene</u>	Function	Gene	<u>Function</u>
ftnA	Cell envelope	slt	Peptidoglycan synthesis and cell division
ompX	Cell envelope	pinQ	Phage elements
plsX	Cell envelope	queE	Phage elements
lipB	Cell envelope	gtrB	Phage elements
dgkA	Cell envelope	gtrS	Phage elements
phoE	Cell envelope	intQ	Phage elements
ais	Cell envelope	pspA	Phage elements
rfaJ	Cell envelope	quuD	Phage elements
rfaL	Cell envelope	mcrC	Phage elements
rfaQ	Cell envelope	mcrB	Phage elements
rfaS	Cell envelope	lit	Phage elements
rfaY	Cell envelope	mcrA	Phage elements
rfaZ	Cell envelope	htpG	Protein processing
rfbX	Cell envelope	ibpA	Protein processing
rfc	Cell envelope	pphB	Protein processing
rseA	Cell envelope	prfC	Protein processing
ugd	Cell envelope	sppA	Protein processing
uidC	Cell envelope	skp	Protein processing
waaU	Cell envelope	hdeA	Protein processing
wbbK	Cell envelope	tig	Protein processing
wbbL	Cell envelope	oxyR	Redox
wcaE	Cell envelope	ahpC	Redox
ompL	Cell envelope	paoC	Redox
wecH	Cell envelope	norR	Redox
mlaC	Cell envelope	hmp	Redox
wzzE	Cell envelope	adiY	Regulation
aceA	Central metabolism	rssA	Regulation
aceB	Central metabolism	alpA	Regulation
hyi	Central metabolism	sspA	Regulation
cspA	Cold Shock	appY	Regulation
cspB	Cold Shock	stpA	Regulation
, cspE	Cold Shock	ariR	Regulation
cspl	Cold Shock	cadC	Regulation
			-

Gene	Function	Gene	Function
cspG	Cold Shock	dosC	Regulation
mutM	DNA	phnF	Regulation
xerD	DNA	, phoQ	Regulation
nrdD	DNA	pqqL	Translation
tdk	DNA	dusB	Translation
pyrC	DNA	miaA	Translation
pyrD	DNA	rimK	Translation
pyrB	DNA	rlmG	Translation
recA	DNA	rpll	Translation
hchA	DNA	rsmC	Translation
uvrB	DNA	rsml	Translation
acrA	Drug efflux	typA	Translation
acrB	Drug efflux	mglA	Use of alternative carbon sources
emrK	Drug efflux	nanC	Use of alternative carbon sources
emrY	Drug efflux	agaB	Use of alternative carbon sources
evgS	Drug efflux	alsB	Use of alternative carbon sources
mprA	Drug efflux	mtlA	Use of alternative carbon sources
elfA	Fimbriae/biofilm	bglG	Use of alternative carbon sources
bdm	Fimbriae/biofilm	nanM	Use of alternative carbon sources
mcbR	Fimbriae/biofilm	bgIH	Use of alternative carbon sources
csgB	Fimbriae/biofilm	rbsR	Use of alternative carbon sources
pgaC	Fimbriae/biofilm	chbR	Use of alternative carbon sources
csgD	Fimbriae/biofilm	chbF	Use of alternative carbon sources
pgaA	Fimbriae/biofilm	csrB	Use of alternative carbon sources
pgaB	Fimbriae/biofilm	csrC	Use of alternative carbon sources
fimB	Fimbriae/biofilm	galE	Use of alternative carbon sources
fimC	Fimbriae/biofilm	galR	Use of alternative carbon sources
fimD	Fimbriae/biofilm	idnD	Use of alternative carbon sources
fimE	Fimbriae/biofilm	lacA	Use of alternative carbon sources
fimZ	Fimbriae/biofilm	lacY	Use of alternative carbon sources
flxA	Fimbriae/biofilm	malQ	Use of alternative carbon sources
htrE	Fimbriae/biofilm	setC	Use of alternative carbon sources
sfmC	Fimbriae/biofilm	uxaC	Use of alternative carbon sources

<u>Gene</u>	Function
sfmD	Fimbriae/biofilm
sfmH	Fimbriae/biofilm
	Metal and vitamin
bioA	metabolism
	Metal and vitamin
bioB	metabolism
	Metal and vitamin
bioC	metabolism
	Metal and vitamin
bioH	metabolism
	Metal and vitamin
fepB	metabolism
	Metal and vitamin
fepE	metabolism
	Metal and vitamin
fepG	metabolism
	Metal and vitamin
fhuB	metabolism
	Metal and vitamin
тосА	metabolism
	Metal and vitamin
panB	metabolism
	Metal and vitamin
panD	metabolism
	Metal and vitamin
pitA	metabolism
	Metal and vitamin
tonB	metabolism
	Metal and vitamin
zntA	metabolism

<u>Gene</u> xylE <u>Function</u> Use of alternative carbon sources

o giycerol nitrate.		
Function	Gene	Function
	dhaR	Regulation
	srlR	Regulation
Amino acid metabolism	cytR	Regulation
Amino acid metabolism	ihfA	Regulation
Amino acid metabolism	ulaR	Regulation
Central metabolism	yiaJ	Regulation
Central metabolism	nuoA	Respiration
Central metabolism	nuoC	Respiration
DNA	nuoH	Respiration
DNA	nuoN	Respiration
DNA	nuoL	Respiration
DNA	menD	Respiration
DNA	nuoF	Respiration
DNA	nuol	Respiration
	narX	Respiration
	narG	Respiration
	nuoB	Respiration
	nuoG	Respiration
	narH	Respiration
	nuoM	Respiration
		Respiration
	-	y genes
	-	y genes
		y genes
	ydjF	y genes
Miscellaneous		
	Function Amino acid metabolism Amino acid metabolism Amino acid metabolism Amino acid metabolism Amino acid metabolism Central metabolism Central metabolism Central metabolism DNA DNA DNA DNA DNA	FunctionGeneAmino acid metabolismdhaRAmino acid metabolismsrlRAmino acid metabolismcytRAmino acid metabolismihfAAmino acid metabolismulaRCentral metabolismyiaJCentral metabolismnuoACentral metabolismnuoACentral metabolismnuoACentral metabolismnuoADNAnuoHDNAnuoLDNAnuoFDNAnuoFDNAnuoIGlycerol utilisation and uptakenarXGlycerol utilisation and uptakenuoGMetal and vitamin metabolismnuoHMiscellaneousyciTMiscellaneousyciTMiscellaneousyciFMiscellaneousyciFMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMiscellaneousmiscellaneousMis

Table A17. Comparative analysis of a mutant library grown under three different anaerobic conditions. Genes unique to glycerol nitrate.

Genes shared by cultures grown in initiate.				
	<u>Gene</u>	Function	Gene	Function
	argC	Amino acid metabolism	fnr	Regulation
	argE	Amino acid metabolism	nadR	Regulation
	aspC	Amino acid metabolism	nagC	Regulation
	gdhA	Amino acid metabolism	narL	Regulation
	ilvB	Amino acid metabolism	ptsN	Regulation
	ilvY	Amino acid metabolism	rseB	Regulation
	metA	Amino acid metabolism	rssB	Regulation
	fepA	Metal and vitamin metabolism	cysA	Transporters
	fepC	Metal and vitamin metabolism	cysU	Transporters
	fepD	Metal and vitamin metabolism	narK	Transporters
	hemN	Metal and vitamin metabolism	purN	Miscellaneous
	moaA	Metal and vitamin metabolism	cspC	Miscellaneous
	moaC	Metal and vitamin metabolism	cyaA	Miscellaneous
	moaE	Metal and vitamin metabolism	fruK	Miscellaneous
	modA	Metal and vitamin metabolism	rsmA	Miscellaneous
	modB	Metal and vitamin metabolism	truA	Miscellaneous
	modC	Metal and vitamin metabolism	yeiH	Miscellaneous
	moeA	Metal and vitamin metabolism	speC	Miscellaneous
	moeB	Metal and vitamin metabolism	clpX	Protein processing
	mog	Metal and vitamin metabolism	clpP	Protein processing
			fpr	Protein processing
			.1	processing

 Table A18. Comparative analysis of a mutant library grown under three different anaerobic conditions.

 Genes shared by cultures grown in nitrate.

Table A19. Comparative analysis of a mutant library grown under three different anaerobic conditions.

Y genes.

Putative y gene functional groups in glucose

Gene Function

ycbJ Putative phosphotransferase

yfcE Phosphodiesterase

ytfL Putative inner membrane protein

Putative y gene functional groups in glucose nitrate

giacose initiate					
Gene	Function	Gene	Function		
yehA	Fimbriae/biofilm formation	yahE	Unknown/pseudogenes		
yehB	Fimbriae/biofilm formation	yahL	Unknown/pseudogenes		
yfcV	Fimbriae/biofilm formation	ycdU	Unknown/pseudogenes		
yadC	Fimbriae/biofilm formation	yecT	Unknown/pseudogenes		
yqiG	Fimbriae/biofilm formation	ybeR	Unknown/pseudogenes		
ygiL	Fimbriae/biofilm formation	ybeT	Unknown/pseudogenes		
yadK	Fimbriae/biofilm formation	ybfA	Unknown/pseudogenes		
yqiH	Fimbriae/biofilm formation	ybfK	Unknown/pseudogenes		
yadL	Fimbriae/biofilm formation	ybfl	Unknown/pseudogenes		
yadM	Fimbriae/biofilm formation	yedN	Unknown/pseudogenes		
yqil	Fimbriae/biofilm formation	yeeL	Unknown/pseudogenes		
yadN	Fimbriae/biofilm formation	yiaW	Unknown/pseudogenes		
yqiK	Fimbriae/biofilm formation	ygaQ	Unknown/pseudogenes		
yhcA	Fimbriae/biofilm formation	ybfO	Unknown/pseudogenes		
урјА	Fimbriae/biofilm formation	yrhD	Unknown/pseudogenes		
ybfG	Fimbriae/biofilm formation	ybhM	Unknown/pseudogenes		
ybgD	Fimbriae/biofilm formation	yecF	Unknown/pseudogenes		
yceO	Fimbriae/biofilm formation	yegJ	Unknown/pseudogenes		
ydeQ	Fimbriae/biofilm formation	ykgH	Unknown/pseudogenes		
ydeR	Fimbriae/biofilm formation	yfbM	Unknown/pseudogenes		
ydeS	Fimbriae/biofilm formation	yfbN	Unknown/pseudogenes		
ydeT	Fimbriae/biofilm formation	yfbO	Unknown/pseudogenes		
yraH	Fimbriae/biofilm formation	ygcG	Unknown/pseudogenes		

<u>Gene</u>	Function	<u>Gene</u>	Function
ybdO	Regulators	ygeQ	Unknown/pseudogenes
yeiL	Regulators	yhiL	Unknown/pseudogenes
ygaV	Regulators	yhiS	Unknown/pseudogenes
ycjW	Regulators	ycaW	Unknown/pseudogenes
ydeH	Regulators	yibJ	Unknown/pseudogenes
ydeO	Regulators	yibS	Unknown/pseudogenes
ydiP	Regulators	yihF	Unknown/pseudogenes
уjcC	Regulators	yjfl	Unknown/pseudogenes
yeal	Regulators	yjiC	Unknown/pseudogenes
yeaJ	Regulators	ymdA	Unknown/pseudogenes
yedV	Regulators	yoeG	Unknown/pseudogenes
yedW	Regulators	yahD	Unknown/pseudogenes
yeeN	Regulators	yaiS	Miscellaneous
yqeH	Regulators	yaiX	Miscellaneous
yidL	Regulators	ybhH	Miscellaneous
yiiE	Regulators	ycaK	Miscellaneous
yjjQ	Regulators	ycgF	Miscellaneous
ykgA	Regulators	yciF	Miscellaneous
yliE	Regulators	усјМ	Miscellaneous
yliF	Regulators	ydbD	Miscellaneous
ygeH	Regulators	yhgF	Miscellaneous
yqel	Regulators	ydeM	Miscellaneous
yqjl	Regulators	ydeN	Miscellaneous
yafT	Cell envelope	ydiF	Miscellaneous
ybjX	Cell envelope	ydiO	Miscellaneous
ycdM	Cell envelope	ydjH	Miscellaneous
ycfZ	Cell envelope	ydjl	Miscellaneous
yciB	Cell envelope	yebB	Miscellaneous
yhal	Cell envelope	yrbL	Miscellaneous
yhiD	Cell envelope	yedL	Miscellaneous
yiaA	Cell envelope	yfbL	Miscellaneous
yiaB	Cell envelope	yfdE	Miscellaneous
yidH	Cell envelope	yfiD	Miscellaneous

Gene	Function	Gene	Function
<u>yig</u> G	Cell envelope	ygcB	Miscellaneous
yiiG	Cell envelope	ygcW	Miscellaneous
yjbM	Cell envelope	yhaB	Miscellaneous
yjfL	Cell envelope	yhbV	Miscellaneous
yjgN	Cell envelope	yhbX	Miscellaneous
yjhB	Cell envelope	ykgF	Miscellaneous
ynbB	Cell envelope	yhhK	Miscellaneous
ytfN	Cell envelope	yhiM	Miscellaneous
yagL	Phage	yihO	Miscellaneous
yag <i>L</i> yagM	Phage	yieJ	Miscellaneous
ybcK	Phage	yjjU	Miscellaneous
ybcL	Phage	ykgB	Miscellaneous
ybcM	Phage	ylbH	Miscellaneous
yfjH	Phage	ynjl	Miscellaneous
ybcY	Phage	yaeB	Miscellaneous
ydfD	Phage	yjjK	Miscellaneous
yfdK	Phage	yafP	Miscellaneous
yfdL	Phage	yjdO	Miscellaneous
yfdQ	Phage	<i>))</i>	
yfjl	Phage		
yfjJ	Phage		
yfjW	Phage		
yjhC	Phage		
yjhl	Phage		
yjhR	Phage		
ynaK	Phage		
yahN	Transporters		
ycjV	Transporters		
ybbW	Transporters		
yaiT	Transporters		
ybbM	Transporters		
	Tue a su suf sus		

ybbY Transporters *ycgG* Transporters

Gene Function ycgV Transporters yddA Transporters yddB Transporters ydfJ Transporters ydiM Transporters ydiN Transporters ydjE Transporters vfdV Transporters Transporters γfgM ygaZ Transporters ygfU Transporters yihN Transporters Transporters yigJ Transporters ynal yphF Transporters yqeG Transporters yrbG Transporters yafD DNA yfcl DNA yhhZ DNA ykgC DNA

Putative y gene functional groups in glycerol nitrate

Gene Function

- *yciT* Putative DNA binding transcriptional regulator
- yhdH acrylyl-CoA reductase
- yceD DUF177 domain-containing protein YceD
- *ydjF* Putative DNA binding transcriptional regulator